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A. LO I and D. ZU D D A S (*)

Some remarks on Bergmann metrics (**)

1 - Introduction

Let L be a holomorphic line bundle on a compact complex manifold M . A
Kähler metric on M is polarized with respect to L if the Kähler form v g associa-
ted to g represents the Chern class c1 (L) of L . Recall that if in a complex coordi-
nate system (z1 , R , zn ) of M the metric g is expressed by a tensor (gjk )1G j , kGn

then v g is the d-closed (1 , 1 )-form defined by
i

2p
!

j , k40

n

gjk dzjRdzk .

The line bundle L is called a polarization of (M , g). In terms of cohomology
classes, a Kähler manifold (M , g) admits a polarization if and only if v g is inte-
gral, i.e. its cohomology class [v g ]dR in the de Rham group, is in the image of the
natural map H 2 (M , Z) %KH 2 (M , C). The integrality of v g implies, by a well-
known theorem of Kodaira, that M is a projective algebraic manifold. This mean
that M admits a holomorphic embedding into some complex projective space
CP N . In this case a polarization L of (M , g) is given by the restriction to M of the
hyperplane line bundle on CP N . Given a polarized Kähler metric g with respect
to L , one can find a hermitian metric h on L with its Ricci curvature form
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Ric (h)4v g (see Lemma 1.1 in [12]). Here Ric (h) is the 2-form on M defined by
the equation:

Ric (h)42
i

2p
¯¯ log h(s (x), s (x) ) ,(1)

for a trivializing holomorphic section s : U%MKL0]0( of L .
For each positive integer k , we denote by L 7k the k-th tensor power of L . It

is a polarization of the Kähler metric kg and the hermitian metric h induces a na-
tural hermitian metric h k on L 7k such that Ric (h k )4kg .

Denote by H 0 (M , L 7k ) the space of global holomorphic sections of L 7k . It is
in a natural way a complex Hilbert space with respect to the norm

VsVh k4 as , sbh k4�
M

h k (s(x), s(x) )
v g

n (x)

n!
EQ ,

for s�H 0 (M , L 7k ).
For sufficiently large k we can define a holomorphic embedding of M into a

complex projective space as follows. Let (s0 , R , sNk
), be a orthonormal basis for

(H 0 (M , L 7k ), aQ , Qbh k ) and let s : UKL be a trivialising holomorphic section on
the open set U%M . Define the map

W s : UKCNk11 0]0( : xO g s0 (x)

s (x)
, R ,

sNk
(x)

s (x)
h .(2)

If t : VKL is another holomorphic trivialisation then there exists a non-vani-
shing holomorphic function f on UOV such that s (x)4 f (x) t(x). Therefore one
can define a holomorphic map

W k : MKCP Nk ,(3)

whose local expression in the open set U is given by (2). It follows by the above
mentioned Theorem of Kodaira that, for k sufficiently large, the map W k is an em-
bedding into CP Nk (see, e.g. [6] for a proof).

Let g Nk
FS be the Fubini–Study metric on CP Nk , namely the metric whose asso-

ciated Kähler form is given by

v Nk
FS4

i

2p
¯¯ log !

j40

Nk

NzjN2(4)
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for a homogeneous coordinate system [z0 , R , zNk
] in CP Nk . This restricts to a

Kähler metric gk4W k* g Nk
FS on M which is cohomologous to kv g and is polarized

with respect to L 7k . In [12] Tian christined the set of normalized metrics
1

k
gk

as the Bergmann metrics on M with respect to L and he proves that the sequence
1

k
gk converges to the metric g in the C 2-topology (see Theorem A in [12]). This

theorem was further generalizes by Ruan [10] who proved that the sequence
1

k
gk

C Q-converges to the metric g (see also [13]).
The aim of this paper is twofold. On one hand, in Section 2 we study, the pola-

rized metrics g on M satisfying the equation

gk4kg(5)

(for some natural number k) which we call self-Bergmann metrics of degree k . If
our Kähler manifold (M , g) is homogeneous and simply connected then the metric
g is self-Bergmann of degree k for all sufficiently large k (for a proof see Theorem
2.1 below and cf. also [2]). In Theorem 2.4 and 2.6 we prove a sort of converse of
Theorem 2.1 in the case of self-Bergmann metrics of degree 2 on CP 1 induced by
the Veronese map and in the case of self-Bergmann metrics of degree 1 on CP 1

3CP 1 induced by the Segre map.
On the other hand, in Section 3, we consider the polarizations on non-compact

Kähler manifolds (M , g). In particular we deal with the case of the punctured pla-
ne C*4C0]0( equipped with the complete Kähler metric g * whose associated
Kähler form is given by

v*4
i

2

dzRdz

NzN2

and the polarization L given by the trivial bundle L4C*3C .
Our main results are contained in Theorem 3.5 where we describe all the her-

mitian metrics h k on L 7k4L such that Ric (h)4v* (in other words all the geo-
metric quantizations on (C*, v*) (see Remark 2)). Moreover in Theorem 3.6 we

calculate the set of Bergmann metrics
gk

k
and we prove that the sequence

gk

k
C Q-converges to the metric g * on every compact set K%M .

2 - Self-Bergmann metrics

As we pointed our in the introduction a large class of self-Bergmann metrics is
given by the following:
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T h e o r e m 2.1 (cfr. [2]). Let L be a polarization of a homogeneous and sim-
ply-connected compact Kähler manifold (M , g). Then g is self-Bergmann of de-
gree k for every sufficiently large positive integer k .

P r o o f . Recall that a Kähler manifold (M , g) is homogeneous if the group
Aut (M)OIsom (M , g) acts transitively on M , where Aut (M) denotes the group
of holomorphic diffeomorphisms of M and Isom (M , g) the isometry group of M .
Let k be large enough in such a way that the map W k : MKCP Nk given by (3) is
an embedding. An easy calculation shows that

v gk
4W k*(v Nk

FS )4kv g1
i

2p
¯¯ log !

j40

Nk

h k (sj , sj )(6)

where ]s0 , R , sNk
( is the orthonormal basis for (H 0 (M , L 7k , aQ , Qbh k ), and where

v gk
, in accordance with out notation, is the Kähler form associated to gk . It turns

out the if the manifold M is symply-connected then the holomorphic line bundle
f * L is isomorphic to L for any f�Aut (M)OIsom (M , g). Moreover the smooth

function !
j40

Nk

h k (sj , sj ) is invariant under the group Aut (M)OIsom (M , g). There-

fore, if (M , g) is assumed to be homogeneous then this function is constant which,
by formula (6), implies that the metric g is self-Bergmann of degree k . r

R e m a r k 2.2. Note that the condition of simply-connectedness in Theorem
2.1 can not be relaxed. In fact the n-dimensional complex torus M can be natural-
ly endowed with a polarized flat metric g invariant by translation, making (M , g)
into a homogeneous Kähler manifold. On the other hand the flat metric can not be
the pull-back of the Fubini-Study metric via a holomorphic map (see Lemma 2.2 in
[11] for a proof) and hence in particular condition (5) can not hold for any k (cf.
also [8]).

R e m a r k 2.3. In the terminology of quantization of a Kähler manifold
(M , g) a pair (L , h) satisfying Ric (h)4v g is called a geometric quantization of

(M , g). In the work of Cahen-Gutt-Rawnsley the function !
j40

Nk

h k (sj , sj ) is the cen-

tral object of the theory (see [2], [3], [4], [5]). Infact it is one of the main ingre-
dient needed to apply a procedure called quantization by deformation introduced
by Berezin in his foundational paper [1]. Observe also that our definition of self-
Bergmann metrics above is equivalent to the regularity of a quantization as defi-
ned in [2] and [3].
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In view of Theorem 2.1 the following question naturally arises: Let (M , g) be a
homogenous and simply connected Kähler manifold (and hence g is self-Ber-
gmann of degree k for k large) and let gA be a Kähler metric on M which is self-
Bergmann of degree k. Can we conclude that also gA is homogeneous, namely the-
re exists f�Aut (M) such that gA 4 f * g?

When M4CP N , g4gvN
FS

and L is the hyperplane bundle, then the space
H 0 (M , L) consisting of global holomorphic sections of L can be identified with
the space of degree 1 homogeneous polynomials in the variables ]z0 , R , zn(
(see, e.g. [6]). Let gA be a self-Bergmann metric of degree k41 then
Nk4dim H 0 (M , L)214N and the embedding W 1 given by (3) goes from CP N

to CP N . By the very definition of self-Bergmann metrics W 1* g4 gA and since W 1

belongs to the group Aut (CP N )4PGL(N11, C) we deduce that the previous
question has a positive answer for M4CP N , g4gvN

FS
and k41.

The case of self-Bergmann metrics of any degree kF2 on CP N is much more
complicated to handle even when N41. Nevertheless we prove the follo-
wing:

T h e o r e m 2.4. Let gA be a self-Bergmann metric of degree 2 on CP 1 induced
by the Veronese map:

W : CP 1KCP 2 : [z0 , z1 ] O [az 2
0 , bz0 z1 , cz 2

1 ], a , b , c�C*,(7)

then there exists f�PGL(2 , C) such that f *(2g)4 gA, where g4gv FS
1 .

P r o o f . Under the action of f�PGL(2 , C), we can suppose that the map (7)
is given by

W( [z0 , z1 ] )4 [z 2
0 , az0 z1 , z 2

1 ] ,

for a�C* gone simply defines f ( [z0 , z1 ] )4 y 1

ka
z0 ,

1

kc
z1zh.

Observe that if NaN24A42 then W* g 2
FS4W 2* g 2

FS42g which is self-Ber-
gmann of degree k for large k by Theorem 2.1. Hence it is enough to show that if
gA is self-Bergmann of degree 2 then A42. Let hA denote the hermitian structure
on H 0 (M , L 72 ) such that Ric (hA)4v gA . Since H 0 (M , L 72 ) can be identified with
the space homogeneous polynomials of degree 2 in z0 and z1 , in order to prove our
Theorem we need to show that if ]z0

2 , az0 z1 , z1
2( is a othonormal basis for

(H 0 (M , L 72 ), aQ , QbhA ) then A42.
In the chart U04]z0c0(, equipped with coordinate z4

z1

z0

, the Kähler form
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v gA associated to gA 4W* g 2
FS is given by:

v gA4W*(v 2
FS )4

i

2p
¯¯ log (11ANzN21NzN4 )4

i

2p

A14NzN21ANzN4

(11ANzN21NzN4 )2
dzRdz .

Let P(z0 , z1 ) and Q(z0 , z1 ) be homogeneous polynomials of degree 2 in z0 and
z1 . We denote by small letter p and q their expression in U0 , namely

p(z)4P g1,
z1

z0
h and q(z)4Q g1,

z1

z0
h. With the above notation the hermitian

structure hA on U0 is given by:

hA(P , Q)4
p(z) q(z)

11ANzN21NzN4
.

Hence,

aP , QbhA4 �
CP 1

hA(P , Q) v gA4�
C

(A14NzN21ANzN4 ) p(z) q(z)

(11ANzN21NzN4 )3

i

2p
dzRdz .

This can be written in polar coordinates z4re iu as

aP , QbhA4
1

p
�

r40

1Q (A14r 21Ar 4 ) p(re iu ) q(re 2iu )

(11Ar 21r 4 )3
r dr du .

By the change of variable r 24r , one obtains:

aP , QbhA4
1

2p
�

r40

1Q (A14r1Ar 2 ) p(kre iu ) q(kre 2iu )

(11Ar1r 2 )3
dr .(8)

It follows immediately by (8) that ]z0
2 , z0 z1 , z2

2( (which on U0 is given by
]1, z , z 2() is an orthogonal basis of (H 0 (M , L 72 ), aQ , QbhA ). Furthermore,

Vz0 V
2
hA4 �

r40

1Q (A14r1Ar 2 )

(11Ar1r 2 )3
dr ,

Vaz0 z1 V
2
hA4A �

r40

1Q

(Ar14r 21Ar 3 )(11Ar1r 2 )3dr ,

Vz2
2
V

2
h
A4 �

r40

1Q (Ar 214r 31Ar 4 )

(11Ar1r 2 )3
dr .
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A direct calculation, using Lemma 2.5 below gives:

Vz0 V
2
hA4 g A 3

4
2Ah I31

A

4
I2112

A 2

8
,(9)

Vaz0 z1 V
2
hA4 g A 3

2
2

A 5

8
h I31 gA2

3A 3

8
h I21

A 4

16
,(10)

(11) Vz2
2
V

2
hA4 g A 5

16
2

A 3

4
h I31 g 3A 3

8
2

5A

4
h I21

3A

8
I1112

3A 2

16
2

A 4

32
.

Hence it remains to show that if Ac2, then either Vz0 V
2
hAcAVz0 z1 V

2
hA , or Vz0 V

2
hA

cVz2
2
V

2
hA . Indeed we prove that Vz0 V

2
hAcAVzV2

hA . Suppose, by a contradiction that
Vz0 V

2
hA4AVz0 z1 V

2
hA . By subtracting (9) from (10) one obtains:

23216A 213A 4212AI11 (72A224A 3 ) I216A 3 (A 224) I340 .(12)

We distinguish two cases: 0EAE2 and AD2.
For 0EAE2, we easily obtain:

I14
p

k42A 2
2

2

k42A 2
arctan

A

k42A 2
,

I24
2p

(k42A 2)3
2

A

42A 2
2

4

(k42A 2)3
arctan

A

k42A 2
,

I34
6p

(k42A 2)5
1

A 3210 A

2(42A 2 )2
2

12

(k42A 2)5
arctan

A

k42A 2
.

By (12) one gets:

2(81A 2 ) k42A 216Ap212A arctan
A

k42A 2
40 ,

which can be easily seen to be impossible for 0EAE2. Indeed the function F(A)

42(81A 2 ) k42A 216Ap212A arctan
A

k42A 2
satisfies F(0)4216,

lim
AK22

F(A)40, F 8 (0)46p , lim
AK22

F 8 (A)40 and F 9 (A)426k42A 2 which im-

plies that F(A)E0 on the interval (0 , 2 ).
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For AD2, we get:

I142
1

kA 224
log

A2kA 224

A1kA 224
,

I24
A

A 224
1

2

(kA 224)3
log

A2kA 224

A1kA 224
,

I34
A 3210A

2(A 224)2
2

6

(kA 224)5
log

A2kA 224

A1kA 224
.

By (12) one gets:

(81A 2 ) kA 22416A log
A2kA 224

A1kA 224
40 ,

which can not hold for AD2.
Indeed the function G(A)4 (81A 2 )kA 22416A log

A2kA 224

A1kA 224
sati-

sfies lim
AK21

F(A)4 lim
AK21

F 8 (A)40, lim
AK1Q

F(A)4 lim
AK1Q

F 8 (A)41Q , and F 9 (A)

46kA 224 which implies that F(A)D0 on (2 , 1Q). r

L e m m a 2.5. The following equalities hold:

�
r40

1Q
r

(11Ar1r 2 )3
dr4

�
r40

1Q
r

(11Ar1r 2 )3
dr4

�
r40

1Q
r

(11Ar1r 2 )3
dr4

�
r40

1Q
r

(11Ar1r 2 )3
dr4

1

4
2

A

2
I3 ;

1

4
I21

A 2

4
I32

A

8
;

1

4
1

A 2

16
2

3A

8
I22

A 3

8
I3 ;

3

8
I11

3A 2

8
I21

A 4

16
I32

5A

16
2

A 3

32
,
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where

In4 �
r40

1Q
1

(11Ar1r 2 )n
dr , n41, 2 , 3 .

P r o o f . Direct calculation integrating by parts. r

Let consider now M4CP 13CP 1 endowed with the metric g4g 1
FS1g 1

FS

which we know to be self-Bergmann of degree k for all k (compare Theorem 2.1).
In this case the map W 1 (given by 3)) (which satisfies W 1* g 3

FS4g) is given by:

W 1 : CP 13CP 1KCP 3 : ([z0 , z1 ], [w0 , w1 ] ) O [z0 w0 , z0 w1 , z1 w0 , z1 w1 ] .

The polarization L on M is the restriction to M of the hyperplane bundle on CP 3

via the map W 1 and a basis of H 0 (M , L) is ]z0 w0 , z0 w1 , z1 w0 , z1 w1(.

T h e o r e m 2.6. Let gA be a self-Bergmann metric of degree k41 on M4CP 1

3CP 1 induced by the Segree embedding W : MKCP 3 given by:

W( [z0 , z1 ], [w0 , w1 ] ) O [az0 w0 , bz0 w1 , cz1 w0 , dz1 w1 ], a , b , c , d�C*.(13)

Then there exists f�Aut (M)4PGL(2 , C)3PGL(2 , C) such that f * g4 gA.

P r o o f . The proof follows the same pattern of that of Theorem 2.4. First of
all under the action of f�Aut (M), we can suppose that the map (13) is given by

W( [z0 , z1 ], [w0 , w1 ] )4 [az0 w0 , z0 w1 , z1 w0 , z1 w1 ] ,

for a�C*. Indeed one takes f ( [z0 , z1 ], [w0 , w1 ] )4 k 1

b
z0 ,

1

d
z1l , k d

c
w0 , w1l.

Hence it is enough to show that if gA 4W* g 3
FS is a self-Bergmann metric of degree

1 then A4NaN241. Let hA be the hermitian structure on H 0 (M , L) such that
Ric (hA)4v gA . In order to prove our Theorem it suffices to show that if
]az0 w0 , z0 w1 , z1 w0 , z1 w1( is a othonormal basis for (H 0 (M , L), aQ , QbhA ) then
A41. Let U`C2 be the chart on M defined by (z0 , w0 )c (0 , 0 ) equipped with

coordinates (z , w)4 g z1

z0

,
w1

w0
h. We can easily calculate the Kähler form v gA

4W*(v 3
FS ) on U and obtain:

v gA
2 4v gRv g4

A(11NzN21NwN2 )1NzN2 NwN2

(A1NzN21NwN21NzN2 NwN2 )3
dn ,

where dn4 g i

2p
h2

dzRdzRdwRdw.
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Let P�H 0 (M , L)4span ]z0 w0 , z0 w1 , z1 w0 , z1 w1(. We denote by small letter

p its expression in the chart U , namely p(z , w)4P g1,
w1

w0

,
z1

z0

,
z1

z0

w1

w0
h. With

the above notation the hermitian structure hA on U is given by:

hA(P , Q)4
p(z , w) q(z, w)

A1NzN21NwN21NzN2 NwN2
.

Hence,

aP , QbhA4�
M

hA(P , Q)
v 2

gA

2!
4

1

2
�

C2

(A(11NzN21NwN2 )1NzN2 NwN2 ) pq

(A1NzN21NwN21NzN2 NwN2 )4
dn ,

for P , Q�H 0 (M , L).
It follows that ]az0 w0 , z0 w1 , z1 w0 , z1 w1( (which on U is given by

]a , w , z , zw() is a othogonal basis of (H 0 (M , L), aQ , QbhA ). By passing in polar
coordinates, a straightforward calculation gives:

Vaz0 w0 V
2
hA4Vz1 w1 V

2
hA4

123A12A 22A log A

48(A21)2
(14)

and

Vz0 w1 V
2
hA4Vz1 w0 V

2
hA4

223A1A 21A log A

48(A21)2
.(15)

It is now easy to see that (14) and (15) are equal if and only if A41 which conclu-
des the proof of our theorem. r

3 - Quantizations and Bergmann metrics of (C*, g *)

In this section we consider the case of a complete Kähler manifold (M , g). Let
L be a holomorphic line bundle on M endowed with an hermitian structure h . Fol-
lowing Tian (Sect. 4 in [12]) we denote by H(2)

0 (M , L 7k ) the Hilbert space consi-
sting of all L 2 integrable global holomorphic sections of L 7k , namely

s�H(2)
0 (M , L 7k ) ` as , sbh k4�

M

h k (s(x), s(x) )
v g

n (x)

n!
EQ .

Let ]sj(jF0 be an orthonormal basis of (H(2)
0 (M , L 7k ), aQ , Qbh k ). One if his main re-
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sult, which generalizes the above mentioned Theorem A, is summarized in the
following:

T h e o r e m 3.1. (Tian) Let M be a complete Kähler manifold with a polari-
zed Kähler metric g and let L be a holomorphic line bundle with hermitian me-
tric h such that its Ricci curvature form satisfies: Ric (h)4v g . Then for any
compact set K%M and k sufficiently large

v k4
i

2p
¯¯ log !

j40

1Q

NsjN2(16)

defines a Kähler form on K . Moreover if gk denotes the Kähler metric on K asso-

ciated to v k (i.e. v gk
4v k ) then the sequence of metrics

gk

k
C 2-converges to the

Kähler metric g on K .

As in the compact case, a geometric quantization of a complete Kähler mani-
fold (M , g) is given by a pair (L , h), where L is a holomorphic line bundle on M
equipped with a hermitian metric h such that Ric (h)4v g (see Remark 2.3)). The

metrics
gk

k
(defined only on compact sets K%M) are called the Bergmann

metrics on (M , g).

R e m a r k 3.2. In analogy with the compact case, we say that a Kähler metric
on a complete manifold is self-Bergmann of degree k if gk4kg . Observe that this
implies that gk is globally defined on M and not only in a compact set K%M . A sli-
ght modification of Theorem 2.1 shows that in a homogeneous and simply-connec-
ted Kähler manifold (M , g) then the metric g is self-Bergmann of degree k for all
k . Therefore, for example, the flat metric on the complex Euclidean space Cn is
self-Bergmann of degree k .

In order to describe all the geometric quantizations of a Kähler manifold
(M , g) one gives the following (cf. e.g. [9]):

D e f i n i t i o n 3.3. Two holomorphic hermitian line bundles (L1 , h1 ) and
(L2 , h2 ) on a Kähler manifold (M , g) are called equivalent if there exists an iso-
morphism of holomorphic line bundles c : L1KL2 such that c* h24h1 .

Let us denote by [L , h] the equivalence class of (L , h) and by L(M , g) the set of
equivalence classes. We refer the reader to [2] for the proof of the following:
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T h e o r e m 3.4. The group Hom (p 1 (M), S 1 ) acts transitively on the set of
equivalence classes L(M , g).

In Theorem 3.5 below we describe this action in the case of (C*, g *). We first
observe that any holomorphic line bundle L on C* is holomorphically trivial. Let h
be the hermitian metric on L given by:

h( f (z), f (z) )4e
2p

2
log2 NzN2

Nf (z)N2 .

for a holomorphic function f on C*. It is easily seen that Ric (h0 )4v* and hence
L is a quantization of (C*, g *). We can prove now the first result of this
section:

T h e o r e m 3.5. The group

Hom (p 1 (C*), S 1 )4Hom (Z , S 1 )`S 1
`

R

Z

acts on the set of equivalence classes L(C*, g *) by defining:

[l] Q (L , h)4 (L , hl ) ,(17)

where [l] denotes the equivalence class of l in S 1
`

R

Z
and hl is the hermitian

metric on L defined by:

hl ( f (z), f (z) )4NzN2l h( f (z), f (z) ) ,(18)

for a holomorphic function f on C*.

P r o o f . Let l and m be real numbers such that l2m�Z . It is easy to see
that the map

c : (L , hm )K (L , hl ) : (z , t) O (z , z n2l t)

is a holomorphic automorphism of the trivial bundle and c*(hl )4hn , namely
[L0 , hm ]4 [L0 , hl ]. Furthermore, if l2m�Z then [L , hl ]c [L , hm ]. Indeed, sup-
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pose that c : LKL is a holomorphic automorphism of the trivial bundle, such
that c* hl4hm . It follows that c(z , t)4 (z , f (z) t), where f is a holomorphic fun-
ction on C*, satisfying Nf (z)N24NzN2(m2l) . This is impossible unless l2m is an
integer. r

Given a natural number k it follows immediately that the trivial bundle L en-
dowed with the hermitian structure

h k ( f (z), f (z) )4e
2kp

2
log2 NzN2

Nf (z)N2

defines a quantization of (C*, kg *). By Theorem 3.5 we know that every class in
L(C*, kg *) can be represented by a pair (L , h k

l ), where

h k
l ( f (z), f (z) ) »4e

2kp

2
log2 NzN2

NzN2l Nf (z)N2 ,(19)

and two such pairs (L , h k
l ) and (L , h k

m ) are equivalent iff [l]4 [m]. In what follo-
ws, to simplify the notation, we consider the class corresponding to l40, namely
the trivial bundle L on C* endowed with the hermitian metric

h k ( f (z), f (z) ) »4e
2kp

2
log2 NzN2

Nf (z)N2 .

It follows that the space (H(2)
0 (C*, L), aQ , Qbh k ), which we will denote by Hk , equals

the space of holomorphic functions f in C* such that

V f V2
h k4 a f , f bh k4 �

C*

e
2kp

2
log2 NzN2

Nf (z)N2 k
i

2

dzRdz

NzN2
E1Q .

One can check that the functions z j , with j�Z , form an orthogonal system for
Hk . Since every holomorphic function in C* can be expanded in Laurent series, it
follows that z j are in fact a complete orthogonal system. Their norms are given by

Vz j
V

2
h0

k4k �
C*

e
-kp

2
log2 NzN2

NzN2 j i

2

dzRdz

NzN2

4kp �
0

1Q

e
2kp

2
log2 r 2

r 2 j 2r

r 2
dr .
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By the change of variable e r4r 2 one gets

Vz j
V

2
h k4kp �

2Q

1Q

e
2kp

2
r2

e jrdr4kpe
j 2

2kp �
2Q

1Q

e
2uo kp

2
r2o 1

2kp
jv2

4kpe
j 2

2kp o 2

kp
�

2Q

1Q

e 2t 2
dt4k2kpe

j 2

2kp .

Then a orthonormal basis for Hk is given by

sj4 g 1

k2kp
e
2 j 2

2kp h
1

2

z j

and by formula (16) we get:

v k4
i

2p
¯¯ log !

j�Z
e
2 j 2

2kp NzN2 j .(20)

Let
gk

k
be the corresponding sequence of Bergmann metrics (which are defi-

ned, by Theorem 3.1, on every compact set K%C* for k sufficiently large). The
following Theorem extends Tian’s theorem 3.1 in the case of the punctured plane
endowed with the metric g *.

T h e o r e m 3.6. Let C* be endowed with the complete metric g *. Then the

sequence of Bergmann metrics
gk

k
C Q-converges to the metric g * on every com-

pact set K%C*.

P r o o f . By formula (20) it is enough to show that the sequence of func-
tions

fk (x)4
1

k
log g!

j�Z
e

2j 2

2kp x jh(21)

(defined on R1) C Q-converges to the function f (x)4
p

2
log2 x on every compact

set C%R1 . In order to prove it we apply the Poisson summation formula (see

p. 347, Theorem 24 in [7]) to the function f ( j)4e
2j 2

2kp x j4e
2j 2

2kp
1 j log x

. Namely, one

has: !
j�Z

f ( j)4 !
j�Z

f×( j), where f×( j)4 �
2Q

1Q

e 22pijn f (n). By a straightforward calcu-
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lation one gets:

f×( j)4e
k p

2
(2pij2 log x)2

�
2Q

1Q

e
2 1

2pk
(n12p2 ijk2pk log x)2

42pkke
k p

2
log2 x

e
22kp2 j(pj2 i log x)

.

Thus

lim
kKQ

1

k
log !

j�Z
f ( j)4 lim

kKQ

1

k
log !

j�Z
f×( j)

4
p

2
log2 x1 lim

kKQ

1

k
log !

j�Z
e 22kp2 j(pj2 i log x) .

It is now immediate to see that the sequence !
j�Z

e 22kp2 j(pj2 i log x) C Q-converges

to the constant function 1 on every compact set C%R1 , which concludes the proof
of our Theorem. Indeed,

N !j�Z
e 22kp2 j(pj2 i log x)NG11 !

j�Z0]0(
e 22kp3 j 2

E11 �
2Q

1Q

e 22kp3 t 2
dt411

1

k2kp
.
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A b s t r a c t

In this paper we study the set of self-Bergmann metrics on the Riemann sphere endo-
wed with the Fubini-study metric and we extend a theorem of Tian to the case of the pun-
ctured plane endowed with a natural flat metric.

* * *


