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Mathematical Optimization

(Mathematical) optimization problem

minimize f0(x)
subject to fi (x) ≤ bi , i = 1, ...,m

x ∈ <n: optimization variable

f0 : <n → <: objective function

fi : <n → <, i = 1, ...,m: constraint functions

Optimization solution x∗ has smallest value of f0 among all vectors that satisfy
the constraints.



Optimization Problem in Standard Form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, ...,m

hi (x) = 0, i = 1, ...,p

x ∈ <n: optimization variable

f0 : <n → <: objective or cost function

fi : <n → <, i = 1, ...,m,: inequality constraint functions

hi : <n → <, i = 1, ...,p,: equality constraint functions

Optimal Value

p∗ = inf{f0(x) | fi (x) ≤ 0, i = 1, ...,m, hi (x) = 0, i = 1, ...,p}

p∗ =∞ if problem is infeasible (no x satisfies the constraints)

p∗ = −∞ if problem is unbounded below



Examples

Portfolio Optimization

variables: amounts invested in different assets

constraints: budget, max./min. investment per asset, minimum return

objective: overall risk or return variance

Data Fitting

variables: model parameters

constraints: prior information, parameter limits

objective: measure of misfit or prediction error



Solving Optimization Problems

General Optimization Problem

very difficult to solve

methods involve some compromise, e.g., very long computation time, or
not always finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably

least-squares problems

linear programming problems

convex optimization problems



Convex Optimization

minimize f0(x)
subject to fi (x) ≤ bi , i = 1, ...,m

objective and constraint functions are convex:

fi (αx + βy) ≤ αfi (x) + βfi (y)

if α + β = 1, α ≥ 0, β ≥ 0



Standard Form Convex Optimization Problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, ...,m

aT
i x = bi , i = 1, ...,p

f0, f1, ..., fm: convex

equality constraints are affine

often written as
minimize f0(x)

subject to fi (x) ≤ 0, i = 1, ...,m
Ax = b

Important property: feasible set of a convex optimization problem is convex



Optimality Criterion for Differentiable f0

unconstrained problem: x is optimal if and only if

x ∈ domf0, ∇f0(x) = 0

equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a v such that

x ∈ domf0, Ax = b, ∇f0(x) + AT v = 0

minimization over nonnegative orthant

minimize f0(x) subject to x ≥ 0

x is optimal if and only if

x ∈ domf0, x ≥ 0,

{
∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0



Solving convex optimization problems

no analytical solution

reliable and efficient algorithms

computation time (roughly) proportional to max{n3,n2m,F}, where F is
cost of evaluating fi ’s and their first and second derivatives

surprisingly many problems can be solved via convex optimization

many tricks for transforming problems into convex form



Linear Programming and Least Squares Problem

Linear Programming

minimize cT x
subject to aT

i x ≤ bi , i = 1, ...,m

Example
Diet problem: choose quantities x1, ..., xn of n foods

one unit of food j costs cj , contains amount aij of nutrient i

healthy diet requires food i (quantity) at least bi to find cheapest healthy
diet,

minimize cT x
subject to Ax ≥ b, x ≥ 0



Solving linear programmming problem

no analytical formula for solution

reliable and efficient algorithms and software

computation time proportional to n2m if m ≥ n; less with structure

a few standard tricks used to convert problems into linear programs (e.g.,
problems involving `1- or `∞-norms, piecewise-linear functions)



Least Squares Problem

minimize ‖Ax − b‖2
2

Solving least-squares problem

analytical solution: x∗ = (AT A)−1AT b

reliable and efficient algorithms and software

computation time proportional to n2m (A ∈ <m×n); less if structured

least-squares problems are easy to recognize

a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)



Quadratic Program (QP)

minimize 1
2 xT Px + qT x + r

subject to Gx ≤ h
Ax = b

P ∈ Sn
+, so objective is convex quadratic

minimize a convex quadratic function over a polyhedron

Quadratically Constrained Quadratic Program (QCQP)

minimize 1
2 xT P0x + qT

0 x + r0

subject to 1
2 xT Pix + qT

i x + ri ≤ 0, i = 1, ...,m
Ax = b

Pi ∈ Sn
+, objective and constraints are convex quadratic

if P1, ...,Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and an

affine set



Brief History of Convex Optimization

Theory (convex analysis): 1900–1970
Algorithms

1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

Applications

before 1990: mostly in operations research; few in engineering

since 1990: many new applications in engineering (control, signal/image
processing, communications, circuit design,...); new problem classes
(semidefinite and second-order cone programming)



Second-Order Cone Programming

minimize f T x
subject to ‖Aix + bi‖2 ≤ cT

i x + di , i = 1, ...,m
Fx = g

(Ai ∈ <ni×n,F ∈ <p×n)

inequalities are called second-order cone (SOC) constraints:

(Aix + bi , cT
i x + di ) ∈ second− order cone in <ni+1

for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

more general than QCQP and LP



Semidefinite Programming (SDP)

minimize bT x
subject to x1F1 + x2F2 + · · ·+ xnFn � C

with Fi ,C ∈ Sn

inequality constraint is called linear matrix inequality (LMI)

Primal form
minimize 〈C,X 〉

subject to 〈Fi ,X 〉 = bi , i = 1, ...,m
X � 0

refer to this problem as a primal semidefinite program.



Unconstrained Minimization

minimize f (x)

f convex, twice continuously differentiable (hence domf open)

we assume optimal value p∗ = infx f (x) is attained (and finite)

Unconstrained Minimization Methods

produce sequence of points xk ∈ domf , k = 0,1, ... with

f (xk )→ p∗

can be interpreted as iterative methods for solving optimality condition

∇f (x∗) = 0



Descent Methods

xk+1 = xk + tk ∆xk with f (xk+1) < f (xk )

∆x is the step, or search direction; t is the step size, or step length

from convexity, f (x + t∆x) < f (x) implies ∇f (x)T ∆x < 0 (i.e., ∆x is a
descent direction)

General Descent Method
given a starting point x ∈ domf
repeat

1. Determine a descent direction ∆x
2. Line search. Choose a step size t > 0
3. Update. xnew = x + t∆x

until stopping criterion is satisfied.



Line Search Types

exact line search: t = arg mint>0 f (x + t∆x)

backtracking line search (with parameters α ∈ (0,1/2), β ∈ (0,1))
starting at t = 1, repeat t = βt until

f (x + t∆x) < f (x) + αt∇f (x)T ∆x



Gradient Descent Methods

General Descent Method with ∆x = −∇f (x)
given a starting point x ∈ domf
repeat

1. ∆x = −∇f (x)
2. Line search. Choose step size t via exact or backtracking line search
3. Update. xnew = x + t∆x

until stopping criterion is satisfied.

stopping criterion usually of the form ‖∇f (x)‖2 ≤ ε

convergence result: for strongly convex f (∇2f (x) � δI, δ > 0),

f (xk )− p∗ ≤ ck (f (x0)− p∗)

ck ∈ (0,1) depends on δ, x0, line search type

simple, but often very slow; rarely used in practice



Newton Step
∆xnt = −∇2f (x)−1∇f (x)

Interpretations

x + ∆xnt minimizes second order approximation

f̂ (x + v) = f (x) +∇f (x)T v +
1
2

vT∇2f (x)v

x + ∆xnt solves linearized optimality condition

∇f (x + v) ≈ ∇f̂ (x + v) = ∇f (x) +∇2f (x)v = 0



Newton Decrement

λ(x) =
(
∇f (x)T∇2f (x)−1∇f (x)

)1/2

a measure of the proximity of x to x∗

Properties

gives an estimate of f (x)− p∗, using quadratic approximation f̂ :

f (x)− inf
y

f̂ (y) =
1
2
λ(x)2

equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xT

nt∇2f (x)∆xnt
)1/2

directional derivative in the Newton direction: ∇f (x)T ∆xnt = −λ(x)2



Newton’s Method
given a starting point x ∈ domf , tolerance ε > 0
repeat

1. Compute the Newton step and decrement.

∆xnt = −∇2f (x)−1∇f (x); λ2 = ∇f (x)T∇2f (x)−1∇f (x)

2. Stopping criterion. quit if λ2/2 ≤ ε
3. Line search. Choose step size t by backtracking line search
4. Update. x = x + t∆xnt



Classical Convergence Analysis
assumptions

f strongly convex with constant δ

∇2f is Lipschitz continuous with constant L > 0:

‖∇2f (x)−∇2f (y)‖2 ≤ L‖x − y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0, δ2/L), γ > 0 such that
if ‖∇f (x)‖2 ≥ η, then f (xk+1)− f (xk ) ≤ −γ
if ‖∇f (x)‖2 < η, then

L
2δ2 ‖∇f (xk+1)‖2 ≤

(
L

2δ2 ‖∇f (xk )‖2

)2



damped Newton phase (‖∇f (x)‖2 ≥ η)

most iterations require backtracking steps

function value decreases by at least γ

if p∗ > −∞, this phase ends after at most (f (x0)− p∗)/γ iterations

quadratically convergent phase (‖∇f (x)‖2 > η)

all iterations use step size t = 1

‖∇f (x)‖2 converges to zero quadratically: if ‖∇f (x)‖2 < η, then

L
2δ2 ‖∇f (x l )‖2 ≤

(
L

2δ2 ‖∇f (xk )‖2

)2l−k

≤
(

1
2

)2l−k

, l ≥ k



conclusion: number of iterations until f (x)− p∗ ≤ ε is bounded above by

f (x0)− p∗

γ
+ log2 log2(ε0/ε)

γ, ε0 are constants that depend on δ, L, x0

second term is small and almost constant for practical purposes

in practice, constants δ, L (hence γ, ε0) are usually unknown

provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)



Equality Constrained Minimization
minimize f (x)

subject to Ax = b

f convex, twice continuously differentiable

A ∈ <m×n with rankA = m

we assume p∗is finite and attained

Optimiality Conditions: x∗ is optimal iff there exists a v∗ such that

∇f (x∗) + AT v∗ = 0, Ax∗ = b



Newton Step
Newton step ∆xnt of f at feasible x is given by solution v of[

∇2f (x) AT

A 0

] [
v
w

]
=
[
−∇f (x); 0

]
Interpretations

∆xnt solves second order approximation (with variable v )

minimize f̂ (x + v) = f (x) +∇f (x)T v + 1
2 vT∇2f (x)v

subject to A(x + v) = b

∆xnt equations follow from linearizing optimality conditions

∇f (x + v) + AT w ≈ ∇f (x) +∇2f (x)v + AT w = 0, A(x + v) = b



Newton’s Method with Equality Constraints
given a starting point x ∈ domf with Ax = b, tolerance ε > 0
repeat

1. Compute the Newton step and decrement ∆xnt, λ(x)
2. Stopping criterion. quit if λ2/2 ≤ ε
3. Line search. Choose step size t by backtracking line search
4. Update. x = x + t∆xnt

a feasible descent method: xk feasible and f (xk+1) < f (xk )



Interior-Point Methods

Inequality Constrained Minimization

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, ...,m

Ax = b

fi convex, twice continuously differentiable

A ∈ <p×n with rankA = p

we assume p∗is finite and attained

we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ domf0, fi (x̃) < 0, i = 1, ...,m, A(̃x) = b

Examples: LP, QP, QCQP, SDP, SOCP



Logarithmic Barrier

reformulation by using indicator function

minimize f0 +
∑m

i=1 I(fi (x))
subject to Ax = b,

where I(u) = 0 if u ≤ 0, I(u) =∞ otherwise

approximation via logarithmic barrier

minimize f0 − (1/t)
∑m

i=1 log(−fi (x))
subject to Ax = b

an equality constrained problem

for t > 0, −(1/t) log(−u) is a smooth approximation of I(·)

approximation improves as t →∞



Central path

for t > 0, define x∗(t) as the solution of

minimize tf0(x)−
∑m

i=1 log(−fi (x))
subject to Ax = b

(for now, assume x∗(t) exists and is unique for each t > 0)

central path is {x∗(t) | t > 0}



Barrier Method
given strictly feasible x , t = t0 > 0, µ > 1, tolerance ε > 0
repeat

1. Centering step. Compute x∗(t)
by minimizing tf0 −

∑m
i=1 log(−fi (x)), subject to Ax = b

2. Update. x = x∗(t)
3. Stopping criterion. quit if m/t ≤ ε
4. Increase t . t = µt

terminates with f0(x)− p∗ ≤ ε (stopping criterion follows from
f0(x∗(t))− p∗ ≤ m/t)

centering usually done using Newton’s method, starting at current x

choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations;



Convergence Analysis

number of outer (centering) iterations: exactly⌈
log(m/(εt0))

logµ

⌉
plus the initial centering step (to compute x∗(t0))

centering problem

minimize tf0(x)−
m∑

i=1

log(−fi (x))

see convergence analysis of Newton’s method

classical analysis requires strong convexity, Lipschitz condition



Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

update primal and dual variables at each iteration; no distinction
between inner and outer iterations

often exhibit superlinear asymptotic convergence

search directions can be interpreted as Newton directions for modified
KKT conditions

can start at infeasible points

cost per iteration same as barrier method



Conclusions

mathematical optimization

problems in engineering design, data analysis and statistics, economics,
management,..., can often be expressed as mathematical optimization
problems

tractability

roughly speaking, tractability in optimization requires convexity

algorithms for nonconvex optimization find local (suboptimal) solutions,
or are very expensive

surprisingly many applications can be formulated as convex problems



Theoretical consequences of convexity

local optima are global

extensive duality theory (systematic way of deriving lower bounds on
optimal value, necessary and sufficient optimality conditions)

solution methods with polynomial worst-case complexity theory

Practical consequences of convexity
(most) convex problems can be solved globally and efficiently

interior-point methods require 20 – 80 steps in practice

basic algorithms (e.g., Newton, barrier method,...) are easy to implement
and work well for small and medium size problems (larger problems if
structure is exploited)

more and more high-quality implementations of advanced algorithms
and modeling tools are becoming available

Reference
Convex Optimization by Boyd and Vandenberghe
(http://www.stanford.edu/ boyd/cvxbook/)
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Underdetermined System of Linear Equations

Many problems arising in signal/image processing and data
mining/classification often entail finding a solution of an underdetermined
system of linear equations:

Ax = b,

where A ∈ <m×n (m < n) and b ∈ <m, or a “best" solution of a inconsistent
system of linear equations:

Ax ≈ b,

i.e., the objective is to find a “best" guess of unknown u from linear
measurement model

b = Au + η,

where η is measurement error.



Least Squares approach

Minimizing the 2-norm of the residual Ax − b yields the well-known linear
least squares problem:

min
x
‖Ax − b‖2

2

In many cases, components of x are parameters that must lie within certain
bounds:

min
x

‖Ax − b‖2
2

s.t. l ≤ x ≤ u,

where l ≤ u (possibly with −∞ or∞ components).
This is a bound-constrained convex quadratic program.



There is considerable evidence that these problems arising in signal/image
processing often have sparse solutions. Advances in finding sparse solutions
to underdetermined systems have energized research on such signal and
image processing problems.

Signal Analysis

Signal/image Compression

Signal/image Denoising

Inverse Problems: Even more generally, suppose that we observe not b,
but a noisy indirect measurement of it, b̃ = Hb + η (b̃ = HAu + η). Here
the linear operator H generates blurring, masking, or some other kind of
degradation, and η is noise as before.

Compressed Sensing: For signals which are sparsely generated, one
can obtain good reconstructions from reduced numbers of
measurements - thereby compressing the sensing process rather than
the traditionally sensed data.



Morphological Component Analysis (MCA): Suppose that the observed
signal is a superposition of two different subsignals b1,b2 (i.e.,
b = b1 + b2). Can we separate the two sources? Such source
separation problems are fundamental in the processing of acoustic
signals, for example, in the separation of speech from impulsive noise by
independent component analysis (ICA) algorithms. An appealing image
processing application that relies on MCA is inpainting, where missing
pixels in an image are filled in, based on a sparse representation of the
existing pixels. MCA is necessary because the piecewise smooth
(cartoon) and texture contents of the image must be separated as part of
this recovery process.

image decomposition to cartoon and texture

This work lies at the intersection of signal processing and applied
mathematics, and arose initially from the wavelets and harmonic analysis
research communities.
Sparsity of representation is key to widely used techniques of
transform-based image compression. Transform sparsity is also a driving
factor for other important signal and image processing problems, including
image denoising and image deblurring.



Sparsity Optimization (`0-norm minimization):

min
x

‖x‖0

s.t Ax = b

(when the solution is sparse and the columns of A sufficiently incoherent)

NP hard!



Compressed Sensing: Is it possible to reconstruct a signal accurately from a
few observed samples (measurements)?

Impossible in general, but if the signal is known to be sparse in some basis,
then accurate recovery is possible by `1-minimization (known as Basis
Pursuit) (Candés et al. 06, Donoho 06):

minx ‖x‖1
s.t Ax = b,

where A ∈ <m×n (m� n) satisfies certain restricted isometry property.

Definition: A matrix A satisfies the restricted isometry property of order s with
constant δs ∈ (0,1) if

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2



Linear Programming reformulation:

min
x+,x−

eT x+ + eT x−

s.t A(x+ − x−) = b
x+, x− ≥ 0,

where e = (1,1, ...,1) ∈ <n.



From Exact to Approximate Solution:

If the observation b is contaminated with noise, i.e., b = Au + η, then Ax = b
might not be feasible and so an appropriate norm of the residual Ax − b
should be minimized or considered as a constraint.

1. `1-minimization with quadratic constraints:

min
x

‖x‖1

s.t ‖Ax − b‖2 ≤ λ,

where λ > 0.

2. Basis pursuit denoising (`1-regularized linear least squares):

min
x

1
2
‖Ax − b‖2 + µ‖x‖1,

where µ > 0.



3. LASSO (least absolute shrinkage and selection operator):

min
x

1
2‖Ax − b‖2

2

s.t ‖x‖1 ≤ τ,

where τ > 0.

4. Dantzig selector (`1-minimization with bounded residual correlation):

min
x

‖x‖1

s.t ‖AT (Ax − b)‖∞ ≤ σ,

where σ > 0.


