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A. Lol ana D. ZUDDAS (*)

Some remarks on Bergmann metrics (**)

1 - Introduction

Let L be a holomorphic line bundle on a compact complex manifold M. A
Kéhler metric on M is polarized with respect to L if the Kéhler form w , associa-
ted to g represents the Chern class ¢;(L) of L. Recall that if in a complex coordi-

nate system (21, ..., 2,) of M the metric g is expressed by a tensor (g;z)1 <; t<n
i n

then w, is the d-closed (1, 1)-form defined by — X g;zdz; A d7;.
T k=0 '

The line bundle L is called a polarization of (M, g). In terms of cohomology
classes, a Kéhler manifold (M, g) admits a polarization if and only if w, is inte-
gral, i.e. its cohomology class [ ;]sg in the de Rham group, is in the image of the
natural map H*(M, Z) < H?*(M, C). The integrality of w, implies, by a well-
known theorem of Kodaira, that M is a projective algebraic manifold. This mean
that M admits a holomorphic embedding into some complex projective space
CPY. In this case a polarization L of (M, g) is given by the restriction to M of the
hyperplane line bundle on CP¥. Given a polarized Kihler metric g with respect
to L, one can find a hermitian metric ~ on L with its Ricci curvature form

(*) A. Lort: Struttura Dipartimentale di Matematica e Fisica, Universita, Via Vienna 2,
07100 Sassari, Itlay, e-mail: loi@ssmain.uniss.it; D. ZubDAs: Scuola Normale Superiore,
Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy, e-mail: zuddas@cibs.sns.it.
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Ric (k) = o, (see Lemma 1.1 in [12]). Here Ric (k) is the 2-form on M defined by
the equation:

@ Ric(h) = — L 3dlog h(o(x), o(x)),
27

for a trivializing holomorphic section o: Uc M —L\{0} of L.

For each positive integer k, we denote by L ®* the k-th tensor power of L. It
is a polarization of the Kihler metric kg and the hermitian metric % induces a na-
tural hermitian metric 2% on L ®* such that Ric(h") = kg.

Denote by H°(M, L ®*) the space of global holomorphic sections of L ®*. It is
in a natural way a complex Hilbert space with respect to the norm

w ()
< o

)

Isll = G5, shu= [ R*(s(@), s@))
n!
M
for se H'(M, L ®F).

For sufficiently large k& we can define a holomorphic embedding of M into a
complex projective space as follows. Let (s, ..., sy,), be a orthonormal basis for
(H°(M, L®%),{-, -),») and let 0 : U—L be a trivialising holomorphic section on
the open set Uc M. Define the map

S0 () Sy, (@)

@ o@ )

2) Qg U>CNetINIQ):

If 7: V—L is another holomorphic trivialisation then there exists a non-vani-
shing holomorphie function f on U NV such that o(x) = f(x) t(x). Therefore one
can define a holomorphic map

3) @ M— CPMe,

whose local expression in the open set U is given by (2). It follows by the above
mentioned Theorem of Kodaira that, for & sufficiently large, the map ¢, is an em-
bedding into CPYr (see, e.g. [6] for a proof).

Let gp¢ be the Fubini-Study metric on CP s, namely the metric whose asso-
ciated Kéhler form is given by

. Ny
) oY= ——33log 3 |2
27 j=0
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for a homogeneous coordinate system [z, ..., zy,] in CPNe, This restricts to a
Kihler metric g, = ¢ F gpt on M which is cohomologous to kw , and is polarized

with respect to L ®. In [12] Tian christined the set of normalized metrics % I
as the Bergmann metrics on M with respect to L and he proves that the sequence
% gr converges to the metric ¢ in the C*topology (see Theorem A in [12]). ’lihis
theorem was further generalizes by Ruan [10] who proved that the sequence % I

C “-converges to the metric g (see also [13]).
The aim of this paper is twofold. On one hand, in Section 2 we study, the pola-
rized metrics ¢ on M satisfying the equation

) gr=kg

(for some natural number k) which we call self-Bergmann metrics of degree k. If
our Kéhler manifold (M, ¢) is homogeneous and simply connected then the metric
g is self-Bergmann of degree k for all sufficiently large k (for a proof see Theorem
2.1 below and cf. also [2]). In Theorem 2.4 and 2.6 we prove a sort of converse of
Theorem 2.1 in the case of self-Bergmann metrics of degree 2 on CP! induced by
the Veronese map and in the case of self-Bergmann metrics of degree 1 on CP!
x CP! induced by the Segre map.

On the other hand, in Section 3, we consider the polarizations on non-compact
Kihler manifolds (M, g). In particular we deal with the case of the punctured pla-
ne C*=C\{0} equipped with the complete Kéihler metric g* whose associated
Kéihler form is given by

| dz \dZ
|2]°

DO | =

and the polarization L given by the trivial bundle L = C* x C.

Our main results are contained in Theorem 3.5 where we describe all the her-
mitian metries 2* on L ®* = L such that Ric (k) = w* (in other words all the geo-
metric quantizations on (C*, w*) (see Remark 2)). Moreover in Theorem 3.6 we

calculate the set of Bergmann metrics % and we prove that the sequence %

C “-converges to the metric g* on every compact set Kc M.

2 - Self-Bergmann metrics

As we pointed our in the introduction a large class of self-Bergmann metrics is
given by the following:
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Theorem 2.1 (cfr. [2]). Let L be a polarization of a homogeneous and sim-
ply-connected compact Kihler manifold (M, g). Then g is self-Bergmann of de-
gree k for every sufficiently large positive integer k.

Proof. Recall that a Kéhler manifold (M, ¢g) is homogeneous if the group
Aut (M) N Isom (M, g) acts transitively on M, where Aut (M) denotes the group
of holomorphic diffeomorphisms of M and Isom (M, g) the isometry group of M.
Let k be large enough in such a way that the map ¢ ,: M — CPYr given by (3) is
an embedding. An easy calculation shows that

. N
®) a)ngQD;?(w]}{g :kwg+ Lé’?log E hk(sj, S;)

27 j=0 [
where {sg, ..., sy, } is the orthonormal basis for (H°(M, L ®*,(-, -),+), and where

w4, in accordance with out notation, is the Kéhler form associated to g;. It turns

out the if the manifold M is symply-connected then the holomorphic line bundle

f*L is is%morphic to L for any fe Aut (M) N Isom (M, g). Moreover the smooth
k

function >, hk(sj, s;) is invariant under the group Aut (M) N Isom (M, g). There-
j=o

fore, if (M, g) is assumed to be homogeneous then this function is constant which,
by formula (6), implies that the metric g is self-Bergmann of degree k. =

Remark 2.2. Note that the condition of simply-connectedness in Theorem
2.1 can not be relaxed. In fact the n-dimensional complex torus M can be natural-
ly endowed with a polarized flat metric g invariant by translation, making (M, g)
into a homogeneous Kéhler manifold. On the other hand the flat metrie can not be
the pull-back of the Fubini-Study metric via a holomorphic map (see Lemma 2.2 in
[11] for a proof) and hence in particular condition (5) can not hold for any % (cf.
also [8]).

Remark 2.3. In the terminology of quantization of a Kéhler manifold
(M, g) a pair (L, h) satisfying Ric (k) = w, is called a geowetm’c quantization of
k

(M, g). In the work of Cahen-Gutt-Rawnsley the function > h’“(sj, s;) is the cen-
j=0

tral object of the theory (see [2], [3], [4], [5]). Infact it is one of the main ingre-
dient needed to apply a procedure called quantization by deformation introduced
by Berezin in his foundational paper [1]. Observe also that our definition of self-
Bergmann metrics above is equivalent to the regularity of a quantization as defi-
ned in [2] and [3].
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In view of Theorem 2.1 the following question naturally arises: Let (M, g) be a
homogenous and simply connected Kdhler manifold (and hence g s self-Ber-
gmann of degree k for k large) and let g be a Kdihler metric on M which is self-
Bergmann of degree k. Can we conclude that also g is homogeneous, namely the-
re exists fe Aut (M) such that g =f*g?

When M =CPY, g=g,y, and L is the hyperplane bundle, then the space
H°(M, L) consisting of global holomorphic sections of L can be identified with
the space of degree 1 homogeneous polynomials in the variables {z, ..., z,}
(see, e.g. [6]). Let g be a self-Bergmann metric of degree k=1 then
N,=dimH°(M, L) — 1 =N and the embedding ¢, given by (3) goes from CPY
to CP¥. By the very definition of self-Bergmann metrics ¢§ ¢ = g and since ¢,
belongs to the group Aut (CPY) = PGL(N + 1, C) we deduce that the previous
question has a positive answer for M = CPY, g= 9oy, and k=1.

The case of self-Bergmann metrics of any degree k =2 on CPY is much more
complicated to handle even when N =1. Nevertheless we prove the follo-
wing:

Theorem 2.4. Let § be a self-Bergmann metric of degree 2 on CP' induced
by the Veronese map:

(7 @ : CP1—>CP2%: [z, 2,1 —[azd, bzyz1, 22, @, b, ceC*,
then there exists fe PGL(2, C) such that f*(2g) = g, where g =g,

Proof. Under the action of fe PGL(2, C), we can suppose that the map (7)
is given by

([0, 211) = [2¢, azoz, 211,

for a e C* |one simply defines f([z,, 2:]) = [Lzo, Lzl])
Va c

Observe that if |a|*=A =2 then ¢*gfis=@%gps =29 which is self-Ber-
gmann of degree k for large k by Theorem 2.1. Hence it is enough to show that if
g is self-Bergmann of degree 2 then A =2. Let & denote the hermitian structure
on H(M, L ®?) such that Ric (%) = w 5. Since H(M, L ®*) can be identified with
the space homogeneous polynomials of degree 2 in z, and z;, in order to prove our
Theorem we need to show that if {z#, azgz;, 2f} is a othonormal basis for
(H(M, L®?),(-,-)) then A=2.

In the chart U, = {z, # 0}, equipped with coordinate z = al , the Kihler form
20
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w ; associated to g = @* gk is given by:

i i A+4|z]P+ Az _
w:=p*(wh)= — 33 log(1+A|z]?+ |z|H) = — dzN\dZ.
PO )y o8 Pl = 57 (1+A|z|2+ [2]")?

Let P(zy, 2;) and Q(zy, z;) be homogeneous polynomials of degree 2 in z, and

2;. We denote by small letter p and ¢ their expression in U,, namely

p(2) =P(1, é) and q(z) = Q(l, ﬁ) With the above notation the hermitian

~ 0 )
structure ~ on U, is given by:

p(z) q(@)

WP, Q) = .
@ 1+A|z]*+ |2|*

Hence,

(A+4z]?+Az|Y p) ¢®) i

P,Qy= | P, Q) w;= —dz N\dZ.
( Q>h [ Q g f (1+A|Z|2+ |2|4)3 27
cP C

This can be written in polar coordinates z=7re as

1 (T(A+4r2+ Art) p(re) qlre =%

(P, Q)= — j ( ) ptre”) g )rdvﬂde.
T
=0

(1+ArZ2+ %)

By the change of variable r? =g, one obtains:

©

(A+ 40+ Ao?) p(\Voe™) g(\/oe ) do

1 +
P =
(8) < ’ Q>h f (1 +AQ N 92)3

It follows immediately by (8) that {zf, 2921, 25} (which on U, is given by
{1, z, 2%}) is an orthogonal basis of (H°(M, L®?),(-, -)). Furthermore,

T (A+40+ A0

2
2l = ,
[N T agre
+ ©
lazoz [ = A f (Ao +40% + Ap®)(1 + Ag + 0%)’do ,
0=0
+ o
Ap?+40°+ Ao
plp= [ Lo ttetie) g,

(1+Ap +Qz)3

0=0
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A direct calculation, using Lemma 2.5 below gives:

A3 A A?
9 wli=|— -A|L+ —=L+1- —,
) 201 (4 )3 12 3

A3 AP 3A3 Al
10 zoz1 |f = — — — | L+ A — | L+ —,
(10) lazo 21 [I; (2 8)3 ( 3 )2 16

A [l

16 4

" 16 32

AP AP A®  5A A Az Af
||2—( )3+(3 _T)IZ+3_11+1_3

Hence it remains to show that if A #2, then either ||z0||%¢A||z0z1||;2;, or ||z0||i
#||z2|?. Indeed we prove that |jz, |2 = Allz|[f. Suppose, by a contradiction that
2o = Allz 2 |[. By subtracting (9) from (10) one obtains:

(12) —82+6A%+3A*—12A1, + (T2A —24A%) I, + 6A3(A*—4)I;=0.

We distinguish two cases: 0 <A <2 and A > 2.
For 0 <A <2, we easily obtain:

T 2
I, = - arctan ——,
Va-A%  \/4-A? 4-A2
I, = 2x 4 4 arctan—A
2= - - )
(Va-A2p  4-A%  (\/1—A%p 4—AZ
A®—-104
I - arctan

_ 6 N 12 A
(VA—A%p  24-A%  (\/1-a%p 1—A%
By (12) one gets:
2 2 A
—(8+A°)\V4-A*+6Anr—12Aarctan—— =0,
4- A2

which can be easily seen to be impossible for 0 < A < 2. Indeed the function #'(4)
= —(8+AY)V4-A%+6A7—124 arcan2 satisfies  F(0) = —16,
Aliﬁn;fF(A) =0,F'(0)=6ux, Aliﬁn;fF’(A) =0 arild_Fé(A) = —61/4 — A% which im-
plies that F'(A) <0 on the interval (0, 2).



78 A. LOI and D. ZUDDAS [8]

For A > 2, we get:

; 1 A-\/A2-4
1= = 0g ’
A?—4  A+\AP-4
A 2 A-\/A?Z-
I, = > + log ,
A4 (/A -4}  A+\A-4
A?—10A 6 A-\/A? -

lo .
24747 (VAP_dy  A+VAE-4

3 =
By (12) one gets:

A-\/A2-
8+ A VAT —4+64log VA —4 ¢

A+\A2-4
which can not hold for A > 2. A-\/AZ_4
Indeed the function G(A) = (8+ A% \/A?—-4+6Alog ————— sati-
A+\A2-

sfies lim F(A)= lim F'(4A) =

A—2* A—2*
=6\ A% — 4 which implies that F(A) >0 on (2, + ©). =

0, lim F'(A)=Alim F'(A)=+ oo, and F'"(A)
A— + > — +

Lemma 2.5. The following equalities hold:

+ o
1 A
f dQ: — = =1
o (1+AQ+Q) 4 2
+
1 A? A
J’ 3dQ_ —12+—13__;
00 (1+AQ+Q) 4 4 8
+ o
1 A2 3A A3
[0 g LA, A
=0 (1+AQ+Q) 4 16 8 8
3 3A2 Al 5A A3
[ @ - Ppa 3 A A A
o (1 +AQ—|—Q2)3 8 8 16 16 32
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where

1

+ o
I,= [ —— do, n=1,2,3.
QJ;) (1 +AQ+QZ)n Q

Proof. Direct calculation integrating by parts. =

Let consider now M = CP!x CP! endowed with the metric g = g+ gis
which we know to be self-Bergmann of degree k for all k¥ (compare Theorem 2.1).
In this case the map ¢; (given by 3)) (which satisfies ¢%gfs=g9) is given by:

@1: CP X CP'— CP?: ([2, 211, [wy, w;]) — [2gwy, 201, 210y, 21, ].

The polarization L on M is the restriction to M of the hyperplane bundle on CP3
via the map ¢, and a basis of H(M, L) is {zowy, zow, 2, Wy, 21, }.

Theorem 2.6. Let § be a self-Bergmann metric of degree k=1 on M = CP!
x CP' induced by the Segree embedding ¢ : M — CP? given by:

(13) QD([ZO, Z1],[’W0, wl]) H[azowo, bzowly Cz1w07 dz1w1]9 a, b; c, dEC*
Then there exists fe Aut (M) =PGL(2, C) x PGL(2, C) such that f*g=g.

Proof. The proof follows the same pattern of that of Theorem 2.4. First of
all under the action of fe Aut (M), we can suppose that the map (13) is given by

@([29, 211, [wo, wi]) = [azowy, zgwy, 21wy, 21w ],

1 1 d

for aeC*. Indeed one takes f([zy, 2], [wy, wi]) = [Zzo, EZ1:|, [—wo, wl}.
c

Hence it is enough to show that if § = ¢ * g is a self-Bergmann metric of degree

1 then A= |a|?=1. Let T be the hermitian structure on H°(M, L) such that

Ric (k) = wz. In order to prove our Theorem it suffices to show that if

{azgwy, zowy, 21wy, 21, } is a othonormal basis for (H°(M, L),(-,-);) then

A =1. Let U= C? be the chart on M defined by (z,, wy) = (0, 0) equipped with

coordinates (z, w) = (é, “ ) We can easily calculate the Kéhler form o
20 Wy

=¢*(w%s) on U and obtain:

A+ |22+ |w|®) + |z]? |w]|?
A P w2 w]?)

2
wi;=w,N\w R

.2
where dv = (ZL) dz A\ dz Ndw N\ dw.
T
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Let Pe H'(M, L) = span {zyw,, 2yw;, 21wy, 2;w; }. We denote by small letter

W, R’ 2 W

p its expression in the chart U, namely p(z, w) = P (1, =L 22 1) With
- Wo 29 2o Wo

the above notation the hermitian structure % on U is given by:

p(z, w) qz, W)

WP, Q) = )
R P P BN WY P

Hence,

y

- wj 1 A+ 2P+ Jw) + [2]*|w]*) pg
P,QY= P, Q —L ==
. Qi MJ D3 2(‘! A+ [2]2+ [w]2+ |2]2 |w]?)

for P, Qe H(M, L).

It follows that {azow,, zow;, 21wy, 21wy} (which on U is given by
{a, w, z, zw}) is a othogonal basis of (H"(M, L),{-, -);). By passing in polar
coordinates, a straightforward calculation gives:

1-3A+2A%—Alog A

(14) azowy | = ey, |E =
llczg 20 [l7 = [l 201 [I7 BA_17
and
2-3A+A%+AlogA
1) leoron [ =l 200 [ = eL

48(A — 1)

It is now easy to see that (14) and (15) are equal if and only if A =1 which conclu-
des the proof of our theorem. =

3 - Quantizations and Bergmann metrics of (C*, g*)

In this section we consider the case of a complete Kéhler manifold (M, g). Let
L Dbe a holomorphic line bundle on M endowed with an hermitian structure %. Fol-
lowing Tian (Sect. 4 in [12]) we denote by H%,(M, L") the Hilbert space consi-
sting of all L? integrable global holomorphic sections of L ®*, namely

n

seHiy(M, L) < (s, s)r= Jhk(s(x), s(x)) wg(‘x) < o
M Nn.

Let {s;};0 be an orthonormal basis of (H%,(M, L ®¥),(-, -,+). One if his main re-
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sult, which generalizes the above mentioned Theorem A, is summarized in the
following:

Theorem 3.1. (Tian) Let M be a complete Kihler manifold with a polari-
zed Kdihler metric g and let L be a holomorphic line bundle with hermitian me-
tric h such that its Ricci curvature form satisfies: Rie(h) = w,. Then for any
compact set KcM and k sufficiently large

. tw
27 j=0""

defines a Kahler form on K. Moreover if g;, denotes the Kcihler metric on K asso-

ciated to w, (i.e. w, = w,) then the sequence of metrics % C*-converges to the
Kiihler metric g on K.

As in the compact case, a geometric quantization of a complete Kéhler mani-
fold (M, g) is given by a pair (L, k), where L is a holomorphic line bundle on M
equipped with a hermitian metric % such that Ric (k) = w , (see Remark 2.3)). The

metrics % (defined only on compact sets KcM) are called the Bergmann

metrics on (M, g).

Remark 3.2. In analogy with the compact case, we say that a Kihler metric
on a complete manifold is self-Bergmann of degree k if g, = kg. Observe that this
implies that g, is globally defined on M and not only in a compact set Kc M. A sli-
ght modification of Theorem 2.1 shows that in a homogeneous and simply-connec-
ted Kéhler manifold (M, g) then the metric g is self-Bergmann of degree k for all
k. Therefore, for example, the flat metric on the complex Euclidean space C" is
self-Bergmann of degree k.

In order to describe all the geometric quantizations of a Kihler manifold
(M, g) one gives the following (cf. e.g. [9]):

Definition 3.3. Two holomorphic hermitian line bundles (Ly, hy) and
(Ls, hy) on a Kdhler manifold (M, g) are called equivalent if there exists an iso-
morphism of holomorphic line bundles v : Ly— Ly such that v * hy = hy.

Let us denote by [L, /] the equivalence class of (., k) and by £2(M, g) the set of
equivalence classes. We refer the reader to [2] for the proof of the following:
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Theorem 3.4. The group Hom (m,(M), S) acts transitively on the set of
equivalence classes 2(M, g).

In Theorem 3.5 below we describe this action in the case of (C*, g *). We first
observe that any holomorphic line bundle L on C* is holomorphically trivial. Let &
be the hermitian metric on L given by:

Wf@), f2) =e= " e |2,

for a holomorphic function f on C*. It is easily seen that Ric(k;) = w* and hence
L is a quantization of (C*, g*). We can prove now the first result of this
section:

Theorem 3.5. The group

Hom (77,(C*), ') =Hom (7, S') =S'= ;

acts on the set of equivalence classes L(C*, g*) by defining:
am [A]-(L, h) = (L, hy),

where [A] denotes the equivalence class of A in S'= B and h; is the hermitian
. . 7.
metric on L defined by:

(18) hi(f(2), f(2) = 2| M f(2), f(2)),
for a holomorphic function f on C*.

Proof. Let A and u be real numbers such that 1 —ueZ. It is easy to see
that the map

WLy hy) = Ly hy) (2, 1) = (2, 2774

is a holomorphic automorphism of the trivial bundle and v *(h;) = h,, namely
[Ly, k] = [Lgy, h;]. Furthermore, if A — u ¢ 7Z then [L, h;] # [L, h,]. Indeed, sup-
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pose that v : L—L is a holomorphic automorphism of the trivial bundle, such
that v *h; = h,. It follows that y(z, t) = (z, f(2) t), where f is a holomorphic fun-
ction on C*, satisfying |f(z)|*= |z|**~*. This is impossible unless 4 — u is an
integer. ®

Given a natural number % it follows immediately that the trivial bundle L en-
dowed with the hermitian structure

WECRR), fz) = e 5 o) |2

defines a quantization of (C*, kg *). By Theorem 3.5 we know that every class in
£(C*, kg*) can be represented by a pair (L, h}), where

km

(19) hE(f(2), f(2)) 1= e =3 €127 |22 | f(2) |2,

and two such pairs (L, 2f) and (L, b)) are equivalent iff [1] = [u]. In what follo-
ws, to simplify the notation, we consider the class corresponding to A = 0, namely
the trivial bundle L on C* endowed with the hermitian metric

— ks
T 1o,

R, f) = e = ) 2.

It follows that the space (H%,(C*, L),(-, -),+), which we will denote by I, equals
the space of holomorphic functions f in C* such that

kT 1002 1212 . dz \dZ
1= Cfs = [ e " 1oy P EEE

> < +
o 2 |z

One can check that the functions z/, with jeZ, form an orthogonal system for
(.. Since every holomorphic function in C* can be expanded in Laurent series, it
follows that z/ are in fact a complete orthogonal system. Their norms are given by

L
el = [ g 2 ZAE
E 2 P

+ " 2
T 1og2 2 . ar
=k J 3 ¢ 7"2‘7—2(17”.
; 7
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2

By the change of variable e¢? =#“ one gets

P e A 7( B, [ j)z
|« = Kkt j ez ¢ e’do = ke F= J e W2~ Vo
— 00 — 0

2 7 2
= ke 2 o= \/k_ J e Udt= lwte e .
Jr fee)

Then a orthonormal basis for J(, is given by

1

S = e i

1 2\z
(et 4
2km
and by formula (16) we get:

(20) W= z—aalog >e” = | z|%.

jeZ

Let % be the corresponding sequence of Bergmann metrics (which are defi-

ned, by Theorem 3.1, on every compact set Kc C* for k sufficiently large). The
following Theorem extends Tian’s theorem 3.1 in the case of the punctured plane
endowed with the metric g*.

Theorem 3.6. Let C* be endowed with the complete metric g*. Then the

sequence of Bergmann metrics % C *-converges to the metric g* on every com-
pact set Kc C*,

Proof. By formula (20) it is enough to show that the sequence of func-
tions

_i2

1 it
1) fiw = - 1og(2 0T x.;)

JjeZ

(defined on R*) C “-converges to the function f(x) = glogzac on every compact
set CcR™. In order to prove it we apply the P01sson summatlon formula (see

p. 347, Theorem 24 in [7]) to the function f( D=e = xi=e T Flog
has: 2> f(j) = > f(]), where f(j) = f ~27v f(y). By a straightforward calcu-
JjeZ JjeZ

—

. Namely, one
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lation one gets:
+ o
_]?(.]) ek%(ij—logx)2 J’ e —Z—Ik(v+2:r2ijk—:rk log )
= TR
—

kZlog?e —2kn>j(mj —ilog i)
=2Jr\/Ee 7 log” e SR

Thus
lim 110 Zf(')—limllo INIE))
k—>oo [ g7EZ J _k—>°0 k gyeL J

. logx + lim 1 log > ¢ 2k~ iloga)
2 ko | ez

. . . T, PO V] ;
It is now immediate to see that the sequence >, ¢ ~2:7 /(W ~ilog®) (**_converges
jeZ

to the constant function 1 on every compact set Cc R™, which concludes the proof
of our Theorem. Indeed,

+ o0
E efzknzj(mfilogw) <1+ Z e*2kn3jz<1+ J e*2kn3t2dt:1+ .
jeZ jeZ\Oo} 2 2km
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Abstract

In this paper we study the set of self-Bergmann metrics on the Riemann sphere endo-

wed with the Fubini-study metric and we extend a theorem of Tian to the case of the pun-
ctured plane endowed with a natural flat metric.
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