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Abstract

A Coordinate Gradient Descent Method for Structured Nonsmooth Optimization

Sangwoon Yun

Chair of the Supervisory Committee:
Professor Paul Tseng
Department of Mathematics

We consider the problem of minimizing the sum of a smooth function and a (block
separable) convex function with or without linear constraints. This problem in-
cludes as special cases bound-constrained optimization, smooth optimization with
f1-regularization, and linearly constrained smooth optimization such as a large-scale
quadratic programming problem arising in the training of support vector machines.
We propose a (block) coordinate gradient descent method for solving this class of
structured nonsmooth problems. The method is simple, highly parallelizable, and
suited for large-scale applications in signal/image denoising, regression, and data
mining/classification. We establish global convergence and, under a local Lipschitzian
error bound assumption, local linear rate of convergence for this method. The local
Lipschitzian error bound holds under assumptions analogous to those for constrained
smooth optimization, e.g., the convex function is polyhedral and the smooth function
is (nonconvex) quadratic or is the composition of a strongly convex function with a
linear mapping. We report our numerical experience with solving the /;-regularization
of unconstrained optimization problems from Moré et al. [73] and from the CUTEr
set [38] and some large-scale quadratic program of support vector machines arising
from two-class data classification. Comparison with L-BFGS-B and MINOS, applied

to a reformulation of the ¢;-regularized problem as a bound-constrained smooth op-






timization problem, is reported. Comparison with LIBSVM on large-scale quadratic
programming problems of support vector machines is also reported.

In addition, we consider the bi-level problem which minimizes a nonsmooth con-
vex function over the set of stationary points of a certain smooth function. If the
smooth function is convex, the convex function is proper, level-bounded, lower semi-
continuous, and the set of stationary points of the smooth function over the domain
of the convex function is nonempty, a regularization strategy for solving this bi-level
problem is proposed for a (block) coordinate gradient descent method. We prove that

any cluster point of the generated iterates is a solution of the bi-level problem.
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GLOSSARY

QP : quadratic program.

N : the set of positive integers 1,...,n.
x,y, 2z : vectors in IR".

x; : the jth component of z.

xz : the subvector of x comprising z;, j € J,
| 7| : the cardinality of J

H,D : n x n real symmetric matrices.

>, > : partial orders relative to the set of positive definite matrices, i.e., H > D
(respectively, H > D) to mean that H — D is positive semidefinite (respectively,

positive definite).

Amin(H), Amax(H) @ the minimum and maximum eigenvalues of H.
H 77 = (Hij)ijes : the principal submatrix of H indexed by J.

I : the identity matrix.

0, : the n x n matrix of zero entries.

Null(A) : the null space of the m x n real matrix A.

v



1
o |||y : 4 norm of vectors, i.e., ||z|, = (Z?Zl |xj|p) & for 1 <p < o0.
e || - || : Euclidean norm of vectors (¢, norm).

o |l lloo = llzlloo = max; fa;].
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Chapter 1
INTRODUCTION

Nonsmooth optimization problems are generally considered to be more difficult
than smooth problems. Among those, we study the optimization problems whose
objective function is the sum of a smooth function and a structured nonsmooth con-
vex function. In particular, the nonsmooth convex function may be (block) separable
or even polyhedral. Such problems arise in bound-constrained optimization, smooth
optimization with ¢;-regularization, linearly constrained smooth optimization such as
large-scale quadratic problems arising in the training of support vector machines and
linearly constrained nonsmooth optimization. In applications such as signal/image
denoising, regression, and data mining/classification, the problems are highly struc-
tured, but large scale. The possibly nonconvex, nonsmooth, and large-scale nature of
such problems poses computational challenges. We study a derivative-based method
that distributes computation coordinatewise and is highly parallelizable, thus is suit-

able for large scale problems. Extension to bi-level optimization is also studied.

1.1 A (Block) Coordinate Gradient Descent Method for Nonsmooth
Separable Minimization

In Chapter 2, we consider a type of nonconvex nonsmooth optimization problem that

arises in many applications and has the following form:
min F.(z) ¥ f(x) + cP(a), (L1)

where ¢ > 0, P : IR®™ — (—o0,00] is a proper, convex, lower semicontinuous (Isc)

function [88], and f is smooth (i.e., continuously differentiable) on an open subset



of IR™ containing domP = {x | P(z) < oo}. Of particular interest is when P has a
block-separable structure (see 2.14).

The well studied bound-constrained optimization problem is a special case of (1.1)
with

P(z) =

0 ifi<zx<u;
{ (1.2)

oo else,

where | < u (possibly with —oo or co components). Such a model arises, e.g., in signal
denoising based on Markov random field prior [94]. Another special case of (1.1) that
has attracted much interest in signal /image denoising and data mining/classification
is when P(z) = ||z||;. This yields the following problem with ¢;-regularization:

min - f(z) + cfjz]- (1.3)

For example, f may be the negative of a log-likelihood function. The ¢; term has the
desirable property of inducing sparsity in the solution, i.e., few nonzero components,
which is useful for finding a sparse representation of a noisy signal or for smoothing
a signal /image to have a sparse number of jumps, etc. [1, 7, 14, 20, 21, 68, 92, 93|.
In the above cases, P is separable, i.e., a sum of univariate convex lsc functions.
Using duality, the “support vector regression” model [7, 23, 107] can be shown to be
a special case of (1.1) with P separable and piecewise-linear/quadratic. The group

Lasso model for regression [70, 108] is a special case of (1.1) with
P(z) = [zl +- - + [lzgy 2, (1.4)

where Ji, ..., Jy is a partition of {1,...,n}. Here P is block-separable.

This problem (1.1) has previously been studied in [2, 34, 36, 51, 72]. The work
most closely related to ours is that of Fukushima and Mine [36], who proposed a
proximal gradient descent method which, given 2*¥ € domP, computes a direction d*

as the solution of the subproblem

1
mdin Vf(z"Td+ §pk||d||2 + cP(z" + d)



(p* > 0) and updates z*¥*! = 2 + ofd*, with stepsize o* > 0 chosen by the Armijo-
type rule. They showed that every cluster point of {z*} is a stationary point of F,
assuming that V f has a Lipschitz continuity property, the directional derivative of
P has a continuity property, and p* is uniformly bounded above and below away
from zero. Local linear convergence to a stationary point Z was also shown, assuming
that V2f(z) is positive definite. Later, Kiwiel [51] proposed a method in which
P(z* +d) is approximated by a subgradient bundle. Fukushima [34] further extended
Kiwiel’s method to handle smooth equality constraints via exact penalization, and
replaced p*||d||? more generally by a strongly convex proximal term d” H*d. Mine and
Fukushima [72] studied a related Frank-Wolfe-type method corresponding to p* = 0,
with of chosen by line minimization and assuming P is strictly convex. If domP =
IR", then (1.1) is a special case of a composite nonsmooth optimization problem
studied in [2, 9, 31], i.e., minimizing a real-valued convex function (¢, z) — t + cP(x)
composed with a smooth mapping = — (f(x),x). The descent method of Auslender
[2], when specialized to this case, has a form similar to the method of Fukushima
and Mine, but with p¥||d||? in the objective replaced by a ball constraint ||d|| < 1 [2,
pages 434, 451]. The descent method of Burke [9], when specialized to this case, also
has a form similar to the method of Fukushima and Mine, but with p*||d||? replaced
more generally by p(d, z¥), where p belongs to the function class C* defined in [9,
(3.5)]. Under a certain compactness assumption, every cluster point of {z*} is a
stationary point of F, [2, Theorem 2], [9, Theorem 5.3]. The method of Fletcher [31]
uses trust-region instead of line search to achieve global convergence. If in addition
f is twice continuously differentiable, then F is “lower-C?” [90, Theorem 10.33], for
which locally convergent proximal point methods have been proposed [44, 81, 99]. If
f is convex, then an e-subgradient method can also be applied [5, 6, 85]. However,
the above studies did not present numerical results, so the practical performance of

these methods cannot be judged.

In the special case of bound-constrained smooth optimization, gradient-projection



methods [5, 6, 50, 66, 74] or coordinate descent methods [13, 39, 64, 67, 78] can be
effective. Other methods based on trust region or active set, possibly in conjunction
with gradient projection to do active-set identification, have also been much studied;
see [16, 17, 109] and references therein. In the special case of (1.3), some methods

have been proposed for the special case of “basis pursuit,” where
f(z) = ||Az - b][3,

the columns of A € IR™*™ are wavelet functions, and b € IR™. Specifically, Chen,
Donoho and Saunders [14] proposed a primal-dual interior-point (IP) method, with
a conjugate-gradient method used to solve the linear equations at each iteration,
exploiting the fast multiplications by A and AT. However, the number of conjugate-
gradient steps is large due to ill-conditioning in the linear equations being solved at
each IP iteration. For the case where the columns of A comprise the finite union
of (overcomplete) sets of orthonormal wavelet packets, Sardy, Bruce, and Tseng [91]
proposed an alternative method based on block coordinate descent, which was signif-
icantly more efficient than the IP method owing to its fast iterations by exploiting
the wavelet structure of A. Although coordinate descent methods do not converge on
nonsmooth problems in general, the nonsmooth 1-norm is separable, which is key to
its convergence. Unfortunately, the coordinate descent method is much less efficient
when f is nonquadratic since it requires an expensive coordinate-wise minimization at
each iteration; see [40, 41, 92, 93, 94] for further discussions and special cases. Also, if
f is nonconvex, then an example of Powell [83] shows that coordinate descent meth-
ods can cycle among non-stationary points, even if P = 0. Additional assumptions
on f are needed to ensure global convergence [101, 102].

We can reformulate (1.1) as a smooth optimization problem over a closed convex

set:
min { f(z) + ¢ | P()-€<0}. (1.5)

If P is polyhedral, then this problem has linear constraints. The special case of (1.1)



can be reformulated as a bound-constrained smooth optimization problem, though the
dimension doubles; see Section 2.6.3. However, although there exist many methods
for solving this class of problems (e.g., gradient projection and active-set methods),
these methods seem not well suited for the large-scale applications mentioned earlier.

In particular, they cannot easily exploit the (block) separable structure of P.

Thus, even in the special case of (1.3), there appears to be no existing method
that can efficiently solve this problem when f is nonquadratic and n is large. The
nonquadratic case is of practical interest since it allows for non-Gaussian noise in
likelihood estimation and includes sparse nonlinear least square problem. We pro-
pose a method that can efficiently solve (1.1) and (1.3) on a large scale. Our idea is
simple: Since coordinate-wise minimization is expensive when f is nonquadratic, we
will replace f in F, by a strictly convex quadratic approximation. To ensure sufficient
descent, we perform an inexact line search on F, from the current iterate in the direc-
tion of the coordinate-wise minimum. Surprisingly, this approach does not appear to
have been studied before. Specifically, we propose a (block) coordinate gradient de-
scent (abbreviated as CGD) method for solving (1.1) with P having a block-separable
structure. At each iteration, we approximate f by a quadratic and apply block co-
ordinate descent to generate a descent direction. Then we do an inexact line search
along this direction and re-iterate. This method is simple, highly parallelizable, and
is suited for solving large-scale problems. We show that each cluster point of the
iterates generated by this method is a stationary point of F,, provided that the coor-
dinates are updated in either a Gauss-Seidel manner or a Gauss-Southwell manner;
see Theorem 2.1. Thus, coordinate gradient descent not only has cheaper iterations
than exact coordinate descent, it also has stronger global convergence properties, able
to avoid the aforementioned cycling phenomenon. We next show that if a local Lip-
schitzian error bound on the distance to the set of stationary points X holds and
the isocost surfaces of F, restricted to X are properly separated, then the iterates

generated by the CGD method converge at least linearly to a stationary point of F;



see Theorems 2.2, 2.3 and 2.4. This result is analogous to those obtained for gradi-
ent projection, matrix splitting, coordinate descent methods for constrained smooth
optimization [60, 61, 62, 63, 100]. We show that this local error bound holds if either
(i) f is strongly convex with Lipschitz continuous gradient or (ii) P is polyhedral
(not necessarily separable) and f is quadratic or the dual of certain strictly convex
function or the composition of a strongly convex function with Lipschitz continuous
gradient and an affine mapping; see Theorem 2.5. The proof for case (ii) involves
reducing (1.1) to a linearly constrained smooth optimization problem and applying
existing error bound results for that problem [25, 60, 61, 62, 84]. In the special case
of linearly constrained smooth optimization problem (i.e., P is the indicator function
for a polyhedral set), error bound has been much studied and is a key to establishing
linear convergence rate for various methods without assuming uniqueness or bound-
edness of solutions; see [25, 60, 61, 62, 63] and references therein. To our knowledge,
error bound for the nonsmooth problem (1.1) has not been studied previously, and
the convergence rate analysis involves new proof ideas to handle the nonsmoothness
of the objective function F,. The CGD method may be viewed roughly as a block co-
ordinate version of the method in [36] using a general proximal term, though we also
use a different stepsize rule (similar to one in [9]) which is needed for the convergence
rate analysis. Our global convergence and convergence rate analyses require weaker

assumptions than those in [36].

In Section 2.6, we describe an implementation of the CGD method, along with
convergence acceleration techniques, and we report our numerical experience with
solving ¢;-regularization of nonlinear least square problems from [73] and uncon-
strained smooth optimization problems from the CUTEr set [38]. We compare the
CGD method with L-BFGS-B [109] and MINOS [75], applied to a reformulation of
the ¢;-regularized problem as a bound-constrained smooth optimization problem. Our
comparison suggests that the CGD method can be effective in practice. We discuss

conclusions and extensions in Section 2.7.



1.2 A (Block) Coordinate Gradient Descent Method for Linearly Con-
strained Smooth Optimization and Support Vector Machines Train-

ing
In Chapter 3, we consider a linearly constrained smooth optimization problem:

min flx
st. zeX®{z|l<z<u, Az=0b},

where f : IR” — IR is smooth (i.e., continuously differentiable), A € R™*", b € R™,
and [ < u (possibly with —oco or oo components). There are many real applications
that can be modeled by optimization problems of the form (1.6). For instance, optimal
control problems, portfolio selection problems, traffic equilibrium problems, multicom-
modity network flow problems [3, 18, 46, 71] are specific instances of (1.6). Moreover,
an important machine learning methodology, called Support Vector Machine (SVM),
leads to huge problems of the form (1.6) with quadratic objective function and m = 1.

Support vector machines, invented by Vapnik [106], have been much used for classi-
fication and regression, including text categorization, image recognition, hand-written
digit recognition, and bioinformatics; see [19] and references therein. The problem of
training a SVM may be expressed via duality as a convex quadratic program (QP)

with bound constraints plus one equality constraint:

1Ty, T
nin 3z Qr—e'x
sit. 0 <z <Ce, (1.7)
alz =0,
where a € R", 0 < C < o0, e € IR" is the vector of all ones, and @) € R™™" is a

symmetric positive semidefinite matrix with entries of the form
Qij = a;a; K (2, zj), (1.8)

with K : R? x IR? — IR (“kernel function”), and z; € IR? (“ith data point”), i €
N ¥ £1, ... n}. (Here, “s.t.” isshort for “subject to”.) Popular choices of K are the



linear kernel K (z;,2;) = 2% z; (for which Q = Z*'Z, with Z = [a121 - -+ anz,), and so
rank@ < p) and the radial basis function (rbf) kernel K(z;, z;) = exp(—7llzi — ;|?)
where 7y is a constant. Often p (“number of features”) is not large (4 < p < 300), n
is large (n > 5000), and @ is fully dense and even indefinite; see Section 3.6 for more

discussions.

The density and huge size of ) pose computational challenges in solving (1.7).
Interior-point methods cannot be directly applied, except in the case of linear kernel
where () has low rank or () is the sum of a low-rank matrix and a positive multiple
of the identity matrix; see [28, 29]. For nonlinear kernel, Fine and Scheinberg [30,
Section 4] proposed approximating @ by a low-rank incomplete Cholesky factorization
with symmetric permutations. Recently, Scheinberg [96] reported good numerical
experience with an active-set method for SVM problems with positive semidefinite @)
and, in particular, when the rbf kernel is used. It uses rank-one update of a Cholesky
factorization of the reduced Hessian to resolve subproblems. Earlier, Osuna et al.
[79] proposed a column-generation approach which solves a sequence of subproblems
obtained from (1.7) by fixing some components of z at the bounds. They reported
solving problems with up to n = 100,000 data points in 200 hours on a Sun Sparc
20. The SVM code in [95] is based on this approach. Motivated by this approach,
decomposition methods based on iterative block-coordinate descent were subsequently
developed and have become popular for solving (1.7), beginning with the work of
Joachims [45], Platt [82], and others, and implemented in SVM codes such as SVM!9h?
[45] and LIBSVM [12]. At each iteration of such a method, a small index subset
J C N is chosen and the objective function of (1.7) is minimized with respect to the
coordinates z;, j € J, subject to the constraints and with the other coordinates held
fixed at their current value. This minimization needs only those entries of () indexed
by J, which can be quickly generated using (1.8) and, in the case of |J| = 2, has a
closed form solution. (We need |J| > 2 to satisfy the equality constraint e’z = 0.)

Such a method is simple and easy to implement, and for suitable choices of the index



set J, called working set, has good convergence properties in theory and in practice.
The rows of @ indexed by J can be cached when updating V f(x) at each iteration,
so it need not be recomputed from (1.8) and thus reduces CPU time. Although
block-coordinate descent has been well studied for bound constrained optimization
(see [6, 67, 103] and references therein), its use for linearly constrained optimization

has been little studied prior to SVM.

A good choice of the working set J is crucial for speed and robustness. In Platt’s
method [82], which he calls the sequential minimal optimization (SMO) method, the
working set J is chosen heuristically with | 7| = 2. Joachims [45] proposed the first

systematic way of choosing J:

[ ming Vf(z)7d
st. ald=0,
J € argmin < 420, ifz; =0, j€ T, b (1.9)
T T<¢ d; <0,ifz; =C, jeJ,
dj| <1, je T,
{ dj=0,j¢J, )

where £ > 2 is an even number. Such J can be found from among the lowest £/2 terms
from a;V f(z);, j € T, (z) e z; < C,a; =1o0r z; > 0,a; = —1} and the highest
¢/2 terms from a;Vf(z);, j € Z_(x) O z; < C,aj = =1 or z; > 0,a; = 1},
which takes O(nmin{¢,logn}) operations using (partial) sorting. This choice is used

in his SVM“" code, with ¢ = 10 as the default value.

Motivated by the aforementioned work, Chang, Hsu and Lin [11] proposed an

extension of the SMO method to problems with smooth objective function, in which



10

the working set is chosen by

[ min, Vf(x)"d \
| st. dTd=0,
J € argmin ( (1.10)
T TN <L 0<z;+d; <C, jeJ,
dj - 0, ] g jla )

\

where ¢ > 2. They proved global convergence for their method in that every cluster
point of the generated iterates z is a stationary point. Simon [98, Section 6] showed
that, in the case of £ = 2, a J satisfying (1.10) can be found in O(n) operations. For
¢ > 2, such J can still be found in O(n) operations [58], though the constant in O(-)
depends exponentially in /.

Keerthi et al. [48] proposed choosing, for a fixed tolerance ¢ > 0, a working set

J ={i,j} satisfying
i€Zy(x), j€Z (z), a;Vf(z)i<a;jVf(x);—e

They proved that the SMO method with this choice of J terminates in a finite number
of iterations with m(x) > M (x) — ¢, where

m(z) € min a;Vf(z);, M(z) ¥ max a;Vf(z);.

FET () JET_(z)

(Note that a feasible point z of (1.7) is a global minimum if and only if m(x) > M (z).)
In [49], Keerthi et al. proposed a related choice of J = {i,j} with ¢ and j attaining
the minimum and maximum, respectively, in the above definition of m(z) and M (x).
This choice, called “maximal violating pair” and used in LIBSVM, is equivalent to
Joachim’s choice (1.9) with £ = 2.

The first convergence result for the SMO method using the working set (1.9) was
given by Lin [53], who proved that every cluster point of the generated iterates z is
a global minimum of (1.7), assuming min s, 7/|<¢(Amin(Q7757)) > 0. This assumption

was later shown by Lin [55] to be unnecessary if £ = 2. Under the further assumptions



11

that ) is positive definite and strict complementarity holds at the unique global
minimum, linear convergence was also proved [54]. List and Simon [57] proposed an
extension of the SMO method to problems with more than one linear constraint, in
which the working set J is obtained from maximizing a certain function of x and J.
They proved global convergence for their method under the same assumption on @) as
Lin. Simon [98] later showed that the maximization subproblem is NP-complete and
he proposed a polynomial-time approximation algorithm for finding J which retains
the method’s global convergence property.

Hush and Scovel [42] proposed choosing J to contain a “rate certifying pair”, an
example of which is (1.10) with ¢ = 2. They proved that, for any ¢ > 0, the SMO
method with this choice of J terminates in O(C*n2(f(z™")— f (z*)+n2A) /€) iterations
with f(z) < f(z*) + €, where z* is a global minimum of (1.7) and A is the maximum
norm of the 2 X 2 principal submatrices of (). They also showed that a J satisfying
(1.10) can be found in O(nlogn) operations. These complexity bounds were further
improved by List and Simon [58] to problems with general linear constraints, where
they also showed that a J satisfying (1.10) can be found in O(n) operations. Hush
et al. [43] proposed a more practical choice of J, based on those used in [49] and [98]
that achieves the same complexity bounds as in [58].

Palagi and Sciandrone [80] proposed, as a generalization of (1.9), choosing J to
have at most ¢ elements (¢ > 2) and to contain a maximal violating pair. They

current | | 2

also added a proximal term 7|z — x to the objective function of (1.7) when
minimizing with respect to z;, 7 € J. For this modified SMO method, they proved
global convergence with no additional assumption. Chen et al. [15] then proposed
a generalization of maximal violating pair by choosing J = {i,j} with ¢ € Z, (),

j € T_(x) satisfying
a;V f(x); — a;V f(z); > $(M (z) — m(z)), (1.11)

where ¢ : [0,00) — [0,00) is any strictly increasing function satisfying ¢(0) = 0
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and ¢(a) < « for all @ > 0. Following [80], they also add a proximal term to the
objective function, but only when it is not strong convex with respect to z;, j € J.
For this modified SMO method and allowing () to be indefinite, they proved global
convergence with no additional assumption. Linear convergence was proved for the
choice ¢(a) = va (0 < v < 1) and under the same assumption as in [54], namely, @
is positive definite and strict complementarity holds at the unique global minimum.
While @) can be indefinite for certain kernel functions, the QP (1.7), being nonconvex,
can no longer be interpreted as a Lagrangian dual problem.

Fan et al. [26] considered a version of maximal violating pair that uses 2nd-

derivative information by adding a Hessian term to the objective of (1.9) with £ = 2:

ming Vf(z)Td+ 3d"Qd
st. ald=0,
J € argmin d;j>0,ifz; =0, j€J, ¢ (1.12)
T\ T =2
djSO, if.Tj:C, jEJI:
{ dj =0, ¢ \7,' )

(This minimizes f(x + d) over all feasible directions d at x with two nonzero com-
ponents.) However, no fast way for finding such a J is known beyond checking all
(’2‘) subsets of A of cardinality 2, which is too slow for SVM applications. Fan et al.
[26] thus proposed a hybrid strategy of choosing an index ¢ from a maximal violating
pair (i.e., i € T, (z) with a;Vf(z); = m(x) or i € Z_(z) with o;V f(z); = M(z)) and
then further constraining J' in (1.12) to contain i. The resulting J can be found
in O(n) operations and improved practical performance. Moreover, such J belongs
to the class of working sets studied in [15], so the convergence results in [15] for a
modified SMO method can be applied. Glamachers and Igel [37] proposed a modi-
fication of this hybrid strategy whereby if the most recent working set contains an ¢
with (1 —4)C < 2;6C (0 < § < 1/2, e.g., 6 = 1078), then choose J by (1.12) with J’
further constrained to contain i; otherwise choose J to be a maximal violating pair.

Glamachers and Igel showed that this choice of J belongs to the class of working sets
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studied in [57], so the convergence result in [57] for the SMO method can be applied.
Motivated by this work, Lucidi et al. [59] proposed choosing the working set to be a
maximal violating pair {7, j} and, if x;, z; are strictly between their bounds after the
SMO iteration, then performing an auxiliary SMO iteration with respect to a subset
J' of coordinates whose corresponding columns in () are currently cached. Global
convergence for this SMO method was proved under a sufficient descent condition on
the auxiliary SMO iteration, which holds if either @) is positive definite or |J'| = 2.
Lin et al. [56] proposed a decomposition method for solving the special case of (1.6)
with m = 1. This method uses a similar line search as our method but generates the
descent direction differently, using linear approximations of f instead of quadratic
approximations and using working sets J with |J| = 2 and z; being “sufficiently
free” for some 7 € J. Global convergence to stationary points is shown assuming
such z; is uniformly bounded away from its bounds, and improvement over LIBSVM

on test problems using the rbf kernel is reported.

We propose a (block) coordinate gradient descent method for solving (1.6) and, in
particular, (1.7). At each iteration of our CGD method, a quadratic approximation
of f is minimized with respect to a subset of coordinates z;, j € J, to generate
a feasible descent direction, and an inexact line search on f along this direction is
made to update the iterate. For convergence, we propose choosing [J analogously
to the Gauss-Southwell-g rule in Chapter 2; see (3.6). We show that each cluster
point of the iterates generated by this method is a stationary point of (1.6); see
Theorem 3.1. Moreover, if a local error bound on the distance to the set of stationary
points X of (1.6) holds and the isocost surfaces of f restricted to X are properly
separated, then the iterates generated by our method converge at least linearly to a
stationary point of (1.6); see Theorem 3.2. To our knowledge, this is the first globally
convergent, block-coordinate update method for general linearly constrained smooth
optimization. It has the advantage of simple iterations, and is suited for large scale

problems with n large and m small. When specialized to the SVM QP (1.7), our
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method is similar to the modified SMO method of Chen et al. [15] and our choice of
J may be viewed as an approximate second-order version of the working set (1.10),
whereby a separable quadratic term is added to the objective and J is chosen as
an approximate minimum (i.e., its objective value is within a constant factor of the
minimum value). For m = 1 and ¢ = 2, such J can be found in O(n) operations
by solving a continuous quadratic knapsack problem and then finding a conformal
realization [89, Section 10B] of the solution; see Section 3.5. Moreover, the local error
bound holds for (1.7) always, even if ) is indefinite; see Proposition 3.1. Thus, for
SVM, our method is implementable in O(n) operations per iteration and achieves
linear convergence without assuming strict complementarity or @ is positive definite
as in previous analyses of decomposition methods [15, 26, 54]. We report in Section
3.6 our numerical experience with the CGD method on large SVM QP. Our experience
suggests that the method can be competitive with a state-of-the-art SVM code when

a nonlinear kernel is used. We give conclusions and discuss extensions in Section 3.7.

1.3 A (Block) Coordinate Gradient Descent Method for Linearly Con-
strained Nonsmooth Minimization

In Chapter 4, we consider the problem of minimizing the sum of a smooth function

and a separable convex function with linear equality constraints:

min  F.(z) € f(z) + cP(x)
def

st. rzeX={z|l<z<u, Az = b},

(1.13)

where ¢ > 0, f and P are as in Section 1.1, A, b, [, and u are as in Section 1.2. In

addition,

for some proper, convex, Isc functions P; : R — (—o00,00]. This problem can be

reformulated as an unconstrained problem:

min  f(z) + cP(x), (1.14)
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with
. P(x) ifz e X;
P(z) = { (@) :
00 else
Since P is the sum of a convex function and the indicator function of convex set X,

P is a proper, convex, Isc function. Hence the problem (1.13) is a special case of (1.1)

without having a block-separable structure.

Problems of the form (1.13) includes as special cases regularization of smooth opti-
mization problems (X = IR™) and linearly constrained smooth optimization problems
(P = 0) [34, 36, 51, 72, 103, 104]. Block-coordinate gradient descent methods have
been proposed for solving the above two special cases of (1.13) [103, 104] and numeri-
cal experiences in [70, 103, 104] suggest that these methods can be effective for solving
large problems such as the training of support vector machines (m =1, P =0, f is
quadratic) and the £,-regularization of regression and nonlinear least square problems
(m = 0, P is the ¢;-norm or the sum of fo-norms). Another special case of (1.13)
that arises in the fields such as signal processing is when f = 0, P(z) = ||z||:, and
X = {z | Az = b} where Az = b is an underdetermined system of linear equations,
in order to obtain a sparse solution [10, 14, 22]. This problem can be reformulated as

an LP and be solved efficiently.

In this chapter, we extend the CGD method of Chapters 2 and 3 to solve (1.13).
At each iteration of our CGD method, we approximate f by a quadratic and apply
block coordinate descent to generate a descent direction. Then we perform an inexact
line search along this direction and re-iterate. Following Chapters 2 and 3, we choose
the coordinate block according to a Gauss-Southwell-g rule and choose the stepsize
according to an Armijo-like rule; see (4.3) and (4.6). (In Chapter 2, a Gauss-Seidel rule
and a Gauss-Southwell-r rule for choosing the coordinate block are also considered.
For simplicity, we do not consider them here.) Thus, the algorithmic framework is
similar to that of Chapters 2 and 3. We give a convergence rate analysis, based

on a local Lipschitzian error bound on the distance to the set of stationary points,
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that generalizes and unifies those developed in Theorem 2.4 and 3.2 for the two
cases of X = IR™ and P = 0; see Theorem 4.2. This extension makes use of a
new lemma (see Lemma 4.5) and does not assume P is block-separable or P = 0.
We give the first complexity analysis for the CGD method in the case where f is
convex with Lipschitz continuous gradient; see Theorem 4.3. When specialized to
the training of support vector machines (m = 1, P = 0, f is quadratic), our overall

complexity bound of O <% + n?A max {0, In ((Fc(xinit)_minmex Fc(w)))}) operations,

€ nbmax

where b, = max (u; — ;) and A is the maximum norm of the 2 x 2 principal
submatrices of V2f(z), for achieving e-optimality compares favorably with existing
bounds of [42, 58]; see Section 4.5 for more details. We show that, in the case where
P is separable and polyhedral, the Gauss-Southwell-¢ rule is implementable in linear-
time when m = 1 and in polynomial-time when m > 1; see Section 4.5. This extends
the procedure in Section 3.5, based on finding a conformal realization [89, Section

10B] of a vector in Null(A), for the case of P = 0.

1.4 A (Block) Coordinate Gradient Descent Method for Bi-level Opti-
mization

In Chapter 5, we consider the bi-level problem:

grcrel}gr} P(z), (1.15)

where P is as in Section 1.1 and Sy denotes the set of stationary points of a smooth
function f over domP = {z | P(z) < oo}, which we assume to be closed.

The well-known linear least square problem:
min | Az — b3, (1.16)

where A € IR™*" and b € IR™, is a challenging computational problem arising in
structural engineering, numerical geodesy, and numerical optimization, etc. In many

applications, components of x are parameters that must lie within certain bounds.
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This leads to a convex quadratic programming problem with bound constraints:

. o 2
Juin - [[Az — bll5,

where [ < u (possibly with —oo or oo components).

When n > m, the solution of the least square problem (1.16) may be far from
unique. Recent interests have focused on finding solutions that are sparse, i.e., have
few nonzero components. In the “Basis Pursuit” model for signal denoising [14, 20,

21], an ¢;-regularization term is added to the linear least square:
min ||z — blf3 + clz[]s, (1.17)

where ¢ > 0 is a user chosen regularization parameter. Another way to find an sparse

solution is to solve the following bi-level problem:
min || 1 where = solves (1.16). (1.18)

If the linear equation Az = b has at least one solution, then (1.18) is equivalent to

the following problem:
min ||| 1 subject to Az = b. (1.19)

This problem can be reformulated as an LP and be solved efficiently. The problem
(1.18) is a special case of the bi-level problem (1.15).

For a primal-dual IP method and a (block) SOR method, the strategy that dynam-
ically adjusts the regularization parameter c of (1.17) towards 0 so that the generated
points approach a solution of the bi-level problem (1.18) was proposed with ¢ de-
creasing at a rate depending on a certain measure of current solution accuracy [93].
More significantly, the convergence rate was not adversely affected as ¢ — 0, i.e., the
problem did not become more ill-conditioned with small c.

In this chapter, for the CGD method, we propose a regularization strategy which

decreases the regularization parameter ¢ of (1.1) to 0 to solve (1.15). For fixed c,
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we solve (1.1) by using the CGD method and then if the generated points reach the
desired threshold, we decrease c¢. At each iteration k& (k = 1,2,...), a regularization

k> 0 and an accuracy tolerance ¢* are chosen, and the CGD method

parameter c
is applied to (1.1) with ¢ = ¢* until it finds an approximate solution z* satisfying
suitable measures of solution accuracy; see Section 5.3.

We show that if f is convex, P is a level-bounded function, and Sy # ), then any

cluster point of the generated iterates is a solution of the bi-level problem (1.15); see

Theorem 5.1.
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Chapter 2

A (BLOCK) COORDINATE GRADIENT DESCENT
METHOD FOR NONSMOOTH SEPARABLE
MINIMIZATION

In this chapter, we study the CGD method for solving (1.1), in particular, (1.3).
We describe the CGD method formally and show the global convergence and asymp-
totic convergence rate of the method when the coordinates are updated in either a
Gauss-Seidel manner or a Gauss-Southwell manner. We compare the CGD method
with L-BFGS-B and MINOS, applied to solving ¢;-regularization of large nonlinear
least square problems from Moré et al. [73]. Our comparison suggests that the CGD
method is more robust than L-BFGS-B and is faster than MINOS. This chapter is
based on the paper [103] co-authored with P. Tseng.

2.1 (Block) Coordinate Gradient Descent Method

In our method, we use V f(x) to build a quadratic approximation of f at z and ap-
ply coordinate descent to generate an improving direction d at x. More precisely,
we choose a nonempty index subset J C N and a symmetric matrix H > 0,, (ap-
proximating the Hessian V2f(z)), and move z along the direction d = dy(z;J),

where

dy(z;J) € argmin{ Vf(x)Td+ %dTHd-‘rCP(.T-i-d) —cP(z)| dj=0Vj ¢j}.

deR™

(2.1)
Notice that dg(z;J) depends on H only through H;7. This coordinate gradient
descent approach may be viewed as a hybrid of gradient-projection and coordinate

descent, with connection to the variable/gradient distribution methods for uncon-
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strained smooth optimization [27, 35, 65]. In particular,

e if 7 = AN and P is given by (1.2), then d is a scaled gradient-projection direction

for bound-constrained minimization [6, 50, 74, 77];

e if f is quadratic and we choose H = V?f(z), then d is a (block) coordinate
descent direction [6, 77, 91, 101, 102].

If H is block-diagonal and P is accordingly block-separable, then (2.1) decomposes
into subproblems that can be solved in parallel.
Using the convexity of P, we have the following lemma showing that d is a descent

direction at z whenever d # 0.

Lemma 2.1 For any x € domP, nonempty J C N and H > 0, let d = dg(x; J)
and g =V f(x). Then

F. (x4 ad) < F.(z) + « (gTd +cP(z+d) — cP(:c)) +o(a) Vae(0,1], (2.2)
g'd+cP(x+d) — cP(x) < —d" Hd. (2.3)
Proof. For any «a € (0, 1], we have from the convexity of P and H > 0,, that

F. z+ad)— F.(zr) = f(r+ad)— f(z)+cPla(z+d)+ (1 - a)x) — cP(z)
< flr+ad) — f(z) + acP(z+d) + (1 — a)cP(z) — cP(x)

= ag'd+o(a) + a(cP(z + d) — cP(z)),

which proves (2.2).
For any a € (0, 1), we have from (2.1) and the convexity of P that

1
gtd+ EdTHd +cP(x +d) — cP(z)
1
< ¢'(ad) + 5(ad)" H(ad) + cP(z + ad) — cP()

1
< agtd+ §a2dTHd + acP(z +d) — acP(z).
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Rearranging terms yields
1
(1 —a)gtd+ (1 — a)(cP(x +d) — cP(z)) + 5(1 —a?)d"Hd < 0.

Since 1 —a? = (1 —a)(1+ «), dividing both sides by 1 —a > 0 and then taking a1 1
prove (2.3). =

The bound (2.3) is sharp when P = 0. We next choose a stepsize o > 0 so that
x' = = + ad achieves sufficient descent, and re-iterate. We now describe formally the
block coordinate gradient descent method.

CGD method:
Choose z° € domP. For k = 0,1, 2, ..., generate z**! from z

k according to the

iteration:

1. Choose a nonempty J* C N and an H* = 0,.
2. Solve (2.1) with z = 2%, J = J*, H = H* to obtain d* = dy(zF; T%).

3. Choose a stepsize of > 0 and set z**! = 2% 4 oFd*.

Various stepsize rules for smooth optimization [6, 32, 33, 77] can be extended to

our nonsmooth setting to choose o

. The following adaptation of the Armijo rule,
based on Lemma 2.1 and [9, Subsections 4.2, 4.3], is simple and seems effective from
both theoretical and practical standpoints.

Armijo rule:
k

ini

Choose o > 0 and let o* be the largest element of {a* §7};_¢, . satisfying
F (2% + o*d*) < F,(2*) + of o AF, (2.4)

where 0 < <1,0<0<1,0<60 <1, and

AR V[ (R dR + 0t HE A 4 cP(a* + dF) — cP(a¥).  (25)
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Since H* = 0, and 0 < # < 1, we see from Lemma 2.1 that
F.(z* + ad®) < F.(a*) + aA* + o(a) Va € (0,1],

and AF < (0 — l)dkTde’C < 0 whenever d* # 0. Since 0 < o < 1, this shows
that of given by the Armijo rule is well defined and positive. This rule, like that
for sequential quadratic programming methods [6, 9, 17, 32, 34, 77|, requires only
function evaluations. And, by choosing ozikn ., based on the previous stepsize a1 the
number of function evaluations can be kept small in practice. Notice that A* increases
with #. Thus, larger stepsizes will be accepted if we choose either ¢ near 0 or # near 1.
The descent condition (2.4) is similar to those used in [2, 9] and the term A* therein
seems essential to our convergence rate analysis; see Section 2.7 for discussions.

For convergence, the index subset J* must be chosen judiciously. For smooth
optimization, J* is often chosen in a Gauss-Seidel manner, e.g., J* cycles through
{1},{2}, ..., {n} or, more generally, 7°, J*, ... collectively covers 1,2, ...,n for every T
consecutive iterations, where 7" > 1 [13, 39, 63, 78, 102], i.e.,

JuTF U u TR =N, k=0, (2.6)

As we shall see, this generalized Gauss-Seidel rule can also be applied to our nons-
mooth separable problem to achieve global convergence. However, for the convergence
rate analysis, we need a more restrictive choice of J*, specifically, there exists a sub-

sequence 7 C {0,1,...} such that
0€7, N =(disjoint union of J*, 7+, .., J"®-1) vk e T, (2.7)

where 7(k) o min{k’ € T | k' > k}. In particular, (2.7) is a special case of (2.6) with
T < n. This choice seems most effective when P is block-separable with large blocks,
as in the case of group Lasso (1.4); see [70].

For smooth optimization, J* can also be chosen in a Gauss-Southwell manner,

indexing partial derivatives of the objective function that are within a multiplicative
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factor of being maximum in magnitude [35, 78, 91]. This can be extended to our
nonsmooth separable problem as follows. We will see in Lemma 2.2 that an z € domP
is a stationary point of F, if and only if dgy(z; N') = 0. Thus, ||dg(z; N)||« acts as a
scaled “residual” function (with scaling matrix H), measuring how close z comes to
being stationary for F,.. Moreover, if H is diagonal, then the separability of P means
that dy(z;N);, the jth components of dy(z; '), depends on z; only and is easily

computable.
e If P =0, then dy(z;N); = =V f(x),;/Hj;.
e If P is given by (1.2), then dy(z; N); = mid{l; — z;, =V f(x);/H;j, u; — z;}.

e If P is the 1-norm, then dy(x;N); = —mid{(Vf(x); — ¢)/H,j,zj, (Vf(x); +
¢)/Hj;}-

[mid{a, b, c} denotes the median (mid-point) of a, b, c.] Accordingly, we choose J* to
satisfy
ldpe (25 T*)lloo > vlldpr (2% N) oo, (2.8)

where 0 < v < 1 and D* > 0, is diagonal (e.g., D*¥ = I or D* = diag(H*)). Other
norms beside oco-norm can also be used. We will call (2.8) the Gauss-Southwell-r rule.
Notice that J* = N is a valid choice. If P is the indicator function for a closed convex
set X C IR, then dr(z;N) = [z — Vf(x)]}% — =, where [z]} denotes the orthogonal
projection of x onto X. Thus, dg(x; ) is a generalization of the projection residual
used in error bounds and convergence rate analysis of descent methods for constrained
smooth optimization [25, 60, 61, 62, 63, 84, 100].

We will see that the above Gauss-Southwell-r rule yields global convergence of the
CGD method. However, this rule has thus far resisted a convergence rate analysis.
The difficulty lies in that the nonsmooth objective function F,. can have different

local growth rates (linear or quadratic) along different coordinate directions, and



24

this is not adequately captured by the residual dpx(2*; N); see Section 2.6 for more
discussions. This motivated us to consider a (new) Gauss-Southwell rule based on
the optimal objective value of (2.1) rather than the norm of its optimal solution. For
any z € domP, nonempty J C N, and H > 0, define qg(z; J) to be the optimal
objective value of (2.1), i.e.,

(@ J) & (Vf(x)Td + 1dTHd +cP(z+d) — cP(x)) . (2.9)

2 d=dp (;7)

Thus gy (z; J) estimates the descent in F, from z to x+dg(x; J). We have from (2.3)
in Lemma 2.1 that gy (z; J) < —idg(z; )" Hdp(z; J) <0, so that g (z;N) = 0 if
and only if dy(z;N) = 0. Thus, like ||du(z;N)||0o, —qu(z;N) acts as a “residual”
function, measuring how close x comes to being stationary for F,. If P is separable and
H is diagonal, then gy (z; J) is separable in the sense that ¢ (z; J) = Xjc 7 qu(w; 7).
Accordingly, we choose J* to satisfy

qpr (2% T*) < v qpr (28 N), (2.10)

where 0 < v < 1, D¥ » 0, is diagonal (e.g., D¥ = I or D* = diag(H*)). We
call this the Gauss-Southwell-g rule. Notice that J* = N is a valid choice. These

Gauss-Southwell rules seem most effective when P is separable; see Section 2.6.
2.2 Properties of Search Direction

In this section we study properties of the search direction dg(z, J) and the residual
dg(z; N) which will be useful for analyzing the global convergence and asymptotic
convergence rate of the CGD method.

Formally, we say that x € IR" is a stationary point of F, if x € domF, and
F.!(z;d) > 0for alld € IR™. The following lemma gives an alternative characterization

of stationarity that will be often used in our analysis.

Lemma 2.2 For any H > 0,,, an x € domP is a stationary point of F, if and only
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Proof. Fix any z € domP and H > 0,,. If dy(z;N') # 0, then (2.2) and (2.3) show
that dg(z; V) is a descent direction for F, at x, implying that x is not a stationary

point of F,. Conversely, if dg(x; N') = 0, then
g u+ %uTHu +cP(x+u)—cP(z) >0 YueR"
where g = V f(z). For any d € IR™, letting u = ad for a > 0 yields
aghd + %anTHd +cP(x+ ad) —cP(z) >0 Va>0. (2.11)

Since f(z + ad) — f(z) = agld + o(«), this together with (2.11) yields
f(z+ ad) — f(z) + cP(z + ad) — cP(x)

F!(xz;d) = lim

al0 o
— 102" Hd
> i 2 72 —0 VdeR"
al0 o

Hence F.'(z;d) > 0 for all d, implying that z is a stationary point of F,.

The next lemma shows that ||dg(z; J)|| changes not too fast with the quadratic
coefficients H. It will be used to prove Theorems 2.1, 2.2, 2.3, and 2.4.

Lemma 2.3 For any ¢ € domP, nonempty J C N, and H > 0,, H = 0,, let

d=dy(z;J) and d = dgz(z; J). Then

L+ Amax(S) + /1 = 22 (S) + Amax(5)? Amax(Hors)
5 -

d|| < l|d]], (2.12)
)‘min( JJ)
where S = H; /°Hy,H; 4% If Hyy > Hyy, then also
Muax(H77 — H -
Il < \l Hag = Hya) 1 q (2.13)
Amin(Hyg — Hyg)

Proof. Since d; = cij =0 forall j ¢ 7, it suffices to prove the lemma for the case of
J =N. Let g = Vf(z). By the definition of d and d and Fermat’s rule [90, Theorem
10.1],

d € argmin (g + Hd)"u + cP(x +u) — cP(x),

d € argmin (g + Hd)Tu + cP(z + u) — cP(z).
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Thus

(94 Hd)Td+ cP(z +d) —cP(z) < (94 Hd)Td+ cP(z+ d) — cP(z),
(g+ Hd)"d+ cP(z+d) —cP(z) < (¢+ Hd)"d+ cP(z+d)— cP(z).
Adding the above two inequalities and rearranging terms yield
d"Hd —d"(H+ H)d+d"Hd < 0.
Then, by completing the square on the first two terms, we have
|HY?d — H™Y2(H + H)d/2|? < |H™Y*(H + H)d||*/4 — d* Hd.
By making the substitution uv = H'/2d, & = H/2d, this can be rewritten as

lu — (I +9)a/2|* < ||(I+9)a|?/4— " Si.

The right-hand side simplifies to ||(I — S)||?/4, so taking square root of both sides
yields
lu = (I +S)a/2| < [|(I = S)ull/2.

We apply the triangular inequality to the left-hand side and rearrange terms to obtain
I+ S)all/2 = (I = S)all/2 < [lull.
Multiplying both sides by 2||(I + S)a|| + 2||({ — S)a|| and simplifying yields
4a"Sa < 2||ul|(|(7 + S)all + [|( = S)al])-

Since S > 0,, this together with ||(I + S)@|| < (1 + Amax(S5))||@]| and ||(I — S)a|| <
V1 = 22min(S) + Amax(S)2|1] yields

207 St < [Jul|(1 + Amax(S) + \/1 = 22min(S) + Amax(5)?)||7]|-

Since @84 = d"Hd > Ain(H)|d||* and [[ull < \/Amax(H)lldl, lal] < v/ Amax(H)[Id]]
this yields (2.12).
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Suppose H > H. From the definition of d and d, we have

1 Lo ;
gFd+ §dTHd+ cP(z+d)—cP(z) < gTd+ §dTHd+ cP(z +d) — cP(x),

gTd+ ST A+ cP(z +d)~ cP(a) < g"d+ 3d"Hd+ cP(z +d) - cP(a).

Adding the above two inequalities and rearranging terms yields

d¥(H — H)d < d"(H — H)d.

Hence

Amin(H = H)[[d|I* < Amax(H — H)||d|I?,
which proves (2.13). =
If H=~I and H = 7] with v > 4 > 0, Lemma 2.3 yields that
7 Y
dl| < ||d|| £ =]|d||-
ldll < ]l 7|| |

By switching the roles of H and H, (2.12) also yields ||d|| = O(||d||). However, this
bound seems not as sharp as (2.13). If \I = H = M > 0, then H >~ %I, so Lemma
2.3 and the above bound yield

/\max( - =I)
g I V)]

ldu (@ N)|| < \J 3

h A 2
< (25~ Uldy, (@A) < (25 = Lmax{1, THldi (o M)

The next lemma shows that dy(z; J) changes not too fast with the linear coeffi-

for all x € domP.

cients V f(x). It will be used to prove Theorem 2.2 on the linear convergence of the

CGD method.

Lemma 2.4 Let h: R® — IR be a smooth function satisfying (Vh(u) — Vh(v))T (u—

v) > pllu — v for all u,v € R, for some p >0 and p > 1. Let q satisfy % + % =1.
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Then, for any x € domP, nonempty J C N, and g,§ € R,
ld = dll, < p~"|lg7 = 351127,

whered = argmin g d+h(d)+cP(z+d)—cP(z) andd = argmin ' d+h(d)+
d|d;=0 VigT dld;=0 VjigJ
cP(z +d) — cP(x).

Proof. By assumption, h is strictly convex and coercive, so d and d are well defined.

By Fermat’s rule [90, Theorem 10.1],

de argmin (g+ Vh(d))"d+ cP(z +d) — cP(z),
dld;=0 Vjg.T

de argmin (§+ Vh(d)"d+ cP(z +d) — cP(z).
dld;j=0 Vjg.T

Hence

(g4 VA(d)Td+ cP(z+d) — cP(z) < (g + Vh(d))'d + cP(z + d) — cP(z),

(§+ Vh(d) ¥ d+ cP(x + d) — cP(z) < (§ 4+ Vh(d))Td + cP(z + d) — cP(z).

Summing the above two inequalities and rearranging terms, we have
(597 (d—d) > (Vh(d) — Vh(d))"(d - d) > pl|d - d|}5.
Since d; = d; = 0 for all j ¢ J and |Jul|,||v|l, > uTv for any u,v € IR, this yields
157 — Gz llolld = dll, > plld - d|I5,
which, upon simplification, proves the desired result. =

It can be shown that h(d) = %||d||£, with p > 2, satisfies the assumption of Lemma
2.4 with p = 1/272.

We say that P is block-separable with respect to nonempty J C N if

P(z) = Ps(zs) + Py, (z5,) VzeR", (2.14)
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for some proper, convex, lsc functions Py and Py_. In this case, the subproblem (2.1)

reduces to the following subproblem:
. 1
min Vi(x)5ds + §d§Hde +cPy(z7 +dg) (2.15)

where H ;7 is the principal submatrix of H indexed by J. Using this observation,
we have the next lemma concerning stepsizes satisfying the Armijo descent condition

(2.4). This lemma will be used to prove Theorems 2.1(f), 2.2 and 2.4.

Lemma 2.5 For any x € domP, H > 0,, and nonempty J C N, let d = dy(x; T)
and g = V f(z). For any 6 € [0,1), the following results hold with A = gTd+60d* Hd+
cP(x + d) — cP(x).

(a) If P is block-separable with respect to J, then, for any T € R"™, a € (0,1], and

=1z + ad,
(9+ Hd)5(a' — 2)7 + cPr(aly) — cPr(z7) < (@ —1) [(1 = 0)d"Hd + A] .

(b) If f satisfies
IVf(y) = VIR < Llly -2 Vy, z € domP, (2.16)

for some L >0, and H = Al , where A\ > 0, then the descent condition
F.(z + ad) — F.(z) < oaA, (2.17)
is satisfied for any o € (0,1) whenever 0 < a < min{1,2)(1 — o + 08)/L}.
Proof. (a) Since d = dg(z;J), by (2.15) and Fermat’s rule [90, Theorem 10.1],
ds € argu;nin (9+ Hd)Jug + cPr(zs +ug) — cPr(z 7).

Thus,

(9+Hd)7dg+cPs(xg+dg) —cPs(zs) < (g+Hd)7(Z —2) 7+ cP7(T7) — cPs(zy7).
(2.18)
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Since ' = = + ad, we have

where the second step uses (2.18), the third step uses d; = 0 for all j ¢ J, and the
fourth step uses the convexity of P and 0 < o < 1. This proves the desired result.
(b) For any « € [0, 1], we have from the convexity of P and the Cauchy-Schwarz
inequality that
F.(z + ad) — F.(x)
= f(z+ ad) — f(z) + cP(z + ad) — cP(x)
1
— aVf(@)'d+ cP(z + ad) — cP(x) + / (Vf(z + tad) — Vf(2))" (ad) dt
0
1
< aVf(@)'d+ a(cP(x +d) — cP(x)) + a/o IV f(x +tad) — Vf(z)||||d] dt
L
< o(Vf(2)'d+cP(z+d) — cP(x)) + o’ [ld|
L

= a(gfd+0d"Hd + cP(z + d) — cP(z)) — ayd" Hd + a2§||d||2, (2.19)
where the third step uses the convexity of P; the fourth step uses (2.16) and the
convexity of domP, in which z and z + d lie. If & < 2A\(1 — 0 + 00)/L, then d" Hd >
A||d||? implies

L
a§||d||2 —0d"Hd < (1—-0+00)d"Hd—0d"Hd
= (1-0)(1—-0)d"Hd

IN

—(1=0)(¢g"d+0d"Hd + cP(z + d) — cP(x)),
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where the third step uses (2.3) in Lemma 2.1. This together with (2.19) proves (2.17).

If P is separable, then P is block-separable with respect to every nonempty J C
N, with P7(zz7) = ) Pj(z;). The converse also holds, since if P is block-separable
with respect to J, ]Igjg N such that J N K # @, then P is block-separable with
respect to J N K.

2.3 Global Convergence Analysis

In this section we analyze the global convergence of the CGD method under the

following reasonable assumption on the choice of H*. The proof uses Lemmas 2.1,

2.2, 2.3, and 2.5(b).
Assumption 2.1 A\ = H* > )\ for all k, where 0 < A < \.

Theorem 2.1 Let {z*}, {d*}, {H*} be sequences generated by the CGD method

under Assumption 2.1, where {a¥} is chosen by the Armijo rule with infy o , > 0.

ini

Then the following results hold.
(a) {F.(z*)} is nonincreasing and A* given by (2.5) satisfies
—AF > (1—0)d HEQ > (1 — 0)A||d¥|)> VE, (2.20)
F,(z"™) — F.(z*) < 0afFA* <0 VE. (2.21)

(b) If {z*}x is a convergent subsequence of {z*}, then {a*AF} — 0 and {d*}x — 0.
If in addition 61 = D* = &I for all k, where 0 < § < §, then {dpk(z*; T*)}x —
0.

'Why? Fix z7, = Zg, for some %7, € domPg, and vary z7. Since P7(z7) + P7.(Z7,) =
Pg(zk) + Pxe(K<), P7(z7) is a sum of two functions, one of z7nx only and the other of z g
only.
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(c) If {T*} is chosen by the Gauss-Southwell-r rule (2.8) and 61 = D* = §I for all

k, where 0 < § < 6, then every cluster point of {z*} is a stationary point of F,.

(d) If{J*} is chosen by the Gauss-Southwell-q rule (2.10), §I = D* = &1 for all k,
where 0 < § < 6, and either (1) P is continuous on domP or (2) inf, o* > 0 or
(3) ok =1 for all k, then every cluster point of {z*} is a stationary point of

F..

(e) If {J*} is chosen by the generalized Gauss-Seidel rule (2.6), P is block-separable
with respect to J* for all k, and sup, o* < oo, then every cluster point of {z*}

is a stationary point of F.

(f) If f satisfies (2.16) for some L > 0, then infy of > 0. If limy_,o F.(z¥) > —c0
also, then {AF} — 0 and {d*} — 0.

Proof. (a) The inequalities (2.20) follow from (2.5), (2.3) in Lemma 2.1, 0 < 4 < 1,
and H* = M\I. Since zF*! = 2 + o*d* and oF is chosen by the Armijo rule (2.4), we
have (2.21) and hence {F,.(z¥)} is nonincreasing.

(b) Let {z*}x be a subsequence of {z*} converging to some Z. Since F, is lsc,
F.(z) < li{g(i)oanc(xk). Since {F,(z*)} is nonincreasing, this implies that {F,.(z*)}

keEX

converges to a finite limit. Hence, {F.(z*) — F.(z¥™1)} — 0. Then, by (2.21),
{a*AF} — 0. (2.22)

Suppose that {d*}x /4 0. By passing to a subsequence if necessary, we can assume
that, for some § > 0, ||[d¥|| > § for all k € K. Then, by (2.22), {af}x — 0. Since
infy ai’i . > 0, there exists some index k > 0 such that of < ai’i ., and of < B for all

k € K with k > k. Since o is chosen by the Armijo rule, this implies that

F (2% + (of/B)d*) — F.(z%) > o(*/B)AF VE e K, k > k.
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Thus

oAF
= o (ngdk +0d"T H dF + cP(x* + d¥) — cP(:rk))
f(@* + (o*/B)d*) — f(a*) + cP(a* + (o*/B)d*) — cP(a*)

at/p
f@@* + (o*/B)d*) — f(a*) + (o*/B)eP(a* + d*) + (1 — of/B)cP(a*) — cP(a*)

ak/p
_ flar (oz’“oif/)g’“) - fa*) cP(z* + d¥) — cP(a%) Vk e K, k> F,

where the second inequality uses 0 < o*/3 < 1 and the convexity of P. Using the

IN

definition of A¥, we can rewrite this as

fa* + (of/B)d*) — f(a*)
at/p

Since, by (2.20), the left-hand side is greater than or equal to ((1—o)(1—0)+0))||d*||?,

dividing both sides by ||d¥|| yields

—(1 — o)A + od+" HFdF < — g* ",

~ T
((1 _ 0_)(1 _ 0) —{—H)A”dk” < f(xk +O‘kdk/”dk”) — f(mk) B gk d* Vk € K, k> ]::,

a* 1]l
(2.23)
where we let &* = o ||d¥||/5. By (2.20), —a* A% > (1—0) Mo ||d¥||2 > (1—0) X ||d¥||d
for all £ € K, so (2.22) and (1 —6))\ > 0 imply {o*||d*||}x — 0 and hence {&*}x — 0.

Also, since {d*/||d*||}x is bounded, by passing to a subsequence if necessary, we can
assume that {d*/||d*||}x — some d. Taking the limit as k € K,k — oo in the

inequality (2.23) and using the smoothness of f, we obtain
0<((1-0)(1=0)+0)X <Vf(z)'d-Vf(T)'d = 0,

a clear contradiction. Thus {d*}x — 0.

Suppose that, in addition, 61 = D* > 6I for all k. Then, for each k,

I i 5(H§kjk)71 t (Hgkjk)71/2D‘k7ka(Hgkjk)71/2 t é(Hgkjk)il t

[>| <l
>l 1>
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Then (2.12) in Lemma 2.3 yields
1+38/A+/1—20/X+ (/12 A
3

ldpi (3 TH)II < la*]]- (2.24)

2
Since {d*}x — 0, this implies {dp«(z*; T*)}x — 0.

(c) Suppose that J* is chosen by the Gauss-Southwell-r rule and 61 > D* > §1 for
all k. Suppose that Z is a cluster point of {z*}. Let {z*}x be a subsequence of {z*}
converging to z. Then, by (b), {dp«(z*; T*)}x — 0. By the Gauss-Southwell-r rule
(2.8), this in turn implies {r*}x — 0, where we denote for simplicity r* = dp« (z%; V).
By (2.1), we have

1
@+ §TkTDkrk + cP(zF + %) — cP(2")
1
< ng(x —z") + 5(:): — 2" D*(x — 2*) + cP(z) — cP(2¥) Vz € R",

so adding both sides by cP(z*) and then passing to the limit as k¥ € K,k — oo and
using the smoothness of f and Isc of P yields

cP(@) < V(@) (&~ %) + 3 () Dlx — ) + cPls) Vo R,

where D is any cluster point of {D*}x. Since D¥ = §I for all k € K, D = 0,. This
shows that dp(Z; N') = 0 so that, by Lemma 2.2, 7 is a stationary point of F,.

(d) Suppose that J* is chosen by the Gauss-Southwell-g rule, and 61 >= DF = &1
for all k. Suppose that 7 is a cluster point of {z*}. Let {z*}x be a subsequence
of {z*} converging to Z. By (b), {d*}x — 0 and {d*}x — 0, where we denote
d* = dpx (z%; T*).

Suppose furthermore that either P is continuous on domP or o, = 1 for all k or

inf, o > 0. We will show that
{qpr(z*; T*)} — 0. (2.25)

Then, by (2.10), {gpt(z*; M)} — 0. By (2.9), (2.3) in Lemma 2.1, and D* > §I, we

also have

qpr (" N) < —%de(xk;N)TDdek(a:k;N) < —%||de(9ck;/\/)||2 Vk,  (2.26)
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this implies that {dp«(2*; N)}x — 0. Then, arguing as in the proof of (c), we obtain
that z is a stationary point of F,.

We prove (2.25) by contradiction. Suppose that (2.25) is false, i.e.,
qpr(2*; JF) < -6 Vk e K, (2.27)
for some 6 > 0 and K' C K with infinitely many elements. We show below that
{P(z* + d*) — P(zF)}ie — 0. (2.28)

Case (1): Suppose P is continuous on domP. Since z*, 25 +d* € domP, {z*} — Z,

and {d*} — 0, (2.28) readily follows.

Case (2): Suppose inf,of > 0. By (b), {A*}x — 0. We also have from d* =
dge(zF; T*) and d* = dpr(zF; J*) for all k that

1 1
Ak + (§ o H)dkTdek — ngdk + §dkTdek + CP(.Ik +dk) _ CP(:Ek)

< ¢y %(Jk)TH’“J’“ +eP(* + d) — cP(a")

< (CZk)THkCZk _ (Jk)TDka’

1
2
where the last step uses (2.3) in Lemma 2.1. Since {d*}x» — 0 and {H*} is
bounded, the left-hand side tends to zero as k € K', k — oo. Since {d*},c — 0
and {D*} is bounded, the right-hand side tends to zero as k € K',k — oo.
Thus the quantity between them also tends to zero as k € K', k — oo. Since f

is smooth so that {¢*}x — Vf(z), (2.28) follows.

k

oi = 1 for all k. By further passing to a subsequence if neces-

Case (3): Suppose «
sary, we can assume that either o =1 for all k € K’ or o < 1 for all k € K.
In the first subcase, the same argument as in Case (2) proves (2.28). In the
second subcase, we have from the Armijo rule that F.(z* + d*) > F.(z%) + 0 AF

or, equivalently,

F@® +d%) — F(@*) + (1 = 0)e(P(z* + d*) — P(z%)) > o(g"" d* + 0d*" H*d¥)
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for all k € K'. Since 0 < 1, {zF}xs — Z, {d*}x» — 0, and {H*}x is bounded,
this shows that lillegnf(P(xk +d*) — P(z*)) > 0. Since
€ 7

k—oo

0> Ak = g*" g% 1 0dt" H*d* + cP(2* + d*) — cP(z¥) VE,

this in turn yields that {Af}x» — 0. Then, the same argument as in Case (2)
proves (2.28) also.

We have from (2.9) that
o1 - - -
qpi (2% T*) = ¢* d* + 5 (@)D + cP(a* + dF) = cP(a*) Yk € K

Since f is smooth, {zF}x — Z, {d*}x» — 0, and {D*}x is bounded, this together
with (2.28) yields {qpx(2*; T*)}x» — 0, contradicting (2.27).

(e) Suppose that {J*} is chosen by the generalized Gauss-Seidel rule (2.6), P is
block-separable with respect to J* for all k, and sup, of < co. The latter implies {o*}
is bounded. Suppose that  is a cluster point of {z*}. Let {2*}x be a subsequence
of {z*} converging to Z. By further passing to a subsequence if necessary, we can
assume that {H*}x — some H and J* = J for all k € K. Since H* = \I for all k,
we have H = A = 0,. By the definition of d* and J* = [J, we have from (2.14) that

T 1
g5 d% + §(d’3)TH§de7 + cPy(z% + d) — cPy(a)

T 1 n
< gf} (x — :Ek)j + 5(:3 — xk)gng(x — :rk)j +cPs(zg7) — ch(x’}) Vz € R™.

Adding both sides by cPs(z¥ ) yields that

T 1
g7 dy+ E(d’})Tngd’} +cPy(aly + dY)

T 1 n
< g{% (x—ask)j—i-i(x—:vk)?H?j(x—xk)j-l—ch(xJ) Vz € R".

Since {d*}x — 0 by (b), passing to the limit as k¥ € K,k — oo and using the
smoothness of f and Isc of Py yields

cPy(z7) < V(@)5(x —7)7+ %(90 — 1) Hsg(z = %) g+ cPy(zs) Yz €R™
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This shows that dgz(Z; J) = 0 so that, by Lemma 2.2, T is a stationary point of F,
with respect to the components indexed by J, i.e., F.(Z;d) > 0 for all d € R" with
dj=0forj ¢ J.

Since {d*}x — 0, the boundedness of {a*} implies {z*"'}x — Z. This in turn
implies {d*"'}x — 0 by (b), and so {22}, — Z. Continuing in this manner, we
obtain that {z¥**}x — %, for £ = 1,...,T— 1. Thus, we can apply the above argument

to {z***}x to obtain
Fl(7:d)>0 VdeR" withd; =0Vj ¢ Jp, £=0,1,..,T 1,

where Jy, J1, ---, Jr—1 are nonempty subsets of N/ whose union equals N; see (2.6).
Since f is differentiable and P is block-separable with respect to Jy, J1, ..., Jr—1, this

in turn implies that F/(Z;d) > 0 for all d € IR", so Z is a stationary point of F,.
k

ini

of /B > min{1,2\(1 — 0 4+ 00)/L}. Since infya* > 0, this implies inf; o > 0. If

(f) Since o is chosen by the Armijo rule, either o = o or else, by Lemma 2.5(b),
limg_,o Fo(2*) > —oo also, then this and (2.21) imply {A*} — 0, which together
with (2.20) imply {d*} - 0. =

Notice that the assumption 61 = D¥ = §I in Theorem 2.1(b), (c), (d) is automat-
ically satisfied if we choose D¥ = I or D¥ = diag(H*) under Assumption 2.1. Also,
the assumption sup, a* < oo in Theorem 2.1(e) is automatically satisfied if we choose
supy aikn . < 00. In the case where P is separable, in addition to being proper convex
Isc, P is automatically continuous on domP [90, Corollary 2.37].

To our knowledge, Theorem 2.1 is new even in the unconstrained smooth case (i.e.,
P =0). Theorem 2.1(e) shows that the CGD method has stronger global convergence
properties than the coordinate minimization method when both update coordinates
in a Gauss-Seidel manner. In particular, the CGD method cannot cycle on Powell’s
example [83].

If we choose J* = N and H*¥ = X¢J for all k with A > M > X > 0, then the

CGD method is closely related to the method of Fukushima and Mine [36]. Since J*
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satisfies (2.8), Theorem 2.1(c) implies that every cluster point of {z*} is a stationary
point of F,. In contrast, the convergence result in [36, Theorem 4.1] further assumes

that V f has a Lipschitz property and P’(z;-) has a continuity property.
2.4 Convergence Rate Analysis

In this section we analyze the asymptotic convergence rate of the CGD method under
the following assumption, analogous to that made for constrained smooth optimiza-

tion [63]. In what follows, X denotes the set of stationary points of F, and
dist(z, X) = min ||z — Z|| Vz € R".
zeX

Assumption 2.2 (a) X # 0 and, for any ¢ > min,F,(x), there exist scalars T > 0

and € > 0 such that

dist(z, X) < 7||d;(z; N)||  whenever F.(x) <, ||di(z; N <e  (2.29)

(b) There exists a scalar 6 > 0 such that

lz —y|| >d whenever z€ X, ye X, F.(z)# F.(y)-

Assumption 2.2 is a generalization of Assumptions A and B in [63] for constrained
smooth problems. Assumption 2.2(a) is a local Lipschitzian error bound assumption,
saying that the distance from x to X is locally in the order of the norm of the residual
at . Error bounds of this kind have been extensively studied. Assumption 2.2(b)
says that the isocost surfaces of F, restricted to the solution set X are “properly
separated.” Assumption 2.2(b) holds automatically if f is a convex function. It also
holds if f is quadratic and P is polyhedral, as can be seen by applying [60, Lemma
3.1] to (1.5).

Our analysis will use ideas from the proof in [63, Appendix] for smooth constrained

problems, i.e., P is the indicator function for a nonempty closed convex set. However,
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the nonsmooth nature of the objective function F,. requires new proof ideas. In
particular, the proof in [63, Appendix]| relies on using the error bound (2.29) to derive
an inequality like

FC($k+1) .y S 7'I||$k+1 _ 33k||2

for all k sufficiently large, where 7/ > 0 and © = limy_,o, F.(z%); see [63, page 175].
For the nonsmooth case, we cannot derive this same inequality but instead work with
a weaker inequality whereby the quadratic term ||z%*! — z¥||2 is replaced by —AF.

We first have the following technical lemma.

Lemma 2.6 Assume that f satisfies (2.16) for some L > 0. If {z*}x is a subsequence

of a sequence {z*} in R™ satisfying {z* — 2*}x — 0 and
F.(z*=v Vkek, k>k, (2.30)
for some index ];J, vEeRR, KC{0,1,..}, and z* € X, then

lim inf F,(z*) > .
ke

k— o0

Proof. Fix any index k € K, k > k. Since z* is a stationary point of F,, we have
V(@) (z* — %) + cP(z*) — cP(z%) > 0.
We also have from the Mean Value Theorem that
f(@%) = f@) = VWH " - 7Y),

for some 1/* lying on the line segment joining z* with z*. Since z*, Z* lie in the convex

set domP, so does 1*. Combining these two relations and using (2.30), we obtain

0 - F(z*) < (Vf(@E*) - V)T (2 — 7*)
< |\Vf@EF) = VE@R)||le* - 2|
< L||lz* — 2%,
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where the last inequality uses (2.16), the convexity of domP, and |[¢* — z*|| < ||z* —

z*||. This together with {z* — ¥} — 0 proves the desired result. m

The next three theorems establish, under Assumptions 2.1-2.2 and (2.16), the
linear rate of convergence of the CGD method using either the restricted Gauss-
Seidel rule, the Gauss-Southwell-r or the Gauss-Southwell-¢ rule to choose {7*}.
Their proofs use Theorem 2.1 and Lemmas 2.1, 2.3, 2.4, 2.5(a), 2.6. In what follows,
by Q-linear and R-linear convergence, we mean linear convergence in the quotient

and the root sense, respectively [78, Chapter 9.

Theorem 2.2 Assume that f satisfies (2.16) for some L > 0. Let {z*}, {H*}, {d*}
be sequences generated by the CGD method satisfying Assumption 2.1, where {J*}
is chosen by the restricted Gauss-Seidel rule (2.7) with T C {0,1,...}. Then the
following results hold.

(a) |ld(z*; N)|| < sup;af Cr* for all k € T, where r* = YIE @ and C > 0
depends on n, L, \, \.

(b) If F,. satisfies Assumption 2.2, P is block-separable with respect to J* for all
k, and {o*} is chosen by the Armijo rule with sup,of <1 and infyof >0,
then either {F,(z*)} | —oo or {F,(z¥)}+ converges at least Q-linearly and {z*}+

converges at least R-linearly.

Proof. (a) Let g* = Vf(z*) for all k. For each k € T, we have from (2.7) that

T(k)— -1
ldr (=" N \l Z e (2®; TO|? < Z I ("5 TII-

Since 2%, = a%,, we obtain from Lemma 2.4 with h(u) = [|ul?*/2, p = 2, p = 1,
J =74 d=di(z*J"), d=di(a5 T"), g = ¢*, § = ¢" that

ldr (2% T — di(2*; T < llg5e — g5l < L||jz* — 2],
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where the second inequality uses (2.16) and z¢,2* € domP. Combining the above

two relations and using triangle inequality yield

7(k)—1

ldr @M< 32 (i TN+ Lija* = o))

=k
7(k)—1 ~

< Y (llda(a T + Llla* ~ <))
=k
T(k)-1 [ . =1

< X <9||d | +L2af||dﬂ||) ,
=k j=k

where the second step uses Lemma 2.3 with H = H and H = I, and we denote
=(1+1/A+ \/1 — 2/X+ 1/X*)X/2; the last step uses [|z° — z*|| = || Z2; o/dl || <
Yz od||d’||. Since 7(k) — k < n, this yields the desired result.

(b) By Theorem 2.1(a), {F.(z*)} is nonincreasing. Thus either {F,(z*)} | —oo or

limy_, o Fo(2*) > —00. Suppose the latter. Since o is chosen by the Armijo rule with
infy of > 0, Theorem 2.1(f) implies {d*} — 0. Since 7(k) —k < n for all k € T,
this implies that {r*}7 — 0 and hence, by (a), {d;(z*; N)}+ — 0. Since {F.(z*)} is
nonincreasing, this implies that F,(z*) < F,(2°) and ||d;(z*; N)|| < e for all k € T

with k > some k. Then, by (a) and Assumption 2.2(a), we have
|z* —z*|| < 7'rkF VR e T, k> k, (2.31)

where 7/ > 0 and 7 € X satisfies ||z* — z*|| = dist(«*, X). Since {r*};+ — 0, this
implies {z*¥ — z¥}7 — 0. Since {z**! — 2%} = {a*d*} — 0, this and Assumption
2.2(b) imply that {Z*} eventually settles down at some isocost surface of F,, i.e.,
there exist an index k > k and © € R such that F.(z*) = v for all k € T with k > k.
Then, by Lemma 2.6 with = T,

lilgéiTﬂch(fﬂk) > 0. (2.32)

k—o0

Fixany k € T. For £ € {k,k+1,...,7(k) — 1}, we have from the Armijo rule (2.4)
that

F (2" = F.(z%) < ocafA’
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Summing this over £ =k, k+ 1,...,7(k) — 1 yields that
F.(2™™) - F.(a%) < Y oafAl. (2.33)

Also, using (2.14) and letting £¢ = Pye(x T(k)) & = P (z%,), we have that, for k > k,

F,(z™®) — o

= f(xT(k)) + cP(xT(k)) — f(z*) — cP(z")

7(k)—1 B
— Vf(jk)T(.’ET(k)—.Tk)-f- Z [Cé-ﬁ_cé-e}
=k
7(k)—1
= (VI@) - ¢")"@® -2+ Y (6" - )5 -2 7]
=k
7(k)—1 T(k)— T ~
_ Zz:;c (BT, (a — 7%) 50 + Z [(ge+Hedz)ﬂ (x“l—ik)ﬂ—%c{—“e—cfe]
7(k)—1
< L) —aMl27® =2+ 30 Lfle* - 2|2t - 2|
T TIPS & ¢ e\t (e e _ 7t
£ Mt = aH+ X [(of + ), (@ - 7 g0+ 6t - o
=k =
7(k)—1
< L)jEF —aMla™® = 2H + 30 Lfjet - 2*||l|l2*t - 2|
7(k)—1 B 7(k)—1 T
+ 3 Ndlfl=* =2+ X (of = 1) [(1 - 0)d" H'd + A, (2.34)
=k =

where the second step uses the Mean Value Theorem with Z* a point lying on the
segment joining ™) with z*; the third step uses (2.7) and m}(l) = :r“l for k < /¢ <
7(k); the fourth step uses AI = H® = 0,,, (2.16), and the convexity of domP; and the
last step uses & = Pe(z%f'), o* < of <1, and Lemma 2.5(a).

Fix any k € T, k > k. Using the inequalities ||#F —z*|| < [|z™® — 2% ||+ ||z* — ¥,
ot = M| < a1 — o] + [k = M, ot — K] < 3" ] for k< € < 7(R)

j=k
we see from (2.31) and o/ < 1 that the right-hand side of (2.34) is bounded above by

7( T(k)—
G Y NP+ Y (af = 1) [(1 - 0)d" H ' + AY]
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for some constant C; > 0 depending on L,7',n, A only. Since, by (2.20), we have
—A> (1-0)d" H ' > (1 — 0))||d||%, the above quantity is bounded above by
7(k)—1
—Cy 3 A
=k

for some constant C, > 0 depending on L,7' n,\, A, 6 only. Combining this with
(2.33), (2.34), and infz &* > 0 (see Theorem 2.1(f)) yields

F(z™®) — 5 < Cy(Fu(z*) — F (a™™)) VkeT, k >k,

where C3 = Cy/(oinf o). Upon rearranging terms and using (2.32), we have

0< F(z7™) -5 < (F,(a*)—0) VkeT, k>k,

1+ Cs
so {F.(z*)}+ converges to ¥ at least Q-linearly.

Finally, (2.20) implies A¢ < (8 — 1))||d*||?, so that (2.33) and z*! — 2t = ofd*
yield

T(k)—1 ||xz+1 _ xznz

o(1-0)x Y —~ < F(a*) = F(a™™) VkeT, k>k.
=k
This implies
7(k)—1
lz7® —a*|| < | (7 (k) — k) [t — a2
\ =
< nM(Fc(ack) —F(z7®)) VkeT, k>k.
~ 0_(1 _ H)A c ’ -

Since {F,.(z*) — F.(z7®)}+ — 0 at least R-linearly and sup,a’ < 1, this implies that

{z*}+ converges at least R-linearly.? m

2More precisely, writing 7 = {ki, k2, ...}, we have ||zk+1 — zkt|| = O (\/Fc(xkt) — Fc(x’“t+1)) =

o) for t = 1,2,..., where 9 = lf—(sl's Thus {z*};=1,,.. satisfies Cauchy’s criterion for

convergence, implying it has a unique limit Z. Moreover, for any ¢ > ¢, we have ||z%t — 2% || <
YU et — ahi|| < O(X S 99) = O(9Y). Taking ' — oo yields [|z* — Z|| = O(¥") for any ¢,
so limsup,_,_ [|z* — Z||/t <9 < 1.
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Theorem 2.3 Suppose that f satisfy (2.16) for some L > 0 and f and P are sep-
arable. Let {z*}, {H*}, {d*} be sequences generated by the CGD method satisfying
Assumption 2.1, where {T*} = {j*} is chosen by Gauss-Southwell-r rule (2.8) with
61 = D* = &I for allk (0 < § < §). If F, satisfies Assumption 2.2 and {o*} is chosen

F < 1andinfyof >0, then either {F.(z¥)} | —o0

init ini

by the Armijo rule with sup, «

or {zF} converges at least R-linearly.

Proof. By Theorem 2.1(a), {F.(z*)} is nonincreasing. Thus either {F,(z*)} | —oc0
or limg_,o F.(x*) > —o0. Suppose the latter. Since o is chosen by the Armijo rule
with inf, of > 0, Theorem 2.1(f) implies infy o* > 0, {A*} — 0, and {d*} — 0.
This together with (2.8) and (2.24) yields {dp«(z*; N')} — 0.

By Lemma 2.3 with J =N, H = D* and H = I, we have

_1+1/8+ V1-2/6+ (1/4)?

ld: (z*; Nl < 5 8 |ldpr (" N)I| - VE. (2.35)

Hence {d;(z*; N')} — 0. Since {F,(z*)} is nonincreasing, this implies that F,(z*) <
F,(z°) and ||d;(2*; N)|| < € for all K > some k. Then, by Assumption 2.2(a), there

exist k and 7 > 0 such that
la* — Z%|| < 7|d;(a* N Vk >k, (2.36)

where z¥ € X satisfies ||z* — z*|| = dist(z*, X). Since {d;(z*; N)} — 0, this implies
{z% — z*} — 0. Since {z**! — 2} = {a*d*} — 0, this and Assumption 2.2(b) and
the separability of F, imply that for each 7, {:E’}} eventually settles down at some

isocost surface of F,;, i.e., there exist an index k > k and a scalar () such that
F.7(7%) =9(J) Vk > k. By Lemma 2.6 with K = {0,1,...} and F, = F.,
lim inf 7, (%) > (). (2.37)
— 00

Fix any k, we have from the Armijo rule (2.4) and the separability of F, that

F (2" — F.(a*) = F. 1 (x'}*,;l) — Fo (%) < 0P AR (2.38)
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Also, letting J = J*, we have

Fog(z5) — () (2.39)
= fa(a) + cPr(a) - fa(aly) — cPy(a)
= (VIs(@) = V(@) (@5 —25)

+V [ (5T (@5 = 35) + Py (a5) — cPy(2)
= (Vfz(&%) = Vs(ah) (@5 - 75) — (H ") F (" — 24

+(VIr(z) + (H*d?) 7)T (a** = 2°%) 7 + cPy(a5™) — cPy(T%)

< L&y — o |||l25 — 25|+ |(H*R) 7l (=T = 2%) 7|
+(Vf7(z%) + (H*d*) 7)" (a* — %) 7 + cP7 (25) — P (%)
< L) — 2|25 = 25 + Alld* | ||(&*F = 2%) 7|
+(af = 1)(1 — 0)d*" HEQE + (o — 1)AF
< L&l — % |||l25 — 25|+ Alld* || ||(«*F - 2¥) 7]

+a® || d¥||? + (o —1)AF, (2.40)

where the second step comes from using the Mean Value Theorem with some vector
T s+ lying on the segment joining z sx+1 with Z /x; the fifth step uses A\I = H* > 0,
and Lemma 2.5(a); the last step uses § < 1 and \I = H¥ = 0,,.

k+1 k+1

Using the inequalities ||2% — 2% || < ||z — 2% || + ||lz% — z%||, |25 — 2% <

k+1 k+1

2% =% ||+ |25 — 2% )|, |25 — 2% || = oF||d*||, we see from (2.36) and sup, o* <1

(since sup, o < 1) that the right-hand side of (2.40) is bounded above by
Cy(laH] + (¥ N )2 + (o — 1) Ak

for some constant C; > 0 depending on L, 7, A only. By (2.8), (2.24), and (2.35), the

above quantity is bounded above by

Co||d*||? + (o — 1)A*
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for some constant Cy > 0 depending on L, 7, \, )\, 4,8, v only. Since, by (2.20), we

have —A¢ > (1—0)d*" H'd® > (1— 0)A||d*||?, the above quantity is bounded above by
—C3AF (2.41)

for some constant Cs > 0 depending on L, 7, \, A, 6,6, v, # only. Combining this with
(2.38), (2.40), and inf; &* > 0 (see Theorem 2.1(f)) yields

Fog(a) = o(J) < CulFey(ay) = Fog (@) Wk > b,

for some Cy > 0. Upon rearranging terms and using (2.37), we have

0< Fogla™) ~ o) < 1o (Fuglal) — o) k> Fy
SO ot A
Falh) = o) < (7o) (Fulah) - o(2))

where tk = |{h | k < h <k, J is chosen at h}|.
Also, by (2.20) and (2.38),

o(L - DA < Fop(ay) — Fup(alt?) vk > k.

v

This together with (2.37) implies o (1 — 0)A||d*||*> < F.,(z%) —o(T) Vk > k. Hence

f—1 ]
) < J s () (Baleh) = o))

Let k(J) be the iteration in which the subset J is chosen. Since the choice for J is
finite, there exists a J such that

lim sup /||d*(D)|| < 1.

k—00

By (2.24),

lim sup (“/Hde(j) (¥ || < 1. (2.42)
k—o0
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Let (J)(> k) be the iteration in which the subset J is chosen and let h(J)(> k)
be the smallest iteration in which the subset J(# J) is updated and h(J) > h(J).
Then, by (2.8) and || - [lec < || - || < V7] - lloo,

_ Ao MT). 7
||dDh(J)($h(J);j)|| — ||dDh(j)(xh(‘7);j)|| < \/ﬁH Dh(J)£$ ,»7)”.

This together with (2.42) yields

limsup /|| dpren (¢49); T)|| < 1. (2.43)

k—00

Since 61 = D* = 6T and AI = H* = \I, we have from (2.12) in Lemma 2.3 that

1+ 1/A+/1-2/A+1/X32 1

d*J) Z My (2F.
[[d™=1] 5 3 @5 I,
14+1/8+4/1—-2/6+1/8* _
@y < BN 5o gy
By the above two inequalities and (2.43), limsup 1/||d*(7)|| < 1. Since the choice

k—o00

for J is finite, limsup {/||d*|| < 1. This together with ||z*™1 — z*|| = oF||d*|| and
k—o0

sup, o < 1 implies that {z*} converges at least R-linearly. m

Theorem 2.4 Assume that f satisfies (2.16) for some L > 0. Let {z*}, {H*}, {d*}
be sequences generated by the CGD method satisfying Assumption 2.1, where {J*} is
chosen by Gauss-Southwell-q rule (2.10) with P block-separable with respect to J* and
61 = D* =61 forallk (0 < § < 5). If F, satisfies Assumption 2.2 and {a¥} is chosen
by the Armijo rule with supyof <1 and inf, of >0, then either {F,(z*)} | —o0
or {F,(z*)} converges at least Q-linearly and {z*} converges at least R-linearly.
Proof. For each k=0,1,..., (2.5) and d* = dgx(2*; J*) imply that

1 1
AF (5 _ 9) T gkgd = Vf(a:’“)Tdk + §dkTdek + cP(z" + d*) — cP(2")

o 1 . N -

< Vi d+ 5 (&) H " + cP(a* + d¥) - cP(a)

= (k5 T + (@) (H - DA

< gpr(a®; TF) + w||d¥|?, (2.44)
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where we let d¥ = dpr(zF; J*), and the last step uses (2.24) and (d¥)T(H* — DF)dF <
(A — 8)||d*||2. Here, w is a constant depending on A, ), 4, only.

By Theorem 2.1(a), {F.(z*)} is nonincreasing. Thus either {F.(z*)} | —oo or
limy o F.(z¥) > —oo. Suppose the latter. Since o is chosen by the Armijo rule
with infy o > 0, Theorem 2.1(f) implies inf; of > 0, {A¥} — 0, and {d*} —
0. Since {H*} is bounded by Assumption 2.1, we obtain from (2.44) that 0 <
limy o inf gpr (x*; J*). This together with (2.10) and (2.26) yields {dp(z*; N)} —
0.

By Lemma 2.3 with H = D* and H =1,

_1+1/8+ V1—2/8 + (1/0)2

ldr(z*; M) < 5 5 ||dpx (x5 N)|| k.

Hence {d;(z*; N')} — 0. Since {F,(z*)} is nonincreasing, this implies that F,(z*) <
F,(2°) and ||d;(z*; N)|| < € for all k> some k. Then, by Assumption 2.2(a), we have

l2* = 2% < 7lldi (=" NI VE >, (2.45)

where 7 > 0 and 7% € X satisfies ||z — 7*|| = dist(z*, X). Since {d;(z*;N)} — 0,
this implies {z*¥ — 7%} — 0. Since {2*™! — 2%} = {a*d*¥} — 0, this and Assumption
2.2(b) imply that {Z*} eventually settles down at some isocost surface of F,, i.e., there
exist an index k > k and a scalar © such that F,(z*) = © for all £ > k. By Lemma
2.6 with £ = {0,1,...},
lim inf F,(z*) > v. (2.46)
Fix any k > k. Letting 7 = J* and d* = dp(z¥; J%), we have from (2.14) that
F (" — o
= f@") +cP(") - f(3") — cP(a")
= Vi@ (@™ = 2%) + cPy(a5) + cPyo () — cPs(2%5) — cPyy(2%,)
= (Vf(@*) = Vf(z*) (=" - 7%)

—(HA Y (= )y — (DFVG (2 = M) g
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+H(Vf(a*) + H'd") 7 (& — a%) 7 + cPy(a) — cPs(35)

+(Vf(2*) + DFd) G, (a* — %) 5o — ePyo(#5,) + cPyo(aly,)

< L||FF — 2F|[||ahF - 2R+ [H dE|)]]2F T - 2F|| + || DRdF||||* — 2|
+(af = 1)(1 — 0)d*" HEQE + (o — 1)AF
+(Vf($k) + chzk)gc (xk - ‘fk)jc - CPJC (‘f’}c) + CPJC (‘/Ll]}c)

< L||FF — oF |||l — 2R+ X dF||[|a* T - 2F]] + 8|d¥||]|a* — 2|

+ozk5\||dk||2 + (a’C — 1)A’c
—(Vf(z") + D" dl — cPy(zh, + db. ) + cPgy(a%,)
= L||F* — |||+ — 2| + N|d¥[|||z* = zF]| + 8)|d¥||[|a* — 2|

_ 1 - N
+ofX||d¥|]2 + (of — 1)A* — gpe (2% T6) — 5(d’“)TDkdk, (2.47)

where the second step uses the Mean Value Theorem with #* a point lying on the
segment joining z**! with Z*; the third step uses x'}j}l = a:’}c; the fourth step uses
(2.16), the convexity of domP, o < of < 1, and Lemma 2.5(a); the fifth step
uses Lemma 2.5(a) (applied to z*, D*, Jc, and « = 1) as well as M = H* = 0,
61 = D* = 0,, 0 < 1; the last step uses d* = dp (z*; Jc), (2.9), and (2.14).

Using the inequalities ||2F — z*|| < ||zFT! — 2| + ||z* — Z¥||, ||=**! — zF|| <
||zF L — 2| + ||2* — 2*|| and ||z*+! — 2¥|| = oF||d*]|, we see from (2.45), D* - 0,, and

supy, o < 1 that the right-hand side of (2.47) is bounded above by
Cr(ld¥]] + 1d°]) + lldr (" N)ID? + (o = DAF — gpi (a*; TE) (2.48)

for all £ > Ifc, where C; > 0 is some constant depending on L, 7, \, 6 only. Since

61 = D¥ = §I and Al = H* = \I, we have from (2.12) in Lemma 2.3 that

1+ 1/A+ /1 —2/A+1/22
2

1+ 1/6+/1—2/5+1/82
2

ldr (z*; TR < Al

ld: (=" TEI < 5 [|d"]-
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Thus the quantity in (2.48) is bounded above by
Co|d* || + Calld¥|* + (a* — 1)A* — gpi(a*; TE) (2.49)

for all k > k, where Cy > 0 is some constant depending on L, T, \, ), 3,8 only.
By (2.20), we have

1
M|d¥|1? < d¥F HEG: < —T5 A" k. (2.50)

Similarly, by (2.3) in Lemma 2.1 and (2.9), we have gpr (z%; JE) < —%(cik)TchZk <0,
so that
8l|d¥|1* < ()" DFdF < =2 qpe(a*; TE).

Thus, the quantity in (2.49) is bounded above by
Cs (=AF — gpi(a*; TE)) (2.51)

for all k > k, where C3 > 0 is some constant depending on L, T, \, ), 0,4,6 only.
By using (2.10) and the block-separability of P and block-diagonal structure of

DF with respect to J*, we have
ape (255 T*) < v g (65 N) = v (qpe (@ TF) + goe (2% TE) )
implying
v qu(:vk; ,_’7(’3“) > (1-w) qu(:vk; jk). (2.52)
Combining (2.44) with (2.50) yields

1
_qu(xk;jk) < —Ak-i- (0_ 5) dkTdek-l—w”dk“Z

1 1 w
< = k _ { __}— k_
< A max< 0,60 5 1_9A S

AF. (2.53)
Combining (2.52) and (2.53), we see that the quantity in (2.51) is bounded above by

—C,AF
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for all k¥ > k, where Cy > 0 is some constant depending on L, 7, \, A, 8,4, 6, v only.
Thus the right-hand side of (2.47) is bounded above by —CyA* for all k > k. Com-
bining this with (2.21), (2.47), and infy o* > 0 (see Theorem 2.1(f)) yields

Fu(a"1) — 0 < Cs(Fu(z®) — Fu(a+1)) Yk > E,

where C5 = C4/(oinf o). Upon rearranging terms and using (2.46), we have

0< F(a") -0 < (F.(z*) —v) Vk >k,

so {F,(z*)} converges to ¥ at least Q-linearly.
Finally, by (2.21), (2.50), and z*™! — ¥ = oFd*, we have

k+1 _ xk”Q

o(l— 9)3“3” < F(zF) — F.(z**Y) VEk > k.

v

ak

This implies

ok 7
”$k+1 _ xk“ < J m(Fc(xk) _ Fc(xk—l—l)) Vk > k.

Since {F.(z*) — F.(z*™)} — 0 at least R-linearly and sup, o* < 1, this implies that

{x*} converges at least R-linearly. m

The assumption (2.16) in Theorems 2.2, 2.3, and 2.4 can be relaxed to V f being
Lipschitz continuous on domP N (X + gB) for some g > 0, where B denotes the unit
Euclidean ball in IR™ and X denotes the convex hull of the level set {z | F,.(z) <
F.(2%)}. For simplicity, we did not consider this more relaxed assumption.

As we noted in Section 2.1, we have been unable to establish the local linear
convergence of the CGD method using the Gauss-Southwell-r rule to choose {J*}.
Only in the simple case where f and P are separable have we been able to prove local
linear convergence. In fact, even in this case our proof is nontrivial, even though the
problem decomposes into n univariate problems. This is because different coordinates

can converge at different rates, which is explicitly taken into account in the proof.
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2.5 Error Bound

In this section we show that Assumption 2.2(a) is satisfied under problem assumptions
analogous to those for constrained smooth optimization. In fact, we will show that
error bound for (1.3) is closely related to that for constrained smooth optimization
problems.

By using epiP = {(z,&)|P(z) < &}, we can reformulate (1.1) as the constrained
smooth optimization problem (see (1.5)):

min { fl@)+c€ | (2,6) €epiP }. (2.54)

For any (z,&) € epiP, the corresponding projection residual is the optimal solution
of the subproblem:

1 1
min { Vi@ d+ Sld + 58 + 8 | (z+d,€+0) € epiP } . (2.55)

The following lemma shows that if P is Lipschitz continuous on domP, then
the norm of this projection residual is bounded above by a multiple of ||d;(z; N)||
whenever £ = P(x).

Lemma 2.7 Suppose that P is Lipschitz continuous on domP. There exists a scalar
k > 0 (depending only on the Lipschitz constant of P) such that, for any x € domP
and £ = P(x),

1(d; 8)|I < slldr(z; NI,

where (d, 8) is an optimal solution of the subproblem (2.55).

Proof. Fix any z € domP and £ = P(z). By (2.1), (d;(z;/N),d) is the optimal

solution of the subproblem:

1
min {Vf(m)Td+§||d||2+c6 | (¢ +d,€+6) € epiP }
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where we let § = P(x + d;(z;N')) — P(z). By Fermat’s rule [90, Theorem 10.1],
(dr(z;N),8) € argmin{ (Vi) +di(z; N)Td+cé | (x+d,E+6) € epiP } i
(d,0)

Hence
(Vf(z)+ di(z; M) dp(z;N) + 6 < (Vf(z) + dr(z;N)"d + cd.
Also, since (d, 4) is the optimal solution of the subproblem (2.55), we have
75, g2 1, & T 1 2, 1o <
Vf(z) d+ §||d|| + 5(5 +¢d < Vf(x) dr(z;N) + §||d1(x,N)|| + 5(5 + cd.
Adding the above two inequalities and simplifying yield

1 =01 s, 1 3
§||df(90;/\/)||2 — di(z; N) d+ §||d||2 + 552 < 507

DN | =

Multiplying both sides by 2 and rewriting the first three terms into a square, we have
ldr(z; N) = d||* +6* < 5.

Thus 6> < 62 and ||d;(z; N) — d||*> < §2. Taking square root of both sides and using

the triangle inequality yield
61 < (8], [ldll = lldi(z; M| < 18- (2.56)

Now, the Lipschitz continuity of P on domP implies that 6| = |P(x + d;(z;N)) —
P(z)| < K||d;(z; N)||, where K is the Lipschitz constant. Then (2.56) yields that

6] < Klldr(z; M), [ld]l < (K +1)lldr(z; N,
which proves the desired result. m

The following local error bound results from [60, 61, 62, 84] show that, for all x
sufficiently close to X, dist(z, X) can be bounded from above by the norm of the

solution of the subproblem (2.55) under certain problem assumptions.
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Lemma 2.8 Assume that X # 0 and any of the following conditions hold.

C1 f is quadratic. P s polyhedral.

C2 f(z) = g(Ex) + ¢"z for all z € R", where E € R™", g € R", and g is a
strongly convex differentiable function on R™ with Vg Lipschitz continuous on

IR™. P is polyhedral.

C3 f(z) = maxyey {(Ez)"y—g(y)} +q"z for allx € R™, where Y is a polyhedral set
im R™, E € R™" q € R", and g is a strongly convex differentiable function

on R™ with Vg Lipschitz continuous on IR™. P is polyhedral.
Then, for any ¢ € IR, there exist scalars 7" > 0 and € > 0 such that
dist(z, X) < 7'||(d, )| whenever F.(z) <¢, ||(d,d)| <€, (2.57)

where (d, 0) is the optimal solution of the subproblem (2.55) with &€ = P(x).

Proof. Since epiP is convex, each stationary point (Z, &) of (2.54) satisfies
Vi@ (z—2) +c(§ =8 >0 V(€ € epiP,

from which it readily follows that £ = P(Z) and # € X. Under C1, the objective
function of (2.54) is quadratic and epiP is a polyhedral set. Fix any ¢ € IR. By
applying [60, Theorem 2.3] (also see [84]) to (2.54), there exist scalars 7 > 0 and
€ > 0 such that

min ||(z, P(x)) — (7, P(z))| < 7'll(d.9)|| whenever Fi(z) <(, ||(d,d)l| <¢,

ze
where (d,d) is the optimal solution of (2.55) with ¢ = P(z). Since |z — Z|| <
|(z, P(x)) — (%, P(z))]|| for all Z € X, this proves (2.57).

Under C2, the objective function of (2.54) has the form g ([E 0] [z]) + ¢ (] [2]
and epiP is a polyhedral set. Then, by applying [61, Theorem 2.1] to (2.54) and
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arguing similarly as above, (2.57) can be proved. Under C3, a similar argument using

[62, Theorem 4.1] (also see [63, Theorem 2.1]) proves (2.57). m

By using Lemmas 2.7 and 2.8, we obtain the main result of this section.

Theorem 2.5 Assumption 2.2(a) is satisfied if X # 0 and any of the conditions C1,
C2, C3 in Lemma 2.8 holds or if the following condition holds.

C4 f is strongly conver and satisfies (2.16) for some L > 0.

Proof. Under C1 or C2 or C3, P is polyhedral so, by Example 9.35 in [90], P is
Lipschitz continuous on domP. Then Lemmas 2.7 and 2.8 yield that Assumption

2.2(a) holds.
Under C4, for any z € domP, since d;(z; N) is a solution of the subproblem (2.1)
with H = I, by Fermat’s rule [90, Theorem 10.1],

dr(z; N) € argmin (V£ (z) + dr(2;N))Td + cP(z + d) — cP(z).
d
Hence, for any z € X (in fact, X is a singleton), we have

(Vf(z)+di(z; M) di(z; N) + cP(z + di(2;N)) — cP(z)
< (Vf(z)+di(z; M) (z — 2) + cP(F) — cP(x).

Since 7 is a stationary point of F,, we also have

cP(Z) < Vf(@) " (z +di(z;N) — ) + cP(z + dr(z; N)).
Adding the above two inequalities and simplifying yield
(Vf(2)=V (@) (z=2)+|dr(z; N)|I* < (Vf(@) =V f(2))" di(2;N)+dr(z; N)" (T—2).
It follows from the strong convexity of f and (2.16) that

Allz = 211* + [ldr(z;s MII* < Lile - zll|di (z; M) + |2 = 2ll|ldr(z; M),
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for some scalar constants 0 < A < L. Thus
Mz = z]? < (L+1D)|lz = 2|l di(z; M.

Dividing both sides by A||z — Z|| whenever x # Z shows that Assumption 2.2(a) is
satisfied with 7 = (L + 1)/ and € = oo (independent of (). =

Notice that the objective function of (2.54) is not strongly convex under C4.
Thus existing error bound results for strongly convex objective function (e.g., [25,

Proposition 6.3.1]) cannot be applied to (2.54).
2.6 Implementation and Numerical Experience

In order to better understand its practical performance, we have implemented the
CGD method in Matlab, using Matlab’s vector operations, to solve the ¢;-regularized
problem (1.3). In this section, we describe the implementation, together with conver-
gence acceleration techniques, and report our numerical experience on test problems
with n = 1000 from Moré et al. [73] and the CUTEr set [38]. In particular, we
compare the performance of the CGD method using either the Gauss-Seidel rule or
the Gauss-Southwell-r rule or the Gauss-Southwell-g rule, with or without acceler-
ation. We also reformulate the /¢;-regularized test problems as bound-constrained
smooth optimization problems and solve them using the well-known Fortran codes
MINOS [75] for constrained smooth optimization and L-BFGS-B [109] for large-scale

bound-constrained smooth optimization.

2.6.1 Test functions

For the function f in (1.3), we chose 10 test functions with n = 1000 from the
set of nonlinear least square functions used by Moré et al. [73]. These functions,
listed in Table 2.1, were chosen for their diverse characteristics: convex or nonconvex,

sparse or dense Hessian, well-conditioned or ill-conditioned Hessian. Two functions
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Table 2.1: Nonlinear least square test functions from [73, pages 26-28].

Name n Description

BAL | 1000 | Brown almost-linear function, nonconvex, with dense Hessian.
BT 1000 | Broyden tridiagonal function, nonconvex, with sparse Hessian.
DBV | 1000 | Discrete boundary value function, nonconvex, with sparse Hessian.
ER 1000 | Extended Rosenbrook function, nonconvex, with sparse Hessian.
TRIG | 1000 | Trigonometric function, nonconvex, with dense Hessian.

EPS 1000 | Extended Powell singular function, convex, with sparse Hessian.
2

n n
LR1 | 1000 | f(x) = Z i Z jzj | —1] , convex, with dense Hessian.
j=1

i=1
2
n—1 n—1
LR1Z | 1000 | f(z) = (i—1) Z jrj | —1] +2, convex, with dense Hessian.

2 2
strongly convex, with dense Hessian.

VD 1000 | Variably dimensioned function

n n 2 n 4
f(w)=2(xi—1)2+<zi(mi—1)> + ( z'(x,-—1)> ,

=1 =1

strongly convex, with dense Hessian.

ER and EPS have block-diagonal Hessians. Since we wish to see how solution sparsity
(i.e., number of nonzeros) changes with ¢, we modified the Extended Powell singular
function slightly, replacing “5'/?(x4i_1 — x4;)” with “5/2(24_1 — 24; — 1)” so that the
solution is not always at the origin. We coded the function, gradient, and Hessian

diagonals in Matlab using vector operations.

We also chose 10 functions with n = 1000 from the unconstrained problems in
the CUTEr set [38]. These functions, listed in Table 2.2, were similarly chosen for
their diverse characteristics, as well as Hessian availability. The function, gradient,
and (sparse) Hessian are called within Matlab using the CUTEr tools “ufr”, “ugr”

and “ush”.
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Table 2.2: CUTEr test functions [38].

Name n Description

EG2 1000 | A nonconvex function, with sparse Hessian.
EXTROSNB | 1000 | The extended Rosenbrock function (nonseparable version),
nonconvex, with sparse Hessian.
INDEF 1000 | A nonconvex function which is a combination of quadratic
and trigonometric functions, with sparse Hessian.
LIARWHD | 1000 | A simplified version of the NONDIA (Shanno’s nondiagonal extension
of Rosenbrock function), nonconvex, with sparse Hessian.
NONCVXU2 | 1000 | A nonconvex function with a unique minimum value,

with sparse Hessian.
2

n n
1
PENALTY1 | 1000 | f(z) = 107" (z; = 1)* + [ [ D2} -1
i=1 j=1

nonconvex, with dense Hessian.
WOODS 1000 | The extended Woods function, nonconvex, with sparse Hessian.
QUARTC 1000 | A simple quartic function, convex, with sparse Hessian.

DIXON3DQ | 1000 | Dixon’s quadratic function, strongly convex, with tridiagonal Hessian.
TRIDIA 1000 | Shanno’s TRIDIA quadratic function, strongly convex,

with tridiagonal Hessian.

2.6.2 Implementation of the CGD method

In our implementation of the CGD method, we choose a diagonal Hessian approxi-

mation

Y

H* = diag [min{maX{VQf(xk)jj, 1072}, 109}]

j=1,n
which has the advantage that d* has a closed form and can be computed efficiently
in Matlab using vector operations. We tested the alternative choice of H*¥ = I,
which does not require Hessian evaluation, but its overall performance was worse. If
Hessian computation is expensive, a compromise would be to recompute the Hessian
diagonal once every few iterations. We choose the index subset J* by either (i)

the restricted Gauss-Seidel rule (2.7), whereby N is partitioned into n, € {5,10,n}
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subsets with [n/n,| elements each (except possibly the last subset which may have
fewer elements) and J* cycles through these subsets, or (ii) the Gauss-Southwell-r

rule (2.8) with D* = H*,

T* = {7 | ldpe(a*; 7)| > v¥ldpi (¥ M) |oo }
max{10~*v*/10} if of > 1073

v** = ¢ min{.9, 500} if % < 1076
vk else

(initially ©° = .5) or (iii) the Gauss-Southwell-q rule (2.10) with D¥ = H*,

Tk = {J’ | qpr (2" 5) < 0F miinqm(x’“;i)} ,
max{10~% v*/10} if of > 1073
v* = { min{.9, 500F} if of < 1076
vk else
(initially v° = .5). The above updating formulas for v* in (ii) and (iii) are guided
by the observation that smaller v* results in more coordinates being updated but a
smaller stepsize o, while a larger v* has the opposite effect. Thus if o is large, we
decrease v* and if o is small, we increase v*. The thresholds 1072 and 10~% were
found after some experimentation to work well on our test problems. The stepsize o
is chosen by the Armijo rule (2.4) with

k—1
c=.1, B=.5 6=0, a =1, o :min{%,l} VEk > 1.

We experimented with other values of 0 < # < 1, but the cpu times and the number
of iterations did not change appreciably in our tests.

Each CGD iteration requires 1 gradient evaluation and 1 Hessian diagonal evalu-
ation to find the direction d*, and at least 1 function evaluation to find the stepsize
af. These are the dominant computations. For the CUTEr test functions, Hessian

evaluation is the most dominant computation when the Hessian is dense. (CUTEr

does not offer the option of evaluating only the Hessian diagonals.)
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Since H* is diagonal, the CGD method resembles a block coordinate version of
a diagonally scaled steepest descent method [6, page 71] when ¢ = 0. As such, the
convergence rate of the method is likely slow when the Hessian V2f(z*) is far from
being diagonally dominant, as was observed on some of the functions from Table
2.1, such as LR1, LR1Z, and VD. This motivated us to introduce two techniques to
accelerate the convergence, which we describe below.

The first technique uses an active-set identification strategy of Facchinei, Fischer,
and Kanzow [24] (also see [25, Section 6.7]) to estimate which components of x would
be nonzero at a solution and then uses a fast method for unconstrained smooth
optimization to update these components. The method we chose is the limited-
memory BFGS (L-BFGS) method of Nocedal [76, 77]. In particular, we store the m
(m > 1) most recent pairs of Az and Ag that make sufficiently acute angles. More
precisely, we store Az* = ¥ —2F~1 and Agr = g¥—g¢*~! (with ¢* = V f(z*)) whenever

A:ckTAgk> 1010
IAGH> ~ max; Hj;

1Ag*] > 107,

In an acceleration step at 2%, we use the L-BFGS formula (with m = 5) to construct

a positive definite Hessian inverse approximation B* and set
dl}k = _B‘kjkjkijk Fc(xk)a df =0Vj ¢ Jka

where J* = {j | =¥ > p (||de (:ck,./\/')||oo)} with the identification function p(t) =
—.0001

In (min{.1,.01¢})

rule with 0 = .1, 8 = .5, § = 0, and ai’i . = 1. This acceleration step is invoked at

. We then update z**! = 2% + o*d* with o chosen by the Armijo

iteration k£ whenever £ > 10 and k& < 50 (mod 100). We choose 50 since L-BFGS
typically terminates in less than 50 iterations on the test functions when ¢ = 0.

The second technique is motivated by the rank-1 Hessian for the functions LR1
and LR1Z. In an acceleration step at z*, we choose h* to satisfy the rank-1 secant

equation

(FFR7)s = o,
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where s* and y* are the most recently stored pair of Az and Ag. This yields ¥ =
y¥ /\/sk"yk. We next solve the subproblem with rank-1 Hessian

1
min ¢ d+ E(h’“Td)z + c||z* + d||s.

This subproblem need not have an optimal solution (e.g., when 2% = 0 and |gf| > ¢
for some j), but if it has an optimal solution, then there exists an optimal solution
d*¥ with at most one nonzero component, which can be computed efficiently using
Matlab’s vector operations. (In general, if the subproblem with rank-p Hessian has
an optimal solution, then there exists an optimal solution with at most p nonzero
components.) We then update z**! = z* + ofd* with o chosen as in the L-BFGS
acceleration step. This second acceleration step is invoked once every 10 consecutive
CGD iterations.
We terminate the CGD method when

| H*d g (2% N) || oo < 1072, (2.58)

Here we scale dy(z*; N) by H* to reduce its sensitivity to H*. We can alternatively
use the criterion ||d;(2%; N)||o < 1072 The advantage of (2.58) is that d g« (z*; N) is
already computed by the CGD method, unlike d;(z*; N'). In a few cases where V2f
is ill-conditioned, the Armijo descent condition (2.4) eventually cannot be satisfied by
any of > 0 due to cancellation error in the function evaluations. (In Matlab Version
7.0, floating point subtraction is accurate up to 15 digits only.) In these cases, no
further progress is possible so we exit the method when (2.4) remains unsatisfied after

o* reaches 10720,

2.6.3 L-BFGS-B and MINOS

The /¢;-regularized problem (1.3) can be formulated as a bound-constrained smooth
optimization problem:

. o T
Jmin - fly —z) +ce(y+2),
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where e is the vector of 1s, to which many methods can be applied for its solution.
Thus, it is of interest to compare the CGD method with such methods. We considered
two such methods. One is L-BFGS-B, a Fortran implementation of a limited memory
algorithm for large-scale bound-constrained smooth optimization [109]. The public
code was downloaded from http://www.ece.northwestern.edu/ nocedal/lbfgsb.html.
A second is MINOS (Version 5.5.1), which has a Fortran implementation of an active-
set method for linearly constrained smooth optimization [75]. To accommodate prob-
lems with n = 1000, we set Superbasics limit to 2n + 1 and Workspace to 5,000,000
in MINOS. The objective function and its gradient are coded in Fortran, with f
taken from Table 2.1. For a given starting point z° for (1.3), we accordingly initialize

y® = max{z?, 0} and 2° = max{—2° 0}, with the “max” taken componentwise.

2.6.4 Numerical Results

We now report the performance of the CGD method using either the restricted Gauss-
Seidel rule or the Gauss-Southwell-r (GS-r) rule or the Gauss-Southwell-¢ (GS-q)
rule, with or without the aforementioned acceleration techniques, and we compare
it with the performances of L-BFGS-B and MINOS. All runs are performed on an
HP DL360 workstation, running Red Hat Linux 3.5 and Matlab (Version 7.0). All
Fortran codes are compiled using the Gnu F-77 compiler (Version 3.2.57). Tables
2.3-2.7% show the final objective value, the cpu time (in seconds), and the number
of nonzero components (fnz) in the final solution found. (A component is considered
to be nonzero if its absolute value exceeds 107%°.) For each function, three different
values of ¢ are chosen to track changes in the solution sparsity fnz. In Tables 2.4—

2.6, different starting points are used. In Tables 2.4-2.7, the number of L-BFGS

3 @; CGD exited due to the Armijo stepsize in an CGD iteration reaching 10730,
CGD exited due to the Armijo stepsize in an L-BFGS acceleration step reaching 1
L-BFGS-B exited due to the objective value cannot be improved upon.

MINOS exited due to the current point cannot be improved upon.

MINOS exited due to the problem being badly scaled.

: CGD is terminated using tolerance 1077,

0730,

“ o Qo o
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Table 2.3: Comparing the CGD method using the Gauss-Seidel rule and the Gauss-Southwell rules,
without acceleration steps, on the test functions from Table 2.1, with z° given as in [73].

Name c CGD-GSeidel (n, =n) CGD-GSeidel (np = 5) CGD-GS-r CGD-GS-q

#nz/obj/cpu #nz/obj/cpu #nz/obj/cpu fnz/obj/cpu
BAL 1 21000/249755/.7 >5h | ©1000/1000.00/.1 | *1000/1000.00/.1
10 21000/259247/.04 >5h | 21000/9999.98/.1 | *1000/9999.98/.2
100 21000/344302/6.3 >5h >5h >5h
BT 1 1000/70.3320/40.0 1000/70.3320/.8 1000/70.3320/.1 1000/70.3320/.1
1 1000/671.819/48.2 1000/671.819/1.0 1000/671.819/.2 1000/671.819/.2
10 0/1000.00/6.4 0/1000.00/.07 0/1000.00/.02 0/1000.00/.02
DBV 1 3/0.00000/20.3 0/0.00000/.9 2/0.00000/.04 2/0.00000/.04
1 0/0.00000/3.0 0/0.00000/.03 2/0.00000/.01 2/0.00000/.02
10 0/0.00000/3.0 0/0.00000/.03 0/0.00000/.01 0/0.00000/.02
ER 1 1000/436.250/1642.3 1000/436.250/4.9 1000/436.250/.8 1000/436.250/.8
10 0/500.000/28.3 0/500.000/.4 0/500.000/.1 0/500.000/.1
100 0/500.000/5.9 0/500.000/.07 0/500.000/.01 0/500.000/.01
TRIG 1 0/0.00000/131.7 0/0.00000/.6 0/0.00000/.1 0/0.00000/.1
1 0/0.00000/8.8 0/0.00000/.08 0/0.00000/.02 0/0.00000/.02
10 0/0.00000/2.3 0/0.00000/.02 0/0.00000/.01 0/0.00000/.01
EPS 1 1000/351.146/194.6 1000/351.146/1.4 1000/351.146/.3 1000/351.146/.3
10 250/1250.00/20.8 200/1250.00/.2 250/1250.00/.03 250/1250.00/.04
100 0/1250.00/6.1 0/1250.00/.07 0/1250.00/.01 0/1250.00/.01
LR1 1 21000/50399.4/.1 >5h >5h >5h
1 21000/501748/.1 >5h >5h >5h
10 21000/5015230/.1 >5h >5h >5h
LR1Z 1 21000/44894.4/.1 >5h >5h >5h
1 21000/446684/.1 >5h >5h >5h
10 21000/4464582/.1 >5h >5h >5h
LFR 1 1000,/98.5000/.9 21000/98.5000/.04 | 1000/98.5000/.01 | 1000/98.5000/.01
1 1000/751.000/.9 1000/751.000/.02 | 1000/751.000/.01 | 1000/751.000/.01
10 0/1001.00/.9 0/1001.00/.02 0/1001.00/.01 0/1001.00/.01
D 1 999/3.51-10'1 /.1 >5h >5h >5h
10 999/3.51-10'1 /.1 >5h >5h >5h
100 999/3.52-1011 /.1 >5h >5h >5h

acceleration steps and rank-1 acceleration steps are also shown. In our experience,

CGD-GS-r and CGD-GS-q have comparable performances. Also, we found CGD-

GSeidel to have better performance with n, = 5 than with n, = 10 or n, = n.

From Table 2.3, we see that CGD-GS-r and CGD-GS-q are typically faster than
CGD-GSeidel. But CGD-GS-r and CGD-GS-q are still too slow (more than 5 hours

of cpu time) on functions whose Hessian are far from being diagonally dominant, like

BAL, LR1, LR1Z, and VD. From Table 2.4, we see that the acceleration steps improve

the performance of CGD-GS-r and CGD-GS-q significantly on these functions. We

also tested CGD-GSeidel with acceleration steps, but its performance is not better
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Table 2.4: Comparing the CGD method using the Gauss-Southwell rules, with or without acceler-
ation steps, on test functions from Table 2.1, with 2° given as in [73].

Name c CGD-GS-r CGD-GS-r-acc CGD-GS-q CGD-GS-qg-acc
fnz/obj/cpu(iter) #nz/obj/cpu #nz/obj/cpu(iter) fnz/obj/cpu
(CGD/L-BFGS/R1) (CGD/L-BFGS/R1)

BAL 1 21000/1000.00/.1(12) 1000/1000.00/.1(10/22/1) | *1000/1000.00/.1(20) 1000/1000.00/.2(10/29/1)
10 | 21000/9999.98/.1(12) | ®1000/9999.97/.1(10/16/1) | 21000/9999.98/.2(56) 1000/9999.97/.1(10/21/1)
100 >5h 1000/99997.5/.1(10/9/1) >5h | ©1000/99997.5/.1(10/18/1)
BT 1 1000/70.3320/.1(55) 1000/70.3320/.1(10/15/1) 1000/70.3320/.1(55) 1000/70.3320/.1(10/14/1)
1 1000/671.819/.2(71) 1000/671.819/.1(10/19/1) 1000/671.819/.2(71) 1000/671.819/.1(10/19/1)
10 0/1000.00/.02(6) 0/1000.00/.03(8/0/1) 0/1000.00/.02(6) 0/1000.00/.03(8/0/1)
DBV 1 2/0.00000/.04(10) 0/0.00000/.02(2/0/1) 2/0.00000/.04(10) 0/0.00000/.02(2/0/1)
1 2/0.00000/.01(3) 0/0.00000/.02(2/0/1) 2/0.00000/.02(3) 0/0.00000/.02(2/0/1)
10 0,/0.00000/.01(3) 0/0.00000/.02(2/0/1) 0/0.00000/.02(3) 0/0.00000/.02(2/0/1)
ER 1 1000/436.250/.8(346) 1000/436.250/.3(11/40/1) | 1000/436.250/.8(309) 1000/436.250/.2(10/38/1)
10 0/500.000/.1(32) 0/500.000/.3(11/38/1) 0/500.000/.1(28) 0/500.000/.3(11/40/1)
100 0/500.000/.01(5) 0/500.000/.03(8/0/1) 0/500.000,/.01(5) 0/500.000/.04(8/0/1)
TRIG 1 0/0.00000/.1(42) 1000/0.00028/.1(11/10/0) 0/0.00000/.1(42) 0/0.00000/.1(12/9/0)
1 0/0.00000/.02(5) 0/0.00000/.02(5/0/0) 0/0.00000/.02(6) 0/0.00000/.02(6/0/0)
10 0/0.00000/.01(1) 0/0.00000/.01(1/0/0) 0/0.00000/.01(1) 0/0.00000/.01(1/0/0)
EPS 1 1000/351.146/.3(72) 1000/351.146/.3(10/37/1) 1000/351.146/.3(71) 1000/351.146/.2(10/30/1)
10 250/1250.00/.03(10) 249/1250.00/.1(10/0/1) 250/1250.00/.04(10) 250/1250.00,/.05(10/0/1)
100 0/1250.00/.01(3) 0/1250.00/.01(2/0/1) 0/1250.00/.01(3) 0/1250.00/.02(2/0/1)
LR1 1 >5h 1/249.625/.1(10/0/2) >5h 1/249.625/.1(10/0/2)
1 >5h 1/249.625/.1(10/0/1) >5h 1/249.625/.1(10/0/2)
10 >5h 1/249.625/.1(10/0/2) >5h 1/249.625/.05(8/0/1)
LR1Z 1 >5h 1/251.125/.1(10/0/2) >5h 1/251.125/.1(10/0/2)
1 >5h 1/251.125/.1(10/0/1) >5h 1/251.125/.1(10/0/1)
10 >5h 1/251.125/.1(10/0/2) >5h 1/251.125/.1(10/0/1)
LFR 1 1000/98.5000/.01(1) 1000/98.5000/.01(1/0/0) 1000/98.5000,.01(1) 1000/98.5000,/.01(1/0/0)
1 1000/751.000/.01(1) 1000/751.000/.01(1/0/0) 1000/751.000/.01(1) 1000/751.000/.01(1/0/0)
10 0/1001.00/.01(1) 0/1001.00/.01(1/0/0) 0/1001.00/.01(1) 0/1001.00/.01(1/0/0)
VD 1 >5h 1000/937.594/1.7 >5h 1000/937.594/.6
(191/240/21) (56/80/5)
10 >5h b1000/6726.81/64.6 >5h b1000/6726.81/42.6
(5635/6247/626) (8791/4199/420)
100 >5h b999/55043.1/51.8 >5h b1000/55043.1/106.2
(4600/5106/511) (8291/9198/920)

than CGD-GS-g-acc and so we do not report it here.

From Tables 2.5 and 2.6, we see that CGD-GS-r-acc and CGD-GS-g-acc are com-
petitive with MINOS in terms of solution accuracy (as measured by the final objective
value), and are generally faster in terms of cpu time (except on VD). L-BFGS-B is
fast, but often exits when still far from a solution with a large projected gradient.
This is due to the relative improvement in objective value being below factr-epsmch,

where factr = 107 and epsmch is the machine precision generated by the code (about
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Table 2.5: Comparing the CGD method using the Gauss-Southwell rules and acceleration steps
with L-BFGS-B and MINOS on test functions from Table 2.1, with 2 = (1,1, ...,1)7.

Name c L-BFGS-B MINOS CGD-GS-r-acc CGD-GS-qg-acc
fnz/obj/cpu #nz/obj/cpu #nz/obj/cpu fnz/obj/cpu
(CGD/L-BFGS/R1) (CGD/L-BFGS/R1)

BAL 1 €1000/1000.00/.02 | 1000/1000.00/49.9 1000/1000.00/.1(10/17/1) 1000/1000.00/.1(10/10/1)
10 €1000/9999.98/.03 1000/9999.97/48.4 1000/9999.97/.1(10/14/1) 1000/9999.98/.2(10/9/1)
100 ©1000/99997.5/.1 | 1000/99997.5/48.9 1000/99997.5/.1(10/18/1) | ®1000/99997.5/.1(10/15/1)
BT 1 €1000/84.0033/.02 | 1000/71.725/100.6 | 1000/72.2619/.9(109/117/4) | 1000/71.7481/.9(111/97/0)
1 ©981/668.724/.2 997/672.418/94.7 1000/626.670/41.8 1000/626.670/42.4
(4219/4267/42) (4156/4154/5)
10 0/1000.00/.00 0/1000.00/56.0 0/1000/.01(1/0/0) 0/1000.00/.01(1/0/0)
DBV 1 ©999/83.4557/.01 0/0.00000/51.5 0/0.00000/.5(11/40/2) 0/0.00000/.5(11/40/2)
1 0/0.00000/.01 0/0.00000/50.8 0/0.00000/.03(5/0/1) 2/0.00000/.03(3/0/1)
10 0/0.00000/.00 0/0.00000/52.5 0/0.00000/.01(1/0/0) 0/0.00000/.01(1/0/0)
ER 1 1000/436.250/.1 | 1000/436.250/71.5 1000/436.250/.2(10/38/1) 1000/436.250/.1(10/24/1)
10 €500/1721.15/.00 0/500.000/50.2 449/500.006/.3(11/40/1) 0/500.000/.3(11/40/1)
100 0/500.000/.00 0/500.000/52.4 0/500.000/.03(7/0/1) 0/500.000/.03(7/0/1)
TRIG 1 ©1000/14.1282/.1 0/0.00000/58.5 6/3.13589/.6(55/45/6) 1/.626211/.6(29/40/4)
1 0/0.00000/.1 1/6.21995/62.0 6/31.2477/.7(55/47/6) 1/6.21364/.5(47/40/6)
10 0/0.00000/.1 0/0.00000/61.9 1/187.021/.6(47/40/6) 1/61.2209/.5(38/40/5)
EPS 1 ©999/352.526/.05 | 1000/351.146/60.3 1000/351.146/.3(10/40/1) 1000/351.146/.3(13/40/2)
10 1/1250.00/.01 243/1250.00/44.2 250/1250.00/.1(9/0/1) 249/1250.00/.1(8/0/1)
100 0/1250.00/.01 0/1250.00/51.5 0/1250.00/.01(1/0/0) 0/1250.00/.01(2/0/1)
LR1 1 €1000/424.663/.00 42/249.625/59.7 1/249.625/.1(10/0/2) 1/249.625/.1(10/0/2)
1 €1000/2000.00/.01 41/249.625/57.2 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
10 €1000/17753.4/.01 1/249.625/58.0 1/249.625/.1(10/0/2) 1/249.625/.05(8/0/1)
LR1Z 1 €1000/426.087/.00 44/251.125/59.2 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/2)
1 €1000/2000.75/.01 d3/251.125/58.4 1/251.125/.1(10/0/1) 1/251.125/.1(10/0/1)
10 €1000/17747.3/.00 1/251.125/59.7 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/1)
LFR .1 1000/98.5000/.00 1000/98.5000/77.2 1000/98.5000/.01(1/0/0) 1000/98.5000/.01(1/0/0)
1 1000/751.000/.01 1000/751.000/73.8 1000/751.000/.01(1/0/0) 1000/751.000/.01(1/0/0)
10 0/1001.00/.00 0/1001.00/53.3 0/1001.00/.01(1/0/0) 0/1001.00/.01(1/0/0)
VD 1 €1000/1000.00/.00 | 1000/937.594/43.0 1000/937.594/.9 1000/937.594/.5
(100/139/11) (55/59/6)
10 | ©974/5.18-10'2 /2.3 413/6726.81/56.9 1000/6726.81/59.9 1000/6726.81/60.3
(5230/5803/581) (5140/5698/571)
100 €996/75135.5/.2 136/55043.1/57.4 b1000/55043.1/83.3 b1000/55043.1/88.1
(6850/7604/761) (7030/7804/781)

107" in our tests). We experimented with factr set to zero but it did not change

significantly the results.

Thus MINOS seems more robust than L-BFGS-B, though it is slower (possibly

due to the many active bounds at a solution). For the nonconvex functions BT and

TRIG, multiple local minima exist and, depending on the starting point, the methods

can converge to different local minima with different objective value.

Table 2.7 reports the performance of CGD-GS-r-acc and CGD-GS-g-acc on the
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Table 2.6: Comparing the CGD method using the Gauss-Southwell rules and acceleration steps

with L-BFGS-B and MINOS on test functions from Table 2.1, with 2° = (-1, -1, ..., —1)T.

Name c L-BFGS-B MINOS CGD-GS-r-acc CGD-GS-g-acc
fnz/obj/cpu #nz/obj/cpu #nz/obj/cpu #nz/obj/cpu
(CGD/L-BFGS/R1) (CGD/L-BFGS/R1)

BAL 1 €1000/1000.00/.1 1000/1000.00/39.9 1000/1000.00/.2(10/29/1) | 1000/1000.00/.2(10/27/1)
10 €1000/9999.97/.2 1000/9999.97/50.0 | ®1000/9999.97/.1(10/25/1) | 1000/9999.97/.2(10/29/1)
100 €1000/99997.5/.2 1000/99997.5/50.6 1000/99997.5/.1(10/26/1) | 1000/99997.5/.2(10/34/1)
BT 1 €1000/70.9405/.1 1000/70.3320,/99.0 1000/70.3320/.1(10/15/1) | 1000/70.3320/.1(10/14/1)
1 999/671.773/.1 999/671.773/101.1 1000/671.819/.1(10/19/1) | 1000/671.819/.1(10/19/1)
10 0/1000.00/.01 0/1000.00/77.1 0/1000.00/.03(8/0/1) 0/1000.00/.03(8/0/1)
DBV .1 | ©1000/82.7786/.01 0/0.00000/66.0 0/0.00000/.4(11/40/2) 0/0.00000/.4(11/40/2)
1 €4/6.47238/.01 0/0.00000/65.8 0,/0.00000/.03(5/0/1) 0/0.00000/.02(3/0/1)
10 0/0.00000/.01 0/0.00000/66.1 0/0.00000/.01(1/0/0) 0/0.00000/.01(1/0/0)
ER 1 1000/436.250/.04 1000/436.250/86.9 1000/436.250/.2(10/33/1) | 1000/436.250/.1(11/22/0)
10 0/500.000/.03 0/500.000/74.2 0/500.000/.3(11/40/1) | 1000/500.024/.2(15/34/0)
100 0/500.000/.01 0/500.000/62.1 0/500.000/.03(7/0/1) 0/500.000/.01(2/0/0)
TRIG 1 €1000/12.7569/.1 0/0.00000/104.4 1/1.25435/.6(55/44/6) 1/71.6259/.6(55/48/6)
1 ©1000/181.247/.1 0/0.00000/106.8 3/50.1248/.7(56/48/6) 1/364.351/.6(55/44/6)
10 €1000/2818.55/.1 0/0.00000/110.1 1/124.051/.6(47/40/6) 1/1820.88/.5(55/42/6)
EPS 1 1000/351.146/.1 1000/351.146/106.7 1000/351.146/.2(10/22/1) | 1000/351.146/.2(10/26/1)
10 249/1250.00/.01 0/1250.00/74.6 250/1250.00/.1(9/0/1) 250/1250.00/.1(8/0/1)
100 0/1250.00/.00 0/1250.00/63.4 0/1250.00/.01(1/0/0) 0/1250.00/.02(2/0/1)
LR1 .1 | ©1000/424.663/.00 44/249.625/85.0 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
1 ©1000/2000.00/.01 41/249.625/85.4 1/249.625/.1(10/0/2) 1/249.625/.1(10/0/1)
10 | ©1000/17753.4/.00 1/249.625/82.0 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
LR1Z 1 ©1000/426.087/.00 d2/251.125/84.3 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/1)
1 ©1000/2000.75/.00 1/251.125/85.3 1/251.125/.1(10/0/1) 1/251.125/.1(10/0/1)
10 | ©1000/17747.3/.01 1/251.125/84.8 1/251.125/.1(10/0/1) 1/251.125/.1(9/0/1)
LFR .1 1000/98.5000/.01 1000/98.5000/57.4 1000/98.5000/.01(1/0/0) 1000/98.5000/.01(1/0/0)
1 1000/751.000/.00 1000/751.000/59.2 1000/751.000/.01(1/0/0) 1000/751.000/.01(1/0/0)
10 0/1001.00/.00 0/1001.00/66.4 0/1001.00/.01(1/0/0) 0/1001.00/.01(1/0/0)
VD 1 €1000/1836.78/.3 €999/100401e+24/.1 1000/937.594/2.6 1000/937.594/.6(56/77/5)
(235/271/26) (56/77/5)
10 €1000/25653.0/.2 €999/100401e+24/.1 1000/6726.81/27.7 b1000/6726.81/29.6
(2665/2954/296) (2711/3002/300)
100 €1000/248974/.2 €999/100401e+24/.1 b999/55043.1/50.9 b1000/55043.1/105.0
(4600/5135/511) (8156,/9052/905)

CUTEr test functions from Table 2.2. Both are able to meet the termination criterion
(2.58) in typically under a second, except on NONCVXU2 and PENALTY1. On
PENALYTI, the termination tolerance 10~* in (2.58) was too loose, with the final
objective value accurate up to only 1 or 2 significant digits, so we tightened it to 107°.
The final objective value for other functions appear to be accurate up to 5 significant
digits, as tightening the tolerance to 107% did not change them. Notice that, on
INDEF, LIARWHD, NONCVXU2, PENALTY1, WOODS, for which f is nonconvex,
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Table 2.7: Comparing the CGD method using the Gauss-Southwell rules and acceleration steps
on CUTEr test functions from Table 2.2, with 20 as given.

Name c CGD-GS-r-acc CGD-GS-q-acc
#nz/obj/cpu(CGD/L-BFGS/R1) #nz/obj/cpu(CGD/L-BFGS/R1)
EG2 1 1/-998.890/.02(2/0/1) 1/-998.890/.02(2/0/1)
1 1/-998.377/.02(2/0/1) 1/-998.377/.02(2/0/1)
10 1/-993.290/.02(2/0/1) 1/-993.290/.02(2/0/1)
EXTROSNB 1 5/.235809/.8(61/42/2) 5/.235809/.8(59/50/2)
1 3/.873442/.2(14/13/1) 2/.873441/.8(59/48/2)
10 0/1.00000/.04(4/0/1) 0/1.00000/.5(12/40/1)
INDEF 1 1000/-499.000/1.5(58/41/3) 1000/-499.000/.9(30/40/1)
10 2/-301.161/.2(10/5/1) 2/-18.4175/.2(11/5/0)
100 2/-197.836/.2(10/4/1) 3/499.605/.1(5/0/0)
LIARWHD 1 1000/101.025/.2(10/19/1) 1000/97.5328/.1(10/8/1)
1 1000/750.203/.3(10/26/1) 1000/750.203/.1(10/5/1)
10 0/1000.00/.5(11/40/2) 0/1000.00/.04(4/0/1)
NONCVXU2 1 948/2390.60/7.0(375/440/40) 957/2710.90/12.3(625/690/40)
1 683/3120.28/13.2(687/712/24) 677/3124.66/8.7(451/452/10)
10 0/4000.00/1.9(91/90/9) 5/4000.00/1.9(92/90/8)
PENALTY1 .01 f1/.0149673/37.7(11/15/1) £1/.0149673/88.8(25/40/2)
1 £1/.0571739/14.9(10/0/1) £0/.072500/14.9(10/0/0)
1 £0/.072500/12.1(8/0/1) £0/.072500/14.7(10/0/0)
WOODS 1 1000/985.710/2.1(149/160/12) 1000/985.710/2.1(149/157/12)
10 750/8655.68/.8(59/56/2) 1000/8655.70/.2(11/25/0)
100 249/10500.0/.5(11/40/1) 750/10500.7/.5(12/40/0)
QUARTC 1 1000/50028.1/.2(11/18/0) 1000/50028.1/.2(11/25/0)
1 1000/500028/.1(11/15/0) 1000/500028/.2(11/22/0)
10 999/4.99482-108 /.1(11/13/0) 1000/4.99482-10°% /.2(11/26/0)
DIXON3DQ .1 6/.470417/.6(52/40/0) 6/.470417/.6(46/40/0)
1 2/1.62500/.02(3/0/1) 2/1.62500/.05(7/0/0)
10 0/2.00000/.01(1/0/0) 0/2.00000/.02(4/0/0)
TRIDIA 1 8/.185656/.5(51/40/6) 8/.185656/.6(58/48/3)
1 2/.911765/.5(40/40/3) 2/.911765/.5(43/40/2)
10 0/1.00000/.3(11/40/2) 0/1.00000/.3(12/40/1)

CGD-GS-r and CGD-GS-q can terminate at different solutions, depending on the

starting point z°.

2.7 Conclusions and Extensions

We have presented a block coordinate gradient descent method for minimizing the sum

of a smooth function and a convex separable function. The method may be viewed

as a hybrid of gradient-projection and coordinate descent methods, or as a block

coordinate version of descent methods in [9, 36]. We analyzed the global convergence

and asymptotic convergence rate of the method. We also presented numerical results
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to verify the practical efficiency of the method.
We can relax the Armijo descent condition (2.4) by replacing A* with its upper
bound (6 — 1)d*" H*d* (see (2.20)), i.e.,

F,(z* + ofd*) < F,(2*) + o*o (0 — 1)dkTdek. (2.59)

The global convergence analysis in Theorem 2.1 (except (d)) can be extended ac-
cordingly. The convergence rate analysis in Theorem 2.2 can be similarly extended,
provided that o* = 1 for all k sufficiently large (so that the last term in (2.34) equals
zero). Using Lemma 2.1 and the fact that, under assumption (2.16), f(z+d)— f(z) <
Vf(z)Td+ LJ||d||?/2 for all z,z+ d € domP (see [6, page 667] or the proof of Lemma
2.5(b)), it is readily seen that the latter holds if we choose o =1 and 6 > L/(2)).
A similar convergence rate result was shown by Fukushima and Mine for their method
[36, Theorem 5.1] under the additional assumption that f is (locally) strongly convex.
On the other hand, Theorem 2.4 does not seem amenable to a similar extension, due
to the presence of an additional term —qpx (z%; (J%)¢) in (2.47), which is in the order
of —AF; see (2.52) and (2.53). If the Lipschitz constant L is unknown, we can still
ensure that of = 1 by adaptively scaling H* when generating d*, analogous to the
Armijo rule along the projection arc for constrained smooth optimization [6, page
236]. In particular, we choose s* to be the largest element of {s37};_01,.. (s > 0)
such that

d* = Ak (z*; T*)

satisfies the relaxed Armijo descent condition (2.59) with o* = 1. This adaptive
scaling strategy is more expensive computationally since d* needs to be recomputed
each time s* is changed. Still, if P is separable and we choose H* to be diagonal,
then d* is relatively cheap to recompute.

There are many directions for future research. For example, in our current imple-
mentation of the CGD method, we used diagonal H*. How about block-diagonal H*?

(For efficiency, this may need to be coded in Fortran since Matlab’s vector operations
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might not be usable.) Can other acceleration techniques be developed? How would
the CGD method perform on bound-constrained problems? Can the assumption on
P in Theorem 2.1(d) be dropped? Can a linear convergence rate result similar to

Theorem 2.4 be proved when {J*} is chosen by the Gauss-Southwell-r rule?
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Chapter 3

A (BLOCK) COORDINATE GRADIENT DESCENT
METHOD FOR LINEARLY CONSTRAINED SMOOTH
OPTIMIZATION AND SUPPORT VECTOR MACHINES
TRAINING

In this chapter, we study the CGD method for solving (1.6), in particular (1.7).
Our method is closely related to decomposition methods currently popular for SVM
training. We describe the CGD method formally and show the global convergence and
asymptotic convergence rate of the method when the coordinate block is chosen by a
Gauss-Southwell-type rule. We show that, for SVM QP with n variables, this rule can
be implemented in O(n) operations using Rockafellar’s notion of conformal realization.
Thus, for SVM training, our method requires only O(n) operations per iteration and,
in contrast to existing decomposition methods, achieves linear convergence without
additional assumptions. We report our numerical experience with the method on some
large SVM QP arising from two-class data classification. Our experience suggests that
the method can be efficient for SVM training with nonlinear kernel. This chapter is

based on the paper [104] co-authored with P. Tseng.

3.1 (Block) Coordinate Gradient Descent Method

In our method, we use Vf(z) to build a quadratic approximation of f at x and
apply coordinate descent to generate an improving feasible direction d at z. More
precisely, we choose a nonempty subset J C A and a symmetric matrix H € IR"*"

(approximating the Hessian V2 f(z)), and move z along the direction d = dy(z; J),
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where

. . 1 |
d(z: ) < argmln{ Vi@ d+ Sd"Hd | o+de X, d=0Y) gzj}. (3.1)

deR™

Here dy(z; J) depends on H through H ;7 only.

To ensure that dy(z; J) is well defined, we assume that H s is positive definite
on Null(Ay) or, equivalently, BYH;;B; > 0,, where A; denotes the submatrix
of A comprising columns indexed by J and B is a matrix whose columns form
an orthonormal basis for Null(A7). For (1.7), we can choose H such that H;; =
Qs7 if B,Qs57Bs > 0, and otherwise Hyy = Q75 + pI with p > 0 such that
B7Q77Bg + pI > 0y; see [15, 26] for a similar perturbation technique.

We have the following lemma, analogous to Lemma 2.1, showing that d is a descent

direction at x whenever d # 0. We include its proof for completeness.

Lemma 3.1 For any x € X, nonempty J C N and symmetric H € R™"™ with
BYH;7Bs > 0y, let d = dy(z; J) and g =V f(z). Then

9"d < —d"Hd < —A\uin(BTHz7B7)||d||*. (3.2)
Proof. For any « € (0,1), we have from (3.1) and the convexity of the set X that
7, 1. T 1 T 7, 1 o7
g'd+5d"Hd < g'(ad)+ ;(ad) H(ad) = ag'd+ ;od"Hd.
Rearranging terms yields
1
(1—-a)g"d+ 5(1 —a®)d"Hd < 0.

Since 1 — o? = (1 — a)(1 + ), dividing both sides by 1 —a > 0 and then taking o 1 1
prove the first inequality in (3.2). Since ds € Null(A7) so that dy = By for some

vector y, we have

d"Hd = y"B}H77B7y > ||[yl|*Amin(B7Hz7B7) = ||d||*Amin(By H77Bz),
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where the second equality uses BYB; = I. This proves the second inequality in (3.2).

We next choose a stepsize a > 0 so that ' = x+ad achieves sufficient descent, and

re-iterate. We now describe formally the block-coordinate gradient descent method.

CGD method:
Choose 2° € X. For k = 0,1,2, ..., generate z**! from 2* according to the

iteration:

1. Choose a nonempty J¥ C N and a symmetric H* € R™*" with

2. Solve (3.1) with z = 2%, J = J*, H = H* to obtain d* = dy«(a*; J%).

3. Choose a stepsize of > 0 and set z*¥*! = 2% 4 oFd*.

Various stepsize rules for smooth optimization [6, 32, 77| can be used in our setting.
The following adaptation of the Armijo rule [6, page 225], based on Lemma 3.1
and Section 2.1, is simple and seems effective from both theoretical and practical
standpoints.

Armijo rule:

Choose o > 0 and let o* be the largest element of {af (7}, 0, . satisfying
f(z* + aFd*) < f(aF) + 0afA*F  and  2F + ofdF € X, (3.3)
where 0 < f<1,0<0<1,0<60<1,and

AR ¥ £ (25T dk + 0dET HE ", (3.4)

Since BL, HY%, s By > 0, and 0 < 6 < 1, we see from Lemma 3.1 that
f@* 4+ ad) = f(z*) + aV (") Td* + o(a) < f(@F) + aAF +o(a) Va € (0,1],

and AF < (0 — 1)d*" H*d* < 0 whenever d* # 0. Since 0 < o < 1, this shows
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that o given by the Armijo rule is well defined and positive. This rule, like that

for sequential quadratic programming methods [6, 32, 77], requires only function
k

ini

evaluations. And, by choosing o  based on the previous stepsize a*~1, the number
of function evaluations can be kept small in practice. Notice that A* increases with
6. Thus, larger stepsizes will be accepted if we choose either ¢ near 0 or € near 1.
The minimization rule or the limited minimization rule [6, Section 2.2.1] (also see

(3.20), (3.21)) can be used instead of the Armijo rule if the minimization is relatively

inexpensive, such as for a QP.

For theoretical and practical efficiency, the working set J* must be chosen judi-
ciously so to ensure global convergence while balancing between convergence speed
and the computational cost per iteration. Let us denote the optimal value of the

direction subproblem (3.1) by

o 1
au(w; ) {v f(@)Td+ —dTHd} . (3.5)
2 d=dp (3:7)
Intuitively, gg(z;J) is the predicted descent when z is moved along the direction

dg(z; J). We will choose the working set J* to satisfy
qpr (2" T*) < v qpe (2™ N), (3.6)

where DF = 0 (typically diagonal) and 0 < v < 1. (In fact, it suffices that B D* By, >
0, for our analysis.) This working set choice is motivated by the Gauss-Southwell-q
rule in Chapter 2, which has good convergence properties in theory and in practice. It
is similar in spirit to (1.11) with ¢(a) = va, which corresponds to (3.6) with m = 1,
|J*| =2, D¥ =0, and X in (3.1) replaced by its tangent cone at x. We will discuss
in Section 3.5 how to efficiently find a “small” working set J* that satisfies (3.6) for

some v.

For the SVM QP (1.7), one choice of J* that satisfies (3.6) with v =1/(n—£+1)
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1s

([ ming Vf(2*)Td+ Ld7diag(Q)d )
i | st dTd=0,
J" € argmin > (3.7)
T <e 0<azb+d; <C, jeT,
L d] = O: .7 ¢ \7’7 )

where ¢ € {rank(A) + 1,...,n}; see Proposition 3.2. However, no fast way to find

such J* is known.

3.2 Technical Preliminaries

In this section we study properties of the search direction dg(x; J) and the corre-
sponding predicted descent gz (z; J). These will be useful for analyzing the global
convergence and asymptotic convergence rate of the CGD method.
We say that an z € X is a a stationary point of f over X if Vf(x)" (y —x) > 0 for
all y € X. This is equivalent to dp(x; N) = 0 for any D > 0; see [6, pages 229, 230].
The next lemma shows that ||dg(z;J)|| changes not too fast with the quadratic
coefficients H. It will be used to prove Theorems 3.1 and 3.2. Recall that By is a

matrix whose columns form an orthonormal basis for Null(A 7).

Lemma 3.2 Fiz any z € X, nonempty J C N, and symmetric matrices H,lff €
R™" satisfying U > 0, and U > 0,, where U = BYH;57Bs and U= Bgﬁj]B].
Let d =dy(x;J) and d = dg(x; J). Then

1l < 14+ Amax(S) + \/1 — 2Amin(S) + Amax(S)? Amax (U) Idl. (3.9
2 Amin(U)

where S = U~1200U-1/2,

Proof. Since d; = dj =0 for all j & 7, it suffices to prove the lemma for the case of

J =N. Let g = Vf(z). By the definition of d and d and [90, Theorem 8.15],

d € argmin{(g + Hd)"u | z +u € X},

d € argmin{(g + Hd)"u |z +u € X}.
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Thus

(g+ Hd)"d < (g+ Hd)"d,

(g+ Hd)'d < (¢+ Hd)"d.

Adding the above two inequalities and rearranging terms yield
d"Hd — d"(H + H)d+d"Hd < 0.

Since d,d € Null(A), we have d = Byy and d = By for some vectors y,7. Substi-
tuting these into the above inequality and using the definitions of U, U yield

y' Uy —y" (U +U)j + g0 < 0.

Then proceeding as in the proof of Lemma 2.3 and using ||d|| = ||y||, ||d|| = ||| (since
BY:By = I), we obtain (3.8). =

The next lemma gives a sufficient condition for the stepsize to satisfy the Armijo
descent condition (3.3). This lemma will be used to prove Theorem 3.1(d). Its proof

is similar to that of Lemma 2.5(b) and is included for completeness.

Lemma 3.3 Suppose f satisfies
IVf(y) = V@RI < Llly— 2| Vy, 2z € X, (3.9)

for some L > 0. Fiz any x € X, nonempty J C N, and symmetric matric H € R™*™
satisfying BYHz7By = M with A > 0. Then, for any o € (0,1), § € [0,1), and
0<a<2)\1—-o0+00)/L with x + ad € X, we have

f(z +ad) — f(z) < oa(g"d+ 0d" Hd), (3.10)

where d = dy(z;J) and g = V f(z).
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Proof. For any a > 0 with z+ad € X, we have from the Cauchy-Schwarz inequality
that

f@+ad) — f(z) = agTd+ /Ol(Vf(x +tad) — V£(z)) (ad) dt

< agld+a [ Vi +tad) - V@) ] di

IN

L
agld+ a2§||d||2

L
= oa(g"d+60d"Hd) — afd"Hd + a2§||d||2, (3.11)

where the third step uses (3.9) and x+tad € X when 0 < ¢ < 1. Since A||d||? < d"Hd
by Lemma 3.1, if in addition o < 2A(1 — 0 + 06)/L, then

L
045||d||2 —0d"Hd < (1—o0+o00)d"Hd— 0d"Hd
= (1-0)(1-6)d"Hd
< —(1-0)(Vf(x)"d+0d"Hd),

where the third step uses (3.2) in Lemma 3.1. This together with (3.11) yields (3.10).

The next lemma shows that V f(z) (2’ —z) is bounded above by a weighted sum of
|z —z||> and —gp(x; J), where ' = z+ad, d = dy(z; J), and J satisfies a condition

analogous to (3.6). This lemma, which is new, will be needed to prove Theorem 3.2.

Lemma 3.4 Fiz any x € X, nonempty J C N, and symmetric matrices H,D €
R™" satisfying BYHyz 7Bz > Oy, 61 = D = 0,, and
qp(z; T) < v qp(z; N), (3.12)
with 6 > 0,0 <v < 1. Then, for any T € X and o > 0, we have
T 1 — 5 _ 2 1
g (@ —2)< 5”33 —zf|” = EQD(fE; J), (3.13)

where d = dy(z;J), g=Vf(z), and 2’ =z + ad.
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Proof. Since T — z is a feasible solution of the minimization subproblem (3.1) cor-

responding to A" and D, we have

1

ap(z;N) < ¢"' (7 — ) + 2(@ —2)'D(z — 7).

Since 61 = D > 0,, we have 0 < (Z — 2)"D(Z — x) < §||Z — z||2. This together with

(3.12) yields

1 5
~ap(#; ) < ¢"'(@—2) + 5|7 - 2"

Rearranging terms, we have
_ g 1
|17 = ]I = ~ap(z; J)- (3.14)

By the definition of d and Lemma 3.1, we have ¢”d < 0. Since o > 0, this implies
ag’d < 0. Adding this to (3.14) yields (3.13). =

3.3 Global Convergence Analysis

In this section we analyze the global convergence of the CGD method under the

following reasonable assumption on our choice of H.
Assumption 3.1 A = BL, H%, By = Al for all k, where 0 < A < \.

First, we have the following lemma relating the optimal solution and the optimal
objective value of (3.1) when J = J* and H = DF. This lemma will be used to prove
Theorem 3.1(c).

Lemma 3.5 For any 2* € X, nonempty J* C N, and 6I = D*¥ = &I (0 <
80 <6), k=0,1,..., if {z*} is convergent, then {dpx(x*; T*)} — 0 if and only if
{gp+(a*; T*)} — 0.

Proof. Let {z*} be a convergent sequence in X. Then {V f(2*)} is convergent by
the continuity of Vf. If {dp«(z¥; 7%)} — 0, then (3.5) and the boundedness of { D¥}
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imply {gpx (z*; %)} — 0. Conversely, we have from (3.5) and (3.2) with H = DF that
qpr (25 T*) < —Ldpe(a; T*)T Drdpe (a*; T%) < —&||dpe(2*; T*)||? for all k. Thus if
{qpx(z*; T*)} — 0, then {dpi(2*; T*)} - 0. =

Using Lemmas 3.1, 3.2, 3.3, and 3.5, we have the following global convergence
result, under Assumption 3.1, for the CGD method with {J*} chosen by the Gauss-
Southwell rule (3.6) and {a*} chosen by the Armijo rule (3.3). Its proof adapts the
analysis of gradient methods for unconstrained smooth optimization [6, pages 43-45]

to handle constraints and block-coordinate updating.

Theorem 3.1 Let {z*}, {J*}, {H*}, {d*} be sequences generated by the CGD
method under Assumption 3.1, where {a¥} is chosen by the Armijo rule with infy oziknit >

0. Then the following results hold.
(a) {f(z*)} is nonincreasing and A* given by (3.4) satisfies
—AF > (1= 0)d HEQE > (1— 0)A||d*|)?  Vk, (3.15)
f@*h) — f(2*) < oafAF <0 VE. (3.16)

(b) If {z*}x is a convergent subsequence of {x*}, then {a*AF} — 0 and {d*}x — 0.
If in addition 61 = DF = §I for all k, where 0 < § < &, then {dpk(z*; T*)}c —
0.

(c) If {T*} is chosen by (3.6) and 01 = D* = &I for all k, where 0 < § < 6, then

every cluster point of {z*} is a stationary point of (1.6).

(d) If f satisfies (3.9) for some L > 0, then inf,of > 0. If limy_,o f(2¥) > —o00
also, then {A*} — 0 and {d*} — 0.

Proof. (a) The first inequality in (3.15) follows from (3.4) and Lemma 3.1. The

second inequality follows from 0 < 6 < 1, Lemma 3.1, and Amin(BT HY, . Bsi) > A,
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Since ¥+ = 2* + o*d* and oF is chosen by the Armijo rule (3.3), we have (3.16) and
hence {f(z*)} is nonincreasing.

(b) Let {z*}x (K C {0,1,...}) be a subsequence of {z*} converging to some Z.
Since f is smooth, f(Z) = lim f(z*). Since {f(z2*)} is nonincreasing, this implies

ke

that {f(z*)} | f(Z). Hence, {f(z*) — f(z**!)} — 0. Then, by (3.16),
{a"AF} — 0. (3.17)

Suppose that {d*}x /4 0. By passing to a subsequence if necessary, we can assume
that, for some § > 0, ||d¥|| > § for all k¥ € K. Then, by (3.15) and (3.17), {a*}x — 0.
Since infy, ozi’jlit > 0, there exists some index k& > 0 such that o® < oziknit and of <
for all k € K with & > k. Since 2* + d* € X and X is convex, the latter implies that
z* + (o*/B)d* € X for all k € K with k > k. Since o* is chosen by the Armijo rule,

this in turn implies that
f@* + (a*/B)d") — f(a*) > o(ak/B)A* VE €K, k> F.

Using the definition of A¥, we can rewrite this as
f(@* + (o*/B)d*) — f(a*)
at/p
By (3.15), the left-hand side is greater than or equal to ((1 — o)(1 — ) + 0)A||d*||?,

so dividing both sides by ||d*|| yields
(a* + &*d*/||d*]]) — f(a*) _Vf(a*)"d*
a* [l

—(1 — o)A + 9" H*d*F < —Vf(E"Td VkeK, k> k.

(1=0)(1—=0)+0)A|d*] < L k€K, k> F

(3.18)
where we let &% = of||d¥||/B. By (3.15), —a*A* > (1—0) o ||d¥||? > (1—0)Xa*||d¥||d
for all k € K, so (3.17) and (1—6)\ > 0 imply {o*||d¥||}x — 0 and hence {a*}x — 0.
Also, since {d*/||d*||}x is bounded, by passing to a subsequence if necessary, we can

assume that {d*/||d*||}x — some d. Taking the limit as ¥ € K,k — oo in the

inequality (3.18) and using the smoothness of f, we obtain

0<((1=0)1=0)+0)X <Vf(x)"d-Vf(z)'d = 0,
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a clear contradiction. Thus {d*}x — 0.
Suppose that, in addition, 61 = D* = &I for all k. Let Uk = ngngjkBjk and
U* = BL,H%,. ,.B:. Then, for each k, 61 = U* = 61 (since BY, By = I) as well as

M = U* = \I. Then

%I - S(Uk)_l - (Uk)—l/QUk(Uk)—l/Z - é(Uk)—l - %I,
so (3.8) in Lemma 3.2 yields
1+ 8/A+ /1 =20/X+ (5/0)2 X
e (4 T4 < / . S (319)

Since {d*}x — 0, this implies {dp(z*; T*)} — 0.

(c) Suppose that {J*} is chosen by (3.6) and 61 = D* = I for all k and 7 is a
cluster point of {z*}. Let {2*}x be a subsequence of {z*} converging to z. By (b),
{d*}x — 0 and {dpk(2*; T*)}x — 0. By Lemma 3.5, {gp«(2*; 7*)}x — 0. Since J*
satisfies (3.6), this implies that {gpr(z¥; N)}x — 0. This together with Lemma 3.5
yields {dp«(z¥; M)} — 0.

By Lemma 3.2 with J = N, H = D*, and H = I, we have

L 1/8+ /1 —2/6 + (1/0)?

ldr (z*; M| 5

8 lldpe(z*; NI k.

Hence {d;(z*; N)}x — 0. A continuity argument then yields that d;(Z;N) =0, so Z

is a stationary point of (1.6).
k

(d) Since o* is chosen by the Armijo rule, either o* = o  or else, by Lemma 3.3
and 2% +d* € X, of /B > min{1,2)\(1 — 0 + 00)/L}. Since inf} ai’iit > 0, this implies
infy of > 0. If limg_,o f(2%) > —o0 also, then this and (3.16) imply {A*} — 0, which

together with (3.15) imply {d*} — 0. =

Similar to the observation in [6, page 45|, Theorem 3.1 readily extends to any

stepsize rule that yields a larger descent than the Armijo rule at each iteration.
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Corollary 3.1 Theorem 3.1 still holds if in the CGD method the iterates are instead
updated by ¢t = 2% + &Fd*, where & > 0 satisfies f(x* + aFd*) < f(2* + oFd¥)
and ¥ + &*d* € X for k = 0,1,..., and {a*} is chosen by the Armijo rule with

. k
inf}, o). > 0.

Proof. Tt is readily seen using f(z**!) < f(z* + ofd*) that Theorem 3.1(a) holds.

The proofs of Theorem 3.1(b)—(d) remain unchanged. =

For example, &* may be generated by the minimization rule:
~k . k k k k
&" € argmin{f(z" + ad”) | 2" + ad" € X} (3.20)
a>0
or by the limited minimization rule:

&" € argmin{f(z* + ad®) | z* + ad* € X}, (3.21)
0<a<ls

where 0 < s < oco. The latter stepsize rule yields a larger descent than the Armijo

rule with O&i’i L =S We will use the minimization rule in our numerical tests on SVM

QP; see Section 3.6.
3.4 Convergence Rate Analysis

In this section we analyze the asymptotic convergence rate of the CGD method under
the following reasonable assumption; see [63]. In what follows, X denotes the set of

stationary points of (1.6) and
dist(z, X) ¥ min|lz — 2| VzeR™
zeX

Assumption 3.2 (a) X # (0 and, for any ¢ > mingcx f(z), there exist scalars T > 0

and € > 0 such that

dist(z, X) < 7||di(a; N)||  whenever z € X, f(z) <, ||di(z;N)| < e
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(b) There exists a scalar p > 0 such that

lz—yl| >p whenever z€ X, ye X, f(z)# f(y).

Assumption 3.2 is identical to Assumptions A and B in [63]. Assumption 3.2(b) says
that the isocost surfaces of f restricted to the solution set X are “properly separated.”
Assumption 3.2(b) holds automatically if f is a convex function. It also holds if f
is quadratic and X is polyhedral [60, Lemma 3.1]. Assumption 3.2(a) is a local
Lipschitzian error bound assumption, saying that the distance from z to X is locally
in the order of the norm of the residual at z. Error bounds of this kind have been
extensively studied.

Since X is polyhedral, we immediately have from [63, Theorem 2.1] the following
sufficient conditions for Assumption 3.2(a) to hold. In particular, Assumption 3.2(a)

and (b) hold for (1.7) and, more generally, any QP [60, 63].
Proposition 3.1 Suppose that X # () and any of the following conditions hold.

C1 f is strongly conver and V f is Lipschitz continuous on X (i.e., (3.9) holds for
some L > 0).

C2 f is quadratic.

C3 f(x) = g(Fz) + q'z for all z € R", where E € R™", ¢ € IR", and g is a
strongly convex differentiable function on R™ with Vg Lipschitz continuous on

R™.

C4 f(z) = maxyey {(Ex)Ty —g(y)} +q"z for all x € R™, where Y is a polyhedral set
in R™, E € R™", q € R", and g is a strongly convez differentiable function

on R™ with Vg Lipschitz continuous on IR™.

Then Assumption 3.2(a) holds.
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Using Theorem 3.1 and Lemmas 3.1, 3.2, and 3.4, we have the following linear
convergence result, under Assumptions 3.1, 3.2, and (3.9), for the CGD method with
{J*} chosen by (3.6) and {a*} chosen by the Armijo rule. Its proof adapts that
of Theorem 2.4 to constrained problems. To our knowledge, this is the first linear
convergence result for a block-coordinate update method for general linearly con-
strained smooth optimization. Moreover, it does not assume f is strongly convex or

the stationary points satisfy strict complementarity.

Theorem 3.2 Assume that f satisfies (3.9) for some L > 0 and Assumption 3.2. Let
{x*}, {H*}, {d*} be sequences generated by the CGD method satisfying Assumption

3.1, where {J*} is chosen by (3.6), 61 = D* = &I for all k (0 < & < §), and {c*}
k

is chosen by the Armijo rule with sup, o’ < oo and infy ozi’iit > 0. Then either
{f(z*)} | —oo or {f(z*)} converges at least Q-linearly and {z*} converges at least

R-linearly to a point in X.

Proof. For each k=0,1,..., (3.4) and d* = dgx(2*; J*) imply that

AF 4+ (% _ 9) Il gkad = ngdk + %dkTdek

< ngCZk + %(dk)THka
1 - -
= (T + L@ - DY
< qpr (e T*) +wl|df|, (3.22)
where we let ¢* = Vf(z*) and d* = dp«(zF; J*), and the last step uses (3.19) and
(d¥)T (H* — D*)d* < (X — §)||d*||*>. Here, w € R is a constant depending on A, ), 4,48
only. Also, by (3.5) and Lemma 3.1 with J = N, H = D¥, we have

1
qpr (2" N) = (ngd+—dTDkd)
2 d=d  (z*;N)

1
(——dTD’“d)
2 d=dp (2F3N)

< ~ZldpH NP Wk, (3.23)

IN
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where the last inequality uses D¥ > §1.

By Theorem 3.1(a), {f(z*)} is nonincreasing. Thus either {f(z*)} | —oo or
limg o f(2¥) > —o0o. Suppose the latter. Since o is chosen by the Armijo rule
with infg of > 0, Theorem 3.1(d) implies {A*} — 0 and {d*} — 0. Since {H"} is
bounded by Assumption 3.1, we obtain from (3.22) that 0 < limy_,, inf gpx (z¥; T%).
Then (3.6) and (3.23) yield {dpr(z¥; N)} — 0.

By Lemma 3.2 with J =N, H = D* and H = I, we have

N 1+ 1/8+ /1 —2/8+ (1/4)?
ldr(z"; N < 5

§ ||dpk(z"; N)|| k. (3.24)

Hence {d;(z*;N)} — 0. Since {f(z*)} is nonincreasing, so that f(z*) < f(z°), as
well as 2% € X, for all k. Then, by Assumption 3.2(a), there exist k and 7 > 0 such
that

|z* — Z%|| < 7||dr(a®; V)| Yk > &, (3.25)
where z¥ € X satisfies ||z* — z*|| = dist(z*, X). Since {d;(z*; N)} — 0, this implies
{z* — 7%} — 0. Since {z**! — 2%} = {&*d*} — 0, this and Assumption 3.2(b) imply
that {z*} eventually settles down at some isocost surface of f, i.e., there exist an

index k& > k and a scalar © such that

f@) =0 Vk>k. (3.26)

k

Fix any index k > k. Since z* is a stationary point of f over X, we have

V(@) (25 — &%) > 0.

We also have from the Mean Value Theorem that
f(a®) = f(@*) = Vf@H)T (2" — z¥),

for some v* lying on the line segment joining z* with z*. Since z*, z* lie in the convex

set X, so does ¥*. Combining these two relations and using (3.26), we obtain

v— f(z¥) < (Vf(@E") = Vi) (& -z
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IN

IVf(@*) = VE@Mll=* - 2|

L”‘rk - jk“Qa

IN

where the last inequality uses (3.9) and ||¢* — Z*|| < ||z*¥ — z¥||. This together with
{z* — 7%} — 0 proves that

lim inf f(z*) > v. (3.27)
k—00

For each index k > k, we have from (3.26) that

)~ = fE) - f()
= V(@ - 2

= (V@) = g") @™ —7") + ¢ (o - 2h)

IN

- _ 0 _ 1
LIIF* = 2® ||l = 28]l + Slla® = 2F|* - —qpe(a*; T%),(3.28)

where the second step uses the Mean Value Theorem with ¥ a point lying on the
segment joining z**! with ¥ (so that #* € X); the fourth step uses (3.9) and Lemma
3.4. Using the inequalities |Z* — z*|| < [|z*T' — 2F|| + ||2* — zF||, ||2**! — z*|| <
||zt — k|| 4 ||zF —Z*|| and ||z* T —z*|| = oF]||d¥]|, we see from (3.25), and sup,, o < oo

(since sup, af < o) that the right-hand side of (3.28) is bounded above by

Cr (I*11” = apx (2% T*) + [ldi (24 N)|1) (3.29)

for all £ > l;:, where C] > 0 is some constant depending on L, 7,6, v, sup, of only.
By (3.15), we have

1

M|d¥||? < d¥T HEGE < —— A% V. (3.30)

By (3.23) and (3.24), we also have
52

||d1($k;/\/)||2 < (1 +1/5 + \/1 —2/5_|_ (1/@2)22_&

(—apr(a™N)) Yk
Thus, the quantity in (3.29) is bounded above by

Cy (—Ak — qpr(z*; TF) — qu(xk;N)) (3.31)
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for all k£ > E, where Cy > 0 is some constant depending on L, 7,4,6, 0, \, v, sup, o
only.
Combining (3.22) with (3.30) yields
1
(a5 74 < —A (0= 5) T HNE + ol
1 1 w

< —AF - { 0——} ——AF - — = AF (332

= max 0.0 917262 T a1 —0) (3:32)
Combining (3.6) and (3.32), we see that the quantity in (3.31) is bounded above by

—C3A*

all £ > l::, where C3 > 0 is some constant depending on L,7,4,6,0, A, A, v, sup,, of
only. Thus the right-hand side of (3.28) is bounded above by —C3AF for all k > k.
Combining this with (3.16), (3.28), and inf; o > 0 (see Theorem 3.1(d)) yields

f@*) =0 < Cu(f(a*) = f(2**) Yk >k,
where C; = C3/(o inf; o*). Upon rearranging terms and using (3.27), we have

0< fl@*) -5 < (f(z*) —0) VEk >k,

so {f(z*)} converges to ¥ at least Q-linearly.

Finally, by (3.16), (3.30), and ¢! — 2F = o*d*, we have

|2k +L — k|2 A
o(l—-60)\ v < f(2®) = f(a*) VE > k.

This implies

k .
"+ — 2k|| < \l%(ﬂxk) — f(zk+1)) V> k.

Since {f(z¥) — f(z**1)} — 0 at least R-linearly and sup, o < oo, this implies that

{z*} converges at least R-linearly. m

Similar to Corollary 3.1, Theorem 3.2 readily extends to any stepsize rule that
yields a uniformly bounded stepsize and a larger descent than the Armijo rule at each

iteration. An example is the limited minimization rule (3.21).



87

Corollary 3.2 Theorem 3.2 still holds if in the CGD method the iterates are instead
updated by ¥t = xF + &Fd*, where &* > 0 satisfies sup, &* < oo, f(zF + aFdF) <
f(z* + ofd¥) and z* + akd* € X for k =0,1,..., and {*} is chosen by the Armijo

rule with sup,, Ozi’fm < 0o and infy ozi’fm > 0.

Proof. The only change to the proof of Theorem 3.2 is in proving (3.29) and the last

paragraph, where we use ||z*"! — z¥|| = &¥||d*|| and sup, &F < oo instead. =
3.5 Working Set Selection

In the previous two sections, we showed that the CGD method with J* satisfying
(3.6) has desirable convergence properties. The iteration complexity of this method
depends on |J*| and the complexity of finding J*. In this section we show that a
“small” J* satisfying (3.6), for some constant 0 < v < 1, can be found “reasonably
fast” when DF is diagonal. Our approach is based on the notion of a conformal
realization [87], [89, Section 10B] of dpx(z*, N). Specifically, for any d € IR", the
support of d is supp(d) def {j e N |d; #0}. Ad € R"is conformal to d € R™ if

supp(d') C supp(d),  djd; >0Vj €N, (3.33)

i.e., the nonzero components of d’ have the same signs as the corresponding compo-
nents of d. A nonzero d € R" is an elementary vector of Null(A) if d € Null(A) and
there is no nonzero d’ € Null(A) that is conformal to d and supp(d') # supp(d). Each
elementary vector d satisfies [supp(d)| < rank(A)+1 (since any subset of rank(A) + 1
columns of A are linearly dependent) [89, Exercise 10.6].

Proposition 3.2 For any x € X, £ € {rank(A) + 1,...,n}, and diagonal D > 0,

there exists a nonempty J C N satisfying |J| < £ and

1

I < —
an(#; J) < n—f—i—lq

p(z; N). (3.34)
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Proof. Let d = dp(z;N'). We divide our argument into three cases.

Case (i) d = 0: Then gp(z; N) = 0. Thus, for any nonempty J C N with |J| < ¢,
we have from (3.5) and Lemma 3.1 with H = D that ¢p(z;J) < 0 = gp(x;N), so
(3.34) holds.

Case (ii) d # 0 and [supp(d)| < ¢: Then J = supp(d) satisfies ¢p(z;T) = qp(z; N)
and hence (3.34), as well as |J| < /.

Case (iii) d # 0 and |supp(d)| > ¢: Since d € Null(A), it has a conformal realization
[87], [89, Section 10B], namely,

for some s > 1 and some nonzero elementary vectors v* € Null(4), ¢t = 1,...,s,
conformal to d. Then for some o > 0, supp(d’) is a proper subset of supp(d) and
d' € Null(A4), where d' = d — av!. (Note that awv! is an elementary vector of Null(A),
so that |supp(av!)| < rank(A) +1 < £.) We repeat the above reduction step with d’
in place of d. Since [supp(d')| < [supp(d)| — 1, after at most |supp(d)| — ¢ reduction
steps, we obtain

d=d' +---+d, (3.35)

for some r < |supp(d)| — £ + 1 and some nonzero d* € Null(A4) conformal to d with
lsupp(d")| < ¢, t=1,...,7. Since |supp(d)| < n, we have r <n — £+ 1.

Since l—z < d < u—z, (3.35) and d* being conformal to d imply |—z < d' < u—z,
t=1,...,r. Since Ad' = 0, this implies z +d' € X, t = 1,...,r. Also, (3.5) and
(3.35) imply that

ap(T;N) = g'd+ %dTDd
I
t=1 s=1t=1
> ;ZlgTdt i %g(dt)TDdt

> 7 min {gTdt—i- %(dt)TDdt},

t=1,...,r
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where g = V f(z) and the first inequality uses (3.33) and D > 0,, being diagonal, so
that (d*)"Dd' > 0 for all s,t. Thus, if we let £ be an index ¢ attaining the above
minimum and let J = supp(d?), then | 7| < £ and

1 S (P
;(ZD(JJ;N) >g'd + §(dt)TDdt > qp(z;T),
where the second inequality uses = + d* € X and dg =0forjgJ. =

It can be seen from its proof that Proposition 3.2 still holds if the diagonal matrix
D is only positive semidefinite, provided that ¢p(z; N') > —oo (such as when X is
bounded). Thus Proposition 3.2 may be viewed as an extension of [11, Lemma 2.3]
and [58, Theorem 2, part 2| for the case of D = 0.

The proof of Proposition 3.2 suggests, for any ¢ € {rank(A)+1,...,n}, an O(n—/)-
step reduction procedure for finding a conformal realization (3.35) of d = dp(z; N)

with r <n — £+ 1 and a corresponding J satisfying |J| < ¢ and (3.34).

e In the case of m = 1 and ¢ = 2, by scaling A and dropping zero columns if
necessary, we can without loss of generality assume that A = e’ (so d has at
least one positive and one negative component) and by recursively subtracting
a from a positive component d; and adding « to a negative component d;, where

a = min{d;, —d,}, we can find such a conformal realization in O(n) operations.

e In the case of m = 2 and ¢ = 3, the preceding procedure can be extended, by
using sorting, to find such a conformal realization in O(nlogn) operations. For

brevity we omit the details.

e In general, each step of the reduction procedure requires finding a nonzero
v € Null(A) with |supp(v)| < ¢ and conformal to a given d € Null(A) with
|supp(d)| > £. This can be done in O(m?3(n — £)) operations as follows: Choose
any J C supp(d) with |J| = m + 1. Find a nonzero w € Null(A) with w; = 0

for all j ¢ J. This can be done in O(m3) operations using Gaussian elimination.
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Then for some a € IR, supp(d') is a proper subset of supp(d) and d’' € Null(4),
where d = d — aw. Repeat this with d' in place of d. The number of repetitions
is at most supp(d) — £ < n — £. The overall time complexity of this reduction

procedure is O(m?(n — £)?) operations.

For diagonal D > 0 and m = 1, dp(z;N) can be found by solving a continuous
quadratic knapsack problem in O(n) operations; see [8, 52] and references therein.
For diagonal D > 0 and m > 1, dp(x; ') can be found using an algorithm described
by Berman, Kovoor and Pardalos [4], which reportedly requires only O(n) operations
for each fixed m.

By combining the above observations, we conclude that, for m =1 and £ = 2, a
working set J satisfying |J| < £ and (3.34) can be found in O(n) operations. For
m = 2 and £ = 3, such a working set [J can be found in O(nlogn) operations. For
m > 1 and ¢ € {rank(A) + 1,...,n}, such a working set J can be found in O(n?)
operations, where the constant in O(-) depends on m. It is an open question whether

such a J can be found in O(n) operations for a fixed m > 2.

3.6 Numerical Experience on SVM QP

In order to better understand its practical performance, we have implemented the
CGD method in Fortran to solve the SVM QP (1.7)-(1.8), with the working set
chosen as described in Section 3.5. In this case, the CGD method effectively reduces
to an SMO method, so the novelty is our choice of the working set. In this section,
we describe our implementation and report our numerical experience on some large
two-class data classification problems. This is compared with LIBSVM (version 2.83),
which chooses the working set differently, but with the same cardinality of 2.

In our tests, we use C' = 1,10 and the linear kernel K(z;,2;) = z! z;, the radial
basis function kernel K (z;, z;) = exp(—7||z;i — 2;]|?), the polynomial kernel K (z;, z;) =

(v2I z;+s)%9, and the sigmoid kernel K (2;, z;) = tanh(yz! z;+s) withy = 1/p, s = 0,
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Table 3.1: Comparing LIBSVM and CGD-3pair on large two-class data classification problems
with linear kernel.

Data set n/p (o] LIBSVM CGD-3pair
iter/obj/cpu iter/obj/cpu(kcpu/gepu) /kiter
a7a 16100/122 1 64108/-5699.253/1.3 56869/-5699.246/6.3(1.7/4.0) /21296
10 713288/-56875.57/4.6 598827 /-56875.55/59.4(20.3/34.1) /228004
a8a 22696/123 1 83019/-8062.410/2.7 05522/-8062.404/16.0(4.4/10.4) /35686
10 663752/-80514.32/10.7 782559/-80514.27/106.2(35.1/61.2) /291766
a9 32561/123 1 80980/-11433.38/5.7 110602/-11433.38/27.3(7.9/17.3) /40667
10 1217122/-114237.4/24.0 1287193/-114237.4/291.4(92.9/175.8) /482716
ijennt 49990/22 1 16404/-8590.158/3.0 20297/-8590.155/6.5(2.2/4.0) /7870
10 155333/-85441.01/4.2 155274 /-85441.00/46.9(17.9/27.1) /63668
wia 24692/300 1 66382/-765.4115/0.4 72444/-765.4116/8.2(2.5/5.4)/27920
10 662877/-7008.306/1.1 626005/-7008.311/75.3(20.2/52.6) /241180

deg = 3 (cubic), the default setting for LIBSVM. For the sigmoid kernel, @) can be
indefinite.

For the test problems, we use the two-class data classification problems from the
LIBSVM data webpage (http://www.csie.ntu.edu.tw/ cjlin/libsvintools/datasets/),
for which a € {—1,1}". Due to memory limitation on our departmental Linux system,
we limit n to at most 50,000 and p to at most 300. This yields the five problems shown
in Tables 3.1 and 3.2.

Our implementation of the CGD method has the form

"t = 2F + do(2*; TF), k=0,1,...,

with |J*| = 2 always. This corresponds to the CGD method with of chosen by
the minimization rule. (The choice of H* is actually immaterial here.) As with
SMO methods, we initialize z° = 0 and, to save time, we cache the most recently
used columns of ), up to a user-specified limit maxCN, when updating the gradient
Vf(z*) = Qz* — e. In our tests, we set maxCN=5000 for ijcnnl and otherwise
maxCN=8000. We terminate the method when —qp(z*; N') < 107°.

We describe below how we choose the working set J* for the CGD method. We
fix the diagonal scaling matrix

D = diag [max{ija 10_5}]

j=1,...,n



92

Table 3.2: Comparing LIBSVM and CGD-3pair on large two-class data classification problems

with nonlinear kernel.

Data set n/p C /kernel LIBSVM CGD-3pair
iter/obj/cpu iter/obj/cpu(kcpu/gepu) /kiter
a7a 16100/122 1/rbf | 4109/-5899.071/1.3 4481/-5899.070/1.0(0.1/0.8)/1593
10/rbf | 10385/-55195.29/1.4 16068/-55195.30/2.0(0.5/1.4) /5834
1/poly | 4149/-7720.475/1.1 4470/-7720.478/0.8(0.1/0.6) /1536
10/poly 4153/-67778.17/1.2 4593/-67778.17/0.8(0.1/0.6) /1599
1/sig 3941/-6095.529/1.7 4201/-6095.529/1.2(0.1/1.0)/1474
10/sig | 9942/-57878.56/1.7 10890/-57878.57/1.8(0.3/1.3) /4211
a8a 22696/123 1/rbf |  5641/-8249.503/2.6 6293/-8249.504/2.1(0.2/1.6) /2222
10/rbf 15469/-77831.16/2.7 26137/-77831.16/4.8(1.1/3.3) /9432
1/poly 5819/-10797.56/2.2 6202/-10797.57/1.7(0.3/1.2) /2133
10/poly 5656/-92870.58/2.1 6179/-92870.59/1.6(0.3/1.2)/2136
1/sig 5473/-8491.386/3.2 6172/-8491.388/2.5(0.3/2.0) /2197
10/sig 10955/-81632.40/3.3 17157/-81632.41/3.8(0.8/2.8) /6646
a%a 32561/123 1/rbf | 7975/-11596.35/5.2 8863/-11596.35/4.3(0.5/3.3) /3110
10/rbf | 21843/-110168.5/5.4 | 36925/-110168.5/10.7(2.8/7.3)/13140
1/poly | 8282/-15243.50/4.5 8777/-15243.50/3.4(0.6/2.5) /3002
10/poly 7816/-128316.3/4.0 8769/-128316.4/3.3(0.6/2.4) /3019
1/sig 7363/-11904.90/6.5 8268/-11904.90/5.1(0.5/4.1)/2897
10/sig | 15944/-115585.1/6.4 15792/-115585.1/6.5(1.1/5.0)/5859
ijonni 49990/22 1/rbf | 5713/-8148.187/4.6 6688/-8148.187/3.8(0.7/2.7)/2397
10/rbf | 6415/-61036.54/3.5 12180/-61036.54/4.8(1.3/3.2) /4570
1/poly 5223/-9693.566/2.5 7156/-9693.620/3.1(0.9/2.0) /2580
10/poly 5890/-95821.99/2.9 7987/-95822.02/3.3(1.0/2.1)/2949
1/sig 6796/-9156.916/7.0 6856/-9156.916/5.0(0.8/3.9)/2452
10/sig 10090/-88898.40/6.4 12420/-88898.39/6.5(1.4/4.7) /4975
wTa 24692/300 1/tbf | 1550/-1372.011/0.4 1783/-1372.010/0.5(0.1/0.4) /731
10/rbf 4139/-10422.69/0.4 4491/-10422.70/0.8(0.2/0.6) /1792
1/poly 758/-1479.816/0.1 2297/-1479.825/0.5(0.1/0.4) /871
10/poly 1064/-14782.40/0.2 3591/-14782.53/0.7(0.2/0.5) /1347
1/sig 1477/-1427.453/0.4 2020/-1427.455/0.4(0.1/0.3) /796
10/sig 2853/-11668.85/0.3 5520/-11668.86/0.9(0.2/0.6)/2205

(We also experimented with D = I, but this resulted in worse performance.) At
the initial iteration and at certain subsequent iterations k, we compute dp(z*, N)
and ¢p(z¥; N') by using a linear-time Fortran code k1vfo provided to us by Krzysztof
Kiwiel, as described in [52], to solve the corresponding continuous quadratic knapsack
problem. Then we find a conformal realization of dp(z*, N') using the linear-time
reduction procedure described in Section 3.5. By Proposition 3.2, there exists at least

one elementary vector in this realization whose support 7 satisfies

qp(2*; J) < ap(z®; N).

n—1

From among all such J, we find the best one (i.e., has the least gg(z*; J) value) and
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make this the working set J*. (We also experimented with choosing one with the
least gp(z¥; J) value, but this resulted in worse performance.) Since the continuous
quadratic knapsack problem takes significant time to solve by k1vfo, we in addition
find from among all such J the second-best and third-best ones, if they exist. (In
our tests, they always exist.) If the second-best one is disjoint from J*, we make it
the next working set J**!, and if the third-best one is disjoint from both J* and
JF1 we make it the second-next working set J**2. (In our tests, the latter case
occurs about 85-90% of the time.) If the second-best one is not disjoint from J* but
the third-best one is, then we make the third-best one the next working set J*+1.
(We can also allow them to overlap, though the updating of V f(z*) becomes more
complicated and might not significantly improve the performance as the overlapping
case occurs only about 10-15% of the time.) This working set selection procedure is
then repeated at iteration £+ 3 or k+2 or £+ 1, depending on the case, and so on. It
is straightforward to check that the global convergence and local linear convergence
properties of the CGD method, as embodied in Theorems 3.1 and 3.2, extend to this
choice of the working set. We refer to this CGD method as CGD-3pair.

We report in Tables 3.1 and 3.2 our numerical results, showing the number of
iterations (iter), final f-value (obj), total time (cpu) in minutes. For CGD-3pair,
we also show the total time taken by kivfo to solve the knapsack problems (kcpu),
the total time to compute/cache columns of ) and update the gradient (gcpu), and
the total number of knapsack problems solved (kiter). All runs are performed on an
HP DL360 workstation, running Red Hat Linux 3.5. LIBSVM and CGD-3pair are
compiled using the Gnu C++ and F-77 compiler, respectively. From Tables 3.1 and
3.2, we see that the total number of iterations and the final f-value for CGD-3pair
are comparable (within a factor of 2) to those of LIBSVM. On the other hand, the
cpu times for CGD-3pair are much higher when the linear kernel is used, due to the
greater times spent in k1vfo and for updating the gradient. When a nonlinear kernel

is used, the cpu times for CGD-3pair are comparable to those of LIBSVM.
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In general, CGD-3pair is significantly slower than LIBSVM when the linear kernel
is used. But when a nonlinear kernel is used, CGD-3pair is comparable to LIBSVM
in speed and solution quality. This suggests that the working set choice of Section
3.5 is a viable alternative to existing choices, especially when a nonlinear kernel is
used. Conceivably CGD-3pair can be further speeded up by omitting infrequently
updated components from computation (“shrinkage”), as is done in LIBSVM and
SVM%"* and by incorporating “warm start” in the knapsack problem solver kivfo,
i.e., using a solution of the previous knapsack problem to initialize the solution of
the next knapsack problem. Recoding CGD-3pair in C++ to make use of dynamic
memory allocation and pointer structure is another direction for future research, as
are extensions to multi-class data classification.

For the SVM QP (1.7), SMO method and CGD method have the advantage that
they can be implemented to use only O(n) operations per iteration and the number
of iterations is typically O(n) or lower. By starting at z = 0, the gradient can be
computed in O(n) operations and subsequently be updated in O(n) operations. In
contrast, an interior-point method would need to start at an x > 0, so it would take
O(n?) operations just to compute the gradient, and then one needs to compute a
quantity of the form yT(pl + Q) 'y (p > 0) at each iteration to obtain the search
direction d. An exception is when () has low rank r or is the sum of a rank-r matrix
with a positive multiple of the identity matrix, such as linear SVM. Then (Qx can
be computed in O(rn) operations and (pI + @)~y can be efficiently computed using
low-rank updates [28, 29, 30].

3.7 Conclusions and Extensions

We have proposed a block-coordinate gradient descent method for linearly constrained
smooth optimization, and have established its global convergence and asymptotic lin-
ear convergence to a stationary point under mild assumptions. On SVM QP (1.7),

this method achieves linear convergence under no additional assumption, and is im-
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plementable in O(n) operations per iteration. Our preliminary numerical experience
suggests that it can be competitive with state-of-the-art SVM code on large data
classification problems when a nonlinear kernel is used.

There are many directions for future research. For example, in Section 3.5 we
mentioned that a conformal realization can be found in O(nlogn) operations when
m = 2. However, for large-scale applications such as v-SVM, this can still be slow.
Can this be improved to O(n) operations? Also, in our current implementation of the
CGD method, we use a diagonal D* when finding a working set J* satisfying (3.6).
Can we use a nondiagonal D* and still efficiently find a J* satisfying (3.6)?

The problem (1.1) and (1.6) can be generalized to the following problem:

min  f(z) + cP(x)

T€IR™

s.t. Az =0,
where ¢ > 0, P : IR" — (—o00, 00| is a proper, convex, lower semicontinuous function.
In particular, the problem (1.1) corresponds to the special case of A =0, b = 0 and

(1.6) corresponds to the special case of

0 ifl<zx<u
P(z) = (3.36)
oo else.
For example, it may be desirable to replace 0 in (3.36) with the 1-norm ||z||; to seek
a sparse SVM solution. Can the CGD method be extended to solve this more general

problem?
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Chapter 4

A (BLOCK) COORDINATE GRADIENT DESCENT
METHOD FOR LINEARLY CONSTRAINED
NONSMOOTH MINIMIZATION

In this chapter, we study the CGD method for solving (1.13). We describe the
CGD method formally and we show the global convergence and asymptotic conver-
gence rate of the method. We extend the convergence rate result for the CGD method
for solving (1.1) and (1.6) to the problem (1.13) when the coordinate block is chosen
by a Gauss-Southwell-type rule. We show that, in the case where P is polyhedral, this
rule can be implemented in polynomial time using Rockafellar’s notion of conformal

realization. This chapter is based on the paper [105] co-authored with P. Tseng.
4.1 (Block) Coordinate Gradient Descent Method

In this section, we describe a (block) coordinate gradient descent method for solving
(1.6). In CGD method, we use V f(z) to build a quadratic approximation of f at x
and apply coordinate descent to generate an improving feasible direction d at . More
precisely, we choose a nonempty subset J C A and a symmetric matrix H € IR"*"
(approximating the Hessian V2f(z)), and move z along the direction d = dg(x; J),

where

dp (2, J) %< a;"%drél)i(n{ Vf(z)'d+ %dTHd—i- cP(x+d)—cP(z) | dj=0Vj ¢ j} i

(4.1)
where X = {z | | <z < u, Az = b}. Here dy(z;J) depends on H through H;s
only. To ensure that dy(z; J) is well defined, we assume that H; is positive definite

on Null(47) or, equivalently, BLH77Bs > 0,, where A; denotes the submatrix of
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A comprising columns indexed by J and Bs is a matrix whose columns form an
orthonormal basis for Null(A 7). The direction (4.1) reduces to those used in Chapter
2 and 3 when X =R" or P = 0.

Using the convexity of P and the set X, we have the following lemma, analogous

to Lemmas 2.1 and 3.1, showing that d is a descent direction at z whenever d # 0.

Lemma 4.1 For any x € X NdomP, nonempty J C N and symmetric H € IR"*"
with BYHy7Bg > 0y, let d = dy(2; J) and g = V f(z). Then

g"d+cP(z+d) — cP(z) < —d"Hd < —Auin (BT Hz7B7)||d||*. (4.2)
Proof. For any «a € (0, 1), we have from (4.1) and the convexity of P and X that
gtd+ %dTHd +cP(x+d) < g% (ad)+ %(ad)TH(ad) + cP(z + ad)
< ag'd+ %aszHd—i— acP(x + d) + (1 — a)cP(z).
Rearranging terms yields
(1= a)gTd+ (1 — a)(cP(z +d) — cP(z)) + %(1 _ o)dTHA < 0.

Since 1 —a? = (1 —a)(1+ «), dividing both sides by 1 —a > 0 and then taking a1 1
prove the first inequality in (4.2). Since d7 € Null(A7) so that d;y = Bsy for some

vector y, we have
d"Hd=y"B;Hz7B7y > ||y|"Auin(B7Hy5B7) = ||d||* Amin(By Hy7 By),

where the second equality uses BL By = I. This proves the second inequality in (4.2).

We next choose a stepsize a > 0 so that ' = x+ad achieves sufficient descent, and
re-iterate. We now describe formally the block-coordinate gradient descent method.

CGD method:
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nonsmooth setting to choose a*. The following adaptation of the Armijo rule, based

on Lemma 4.1 and Section 2.1, is simple, requires only function evaluations, and

Choose 2° € X NdomP. For k = 0,1, 2, ..., generate 2**! from z* according

to the iteration:

1. Choose a nonempty J*¥ C N and a symmetric H* € IR™" with

2. Solve (4.1) with z = 2%, J = J*, H = H* to obtain d* = dy«(a*; J*).

3. Choose a stepsize o > 0 and set zFt! = 2% + o*d*.

Various stepsize rules for smooth optimization [6, 32, 77] can be adapted to our

seems effective in theory and practice.

Armijo rule:

k

Choose of > 0 and let o be the largest element of {a* 57}, . satisfying
F (2 + ofd") < F.(2*) + ofFocAF and 2" + odF € X, (4.3)
where 0 < f<1,0<0<1,0<60<1,and

AP E T f () TdE + 0dF HE G+ cP (st + dF) — cP(ab).  (4.4)

Since ngHgkjkBjk = 0and 0 < < 1, we see from the convexity of P and X

and Lemma 4.1 that

F(2* +ad®) = f(z* +ad®) +cP(a(a® +d*) + (1 — a)z")

and A% < (0 — 1)d"" H*d* < 0 whenever d* # 0. Since 0 < o < 1, this shows that

o given by the Armijo rule is well defined and positive. By choosing «

< f(@* + ad®) + acP(z* + d*) + (1 — a)cP(z")

= f(a®) +aVf(@®)Td" + o(a) + a(cP(z* + d*) — cP(z")) + cP(2")

< F.(z") +aA* +0(a) Vae (0,1],

k

ini

. based on
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the previous stepsize a*~!, the number of function evaluations can be kept small in
practice. Notice that A* increases with #. Thus, larger stepsizes will be accepted if
we choose either o near 0 or € near 1.

For convergence, the index subset J* must be chosen judiciously. We will choose
J* according to the Gauss-Southwell-g rule, which was introduced in Chapter 2 for
the case of X = IR" and has been shown in Chapter 2 and 3 to be effective in theory
and practice. Specifically, let

au(z; ) & {Vf(x)Td + %dTHd +cP(z+d) — cP(a:)}d_d )’ (4.5)

which is intuitively the predicted descent when z is moved along the direction dg (z; J).

The Gauss-Southwell-g rule chooses the index subset J* to satisfy
qpr (z*; T*) < v qpr(a*; N), (4.6)

where D* = 0 (typically diagonal) and 0 < v < 1. (In fact, it suffices that B, D¥ By >
0 for our analysis.) We will discuss in Section 4.4 how to efficiently implement this

rule when P is polyhedral.
4.2 Properties of search direction

In this section we derive various properties of the search direction dg(z;J) and the

corresponding predicted descent gg(z;J). These properties will be used in later

sections to analyze the convergence rate and the complexity of the CGD method.
The following lemma shows that ||dy (z; J)|| changes not too fast with the quadratic

coefficients H. It will be used to prove Theorem 4.2.

Lemma 4.2 For any x € X NdomP, nonempty J C N, and symmetric matrices
H H € R™™ satisfying U > 0, and U > 0,, where U = BYH;7Bs and U =
BYH;4By. Let d = dy(v; J) and d = d(x; J). Then

5 1 —+ )\max(S) + \/1 — 2)\min(s) + )\max(S)2 )\max(U)
1) < ; Aan(@) 11D
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where S = U200 1/2,

Proof. Since d; = cZ,- = 0 for all j ¢ J, it suffices to prove the lemma for the case
of 7 =N. Let g = Vf(x). By the definition of d and d and applying [90, Theorem
10.1] to (1.14),
de arg;nin (9+ Hd)"u + cP(z + u) — cP(z),
de argqfnin (g + Hd)"u+ cP(z + u) — cP(z),
i.e.,
de argFin{(g + Hd)'u+cP(z +u) —cP(z) |z +u € X},
de a,rgumin{(g + Hd)"u+ cP(z +u) —cP(z) |z +ue X}
Thus
(94 Hd)Td+ cP(x +d) — cP(z) < (9+ Hd)Td+ cP(z+ d) — cP(z),
(g+ Hd)"d+ cP(z+d) —cP(z) < (g+ Hd)"d+ cP(z +d) — cP(z).

Adding the above two inequalities and rearranging terms yield
d"Hd —d"(H + H)d+d"Hd < 0.

Since d,d € Null(A), we have d = Byy and d = By§j for some vectors ¥, 7. Substi-
tuting these into the above inequality and using the definitions of U, U yield

y'Uy —y"(U+0)j+ 5 Uj <0.

Then proceeding as in the proof of Lemma 2.3 and using ||d|| = ||y||, ||d|| = ||7|| (since
BBy =I), we obtain (4.7). =

The next lemma bounds V f (z) (2’ —Z) +cP(2') —cP(Z) from above by a weighted
sum of ||z — Z||* and —qp(z; J), where 2’ = z + ad, d = di(z; J), and J satisfies a
condition analogous to (4.6). This lemma, which extends Lemma 3.4 for the case of

P =0, will be used to prove Theorem 4.2.
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Lemma 4.3 Fiz any x € X NdomP, nonempty J C N, symmetric matrices H, D €
R™" satisfying BLH77Bz > 0,, 01 = D > 0,, and

qp(z; T) < v gp(z; N), (4.8)

with 6 >0, 0 < v < 1. Then, for any T € X NdomP, 0 < a < 1, we have

(=]

§ (& — ) + cP(a!) — cP(@) < 57—l - %qp(x; 7). (4.9)

where d = dy(z;J), g = Vf(z), and 2’ = z + ad.

Proof. Since T — z is a feasible solution of the minimization subproblem (4.1) cor-

responding to A and D, we have

(T N) < g7 (@ — )+ =(Z —2)"D(Z — z) + cP(Z) — cP(x).

N =

Since 61 = D > 0,, we have 0 < (Z — 2)TD(Z — x) < §||Z — z||%. This together with
(4.8) yields

%qD(x; J)<g"(z—z)+ gH:E —z|* + ¢P(Z) — cP(x).

Rearranging terms, we have

(NGNS

g"(x — %) +cP(z) — cP(Z) < ||z — z|]* — %QD(I; J)- (4.10)
Also, by the definition of d and (4.2) in Lemma 4.1, for any o > 0 we have
a(g"d+ cP(z + d) — cP(x)) < 0.
Since P is convex so that cP(z + ad) — cP(z) < a(cP(z + d) — c¢P(z)), this implies
aghd+ cP(z + ad) — cP(z) < 0.
Adding this to (4.10) yields (4.9). =
The next lemma shows that A is bounded above by a constant multiple of qx (x; J).

It also bounds ¢y (z; J) from above by a constant multiple of gp(x; J). This lemma

will be used to prove Theorem 4.3.
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Lemma 4.4 For any x € X NdomP, nonempty J C N, and symmetric matriz
H € R™™ satisfying By Hy7Bgy > 0, the following results hold with d = dg(z; J)
and g =V f(x).

(a) Forany0<6<1,
where A = gT'd + 0dTHd + ¢P(z + d) — cP(z).
(b) For any symmetric matric D € R™™ satisfying ByDg7Bs = BYHz7By and

any 0 <w <1,

an (2 J) < qp(@; J) < waup(@; T ).
Proof. (a) If # <1/2, then d" Hd < 0 by (4.2) in Lemma 2.1, so that
1
A=qu(@; )+ (0 - 5)d" Hd < qu(; 7).
Otherwise, 1/2 < § < 1 and we have from (4.2) in Lemma 2.1 that
A
= g'd+ (20— 1)d"Hd+ (1 —0)d"Hd + cP(z + d) — cP(x)
< g"d+ (20 —1)(—g"d — cP(x + d) + cP(z))
+(1 — 0)d"Hd + cP(z + d) — cP(x)
= (2 20)qu(2; 7).
Thus A < min{1,2 — 20}qgu(x; J).
(b) Let d = dp(x; J). Then
qa(z;J) = ¢rd+ %dTHd + cP(x +d) — cP(x)
1 _ _
< gfd+ §czTHd +cP(z+d) — cP(x)
< g'd+ %CZTDd-i- cP(z +d) — cP()

= q¢p(z;T),



103

where the third step uses BLHy7Bs < B}, D77Bz. This proves the first inequality.
To prove the second inequality, we note that, by using (1.14),

qu(.I; \.7)

= i T w T ~ 7
a uj:%“vl}w{ g u+gu DutcP(z+u) cP(:v)}
1 1 ) A
= = min { g @u) + 5 (0u)" D) +w(eP( +u) - cPla)) |
1 1 ) A
b ' 5lwu)'D P —cP }
> wuj:%lg}gg{g (wu)+2(wu) (wu) + cP(z + wu) — cP(z)

1

where the inequality uses the convexity of P. m

Corollary 4.1 For any x € X NdomP, nonempty J C N, and symmetric matrices
H,D € R™™" satisfying 0, < By Hz757Bs < A and BUDs5By = 81, we have

anes7) < min {1, b (01 7).

Proof. By assumption on Hjj and Djj, we have BgHjij < %B?DJJBJ.
If 3 <1, then BYH;7B; = 3B}Ds7B; = B}Ds7By, so Lemma 4.4(b) yields
qu(z; J) < qp(x; J). If % > 1, then Lemma 4.4(b) again yields

ap(z; T).

>l >

9u(7;T) < ¢5p(;T) <
This proves the desired result. =
4.3 Convergence Rate Analysis

In this section we analyze the global convergence and asymptotic convergence rate of
the CGD method using the Gauss-Southwell-¢ rule, analogous to Theorems 2.1, 2.4
for the case X = IR", and 3.2 for the case of P = 0. Analogous to Chapter 3, we
make the following assumption on {H*} in the CGD method.
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Assumption 4.1 \ > B§kH§kjkBjk = M for all k, where 0 < A < A.

Theorem 4.1 Let {2}, {J*}, {H*}, {d*} be sequences generated by the CGD
method under Assumption 4.1, where {a¥} is chosen by the Armijo rule with infy ozi'fm >

0. Then the following results hold.
(a) {F.(z*)} is nonincreasing and A¥ given by (4.4) satisfies
AR > (1 - 0)d* HEGE > (1— 0)A||dF|]2 VE, (4.11)
F, (a2 — F,(2%) < 0afA* <0 VE. (4.12)

(b) If {J*} satisfies (4.6), 61 = D* = §I for all k, where 0 < § < 6§, and either (1)
P is continuous on X NdomP or (2) infy a® > 0 or (8) af,, =1 for all k, then

every cluster point of {x*} is a stationary point of F.

(c) If f satisfies
IVf(y) = V() < Llly -2 Vy, 2 € XNdomP, (4.13)

for some L >0, then o > min{a” , Amin{1,2X\(1 — o + 06)/L} for all k. If
limy, o0 Fo(2%) > —00 also, then {AF} — 0 and {d*} — 0.

Proof. The proof is nearly identical to that of Theorem 2.1(a), (b), (d), (f), applied
to the problem (1.14). Assumption 4.1 is weaker than Assumption 2.1, but it suffices.

Since P is separable, P is automatically continuous on domP [90, Corollary 2.37].
The next theorem establishes the convergence rate of the CGD method under As-
sumption 4.1 and the following assumption that is analogous to Assumption 2.2. In

what follows, X denotes the set of stationary points of F, and

dist(z, X) = min ||z — Z|| Vz € R".
zeX



105

Assumption 4.2 (a) X # 0 and, for any ¢ > min,F,(x), there exist scalars T > 0

and € > 0 such that

dist(z, X) < 7||dr(a; N)||  whenever x € X, F,(z) <, ||di(z; N)|| < e

ere exists a scalar p > 0 such that
(b) Th lar p h th
lz—yll > p whenever z€ X, yeX, F(z)# F.(y).

Assumption 4.2(a) is a local Lipschitzian error bound assumption, saying that the
distance from x to X is locally in the order of the norm of the residual at . Assump-
tion 4.2(b) says that the isocost surfaces of F, restricted to the solution set X are
“properly separated.” Assumption 4.2(b) holds automatically if f is convex or f is
quadratic and P is polyhedral; see Section 2.5 for further discussions. Upon applying
Theorem 2.5 to the problem (1.14), we obtain the following sufficient conditions for
Assumption 4.2(a) to hold.

Proposition 4.1 Suppose that X # () and any of the following conditions hold.

C1 f is strongly conver and satisfies (4.13) for some L > 0.
C2 f is quadratic. P is polyhedral.

C3 f(z) = g(FEz) + ¢"x for all z € R", where E € R™", g € R", and g is a
strongly convez differentiable function on R™ with Vg Lipschitz continuous on

IR™. P is polyhedral.

C4 f(z) = maxyey{(Ex)"y —g(y)} +q"x for allx € R™, where Y is a polyhedral set
im R™, B € R™", q € R", and g is a strongly convex differentiable function

on R™ with Vg Lipschitz continuous on R™. P is polyhedral.

Then Assumption 4.2(a) holds.
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The next theorem establishes, under Assumptions 4.1 and 4.2, the linear rate of
convergence of the CGD method using (4.6) to choose {J*}. Its proof, based on the
ideas in Theorem 3.2 for the case of P = 0, uses Theorem 4.1 and Lemmas 4.1, 4.2,

4.3.

Theorem 4.2 Assume that f satisfies (4.13) for some L > 0. Let {z*}, {H*}, {d*}
be sequences generated by the CGD method satisfying Assumption 4.1, where {T*} is
chosen by (4.6) with 61 = D* = &I for all k (0 < § < §). If F, satisfies Assumption
4.2 and {a¥} is chosen by the Armijo rule with supy ai’fm <1 and infy ai’fm > 0, then
either {F.(z*)} | —oco or {F.(z*)} converges at least Q-linearly and {x*} converges
at least R-linearly to a point in X.
Proof. For each k =0,1,..., (4.4) and d* = dyx(2*; J*) imply that
1 1
AF 4 (5 - 0) R ; L LR L L §d’°TH’“d’° + cP(z* + d¥) — cP (%)

1 - - -

< ¢'d + 5 (@) Hd* + cP(a* + d*) - cP(a")
1 -~ .

= ape(a ) + S (@) (HF - DY, (4.14)

where we let d* = dpr(2*; J*). By Lemma 4.2 with 7 = J*, H = H* and H = D*,

14+38/A+/1—25/X4(6/0)2 X
ldpx (z*; TH)II < v 5 5 [Edlp (4.15)
This together with (4.14) and (d*)”(H* — D¥)d* < (X — 9)||d¥||? implies that
A+ (5= 0) T HEGE < gpu (o 74) + (4.16)

Here, w € R is a constant depending on A, A, d,d only. Also, by (4.5) and Lemma 4.1
with J =N, H = D*, we have

ae(hN) = (g7 d+ %dTD’“d +P(a* +d) — P ()

< (—ldTDkd>
2 d=dp (%3N

o
~Sldps (5 NP, (417)

VAN
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where the last inequality uses D¥ > 1.

By Theorem 4.1(a), {F.(z*)} is nonincreasing. Thus either {F,(z*)} | —oc or
limy_,o F.(z¥) > —oo. Suppose the latter. Since o is chosen by the Armijo rule
with infy o® > 0, Theorem 4.1(c) implies infyo* > 0, {A¥} — 0, and {d*} —
0. Since {H*} is bounded by Assumption 4.1, we obtain from (4.16) that 0 <
limy oo inf gpr (z¥; J*). Then (4.6) and (4.17) yield {dpr(z*; N)} — 0.

By Lemma 4.2 with 7 = N, H = D* and H = I, we have

. 14+1/8+ \/12—2/5+(1/é)25

ldr (z*; M) ldp (@*; N V. (4.18)

Hence {d;(z*; N')} — 0. Since {F.(z*)} is nonincreasing, this implies that F,(z*) <
F,(z°) and ||d;(2*; N)|| < € for all kK > some k. Then, by Assumption 4.2(a), there
exist k and 7 > 0 such that

|lz* — z*|| < 7l|d; (2" N)|| Vk >k, (4.19)

where z¥ € X satisfies ||z* — z*|| = dist(z*, X). Since {d;(z*; N)} — 0, this implies
{z% — z¥} — 0. Since {z*F*! — 2%} = {a*d*} — 0, this and Assumption 4.2(b) imply
that {Z*} eventually settles down at some isocost surface of F,, i.e., there exist an

index k > [ and a scalar © such that

F.(z*)=0 Vk>Fk (4.20)

Fix any index k > k. Since z*

is a stationary point of F,, we have
V(@) (2% — %) + cP(z*) — cP(z%) > 0.
We also have from the Mean Value Theorem that
f(a*) = f(@*) = VFHT (" - 2¥),

for some 1* lying on the line segment joining z* with z*. Since z*, z* lie in the convex

set X NdomP, so does 1/*. Combining these two relations and using (4.20), we obtain

U= F(ah) < (V@) = V) (" - b
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IN

IV£(@*) = V@M=" — 2|

< L”‘rk - "z'k”Q)

where the last inequality uses (4.13), the convexity of X NdomP, and |[¢* — z¥|| <
||z*¥ — z*||. This together with {z* — ¥} — 0 proves that

im i My > o. .
hgi_l)glch(x ) >0 (4.21)
For each index k > k, we have from (4.20) that

F.(z*") -0
= [ +cP(a™) - f(a*) - cP(a")
= Vf(@EHT (@ — 7%) + cP(2F) — cP(z")
= (Vf(E") = V() (™ = 2%) + V(@) (" = 7%) + cP(a*) — eP(7¥)

- _ Y _ 1
< Lf|ER = aF et = 28]+ Sl = 2P - a2 T), (4.22)

where the second step uses the Mean Value Theorem with Z* a point lying on the
segment joining x*™! with ¥ (so that #* € X); the fourth step uses (4.13) and
Lemma 4.3. Using the inequalities ||Z* — z*|| < |25 Tt — k|| +||2* — zF ]|, ||2* T —z%|| <
||zF L — 2|+ || 2% — z*|| and ||zF Tt —2*|| = oF||d¥||, we see from (4.19), and sup, of < 1

(since sup, o < 1) that the right-hand side of (4.22) is bounded above by

Cr (Il I1” = apr (%5 T%) + lldi (25 M) (4.23)

for all £ > /;,‘, where C; > 0 is some constant depending on L, 7,d, v only.

By (4.11), we have

M|d5|)? < @+ H*a*F < —1—19A’“ Vk. (4.24)

By (4.17) and (4.18), we also have

dr (2% M) |2 < (1 +1/8+\1—2/5+ (1/@2)2 % (—gps (25 ) VE.
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Thus, the quantity in (4.23) is bounded above by
Cy (—A% = qpi(a¥; T*) — qpe (a5 ) (4.25)

for all £ > ];2, where Cy > 0 is some constant depending on L, 7,4, 4, 6, A, v only.
Combining (4.16) with (4.24) yields

_qu(.Tk;jk) < —Ak + (0_ %) dkTdek+w||dk||2

AF. (4.26)

1 1 w
< = k_ { __} k_
< A max< 0,60 5 1_0A 21 =0)

Combining (4.6) and (4.26), we see that the quantity in (4.25) is bounded above by

—C3AF

all £ > ];J, where C3 > 0 is some constant depending on L, 7, 6,6, 6, A, A, v only. Thus
the right-hand side of (4.22) is bounded above by —C3AF for all k > k. Combining
this with (4.12), (4.22), and infj, of > 0 (see Theorem 4.1(c)) yields

F(zFY) — 5 < Cy(F,(a*) — F.(z*)) Vk >k,
where Cy = C3/(oinf; o¥). Upon rearranging terms and using (4.21), we have

0< F(zF*) -5 < (F.(zF) — o) Vk >k,

so {F,(z*)} converges to ¥ at least Q-linearly.
Finally, by (4.12), (4.24), and z**! — ¥ = o*d*, we have

k+1 kaQ

(1 — )l < F(a%) — Fu(a**) Yk > k.

v

ak

This implies

k .
"+ — k|| < J%(F’C(xh) — F.(z*t1)) Vk > k.

Since {F.(z*) — F.(z¥*1)} — 0 at least R-linearly and sup, o < 1, this implies that

{z*} converges at least R-linearly. m
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The assumption (4.13) in Theorem 4.2 can be relaxed to Vf being Lipschitz
continuous on X NdomP N (X° + pB) for some ¢ > 0, where B denotes the unit
Euclidean ball in R" and X° denotes the convex hull of the level set {z | F.(z) <
F.(z%)}. For simplicity, we did not consider this more relaxed assumption.

In the proof of Theorem 4.2, we do not use the separability assumption on P.
Hence Theorem 4.2 can be extended to the case where P is nonseparable. Therefore
Theorem 4.2 is an extension of Theorem 2.4 in which we assume that P is block-

separable.
4.4 Complexity analysis when [ is convex

The following theorem is the main result of this section, giving an upper bound on the
number of iterations for the CGD method to achieve e-optimality when f is convex
with Lipschitz continuous gradient. Its proof uses Lemmas 4.1, 4.4, and Theorem

4.1(c).

Theorem 4.3 Suppose f is conver and satisfies (4.13) for some L > 0. Let {z*},
{T*}, {H*} be sequences generated by the CGD method under Assumption 4.1, where
{T*} satisfies (4.6) with 61 = D* = §I for all k (0 < § < §), and {c*} is chosen by
the Armijo rule with inf} ozi’fm > 0. Let e¥ = F.(2*) — mingex F.(x) for all k. Then
ek < e whenever

max {0, [ == In (& if € > 07r°;

el )

[C?%QEJ + max {0, [ﬁ In (%)J} +1 else,
where ™ = maxgex {dis’c(:v,)_()2 | Fo(z) < Fc(xo)}, X = argmin, y F.(z), C =
min{1,2 — 26} min{1,8/A}v, and o = min{infy o , fmin{1,2X(1 — o + 0)/L}.

Proof. For each k = 0,1,..., by (4.3), (4.6), and Corollary 4.1 with H = H* and
D = D*, and Lemma 4.4(a), we have

T — ek = F (25 — F (%) < Coafqpr(a®; N). (4.27)
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For each k = 0,1,..., and ¢t € [0,1], let ¢g* = Vf(2*) and let z*¥ € X satisfy
||z* — z*|| = dist(x*, X). Then, by using (1.14),

1 ) .
gor(z";N) = min ¢* d+ 5d" Drd+ cP(a* +d) — cP(a*)

deRn
KT ok k ﬁ—k_kT ki=k _  k

< g7tz .Z‘)+2(33 z®) D¥(z" — ")

+cP(zF + t(zF — 2%)) — cP(z*)

12 . R
< ngt(ik —*) + 5(3‘:’c — "I DF (2% — %) + teP(z%) — teP(2")
~ N 12 _ _

< t(f(@*) = f(z®) + teP(z*) — teP(z®) + Eédist(xk, X)?

12 -
= —tef + Eddist(azk, X)?
2
< —tef + —orh.
2
where the second inequality uses the convexity of P and the third inequality uses

the convexity of f. This holds for all ¢ € [0, 1]. Minimizing the right-hand side with
respect to t yields

if ef < §r0; and else

1< 1
qpr(7F; N) < —e* + 5(57“0 < —Eek.

This together with (4.27) yields that
k
ek—|—1 S ek _ C{ 30

By Theorem 4.1(c), o > a. Hence

o

k1 k
e <e"—-C=—
- oro

(k)2 = e (1 _ ci’—g(ek)) (4.28)

if e¥ < 6r%; and else

eFtl < ef — 07_6’“. (4.29)
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Case (1): If € > 6%, then (4.29) implies e* < ¢ whenever

k
e’ (1 — C%) < e’exp(—kCoa/2) < ¢

2 e ()

Here and in what follows, |-]| is the floor function.

or, equivalently,

Case (2): If € < 6r°, then (4.29) implies ef < §r° whenever

0o _ o4 P _ 5.0
e (1 02 < e exp(—koCoa/2) < or

or, equivalently,

= o on )

For each k > kg, ¥ < 670, If ¢¥ = 0, then ¥ < e. Otherwise ¢¥ > 0. Then
e/ > 0for j =0,1,...,k and we consider the reciprocals £; = 1/e’. By (4.28)
and eF > 0, we have 0 < Cie/ < 1 for j =0,1,...,k — 1, where C; = C55.
Thus (4.28) yields

1 1 Cy
- - ="t > 1 =0,1,...,k— 1.
¢i(1—Ciel) e 1—Cied = " =B

i1 —& >
Therefore & = &, + Z] ko (&1 — &) > C1(k — ko) and consequently

1 1
eF=—<

&~ Ci(k — ko)

It follows that e* < e whenever

1 or0 2 e?
> = — :
k2 kot {CleJ 1 {COQGJ +max{0’ {00@ " <5TO>J}+ :




113

If we take § = 1/2, D* = H* =T and of =1 for all k, then § =6 = A = X and

C = v, and the iteration bounds in Theorem 4.3 reduce to

@) (% max {0, In (%)}) if € > r9;
{ @) (LU—’:] + %max {0, In (j—g)}) else.

Notice that 7 = 0 whenever z° € X. If X is bounded, then it can be seen that

r0 — 0 as dist(2%, X) — 0.

4.5 Index Subset Selection

In this section we study efficient ways to find an index subset J* satisfying (4.6)
for some constant 0 < v < 1. One obvious choice is J¥ = N, which satisfies (4.6)
with v = 1. However, the corresponding search direction (4.1) may be expensive to
compute and, for SVM applications, the gradient would be expensive to update. We
will extend the procedure developed in Chapter 2, involving a conformal realization
of dpr(zF; N) [87], [89, Section 10B], to find J* of small size for the case where P is
separable. Our main result is Proposition 4.2, showing the existence of such J* by
construction.

First, we derive a lower bound on P(z+d)—P(x), based on a conformal realization

of d. This bound will be used to prove Proposition 4.2.

Lemma 4.5 For any x,z+d € XNdomP, let d be expressed asd = d*+---+d", for

some r > 1 and some nonzero d' € Null(A) conformal to d witht =1,...,r. Then

P(z +d) — Zx P(z+d') - P(z)).

Proof. Since P is separable, it suffices to prove that, for j € N,
Pi(zj+d;+--+dj) — xj>z( (; +d) — Pi(x)). (4.30)

We prove this by induction on r. This clearly holds for » = 1. Suppose (4.5) holds for
r < s, where s > 2. We show below that (4.30) holds for r = 5. If d}4---+d}~' =0,
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then (4.30) reduces to the case of » = 1 and hence holds. If df = 0, then (4.30)
reduces to the case of 7 < s and hence holds. Thus it remains to consider the case
of dj +---4+dj ' # 0and d§ # 0. Since dj,d?,...,d; are conformal to dj, either (i)
dj +---+d; ' >0and d > 0or (ii) dj +---+dj ' <0and d§ <0. In case (i), we
have z; + djl- +---+ dj_l < zj +d; and z; + dj < z; + dj, so the convexity of P, [90,

Lemma 2.12] implies

Pj(.%‘j+d}+"'+d§_l)—Pj($j) < Pj(ﬂ?j+dj)—Pj(:Ej)

d}+---+d;?*1 - d; ’
Pj(z; +dj) — Pj(x;) < Bilzj+dj) — Py(a))
s = d; '

Multiplying the above two inequalities by, respectively, djl- +-- 4 dj_l > 0 and dj >0

and summing, we have
Pi(zj+d;+---+d7") = Pi(z;) + Pi(z; + d) — Pi(z;) < Pj(x;+d;) — Pj(x;). (4.31)

In case (i), we have z; +dj +---+dj ' > z; + d; and z; + d3 > z; + d;, so the

convexity of P; implies

Pj($j+d}+"'+d;_1)—Pj(ij) > Pj(xj—l—dj)—Pj(:rj)

di+---+d5! - d; ’
Pj(z; +d3) — Pj(z;) s DBilz +dy) = Py(a))
s = d, ‘

Multiplying the above two inequalities by, respectively, d} +-o d‘;*l <0anddj <0
and summing, we again obtain (4.31). Since (4.30) holds for r < s, we also have
s—1
Pi(aj +dj -+ di7) = Pi(z;) > 32 (Pi(e; + dj) = Py(ay)).

t=1

Combining this with (4.31) proves that (4.30) holds for r =s. =

The assumption of P being separable is essential in Lemma 4.5. If we drop this

assumption, then Lemma 4.5 is false. For example, take P(z) = ||z||, A = (1,1,1),
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b=0,2z=0,and d = (1,1,-2)", let d = d* + d*> = (1,0,—1)" + (0,1, -1)%, then
2
P(z+d) - Pz)=v6<2v2=3 (P(z+d') - P(z)).
t=1
By using Lemma 4.5 and generalizing the proof of Proposition 3.2, we obtain the

following main result of this section.

Proposition 4.2 For any z € X NdomP, ¢ € {rank(A) + 1,...,n}, and diagonal
D > 0, there exists a nonempty J C N satisfying | T| < £ and

1

T < ———
ap(7;J) < n—~+1

ap(z; N). (4.32)

Proof. Let d = dp(z; N)). We divide our argument into three cases.

Case (i) d = 0: Then gp(x;N) = 0. Thus, for any nonempty J C N with |J| < ¥,
we have from (4.5) and Lemma 4.1 with H = D that gp(z; J) < 0 = ¢gp(z;N), so
(4.32) holds.

Case (ii) d # 0 and |supp(d)| < £ (see Section 3.5 for the definition of supp(d)): Then
J = supp(d) satisfies gp(z; T) = qp(z; N') and hence (4.32), as well as || < /.
Case (iii) d # 0 and |supp(d)| > ¢: Since d € Null(A), it has a conformal realization
[87], [89, Section 10B], namely,

for some s > 1 and some nonzero elementary vectors (see Section 3.5 for the definition
of a elementary vector) v* € Null(A), t =1,...,s, conformal to d (see (3.33)). Then
for some o > 0, supp(d’) is a proper subset of supp(d) and d’ € Null(A), where
d' = d—av'. (Note that av® is an elementary vector of Null(A), so that [supp(av!)| <
rank(A) + 1 < ¢.) We repeat the above reduction step with d' in place of d. Since
lsupp(d’)| < |supp(d)| — 1, after at most |supp(d)| — £ reduction steps, we obtain

d=d" +---+d, (4.33)

for some 7 < |supp(d)| — £ + 1 and some nonzero d* € Null(A4) conformal to d with
|supp(d®)| < £, ¢t=1,...,7. Since |supp(d)| < n, we have r <n — £+ 1.
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Since | —x < d < u—x, (4.33) and d' being conformal to d imply that | — z <
d<wu-—xfort=1,...,r. Since Ad"' =0, this impliesz +d' € X, t=1,...,r. Also
(4.5) and (4.33) imply that

1
ap(;N) = gld+ idTDd + cP(z+d) — cP(x)

= Z g d + % Z ij(dS)TDdt +cP (m + Z dt> — cP(z)

s=1t=1 t=1

> S gTd' + % > (d)"Dd" + cP (ac +>° dt> — cP(x)
t=1 t=1 t=1

> S gtd + % > (@) Dd' + " (cP(x +d) — cP(x))
t=1 t=1 t=1

1
> 7 min {gTdt + (@)Dl + Pz +d') - cP(as)},

t=1,...,r

where g = V f(z) and the first inequality uses (3.33) and D > 0, being diagonal, so
that (d°)TDd' > 0 for all s, ¢; the second inequality uses Lemma 4.5. Thus, if we let £

be an index ¢ attaining the above minimum and let J = supp(d’), then | 7| < £ and

1 A (. .
;qD(x;N) > gTdt + E(dt)TDdt +cP(x +d) — cP(z) > qp(z; J),

where the second inequality uses z + d* € X and dg =0forj&J. m

It can be seen from its proof that Proposition 4.2 still holds if the diagonal matrix
D is only positive semidefinite, provided that ¢p(z; V) > —oo (such as when X is
bounded).

The proof of Proposition 4.2 suggests, for any £ € {rank(A)+1,...,n}, an O(n—{)-
step reduction procedure for finding a conformal realization (4.33) of d = dp(z; N)
with r < n—/+1 and a corresponding J satisfying | 7| < £ and (4.32). In the case of
m =1 and ¢ = 2, we can find such a conformal realization in O(n) operations. In the
case of m = 2 and ¢ = 3, O(nlogn) operations are needed to find such a conformal
realization. In general, the time complexity of finding such a conformal realization is

O(m?(n — £)?) operations; see Section 3.6 for more details.
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In the case of P = 0, the problem (1.13) is a linearly constrained smooth opti-
mization. Then, for diagonal D > 0, dp(z; N') can be found in O(n) operations; see
Section 3.6 for more details.

If Pin (1.1) is polyhedral such as ||z||;, then the corresponding subproblem (4.1)
can be reformulated as a separable quadratic programming problem as described in
[69], though the dimension can be more than double. Then, for diagonal D > 0,
dp(xz; N') can be found using an algorithm described by Megiddo and Tamir [69],
which reportedly requires only O(n) operations for each fixed m.

By combining the above observations, for the case where P is separable and polyhe-
dral, we conclude that, for mm = 1 and £ = 2, an index subset J satisfying | 7| < ¢ and
(4.32) can be found in O(n) operations and, for m > 1 and ¢ € {rank(A)+1,...,n},
such an index subset J can be found in O(n?) operations, where the constant in
O(-) depends on m. It is an open question whether such a J can be found in O(n)
operations for a fixed m > 2.

In addition, if f is convex with Lipschitz continuous gradient, then, for m = 1

and ¢/ = 2, our overall complexity bound for achieving e-optimality is given by

0 (% + n2L max {0, In ( e )}) operations where by, = 112{&3%(“1 —[;). Hence

€ Nbmax

the number of operations required to be within e of the optimal value grows cubic in
the number n of variables. When specialized to the training of support vector ma-

chines, i.e., for the case where m =1, P = 0, and f is quadratic, our overall complex-

ity bound reduces to O (% + n?Amax {0, In ( ? )}) operations where A is the

Nbmax

maximum norm of the 2 x 2 principal submatrices of V2f(z). For the large quadratic
problem of the training of support vector machines, Hush and Scovel [42] proposed a
decomposition method and proved that, for any € > 0, the overall complexity bound is

O(n®Innb?

2 (° +n?A)/e) operations. This complexity bound was further improved

by List and Simon [58] to problems with general linear constraints, where they showed

nsAb2 eO
€

hax 1 p2 max {0’ In (nAbmax) }) operations.

that the overall complexity bound is O (
Our complexity bound is as good as that of List and Simon [58] for the quadratic
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problem of the training of support vector machines.

4.6 Conclusions and Extensions

We have proposed a block coordinate gradient descent method for linearly constrained
nonsmooth minimization, have established its asymptotic linear convergence to a
stationary point, and have given an upper bound on the number of iterations for the
CGD method to achieve e-optimality.

There are many directions for future research. For a diagonal D*, we can find an
index subset J* satisfying (4.6) in polynomial time if P is separable and polyhedral.
Can we use a nondiagonal D* and still efficiently find a J* satisfying (4.6)? If
P(z) = ||z||, then the Lemma 4.5 is not satisfied in general. Can a result similar
to Proposition 4.2 be proved when P(z) = ||z|| or, more generally, when P(z) is
nonseparable. Can we efficiently find an index subset if P is nonseparable?

The problem (1.13) can be generalized to the following problem:

min f(z) +cP(z)

st.  fi(x)=0,..., fu(z) =0,
where ¢ > 0, P : R" — (—o0,00] is a (separable) proper, convex, lsc function,
and fi(z),..., fm(z) are twice continuously differentiable functions. Can the CGD

method be extended to solve this more general problem?
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Chapter 5

A (BLOCK) COORDINATE GRADIENT DESCENT
METHOD FOR BI-LEVEL OPTIMIZATION

In this chapter, we study ways to dynamically adjust ¢ in (1.1) towards 0 in the
CGD method so as to solve (1.15). First, we briefly review the CGD method. Then
we describe an algorithm for solving (1.15) and show that any cluster point of the
generated iterates is a solution of the bi-level problem (1.15) if the smooth function f
is convex, the convex function P is proper, level-bounded, lsc, and the set of stationary
points of f over the domain of P is nonempty. This chapter is based on the paper

[105] co-authored with P. Tseng.
5.1 (Block) Coordinate Gradient Descent Method

In this section, we briefly review the CGD method for solving the regularized problem

(see Section 2.1 for more details):
min F(x) € f(2) + cP(x). (5.1)

In the CGD method, we use V f(x) to build a quadratic approximation of f at z and
apply coordinate descent to generate an improving direction d at x. More precisely,
we choose a nonempty index subset J C N and a symmetric matrix H > 0, (ap-
proximating the Hessian V2f(z)), and move = along the direction d = dy(z;¢; J),
where

dy(z;e; J) ¥ argmin { Vi) d+ 1dTHd +cP(x+d) — cP(x)} : (5.2)
;=0 Vj¢J 2

Notice that dy(z;c; J) depends on H only through H ;.
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For convergence, the index subset J must be chosen judiciously. We propose the

following three rules for choosing J:

e Gauss-Seidel : J cycles through {1},{2},...,{n} or, more generally, every T
consecutive such J collectively covers 1,2,...,n, where T > 1 [13, 39, 63, 78,
102].

e Gauss-Southwell-r : We choose J to satisfy
ldb(@; ¢; T)lloo = vlldp(z; ¢; M) oo,

where 0 < v <1 and D > 0, is diagonal.

e Gauss-Southwell-q : For any x € domP, nonempty J C N, and H > 0, define
qu(z; c; J) to be the optimal objective value of (5.2). Thus qg(z; c; J) estimates
the descent in F, from x to = + dy(z;¢; J). We choose J to satisfy

ap(7;6,T) < v gp(z;6N),
where 0 < v <1, D > 0, is diagonal.

The global convergence of the CGD method using the above three rules are proved
in Section 2.3.

Formally, we say that z € IR" is a stationary point of F, if x € domF, and
F.(z;d) > 0for all d € IR™. The following lemma gives an alternative characterization

of stationarity.

Lemma 5.1 For any H > 0, an x € domP is a stationary point of F, if and only
if du(z; ¢; N) = 0.

Proof. See the proof of Lemma 2.1. m
Thus, ||dg(z;¢; N)|| acts as a scaled “residual” function (with scaling matrix H),

measuring how close z comes to being stationary for F,. Hence ||dg(z;c; N)|| can be

used for a measure of current solution accuracy; see Section 5.2.
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5.2 CGD-Homotopy Method and Convergence Analysis

In this section, we describe an algorithm, which uses the CGD method to generate
an approximate solution of (5.1) for fixed ¢, for solving (1.15) and establish that any
cluster point of the generated iterates is a solution of (1.15).

For any z € domP, let
Re(z) ¥ di(z;c;N). (5.3)

Assume the set of stationary points X of (5.1) is nonempty. By the continuity of
Vf and Lemma 5.1 with H = I and ¢ = ¢, for ¥ > 0, there exists an approximate

solution z that satisfies

[Ree(2)]| < €, (5.4)
—(z+ Vf(@) Ry (z) < €. (5.5)

Our method for solving (1.15) uses similar idea as in [93] for a primal-dual interior-
point method. At each iteration k (k = 0,1,2,...), a regularization parameter cf > 0
and an accuracy tolerance €* are chosen, and the CGD method is applied to (5.1) with
¢ = ¢* until it finds an approximate solution z* satisfying the conditions (5.4) and
(5.5). Since the idea of decreasing c is reminiscent of homotopy methods for equation
solving, we call this the CGD-homotopy method.

CGD-Homotopy Method:
Choose 2° € domP, ® > 0, ® > 0. For k = 1,2, ..., generate z* from z*~!

according to the outer iteration:

1. Choose ¢ > 0 and €* > 0.

2. Compute an ¥ € domP satisfying (5.4) and (5.5) by applying the CGD

method to (5.1) with ¢ = ¢* and an initial point x = 2%,

The following lemma shows that the bi-level problem (1.15) has a solution and

the optimal objective value is finite if P is a level-bounded function and Sy # 0.
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Lemma 5.2 Suppose P is level-bounded and Sy # (. Then the minimum of P over

Sy is finite and attained on a nonempty compact subset of Sy.

Proof. Let P(z) = P(z) + ds;(x), where dg, () is the indicator function of the set
S, then P is proper because Sy C domP and Sy # 0, and it’s Isc by [90, Theorem
1.6] because its level sets of the form Sy N {z | P(z) < &} for & < oo are closed
(by virtue of the closedness of Sy and the lower semicontinuity of P). Since P is
level-bounded, sets of the form S; N {z | P(x) < ¢} for € < oo are bounded. Hence P
is level-bounded. By [90, Theorem 1.9], the minimum of P is finite and the arg min P
is nonempty and compact. Therefore the minimum of P over Sy is finite and attained

on a nonempty compact subset of Sy. =

The following theorem shows that, by letting ¢* — 0 and €* — 0 at suitable rates
in the CGD-homotopy method, every cluster point of the approximate solutions {z*}

solves (1.15).

Theorem 5.1 Assume that f is convez, P is level-bounded and Sy # 0. If we choose

c* and €* to tend to zero such that
lim & = 0, (5.6)
then every cluster point of {x*} is a solution of (1.15).

Proof. Let 2" € argmin,cg, P(z). At iteration k, we choose approximate solution
=¥ satisfying (5.4) and (5.5).
By Fermat’s rule [90, Theorem 10.1] and (5.3),

R (2%) € argmin (¢* + Ru (%)) 'd + # P(2* + d) — & P(2%),
d
where gF = V f(z*). Hence

(¢" + Rex (zF))T Ry (2%) + & P(2* + Rox (2%)) — FP(2)

< (¢ + Rae(a")" (a7 — 2*) + " P(a%) = & P(a%).
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Adding f(z*) and c*P(z*) on both sides of the above inequality and rearranging

terms yield

f(z®) + P(a* + R (2%)) + Rux ()T R ()
< (@) + (6" + R (a) " (2" — 2%) + FP(27) — (¢) R (a%).  (5.7)

Since f is convex, f(zF) + (¢*)T(z* — 2*) < f(z*). This together with (5.4), (5.5),
(5.7), and Rg (2%)T Rk (2*) > 0 implies that

f@@®) + P(a* + R (2¥))
< f(@) + R (2)" (2" — 2*) + *P(27) — (¢°) R (2¥)
< fa) R (@) [l = (2 + g7) T Rer (2*) + " P(27)
< f@@) + EFlzt|| 4 €+ FPar). (5.8)

Since z* € Sy and z* € domP, f(z*) < f(z*). This together with (5.8) implies
& P(a* + R (aF)) < éF||a*|| + € + FP(z).

Dividing both sides of the above inequality by c* yields
e e

P(z*F + R (2%)) < c—k||x*|| +gt P(x™). (5.9)
Since P is level-bounded, by (5.6), {z* + Rux(z*)} is bounded as k — oo. This
together with R.(z*) — 0 (since z* satisfies (5.4)) implies that {z*} has cluster
points. By (5.8), ¢® — 0 and €* — 0, we see that any cluster point Z of {z*} satisfies
f(Z) < f(z*). Thus z € Sy. Moreover, (5.6) and (5.9) and the lsc property of P
imply P(Z) < P(z*). Thus Z solves (1.15). =

5.3 Conclusions and Extensions

We have proposed a regularization strategy for solving the bi-level problem with

the regularized problem solved by the CGD method and have established its global



124

convergence to a solution under convexity assumption on f and level-boundedness
assumption on P in addition to be proper, convex, and lsc.

Can any one of the assumptions on P in Theorem 5.1 (i.e., proper, convex, lsc,
level-bound) be dropped? The global convergence for the CGD method is still satis-
fied when f is nonconvex. Can the regularization strategy be extended to handle a

nonconvex function, i.e., f is nonconvex?
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