¹ÌºÐ±âÇÏÇÐ 1 °ÀÇ°èȹ¼ (5¿ù 27ÀÏ ¼öÁ¤)
¼ö¾÷ ÀÏ |
Áøµµ |
---|---|
1ÁÖ (3/3) |
1-2, 1-3, 1-4 Parametrized Curves, Regular Curves, Acr Length, Vector Product |
2ÁÖ (3/10) |
1-5 Local Theory of Curves |
3ÁÖ (3/17)) |
2-2(Àü¹Ý) Regular Surfaces |
4ÁÖ (3/24) |
2-2(ÈĹÝ), 2-3 Inverse Images of Regular Values, Change of Parameters |
5ÁÖ (3/31) |
2-4, 2-5(Àü¹Ý) Tangent Plane; Differential of a Map |
6ÁÖ (4/7) |
2-5(ÈĹÝ), 3-2(1/4) First Fundamental Form; Area |
7ÁÖ (4/14) |
Áß°£°í»ç |
8ÁÖ (4/21) |
ÈÞ°(¸¶Áö¸· ÁÖ º¸°) |
9ÁÖ (4/28) |
3-2(Àü¹Ý) Gauss Map and its Fundamental Properties |
11ÁÖ (5/12) |
3-2(ÈĹÝ), 3-3(Àü¹Ý) Gauss Map in Local Coordinates |
12ÁÖ (5/19) |
3-3(ÈĹÝ) Geometric Interpretations of Gauss Curvature |
13ÁÖ (5/26) |
4-2, 4-3 Isometries, Gauss Theorem |
14ÁÖ (6/2) |
ÈÞ°(Áö¹æ¼±°ÅÀÏ) |
15ÁÖ (6/9) |
4-4, 4-5 Geodesics, Gauss-Bonnet Theorem |
16ÁÖ (6/16) |
±â¸»°í»ç |
¼÷Á¦
<±â¸»°í»ç ¹üÀ§: 3Àå: 2, 3Àý, 4Àå: 2, 3, 4, 5Àý
#10 (6/9±îÁö)
4-2) 1, 10.
4-3) 2, 8.
#9 (5/26±îÁö)
3-3) 13, 14, 16, 18.
#8 (5/19±îÁö)
3-2) 17.
3-3) 2, 5.
#7 (5/12±îÁö)
º°Áö ÂüÁ¶
<Áß°£°í»ç ¹üÀ§: 1Àå: 2, 3, 4, 5Àý, 2Àå: 2, 3, 4, 5Àý
A4 ¿ëÁö ¹Ý(1/2) Àå¿¡ ±×µ¿¾È ¹è¿î °ø½ÄµéÀ» Àû¾î¼ ½ÃÇèÄ¥ ¶§ ÂüÁ¶ÇÒ ¼ö ÀÖÀ½.
#6 (4/14±îÁö)
2-5) 3, 4, 9, 12.
#5 (4/7±îÁö)
2-4) 3, 4, 10.
2-5) 1c
#4 (3/31±îÁö)
2-3) 1, 2, 3, 8.
#3 (3/24±îÁö)
2-2) 1, 7c, 11a, 13.
#2 (3/17, ¼ö¿äÀÏ ¼ö¾÷ ½ÃÀÛ Á÷Àü±îÁö)
* a(t)=(5cos t^2, 8-13sin t^2, -12cos t^2) ÀÏ ¶§ °î¼± a(t) ÀÇ curvature, torsion °ú osculating plane À» ±¸ÇÏ¿©¶ó.
1-5) 2, 7a, 8b.
#1 (3/10, ¼ö¿äÀÏ ¼ö¾÷ ½ÃÀÛ Á÷Àü±îÁö)
1-2) 5
1-3) 5,6
1-4) 6