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Image Restorations

Figure: Image Deblurring

(a) original: 512 x 512 (b) motion blurred image (c) recovered image



Figure: Image Inpainting

(a) original: 512 x 512 (b) scratched image (c) recovered image



Figure: Image Denoising

(a) original: 512 x 512 (b) noised image (c) recovered image



Inverse Problem

Image restorations such as image deconvolution, image inpainting and image
denoising is often formulated as an inverse problem.

b= Au-+n,

where
@ unknown true image u € R".
@ observed image (or measurements) b € R¢.
@ 7 is a white Gaussian noise with variance o2.

@ Ac R*"is a linear operator, typically a convolution operator in image
deconvolution, a projection in image inpainting and the identity in image
denoising.



Frame-Based Approach

@ Our proposed approach for image restoration is based on tight frames.
@ Tight frames are redundant system in R".

@ Suppose W e R™<" (with m > n) satisfies W™ W = I. Then, the rows of
W form a tight frame in R".

@ For every vector u € R”,
u=WT(Wu).

@ The components of the vector Wu are called the canonical coefficients
representing u.

@ The tight frame system W used is generated from piecewise linear
B-spline framelet constructed via the unitary extension principle.

@ Mapping from the image u to its coefficients is not one-to-one, i.e., the
representation of u in the frame domain is not unique.



Optimization Formulations

Formulations for the sparse approximation of the underlying images

@ Analysis Approach: analyzed coefficient vector Wu can be sparsely
approximated

o1 ) 1
min =Au—b|2+XT|Wu| = min  —||AWTx — b|]2 + AT|x]|
ueRn 2 XxERange( W) 2

where X\ is a given positive weight vector.

@ Synthesis Approach: underlying image u is assumed to be synthesized
from a sparse coefficient vector x with u = W7x.

1
min =AW x — b||2 + AT|x|.
xeRm 2



Balanced Approach
_— T 2 K Ty (12 T
min S AWTx — b|? + ZI(/ = WWT)x|P + AT x|,

where x > 0.

@ Objective function of the balanced approach is convex but may not be
strictly convex.

@ Optimal solution need not be unique.

We consider the Tikhonov regularized balanced approach:
min AW x — bIP + S0 - WWT)x|? + S xIP + ATJx]
xeRm 2 2 2 ’

where a > 0.



Accelerated Proximal Gradient Algorithm
Proximal point mapping of the weighted /; norm function

Given g and T > 0, we consider the proximal point mapping of A7|x|:

. L
syi(g) = argmin 5x — g + AT|x],
X

where g = y — Vf(y)/L with

1 K «
f(y) = SIAWTx — bl + 2111~ WWT)x|2 + 5 x|

Then
Sy/L(g) = sgn(g) © max{|g| — A/L,0},

where @ denotes the component-wise product, i.e., (x ® y); = xyi, and
+1 if t > 0;

sgn(t):=<¢0 ift=0;
-1 ift<0.



The APG algorithm we adapted has the following template:

yk — xk 4+ tk*t‘k—1 (Xk - Xk71)
gh =y = Viy/L
XK1 =5, ,1(9%)

l‘k'H A /144(1F)2
= 5.

) proposed a fast iterative shrinkage-thresholding
algorithm (FISTA) to solve ¢;-regularized linear least squares problems.

@ It belongs to the class of accelerated proximal gradient algorithms
studied earlier by Nesterov, Nemirovski, and others.

@ Recently, gave a unified treatment.



@ When the APG algorithm with t* = 1 for all k, it is the popular iterative
shrinkage/thresholding algorithm and it is also the proximal
forward-backward splitting algorithm.

@ IST and PFBS only require gradient evaluations and soft-thresholding
operations, so the computation at each iteration is very cheap.

@ But, for any ¢ > 0, those algorithms terminate in O(L/¢) iterations with
an e-optimal solution.

@ Hence the sequence {x*} converges slowly.

The APG algorithms have an attractive iteration complexity of O(1/./¢) for
achieving e-optimality.



Convergence Results

lteration Complexity: Let {x¥}, {y*}, {t*} be the sequences generated by
Algorithm APG. Then, for any kK > 1, we have

2L||x; — x°||?

K Tikl — fx*) — \T[x*| <
O) + AT = 1x3) = VTl < =g

VX, e X

where X is the set of optimal solutions.

Global convergence: Let {x¥} be the sequence generated by Algorithm APG.
Then {x*} is bounded and each cluster point of the sequence {x*} is an
optimal solution. In addition, if a > 0, then the sequence {x*} converges to a
unique optimal solution.



Minimal Euclidean Norm Solution when aa =0

Let x* be the unique solution of Tikhonov regularized balanced approach
(oo > 0) and x§ be the unique solution of the following problem:

min
XEXy

X

Then ||x| is a nonincreasing function of « and

lim||x* — x5|| = 0.
i 1x2 — x|



Numerical Experience

Lipschitz Constant

The Lipschitz constant L of Vf has the following upper bound:

L < Amax(ATA) + K + a.

For the inpainting problem, the Lipschitz constant L of Vf has the following
upper bound:
L <max{1,s} + a.

Note that A is a diagonal matrix with diagonals equal to 1 if the
corresponding pixel values are known, but 0 otherwise.



Stopping Conaition

@ The natural stopping condition: §(x) := dist(0; d(f(x) + AT|x|)) is
sufficiently small, where 9(-) denotes the sub-differential and

{+1} if x; > 0;
alxi| =< [-1,1] ifx=0;
{-1} ifx;<0.

@ At the k-th iteration, we can observe that
L(gF — X! (= Ly = X1 = VI(y")) € oA T[x*T)).
Thus we have

L(yk k+1)—‘er( k+1) _vf(yk) c 8(f(xk+1)+/\7|x"+1|).

@ Good upper bound on §(x) without incurring extra computational cost:

(X TT) SIL(Y* = X*HT) + VAKHT) = VA )| < 2L[ly* = X7,



@ Condition 1: . ,
2Ly = x|
max{1, [ x|/}

@ Condition 2:

IAWTx* — b — [|AWTx*"T — b]|

< .
JAWTxK — b] = Tol

@ Condition 3:
7”Xk — X" ” < Tol
max{1, [xk||} =

For our tests, Tol = 5 x 104 except for the image deblurring problems
(0.2 x Tol instead of Tol for conditiOn 2 in order to prevent our algorithm from
stopping prematurely).



Continuation Strategy: solving a sequence of ¢;LS problems defined by
a decreasing sequence {\°, X' ... X = \}.

Initially, we set \° = 10, and update \¥ = max{0.8\*~" X} once at
every 3 consecutive iterations or whenever the condition 3 is satisfied
with Tol = 1072.

@ Weseta =0.1e"\/mP.

@ x=1.



@ Real images usually have two layers, referring to cartoons (the
piecewise smooth part of the image) and textures (the oscillating pattern
part of the image).

@ The layers usually have sparse approximations under different tight
frame systems.

@ Formulation:

2 2
1 Kj «;
min 1A W x) — b|f? (= WiW)xil2 + Sl i1xlI2 + AT [x) -
en D e 3IACS W) = BIF 4 3 (0= WD+ 5l + AT 1)

i=1

where, fori =1,2, W/ W; =1, x; > 0, a; > 0, \; > 0.



Figure: Image Decomposition

(a) original: 512 x 512 (b) cartoon part (c) texture part



Numerical Comparison

image problem type APG on Tbal 1]
split linearized proximal
iter/psnr/time Bregman Bregman forward
on ana on syn backward
on bal
pepper256 ';‘pj”(‘)tfgg 22/33.69/3.4 | 51/33.86/10.1 329/33.82/46.0
inpainting
barbara512 cartoon & texture 31/33.82/34.1 67/33.77/71.5
A =0.01
denoising
barbara512 cartoon & texture 29/28.39/31.5 55/29.01/71.6
o =20, A =0.08
deblur
goldhill256 average, 9 27/26.41/5.0 19/26.40/14.6 11/26.21/7.1 171/26.21/107.3
o=23, A=0.03
deblur
boat256 disk, 4 28/25.46/5.8 18/25.30/13.8 12/25.32/7.7 155/25.00/99.9
o =23, A=0.03

— u
255N

where u and & are the original and restored images, respectively, and N is
the total number of pixels in u.

PSNR = —-20109¢ —sec+ lu



Conclusions

@ Convergence speed of the APG algorithm is competitive to that of the
linearized Bregman iteration for the synthesis based approach and the
split Bregman iteration for the analysis based approach.

@ Demonstrate that this single algorithmic framework can universally
handle several image restoration problems, such as image deblurring,
denoising, inpainting, and cartoon-texture decomposition.

@ The algorithms we implemented are able to restore 512 x 512 images in
various image restoration problems in less than 50 seconds on a modest
PC.



Thank You!



