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Image Restorations

Figure: Image Deblurring

(a) original: 512× 512 (b) motion blurred image (c) recovered image



Figure: Image Inpainting

(a) original: 512× 512 (b) scratched image (c) recovered image



Figure: Image Denoising

(a) original: 512× 512 (b) noised image (c) recovered image



Inverse Problem

Image restorations such as image deconvolution, image inpainting and image
denoising is often formulated as an inverse problem.

b = Au + η,

where

unknown true image u ∈ <n.

observed image (or measurements) b ∈ <`.

η is a white Gaussian noise with variance σ2.

A ∈ <`×n is a linear operator, typically a convolution operator in image
deconvolution, a projection in image inpainting and the identity in image
denoising.



Frame-Based Approach

Our proposed approach for image restoration is based on tight frames.

Tight frames are redundant system in <n.

Suppose W ∈ <m×n (with m ≥ n) satisfies W T W = I. Then, the rows of
W form a tight frame in <n.

For every vector u ∈ <n,
u = W T (Wu).

The components of the vector Wu are called the canonical coefficients
representing u.

The tight frame system W used is generated from piecewise linear
B-spline framelet constructed via the unitary extension principle.

Mapping from the image u to its coefficients is not one-to-one, i.e., the
representation of u in the frame domain is not unique.



Optimization Formulations

Formulations for the sparse approximation of the underlying images

Analysis Approach: analyzed coefficient vector Wu can be sparsely
approximated

min
u∈<n

1
2
‖Au − b‖2 + λT |Wu| = min

x∈Range(W )

1
2
‖AW T x − b‖2 + λT |x |

where λ is a given positive weight vector.

Synthesis Approach: underlying image u is assumed to be synthesized
from a sparse coefficient vector x with u = W T x .

min
x∈<m

1
2
‖AW T x − b‖2 + λT |x |.



Balanced Approach

min
x∈<m

1
2
‖AW T x − b‖2 +

κ

2
‖(I −WW T )x‖2 + λT |x |,

where κ > 0.

Objective function of the balanced approach is convex but may not be
strictly convex.

Optimal solution need not be unique.

We consider the Tikhonov regularized balanced approach:

min
x∈<m

1
2
‖AW T x − b‖2 +

κ

2
‖(I −WW T )x‖2 +

α

2
‖x‖2 + λT |x |,

where α ≥ 0.



Accelerated Proximal Gradient Algorithm
Proximal point mapping of the weighted `1 norm function

Given g and τ > 0, we consider the proximal point mapping of λT |x |:

sλ/L(g) = arg min
x

L
2
‖x − g‖2 + λT |x |,

where g = y −∇f (y)/L with

f (y) =
1
2
‖AW T x − b‖2 +

κ

2
‖(I −WW T )x‖2 +

α

2
‖x‖2.

Then
sλ/L(g) = sgn(g)�max{|g| − λ/L,0},

where � denotes the component-wise product, i.e., (x � y)i = xiyi , and

sgn(t) :=


+1 if t > 0;

0 if t = 0;

−1 if t < 0.



The APG algorithm we adapted has the following template:

yk = xk + tk−1−1
tk (xk − xk−1)

gk = yk −∇f (yk )/L

xk+1 = sλ/L(gk )

tk+1 =
1+
√

1+4(tk )2

2 .

(Beck and Teboulle 08) proposed a fast iterative shrinkage-thresholding
algorithm (FISTA) to solve `1-regularized linear least squares problems.

It belongs to the class of accelerated proximal gradient algorithms
studied earlier by Nesterov, Nemirovski, and others.

Recently, (Tseng 08) gave a unified treatment.



When the APG algorithm with tk = 1 for all k , it is the popular iterative
shrinkage/thresholding algorithm and it is also the proximal
forward-backward splitting algorithm.

IST and PFBS only require gradient evaluations and soft-thresholding
operations, so the computation at each iteration is very cheap.

But, for any ε > 0, those algorithms terminate in O(L/ε) iterations with
an ε-optimal solution.

Hence the sequence {xk} converges slowly.

The APG algorithms have an attractive iteration complexity of O(1/
√
ε) for

achieving ε-optimality.



Convergence Results

Iteration Complexity: Let {xk}, {yk}, {tk} be the sequences generated by
Algorithm APG. Then, for any k ≥ 1, we have

f (xk ) + λT |xk | − f (x∗α)− λT |x∗α| ≤
2L‖x∗α − x0‖2

(k + 1)2 , ∀x∗α ∈ X ∗α .

where X ∗α is the set of optimal solutions.

Global convergence: Let {xk} be the sequence generated by Algorithm APG.
Then {xk} is bounded and each cluster point of the sequence {xk} is an
optimal solution. In addition, if α > 0, then the sequence {xk} converges to a
unique optimal solution.



Minimal Euclidean Norm Solution when α = 0

Let x∗α be the unique solution of Tikhonov regularized balanced approach
(α > 0) and x∗0 be the unique solution of the following problem:

min
x∈X∗0

‖x‖.

Then ‖x∗α‖ is a nonincreasing function of α and

lim
α↓0
‖x∗α − x∗0 ‖ = 0.



Numerical Experience

Lipschitz Constant

The Lipschitz constant L of ∇f has the following upper bound:

L ≤ λmax(AT A) + κ+ α.

For the inpainting problem, the Lipschitz constant L of ∇f has the following
upper bound:

L ≤ max{1, κ}+ α.

Note that A is a diagonal matrix with diagonals equal to 1 if the
corresponding pixel values are known, but 0 otherwise.



Stopping Condition

The natural stopping condition: δ(x) := dist(0; ∂(f (x) + λT |x |)) is
sufficiently small, where ∂(·) denotes the sub-differential and

∂|xi | =


{+1} if xi > 0;

[−1,1] if xi = 0;

{−1} if xi < 0.

At the k -th iteration, we can observe that

L(gk − xk+1)(= L(yk − xk+1)−∇f (yk )) ∈ ∂(λT |xk+1|).

Thus we have

L(yk − xk+1) +∇f (xk+1)−∇f (yk ) ∈ ∂(f (xk+1) + λT |xk+1|).

Good upper bound on δ(x) without incurring extra computational cost:

δ(xk+1) ≤ ‖L(yk − xk+1) +∇f (xk+1)−∇f (yk )‖ ≤ 2L‖yk − xk+1‖.



Condition 1:
2L‖yk−1 − xk‖
max{1, ‖xk‖}

≤ Tol.

Condition 2:

|‖AW T xk − b‖ − ‖AW T xk−1 − b‖|
‖AW T xk − b‖

≤ Tol.

Condition 3:
‖xk − xk−1‖

max{1, ‖xk‖}
≤ Tol.

For our tests, Tol = 5× 10−4 except for the image deblurring problems
(0.2× Tol instead of Tol for conditi0n 2 in order to prevent our algorithm from
stopping prematurely).



Continuation Strategy: solving a sequence of `1LS problems defined by
a decreasing sequence {λ0, λ1, . . . , λ` = λ}.

Initially, we set λ0 = 10λ, and update λk = max{0.8λk−1, λ} once at
every 3 consecutive iterations or whenever the condition 3 is satisfied
with Tol = 10−2.

We set α = 0.1eTλ/m2.

κ = 1.



Real images usually have two layers, referring to cartoons (the
piecewise smooth part of the image) and textures (the oscillating pattern
part of the image).

The layers usually have sparse approximations under different tight
frame systems.

Formulation:

min
x1∈<m1 ,x2∈<m2

1
2
‖A(

2∑
i=1

W T
i xi )− b‖2 +

2∑
i=1

(κi

2
‖(I −Wi W T

i )xi‖2 +
αi

2
‖xi‖2 + λT

i |xi |
)
.

where, for i = 1,2, W T
i Wi = I, κi > 0, αi ≥ 0, λi > 0.



Figure: Image Decomposition

(a) original: 512× 512 (b) cartoon part (c) texture part



Numerical Comparison

image problem type APG on Tbal [1]

iter/psnr/time
split
Bregman
on ana

linearized
Bregman
on syn

proximal
forward
backward
on bal

pepper256
inpainting
λ = 0.03 22/33.69/3.4 51/33.86/10.1 329/33.82/46.0

barbara512
inpainting
cartoon & texture
λ = 0.01

31/33.82/34.1 67/33.77/71.5

barbara512
denoising
cartoon & texture
σ = 20, λ = 0.08

29/28.39/31.5 55/29.01/71.6

goldhill256
deblur
average, 9
σ = 3, λ = 0.03

27/26.41/5.0 19/26.40/14.6 11/26.21/7.1 171/26.21/107.3

boat256
deblur
disk, 4
σ = 3, λ = 0.03

28/25.46/5.8 18/25.30/13.8 12/25.32/7.7 155/25.00/99.9

PSNR = −20 log10
‖u − ũ‖
255N

where u and ũ are the original and restored images, respectively, and N is
the total number of pixels in u.
[1] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling and

Simulation: A SIAM Interdisciplinary Journal, to appear.



Conclusions
Convergence speed of the APG algorithm is competitive to that of the
linearized Bregman iteration for the synthesis based approach and the
split Bregman iteration for the analysis based approach.

Demonstrate that this single algorithmic framework can universally
handle several image restoration problems, such as image deblurring,
denoising, inpainting, and cartoon-texture decomposition.

The algorithms we implemented are able to restore 512× 512 images in
various image restoration problems in less than 50 seconds on a modest
PC.



Thank You!


