Atti Sem. Mat. Fis. Univ. Modena, Supplemento al Vol. IL, 229-239 (2001)

R. PIERGALLINT (*) - D. ZUDDAS (**)

Braiding Non-orientable Surfaces in S* (***).

To the memory of Mario Pezzana

Abstract. - Closed braided surfaces in S* are the two-dimensional analogous
of closed braids in S3. They are usefull in studying smooth closed orientable
surfaces in S*, since any such a surface is isotopic to a braided one. We show
that the non-orientable version of this result does not hold, that is smooth closed
non-orientable surfaces cannot be braided. In fact, any reasonable definition of
non-orientable braided surfaces leads to very strong restrictions in terms of self-
intersection and Fuler characteristic.

Introduction.

The concept of braided surface in B* = B? x B? has been introduced
since the early eighties by Rudolph (cf. [18], [19] and [20]) as a two dimen-
sional analogous of the classical Artin’s braids. Namely, he called braided
a surface in B? x B2 which projects onto the first factor by a branched
covering.

Successively, in the nineties, Viro and Kamada (cf. [8], [9] and [11])
considered closed braided surfaces in S?*, that is surfaces contained in a
normal neighborhood of S? C S%, projecting onto S? by a branched cov-
ering. We can think of a closed braided surface as closure of a Rudolph’s
braided surface with trivial boundary, just in the same way we think of a
closed braid in S? as closure of an Artin’s braid.

By Kamada’s results, closed braided surfaces can be used to study
orientable smooth surfaces in S*. In fact, he provided two dimensional
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versions of the Alexander’s and Markov’s theorems on braids, by proving
that any such a surface is isotopically equivalent to a closed braided surface
and finding a set of moves relating isotopic braided surfaces.

In this paper we deal with the following question: can the above men-
tioned results be adapted in order to handle non-orientable surfaces in S,
replacing the standard 2-sphere as base model for braided surfaces with
some standard non-orientable surface, such as the Veronese surface (see
section 3)?

The question is relevant in relation to the representation of ori-
entable closed smooth 4-manifolds as branched covers of S4, in which
non-orientable surfaces play an essential role as branch sets in S* (see
[6] and [17]).

Unfortunately, the answer is generally negative, in spite of some par-
tial result obtained by Kamada (cf. [7]). In fact, in section 3 we show that
there are very restrictive conditions for a non-orientable smooth surface in
5% to be isotopic to a braided one. Nevertheless, we don’t know whether
any orientable smooth closed 4-manifold is a cover of S* branched over a
(possibly non-orientable) braided surface.

In order to study non-orientable braided surfaces in S%, in section 2
we consider braided surfaces in R2-bundles over surfaces and prove a few of
preliminary results about them, which are of some interest independently
of the present application.

This paper is a revised version of part of the degree thesis [21] written
by the second author under the supervision of the first author.

1. — Preliminaries.

To begin with, we reformulate in terms of coverings the classical Art-
in’s notion of braid. By a geometric braid of degree d in R? we mean a
l-submanifold b C [0,1] x R? C R3 such that the canonical projection
7 : [0,1] x R* — [0,1] restricts to a covering m, : b — [0,1] of degree d
and moreover, putting b, = {z € R? | (¢t,z) € b}, we have by = by = x for
a fixed * = {*1,...,%4} C R%

Considering braids of degree d up to fibre preserving (with respect to
7) ambient isotopy of [0, 1] x R?, we can think of them as elements of the
braid group By = m1(S4R?, %) of degree d, where SqR? = (II;R? — A) /3,
denotes the space of all the subsets of R? consisting of d distinct points.

We recall the standard presentation of By (cf. [4]), with generators
Z1,...,T4—1, defined as shown in figure 1, and relations z;x; = z;x; for
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any 4,5 = 1,...,d — 1 such that |i — j| > 1 and z;2,112; = ;112,241 for
anyt=1,...,d — 2.

*q B — *d
*i49 ——— *i42
*'H»l x’— *i+1 _/_ﬁ
*; - *4 SN——
*i—-1 ———— *i—1
*1 —_— *7

0 1 0 1

Figure 1.

Given a braid b = lel x;’z € Bg, we define the index of b to be
the exponent sum i(b) = €1 + ... + €. Since all the relations above are
balanced, it immediately follows that i(b) is well-defined, that is it does not
depend on the particular expression of b as a power product of standard
generators.

We call a closed braid of degree d in R any link | C N(S') C R3,
where N(S1) is a fixed open tubular neighborhood of S! in R3, such that
the ortogonal projection 7 : N(S1) = St x R? — S? restricts to a covering
il — S1 of degree d. By Alexander’s theorem, any link in R? is ambient
isotopic to a closed braid. N

The closure of a braid b € By is the closed braid b = (¢ x idg2)(b),
where ¢ : [0,1] — S* is the usual parametrization given by ¢@(t) =
(cos 27t, sin 27t). Of course, b is defined only up to fibre preserving ambi-
ent isotopy of N(S') = S x R2, being b € By defined only up to fiber
preserving ambient isotopy of [0, 1] x R?. Viceversa, b uniquely determines
b up to conjugation in By.

Then, it makes sense to define the index of a closed braid I in R? by
putting (1) = i(b), where b € By is any braid such that [ = b, being the
index of braids obviously invariant under conjugation in By.

The index (1) of a closed braid I of degree d satisfies the following
Bennequin inequality (cf. [3]), involving the Euler characteristic x(S) of
any surface S C R? such that [ = Bd S (that is a Seifert surface for ):
i) < d—(S).

Finally, we recall the notion of branched covering between surfaces,
which is needed in order to consider braided surfaces. A map p: S — X
between compact surfaces is called a branched covering iff at any s € S
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it is locally equivalent to the complex map z — z%) where d(s) > 1is
the local degree of p at s. The branch points of p are the images of the
singular ones, that is of the points s € S such that d(s) > 1. Moreover, p
a called simple if d(s) = 2 for any singular point s € S and p is injective
on the singular points.

2. — Braided surfaces in fiber bundles.

Let f : N — X be an R?-bundle over a compact connected surface
X with (possibly empty) boundary. We call (simple) braided surface of
degree d over X any locally flat compact surface S C N such that the
restriction p = fig : S — X is a (simple) branched covering of degree d.
Moreover, we call twist point of S any singular point ¢t € S of p and denote
by d(t) > 2 the local degree of S at t, that is the local degree of p at ¢.

For any twist point ¢t € .S, there exists a commutative diagram like the
following, where: C' C N is a closed neighborhood of ¢, D C X is a closed
neighborhood of p(t), h and k are homeomorphisms, b; C S x Int B? is a
closed braid of degree d(t), C(b;) C B? x B? is the cone of b, with vertex
(0,0), 7 is the canonical projection on the first factor.

t e Sncc ¢ l<.p

Lob |

(0,0) € C(b,) C B2x B? — ", B2

If N is oriented, we can assume that h is orientation preserving (with
respect to the standard orientation of B2 x B?). Moreover, fixed any local
orientation of X at p(t), we can also assume that k is orientation pre-
serving (with respect to the standard orientation of B?). With these two
assumptions, b; turns out to be uniquely determined up to braid isotopy,
in such a way that we can define the local index i(t) of S at t to be the
integer number i(b;). In fact, it can be easily seen that i(¢) depends only
on S and on the orientation of N, while it does not depend on the choice
of the local orientation of X.

If ¢ is a simple twist point of S, then, by local flatness, b; coincides with
the closure of one of the braids ' € Bs, so that C(b;) can be thought to
have equation w = 22 or w = z? (depending on the sign of the exponent),
with respect to the complex coordinates (w, z) of B2 x B? C C?.
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On the other hand, if ¢ is a smooth twist point of S, then we get for
C(by) the equation w = 24" or w = 24" while b; turns out to be the
closure of the braid (z1 - z44)-1)*" € Baq).

Hence, any simple twist point of S is smooth (up to fiber preserving
ambient isotopy of N), and any smooth twist point ¢ can be easily per-
turbed to get d(¢) — 1 simple ones (up to ambient isotopy of N which does
not preserve the fibers of f). In this case, we can assign to the twist point
t € S asign s(t) = +1, depending only on the local shape of S and on the
orientation of N, in such a way that i(t) = s(¢)(d(t) — 1).

For a non-smooth twist point ¢ it may not exist any simple pertur-
bation up to ambient isotopy, as it is shown in [10]. Nevertheless, we can
modify S in a neighborhood of ¢ in order to get a new braided surface S,
where the twist point ¢ is replaced by a certain number of simple twist
points t1, ..., t; such that i(t) = i(¢t1) +. ..+ i(tx). Namely, if b; is the clo-
sure of a braid @' -~ 27* € By, then we can replace C(b;) by a braided
surface in B2 x B2, having a positive (resp. negative) simple twist point ¢;
for each e = +1 (resp. g, = —1), with { = 1,...,k (cf. proposition 1.11 of
[19)).

We remark that the braided surface we put in place of C'(b:) is not
necessarily a disk, however it is homologous to C(b;) mod the common
boundary b;. Then, S and S’ may not be isotopic, but they share some
homological properties, in particular they have the same self-intersection
number as multi-valued sections of f. Moreover, by local flatness, the closed
braid b; represents the unknot, hence the Bennequin inequality implies that
li(t)] < d(t) —1.

Still assuming N oriented, we define the index of S as the sum i(S) =
> i(t), where ¢ runs over all the twist points of S. The following proposition
gives the index of S in terms of its degree d and of the Euler number e of
the bundle f : N — X over a closed surface X.

PrOPOSITION 2.1. If N is oriented and S C N is any braided surface
over a closed surface X as above, then i(S) = ed(d — 1).

PROOF. By the definition of index and the previous observations, we
can assume that S is simple, so that i(S) equals the algebraic number of
the twist points of S.

To begin with, we consider a handlebody decomposition of the base
surface X, consisting of one 0-handle H®, 1-handles Hi,.. .,H219+h at-
tached to HY in the standard way depicted in figure 2, with g,h > 0
and HJ1 orientable (resp. non-orientable) for j = 1,...,2g (resp. j =
2g+1,...,2g + h), and one 2-handle H?2.

We can assume that all the branch points of p belong to Int H?, in
such a way that, putting X; = HOUH{ U. .. UH2lg+h7 Ny = f~4(X;) and
S1 =8N Ny, the restriction p|g, : S1 — Xj is an ordinary covering.
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Cogin

1 1 1 1 1 1
Hl H2 H2_q—l HZ_q H2_(]+1 H2y+h,

Figure 2.

By a suitable choice of the trivializations of f over the handles H°
and H ]1, we can think of N; as the quotient space obtained by attaching
H} x R® to H x R? for all j = 1,...,2g + h, by fiber preserving maps,
whose restrictions to the fibers coincide with idg2 or o, where o : R?> — R?
is the symmetry with respect to the y-axis.

Moreover, we can assume that the trivialization f~1(H°) = H® x R?,
makes So = SNfL(H) into HOx {#1,...,xq} C H'x R?, where *1,...,%q
belong to the z-axis and o({*1,...,%q}) = {*1,...,%q}. Then, for every
j=1,...,2g+h, the trivialization f~'(H}) = Hj x R*> makes SN f~1(C})
into a braid ¢; C Cj x R?, where C; denote the core of the handle Hj,
oriented as in figure 2.

We observe that S7 is completely determined (up to fiber preserving
isotopy) by the braids ci,...,co94+n € Bg and Bd Sy is a closed braid in
Bd N; @ Bd X; x R?2 = S' x R?, which can be thought as the closure of the
braid ¢ = clcgcflcgl s czg_102902_g1_102_91029+1cgg+1 cee czg+hc‘2’g+h € By,
where ¢ denotes the image of ¢; under the action of o.

Putting Ny = f~1(H?) and Sy = SN Nz, we have that Bd(Sz) =
Bd(S;) is a closed braid in Bd Ny = Bd H? x R? = S! x R?, which can
be thought as the closure of the braid ¢’ = ct®, where t € By denotes one
positive full twist of d strings. On the other hand, denoting by t1,...,t, €
Sy the (simple) twist points of S, it is straightforward ()for example, see
proposition 1.11 of [19]) to get ¢/ = ylx‘;ftl)y;l .. .ynx‘;ff" y 1, where each
x; is a standard generator of Bq and s(t;) = 1 as above.

At this point, we can finish the proof by observing that the compu-
tation of i(¢’) based on the first expression of ¢ as a product of powers of
generators gives us ed(d—1), while the second one gives us s(t1)+. . .+s(tx),
that is 4(S). W

As a consequence of proposition 2.1, we get numerical obstructions
to the existence of braided surfaces, in terms of Euler characteristic and
number of twist points.
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PRrROPOSITION 2.2. If N is oriented and S C N is any braided sur-
face over a closed surface X as above, then x(S) < d(x(X) — |e|(d — 1)).
Moreover, if S is simple, then the number of twist points is even and not
less than |e|d(d — 1).

PROOF. By the Hurwitz formula we have x(S) = dx(X)—=>_(d(t)—1).
Then, the first part of the proposition follows immediately by proposition
2.1 and by the inequalities [i(S)| < > |i(t)] < > (d(t) — 1). For the second
part, it is enough to observe that, if S is simple, then the number of
twist points coincides with > (d(¢t) — 1), which is congruent to #(S) =
S s(t)(d(t) —1) mod 2. W

Now, we want to show that the inequalities given by the proposition
2.2 are sharp. Given any R2-bundle f : N — X with oriented total space
N and arbitrary Euler number e > 0 (the case e < 0 can be covered by
reversing the orientation of N), let Sy,...,S4 C N be d smooth sections of
f, transversally meeting each other in e points. Then, replacing each of the
ed(d —1)/2 double points of S1 U...U Sy with one pair of positive simple
twist points, as shown in figure 3, we get a simple braided surface S of
degree d over X, with ed(d —1) positive twist points and x(S) = d(x(X) —
e(d — 1)). On the other hand, we can easily add to S pairs of opposite
simple twist points, as shown in figure 4, in order to arbitrarily increase
the number of twist points of S and decrease the Euler characteristic x(S).

Figure 4.

We conclude this section by computing the Euler number e(.S) of the
braided surface S, that is the self-intersection number of S in the oriented
4-manifold N, which coincides with the self-intersection of S as a multi-
valued section of f.
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PROPOSITION 2.3. If N is oriented and S C N is any braided surface
over a closed surface X as above, then e(S) = i(S) + ed = ed?.

PRrROOF. Let s: X — N be a cross section of f transverse to the null
section. We can assume that S is simple and that the zeroes of s are not
branch points. By translating s(x) at every point in S N f~*(z) for every
x € X and taking normal component with respect to S, we get a normal
vector field v along S with non-degenerate singularities.

A point y € S is a singular point for v iff f(y) is a singular point for s
or y is a twist point for S; furthermore all the signs are coherent. Therefore
we have e(S) = i(5) + ed. Then, the statement follows by proposition 2.1.
|

We notice that the results above can be easily generalized to the case of
singular braided surfaces with transversal double points, by taking account
of each double point as a pair of twist points. Namely, denoting by n(.5) the
algebraic number of double points of S, we have i(S) + 2n(S) = ed(d — 1)
and e(S) = ed? — 2n(S).

3. — Non-orientable braided surfaces in S%.

In this section we apply the results of the previous one, in order to
show that the Viro-Kamada’s representation theorem of orientable surfaces
in S* as braided surfaces (cf. [8]) cannot be extended to include the non-
orientable case.

In fact, by combining the results of the previous section with the
Whitney’s conjecture on non-orientable surfaces in S*, proved by Massey
in [14], we get very restrictive conditions for such a surface to be isotopic to
a braided one, with respect to any reasonable definition of non-orientable
braided surface. We recall that the Whitney conjecture imposes the follow-
ing constrains to the self-intersection number e of a non-orientable surface
of Euler characteristic x in S*: e = 2y mod 4 and |e| < 4 — 2y.

It is natural to call a non-orientable braided surface in S* any non-
orientable surface S C S* which is contained as a braided surface over
X in the normal fiber bundle v : N — X of some fixed standard smooth
non-orientable surface X C S*, where N is identified with an open tubular
neighborhood of X in S*.

The most significant choice for X is the Veronese surface V C S4
defined in the following way. First of all, we consider the space M = R? of
the 3x 3 matrices over R with the inner product given by (A, B) = tr(ABT)
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for all A, B € M, and the map ¢ : S — M defined by p(x) = 27 for any
x € 5% C R3. Since ¢(y) = p(z) iff y = &z, we get an induced embedding
¥ : P2 — M, where P? is thought as the quotient of S? by the action
of the antipodal map = +— —z. Then, we put V = (P?) after having
identified S* with the intersection of the unit sphere of M with the affine
subspace L={M e M | M = MT and tr M =1} = R®.

The remarkable property that characterizes V is the existence of a
symmetric splitting S* = N U ¥ N, where N is a closed tubular neighbor-
hood of V in S* and f is an involution of Bd N onto itself (see [13] and
[16]). Such splitting has several relevant geometric properties (cf. [1] and
[16]), moreover, from a topological point of view, it is related to the iden-
tification of S* with the quotient of the complex projective plane under

complex conjugation, being V' the branch set of the canonical projection
CP? — CP?/~ = S* (cf. [12], [13] and [15]).

COROLLARY 3.1. Any non-orientable braided surface S C S* of de-
gree d over the Veronese surface V C S* satisfies the following conditions:
X(S) < d(3 —2d), i(S) = 2d(d — 1) and e(S) = 2d*. As a consequence,
the only surface S braided over V with x(S) = 1 is V itself (up to iso-
topy of braided surfaces) and there is no surface S braided over V with
x(S)=0,-1,-3,-5,-7.

PRrROOF. The first part of the corollary immediately follows from the
results of the previous section, by taking into account that e(V') = 2. Now,
the first inequality implies that: for x(S) = 1 we have d = 1, that is S = V;
on the other hand, for d > 2 we have x(S5) < —2; furthermore, we have
d > 3, that gives us x(5) < =9, if we assume x(S5) odd and less than 1,
since in this case also d is odd, because of the congruence 2d? = 2x(95)
mod 4. H

We remark that, by the equation e(S) = 2d?, any surface S C S4
braided over V has positive self-intesection. In order to get negative (resp.
vanishing) self-intersection numbers, one could consider surfaces braided
over V' = a(V) (resp. V # V'), where o : §* — S* is the antipodal map.

Moreover, it is worth observing that, in the non-vanishing cases,
only few values of the self-intersection among the ones allowed by the
Whitney conjecture are realized by surfaces braided over V or V’. In
fact, the self-intersection number of such a surface, besides having the
very special form e(S) = +2d?, is bounded by the inequality |e(S)| <
9/4 — x(S) +3/4+/9 — 8 x(S), that can be derived from the inequality of
corollary 3.1 by a straightforward computation.

However, the following problem remains still open: is it possible to rep-
resent any orientable closed smooth 4-manifold as a cover of S* branched
over a (possibly non-orientable) braided surface?
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