
A Coordinate Gradient Descent Method for Linearly Constrained
Smooth Optimization and Support Vector Machines Training 1

Paul Tseng

Department of Mathematics

University of Washington

Seattle, WA 98195, U.S.A.

E-mail: tseng@math.washington.edu

Sangwoon Yun

Department of Mathematics

University of Washington

Seattle, WA 98195, U.S.A.

E-mail: sangwoon@math.washington.edu

March 18, 2007 (2nd revision: October 7, 2008)

Abstract: Support vector machines (SVMs) training may be posed as a large quadratic

program (QP) with bound constraints and a single linear equality constraint. We propose

a (block) coordinate gradient descent method for solving this problem and, more generally,

linearly constrained smooth optimization. Our method is closely related to decomposition

methods currently popular for SVM training. We establish global convergence and, under a

local error bound assumption (which is satisfied by the SVM QP), linear rate of convergence

for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to

ensure sufficient descent. We show that, for the SVM QP with n variables, this rule can

be implemented in O(n) operations using Rockafellar’s notion of conformal realization.

Thus, for SVM training, our method requires only O(n) operations per iteration and, in

contrast to existing decomposition methods, achieves linear convergence without additional

assumptions. We report our numerical experience with the method on some large SVM QP

arising from two-class data classification. Our experience suggests that the method can be

efficient for SVM training with nonlinear kernel.

Key words. Support vector machine, quadratic program, continuous quadratic knapsack

problem, linear constraints, conformal realization, coordinate gradient descent, global con-

vergence, linear convergence rate, error bound

1This research is supported by the National Science Foundation, Grant No. DMS-0511283.

1

1 Introduction

Support vector machines (SVMs), invented by Vapnik [45], have been much used for classi-

fication and regression, including text categorization, image recognition, hand-written digit

recognition, and bioinformatics; see [7] and references therein. The problem of training

a SVM may be expressed via duality as a convex quadratic program (QP) with bound

constraints plus one equality constraint:

min
x∈<n

f(x) = 1
2
xT Qx− eT x

s.t. aT x = 0,

0 ≤ x ≤ Ce,

(1)

where a ∈ <n, 0 < C ≤ ∞, e ∈ <n is the vector of all ones, and Q ∈ <n×n is a symmetric

positive semidefinite matrix with entries of the form

Qij = aiajK(zi, zj), (2)

with K : <p × <p → < (“kernel function”), and zi ∈ <p (“ith data point”), i ∈ N def
=

{1, . . . , n}. (Here, “s.t.” is short for “subject to”.) Popular choices of K are the linear

kernel K(zi, zj) = zT
i zj (for which Q = ZT Z, with Z = [a1z1 · · · anzn], and so rankQ ≤ p)

and the radial basis function (rbf) kernel K(zi, zj) = exp(−γ‖zi−zj‖2) where γ is a constant.

Often p (“number of features”) is not large (4 ≤ p ≤ 300), n is large (n ≥ 5000), and Q is

fully dense and even indefinite; see Section 7 for more discussions.

The density and huge size of Q pose computational challenges in solving (1). Interior-

point methods cannot be directly applied, except in the case of linear kernel where Q has low

rank or Q is the sum of a low-rank matrix and a positive multiple of the identity matrix; see

[9, 10]. For nonlinear kernel, Fine and Scheinberg [11, Section 4] proposed approximating Q

by a low-rank incomplete Cholesky factorization with symmetric permutations. Recently,

Scheinberg [40] reported good numerical experience with an active-set method for SVM

problems with positive semidefinite Q and, in particular, when the rbf kernel is used. It uses

rank-one update of a Cholesky factorization of the reduced Hessian to resolve subproblems.

Earlier, Osuna et al. [33] proposed a column-generation approach which solves a sequence of

subproblems obtained from (1) by fixing some components of x at the bounds. They reported

solving problems with up to n = 100, 000 data points in 200 hours on a Sun Sparc 20. The

SVM code in [39] is based on this approach. Motivated by this approach, decomposition

methods based on iterative block-coordinate descent were subsequently developed and have

become popular for solving (1), beginning with the work of Joachims [16], Platt [35], and

others, and implemented in SVM codes such as SVMlight [16] and LIBSVM [5]. At each

iteration of such a method, called sequential minimal optimization (SMO) method by Platt,

a small index subset J ⊆ N is chosen and the objective function of (1) is minimized

with respect to the coordinates xj, j ∈ J , subject to the constraints and with the other

coordinates held fixed at their current value. This minimization needs only those entries

of Q indexed by J , which can be quickly generated using (2) and, in the case of |J | = 2,

2

has a closed form solution.2 (We need |J | ≥ 2 to satisfy the equality constraint aT x = 0.)

Such a method is simple and easy to implement, and for suitable choices of the index set

J , called working set, has good convergence properties in theory and in practice. The rows

of Q indexed by J can be cached when updating ∇f(x) at each iteration, so it need not be

recomputed from (2) and thus reduces CPU time. Although block-coordinate descent has

been well studied for bound constrained optimization (see [2, 31, 44] and references therein),

its use for linearly constrained optimization has been little studied prior to SVM.

A good choice of the working set J is crucial for speed and robustness. Platt [35] chose J
heuristically with |J | = 2. Subsequently, more systematic choices of J have been proposed

and issues such as computational complexity, global convergence, asymptotic convergence

rate, and numerical performance were studied by Joachims [16], Chang, Hsu and Lin [4],

Keerthi et al. [18, 20], Lin [22, 23, 24], Hush and Scovel [14], List and Simon [26, 27], Simon

[42], Fan et al. [8], Palagi and Sciandrone [34], Chen et al. [6], Hush et al. [15], Glamachers

and Igel [13], Lucidi et al. [28]; see Section 6.2 for a detailed comparison.

Recently, the authors [44] proposed a block-coordinate gradient descent (abbreviated as

CGD) method for minimizing the sum of a smooth function and a block-separable convex

function. This method was shown to have good convergence properties in theory and in

practice. In this paper, we extend this method to solve the SVM QP (1) and, more generally,

a linearly constrained smooth optimization problem:

min
x∈<n

f(x)

s.t. x ∈ X
def
= {x | Ax = b, l ≤ x ≤ u},

(3)

where f : <n → < is smooth (i.e., continuously differentiable), A ∈ <m×n, b ∈ <m, and

l ≤ u (possibly with −∞ or ∞ components). SVM corresponds to m = 1 while ν-SVM

corresponds to m = 2 [6, 41].3 At each iteration of our CGD method, a quadratic approx-

imation of f is minimized with respect to a subset of coordinates xj, j ∈ J , to generate

a feasible descent direction, and an inexact line search on f along this direction is made

to update the iterate. For convergence, we propose choosing J analogously to the Gauss-

Southwell-q rule in [44]; see (9). We show that each cluster point of the iterates generated by

this method is a stationary point of (3); see Theorem 4.1. Moreover, if a local error bound

on the distance to the set of stationary points X̄ of (3) holds and the isocost surfaces of f

restricted to X̄ are properly separated, then the iterates generated by our method converge

at least linearly to a stationary point of (3); see Theorem 5.1. To our knowledge, this is the

first globally convergent block-coordinate update method for general linearly constrained

smooth optimization. It has the advantage of simple iterations, and is suited for large scale

problems with n large and m small. When specialized to the SVM QP (1), our method is

similar to the modified SMO method of Chen et al. [6] and our choice of J may be viewed

as an approximate second-order version of the working set proposed by Chang, Hsu and Lin

[4] (also see (40)), whereby a separable quadratic term is added to the objective and J is

2|J | denotes the cardinality of J .
3ν-SVM replaces “−eT x” in the objective function of (1) by the constraint “eT x = ν”.

3

chosen as an approximate minimum (i.e., its objective value is within a constant factor of

the minimum value). For m = 1 and ` = 2, such J can be found in O(n) operations by

solving a continuous quadratic knapsack problem and then finding a conformal realization

[37, Section 10B] of the solution; see Section 6. Moreover, the local error bound holds

for (1) always, even if Q is indefinite; see Proposition 5.1. Thus, for SVM, our method

is implementable in O(n) operations per iteration and achieves linear convergence without

assuming strict complementarity or Q is positive definite as in previous analyses of decom-

position methods [6, 8, 23]. We report in Section 7 our numerical experience with the CGD

method on large SVM QP. Our experience suggests that the method can be competitive

with a state-of-the-art SVM code when a nonlinear kernel is used. We give conclusions and

discuss extensions in Section 8.

During the writing of this paper, Lin et al. [25] independently proposed a decomposition

method for solving the special case of (3) with m = 1. This method uses a similar line search

as our method but generates the descent direction differently, using linear approximations

of f instead of quadratic approximations and using working sets J with |J | = 2 and

xj being “sufficiently free” for some j ∈ J . Global convergence to stationary points is

shown assuming such xj is uniformly bounded away from its bounds, and improvement over

LIBSVM on test problems using the rbf kernel is reported.

In our notation, <n denotes the space of n-dimensional real column vectors, T denotes

transpose. For any x ∈ <n, xj denotes the jth component of x, and ‖x‖ =
√

xT x. For

any nonempty J ⊆ N = {1, . . . , n}, |J | denotes the cardinality of J . For any symmetric

matrices H, D ∈ <n×n, we write H º D (respectively, H Â D) to mean that H − D is

positive semidefinite (respectively, positive definite). HJJ = [Hij]i,j∈J denotes the principal

submatrix of H indexed by J . λmin(H) and λmax(H) denote the minimum and maximum

eigenvalues of H. We denote by I the identity matrix and by 0 the matrix of zero entries.

Unless otherwise specified, {xk} denotes the sequence x0, x1,

2 A Coordinate Gradient Descent Method

In our method, we use ∇f(x) to build a quadratic approximation of f at x and apply

coordinate descent to generate an improving feasible direction d at x. More precisely, we

choose a nonempty subset J ⊆ N and a symmetric matrix H ∈ <n×n (approximating the

Hessian ∇2f(x)), and move x along the direction d = dH(x;J), where

dH(x;J)
def
= arg min

d∈<n

{
∇f(x)T d +

1

2
dT Hd | x + d ∈ X, dj = 0 ∀j 6∈ J

}
. (4)

Here dH(x;J) depends on H through HJJ only. To ensure that dH(x;J) is well defined,

we assume that HJJ is positive definite on Null(AJ) (the null space of AJ) or, equivalently,

BT
JHJJBJ Â 0, where AJ denotes the submatrix of A comprising columns indexed by J

and BJ is a matrix whose columns form an orthonormal basis for Null(AJ). For (3), we

4

can choose H such that HJJ = QJJ if BT
JQJJBJ Â 0 and otherwise HJJ = QJJ + ρI

with ρ > 0 such that BT
JQJJBJ + ρI Â 0; see [6, 8] for a similar perturbation technique.

We have the following lemma, analogous to [44, Lemma 2.1], showing that d is a descent

direction at x whenever d 6= 0. We include its proof for completeness.

Lemma 2.1 For any x ∈ X, nonempty J ⊆ N and symmetric H ∈ <n×n with BT
JHJJBJ Â

0, let d = dH(x;J) and g = ∇f(x). Then

gT d ≤ −dT Hd ≤ −λmin(B
T
JHJJBJ)‖d‖2. (5)

Proof. For any α ∈ (0, 1), we have from (4) and the convexity of the set X that

gT d +
1

2
dT Hd ≤ gT (αd) +

1

2
(αd)T H(αd) = αgT d +

1

2
α2dT Hd.

Rearranging terms yields

(1− α)gT d +
1

2
(1− α2)dT Hd ≤ 0.

Since 1−α2 = (1−α)(1+α), dividing both sides by 1−α > 0 and then taking α ↑ 1 prove

the first inequality in (5). Since dJ ∈ Null(AJ) so that dJ = BJ y for some vector y, we

have

dT Hd = yT BT
JHJJBJ y ≥ ‖y‖2λmin(B

T
JHJJBJ) = ‖d‖2λmin(B

T
JHJJBJ),

where the second equality uses BT
JBJ = I. This proves the second inequality in (5).

We next choose a stepsize α > 0 so that x′ = x + αd achieves sufficient descent, and

re-iterate. We now describe formally the block-coordinate gradient descent (abbreviated as

CGD) method.

CGD method:
Choose x0 ∈ X. For k = 0, 1, 2, ..., generate xk+1 from xk according to the iteration:

1. Choose a nonempty J k ⊆ N and a symmetric Hk ∈ <n×n with BT
J kHk

J kJ kBJ k Â
0.

2. Solve (4) with x = xk, J = J k, H = Hk to obtain dk = dHk(xk;J k).

3. Set xk+1 = xk + αkdk, with αk > 0.

For the SVM QP (1), x0 = 0 is a popular choice. In general, x0 can be found by solving,

say,

min
x∈<n

{
‖Ax− b‖2 | l ≤ x ≤ u

}

5

using the CGD method, starting at l or u. Notice that BJ k is not needed if Hk Â 0.

Various stepsize rules for smooth optimization [2, 12, 32] can be adapted to choose αk. The

following adaptation of the Armijo rule [2, page 225], based on Lemma 2.1 and [44, Section

2], is simple and seems effective in theory and practice.

Armijo rule:

Choose αk
init

> 0 and let αk be the largest element of {αk
init

βj}j=0,1,... satisfying

f(xk + αkdk) ≤ f(xk) + σαk∆k and xk + αkdk ∈ X, (6)

where 0 < β < 1, 0 < σ < 1, 0 ≤ θ < 1, and

∆k def
= ∇f(xk)T dk + θdkT

Hkdk. (7)

Since BT
J kHk

J kJ kBJ k Â 0 and 0 ≤ θ < 1, we see from Lemma 2.1 that

f(xk + αdk) = f(xk) + α∇f(xk)T dk + o(α) ≤ f(xk) + α∆k + o(α) ∀α ∈ (0, 1],

and ∆k ≤ (θ − 1)dkT
Hkdk < 0 whenever dk 6= 0. Since 0 < σ < 1, this shows that αk

given by the Armijo rule is well defined and positive. This rule, like that for sequential

quadratic programming methods [2, 12, 32], requires only function evaluations. And, by

choosing αk
init

based on the previous stepsize αk−1, the number of function evaluations can

be kept small in practice. Notice that ∆k increases with θ. Thus, larger stepsizes will be

accepted if we choose either σ near 0 or θ near 1. The minimization rule or the limited

minimization rule [2, Section 2.2.1] (also see (23), (24)) can be used instead of the Armijo

rule if the minimization is relatively inexpensive, such as for a QP.

For theoretical and practical efficiency, the working set J k must be chosen judiciously

so to ensure global convergence while balancing between convergence speed and the com-

putational cost per iteration. Let us denote the optimal value of the direction subproblem

(4) by

qH(x;J)
def
=

{
∇f(x)T d +

1

2
dT Hd

}

d=dH(x;J)
. (8)

Intuitively, qH(x;J) is the predicted descent when x is moved along the direction dH(x;J).

We will choose the working set J k to achieve sufficient predicted descent, i.e.,

qDk(xk;J k) ≤ υ qDk(xk;N), (9)

where Dk Â 0 (typically diagonal) and 0 < υ ≤ 1. (In fact, it suffices that BT
NDkBN Â 0

for our analysis.) This working set choice is motivated by the Gauss-Southwell-q rule in

[44], which has good convergence properties in theory and in practice. Specifically, (9) is

identical to [44, Equation (16)] while (8) is different from but analogous to [44, Equation

(15)]. We will discuss in Section 6 how to efficiently find a “small” working set J k that

satisfies (9) for some υ. Small J k has the advantages that (i) dk is easier to compute, (ii) Hk

6

can be chosen to better approximate ∇2f(xk), and (iii) ∇f(xk+1) may be updated cheaply.

Specifically, if f is quadratic or has the partially separable form

f(x) = h(Ex) + qT x,

where h : <p → (−∞,∞] is block-separable with O(1) size blocks, q ∈ <n, and each column

of E ∈ <p×n has O(1) nonzeros, then ∇f(xk+1) can be updated from ∇f(xk) in O(|J k|n)

operations; see the last paragraph of Section 7 for further discussions.

For the SVM QP (1), one choice of J k that satisfies (9) with υ = 1/(n− ` + 1) is

J k ∈ arg min
J ′:|J ′|≤`

mind ∇f(xk)T d + 1
2
dT diag(Q)d

s.t. aT d = 0,

0 ≤ xk
j + dj ≤ C, j ∈ J ′,

dj = 0, j 6∈ J ′,

(10)

where ` ∈ {rank(A) + 1, . . . , n}; see Proposition 6.1. However, no fast way to find such J k

is known.

3 Technical preliminaries

In this section we study properties of the search direction dH(x;J) and the corresponding

predicted descent qH(x;J). These will be useful for analyzing the global convergence and

asymptotic convergence rate of the CGD method.

We say that an x ∈ X is a a stationary point of f over X if ∇f(x)T (y − x) ≥ 0 for all

y ∈ X. This is equivalent to dD(x;N) = 0 for any D Â 0; see [2, pages 229, 230].

The next lemma shows that ‖dH(x;J)‖ changes not too fast with the quadratic coeffi-

cients H. It will be used to prove Theorems 4.1 and 5.1. Recall that BJ is a matrix whose

columns form an orthonormal basis for Null(AJ).

Lemma 3.1 Fix any x ∈ X, nonempty J ⊆ N , and symmetric matrices H, H̃ ∈ <n×n

satisfying C Â 0 and C̃ Â 0, where C = BT
JHJJBJ and C̃ = BT

J H̃JJBJ . Let d = dH(x;J)

and d̃ = dH̃(x;J). Then

‖d̃‖ ≤ 1 + λmax(Q) +
√

1− 2λmin(Q) + λmax(Q)2

2

λmax(C)

λmin(C̃)
‖d‖, (11)

where Q = C−1/2C̃C−1/2.

Proof. Since dj = d̃j = 0 for all j 6∈ J , it suffices to prove the lemma for the case of

J = N . Let g = ∇f(x). By the definition of d and d̃ and [38, Theorem 8.15],

d ∈ arg min
u

{(g + Hd)T u | x + u ∈ X},
d̃ ∈ arg min

u
{(g + H̃d̃)T u | x + u ∈ X}.

7

Thus

(g + Hd)T d ≤ (g + Hd)T d̃,

(g + H̃d̃)T d̃ ≤ (g + H̃d̃)T d.

Adding the above two inequalities and rearranging terms yield

dT Hd− dT (H + H̃)d̃ + d̃T H̃d̃ ≤ 0.

Since d, d̃ ∈ Null(A), we have d = BNy and d̃ = BN ỹ for some vectors y, ỹ. Substituting

these into the above inequality and using the definitions of C, C̃ yield

yT Cy − yT (C + C̃)ỹ + ỹT C̃ỹ ≤ 0.

Then proceeding as in the proof of [44, Lemma 3.2] and using ‖d‖ = ‖y‖, ‖d̃‖ = ‖ỹ‖ (since

BT
NBN = I), we obtain (11).

The next lemma gives a sufficient condition for the stepsize to satisfy the Armijo descent

condition (6). This lemma will be used to prove Theorem 4.1(d). Its proof is similar to that

of [44, Lemma 3.4(b)] and is included for completeness.

Lemma 3.2 Suppose f satisfies

‖∇f(y)−∇f(z)‖ ≤ L‖y − z‖ ∀y, z ∈ X, (12)

for some L ≥ 0. Fix any x ∈ X, nonempty J ⊆ N , and symmetric matrix H ∈ <n×n

satisfying BT
JHJJBJ º λI with λ > 0. Then, for any σ ∈ (0, 1), θ ∈ [0, 1), and 0 ≤ α ≤

2λ(1− σ + σθ)/L with x + αd ∈ X, we have

f(x + αd)− f(x) ≤ σα(gT d + θdT Hd), (13)

where d = dH(x;J) and g = ∇f(x).

Proof. For any α ≥ 0 with x + αd ∈ X, we have from the Cauchy-Schwarz inequality that

f(x + αd)− f(x) = αgT d +
∫ 1

0
(∇f(x + tαd)−∇f(x))T (αd) dt

≤ αgT d + α
∫ 1

0
‖∇f(x + tαd)−∇f(x)‖‖d‖ dt

≤ αgT d + α2L

2
‖d‖2

= α(gT d + θdT Hd)− αθdT Hd + α2L

2
‖d‖2, (14)

8

where the third step uses (12) and x + tαd ∈ X when 0 ≤ t ≤ 1. Since λ‖d‖2 ≤ dT Hd by

Lemma 2.1, if in addition α ≤ 2λ(1− σ + σθ)/L, then

α
L

2
‖d‖2 − θdT Hd ≤ (1− σ + σθ)dT Hd− θdT Hd

= (1− σ)(1− θ)dT Hd

≤ −(1− σ)(∇f(x)T d + θdT Hd),

where the third step uses (5) in Lemma 2.1. This together with (14) yields (13).

The next lemma shows that ∇f(x)T (x′ − x̄) is bounded above by a weighted sum of

‖x − x̄‖2 and −qD(x;J), where x′ = x + αd, d = dH(x;J), and J satisfies a condition

analogous to (9). This lemma, which is new, will be needed to prove Theorem 5.1.

Lemma 3.3 Fix any x ∈ X, nonempty J ⊆ N , and symmetric matrices H, D ∈ <n×n

satisfying BT
JHJJBJ Â 0, δ̄I º D Â 0, and

qD(x;J) ≤ υ qD(x;N), (15)

with δ̄ > 0, 0 < υ ≤ 1. Then, for any x̄ ∈ X and α ≥ 0, we have

gT (x′ − x̄) ≤ δ̄

2
‖x̄− x‖2 − 1

υ
qD(x;J), (16)

where d = dH(x;J), g = ∇f(x), and x′ = x + αd.

Proof. Since x̄−x is a feasible solution of the minimization subproblem (4) corresponding

to N and D, we have

qD(x;N) ≤ gT (x̄− x) +
1

2
(x̄− x)T D(x̄− x).

Since δ̄I º D Â 0, we have 0 ≤ (x̄ − x)T D(x̄ − x) ≤ δ̄‖x̄ − x‖2. This together with (15)

yields
1

υ
qD(x;J) ≤ gT (x̄− x) +

δ̄

2
‖x̄− x‖2.

Rearranging terms, we have

gT (x− x̄) ≤ δ̄

2
‖x̄− x‖2 − 1

υ
qD(x;J). (17)

By the definition of d and Lemma 2.1, we have gT d ≤ 0. Since α ≥ 0, this implies αgT d ≤ 0.

Adding this to (17) yields (16).

9

4 Global Convergence Analysis

In this section we analyze the global convergence of the CGD method under the following

reasonable assumption on our choice of Hk.

Assumption 1 λ̄I º BT
J kHk

J kJ kBJ k º λI for all k, where 0 < λ ≤ λ̄.

First, we have the following lemma relating the optimal solution and the optimal objec-

tive value of (4) when J = J k and H = Dk. This lemma will be used to prove Theorem

4.1(c).

Lemma 4.1 For any xk ∈ X, nonempty J k ⊆ N , and δ̄I º Dk º δI (0 < δ ≤ δ̄),

k = 0, 1, . . ., if {xk} is convergent, then {dDk(xk;J k)} → 0 if and only if {qDk(xk;J k)} → 0.

Proof. Let {xk} be a convergent sequence in X. Then {∇f(xk)} is convergent by the

continuity of ∇f . If {dDk(xk;J k)} → 0, then (8) and the boundedness of {Dk} imply

{qDk(xk;J k)} → 0. Conversely, we have from (8) and (5) with H = Dk that qDk(xk;J k) ≤
−1

2
dDk(xk;J k)T DkdDk(xk;J k) ≤ − δ

2
‖dDk(xk;J k)‖2 for all k. Thus if {qDk(xk;J k)} → 0,

then {dDk(xk;J k)} → 0.

Using Lemmas 2.1, 3.1, 3.2, and 4.1, we have the following global convergence result,

under Assumption 1, for the CGD method with {J k} chosen by the Gauss-Southwell rule

(9) and {αk} chosen by the Armijo rule (6). Its proof adapts the analysis of gradient

methods for unconstrained smooth optimization [2, pages 43-45] to handle constraints and

block-coordinate updating.

Theorem 4.1 Let {xk}, {J k}, {Hk}, {dk} be sequences generated by the CGD method

under Assumption 1, where {αk} is chosen by the Armijo rule with infk αk
init

> 0. Then the

following results hold.

(a) {f(xk)} is nonincreasing and ∆k given by (7) satisfies

−∆k ≥ (1− θ)dkT
Hkdk ≥ (1− θ)λ‖dk‖2 ∀k, (18)

f(xk+1)− f(xk) ≤ σαk∆k ≤ 0 ∀k. (19)

(b) If {xk}K is a convergent subsequence of {xk}, then {αk∆k} → 0 and {dk}K → 0. If in

addition δ̄I º Dk º δI for all k, where 0 < δ ≤ δ̄, then {dDk(xk;J k)}K → 0.

(c) If {J k} is chosen by (9) and δ̄I º Dk º δI for all k, where 0 < δ ≤ δ̄, then every

cluster point of {xk} is a stationary point of (3).

10

(d) If f satisfies (12) for some L ≥ 0, then infk αk > 0. If limk→∞ f(xk) > −∞ also, then

{∆k} → 0 and {dk} → 0.

Proof. (a) The first inequality in (18) follows from (7) and Lemma 2.1. The second

inequality follows from 0 ≤ θ < 1, Lemma 2.1, and λmin(B
T
J kHk

J kJ kBJ k) ≥ λ̄. Since

xk+1 = xk + αkdk and αk is chosen by the Armijo rule (6), we have (19) and hence {f(xk)}
is nonincreasing.

(b) Let {xk}K (K ⊆ {0, 1, . . .}) be a subsequence of {xk} converging to some x̄. Since f is

smooth, f(x̄) = lim
k→∞
k∈K

f(xk). Since {f(xk)} is nonincreasing, this implies that {f(xk)} ↓ f(x̄).

Hence, {f(xk)− f(xk+1)} → 0. Then, by (19),

{αk∆k} → 0. (20)

Suppose that {dk}K 6→ 0. By passing to a subsequence if necessary, we can assume that, for

some δ > 0, ‖dk‖ ≥ δ for all k ∈ K. Then, by (18) and (20), {αk}K → 0. Since infk αk
init

> 0,

there exists some index k̄ ≥ 0 such that αk < αk
init

and αk ≤ β for all k ∈ K with k ≥ k̄.

Since xk + dk ∈ X and X is convex, the latter implies that xk + (αk/β)dk ∈ X for all k ∈ K
with k ≥ k̄. Since αk is chosen by the Armijo rule, this in turn implies that

f(xk + (αk/β)dk)− f(xk) > σ(αk/β)∆k ∀k ∈ K, k ≥ k̄.

Using the definition of ∆k, we can rewrite this as

−(1− σ)∆k + θdkT
Hkdk <

f(xk + (αk/β)dk)− f(xk)

αk/β
−∇f(xk)T dk ∀k ∈ K, k ≥ k̄.

By (18), the left-hand side is greater than or equal to ((1−σ)(1− θ)+ θ)λ‖dk‖2, so dividing

both sides by ‖dk‖ yields

((1−σ)(1−θ)+θ)λ‖dk‖ <
f(xk + α̂kdk/‖dk‖)− f(xk)

α̂k
−∇f(xk)T dk

‖dk‖ ∀k ∈ K, k ≥ k̄, (21)

where we let α̂k = αk‖dk‖/β. By (18), −αk∆k ≥ (1 − θ)λαk‖dk‖2 ≥ (1 − θ)λαk‖dk‖δ for

all k ∈ K, so (20) and (1 − θ)λ > 0 imply {αk‖dk‖}K → 0 and hence {α̂k}K → 0. Also,

since {dk/‖dk‖}K is bounded, by passing to a subsequence if necessary, we can assume that

{dk/‖dk‖}K → some d̄. Taking the limit as k ∈ K, k →∞ in the inequality (21) and using

the smoothness of f , we obtain

0 < ((1− σ)(1− θ) + θ)λδ ≤ ∇f(x̄)T d̄−∇f(x̄)T d̄ = 0,

a clear contradiction. Thus {dk}K → 0.

Suppose that, in addition, δ̄I º Dk º δI for all k. Let C̃k = BT
J kDk

J kJ kBJ k and

Ck = BT
J kHk

J kJ kBJ k . Then, for each k, δ̄I º C̃k º δI (since BT
J kBJ k = I) as well as

λ̄I º Ck º λI. Then

δ̄

λ
I º δ̄(Ck)−1 º (Ck)−1/2C̃k(Ck)−1/2 º δ(Ck)−1 º δ

λ̄
I,

11

so (11) in Lemma 3.1 yields

‖dDk(xk;J k)‖ ≤ 1 + δ̄/λ +
√

1− 2δ/λ̄ + (δ̄/λ)2

2

λ̄

δ
‖dk‖. (22)

Since {dk}K → 0, this implies {dDk(xk;J k)}K → 0.

(c) Suppose that {J k} is chosen by (9) and δ̄I º Dk º δI for all k and x̄ is a cluster

point of {xk}. Let {xk}K be a subsequence of {xk} converging to x̄. By (b), {dk}K → 0

and {dDk(xk;J k)}K → 0. By Lemma 4.1, {qDk(xk;J k)}K → 0. Since J k satisfies (9), this

implies that {qDk(xk;N)}K → 0. This together with Lemma 4.1 yields {dDk(xk;N)}K → 0.

By Lemma 3.1 with J = N , H = Dk, and H̃ = I, we have

‖dI(x
k;N)‖ ≤ 1 + 1/δ +

√
1− 2/δ̄ + (1/δ)2

2
δ̄ ‖dDk(xk;N)‖ ∀k.

Hence {dI(x
k;N)}K → 0. A continuity argument then yields that dI(x̄;N) = 0, so x̄ is a

stationary point of (3).

(d) Since αk is chosen by the Armijo rule, either αk = αk
init

or else, by Lemma 3.2 and

xk +dk ∈ X, αk/β > min{1, 2λ(1−σ+σθ)/L}. Since infk αk
init

> 0, this implies infk αk > 0.

If limk→∞ f(xk) > −∞ also, then this and (19) imply {∆k} → 0, which together with (18)

imply {dk} → 0.

Similar to the observation in [2, page 45], Theorem 4.1 readily extends to any stepsize

rule that yields a larger descent than the Armijo rule at each iteration.

Corollary 4.1 Theorem 4.1 still holds if in the CGD method the iterates are instead updated

by xk+1 = xk + α̃kdk, where α̃k ≥ 0 satisfies f(xk + α̃kdk) ≤ f(xk +αkdk) and xk + α̃kdk ∈ X

for k = 0, 1, . . ., and {αk} is chosen by the Armijo rule with infk αk
init

> 0.

Proof. It is readily seen using f(xk+1) ≤ f(xk + αkdk) that Theorem 4.1(a) holds. The

proofs of Theorem 4.1(b)–(d) remain unchanged.

For example, α̃k may be generated by the minimization rule:

α̃k ∈ arg min
α≥0

{f(xk + αdk) | xk + αdk ∈ X} (23)

or by the limited minimization rule:

α̃k ∈ arg min
0≤α≤s

{f(xk + αdk) | xk + αdk ∈ X}, (24)

where 0 < s < ∞. The latter stepsize rule yields a larger descent than the Armijo rule with

αk
init

= s. We will use the minimization rule in our numerical tests on the SVM QP; see

Section 7.

12

5 Convergence rate analysis

In this section we analyze the asymptotic convergence rate of the CGD method under the

following reasonable assumption; see [30]. In what follows, X̄ denotes the set of stationary

points of (3) and

dist(x, X̄)
def
= min

x̄∈X̄
‖x− x̄‖ ∀x ∈ <n.

Assumption 2 (a) X̄ 6= ∅ and, for any ζ ≥ minx∈Xf(x), there exist scalars τ > 0 and

ε > 0 such that

dist(x, X̄) ≤ τ‖dI(x;N)‖ whenever x ∈ X, f(x) ≤ ζ, ‖dI(x;N)‖ ≤ ε.

(b) There exists a scalar ρ > 0 such that

‖x− y‖ ≥ ρ whenever x ∈ X̄, y ∈ X̄, f(x) 6= f(y).

Assumption 2 is identical to Assumptions A and B in [30]. Assumption 2(b) says that the

isocost surfaces of f restricted to the solution set X̄ are “properly separated.” Assumption

2(b) holds automatically if f is a convex function. It also holds if f is quadratic and

X is polyhedral [29, Lemma 3.1]. Assumption 2(a) is a local Lipschitzian error bound

assumption, saying that the distance from x to X̄ is locally in the order of the norm of the

residual at x. Error bounds of this kind have been extensively studied.

Since X is polyhedral, we immediately have from [30, Theorem 2.1] the following suffi-

cient conditions for Assumption 2(a) to hold. In particular, Assumption 2(a) and (b) hold

for (1) and, more generally, any QP [29, 30].

Proposition 5.1 Suppose that X̄ 6= ∅ and any of the following conditions hold.

C1 f is strongly convex and ∇f is Lipschitz continuous on X (i.e., (12) holds for some

L ≥ 0).

C2 f is quadratic.

C3 f(x) = g(Ex) + qT x for all x ∈ <n, where E ∈ <m×n, q ∈ <n, and g is a strongly

convex differentiable function on <m with ∇g Lipschitz continuous on <m.

C4 f(x) = maxy∈Y {(Ex)T y − g(y)} + qT x for all x ∈ <n, where Y is a polyhedral set in

<m, E ∈ <m×n, q ∈ <n, and g is a strongly convex differentiable function on <m with

∇g Lipschitz continuous on <m.

Then Assumption 2(a) holds.

13

Using Theorem 4.1 and Lemmas 2.1, 3.1, and 3.3, we have the following linear conver-

gence result, under Assumptions 1, 2, and (12), for the CGD method with {J k} chosen

by (9) and {αk} chosen by the Armijo rule. Its proof adapts that of [44, Theorem 5.2]

to constrained problems. To our knowledge, this is the first linear convergence result for

a block-coordinate update method for general linearly constrained smooth optimization.

Moreover, it does not assume f is strongly convex or the stationary points satisfy strict

complementarity.

Theorem 5.1 Assume that f satisfies (12) for some L ≥ 0 and Assumption 2. Let {xk},
{Hk}, {dk} be sequences generated by the CGD method satisfying Assumption 1, where

{J k} is chosen by (9), δ̄I º Dk º δI for all k (0 < δ ≤ δ̄), and {αk} is chosen by the

Armijo rule with supk αk
init

< ∞ and infk αk
init

> 0. Then either {f(xk)} ↓ −∞ or {f(xk)}
converges at least Q-linearly and {xk} converges at least R-linearly to a point in X̄.

Proof. For each k = 0, 1, . . ., (7) and dk = dHk(xk;J k) imply that

∆k +
(

1

2
− θ

)
dkT

Hkdk = gkT
dk +

1

2
dkT

Hkdk

≤ gkT
d̃k +

1

2
(d̃k)T Hkd̃k

= qDk(xk;J k) +
1

2
(d̃k)T (Hk −Dk)d̃k

≤ qDk(xk;J k) + ω‖dk‖2, (25)

where we let gk = ∇f(xk) and d̃k = dDk(xk;J k), and the last step uses (22) and (d̃k)T (Hk−
Dk)d̃k ≤ (λ̄− δ)‖d̃k‖2. Here, ω ∈ < is a constant depending on λ̄, λ, δ̄, δ only. Also, by (8)

and Lemma 2.1 with J = N , H = Dk, we have

qDk(xk;N) =
(
gkT

d +
1

2
dT Dkd

)

d=d
Dk (xk;N)

≤
(
−1

2
dT Dkd

)

d=d
Dk (xk;N)

≤ −δ

2
‖dDk(xk;N)‖2 ∀k, (26)

where the last inequality uses Dk º δI.

By Theorem 4.1(a), {f(xk)} is nonincreasing. Thus either {f(xk)} ↓ −∞ or limk→∞ f(xk) >

−∞. Suppose the latter. Since αk is chosen by the Armijo rule with infk αk
init

> 0, Theorem

4.1(d) implies {∆k} → 0 and {dk} → 0. Since {Hk} is bounded by Assumption 1, we obtain

from (25) that 0 ≤ limk→∞ inf qDk(xk;J k). Then (9) and (26) yield {dDk(xk;N)} → 0.

By Lemma 3.1 with J = N , H = Dk and H̃ = I, we have

‖dI(x
k;N)‖ ≤ 1 + 1/δ +

√
1− 2/δ̄ + (1/δ)2

2
δ̄ ‖dDk(xk;N)‖ ∀k. (27)

14

Hence {dI(x
k;N)} → 0. Since {f(xk)} is nonincreasing, so that f(xk) ≤ f(x0), as well as

xk ∈ X, for all k. Then, by Assumption 2(a), there exist k̄ and τ > 0 such that

‖xk − x̄k‖ ≤ τ‖dI(x
k;N)‖ ∀k ≥ k̄, (28)

where x̄k ∈ X̄ satisfies ‖xk − x̄k‖ = dist(xk, X̄). Since {dI(x
k;N)} → 0, this implies

{xk − x̄k} → 0. Since {xk+1 − xk} = {αkdk} → 0, this and Assumption 2(b) imply that

{x̄k} eventually settles down at some isocost surface of f , i.e., there exist an index k̂ ≥ k̄

and a scalar ῡ such that

f(x̄k) = ῡ ∀k ≥ k̂. (29)

Fix any index k ≥ k̂. Since x̄k is a stationary point of f over X, we have

∇f(x̄k)T (xk − x̄k) ≥ 0.

We also have from the Mean Value Theorem that

f(xk)− f(x̄k) = ∇f(ψk)T (xk − x̄k),

for some ψk lying on the line segment joining xk with x̄k. Since xk, x̄k lie in the convex set

X, so does ψk. Combining these two relations and using (29), we obtain

ῡ − f(xk) ≤ (∇f(x̄k)−∇f(ψk))T (xk − x̄k)

≤ ‖∇f(x̄k)−∇f(ψk)‖‖xk − x̄k‖
≤ L‖xk − x̄k‖2,

where the last inequality uses (12) and ‖ψk−x̄k‖ ≤ ‖xk−x̄k‖. This together with {xk−x̄k} →
0 proves that

lim inf
k→∞

f(xk) ≥ ῡ. (30)

For each index k ≥ k̂, we have from (29) that

f(xk+1)− ῡ = f(xk+1)− f(x̄k)

= ∇f(x̃k)T (xk+1 − x̄k)

= (∇f(x̃k)− gk)T (xk+1 − x̄k) + gkT
(xk+1 − x̄k)

≤ L‖x̃k − xk‖‖xk+1 − x̄k‖+
δ̄

2
‖xk − x̄k‖2 − 1

υ
qDk(xk;J k), (31)

where the second step uses the Mean Value Theorem with x̃k a point lying on the segment

joining xk+1 with x̄k (so that x̃k ∈ X); the fourth step uses (12) and Lemma 3.3. Using the

inequalities ‖x̃k − xk‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄k‖, ‖xk+1 − x̄k‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄k‖
and ‖xk+1 − xk‖ = αk‖dk‖, we see from (28), and supk αk < ∞ (since supk αk

init
< ∞) that

the right-hand side of (31) is bounded above by

C1

(
‖dk‖2 − qDk(xk;J k) + ‖dI(x

k;N)‖2
)

(32)

15

for all k ≥ k̂, where C1 > 0 is some constant depending on L, τ, δ̄, υ, supk αk only.

By (18), we have

λ‖dk‖2 ≤ dkT
Hkdk ≤ − 1

1− θ
∆k ∀k. (33)

By (26) and (27), we also have

‖dI(x
k;N)‖2 ≤

(
1 + 1/δ +

√
1− 2/δ̄ + (1/δ)2

)2 δ̄2

2δ
(−qDk(xk;N)) ∀k.

Thus, the quantity in (32) is bounded above by

C2

(
−∆k − qDk(xk;J k)− qDk(xk;N)

)
(34)

for all k ≥ k̂, where C2 > 0 is some constant depending on L, τ, δ̄, δ, θ, λ, υ, supk αk only.

Combining (25) with (33) yields

−qDk(xk;J k) ≤ −∆k +
(
θ − 1

2

)
dkT

Hkdk + ω‖dk‖2

≤ −∆k −max
{
0, θ − 1

2

}
1

1− θ
∆k − ω

λ(1− θ)
∆k. (35)

Combining (9) and (35), we see that the quantity in (34) is bounded above by

−C3∆
k

all k ≥ k̂, where C3 > 0 is some constant depending on L, τ, δ̄, δ, θ, λ̄, λ, υ, supk αk only.

Thus the right-hand side of (31) is bounded above by −C3∆
k for all k ≥ k̂. Combining this

with (19), (31), and infk αk > 0 (see Theorem 4.1(d)) yields

f(xk+1)− ῡ ≤ C4(f(xk)− f(xk+1)) ∀k ≥ k̂,

where C4 = C3/(σ infk αk). Upon rearranging terms and using (30), we have

0 ≤ f(xk+1)− ῡ ≤ C4

1 + C4

(f(xk)− ῡ) ∀k ≥ k̂,

so {f(xk)} converges to ῡ at least Q-linearly.

Finally, by (19), (33), and xk+1 − xk = αkdk, we have

σ(1− θ)λ
‖xk+1 − xk‖2

αk
≤ f(xk)− f(xk+1) ∀k ≥ k̂.

This implies

‖xk+1 − xk‖ ≤
√√√√ supk αk

σ(1− θ)λ
(f(xk)− f(xk+1)) ∀k ≥ k̂.

16

Since {f(xk) − f(xk+1)} → 0 at least R-linearly and supk αk < ∞, this implies that {xk}
converges at least R-linearly.

Similar to Corollary 4.1, Theorem 5.1 readily extends to any stepsize rule that yields a

uniformly bounded stepsize and a larger descent than the Armijo rule at each iteration. An

example is the limited minimization rule (24).

Corollary 5.1 Theorem 5.1 still holds if in the CGD method the iterates are instead updated

by xk+1 = xk + α̃kdk, where α̃k ≥ 0 satisfies supk α̃k < ∞, f(xk + α̃kdk) ≤ f(xk +αkdk) and

xk + α̃kdk ∈ X for k = 0, 1, . . ., and {αk} is chosen by the Armijo rule with supk αk
init

< ∞
and infk αk

init
> 0.

Proof. The only change to the proof of Theorem 5.1 is in proving (32) and the last

paragraph, where we use ‖xk+1 − xk‖ = α̃k‖dk‖ and supk α̃k < ∞ instead.

6 Working Set Selection

In the previous two sections, we showed that the CGD method with J k satisfying (9) has

desirable convergence properties. In this section we study how to choose the working set

satisfying (9) and compare our choice with existing choices of the working set in SMO

methods for the SVM QP (1).

6.1 New working set satisfying (9)

The iteration complexity of the CGD method depends on |J k| and the complexity of finding

J k. In this subsection we show that a “small” J k satisfying (9), for some constant 0 <

υ ≤ 1, can be found “reasonably fast” when Dk is diagonal. Our approach is based on the

notion of a conformal realization [36], [37, Section 10B] of dDk(xk,N). Specifically, for any

d ∈ <n, the support of d is supp(d)
def
= {j ∈ N | dj 6= 0}. A d′ ∈ <n is conformal to d ∈ <n

if

supp(d′) ⊆ supp(d), d′jdj ≥ 0 ∀j ∈ N , (36)

i.e., the nonzero components of d′ have the same signs as the corresponding components

of d. A nonzero d ∈ <n is an elementary vector of Null(A) if d ∈ Null(A) and there is

no nonzero d′ ∈ Null(A) that is conformal to d and supp(d′) 6= supp(d). Each elementary

vector d satisfies |supp(d)| ≤ rank(A)+1 (since any subset of rank(A)+1 columns of A are

linearly dependent) [37, Exercise 10.6].

17

Proposition 6.1 For any x ∈ X, ` ∈ {rank(A) + 1, . . . , n}, and diagonal D Â 0, there

exists a nonempty J ⊆ N satisfying |J | ≤ ` and

qD(x;J) ≤ 1

n− ` + 1
qD(x;N). (37)

Proof. Let d = dD(x;N). We divide our argument into three cases.

Case (i) d = 0: Then qD(x;N) = 0. Thus, for any nonempty J ⊆ N with |J | ≤ `, we have

from (8) and Lemma 2.1 with H = D that qD(x;J) ≤ 0 = qD(x;N), so (37) holds.

Case (ii) d 6= 0 and |supp(d)| ≤ `: Then J = supp(d) satisfies qD(x;J) = qD(x;N) and

hence (37), as well as |J | ≤ `.

Case (iii) d 6= 0 and |supp(d)| > `: Since d ∈ Null(A), it has a conformal realization [36],

[37, Section 10B], namely,

d = v1 + · · ·+ vs,

for some s ≥ 1 and some nonzero elementary vectors vt ∈ Null(A), t = 1, . . . , s, conformal

to d. Then for some α > 0, supp(d′) is a proper subset of supp(d) and d′ ∈ Null(A), where

d′ = d − αv1. (Note that αv1 is an elementary vector of Null(A), so that |supp(αv1)| ≤
rank(A)+1 ≤ `.) We repeat the above reduction step with d′ in place of d. Since |supp(d′)| ≤
|supp(d)| − 1, after at most |supp(d)| − ` reduction steps, we obtain

d = d1 + · · ·+ dr, (38)

for some r ≤ |supp(d)|−`+1 and some nonzero dt ∈ Null(A) conformal to d with |supp(dt)| ≤
`, t = 1, . . . , r. Since |supp(d)| ≤ n, we have r ≤ n− ` + 1.

Since l − x ≤ d ≤ u − x, (38) and dt being conformal to d imply l − x ≤ dt ≤ u − x,

t = 1, . . . , r. Since Adt = 0, this implies x + dt ∈ X, t = 1, . . . , r. Also, (8) and (38) imply

that

qD(x;N) = gT d +
1

2
dT Dd

=
r∑

t=1

gT dt +
1

2

r∑

s=1

r∑

t=1

(ds)T Ddt

≥
r∑

t=1

gT dt +
1

2

r∑

t=1

(dt)T Ddt

≥ r min
t=1,...,r

{
gT dt +

1

2
(dt)T Ddt

}
,

where g = ∇f(x) and the first inequality uses (36) and D Â 0 being diagonal, so that

(ds)T Ddt ≥ 0 for all s, t. Thus, if we let t̄ be an index t attaining the above minimum and

let J = supp(dt̄), then |J | ≤ ` and

1

r
qD(x;N) ≥ gT dt̄ +

1

2
(dt̄)T Ddt̄ ≥ qD(x;J),

18

where the second inequality uses x + dt̄ ∈ X and dt̄
j = 0 for j 6∈ J .

It can be seen from its proof that Proposition 6.1 still holds if the diagonal matrix D

is only positive semidefinite, provided that qD(x;N) > −∞ (such as when X is bounded).

Thus Proposition 6.1 may be viewed as an extension of [4, Lemma 2.3] and [27, Theorem

2, part 2] for the case of D = 0.

The proof of Proposition 6.1 suggests, for any ` ∈ {rank(A) + 1, . . . , n}, an O(n − `)-

step reduction procedure for finding a conformal realization (38) of d = dD(x;N) with

r ≤ n− ` + 1 and a corresponding J satisfying |J | ≤ ` and (37).

• In the case of m = 1 and ` = 2, by scaling A and dropping zero columns if necessary,

we can without loss of generality assume that A = eT (so d has at least one positive and

one negative component) and by recursively subtracting α from a positive component

di and adding α to a negative component dj, where α = min{di,−dj}, we can find

such a conformal realization in O(n) operations.

• In the case of m = 2 and ` = 3, the preceding procedure can be extended, by using

sorting, to find such a conformal realization in O(n log n) operations. For brevity we

omit the details.

• In general, each step of the reduction procedure requires finding a nonzero v ∈ Null(A)

with |supp(v)| ≤ ` and conformal to a given d ∈ Null(A) with |supp(d)| > `. This

can be done in O(m3(n − `)) operations as follows: Choose any J ⊂ supp(d) with

|J | = m + 1. Find a nonzero w ∈ Null(A) with wj = 0 for all j 6∈ J . This can be

done in O(m3) operations using Gaussian elimination. Then for some α ∈ <, supp(d′)
is a proper subset of supp(d) and d′ ∈ Null(A), where d′ = d− αw. Repeat this with

d′ in place of d. The number of repetitions is at most supp(d)− ` ≤ n− `. The overall

time complexity of this reduction procedure is O(m3(n− `)2) operations.

For diagonal D Â 0 and m = 1, dD(x;N) can be found by solving a continuous quadratic

knapsack problem in O(n) operations; see [3, 21] and references therein. For diagonal D Â 0

and m > 1, dD(x;N) can be found using an algorithm described by Berman, Kovoor and

Pardalos [1], which reportedly requires only O(n) operations for each fixed m.

By combining the above observations, we conclude that, for m = 1 and ` = 2, a working

set J satisfying |J | ≤ ` and (37) can be found in O(n) operations. For m = 2 and

` = 3, such a working set J can be found in O(n log n) operations. For m ≥ 1 and

` ∈ {rank(A) + 1, . . . , n}, such a working set J can be found in O(n2) operations, where

the constant in O(·) depends on m. It is an open question whether such a J can be found

in O(n) operations for a fixed m ≥ 2.

19

6.2 Comparison with existing working sets

In this subsection we compare (9) and (10) with existing choices of the working set J at an

x ∈ X in SMO methods for the SVM QP (1).

Joachims [16] proposed the first systematic way of choosing J :

J ∈ arg min
J ′:|J ′|≤`

mind ∇f(x)T d

s.t. aT d = 0,

dj ≥ 0, if xj = 0, j ∈ J ′,
dj ≤ 0, if xj = C, j ∈ J ′,
|dj| ≤ 1, j ∈ J ′,
dj = 0, j 6∈ J ′,

(39)

where ` ≥ 2 is an even number. Such J can be found from among the lowest `/2 terms

from aj∇f(x)j, j ∈ I+(x), and the highest `/2 terms from aj∇f(x)j, j ∈ I−(x), in

O(n min{`, log n}) operations using (partial) sorting, where I+(x)
def
= {j | xj < C, aj =

1 or xj > 0, aj = −1} and I−(x)
def
= {j | xj < C, aj = −1 or xj > 0, aj = 1}. This choice is

used in the SVMlight code, with ` = 10 as the default value.

Motivated by the aforementioned work, Chang, Hsu and Lin [4] proposed an extension

of the SMO method to problems with smooth objective function, in which the working set

is chosen by

J ∈ arg min
J ′:|J ′|≤`

mind ∇f(x)T d

s.t. aT d = 0,

0 ≤ xj + dj ≤ C, j ∈ J ′,
dj = 0, j 6∈ J ′,

(40)

where ` ≥ 2. They proved global convergence for their method in that every cluster point

of the generated iterates x is a stationary point. Simon [42, Section 6] showed that, in the

case of ` = 2, a J satisfying (40) can be found in O(n) operations. For ` > 2, such J can

still be found in O(n) operations [27], though the constant in O(·) depends exponentially

in `.

Keerthi et al. [18] proposed choosing, for a fixed tolerance ε > 0, a working set J = {i, j}
satisfying

i ∈ I+(x), j ∈ I−(x), ai∇f(x)i < aj∇f(x)j − ε.

They proved that the SMO method with this choice of J terminates in a finite number of

iterations with m(x) ≥ M(x)− ε, where

m(x)
def
= min

j∈I+(x)
aj∇f(x)j, M(x)

def
= max

j∈I−(x)
aj∇f(x)j.

(Note that a feasible point x of (1) is a global minimum if and only if m(x) ≥ M(x).) In [20],

Keerthi et al. proposed a related choice of J = {i, j} with i and j attaining the minimum

20

and maximum, respectively, in the above definition of m(x) and M(x). This choice, called

“maximal violating pair” and used in LIBSVM, is equivalent to Joachim’s choice (39) with

` = 2.

The first convergence result for the SMO method using the working set (39) was given

by Lin [22], who proved that every cluster point of the generated iterates x is a global

minimum of (1), assuming minJ ′:|J ′|≤`(λmin(QJ ′J ′)) > 0. This assumption was later shown

by Lin [24] to be unnecessary if ` = 2. Under the further assumptions that Q is positive

definite and strict complementarity holds at the unique global minimum, linear convergence

was also proved [23]. List and Simon [26] proposed an extension of the SMO method to

problems with more than one linear constraint, in which the working set J is obtained from

maximizing a certain function of x and J . They proved global convergence for their method

under the same assumption on Q as Lin. Simon [42] later showed that the maximization

subproblem is NP-complete and he proposed a polynomial-time approximation algorithm

for finding J which retains the method’s global convergence property.

Hush and Scovel [14] proposed choosing J to contain a “rate certifying pair”, an example

of which is (40) with ` = 2. They proved that, for any ε > 0, the SMO method with this

choice of J terminates in O(C2n2(f(x
init

)−f(x∗)+n2Λ)/ε) iterations with f(x) ≤ f(x∗)+ε,

where x∗ is a global minimum of (1) and Λ is the maximum norm of the 2 × 2 principal

submatrices of Q. They also showed that a J satisfying (40) can be found in O(n log n)

operations. These complexity bounds were further improved by List and Simon [27] to

problems with general linear constraints, where they also showed that a J satisfying (40)

can be found in O(n) operations. Hush et al. [15] proposed a more practical choice of J ,

based on those used in [20] and [42] that achieves the same complexity bounds as in [27].

Palagi and Sciandrone [34] proposed, as a generalization of (39), choosing J to have

at most ` elements (` ≥ 2) and to contain a maximal violating pair. They also added a

proximal term τ‖x−x
current‖2 to the objective function of (1) when minimizing with respect

to xj, j ∈ J . For this modified SMO method, they proved global convergence with no

additional assumption. Chen et al. [6] then proposed a generalization of maximal violating

pair by choosing J = {i, j} with i ∈ I+(x), j ∈ I−(x) satisfying

aj∇f(x)j − ai∇f(x)i ≥ φ(M(x)−m(x)), (41)

where φ : [0,∞) → [0,∞) is any strictly increasing function satisfying φ(0) = 0 and φ(α) ≤
α for all α ≥ 0. Following [34], they also add a proximal term to the objective function,

but only when it is not strong convex with respect to xj, j ∈ J . For this modified SMO

method and allowing Q to be indefinite, they proved global convergence with no additional

assumption. Linear convergence was proved for the choice φ(α) = υα (0 < υ ≤ 1) and under

the same assumption as in [23], namely, Q is positive definite and strict complementarity

holds at the unique global minimum. While Q can be indefinite for certain kernel functions,

the QP (1), being nonconvex, can no longer be interpreted as a Lagrangian dual problem.

The working set choice (9) with m = 1, |J | = 2, D = 0, and X in (4) replaced by its

tangent cone at x is similar in spirit to (41) with φ(α) = υα.

21

Fan et al. [8] considered a version of maximal violating pair that uses 2nd-derivative

information by adding a Hessian term to the objective of (39) with ` = 2:

J ∈ arg min
J ′:|J ′|=2

mind ∇f(x)T d + 1
2
dT Qd

s.t. aT d = 0,

dj ≥ 0, if xj = 0, j ∈ J ′,
dj ≤ 0, if xj = C, j ∈ J ′,
dj = 0, j 6∈ J ′.

(42)

(This minimizes f(x + d) over all feasible directions d at x with two nonzero components.)

However, no fast way for finding such a J is known beyond checking all
(

n
2

)
subsets of

N of cardinality 2, which is too slow for SVM applications. Fan et al. [8] thus proposed

a hybrid strategy of choosing an index i from a maximal violating pair (i.e., i ∈ I+(x)

with ai∇f(x)i = m(x) or i ∈ I−(x) with ai∇f(x)i = M(x)) and then further constraining

J ′ in (42) to contain i. The resulting J can be found in O(n) operations and improved

practical performance. Moreover, such J belongs to the class of working sets studied in [6],

so the convergence results in [6] for a modified SMO method can be applied. Glamachers

and Igel [13] proposed a modification of this hybrid strategy whereby if the most recent

working set contains an i with (1− δ)C ≤ xiδC (0 < δ < 1/2, e.g., δ = 10−8), then choose

J by (42) with J ′ further constrained to contain i; otherwise choose J to be a maximal

violating pair. Glamachers and Igel showed that this choice of J belongs to the class of

working sets studied in [26], so the convergence result in [26] for the SMO method can be

applied. Motivated by this work, Lucidi et al. [28] proposed choosing the working set to

be a maximal violating pair {i, j} and, if xi, xj are strictly between their bounds after the

SMO iteration, then performing an auxiliary SMO iteration with respect to a subset J ′ of

coordinates whose corresponding columns in Q are currently cached. Global convergence

for this SMO method was proved under a sufficient descent condition on the auxiliary SMO

iteration, which holds if either Q is positive definite or |J ′| = 2.

When applied to (1), the new working set in Subsection 6.1, like those in [8, 13], has

cardinality 2 and is found using 2nd-derivative information in O(n) operations. However,

this working set is found by minimizing a separable quadratic approximation of f over the

feasible set X and then decomposing the displacement into elementary vectors and finding

the ‘best’ one, which is very different from choosing one index of the working set from a

maximal violating pair and choosing the other index to minimize descent over the set of

feasible directions. And unlike existing working sets, it yields linear convergence without

any additional assumption on (1); see Theorem 5.1.

7 Numerical Experience on the SVM QP

In order to better understand its practical performance, we have implemented the CGD

method in Fortran to solve the SVM QP (1)-(2), with the working set chosen as described

22

in Section 6. In this case, the CGD method effectively reduces to an SMO method, so the

novelty is our choice of the working set. In this section, we describe our implementation

and report our numerical experience on some large two-class data classification problems.

This is compared with LIBSVM (version 2.83), which chooses the working set differently,

but with the same cardinality of 2.

In our tests, we use C = 1, 10 and the linear kernel K(zi, zj) = zT
i zj, the radial basis

function kernel K(zi, zj) = exp(−γ‖zi − zj‖2), the polynomial kernel K(zi, zj) = (γzT
i zj +

s)deg, and the sigmoid kernel K(zi, zj) = tanh(γzT
i zj + s) with γ = 1/p, s = 0, deg = 3

(cubic), the default setting for LIBSVM. For the sigmoid kernel, Q can be indefinite.

For the test problems, we use the two-class data classification problems from the LIBSVM

data webpage http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, for which

a ∈ {−1, 1}n. Due to memory limitation on our departmental Linux system, we limit n to

at most 50,000 and p to at most 300. This yields the five problems shown in Table 1.

Our implementation of the CGD method has the form

xk+1 = xk + dQ(xk;J k), k = 0, 1, . . . ,

with |J k| = 2 always. This corresponds to the CGD method with αk chosen by the mini-

mization rule. (The choice of Hk is actually immaterial here.) As with SMO methods, we

initialize x0 = 0 and, to save time, we cache the most recently used columns of Q, up to a

user-specified limit maxCN, when updating the gradient ∇f(xk) = Qxk − e. In our tests, we

set maxCN=5000 for ijcnn1 and otherwise maxCN=8000. We terminate the method when

−qD(xk;N) ≤ 10−5.

We describe below how we choose the working set J k for the CGD method. We fix the

diagonal scaling matrix

D = diag
[
max{Qjj, 10−5}

]
j=1,...,n

.

(We also experimented with D = I, but this resulted in worse performance.) At the initial

iteration and at certain subsequent iterations k, we compute dD(xk,N) and qD(xk;N) by

using a linear-time Fortran code k1vfo provided to us by Krzysztof Kiwiel, as described in

[21], to solve the corresponding continuous quadratic knapsack problem. Then we find a

conformal realization of dD(xk,N) using the linear-time reduction procedure described in

Section 6. By Proposition 6.1, there exists at least one elementary vector in this realization

whose support J satisfies

qD(xk;J) ≤ 1

n− 1
qD(xk;N).

From among all such J , we find the best one (i.e., has the least qQ(xk;J) value) and make

this the working set J k. (We also experimented with choosing one with the least qD(xk;J)

value, but this resulted in worse performance.) Since the continuous quadratic knapsack

problem takes significant time to solve by k1vfo, we in addition find from among all such

J the second-best and third-best ones, if they exist. (In our tests, they always exist.) If

the second-best one is disjoint from J k, we make it the next working set J k+1, and if the

23

third-best one is disjoint from both J k and J k+1, we make it the second-next working set

J k+2. (In our tests, the latter case occurs about 85-90% of the time.) If the second-best

one is not disjoint from J k but the third-best one is, then we make the third-best one

the next working set J k+1. (We can also allow them to overlap, though the updating of

∇f(xk) becomes more complicated and might not significantly improve the performance

as the overlapping case occurs only about 10-15% of the time.) This working set selection

procedure is then repeated at iteration k + 3 or k + 2 or k + 1, depending on the case,

and so on. It is straightforward to check that the global convergence and asymptotic linear

convergence properties of the CGD method, as embodied in Theorems 4.1 and 5.1, extend

to this choice of the working set. We refer to this CGD method as CGD-3pair.

We report in Table 1 our numerical results, showing the number of iterations (iter), final

f -value (obj), total time (cpu) in minutes. For CGD-3pair, we also show the total time

taken by k1vfo to solve the knapsack problems (kcpu), the total time to compute/cache

columns of Q and update the gradient (gcpu), and the total number of knapsack problems

solved (kiter). All runs are performed on an HP DL360 workstation, running Red Hat Linux

3.5. LIBSVM and CGD-3pair are compiled using the Gnu C++ and F-77 3.2.3 compiler

(g++ -Wall -O3 and g77 -O), respectively. From Table 1, we see that the total number of

iterations and the final f -value for CGD-3pair are comparable (within a factor of 2) to those

of LIBSVM. On the other hand, the cpu times for CGD-3pair are much higher when the

linear kernel is used, due to the greater times spent in k1vfo and for updating the gradient.

When a nonlinear kernel is used, the cpu times for CGD-3pair are comparable to those of

LIBSVM.

In general, CGD-3pair is significantly slower than LIBSVM when the linear kernel is

used. But when a nonlinear kernel is used, CGD-3pair is comparable to LIBSVM in speed

and solution quality–except for the rbf kernel with C = 10, for which CGD-3pair is 1.5-2

times slower than LIBSVM. This suggests that the working set choice of Section 6 could be a

viable alternative to existing choices, especially when a nonlinear kernel is used. Conceivably

CGD-3pair can be further speeded up by omitting infrequently updated components from

computation (“shrinkage”), as is done in LIBSVM and SVMlight, and by incorporating

“warm start” in the knapsack problem solver k1vfo, i.e., using a solution of the previous

knapsack problem to initialize the solution of the next knapsack problem. Recoding CGD-

3pair in C++ to make use of dynamic memory allocation and pointer structure is another

direction for future research, as are extensions to multi-class data classification.

For the SVM QP (1), SMO method and CGD method have the advantage that they

can be implemented to use only O(n) operations per iteration and the number of iterations

is typically O(n) or lower. By starting at x = 0, the gradient can be computed in O(n)

operations and subsequently be updated in O(n) operations. In contrast, an interior-point

method would need to start at an x > 0, so it would take O(n2) operations just to compute

the gradient, and then one needs to compute a quantity of the form yT (ρI + Q)−1y (ρ > 0)

at each iteration to obtain the search direction d. An exception is when Q has low rank r or

is the sum of a rank-r matrix with a positive multiple of the identity matrix, such as linear

24

SVM. Then Qx can be computed in O(rn) operations and (ρI + Q)−1y can be efficiently

computed using low-rank updates [9, 10, 11]. In this case, it might be advantageous to use

larger J k in the CGD method to accelerate convergence. This is worth further exploration.

8 Conclusions and Extensions

We have proposed a block-coordinate gradient descent method for linearly constrained

smooth optimization, and have established its global convergence and asymptotic linear

convergence to a stationary point under mild assumptions. On the SVM QP (1), this

method achieves linear convergence under no additional assumption, and is implementable

in O(n) operations per iteration. Our preliminary numerical experience suggests that it can

be competitive with state-of-the-art SVM code on large data classification problems when

a nonlinear kernel is used.

There are many directions for future research. For example, in Section 6 we mentioned

that a conformal realization can be found in O(n log n) operations when m = 2. However,

for large-scale applications such as ν-SVM, this can still be slow. Can this be improved

to O(n) operations? Also, in our current implementation of the CGD method, we use a

diagonal Dk when finding a working set J k satisfying (9). Can we use a nondiagonal Dk

and still efficiently find a J k satisfying (9)?

The problem (3) and that in [44] can be generalized to the following problem:

min
x∈<n

f(x) + cP (x)

s.t. Ax = b,

where c > 0, P : <n → (−∞,∞] is a block-separable proper convex lower semicontinuous

function. In particular, the problem in [44] corresponds to the special case of A = 0, b = 0

and (3) corresponds to the special case of

P (x) =
{

0 if l ≤ x ≤ u;

∞ else.
(43)

For example, it may be desirable to replace 0 in (43) with the 1-norm ‖x‖1 to seek a sparse

SVM solution. Can the CGD method be extended to solve this more general problem?

One of the referees asked about applying the CGD method to the least-squares SVM

[43], which has the form

min
x∈<n

1

2
xT Qx− eT x +

1

2C
‖x‖2 s.t. aT x = 0,

assuming Q+ 1
C
I Â 0. This problem has a much simpler structure than (1) and in particular,

by using aT x = 0 to eliminate one of the variables, reduces to an unconstrained strictly

convex quadratic optimization problem. In [19], an SMO method is proposed and compared

25

with a conjugate gradient method. The CGD method can also be applied to this problem,

for which dD(x,N) can be obtained in closed form without solving a continuous quadratic

knapsack problem. How the CGD method performs on this problem is a topic for future

study.

Acknowledgement. We thank Krzysztof Kiwiel for providing us with k1vfo and help

with testing and debugging. We thank two referees for their helpful suggestions.

References

[1] Berman, P., Kovoor, N., and Pardalos, P. M., Algorithms for the least distance

problem, in Complexity in Numerical Optimization, P. M. Pardalos, ed., World

Scientific, Singapore, 1993, 33-56.

[2] Bertsekas, D. P., Nonlinear Programming, 2nd edition, Athena Scientific, Belmont,

1999.

[3] Brucker, P., An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett.,

3 (1984), 163-166.

[4] Chang, C.-C., Hsu, C.-W., and Lin, C.-J., The analysis of decomposition methods

for support vector machines, IEEE Trans. Neural Networks, 11 (2000), 1003-1008.

[5] Chang, C.-C. and Lin, C.-J., LIBSVM: a library for support vector machines, 2001,

available from http://www.csie.ntu.edu.tw/~cjlin/libsvm

[6] Chen, P.-H., Fan, R.-E., and Lin, C.-J., A study on SMO-type decomposition

methods for support vector machines, IEEE Trans. Neural Networks, 17 (2006),

893-908.

[7] Cristianini, N. and Shawe-Taylor, J., An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods, Cambridge University Press, Cam-

bridge, 2000.

[8] Fan, R.-E., Chen, P.-H., and Lin, C.-J., Working set selection using second order

information for training support vector machines, J. Mach. Learn. Res., 6 (2005),

1889-1918.

[9] Ferris, M. C. and Munson, T. S., Interior-point methods for massive support vector

machines, SIAM J. Optim., 13 (2003), 783-804.

[10] Ferris, M. C. and Munson, T. S., Semismooth support vector machines, Math.

Program., 101 (2004), 185-204.

26

[11] Fine, S. and Scheinberg, K., Efficient SVM training using low-rank kernel repre-

sentations, J. Mach. Learn. Res., 2 (2001), 243-264.

[12] Fletcher, R., Practical Methods of Optimization, 2nd edition, John Wiley & Sons,

Chichester, 1987.

[13] Glasmachers, T. and Igel, C., Maximum-gain working set selection for SVMs, J.

Mach. Learn. Res., 7 (2006), 1437-1466.

[14] Hush, D. and Scovel, C., Polynomial-time decomposition algorithms for support

vector machines, Mach. Learn., 51 (2003), 51-71.

[15] Hush, D., Kelly, P., Scovel, C., and Steinwart, I., QP algorithms with guaranteed

accuracy and run time for support vector machines, J. Mach. Learn. Res., 7 (2006),

733-769.

[16] Joachims, T., Making large-scale SVM learning practical, in Advances in Kernel

Methods - Support Vector Learning, B. Schólkopf, C. J. C. Burges, and A. J. Smola,

eds., MIT Press, Cambridge, MA, 1999, 169-184.

[17] Keerthi, S. S. and Gilbert, E. G., Convergence of a generalized SMO algorithm for

SVM classifier design, Mach. Learn., 46 (2002), 351-360.

[18] Keerthi, S. S. and Ong, C. J., On the role of the threshold parameter in SVM

training algorithm, Technical Report CD-00-09, Department of Mathematical and

Production Engineering, National University of Singapore, Singapore, 2000.

[19] Keerthi, S. S. and Shevade, S. K., SMO algorithm for least-squares SVM formula-

tions, Neural Comput., 15 (2003), 487-507.

[20] Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K., Improve-

ments to Platt’s SMO algorithm for SVM classifier design, Neural Comput., 13

(2001), 637-649.

[21] Kiwiel, K. C., On linear time algorithms for the continuous quadratic knapsack

problem, J. Optim. Theory Appl., 134 (2007), 549-554.

[22] Lin, C.-J., On the convergence of the decomposition method for support vector

machines, IEEE Trans. Neural Networks, 12 (2001), 1288-1298.

[23] Lin, C.-J., Linear convergence of a decomposition method for support vector ma-

chines, Technical Report, Department of Computer Science and Information Engi-

neering, Taiwan University, Taipei, Taiwan, 2001.

[24] Lin, C.-J., Asymptotic convergence of an SMO algorithm without any assumptions,

IEEE Trans. Neural Networks, 13 (2002), 248-250.

27

[25] Lin C.-J., Lucidi S., Palagi L., Risi A., and Sciandrone M., A decomposition algo-

rithm model for singly linearly constrained problems subject to lower and upper

bounds, Technical Report, DIS-Università di Roma “La Sapienza”, Rome, January

2007; to appear in J. Optim. Theory Appl.

[26] List, N. and Simon, H. U., A general convergence theorem for the decomposition

method, in Proceedings of the 17th Annual Conference on Learning Theory, 2004,

363-377.

[27] List, N. and Simon, H. U., General polynomial time decomposition algorithms,

in Lecture Notes in Computer Science Volume 3559/2005, Springer, Berlin, 2005,

308-322.

[28] Lucidi, S., Palagi, L., Risi, A., and Sciandrone, M., On the convergence of hybrid de-

composition methods for SVM training, Technical Report, DIS-Università di Roma

“La Sapienza”, Rome, July 2006; submitted to IEEE Trans. Neural Networks.

[29] Luo, Z.-Q. and Tseng, P., Error bounds and the convergence analysis of matrix

splitting algorithms for the affine variational inequality problem, SIAM J. Optim.,

2 (1992), 43-54.

[30] Luo, Z.-Q. and Tseng, P., Error bounds and convergence analysis of feasible descent

methods: a general approach, Ann. Oper. Res., 46 (1993), 157-178.

[31] Mangasarian, O. L. and Musicant, D. R., Successive overrelaxation for support

vector machines, IEEE Trans. Neural Networks, 10 (1999), 1032-1037.

[32] Nocedal, J. and Wright S. J., Numerical Optimization, Springer-Verlag, New York,

1999.

[33] Osuna, E., Freund, R., and Girosi, F., Improved training algorithm for support

vector machines, Proc. IEEE NNSP ’97, (1997).

[34] Palagi, L. and Sciandrone, M., On the convergence of a modified version of SVMlight

algorithm, Optim. Methods Softw., 20 (2005), 317-334.

[35] Platt, J., Sequential minimal optimization: A fast algorithm for training sup-

port vector machines, in Advances in Kernel Methods-Support Vector Learning,

B. Schölkopf, C. J. C. Burges, and A. J. Smola, eds. MIT Press, Cambridge, MA,

1999, 185-208.

[36] Rockafellar, R. T., The elementary vectors of a subspace of RN , in Combinatorial

Mathematics and its Applications, Proc. of the Chapel Hill Conference 1967, R. C.

Bose and T. A. Dowling, eds., Univ. North Carolina Press, Chapel Hill, NC, 1969,

104-127.

28

[37] Rockafellar, R. T., Network Flows and Monotropic Optimization, Wiley-

Interscience, New York, 1984; republished by Athena Scientific, Belmont, MA,

1998.

[38] Rockafellar, R. T. and Wets R. J.-B., Variational Analysis, Springer-Verlag, New

York, 1998.

[39] Saunders, C., Stitson, M. O., Weston, J., Bottou, L., Schölkopf., B., and Smola, A.

J., Support vector machine – reference manual, Report CSD-TR-98-03, Department

of Computer Science, Royal Holloway, University of London, Egham, UK, 1998.

[40] Scheinberg, K., An efficient implementation of an active set method for SVM, J.

Mach. Learn. Res., 7 (2006), 2237-2257.

[41] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L., New support

vector algorithms, Neural Comput., 12 (2000), 1207-1245.

[42] Simon, H. U., On the complexity of working set selection, Proceedings of the 15th

International Conference on Algorithmic Learning Theory, 2004, 324-337.

[43] Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle,

J., Least Squares Support Vector Machines, World Scientific, New Jersey, 2002.

[44] Tseng, P. and Yun S., A coordinate gradient descent method for nonsmooth sepa-

rable minimization, Math. Program. B., 117 (2009), 387-423.

[45] Vapnik, V., Estimation of Dependences Based on Empirical Data, Springer-Verlag,

New York, 1982.

29

Data set n/p C/kernel LIBSVM CGD-3pair

iter/obj/cpu iter/obj/cpu(kcpu/gcpu)/kiter

a7a 16100/122 1/lin 64108/-5699.253/1.3 56869/-5699.246/6.3(1.7/4.0)/21296

10/lin 713288/-56875.57/4.6 598827/-56875.55/59.4(20.3/34.1)/228004

1/rbf 4109/-5899.071/1.3 4481/-5899.070/1.0(0.1/0.8)/1593

10/rbf 10385/-55195.29/1.4 16068/-55195.30/2.0(0.5/1.4)/5834

1/poly 4149/-7720.475/1.1 4470/-7720.478/0.8(0.1/0.6)/1536

10/poly 4153/-67778.17/1.2 4593/-67778.17/0.8(0.1/0.6)/1599

1/sig 3941/-6095.529/1.7 4201/-6095.529/1.2(0.1/1.0)/1474

10/sig 9942/-57878.56/1.7 10890/-57878.57/1.8(0.3/1.3)/4211

a8a 22696/123 1/lin 83019/-8062.410/2.7 95522/-8062.404/16.0(4.4/10.4)/35686

10/lin 663752/-80514.32/10.7 782559/-80514.27/106.2(35.1/61.2)/291766

1/rbf 5641/-8249.503/2.6 6293/-8249.504/2.1(0.2/1.6)/2222

10/rbf 15469/-77831.16/2.7 26137/-77831.16/4.8(1.1/3.3)/9432

1/poly 5819/-10797.56/2.2 6202/-10797.57/1.7(0.3/1.2)/2133

10/poly 5656/-92870.58/2.1 6179/-92870.59/1.6(0.3/1.2)/2136

1/sig 5473/-8491.386/3.2 6172/-8491.388/2.5(0.3/2.0)/2197

10/sig 10955/-81632.40/3.3 17157/-81632.41/3.8(0.8/2.8)/6646

a9a 32561/123 1/lin 80980/-11433.38/5.7 110602/-11433.38/27.3(7.9/17.3)/40667

10/lin 1217122/-114237.4/24.0 1287193/-114237.4/291.4(92.9/175.8)/482716

1/rbf 7975/-11596.35/5.2 8863/-11596.35/4.3(0.5/3.3)/3110

10/rbf 21843/-110168.5/5.4 36925/-110168.5/10.7(2.8/7.3)/13140

1/poly 8282/-15243.50/4.5 8777/-15243.50/3.4(0.6/2.5)/3002

10/poly 7816/-128316.3/4.0 8769/-128316.4/3.3(0.6/2.4)/3019

1/sig 7363/-11904.90/6.5 8268/-11904.90/5.1(0.5/4.1)/2897

10/sig 15944/-115585.1/6.4 15792/-115585.1/6.5(1.1/5.0)/5859

ijcnn1 49990/22 1/lin 16404/-8590.158/3.0 20297/-8590.155/6.5(2.2/4.0)/7870

10/lin 155333/-85441.01/4.2 155274/-85441.00/46.9(17.9/27.1)/63668

1/rbf 5713/-8148.187/4.6 6688/-8148.187/3.8(0.7/2.7)/2397

10/rbf 6415/-61036.54/3.5 12180/-61036.54/4.8(1.3/3.2)/4570

1/poly 5223/-9693.566/2.5 7156/-9693.620/3.1(0.9/2.0)/2580

10/poly 5890/-95821.99/2.9 7987/-95822.02/3.3(1.0/2.1)/2949

1/sig 6796/-9156.916/7.0 6856/-9156.916/5.0(0.8/3.9)/2452

10/sig 10090/-88898.40/6.4 12420/-88898.39/6.5(1.4/4.7)/4975

w7a 24692/300 1/lin 66382/-765.4115/0.4 72444/-765.4116/8.2(2.5/5.4)/27920

10/lin 662877/-7008.306/1.1 626005/-7008.311/75.3(20.2/52.6)/241180

1/rbf 1550/-1372.011/0.4 1783/-1372.010/0.5(0.1/0.4)/731

10/rbf 4139/-10422.69/0.4 4491/-10422.70/0.8(0.2/0.6)/1792

1/poly 758/-1479.816/0.1 2297/-1479.825/0.5(0.1/0.4)/871

10/poly 1064/-14782.40/0.2 3591/-14782.53/0.7(0.2/0.5)/1347

1/sig 1477/-1427.453/0.4 2020/-1427.455/0.4(0.1/0.3)/796

10/sig 2853/-11668.85/0.3 5520/-11668.86/0.9(0.2/0.6)/2205

Table 1: Comparing LIBSVM and CGD-3pair on large two-class data classification prob-

lems. Here n is the number of data points; p is the dimension of the data points (i.e.,

number of features); iter, obj, and cpu are, respectively, the total number of iterations, final

f -value, and total time (in minutes); kiter and kcpu are, respectively, the total number of

knapsack problems solved and the total time (in minutes) to solve the knapsack problems;

gcpu is the total time (in minutes) to compute/cache columns of Q and update the gradient.

30

