¹ÌºÐ±âÇÏÇÐ 1 °­ÀÇ°èȹ¼­ (5¿ù 27ÀÏ ¼öÁ¤)

                      

¼ö¾÷ ÀÏ

Áøµµ

1ÁÖ (3/3)

1-2, 1-3, 1-4   Parametrized Curves, Regular Curves, Acr Length, Vector Product

2ÁÖ (3/10)

1-5   Local Theory of Curves

3ÁÖ (3/17))

2-2(Àü¹Ý)   Regular Surfaces

4ÁÖ (3/24)

2-2(ÈĹÝ), 2-3   Inverse Images of Regular Values, Change of Parameters

5ÁÖ (3/31)

2-4, 2-5(Àü¹Ý)   Tangent Plane; Differential of a Map   

6ÁÖ (4/7)

2-5(ÈĹÝ), 3-2(1/4)   First Fundamental Form; Area

7ÁÖ (4/14)

Áß°£°í»ç

8ÁÖ (4/21)

ÈÞ°­(¸¶Áö¸· ÁÖ º¸°­)

9ÁÖ (4/28)

3-2(Àü¹Ý)   Gauss Map and its Fundamental Properties

11ÁÖ (5/12)

3-2(ÈĹÝ), 3-3(Àü¹Ý)   Gauss Map in Local Coordinates

12ÁÖ (5/19)

3-3(ÈĹÝ)   Geometric Interpretations of Gauss Curvature

13ÁÖ (5/26)

4-2, 4-3   Isometries, Gauss Theorem

14ÁÖ (6/2)

ÈÞ°­(Áö¹æ¼±°ÅÀÏ)

15ÁÖ (6/9)

4-4, 4-5    Geodesics, Gauss-Bonnet Theorem

16ÁÖ (6/16)

±â¸»°í»ç



 ¼÷Á¦

 <±â¸»°í»ç ¹üÀ§: 3Àå: 2, 3Àý, 4Àå: 2, 3, 4, 5Àý

 #10 (6/9±îÁö)
4-2) 1, 10.
4-3) 2, 8.

 #9 (5/26±îÁö)
3-3) 13, 14, 16, 18.

 #8 (5/19±îÁö)
3-2) 17.
3-3) 2, 5.

 #7 (5/12±îÁö)
º°Áö ÂüÁ¶

 <Áß°£°í»ç ¹üÀ§: 1Àå: 2, 3, 4, 5Àý, 2Àå: 2, 3, 4, 5Àý
A4 ¿ëÁö ¹Ý(1/2) Àå¿¡ ±×µ¿¾È ¹è¿î °ø½ÄµéÀ» Àû¾î¼­ ½ÃÇèÄ¥ ¶§ ÂüÁ¶ÇÒ ¼ö ÀÖÀ½.

 #6 (4/14±îÁö)
2-5) 3, 4, 9, 12.

 #5 (4/7±îÁö)
2-4) 3, 4, 10.
2-5) 1c

 #4 (3/31±îÁö)
2-3) 1, 2, 3, 8.

 #3 (3/24±îÁö)
2-2) 1, 7c, 11a, 13.

 #2 (3/17, ¼ö¿äÀÏ ¼ö¾÷ ½ÃÀÛ Á÷Àü±îÁö)
* a(t)=(5cos t^2, 8-13sin t^2, -12cos t^2) ÀÏ ¶§ °î¼± a(t) ÀÇ curvature, torsion °ú osculating plane À» ±¸ÇÏ¿©¶ó.
1-5) 2, 7a, 8b.

 #1 (3/10, ¼ö¿äÀÏ ¼ö¾÷ ½ÃÀÛ Á÷Àü±îÁö)
1-2) 5
1-3) 5,6
1-4) 6