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Outline

@ Greedy Algorithm
@ Optimization Methods for Convex Relaxation

@ Extensions



Greedy Algorithm
1. starting from x® = 0
2. iteratively constructs a k-term approximant x* by maintaining a set of
active columns and, at each stage, expanding that set by one additional
column
3. column chosen at each stage maximally reduced the ||Ax — b||2 error in
approximating b from the currently active columns
4. ||[Ax — b||2 error is evaluated:; if it now falls below a specified threshold, the
algorithm terminates.

@ Matching Pursuit
@ Orthogonal Mathing Pursuit
@ Stagewise OMP
@ Regularized OMP
°

COmpressive Sampling MP

when the solution is sparse and the columns of A sufficiently incoherent



Optimization Methods for Convex Relaxation

for ¢4 QC,
BPDN, LASSO:

@ find the full path of solutions for all nonnegative values of the scalar
parameters in the various formulations

@ only the submatrix of A corresponding to nonzero components of the
current vector x need be known explicitly, so that if x has few nonzeros,
these methods may be competitive even for problems of very large scale.

for ¢4 QC:

@ ¢y QC is solved by recasting it as a second-order cone program (SOCP),
then applying a primal log-barrier approach.

@ for each value of the log-barrier parameter, smooth unconstrained
subproblem is solved using Newton’s method with line search, where the
Newton equations may be solved using CG.



(¢4-Is) for BPDN:
@ interior-point method (with log-barrier)

@ using preconditioned conjugate gradient (PCG) for solving the linear
equations at each iteration

(GPSR) for BPDN:

@ gradient projection method for solving bound constrained quadratic
programming reformulation of BPDN:

min  1[JA(xt —x7) — b|j3 + u(eTxt +eTx7)

st xt,x= >0

@ in order to accelerate convergence, a technique based on
Barzilai-Borwein (BB) steps is used.



(IST) for BPDN:

consists of a soft-thresholding/shrinkage step and a gradient step

d* = argmin(AT(Ax¥ — b))"d + dTHKd + u||x* + d||1,
d

where H* = o/ for some positive constant «.

(FPC) for BPDN:

@ similar to IST

@ the parameter p in BPDN determines the amount of shrinkage and,

therefore, the speed of convergence

in practice, p is decreased in a continuation scheme.



(SpaRSA) for BPDN:
@ similar to IST, also like FPC, continuation is used to speed convergence

@ a Barzilai-Borwein heuristic is used for the step size « (instead of using a
pessimistic bound like the Lipschitz constant)

(FPC-AS) for BPDN:
@ extend FPC into the two-part algorithm FPC Active Set
@ in the first stage, calls FPC

@ in the second stage, use conjugate gradients (CG) or quasi-Newton
methods (e.g. L-BFGS or L-BFGS-B), for solving reduced (active set)
bound constrained problem

@ two-step process is repeated for a smaller value of 4 in a continuation
scheme



(CGD) for BPDN:

@ similar to IST

@ but use certain coordinate block to update:

d* = argmin (AT(Ax¥ — b)) d + dTH d + | x* + d|1,
d,di=0,i¢J

for ¢1-min:

@ outer iteration, updated observation vector b

@ inner iteration, solves BPDN

@ typically, only a few outer iterations are needed, but each iteration

requires a solve of BPDN, which is costly.

a version of the Bregman algorithm, known as the Linearized Bregman
algorithm, takes only one step of the inner iteration per outer iteration;
consequently, many outer iterations are taken; linearized Bregman is
equivalent to gradient ascent on the dual problem.



(SPGL1) for ¢4
QC:

@ adapted the spectral projection gradient algorithm.

@ interestingly, they introduced a clever root finding procedure such that
solving a few instances of LASSO for different values of 7~ enables them
to equivalently solve ¢; QC.

(FISTA) for
BPDN:

@ belongs to the class of accelerated proximal gradient (APG) algorithms
studied earlier by Nesterov, Nemirovski, and others.

@ theoretical rate of convergence is O(1/k?) (or O(1/+/€)).

(NESTA) for ¢4 QC:
@ based on Nesterov’s smoothing technique like FISTA

@ one of the key ideas is an averaging of sequences of iterates, which has
been shown to improve the convergence properties of standard
gradient-descent algorithms



Example on image reconstruction

Show some images for image deblurring, inpainting, decomposition by
balanced approach

2 2 2

o1 Kj

min S IAY Wx) = I3+ > Z 0~ Wi )xilP + 3 AT Ixil,
’ i=1 i=1 i=1

where, fori =1,2, W,TW,- =1, ki > 0, \; is a given positive weight vector, and
D is a given symmetric positive definite matrix.



Extensions

¢y-regularized logistic regression (¢1LR) problem
Proposed as a promising method for feature selection in classification
problems.

1 m
min — ) log(1 —(w'a + vb;
et m; og(1 -+ exp(—(w'a; + vb)))) + ul| w1,

where a; = biz; and (z;, b;)) € R"' x {-1,1}, i =1,..., m are a given set of
(observed or training) examples.



Matrix Completion
imagine that we only observe a few entries of a data matrix. Then is it
possible to accurately guess the entries that we have not seen?

Netflix problem: Given a sparse matrix where M; is the rating given by user /
on movie j, predict the rating a user would assign to a movie he has not seen,
i.e., we would like to infer users preference for unrated movies. (impossible!
in general)

The problem is ill-posed. Intuitively, users’ preferences depend only on a few
factors, i.e., rank(M) is small.

Thus consider the low-rank matrix completion problem:

min_ {rank(X)|X,-/- = M, (i.)) € Q}, (NP hard))

where Q = index set of p observed entries.

We assume m < nw.l.o.g.



This matrix completion problem has appeared in many applications of
engineering and science including

@ Collaborative Filtering
System Identification

Global Positioning

o
0
@ Remote Sensing
@ Machine Learning
°

Computer Vision



By , @ random rank-r matrix can be
recovered exactly with high probability from a uniform random sample of
p = O(rnpolylog(n)) entries by solving the following convex relaxation:

m
Xg;gpxn {HXIl* = ;U,-(X) | X = M;, (i) € Q}.

where ¢;(X)’s are singular values of X.
or the following nuclear norm regularized least squares problem:
1
min  ~[A(X) — b||3 X||s.
min_ - SILAX) = bl + ullX|
where 1 > 0 is a given parameter.
A(X) = Xq, where X is the vector in Rl obtained from X by selecting those
elements whose indices are in Q.



Sparse Covariance Selection
min —logdet X + tr(XS) + || X]|1
XeSst

S € ST is an empirical covariance matrix.
n
X1 =225 =1 [Xjl, w > 0.

—log det X + tr(XS) is strictly convex, cont. diff. on its domain 87, O(n®)
opers. to evaluate. || - ||1 is convex, nonsmooth.
In applications, n can exceed 5000.



The Fenchel dual problem is a bound-constrained convex program:

min  —logdet W
Wwes?

st. |(W=S8)jl<p i,j=1,...n,

IP method requires O(n’ log(1/¢)) opers. to find e-optimal soln. Impractical!
Nesterov’s first-order smoothing method requires O(n*/¢) opers.

Use coordinate descent method to solve the dual problem, cycling thru
columns (and corresponding rows) j = 1, ..., n of W. Each iteration reduces
(via determinant property & duality) to

.1
min 7WTWiCiCW_SI'7C-"W+,LL||WH1.
weRn—1 2

Solve this using IP method O(n®) opers. or coordinate descent method



Sparse Principle Component Analysis

Principal component analysis (PCA) is a widely used technique for data
analysis and dimension reduction with numerous applications in science and
engineering.

PCA seeks the linear combinations of the original variables such that the
derived variables capture maximal variance. PCA can be done via singular
value decomposition (SVD) of the data matrix.

X = UDVT,

where X € R7*P with the number of observations n and the number of
variables p. U(D) are the principal components (PCs) of unit length, and the
columns of V are the corresponding loadings of the principal components.



However, the standard PCA suffers from the fact that the principal
components (PCs) are usually linear combinations of all the original
variables, and it is thus often difficult to interpret the PCs.

consider sparse model

The success of PCA is due to the following three important optimal properties:
1. principal components sequentially capture the maximum variability among
X, thus guaranteeing minimal information loss.

2. principal components are uncorrelated, so we can talk about one principal
component without referring to others (the explained variance by different
PCs has small overlap).

3. principal components point in orthogonal directions, that is, their loading
vectors are orthogonal to each other.



Suggested Problem Formulation

Finding sparse PCs by solving a sequence of semidefinite program
relaxations of sparse PCA.

— " — = 0.
max(¥, V)= 3 |Vl (V)=1,V=0

where ¥ = X7 X/(n—1).

max (VTEV) - p X7, |y
St VEV| < By Vi# ]
Viv =1

where A; > 0 (i # j) are the parameters for controlling the correlation of the
components corresponding to V.



