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Universal Lefschetz fibrations and Lefschetz cobordisms

DANIELE ZUDDAS

We construct universal Lefschetz fibrations, defined in analogy with classical universal
bundles. We also introduce the cobordism groups of Lefschetz fibrations, and we
see how these groups are quotients of the singular bordism groups via the universal
Lefschetz fibrations.

55R55; 57R90, 57N13

Introduction

Topological Lefschetz fibrations over surfaces have been given considerable attention
in the last decade, because of their applications to symplectic and contact topology;
see for example Akbulut and Ozbagci [1], Donaldson [8] Gompf and Stipsicz [17] Loi
and Piergallini [20]. This led to several generalizations, including achiral Lefschetz
fibrations and their relations with branched coverings and braided surfaces (Apostolakis,
Piergallini and Zuddas [3], Fuller [13] and Zuddas [24]), broken Lefschetz fibrations
(Baykur [4; 5] and Gay and Kirby [15]), and Morse 2–functions (Gay and Kirby [14;
16]). In Di Scala, Kasuya and Zuddas [7], Matsumoto’s torus fibration on S4 [21] (see
also Gompf and Stipsicz [17, Example 8.4.7]) was used to construct an almost complex
structure on R4 containing holomorphic tori.

We are going to further generalize Lefschetz fibrations by allowing the base manifold to
have arbitrary dimension. The critical image of a Lefschetz fibration is a codimension-
2 submanifold of the target manifold, and the monodromy is a homomorphism to
the mapping class group of the fiber. Actually, to understand the larger amount of
information that a generalized Lefschetz fibration carries with respect to a standard one
(that is, over a surface), we need several types of monodromies, each one capturing
some aspects, but not others.

Universal Lefschetz fibrations were introduced in Zuddas [25] in analogy with universal
bundles, under the additional assumption that the base surface had nonempty boundary.
The purpose of the present paper is twofold: to relax this restriction by allowing the
base surface to be closed, and to start building a (co)bordism theory for Lefschetz
fibrations along the lines of classical bordism theory. Our main results include a
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characterization of universal Lefschetz fibrations in dimension two (Theorem 2.1) and
three (Theorem 2.3), an explicit construction of these fibrations, and an application
to Lefschetz cobordism groups (that are defined in Section 4), proving that these
groups are quotients of certain singular bordism groups in dimension two and three
(Proposition 4.6 and Corollary 4.7). We will give some computations, and further
developments, in a forthcoming paper.

Throughout this paper all manifolds and maps are assumed to be smooth. We con-
sider only oriented compact manifolds and (local) diffeomorphisms that preserve the
orientations, unless stated otherwise.
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1 Definitions, preliminaries and notations

By the standard definition, a Lefschetz fibration is, roughly speaking, a smooth map
over a surface with only nondegenerate (possibly achiral) complex singularities. In
order to state our results we propose the following generalization.

For f W V !M , we denote by zAf � V the critical set of f , and by Af D f . zAf / the
critical image of f .

Definition 1.1 Let M and V be manifolds of dimensions mC 2 and mC 2k re-
spectively, with m � 0 and k � 2. A Lefschetz fibration f W V ! M is a map
such that:

(1) Near any critical point za 2 zAf , f is locally equivalent to the map

f0W R
m
C �Ck

!Rm
C �C; f0.x; z1; : : : ; zk/D .x; z

2
1 C � � �C z2

k/;

where x 2Rm
C D f.x1; : : : ;xm/ 2Rm j xm � 0g and .z1; : : : ; zk/ 2Ck .

(2) fjW zAf !M is an embedding.

(3) fjW V �f
�1.Af /!M �Af is a locally trivial bundle whose fiber is a mani-

fold F (the regular fiber of f /.

Note that when Af D∅, f is an honest bundle.
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Universal Lefschetz fibrations 127

Definition 1.2 We call fjW V � f �1.Af /!M �Af the regular bundle associated
with f .

We see below that there is also a singular bundle associated with f . The following
proposition is a simple consequence of the definition.

Proposition 1.3 Let f W V !M be a Lefschetz fibration.

(1) zAf is a proper submanifold of V of dimension m.

(2) Af is a proper submanifold of M of codimension two.

(3) fjW zAf !Af is a diffeomorphism.

(4) The regular fiber F � V is a submanifold of dimension 2k � 2.

For mD 0, f is an ordinary (possibly achiral) Lefschetz fibration. So, a generalized
Lefschetz fibration looks locally as an ordinary one times an identity map. Throughout
the paper we assume k D 2. This implies that F is a surface.

In general, Af can be nonorientable. However, if Af is orientable, by fixing an
orientation on it (hence on zAf via fjW zAf !Af ) we can define the positive and the
negative critical points and values: za 2 zAf is a positive critical point of f if the
local coordinates considered in the definition can be chosen to be compatible with the
orientations of V , M , and Af (that corresponds to Rm � f0g �Rm �C in the local
chart). Otherwise, za is said to be a negative critical point. Accordingly, aD f .za/ is
said to be a positive or negative critical value. This positivity or negativity is locally
invariant, hence the connected components of Af inherit it.

Two Lefschetz fibrations f1W V1!M1 and f2W V2!M2 are said to be equivalent if
there are orientation-preserving diffeomorphisms �W V1! V2 and  W M1!M2 such
that  ıf1 D f2 ı� . This implies that  .Af1

/DAf2
and that �. zAf1

/D zAf2
. If Af1

and Af2
are oriented, we assume also that  jW Af1

!Af2
is orientation-preserving. If

f1 and f2 are equivalent, we make use of the notation f1 Š f2 .

Let f W V !M be a Lefschetz fibration whose regular fiber is the oriented surface
F D Fg;b of genus g with b boundary components, and let N be a n–manifold.

Definition 1.4 A map qW N !M is said to be f–regular if q and qj@N are transverse
to f .

If qW N !M is f–regular then zV D f.x; v/ 2N �V j q.x/D f .v/g is a .nC 2/–
manifold and the map zf W zV !N defined by zf .x; v/D x is a Lefschetz fibration. The
map zqW zV ! V defined by zq.x; v/D v sends each fiber of zf diffeomorphically onto a
fiber of f , hence the regular fiber of zf is still F . Moreover, we have A zf D q�1.Af /.
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128 Daniele Zuddas

Definition 1.5 We say that zf is the pullback of f by q . We denote it by zf D q�.f /.

Let L.F / be some class of Lefschetz fibrations with fiber F .

Definition 1.6 We say that a Lefschetz fibration uW U !M with fiber F is L.F /–
universal (or universal with respect to L.F // if:

(1) For any f W V !N that belongs to L.F /, there exists a u–regular map qW N !

M such that q�.u/Š f .

(2) Any such pullback for an arbitrary qW N !M belongs to L.F / up to equiva-
lence, where N is the base of a Lefschetz fibration of L.F /.

In other words, u is L.F /–universal if and only if the class L.F / coincides with the
class of pullbacks of u obtained by those maps qW N !M such that N is the base of
a Lefschetz fibration that belongs to L.F /.

Monodromies Now we consider connected Lefschetz fibrations. The nonconnected
ones can be easily handled by restricting to connected components.

Let Mg;b be the mapping class group of Fg;b , namely the group of self-diffeo-
morphisms of Fg;b which keep @Fg;b fixed pointwise, up to isotopy through such
diffeomorphisms. Let also bMg;b be the general mapping class group of Fg;b , whose
elements are the isotopy classes of orientation-preserving self-diffeomorphisms of Fg;b

(without assumptions on the boundary).

The regular bundle associated with f W V !M has a monodromy homomorphismb!f W �1.M �Af /! bMg;b .

Definition 1.7 We call b!f the bundle monodromy of f .

For a codimension-2 submanifold A�M , let N.A/ be a compact tubular neighbor-
hood of A in M , endowed with its disk bundle structure B2 ,! N.A/! A. Take
a base point � 2M �N.A/, and let N.�/ �M �N.A/ be a small ball around �.
We join N.�/ with each component of N.A/ by a narrow 1–handle, and let N .A/

be the result. By construction, the manifold N .A/ is uniquely determined, up to
diffeomorphisms, by the normal bundle of A in M , although its embedding in M in
general is not unique. If A is connected, we have N .A/ŠN.A/.

We denote by �1.M;A/ the subgroup of �1.M �A/ generated by the meridians of
A in M . Note that �1.M;A/ is the kernel of the homomorphism induced by the
inclusion i�W �1.M �A/! �1.M /, so it is a normal subgroup.

Let f W V !M be a Lefschetz fibration, and let xf W V !N .Af / be the restriction of
f over N .Af /.
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Universal Lefschetz fibrations 129

Taking a fiber of N.Af /!Af , that is a transverse 2–disk B2 , the restriction of f over
it is a Lefschetz fibration f 0W V 0!B2 with only one critical point. So its monodromy
is a Dehn twist [17] about a curve c � F , which is said to be a vanishing cycle. Thus,
the singular fiber is homeomorphic to F=c . The vanishing cycles that correspond to
different components of Af might be topologically different as embedded curves in
F . However, the local model of f near a critical point implies that the restriction of
f over a component of Af is a locally trivial bundle over that component with fiber
F=c (the total space is not a topological manifold).

Definition 1.8 We call fjW f �1.Af /!Af the singular bundle associated with f .

Note that the singular fiber F=c is homeomorphic to a (possibly disconnected) surface
Fc , with two points p1 and p2 identified. The surface Fc is obtained by surgering F

along c . Moreover, any self-homeomorphism of F=c lifts to a unique homeomorphism
of .Fc ; fp1;p2g/. If c is nonseparating, then FcŠFg�1;b is connected, so in this case
the monodromy of the singular bundle is a homomorphism !‰

f
W �1.Af /! bMg�1;b;2 ,

where bMg;b;n denotes the general mapping class group of Fg;b with n marked
points (mapping classes are allowed to permute the marked points and the boundary
components). In general, we have to consider the general mapping class group of a
surface with two marked points and with at most two components (each one containing
a marked point).

Definition 1.9 We call !‰
f

the singular monodromy of f . If Af is not connected,
we define !‰

f
to be the set of singular monodromies of the components of Af .

Remark If the vanishing cycles are all nonseparating and g � 2, the singular bundle
is determined by the singular monodromy.

We already know that the monodromy of a meridian of Af in N .Af / is a Dehn twist.
Then there is a canonical homomorphism !f W �1.N .Af /;Af /!Mg;b that sends a
meridian to the corresponding Dehn twist.

Definition 1.10 We call !f the Lefschetz monodromy of f .

We say that f is an allowable Lefschetz fibration if the monodromy of an arbitrary
meridian of Af is a Dehn twist about a curve c � F that is homologically essential in
F . For the sake of simplicity, we assume that the Lefschetz fibrations we consider are
allowable unless stated otherwise. However, most of the results of this paper hold also
in the nonallowable case, by suitable modifications.

Consider the canonical homomorphism ˇWMg;b!
bMg;b that sends a mapping class

Œ�� 2Mg;b to the mapping class Œ�� 2 bMg;b .
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130 Daniele Zuddas

The Lefschetz and the bundle monodromies are related by the commutative diagram

(1-1)

�1.N .Af /;Af /
i�
//

!f

��

�1.M �Af /

b!f

��

Mg;b
ˇ

// bMg;b;

where i� is induced by the inclusion i W N .Af /�Af ,!M �Af .

There is also a compatibility condition between the bundle monodromy and the singular
monodromy. Roughly speaking, the monodromy of a loop contained in N.Af / must
preserve the vanishing cycle associated to this component.

Let …1.F / D �1.Diff.F /; id/. We say that F is exceptional if …1.F / ¤ 0. It is
known that Fg;b is exceptional if and only if .g; b/ 2 f.0; 0/; .0; 1/; .0; 2/; .1; 0/g; see
for example [18]. However, an allowable Lefschetz fibration with the disk or the sphere
for a fiber is necessarily an honest bundle, and for this reason we assume that the fiber
is not the sphere or the disk. So, the only exceptional fibers we admit are the torus and
the annulus. Moreover, for any .g; b/¤ .0; 0/, �i.Diff.Fg;b/; id/D 0 for all i > 1,
…1.T

2/Š Z2 , and …1.S
1 � I/Š Z; see [9; 10; 18].

To state our results, we need a further invariant of Lefschetz fibrations. Consider an
element Œ˛� 2 �2.M �Af /, ˛W S2 ! M �Af , and let zf D ˛�.f /W zV ! S2 . It
follows that zf is a locally trivial F –bundle. Decompose S2DD1[@D2 as the union
of two disks D1 and D2 , and trivialize zf over Di , that is zf �1.Di/ŠDi �F . The
two trivializations differ by an element � 2 …1.F / along @D1 D @D2 Š S1 . This
defines a homomorphism !s

f
W �2.M �Af /!…1.F /, such that !s

f
.Œ˛�/D � . This

homomorphism is exactly the one that fits into the homotopy exact sequence of the
associated Diff.F /–bundle over M �Af .

Definition 1.11 We call !s
f

the structure monodromy of f .

Now, consider the pullback zf D q�.f /, with f W V !M and qW N !M being base
point preserving. Let q�W �i.N /! �i.M /, and let qj�W �i.N �A zf /! �i.M �Af /

and qj�W �1.A zf /!�1.Af / be the homomorphisms induced by the restrictions qjW N�

A zf !M �Af and qjW A zf !Af (we consider the collection of these homomorphisms
when A zf is not connected).

The following proposition is simple and its proof is left to the reader.
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Proposition 1.12 Suppose that q.N .A zf //�N .Af /. We have

q�.�1.N .A zf /;A zf //� �1.N .Af /;Af /;

! zf D !f ı qj�; b! zf Db!f ı qj�; !s
zf
D !s

f ı qj�:

Moreover, the singular bundle of zf is the pullback of the singular bundle of f by qjA zf
,

hence !‰
zf
D !‰

f
ı qj� .

The twisting operation Consider a Lefschetz fibration f W V !M with exceptional
fiber F . Let  2 …1.F /. We are going to construct a new Lefschetz fibration
f W V ! M . Consider an oriented 2–disk D � M � Af , and take a tubular
neighborhood C �Bm�1 of C D @D , with mD dim M . Fix the (isotopically unique)
trivialization of f over C �Bm�1 that extends over D . This determines a fiberwise
embedded copy of C �Bm�1�F in V , that is the preimage of C �Bm�1 . Now, twist
f over C by means of  . To do this, remove Int.C �Bm�1�F / from V , and glue it
back differently by composing the original attaching diffeomorphism to the right with
‰W C �Bm�1 �F ! C �Bm�1 �F , defined by ‰.x;y; z/D .x;y;  x.z//, where
(up to some identifications)  W C ! Diff.F /,  W x 7!  x , satisfies  x0

D idF for
some x0 2 C .

What we get is a new Lefschetz fibration f W V !M . We call f the twisting of
f by  . The twisting operation was considered by Moishezon in [22] as one of the
main tools needed to classify positive genus-1 Lefschetz fibrations over the 2–sphere.
See also, for example, [19] for similar use in the context of achiral fibrations.

Remark By results of Moishezon [22, Part II], the twisting of f is equivalent to f
if !f is surjective.

Theorem 1.13 Let LD .M;A;F; !; b!; �/ be the data of:

� A codimension-2 submanifold A�M .

� A nonexceptional connected surface F .

� Two homomorphisms !W �1.N .A/;A/!M.F / and b! W �1.M�A/! bM.F /

that fit into the commutative diagram (1-1).

� A bundle � over A with fiber F=c , where c �F a simple curve that depends on
the component of A, such that � is compatible with ! and b! in the above sense.

Then there exists a Lefschetz fibration fLW VL!ML with fiber F , uniquely deter-
mined by L up to equivalence, such that AfL

DA, !fL
D ! , b!fL

D b! , and having
singular bundle equivalent to � .
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132 Daniele Zuddas

Moreover, for another such data L0 D .M 0;A0;F 0; !0; b! 0; �0/ we have fL Š fL0 if
and only if there are diffeomorphisms  W .M;A;�/! .M 0;A0;�0/ sending N .A/

onto N .A0/, and hW F ! F 0 such that:

(1) � Š �0 by a bundle equivalence that covers  jA WA!A0 .

(2) !0 ı 1� D h� ı! and b! 0 ı 2� D h� ıb! , where the  i� are the isomorphisms
induced by  1D jW N .A/�A!N .A0/�A0 and  2D WM �A!M 0�A0

respectively on the fundamental group, and h� is the canonical isomorphism
induced by h between the relevant mapping class groups h�WM.F /ŠM.F 0/

or h�W bM.F /Š bM.F 0/.

If F is exceptional, the same holds up to twistings.

Actually, this is a consequence of known general facts in fiber bundles theory, so we
give only a sketch of the proof.

Sketch of proof By the classical theory of fiber bundles, b! determines uniquely
an F –bundle over M � Int N.A/; see for example [12, Chapter 5]. On the other
hand, ! and � determine a Lefschetz fibration over N .A/. Glue these fibrations by a
suitable fibered diffeomorphism. This proves the existence. For the uniqueness, notice
that any such fibered diffeomorphism extends to the interior of N.A/. Indeed, this
is well-known in dimension two, and working on the tubular neighborhood N.A/

thought as a disk bundle B2 ,!N.A/!A, one can adapt the two-dimensional case
in a fiberwise fashion. Of course, the only ambiguity occurs when F is exceptional,
and this can be handled by a suitable twisting.

Note that the twisting action of …1.F / is transitive on the set of possible structure
monodromies for a fixed .M;A;F; !; b!/. However, the structure monodromy cannot
be used to resolve the ambiguity of the twisting action, as it can be easily seen by
considering genus-1 Lefschetz fibrations over a closed surface.

Hurwitz systems and the monodromy sequence By a Hurwitz system for a co-
dimension-2 submanifold A � M we mean a sequence .�1; : : : ; �nI �1; : : : ; �k/,
where f�1; : : : ; �ng are meridians of A that normally generate �1.N .A/;A/, and
f�1; : : : ; �kg are generators for �1.M �A/ which are nontrivial in �1.M /.

Once we fix a Hurwitz system, the Lefschetz and the bundle monodromies of f can be
represented by a sequence of Dehn twists and mapping classes .ı1; : : : ; ınI 1; : : : ; k/

that we call the monodromy sequence of f . The elements of the monodromy sequence
are given by ıi D !f .�i/ 2Mg;b , and i D b!f .�i/ 2 bMg;b .

The Dehn twist ıi is determined by a curve ci � F , and by its sign. The curves
.c1; : : : ; cn/ are the vanishing cycles of f with respect to the given Hurwitz system.
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2 The characterization theorems

We denote by Cg;b the finite set of equivalence classes of homologically essential
curves in F D Fg;b up to orientation-preserving diffeomorphisms of F . Note that
# Cg;b D 1 if b 2 f0; 1g.

Theorem 2.1 A Lefschetz fibration uW U ! M with regular fiber F is universal
with respect to the class of Lefschetz fibrations over a surface and with fiber F , if the
following three conditions hold:

(1) b!u is an isomorphism.

(2) !u and !s
u are surjective.

(3) Any class of Cg;b can be represented by a vanishing cycle of u.

On the other hand, as a partial converse, u being universal implies .2/, .3/, and the
surjectivity of b!u .

In particular, for g � 2 and b 2 f0; 1g, u is universal if b!u is an isomorphism and !u

is surjective.

It follows that there exist universal Lefschetz fibrations for any fiber.

The surjectivity of !s
u means that any locally trivial Fg;b –bundle over S2 is the

pullback of u by a map S2!M �Au .

Remark If u is universal we cannot conclude that b!u is an isomorphism. The reason
is that any Lefschetz fibration can be embedded in a larger Lefschetz fibration by
preserving the universality. For example we can add a 1–handle H 1 to the base (if it
has boundary), along with a fiberwise attachment of H 1 �F to the total manifold. So,
we can add nontrivial elements to ker b!u .

This theorem generalizes the following proposition, which was proved in [25].

Proposition 2.2 A Lefschetz fibration uW U ! S over a surface with regular fiber
F is universal with respect to bounded base surfaces if and only if the following two
conditions are satisfied:

.1/ !u and b!u are surjective.

.2/ Any class of Cg;b can be represented by a vanishing cycle of u.
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Proof of Theorem 2.1 Suppose that uW U !M satisfies the conditions of the state-
ment and let f W V ! S be a Lefschetz fibration with regular fiber Fg;b over a
surface S .

If S is closed let S 0 � S be the complement of a disk in S , with Af � Int S 0 , and
let f 0W V 0 D f �1.S 0/! S 0 be the restriction of f over S 0 . Otherwise, if S has
boundary, put S 0 D S and f 0 D f .

We claim that there is a connected surface G � M transverse to Au , such that
G \ N .Au/ is connected, the meridians of Au that are contained in G \ N .Au/

normally generate �1.N .Au/;Au/, and G is �1 –surjective in M .

We start the construction of G by considering a 2–disk G0 �N .Au/�Au centered at
�. Then we attach 2–dimensional bands G1; : : : ;Gn �N .Au/, each one representing
a meridian of Au so that they normally generate �1.N .Au/;Au/. The band Gi is
attached to G0 along an arc for each i � 1. Then we attach suitable 2–dimensional
orientable 1–handles to G0 (chosen to be disjoint from Au ) which realize a finite set
of generators for �1.M /. The resulting surface satisfies the conditions of the claim.

Now consider the Lefschetz fibration u0 D ujW U
0! G which is the restriction of u

over G , with U 0D u�1.G/�U . It turns out that u0 satisfies the conditions (1) and (2)
of Proposition 2.2, hence u0 is universal for Lefschetz fibrations over bounded surfaces.
Then f 0 Š .q0/�.u0/D .q0/�.u/ for a u–regular map q0W S 0!G �M .

The loop ˇ D q0.@S 0/, homotoped to represent an element of �1.M �Au/, satisfiesb!u.ˇ/D 1. Therefore, ˇ is trivial in �1.M �Au/ because b!u is an isomorphism.
So, the map q0 extends to a u–regular map qW S!M such that q.S�S 0/�M �Au .

Now, if F is not exceptional, we immediately conclude that f D q�.u/, proving that
u is universal.

Otherwise, if F is exceptional, q�.u/ differs from f by a twisting determined by an
element  2…1.F /. Since !s

u is surjective, there is a map q00W S2!M �Au such
that !s

u.Œq
00�/D  .

Up to a small homotopy relative to q�1.Au/, we can assume that there is a small disk
D � S such that qjD W D!M �Au is an embedding. Similarly, we can assume that
there is a small disk D0 � S2 such that q00

jD0
is an embedding.

We can form the connected sum q000 D q # q00W S # S2 Š S !M by identifying @D
with @D0 , and by connecting their images by a tube contained in M �Au . It follows
that .q000/�.u/Š f .
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Universal Lefschetz fibrations 135

We now prove the partial converse. Let uW U !M be universal with fiber Fg;b . By
letting S to be a suitable surface with boundary, it can be easily constructed a Lefschetz
fibration f W V ! S such that b!f and !f are surjective, and such that any element
of Cg;b can be represented by a vanishing cycle (meaning that there are sufficiently
many critical points of f ). Since f D q�.u/ for some u–regular map qW S !M , it
immediately follows that b!u and !u are surjective, and condition .3/ of the statement.

Regarding the surjectivity of !s
u , this immediately follows by representing arbitrary

Fg;b –bundles over S2 by a pullback of u (regarding a surface bundle as a Lefschetz
fibration without critical points).

Finally, the last sentence follows by the discussion in next section.

In case of Lefschetz fibrations over 3–manifolds we have the following result.

Theorem 2.3 Let uW U !M be a Lefschetz fibration with fiber F which satisfies
the following conditions:

(1) b!u and !s
u are isomorphisms (so �2.M �Au/D 0 for F not exceptional).

(2) !u and !‰u are surjective.

(3) Any class of Cg;b can be represented by a vanishing cycle of u.

(4) Au is connected.

Then u is universal for Lefschetz fibrations over 3–manifolds with fiber F .

Proof Let f W V ! Y be a Lefschetz fibration, with Y a connected 3–manifold. We
want to show that f is a pullback of u. The critical image LDAf is a curve in Y ,
that is a disjoint union of circles and arcs.

Claim If Y is closed there is a handle decomposition of the form

Y DH 0
[ n1H 1

[ n2H 2
[H 3

such that:

(1) H 0\L is a possibly empty set of trivial arcs.

(2) H 1\L is either empty or the core of H 1 for any 1–handle.

(3) H i \LD∅ for any higher-index handle.
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Sketch of a proof of the claim Start from an arbitrary handle decomposition, with
only one 0–handle and one 3–handle. Observe that, up to isotopy, we can assume that
L is disjoint from the 2– and the 3–handles, and that its intersection with any 1–handle
is either empty or a number of parallel copies of its core. It is now straightforward to
add new 1–handles and complementary 2–handles to normalize the intersections with
the 1–handles. By adding canceling pairs of 1– and 2–handles again we can normalize
also the intersection with the 0–handle, and this proves the claim.

Now proceed with the proof of the theorem. First, by taking the double, we can assume
that Y is closed. Consider a handle decomposition of Y as that of the claim.

Over H 0 , f is a product f0 � idW V0 � I ! B2 � I Š H 0 , with f0W V0 ! B2 a
Lefschetz fibration. It follows that f0 is a pullback of u, because u is universal for
Lefschetz fibrations over a surface by Theorem 2.1. So, there is a u–regular map
qW H 0!M such that q�.u/D fjH 0 .

Next, we extend this map q handle by handle, and after each step we continue to denote
by q also the extension. If H 1 does not intersect L, the monodromy of a loop that
passes through it geometrically once can be easily realized by a map to M �Au that
extends q because b!u is surjective, and this map trivially extends over the 1–handle.

If H 1 intersects L, we can find an arc in Au between the two endpoints q.S0 � f0g/,
where H 1 D B1 � B2 � S0 � f0g. This arc can be suitably chosen to realize the
singular monodromy of f along the core of H 1 , by using the fact that Au is connected
and !‰u is surjective. This means that q can be extended over the core of H 1 , hence
to H 1 .

Extending q to the 2–handles is possible because b!u is an isomorphism. If F is
exceptional, we might also need to modify the map q on H 2 in order to adjust the
twisting, by an argument similar to that in the proof of Theorem 2.1.

Finally, extending q to the 3–handle H 3 is also possible because over the attaching
sphere † of H 3 , f is a trivial bundle. So, Œqj†� 2 ker!s

u D 0, and this implies that
qj†W † ! M � Au is homotopic to a constant in M � Au . Therefore, q can be
extended over H 3 .

We get qW Y !M which is u–regular, such that f D q�.u/.

3 Construction of universal Lefschetz fibrations

Now we give explicit constructions of universal Lefschetz fibrations. First, we handle
the case of Lefschetz fibrations over a surface, and for the sake of simplicity we assume
b 2 f0; 1g, although a similar construction can be made in general. Thereafter, we
extend this construction to dimension three.
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Dimension 2 Consider a finite presentation of Mg;b D hı1; : : : ; ık j r1; : : : ; rli with
generators ı1; : : : ; ık and relators r1; : : : ; rl . We assume that each ıi corresponds to a
positive or negative Dehn twist about a nonseparating curve in Fg;b . Note that in this
case # Cg;b D 1.

If b D 1, a presentation of bMg;1 can be obtained from that of Mg;1 by adding as a
further relator the Dehn twist r0 about a boundary parallel curve, expressed in terms
of the generators ıi , that is, bMg;1 D hı1; : : : ; ık j r0; r1 : : : ; rli, where r0 should
be substituted by a product of the form r0 D ı

�1

i1
� � � ı

�p
ip

, with ij 2 f1; : : : ; kg and
�j 2 f�1; 1g. Otherwise, if b D 0, we have bMg;0 DMg;0 .

Now, consider a Lefschetz fibration vW V ! B2 with regular fiber Fg;b and k critical
values, having .ı1; : : : ; ık/ as the monodromy sequence with respect to some Hurwitz
system. By abusing notation, we also denote by .ı1; : : : ; ık/ the elements of the
Hurwitz system. That is, we consider �1.B

2�Av/D hı1; : : : ; ıki.

By Proposition 2.2, v is universal for Lefschetz fibrations with regular fiber Fg;b over
bounded surfaces.

Put v0 D id�vW B2 � V ! B2 �B2 Š B4 . Clearly v0 is a Lefschetz fibration with
regular fiber Fg;b , and it is universal with respect to bounded base surfaces. Moreover
Av0 D B2 �Av is a set of mutually parallel trivial disks in B4 .

Each relator ri is a word in the generators ıi , so it can be represented by an embedded
loop �i in S3 � @Av0 . Moreover, up to homotopy, we can assume that the loops �i

are pairwise disjoint.

Note that !v0 and b! v0 are surjective. In order to kill the kernel of b! v0 we add a
2–handle H 2

i to B4 along �i with an arbitrary framing (for example with framing 0),
for all i . Let M2 be the resulting 4–manifold.

Let Li D H 2
i \ S3 be the attaching region of H 2

i . Now, attach the trivial bundle
H 2

i �Fg;b to B2 �V by a fiberwise identification Li �Fg;b Š .v
0/�1.Li/. This is

possible because �i has trivial bundle monodromy. Let U2 be the resulting 6–manifold.

We get a new Lefschetz fibration u2W U2!M2 defined by v0 in B2 �V � U2 , and
by the projection onto the first factor in H 2

i �Fg;b for all i .

If Fg;b is not exceptional, by Theorem 2.1 we immediately conclude that u2 is
universal.

If F is exceptional, in our situation we have F D T 2 , and so …1.T
2/ŠZ2 [18]. The

two generators of this group correspond to two oriented torus bundles q1 and q2 over
S2 . Making the fiber sum of u2 with idB2 �q1 and idB2 �q2 produces a Lefschetz
fibration, which we still denote by u2W U2!M2 , that satisfies all the conditions of
Theorem 2.1, hence a universal one.
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Dimension 3 Start with the Lefschetz fibration v0 of the above construction. First,
we make the critical image connected. Since the Dehn twists ıi are conjugate to each
other, we can add a suitable oriented band between the i th and the .i C 1/st disks of
Av0 , so that the monodromy extends over this band. After adding these bands for all
i � k � 1, we get a Lefschetz fibration v00W V 00! B4 . Note that Av00 is a ribbon disk
in B4 .

At this point, we want to make the singular monodromy surjective. To do this, we
modify also the base manifold as follows. Consider a finite set of generators for the
general mapping class group of Fg;b=c Š Fg�1;b with two marked points, where c is
a vanishing cycle of v00 , and take two points a1; a2 2 @Av00 , chosen to be very close to
each other.

Let gW Y ! B2 be a Lefschetz fibration with fiber F , having 0 as the only critical
value, with monodromy given by that of a meridian of @Av00 in S3 that bounds a disk
in S3 with center at the point a1 .

Add a 1–handle H 1DB1�B1�B2ŠB1�B3 to B4 , with attaching sphere fa1; a2g.
Then v00 extends over H 1 by the product idB1 � idB1 �gW B1�B1�Y!H 1 . Actually,
we attach H 1 trivially around a1 and by realizing one generator of the mapping class
group of F=c around a2 . This is straightforward by taking into account the local
product structure of v00 near a1 and a2 . Proceed in a similar way to realize any
generator by attaching further 1–handles.

We end with a Lefschetz fibration v000 such that Av000 is connected (and of genus 0),
the singular monodromy is surjective, and the Lefschetz and bundle monodromies are
surjective. So, after adding suitable 2–handles, we make the bundle monodromy an
isomorphism.

If F D T 2 we have to make !s
v000 surjective, and this can be done by fiber sum with

two torus bundles over the sphere, multiplied by the identity map, in analogy with the
construction in dimension two.

We obtain a Lefschetz fibration u0W U 0!M 0 over a 4–manifold M 0 , which is universal
for Lefschetz fibrations over surfaces.

As the last step, we have to kill the kernel of !s
u0 . To do this, simply take a finite set of

generators for ker.!s
u0/ and let ˛W S2!M 0�Au0 be such a generator.

Consider the product u00 D u0 � idB2 W U 0 � B2 ! M 0 � B2 . In the 5–manifold
M 0 �S1 � @.M 0 �B2/ the map ˛ can be perturbed to an embedding, so it can be
represented by an embedded sphere †�M 0 �S1�Au00 . Add a 3–handle H 3 along
this sphere, and extend u00 over H 3 by a trivial F –bundle. This is possible because †
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is in the kernel of !s
u00 . Continue in this way to kill all the generators of the kernel.

We end with a Lefschetz fibration u3W U3 !M3 over a 6–manifold M3 which is
universal for 3–dimensional bases.

4 Lefschetz cobordism

For a Lefschetz fibration f W V !M we denote by �f W .�V /! .�M / the same
Lefschetz fibration between the same manifolds with reversed orientation. Note that
f and �f have the same oriented fiber. Let f1W V1 !M1 and f2W V2 !M2 be
Lefschetz fibrations with fiber Fg DFg;0 such that dim M1D dim M2Dm, and with
Mi and Vi closed.

Definition 4.1 We say that f1 and f2 are cobordant if there exists a Lefschetz fibration
f W W ! Y with the same fiber Fg such that @W D V1t .�V2/, @Y DM1t .�M2/,
and fj@W D f1 t .�f2/W V1 t .�V2/!M1 t .�M2/. In particular, if f2 D ∅, we
say that f1 is cobordant to zero or that it bounds.

The cobordism of Lefschetz fibrations is clearly an equivalence relation. We denote
by ƒ.g;m/ the set of equivalence classes. We remark that we are considering only
oriented, compact, not necessarily connected Lefschetz fibrations.

There is a general theory of (co)bordism in several flavors. The book of Conner
and Floyd [6] is a good reference for general bordism theory. On the other hand,
[2] considers cobordisms of maps having only singularities of some prescribed class
specified by an invariant open subset of the space of k–jets. However, Lefschetz
fibrations do not seem to fit well in this general setting, because of the rigidity of
Lefschetz fibrations between closed manifolds. In [23], both the source and the target
are allowed to change up to cobordism. In these theories there is no control over
the fiber. However, to the author’s knowledge, there is no similar theory specific to
Lefschetz fibrations.

Definition 4.2 The sum of two cobordism classes is defined by

Œf1�C Œf2�D Œf1 tf2W V1 tV2!M1 tM2�:

It turns out that this operation is well-defined (does not depend on the representatives),
and ƒ.g;m/ with this operation is an abelian group which we call the Lefschetz
cobordism group of genus g and dimension m. The identity element is the empty
fibration (or equivalently, the class of a Lefschetz fibration that bounds), and the inverse
is given by �Œf �D Œ�f �. Indeed, f �f bounds f � idI W V � I !M � I .
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We define another operation on ƒ.g;m/. Let Di � Mi �Afi
be a small ball, for

i D 1; 2. So, fi is a trivial bundle over Di , that is, f �1
i .Di/ can be identified with

Di �Fg .

Let M1 # M2 D .M1� Int.D1//[@ .M2� Int.D2// be the result of the identification
D1 Š �D2 restricted to the boundary, that is the ordinary connected sum. Also let
V1#Fg

V2D .V1�Intf �1
1
.D1//[@.V2�Intf �1

2
.D2// be the result of the identification

f �1
1
.D1/ŠD1 �Fg Š�D2 �Fg Š�f

�1
2
.D2/, again restricted to the boundary.

Definition 4.3 The fiber sum of f1 and f2 is the Lefschetz fibration

f1 #f2W V1 #Fg
V2!M1 # M2

defined by fi on Vi � Int.f �1
i .Di//, i D 1; 2.

Note that, in general, the fiber sum operation depends on the choice of a gluing
diffeomorphism h 2Mg that occurs in the above identification between the preimages
of the balls. Actually, there is not a canonical choice for h. However, the following
holds.

Proposition 4.4 We have Œf1�C Œf2�D Œf1 # f2�. Therefore, the fiber sum does not
depend on the choice of the attaching diffeomorphism up to cobordism. It follows that
any class in ƒ.g;m/ has a connected representative.

Proof Take the product .M1tM2/�I , and add an orientable 1–handle H 1DB1�Bm

to it, with attaching region .D1tD2/�f1g. Also glue H 1�F to .V1tV2/�I along
.f �1

1
.D1/tf

�1
2
.D2//�f1gŠ .D1tD2/�Fg with a fibered attaching diffeomorphism

such that the fiber is mapped onto itself by the identity on D1�Fg and by the attaching
diffeomorphism occurring in the fiber sum on D2 �Fg . We get a cobordism between
f1Cf2 and f1 #f2 , and this concludes the proof.

There is an obvious forgetful homomorphism ˆW ƒ.g;m/!�SO
mC2
˚�SO

m defined by
ˆ.Œf W V !M �/D .ŒV �; ŒM �/. This is surjective on the second component, since for
any M there is the trivial fibration M �Fg!M .

Now we consider the case mD 2. For f W V !S let nC.f / be the number of positive
critical points of f , and let n�.f / be the number of negative critical points. There
are two canonical homomorphisms �; �W ƒ.g; 2/! Z, defined by �.Œf �/D Sign.V /,
and �.Œf �/D nC.f /� n�.f /.

Proposition 4.5 � and � are well-defined homomorphisms.
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Proof It is obvious that � is well defined and a homomorphism. Let us prove
the proposition for �. Let hW W ! Y be a cobordism between f1W V1 ! S1 and
f2W V2! S2 . The critical image of h is a properly embedded compact curve in the
3–manifold Y . So, Ah is a disjoint union of circles and arcs. Circles do not contribute
to �. If an arc has both endpoints in S1 (or in S2 ), these are two opposite critical
points of f1 (or f2 ), so they cancel. If there is one endpoint in S1 and the other in
S2 , these are critical points of, respectively, f1 and f2 of the same sign. Since any
critical point of fi is the endpoint of an arc, we get �.f1/D �.f2/, and so � is well
defined. That � is a homomorphism is immediate.

Remark By results in [11], � and � are surjective for g � 2. In fact, it is proved that
any lantern relation contributes ˙1 to the signature and (obviously) to �, so by putting
sufficiently many lantern relations or its inverses, in the monodromy sequence of a
Lefschetz fibration over the sphere, we realize all signatures and get the surjectivity of
�. These fibrations are achiral.

Remark The signature defines an isomorphism �SO
4
Š Z. So, � is equivalent to the

forgetful homomorphism ˆ.

We conclude by showing a remarkable relation with the singular bordism groups,
implying that ƒ.g; 2/ and ƒ.g; 3/ are finitely generated.

Let �n.X / denote the n–dimensional singular bordism group of X . Recall that the
elements of �n.X / are the bordism classes of oriented singular n–manifolds in X ,
that is, pairs of the form .N; q/, with N a closed oriented n–manifold, and qW N !X .
These groups can be expressed in terms of singular homology with coefficients in the
cobordism ring �SO

� , modulo odd torsion [6].

Proposition 4.6 Let f W V !M be a Lefschetz fibration with fiber Fg . For any n

there is a canonical homomorphism

f�W �n.M /!ƒ.g; n/; f�.Œ.N; q/�/D Œq
�.f /�:

Proof Let .N; q/ be a representative of a class of �n.M /, so qW N ! M . Up
to a small homotopy we can assume that q is f–regular. Then we can take the
pullback q�.f /.

If .N 0; q0/ is bordant to .N; q/, where q0W N 0!M is f–regular, there is a bordism
QW Y !M , where Y is a cobordism between N and N 0 , and Qj@Y D q t .�q0/.
Up to homotopy relative to the boundary, we can assume that Q is f–regular. Then,
Q�.f / is a cobordism between q�.f / and .q0/�.f /.
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It follows that the map f�W �n.M / ! ƒ.g; n/, f�.Œ.N; q/�/ D Œq�.f /�, is a well-
defined homomorphism.

Corollary 4.7 If uW U !M is universal with respect to Lefschetz fibrations over
n–manifolds, then u�W �n.M /!ƒ.g; n/ is surjective. Therefore, there are epimor-
phisms un�W �n.Mn/!ƒ.g; n/ for nD 2; 3, with unW Un!Mn the two universal
Lefschetz fibrations constructed in Section 3.

Proof Let Œf W V !N �, dim N D n, be an element of ƒ.g; n/. Since u is universal,
there is qW N !M such that f D q�.u/, and so Œf �D u�.Œ.N; q/�/.

Note that there is also the epimorphism u3�W �2.M3/!ƒ.g; 2/.

Corollary 4.8 There is an epimorphism �W H2.M2/!ƒ.g; 2/.

Proof The canonical homomorphism

�W �2.M2/!H2.M2/; �.Œ.N; q/�/D q�.ŒN �/

is an isomorphism because H�.M2/ has no torsion and Hi.M2/ D 0 for i ¤ 0; 2

(indeed, M2 is B4 union 2–handles) [6, Chapter II]. Therefore, u2� ı �
�1 is an

epimorphism.
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