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Abstract

Non-blind motion deblurring problems are highly ill-posed and so it is quite
difficult to find the original sharp and clean image. To handle ill-posedness
of the motion deblurring problem, we use nonlocal total variation (abbre-
viated as TV) regularization approaches. Nonlocal TV can restore periodic
textures and local geometric information better than local TV. But, since
nonlocal TV requires weighted difference between pixels in the whole image,
it demands much more computational resources than local TV. By using the
linearization of the fidelity term and the proximal function, our proposed
algorithm does not require any inversion of blurring operator and nonlocal
operator. Therefore the proposed algorithm is very efficient for motion de-
blurring problems. We compare the numerical performance of our proposed
algorithm with that of several state-of-the-art algorithms for deblurring prob-
lems. Our numerical results show that the proposed method is faster and
more robust than state-of-the-art algorithms on motion deblurring problems.
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1. Introduction

The motion deblurring problem is to recover a sharp and clean image from
the given blurred image, which is mainly caused by unsteady movements of a
camera [1]. Let Ω ⊂ R2, b be the given blurred image, and k be the blurring
kernel. Then we wish to find the unknown true image u : Ω → R from the
given blurred image and the blurring kernel:

b = k ⊗ u+ η (1)

where
∫
Ω
k(x)dx = 1 and k ≥ 0, η is the Gaussian noise, and ⊗ is the

convolution operator (with some boundary condition). For simplicity, we
assume that the blurring kernel k is spatially invariant, i.e., a blurred object
looks same regardless of its location in the given image. If the spatially
invariant blurring kernel is unknown, then the given problem becomes a
blind deconvolution. If the given kernel is known, the problem is a non-blind
deconvolution. For the blind deconvolution problem, motion blur is easily
estimated by using `1 regularization approach [2, 3] because of the strong
sparsity of motion blur. For more details on the blind deconvolution, see
[1, 2, 3, 4, 5].

In this paper, we only consider the non-blind motion deblurring problems.
Even though, convolution/blurring kernel is already known, it is highly ill-
posed problem and so it is quite difficult to find the original sharp and clean
image. The reason is obvious since the blurring kernel is a kind of a low
pass filter and tends to reduce high frequency parts such as textures and
edges. Hence directly inverting kernel without using appropriate regularizer
causes highly ringing artifacts around edges and textures of an image. To
handle this problem, proper regularization methods are required. The most
successful regularizer is the local TV [6] used in deblurring problems [4, 7].
The main advantage of using local TV is that it preserves edges due to its
linear penalty on differences between adjacent pixels. But, it tends to flatten
inhomogeneous areas, such as textures; see Figure 1 (d). To overcome this
shortcoming, nonconvex anisotropic TV regularization techniques [1, 5] based
on statistical distribution of the gradient of an image or spatially adaptive
TV regularization techniques [8, 9] are used. In this paper, we use nonlocal
TV regularization technique [10, 11, 12, 13] to restore periodic texture and
edge information of the given blurred and noisy image. Nonlocal TV uses
the whole image information instead of using adjacent pixel information. In
other words, by averaging the current pixel to the other pixels with similar
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Figure 1: Comparison of the deblurred image by using nonlocal TV regular-
ization with that by using local TV regularization. The texture with periodic
patterns and sharp edges in the deblurred image by nonlocal TV are recov-
ered better than that by local TV. We note that the restored images are
acquired by our proposed algorithm.

structure neighborhoods, i.e. patches, we can restore the texture with peri-
odic patterns and the sharp edge from the blurred image; see Figure 1 (c).
We note that nonlocal total variation is also an efficient approach for other
image restoration problems such as denoising, superresolution, compressive
sampling, inpainting, and segmentation [14, 15, 16, 17].

Since nonlocal TV requires weighted difference between pixels in the
whole image, it consumes more computational resources than local TV.
Hence efficient algorithms for solving nonlocal TV deblurring problems are
demanded. Recently, Bregmanized operator splitting algorithm [13] has been
proposed to solve nonlocal TV deblurring problems. But this method is
not quite efficient, since it uses the split Bregman algorithm for solving the
nonlocal TV denoising subproblem for each outer iteration and requires the
inverses involving a nonlocal Laplacian operator for inner iterations.

Recently developed several other algorithms, such as the alternating min-
imization algorithm [18, 19] and the primal-dual hybrid gradient algorithm
[20], for solving image deblurring problems based on local TV regularization,
can be applied to solve nonlocal TV deblurring problems without solving
nonlocal TV denoising subproblems, i.e., there are no inner iterations. But
we note that those algorithms require to compute the inverses involving a
blurring operator [18, 20] or a nonlocal Laplacian operator [19].

The purpose of this paper is to develop a new fast algorithm, for solving
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nonlocal TV deblurring problems, which does not require any inverse of the
operators. We adapts a similar framework as for the alternating minimiza-
tion algorithm proposed by Tseng [21], i.e., uses an alternating minimization
scheme that used in [18, 19]. As we mentioned above, the current state-of-
the-art algorithms, such as the Bregmanized operator splitting algorithm [13],
the alternating minimization algorithm [18, 19] and the primal-dual hybrid
gradient algorithm [20], require to compute the inverses involving a blurring
operator or a nonlocal Laplacian operator. This can take much computa-
tional resources. Hence this motivates us to develop new algorithms which
use a linearization and proximal techniques to overcome the drawback; see
Section 3 for details. Our proposed algorithm also does not require inner it-
erations which are needed for the Bregmanized operator splitting algorithm.
The proposed algorithm is faster and more robust than state-of-the-art algo-
rithms [13, 19, 20] for solving nonlocal TV deblurring problems.

In the motion deblurring problem, since we do not know the boundary
condition of the given motion blurred image b in equation (1), we need to
give an appropriate boundary condition on the convolution operator. We
consider the reflexive or periodic boundary conditions in this paper. For the
periodic boundary condition, we use the Fast Fourier Transform to solve the
deblurring problem. The main advantage of FFT is that it only requires
O(nlog(n)) arithmetic operations for a convolution of the given image of size
n, regardless of size of a convolution operator [18, 20]. But the periodic
boundary condition is too artificial and so it induces strong boundary arti-
facts in the restored image. To resolve this problem, various techniques are
described in [22, 23, 24]. In this paper, we use “edgetaper” function in Mat-
lab for our numerical experiments with the periodic boundary condition.
For the reflexive boundary condition, since the motion blur does not have
any specific structure, we can not use any fast transform based method [25].

1.1. Nonlocal Total Variation

To solve motion deblurring problems, one may consider the following local
TV based variational formulation :

min
u

µ

∫
Ω

|∇u|+ 1

2
‖k ⊗ u− b‖22. (2)

where µ > 0. As we mentioned earlier, fine periodic structures are not well
recovered with this model (see Figure 1). To overcome this problem, nonlocal
TV regularization techniques have been proposed [14, 16, 17]. In the sequel,
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we use the definitions and notations of the nonlocal functionals introduced
in [17] to define nonlocal total variation. Let w : Ω × Ω → R+ ∪ {0} be
a symmetric weight function, i.e. w(x, y) = w(y, x). The nonlocal partial
derivative at x to y is written as

∂yu(x) := (u(y)− u(x))
√

w(x, y).

The nonlocal gradient operator ∇wu : Ω → Ω×Ω is defined as the vector of
all partial derivatives at x ∈ Ω :

∇wu(x, y) := (u(y)− u(x))
√
w(x, y), for all y ∈ Ω,

where w(x, y) is the weight function between x and y defined based on the
image u. The nonlocal divergence of a vector % : Ω × Ω → R at x ∈ Ω can
be defined by the adjoint relation with the nonlocal gradient:

〈∇wu, %〉 = −〈u, divw %〉,

which defines the nonlocal divergence as

divw %(x) :=

∫
Ω

(%(x, y)− %(y, x))
√
w(x, y)dy.

Now, we can define nonlocal total variation functional by

TVw(u) =

∫
Ω

|∇wu|dx (3)

=

∫
Ω

√∫
Ω

(u(y)− u(x))2w(x, y)dydx

Before we proceed, we need to define the weight function w(x, y). Let
the region Ωw(x) ⊆ Ω be a neighborhood around x ∈ Ω where the weights
are positive. The weight function is defined by the solution of the following
energy minimization problem [14, 26]:

min
w

E(w) (4)

where

E(w) =

∫
Ω

∫
Ωw(x)

[w(x, y)
d2u(x, y)

2h2
+ w(x, y)log(w(x, y))− w(x, y)]dydx, (5)
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d2u(x, y) :=

∫
Ω

Ga(t)(Fu(x− t)− Fu(y − t))2dt (6)

Ga is the Gaussian kernel with standard deviation a, Fu(z) = u(z) ∈ B(z),
where B(z) is a patch centered at z, and h is the scaling parameter which
determines the similarity between different patches. We do not normalize
the weight as did in [12, 13]. We refer [10] for different types of metric (6)
between x and y in Ω. The solution of (4) is the following function:

w(x, y) = e−
d2u(x,y)

2h2 , x ∈ Ω, y ∈ Ωw(x). (7)

To find true image u in (1), we consider the following formulation:

min
w,u

F (w, u) := E(w) + µTVw(u) +
1

2
‖k ⊗ u− b‖22, (8)

for the motion deblurring model. In this paper, we use an alternating ap-
proach that is considered in [14, 26]:

Weight Update: wk = argmin
w

F (w, uk−1) (9a)

Image Update: uk = argmin
u

F (wk, u). (9b)

We note that Algorithm 1 in Section 4 describes the whole process for non-
blind motion deblurring problems in detail.

1.2. Notation

For notational convenience, we use vector notation, i.e., the 2D M ×
N image is columnwisely stacked into a vector, for the rest of the paper.
Therefore, the unknown true image u is a vector in Rn (n = MN), the
observed blurred and noisy image b is a vector in Rn, and the motion blur can
be modeled as a large sparse n×n matrix A (with an appropriate boundary
condition). Then (1) can be expressed as follows:

b = Au+ η, (10)

where η ∼ N (0, σ2). Therefore, in the sequel, we consider the following
formulation for the image update part (9b):

min
u

µ‖∇wu‖+
1

2
‖Au− b‖22, (11)

where µ > 0 and ‖∇wu‖ =
∑n

i=1 ‖(∇wu)i‖2 with (∇wu)i ∈ RD. We note
that D is the size of “neighbor”, where the weight (7) is positive.
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1.3. Overview

The paper is organized as follows. In Section 2, we review several algo-
rithms for solving the TV regularization problem. In Section 3, we describe
our proposed algorithm for solving the nonlocal TV deblurring problem. In
Section 4, we describe the motion deblurring process and empirically discuss
about the permissible range of a stepsize which is crucial for the stability
of the proposed algorithm. In Section 5, we report our numerical results on
image deblurring problems. In Section 6, we give our conclusions.

2. Related Works

The local TV regularization (2) has been popular ever since its introduc-
tion by Rudin et al. [6]. Many researchers have proposed algorithms for
solving (2) and its variants. Recently, Goldstein and Osher [27] proposed the
split Bregman algorithm for solving (2) by using the Bregman iteration to
solve the linear constraint reformulation of it:

min
u,z

µ‖z‖+ 1
2
‖Au− b‖22,

s.t ∇u = z,
(12)

and using an alternating approach to approximate the minimization over u
and z. Esser et al. [28] proposed a modified version of the primal-dual hy-
brid gradient algorithm proposed by Zhu and Chan [20]. Zhang et al. [29]
proposed a unified primal-dual algorithm framework for two classes of prob-
lems, that arise in various signal and image processing applications, such as
`1 basis pursuit and TV-`2 minimization. Wang et al. [18] proposed a fast
TV deblurring method that solves a penalty approximation of (2). But, in
the penalty approach, a sufficiently large parameter for the penalty term has
to be chosen and so it causes numerical difficulties in computation. To over-
come this drawback, Tao and Yang [30] proposed an alternating direction
method for the problem (2). Independently, Afonso et al. [31] proposed a
split augmented Lagrangian shrinkage algorithm, which is an instance of the
alternating direction method, for solving one of the standard formulation of
image reconstruction that can be formulated as an unconstrained optimiza-
tion problem, in which the objective function consists of an `2-fidelity term
and a nonsmooth regularizer, that includes the problem (2). Xiao and Yang
[19] proposed an inexact alternating minimization algorithm for the problem
(2) to avoid evaluating the inverse of the matrix involving ATA as well as to
prevent from driving the penalty parameter to infinity.

7



2.1. Optimization Algorithms for Total Variation Deblurring Problems

In this subsection, we review three optimization algorithms - the Breg-
manized operator splitting with the splitting Bregman (abbreviated as BOSSB)
method [13], the primal-dual hybrid gradient (abbreviated as PDHG) algo-
rithm proposed by Zhu and Chan [20], and the inexact alternating direction
method (abbreviated as IADM) proposed by Xiao and Yang [19].

Zhang et al. [13] proposed an algorithm to solve the following general
equality constrained minimization problem by the Bregman iteration and
operator splitting:

min
u

J(u)

s.t Au = b,
(13)

where J is a general convex functional. Hence the process of the BOSSB
applied to solve (13) with the TV, i.e., J(u) = ‖∇u‖, can be expressed as
follows: 

vk+1 = uk − δAT (Auk − bk)
uk+1 = argmin

u
µ‖∇u‖+ 1

2δ
||u− vk+1||22

bk+1 = bk + b− Auk+1,

(14)

where µ > 0 and 0 < δ < 1/‖ATA‖2 with ‖ATA‖2 = max‖x‖2=1 ‖ATAx‖2.
In what follows, the shrinkage operator is the generalized shrinkage operator
defined in [18]:

zi = shrink(ai, c) = max(‖ai‖2 − c, 0)
ai

‖ai‖2
,

where ai ∈ Ra (a is 2 for local TV and D for nonlocal TV) and c ∈ R.
The uk+1 in (14) is founded by the splitting Bregman method [27] and

the process can be given as follows (uk+1 = liml→∞ ũl):
ũl+1 = argmin

ũ

1
2δ
||ũ− vk+1||22 + α

2
||zl −∇ũ− tl||22

zl+1 = argmin
z

µ‖z‖+ α
2
||z −∇ũl+1 − tl||22

tl+1 = tl −∇ũl+1 + zl+1,

(15)

where α > 0. In a more simplified form, we have
ũl+1 = (I − δα∆)−1(vk − δα div(zl − tl))
zl+1 = shrink(∇ũl+1 + tl,

µ
α
)

tl+1 = tl −∇ũl+1 + zl+1,
(16)
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where ∆ denotes the Laplacian operator. The BOSSB for solving (13) with
J(u) = ‖∇u‖ requires to compute the inverse of I − δα∆ at each inner
iteration. It consumes more computational resources when the BOSSB is
applied to solve the nonlocal TV deblurring problem. In addition, the BOSSB
has inner loops as shown in the above. These are main drawbacks when this
algorithm is applied to solve the motion deblurring problem.

The PDHG algorithm proposed in [20] targets a saddle point formulation
of the problem:

min
u

(
max

p
〈p, ∇u〉 − J∗(p) +

1

2
‖Au− b‖22

)
,

where J∗(p) =

{
0 if ‖p‖∗ ≤ µ,

∞ otherwise
, where ‖ · ‖∗ is a dual norm defined by

‖x‖∗ = max‖y‖≤1〈x, y〉, and proceeds by alternating proximal steps that
alternately maximize and minimize a penalized form of the saddle function:

pk+1 = argmax
p

−J∗(p) + 〈p, ∇uk〉 − 1

2τ
‖p− pk‖22

uk+1 = argmin
u

1

2
‖Au− b‖22 + 〈pk+1, ∇u〉+ 1

2δ
‖u− uk‖22,

(17)

where δ, τ > 0. In a more simplified form, we have{
pk+1 = argmin

‖p‖∗≤µ

− 〈p, ∇wu
k〉+ 1

2τ
||p− pk||22

uk+1 = (1
δ
I + ATA)−1(AT b+ div(pk+1) + 1

δ
uk).

(18)

The PDHG has attracted much interest in image denoising problem (i.e.,
A = I) since it outperforms other popular methods such as Chambolle’s
method [32], the split Bregman [27], and the fast gradient-based algorithm
proposed in [33]; see [34] for more details.

As indicated in [28], if δ = ∞, then it corresponds to the proximal forward
backward splitting method [35] applied to solve the dual formulation of the
problem (2) and also corresponds to the alternating minimization algorithm
(abbreviated as AMA), which is proposed by Tseng [21], applied to solve the
problem (12). The convergence of the general form of the PDHG algorithm
has not been proved yet.

Xiao and Yang [19] introduce a fast alternating minimization scheme, for
solving (2), which uses a linearization and proximal techniques. In other
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words, they introduce an inexact alternating direction method which uses
the framework of the alternating direction method of multipliers. But the
minimization of the augmented Lagrangian function:

LA
α (u, z, p) :=

1

2
‖Au− b‖22 + µ‖z‖+ 〈p, z −∇u〉+ α

2
‖z −∇u‖22, (19)

with respect to u, is solved inexactly in the sense that, by using a linearization
of 1

2
‖Au − b‖22 and adding a proximal term, the approximation of (19) is

minimized. The IADM can be expressed as follows:
uk+1 = argmin

u
〈pk, zk −∇u〉+ 〈AT (Auk − b), u− uk〉

+α
2
‖zk −∇u‖22 + 1

2δ
‖u− uk‖22

zk+1 = argmin
z

µ‖z‖+ 〈pk, z −∇uk+1〉+ α
2
‖z −∇uk+1‖22

pk+1 = pk + α(zk+1 −∇uk+1),

(20)

where α > 0 and 0 < δ < 1/‖ATA‖2. In a more simplified form, we have
uk+1 =

(
1
δ
I − α∆

)−1 ((1
δ
I − ATA

)
uk + AT b− div(αzk + pk)

)
,

zk+1 = shrink(∇uk+1 − pk

α
, µ
α
),

pk+1 = pk + α(zk+1 −∇uk+1).

(21)

The global convergence is followed directly by the analysis in [36]. The
IADM requires to evaluate the inverse of 1

δ
I − α∆ at each iteration. This

consumes more computational resources when the IADM is applied to solve
the nonlocal TV deblurring problem. This is the main drawback when this
algorithm is applied to solve the nonlocal TV deblurring problem.

3. Linearized Proximal Alternating Minimization Algorithm for
Nonlocal Total Variation

In this section, we describe our proposed linearized proximal alternating
minimization algorithm (abbreviated as LPAMA) for solving the nonlocal
TV deblurring problem of the form (11). In our proposed algorithm, we
approximate the `2 fidelity term of the problem (11) by a strongly convex
quadratic function. In order to obtain this approximation, we use the lin-
earlization of the `2 fidelity term and the proximal function. Then we use a
similar framework as for the alternating minimization algorithm (abbreviated
as AMA) proposed by Tseng [21] to solve separable convex programming.
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First of all, we introduce the AMA for solving separable convex program-
ming. We consider the following separable convex minimization problem

min
u,z

f(u) + g(z)

s.t. Mu = z,
(22)

where f : Rn1 → R, g : Rn2 → R are convex lower semicontinuous (lsc)
functions, and M : Rn1 → Rn2 is an n2 ×n1 matrix. We further assume that
f is strongly convex with modulus σ > 0, i.e., for any β ∈ (0, 1),

βf(u1) + (1− β)f(u2)− f(βu1 + (1− β)u2)

≥ σβ(1− β)‖u1 − u2‖22, ∀u1, u2 ∈ Rn1 ,

The Lagrangian function and the augmented Lagrangian function for (22)
are respectively

L(u, z, p) := f(u) + g(z) + 〈p, z −Mu〉, (23)

and
Lα(u, z, p) := f(u) + g(z) + 〈p, z −Mu〉+ α

2
‖z −Mu‖22, (24)

Then the AMA for solving (22) can be expressed as the following templates:
uk+1 = argmin

u
L(u, zk, pk)

zk+1 = argmin
z

Lαk(uk+1, z, pk)

pk+1 = pk + αk(zk+1 −Muk+1),

(25)

where {αk} is any sequence of scalars satisfying ε ≤ αk ≤ 4σ/‖M‖22 − ε
and ε is any fixed positive scalar not exceeding 2σ/‖M‖22. It was shown
that this algorithm is convergent if the problem (22) is feasible, the function
g(z) + ‖z‖22 has minimum, and (22) has an optimal Lagrangian multiplier
vector corresponding to the constraints Mu = z.

When we apply the AMA to solve nonlocal TV denoising problem (i.e.
(22) with f(u) = 1

2
‖u− b‖22, g(z) = µ‖z‖, and Mu = ∇wu), we have an ad-

vantage of not evaluating any inverses of the operator involving the nonlocal
Laplacian operator ∆w. We note that the BOSSB and the IADM require the
inverse of the operator involving ∆w even for this denoising problem but the
PDHG algorithm does not require the inverse of the operator involving ∆w.
Hence the PDHG is quite efficient for the TV denoising problem [34].
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If the AMA is directly applied to solve (11), then the first step in the
framework (25) is as follows:

uk+1 = argmin
u

L(u, zk, pk) = argmin
u

µ‖zk‖+ 〈pk, zk −∇wu〉+
1

2
‖Au− b‖22

(26)
Then

uk+1 = (ATA)−1(AT b− divw pk).

But the motion blur, i.e. blurring operator A, is highly ill-conditioned. This
difficulty can be handled by using Tikonov regularization:

uk+1 = (ATA+
1

δ̂
I)−1(AT b− divw pk), (27)

where δ̂ > 0. Since the uk+1 in (27) is a unique solution of the following
minimization:

min
u

µ‖zk‖+ 〈pk, zk −∇wu〉+
1

2
‖Au− b‖22 +

1

2δ̂
‖u‖22, (28)

we use different fidelity function 1
2
‖Au− b‖22 + 1

2δ̂
‖u‖22 instead of 1

2
‖Au− b‖22

in this case. Hence the model is different from what we consider in this paper
even though we can handle ill-conditionedness of the operator A. We also
note that we need to evaluate the inverse of an operator ATA + 1

δ̂
I. If we

replace the term ‖u‖22 by the proximal term ‖u− uk‖22, i.e.,

min
u

µ‖zk‖+ 〈pk, zk −∇wu〉+
1

2
‖Au− b‖22 +

1

2δ̂
‖u− uk‖22 (29)

then it becomes the relaxed AMA described in [28] which is equivalent to
the PDHG algorithm (18). This relaxed AMA can also handle the ill-
conditionedness of the operator A and the objective function of (29) is a
better approximation of the Lagrangian function in (26) than that of (28)
when ‖uk+1 − uk‖2 is small. But it also requires evaluating the inverse of an
operator ATA+ 1

δ̂
I.

Instead of adding the Tikonov regularization or the proximal function to
the equation (26) when we update uk+1, we consider a different approach.
By using Taylor expansion at uk, the `2 fidelity term in (26) can be expressed
as follows:

1

2
‖Au−b‖22 =

1

2
‖Auk−b‖22+〈AT (Auk−b), u−uk〉+ 1

2
(u−uk)TATA(u−uk).
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If we replace the quadratic term 1
2
(u− uk)TATA(u− uk) of the above Taylor

expansion by 1
2
(u − uk)THk(u − uk) with well-conditioned positive definite

matrix Hk. Then the first step in the framework (25) becomes as follows:

uk+1 = argmin
u

µ‖zk‖+ 〈pk, zk −∇wu〉+
1

2
‖Auk − b‖22

+〈AT (Auk − b), u− uk〉+ 1

2
(u− uk)THk(u− uk).

This approach can also resolve the ill-conditionedness of A and gives a better
approximation when ‖uk+1 − uk‖2 is small. The choice of well-posed Hk is
crucial for the performance of this approach. If we let Hk = ATA+ 1

δ̂
I, then

this version becomes the relaxed AMA (29). Less computational resources
are demanded at each iteration if we can avoid evaluating the inverses of the
operator involving ATA. Hence we choose Hk as a simple constant multiple
of the identity matrix, i.e., Hk =

1
δ
I with δ > 0. In other words, we propose

to minimize the strongly convex quadratic approximation of (26) by using
the linearization of the `2 fidelity term 1

2
‖Au− b‖22 and adding the proximal

function:

argmin
u

µ‖zk‖+ 〈pk, zk −∇wu〉+ 〈AT (Auk − b), u−uk〉+ 1

2δ
‖u−uk‖22 (30)

instead of minimizing the Lagrangian function (26).
We now describe formally the LPAMA for solving (11) (solving the con-

straint formulation (12) with nonlocal TV).

LPAMA:

Let u0, z0, and p0 be given. Choose δ > 0. For k = 0, 1, 2, ..., generate
uk+1, zk+1, pk+1 from uk, zk, pk according to the following iteration:

Step 1. Set uk+1 = argmin
u

〈pk, zk − ∇wu〉 + 〈AT (Auk − b), u − uk〉 +
1
2δ
‖u− uk‖22.

Step 2. Set zk+1 = argmin
z

µ‖z‖+ 〈pk, z−∇wu
k+1〉+ αk

2
‖z−∇wu

k+1‖22.

Step 3. Set pk+1 = pk + αk(zk+1 −∇wu
k+1).
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The above algorithm can be expressed as the following simple form:
uk+1 = uk − δ(ATAuk − AT b+ divw pk),

zk+1 = shrink(∇wu
k+1 − pk

αk ,
µ
αk ),

pk+1 = pk + αk(zk+1 −∇wu
k+1).

(31)

Hence the LPAMA does not need to solve nonlocal TV denoising subproblems
and does not require to evaluate the inverses of the operator involving ∆w (it
is required for the BOSSB and the IADM) and ATA (it is required for the
PDHG algorithm). These are advantages of our proposed algorithm LPAMA
over the algorithms that we present in Subsection 2.1.

Similarly, by linearizing α
2
||zk −∇wu||22 at the first step in the framework

of IADM (20), we can avoid evaluating the inverse of 1
δ
− α∆w as follows:

uk+1 = argmin
u

〈pk, zk −∇u〉+ 〈AT (Auk − b), u− uk〉

+α〈divw(zk −∇wu
k), u− uk〉+ 1

2δ
‖u− uk‖22

zk+1 = argmin
z

µ‖z‖+ 〈pk, z −∇uk+1〉+ α
2
‖z −∇uk+1‖22

pk+1 = pk + α(zk+1 −∇uk+1),

(32)

where α > 0 and δ > 0. In a more simplified form, we have
uk+1 = uk − δ((ATA− α∆w)u

k − AT b+ divw(αz
k + pk)),

zk+1 = shrink(∇uk+1 − pk

α
, µ
α
),

pk+1 = pk + α(zk+1 −∇uk+1).

(33)

The global convergence of the above algorithm can be followed by the analysis
in [36] as did for the IADM if 0 < δ < 1/‖ATA−α∆w‖22. We call this extended
version of the IADM as “IADM-e”.

4. Algorithm Framework for Motion Deblurring and Stability

In this section, we give the details of motion deblurring process and ana-
lyze the stability of the LPAMA. We also describe how we update the weight
and how to choose the parameters for algorithms. First of all, we give the
following general algorithm framework for the non-blind motion deblurring
problem.

In Algorithm 1, we project image um onto [0, 255]n as did in [33]. By
doing this, we can reduce boundary artifacts and achieve stability of the
deblurring algorithms on various input images and blurring kernels.
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Algorithm 1 Non-blind Motion Deblurring Algorithm Framework

Input: Given blurred and noisy image b and blurring operator A with the
periodic or reflexive boundary condition
Initialization: u−1 = 0 and u0 = argmin

0≤v≤255
‖v − AT b‖2

while m < K and ‖um − um−1‖2 > ε‖um‖2 do

If m mod W = 0, update weight w(x, y) = e−
d2um (x,y)

2h2 with distance in
(6).
Update um+1 by LPAMA, BOSSB, PDHG, or IADM.
Project um+1 = argmin

0≤v≤255
‖v − um+1‖2.

end while

4.1. Stability Analysis for the Proposed Algorithm

In this subsection, we analyze the stability of the proposed algorithm,
LPAMA. As we commented in Subsection 2.1, the BOSSB and the IADM
have theoretical bounds on the parameter δ for the convergence of them. For
both the BOSSB and the IADM, 0 < δ < 1/‖ATA‖2. Unfortunately, the
theoretical bound on the parameter δ has not been given for the algorithms
such as the LPAMA and the PDHG. Therefore, we empirically analyze the
bound of the parameter δ, which is crucial for the stability, of the LPAMA
on four different images and kernels with the periodic boundary condition.
Four different images and kernels are “Babara” image with 5 × 5 kernel,
“House” image with 9 × 9 kernel, “Lena” image with 13 × 13 kernel, and
“Camera” image with 17 × 17 kernel. We note that the PSNRs of given
blurred images are 23.3dB, 23.8dB, 26.9dB, and 20.3dB respectively. The
PSNR (peak signal-to-noise ratio) is defined by

10 log10

(
2552n

‖u− ũ‖22

)
where n is the size of the image, u is the original image, and ũ is the recovered
image. The values of ||ATA||2 are 4.3×103, 18.7×103, 9.9×103, and 0.8×103

respectively.
We terminate the algorithms when

||uk − uk−1||2 ≤ ε||uk||2 (34)

is satisfied with the given ε = 10−4. We set the maximum number of itera-
tions as 1000
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Babara House Lena Camera

δ PSNR Iter PSNR Iter PSNR Iter PSNR Iter
0.00001 22.7 81 23.8 57 25.5 83 19.4 87
0.0001 22.7 80 23.8 60 25.5 82 19.4 75
0.001 22.8 78 23.8 61 25.7 77 19.5 75
0.01 24.0 205 25.3 197 27.7 215 21.1 373
0.1 26.1 146 29.1 193 30.9 189 23.8 398
0.5 27.1 120 30.4 207 32.2 323 24.9 400
1.0 27.4 124 30.6 221 32.5 338 25.0 361
1.5 27.4 123 30.6 220 32.6 330 25.1 320
1.8 27.5 125 30.7 215 32.7 324 25.1 299
2.0 27.5 1000 30.7 1000 32.7 1000 25.0 1000
2.1 Unstable Unstable Unstable Unstable

Table 1: Numerical results for the various δ (The LPAMA is stable when
0 < δ < 2). When δ > 2, the relative error is getting larger as the iteration
increases. It is reasonable to choose δ in the interval (0.1, 2) to get a better
performance. We fix the weight (w = w0) for experiments.

In Table 1, we report the PSNR and the number of iterations of the
LPAMA with a fixed weight for various δ on four images. We note that the
parameter δ can be considered as a stepsize. From Table 1, the LPAMA is
stable when 0 < δ < 2. However, the PSNR of the obtained solution is lower
than that of the given blurred image when δ < 0.01. If we set ε = 10−8

in (34) and the maximum iteration as 400, 000 then we have PSNR 24.9dB
at the maximum iteration when δ = 0.0001. This shows that the algorithm
converges slowly when δ is small. When δ > 2, the relative error is getting
larger as the iteration increases. Therefore, it is reasonable to choose δ in
the interval (0.1, 2) to get a better performance.

4.2. Weight Update for Nonlocal TV

To achieve better PSNR with less CPU time, we need to choose an appro-
priate size of the search window Ωw(x) and the interval of updating weights
(W in Algorithm 1). In Figure 2, we report the relation between the PSNR
and the size of search window and the relation between the CPU time and
the size of search window when the LPAMA is applied to solve a motion de-
blurring problem with the “House” image using 5× 5 motion blurring kernel
with the reflexive boundary condition. From Figure 2, we see that if the size
of search window is larger than 7 × 7 then the increasing rate of the PSNR
becomes smaller but the CPU time is rather larger. Also, as commented in
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Figure 2: (a) Relation between the PSNR and the size of search window
|Ωw(x)|, (b) Relation between the CPU time and the size of search window
|Ωw(x)|. We note that K = 50, W = 10 in Algorithm 1, and we use the
“House” image using 5×5 motion blurring kernel with the reflexive boundary
condition.

[10], when the image is not very periodic, such as the “Cameraman” image,
the search window larger than 11× 11 do not show any improvement of the
PSNR. Therefore, we use 7×7 search window for our numerical experiments
to reduce the CPU time with having a reasonably good PSNR. Hence we
can reduce the computational burden for updating weights (for the “House”
image, it is 1.7s per each weight update) with a reasonably good PSNR.

In Figure 3, we present how the PSNR and the relative error are changed
depending on number of iterations K for each given W when the LPAMA
is applied to solve a motion deblurring problem with the “Barbara” image
using 5×5 motion blurring kernel with the reflexive boundary condition. As
shown in Figure 3 (a), 2 or 3 updates of the weight dramatically increase
the PSNR (for the “Barbara”, more than 2dB). Hence, in our experiments,
we set W = 10 for the LPAMA, the IADM, and the PDHG. Strangely,
the BOSSB does not show any improvement of the PSNR with updating
weights (see also [13]). Hence, we fix the weight for the BOSSB (i.e., there
is no weight update) for the numerical experiments in Section 5. Since we
solve a deblurring problem with a different regularizer when we update a
weight, the relative error is increasing abruptly and so it does not decrease
monotonically. Therefore, the relative error of the nonlocal TV deblurring
problem with updating a weight is usually larger than that with the fixed
weight; see Figure 3 (b).
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Figure 3: (a) Relation between the PSNR and the number of iterations K
for various weight update rates W. (b) Relation between the relative error
and the number of iterations K for various weight update rates W. We note
that we use the “Barbara” image using 5×5 motion blurring kernel with the
reflexive boundary condition.

In case of local TV, if we choose a large µ, then an edge information tends
to be preserved well but the textured regions tend to be flattened. On the
other hand, if we choose a small µ, small scale features have a tendency to
be relatively well preserved. Hence the local TV with a fixed regularization
parameter shows poor performance. Hence, inspired by spatially varying
regularization methods [8, 9], we use a heuristic of an increasing sequence of
regularization parameters started from a small positive value to get better
performance. In other words, if the problem (11) is to be solved with the
target parameter value µ = µ̄, we propose to solve a sequence of problems
(11) defined by an increasing sequence {µ0, µ1, ..., µ` = µ̄} with a given finite
positive integer `. When a new problem, associated with µj+1 is to be solved,
the approximate solution for the current problem with µ = µj is used as the
starting point. In our numerical experiments, we update µk = 10(k−K)/Kµ
at iteration k. We call this method as “LPAMA-h”. For `1 regularization
problem, a similar methodology is known as the homotopy strategy (also
known as continuation strategy [37]).
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Figure 4: Dataset for the numerical experiments - 9 different test images; the
sizes of image are various from 228 × 228 to 996 × 996. 8 different kernels;
from left to right, the size of each kernel is 5×5, 7×7, 9×9, 11×11, 13×13,
15× 15, 17× 17 and 27× 27.

5. Numerical Experience on Nonlocal TV Deblurring Problems

All algorithms are implemented with 64bit Matlab (version 7.10). All
runs are performed on a laptop with Intel i7-640LM CPU (2.13 - 2.93GHz)
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BOSSB PDHG LPAMA LPAMA-h IADM IADM-e
δ B.C. REG. PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME

Reflexive NLTV 28.9/54.4 28.3/114.1 28.8/23.9 29.0/24.0 28.7/27.5 28.7/24.3
0.5 LTV 28.5/13.4 27.5/52.9 27.8/6.9 28.3/6.9 27.3/7.2 27.3/6.9

Periodic NLTV 27.4/63.9 26.9/43.9 27.4/39.8 27.6/40.3 27.4/43.2 27.4/40.4
(FFT) LTV 27.3/23.4 26.4/18.9 26.7/16.5 27.1/16.5 26.3/16.9 26.3/16.2

Reflexive NLTV 28.8/54.2 29.4/115.2 29.7/24.0 29.9/24.0 29.6/27.3 29.6/24.3
1.0 LTV 28.5/13.5 28.3/53.9 28.5/6.9 29.1/6.9 27.8/7.1 27.8/6.8

Periodic NLTV 26.8/64.4 28.0/43.9 28.4/39.8 28.5/39.8 28.3/43.0 28.3/40.0
(FFT) LTV 26.9/23.1 27.2/19.1 27.5/16.4 27.9/16.5 26.9/16.8 27.0/16.4

Reflexive NLTV 10.3/54.4 29.7/114.6 29.7/24.1 29.9/24.1 29.7/27.5 29.7/24.5
1.5 LTV 10.2/13.6 28.6/53.4 28.6/6.8 29.2/6.9 28.0/7.1 28.0/6.8

Periodic NLTV 10.3/64.3 28.4/44.4 28.6/39.8 28.8/39.5 28.6/43.3 28.6/40.3
(FFT) LTV 10.1/23.4 27.5/19.1 27.7/16.5 28.2/16.4 27.2/16.8 27.2/16.5

Table 2: Comparison of the performance of the LPAMA(-h) with that of the
BOSSB, the PDHG, and the IADM(-e) for three different choices of δ. The
BOSSB is stable and has better performance results when δ = 0.5, 1.0. On
the other hand, the PDHG, the LPAMA(-h), and the IADM(-e) are stable
and have better performance results when δ = 1.0, 1.5. It is reasonable to
choose δ = 1 for all the algorithms. NLTV stands for nonlocal TV and LTV
stands for local TV. The LPAMA-h overall outperforms other algorithms.

and 8GB Memory. The Operation System is 64bit Linux. We note that we
slightly modified the BOSSB (http://www.math.ucla.edu/~xqzhang/html/code.html)
to enhance the performance for the motion deblurring problems, and the
IADM and the PDHG algorithms are implemented by us based on the guide-
line in [19] and [20] respectively. In order to speed up the computation of
weights and nonlocal operators, such as divw and ∇w, we compute them in C
language with interface to Matlab through the mex function. All the test
images are blurred and noised. The test images and blurring kernels are in
Figure 4. We use 9 different images. The size of tested images is various from
228×228 to 996×996. Also, we use 8 different motion blurring kernels. Some
of them are freely available from http://www.wisdom.weizmann.ac.il/~levina/.
The size of kernels varies from 5× 5 to 27× 27; see Figure 4 for details. We
fix the added Gaussian random noise, η ∼ N (0, 9) in all experiments. Also
we set 5 × 5 patch B(x) and h = 2σ where σ is the estimated noise level
(we set σ = 3). Hence we have 72 different blurred and noisy images for our
experiments.

Table 2 reports the mean values of the PSNR and the CPU time of 72
instances for three different choices of δ. Since the boundary artifact is much
less in the reflexive boundary condition, the performance of all algorithms are
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better when the reflexive boundary condition is used. The BOSSB is more
sensitive to the boundary condition. For nonlocal TV, the LPAMA-h obtains
best PSNR and the LPAMA is faster than other algorithms. For local TV
with δ = 0.5, the BOSSB obtains better PSNR than other algorithms. For
local TV with δ = 1.0 or 1.5, the LPAMA-h obtains better PSNR than other
algorithms. The LPAMA(-h) is comparable with the IADM-e in terms of the
CPU time for local TV. The BOSSB is stable and has better performance
results when δ = 0.5, 1.0. On the other hand, the PDHG, the LPAMA, and
the IADM are stable and have better performance results when δ = 1.0, 1.5.
It is reasonable to choose δ = 1 for all the algorithms.

As we mentioned in Section 4, the heuristic of using an increasing sequence
of regularization parameters helps to enhance the image quality, especially
for local TV. But, since the nonlocal TV updates the weight regularly, this
heuristic does not have advantage for nonlocal TV. We see that the PSNR
of the LPAMA-h is better than that of the LPAMA especially for local TV.

In the following, we describe how we set the parameters for all the algo-
rithms. For the BOSSB [13], we set 30 outer iterations (i.e., K = 30) and
10 inner iterations with δ = 1, µ = 50, α = 200. Since the parameters used
in [13] does not work well for our motion deblurring testing problems, we
modified the parameters for the better performance. For the PDHG [20],
we set 50 iterations (i.e., K = 50) with δ = 1, µ = 1.1, τ = 0.495. For the
reflexive boundary condition, we use conjugate gradient method (up to 5
iterations) to evaluate the inverse of the operator 1

δ
I + ATA. For the peri-

odic boundary condition, we use FFT to compute the inverse of the operator
1
δ
I+ATA. Adaptive parameter update scheme has been proposed in [20], but

this scheme does not work well on our motion deblurring problems. Hence we
fixed parameters for the PDHG algorithm as did in [28]. We further tuned
the parameters for the better performance. For the LPAMA(-h) and the
IADM(-e), we set 50 iterations (i.e., K = 50) with δ = 1, µ = 1.1, α = 50.
All the parameters for the LPAMA(-h) and the IADM(-e) were tuned for
the better performance. For local TV deblurring problems, we use the same
parameters as those of algorithms for nonlocal TV except for K. Since we
do not need to update the weight for local TV, we set K = 30 for all the
algorithms; see Figure 3 (a).

In Table 3, we report the PSNR and the CPU time of all the algorithms
for solving local TV and nonlocal TV deblurring problems on 9 different
images. The PSNR and the CPU time in Table 3 are the mean value of them
on 8 different motion blurring kernels for each algorithm. When the images,
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BOSSB PDHG LPAMA LPAMA-h IADM IADM-e
B.C. REG. IMAGE PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME PSNR/TIME

Barbara 25.9/11.6 27.3/26.5 27.9/4.8 28.5/4.8 27.7/5.5 27.7/4.9
Cameraman 28.3/11.5 28.8/25.5 29.0/5.0 29.0/5.0 28.9/5.8 28.9/5.1

Pepper 29.7/11.6 30.3/26.2 30.2/5.0 30.1/5.1 30.3/5.7 30.3/5.0
LightHouse 26.2/30.2 26.7/48.9 27.1/11.1 27.4/10.9 27.0/13.0 27.0/11.2

NLTV Stairs 26.9/43.1 27.3/77.4 27.7/16.6 28.1/16.4 27.6/19.7 27.6/17.3
Lena 32.5/52.9 32.9/105.1 33.1/22.8 33.1/22.6 33.1/26.0 33.1/23.1
Boat 29.8/52.4 30.3/105.7 30.6/22.4 30.6/21.8 30.5/25.8 30.5/22.8

House 29.6/63.0 30.1/125.7 30.5/26.2 30.7/26.6 30.4/31.1 30.4/27.4
Man 30.9/211.3 31.1/496.2 31.4/102.4 31.6/103.4 31.4/112.8 31.4/102.3

Reflexive AVERAGE 28.8/54.2 29.4/115.2 29.7/24.0 29.9/24.0 29.6/27.3 29.6/24.3
Barbara 25.3/2.4 25.6/12.3 25.8/1.5 26.9/1.5 25.3/1.5 25.3/1.5

Cameraman 27.9/2.4 26.9/12.3 27.1/1.4 27.8/1.5 25.8/1.4 25.8/1.4
Pepper 29.8/2.4 29.8/12.5 29.9/1.5 30.0/1.5 29.1/1.5 29.2/1.5

LightHouse 25.8/4.9 25.6/22.2 25.8/3.0 26.4/3.0 25.0/3.1 25.1/3.0
LTV Stairs 26.9/8.1 26.8/34.2 27.0/4.6 27.7/4.6 26.6/4.6 26.6/4.3

Lena 32.1/12.5 32.1/46.9 32.2/6.0 32.5/6.0 31.8/6.6 31.8/5.9
Boat 29.5/12.0 29.1/49.1 29.3/6.3 29.8/5.9 28.6/6.2 28.6/6.2

House 28.9/14.9 28.6/59.7 28.7/7.7 29.3/7.7 28.0/7.9 28.0/7.5
Man 30.7/62.2 30.4/235.9 30.6/30.1 31.0/30.6 30.0/31.3 30.1/30.2

AVERAGE 28.5/13.5 28.3/53.9 28.5/6.9 29.1/6.9 27.8/7.1 27.8/6.8

Barbara 24.7/12.2 25.8/7.1 26.4/6.4 26.7/6.4 26.3/7.3 26.3/6.5
Cameraman 26.2/12.1 27.4/7.1 27.7/6.4 27.7/6.4 27.7/7.1 27.7/6.5

Pepper 26.1/12.2 27.1/7.1 27.4/6.4 27.4/6.5 27.4/7.2 27.4/6.6
LightHouse 24.3/33.2 25.5/18.0 25.8/16.3 26.1/16.1 25.7/18.2 25.7/16.6

NLTV Stairs 24.2/52.5 25.8/31.8 26.2/28.6 26.5/28.3 26.1/31.7 26.1/29.1
Lena 29.5/54.2 31.4/25.3 31.7/23.9 31.8/23.8 31.7/27.4 31.7/24.1
Boat 28.7/54.2 29.5/25.6 29.8/23.9 29.8/23.9 29.7/27.7 29.7/24.5

House 27.9/69.4 29.3/41.5 29.7/37.0 29.9/37.4 29.6/41.4 29.6/38.1
Man 29.8/279.4 30.5/231.8 30.9/209.5 31.1/209.3 30.8/218.6 30.9/208.0

Periodic AVERAGE 26.8/64.4 28.0/43.9 28.4/39.8 28.5/39.8 28.3/43.0 28.3/40.0
(FFT) Barbara 24.4/3.3 24.8/2.7 25.0/2.2 25.7/2.2 24.6/2.3 24.6/2.2

Cameraman 26.3/3.2 26.0/2.7 26.3/2.3 26.8/2.3 25.2/2.2 25.2/2.2
Pepper 26.5/3.3 26.8/2.7 27.2/2.2 27.3/2.3 26.8/2.3 26.9/2.3

LightHouse 24.4/8.1 24.6/7.1 24.9/6.1 25.4/6.0 24.3/6.2 24.3/6.0
LTV Stairs 24.6/15.3 25.5/14.0 25.7/12.3 26.2/12.0 25.4/12.4 25.5/12.1

Lena 29.7/13.2 30.8/8.1 31.1/7.2 31.3/7.3 30.8/7.5 30.8/7.2
Boat 28.6/13.4 28.4/8.2 28.7/7.1 29.1/7.2 28.1/7.5 28.1/7.3

House 27.6/21.6 28.0/16.3 28.2/14.1 28.7/14.2 27.6/14.5 27.6/14.2
Man 29.8/126.6 29.9/110.4 30.1/94.0 30.5/95.4 29.7/96.3 29.7/94.5

AVERAGE. 26.9/23.1 27.2/19.1 27.5/16.4 27.9/16.5 26.9/16.8 27.0/16.4

Table 3: Comparison of the performance of the LPAMA(-h) with that of
BOSSB, PDHG and IADM(-e) for each different image. For each image, the
PSNR (dB) and the CPU Time (sec) are the average values of the deblurred
results on eight different blurring kernels.
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such as the “Barbara” and the “House”, have the strong periodic structure,
the PSNR of the recovered images by using nonlocal TV is much better
than that by using local TV; see also Figures 5 and 6. From Table 3, we
see that the LPAMA-h obtains better PSNR than all the other algorithms
on average. The LPAMA(-h) is at least two times faster than both the
PDHG and the BOSSB and slightly faster than the IADM when the reflexive
boundary condition is used. The LPAMA(-h) is faster than all the other
algorithms for nonlocal TV when FFT is used with the periodic boundary
condition. The BOSSB gets the PSNR that is at least 1.1dB lower than that
of the LPAMA-h for nonlocal TV. We think that, for the BOSSB, the reason
of obtaining much less PSNR is caused by fixing the weight; see also Figure
3 (a).

In Figures 5-9, the deblurred images by using the LPAMA-h and other
algorithms are shown along with the PSNR and the CPU time. We note that
the reflexive boundary condition is used except for the “Cameraman” image.

Figure 5 shows the results of 228 × 228 “Barbara” image with 15 × 15
kernel. When the deblurred images by using nonlocal TV is compared with
those by using local TV, it is shown that the weak textures are recovered with
little artifacts, especially when the LPAMA-h is applied. It is surprising that
the LPAMA-h with local TV obtains a better PSNR than the BOSSB with
nonlocal TV. The reason is clear since the BOSSB does not update weight
for nonlocal TV. Hence it does not take advantage of using nonlocal TV. On
the other hand, LPAMA-h adaptively changes a regularization parameter µ
to recover better textures as explained at the end of Section 4.

Figure 6 shows the results of 612 × 452 “House” image with 27 × 27
kernel. The LPAMA-h with nonlocal TV is more than two times faster than
the PDHG with local TV and also has a much better PSNR. The LPAMA-h
is faster then the IADM for nonlocal TV. The IADM is comparable with the
LPAMA-h in terms of the CPU time for local TV, but IADM gets a lower
PSNR than the PDHG and BOSSB. Since the weight update scheme does
not work in BOSSB, the advantage of nonlocal TV is small even though the
image has periodic patterns. Hence the PSNR of the LPAMA-h with local
TV is comparable to that of the BOSSB with nonlocal TV.

Figure 7 shows the results of 484×484 “Lena” image with 7×7 kernel. It
is shown that the LPAMA-h is at least four times faster than other algorithms
except the IADM when it is applied to local TV. But the IADM obtains a
lower PSNR for local TV. We can see that the hair part in the upper right
on the deblurred “Lena” image by the LPAMA-h (see Figure 7 (d)) is very
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Figure 5: Comparison on the deblurred “Barbara” image (228 × 228) using
15 × 15 kernel with the reflexive boundary condition. When the deblurred
images by using nonlocal TV is compared with those by using local TV, it
is shown that the weak textures are recovered with little artifacts, especially
when the LPAMA-h is applied. Since the BOSSB does not update weight
for nonlocal TV, it does not take advantage of using nonlocal TV.

well recovered when it compared with other deblurred images.
Figure 8 shows the results of 484× 484 “Boat” image with 5× 5 kernel.
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Figure 6: Comparison on the deblurred “House” image (612 × 452) using
27 × 27 kernel with the reflexive boundary condition. We note that images
are cropped. The LPAMA-h adaptively changes a regularization parameter
µ and so the deblurred image by it has better textures, especially for local
TV. Hence the PSNR of the LPAMA-h is comparable to that of the BOSSB
with nonlocal TV.

It is shown that the LPAMA-h is the faster than other algorithms. Even
though, for nonlocal TV, the PSNR of the LPAMA-h is comparable to that
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Figure 7: Comparison on the deblurred “Lena” image (484 × 484) using
7× 7 kernel with the reflexive boundary condition. We note that images are
cropped. The hair part in the upper right on the deblurred “Lena” image by
the LPAMA-h (see (d)) is very well recovered when it compared with other
deblurred images.

of the IADM. The parallel wires in the lower right part of the recovered image
of the LPAMA-h can be more distinguishable than that of other algorithms.

Figure 9 shows the results of 228×228 “Cameraman” image with 11×11
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Figure 8: Comparison on the deblurred “Boat” image (484 × 484) using
5× 5 kernel with the reflexive boundary condition. We note that images are
cropped. The parallel wires in the lower right part of the recovered image of
the LPAMA-h can be more distinguishable than that of other algorithms.

kernel. For this image, FFT is used with the periodic boundary condition.
Even though the kernel size is relatively small, the restored image by the
BOSSB shows strong boundary artifacts. We see that the LPAMA-h is faster
than other algorithms except the IADM when it is applied to local TV. It
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Figure 9: Comparison on the deblurred “Cameramen” image (228 × 228)
using 11 × 11 kernel. FFT is used with the periodic boundary condition.
Even though the kernel size is relatively small, the restored image by the
BOSSB shows strong boundary artifacts.

achieves better PSNRs than other algorithms for both nonlocal and local
TV.
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6. Conclusion

In this paper we have proposed the linearized proximal alternating mini-
mization algorithm for solving motion deblurring problems based on nonlocal
total variation. The linearized proximal alternating minimization algorithm
has advantages of avoiding inner loops and the computation of any inverses
involving the blurring operator and the nonlocal operator by using the lin-
earization of the fidelity term and the proximal function. We have compared
our method with the Bregmanized operator splitting with the splitting Breg-
man method [13], the inexact alternating direction method [19], and the
primal dual hybrid gradient algorithm [20]. The numerical simulation results
show that our algorithm overall outperforms all the other algorithms and so
is efficient and robust for nonlocal total variation based motion deblurring
problems. From our numerical experiments, we see that if the weight update
scheme does not work, then the advantage of nonlocal TV is very small even
though the image has lots of periodic patterns.

Our proposed algorithm can be extended to solve more general separa-
ble convex optimization problem (22), whose objective function is the sum
of a smooth function and a nonsmooth function. Hence this algorithm can
be viewed as a generalization of the alternating minimization algorithm pro-
posed by Tseng [21] and the relaxed AMA described in [28]. The theoretical
analysis of the convergence properties of the linearized proximal alternating
minimization algorithm for solving separable convex minimization problems
has not been done yet. This can be a future research topic.
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