Accelerated Proximal Gradient Algorithm for Frame-Based Image Restorations

Sangwoon Yun

Computational Sciences Korea Institute for Advanced Study

December 3, 2010 KSIAM 2010 Annual Meeting

<ロト <回ト < 国ト < 国ト = 国

Outline

- Image Restorations
- Optimization Formulations
- Accelerated Proximal Gradient Algorithm
- Numerical Experience
- Conclusions

Image Restorations

Figure: Image Deblurring

(a) original: 512×512

(b) motion blurred image

(c) recovered image

・ロト ・日下・・ヨト・・

Figure: Image Inpainting

(a) original: 512×512

(b) scratched image

(c) recovered image

・ロト ・日下・ ・ ヨト

Figure: Image Denoising

(a) original: 512×512

(b) noised image

(c) recovered image

・ロト ・日下・ ・ ヨト

Inverse Problem

Image restorations such as image deconvolution, image inpainting and image denoising is often formulated as an **inverse problem**.

 $b = Au + \eta$,

where

- unknown true image $u \in \Re^n$.
- observed image (or measurements) $b \in \Re^{\ell}$.
- η is a white Gaussian noise with variance σ^2 .
- A ∈ ℜ^{ℓ×n} is a linear operator, typically a convolution operator in image deconvolution, a projection in image inpainting and the identity in image denoising.

Frame-Based Approach

- Our proposed approach for image restoration is based on tight frames.
- Tight frames are redundant system in \Re^n .
- Suppose W ∈ ℜ^{m×n} (with m ≥ n) satisfies W^TW = I. Then, the rows of W form a tight frame in ℜⁿ.
- For every vector $u \in \Re^n$,

 $u = W^T (Wu).$

- The components of the vector *Wu* are called the canonical coefficients representing *u*.
- The tight frame system *W* used is generated from piecewise linear B-spline framelet constructed via the unitary extension principle.
- Mapping from the image u to its coefficients is not one-to-one, i.e., the representation of u in the frame domain is not unique.

Optimization Formulations

Formulations for the sparse approximation of the underlying images

 Analysis Approach: analyzed coefficient vector Wu can be sparsely approximated

$$\min_{u \in \mathbb{R}^n} \frac{1}{2} \|Au - b\|^2 + \lambda^T \|Wu\| = \min_{x \in \text{Range}(W)} \frac{1}{2} \|AW^T x - b\|^2 + \lambda^T \|x\|$$

where λ is a given positive weight vector.

• Synthesis Approach: underlying image u is assumed to be synthesized from a sparse coefficient vector x with $u = W^T x$.

$$\min_{x\in\Re^m} \frac{1}{2} \|AW^T x - b\|^2 + \lambda^T |x|.$$

Balanced Approach

$$\min_{x\in\Re^m} \frac{1}{2} \|AW^T x - b\|^2 + \frac{\kappa}{2} \|(I - WW^T)x\|^2 + \lambda^T |x|,$$

where $\kappa > 0$.

where

- Objective function of the balanced approach is convex but may not be strictly convex.
- Optimal solution need not be unique.

We consider the Tikhonov regularized balanced approach:

$$\min_{\boldsymbol{x}\in\mathbb{R}^m} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{W}^{\mathsf{T}}\boldsymbol{x} - \boldsymbol{b}\|^2 + \frac{\kappa}{2} \|(\boldsymbol{I} - \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}})\boldsymbol{x}\|^2 + \frac{\alpha}{2} \|\boldsymbol{x}\|^2 + \lambda^{\mathsf{T}} |\boldsymbol{x}|,$$
$$\alpha \ge \mathbf{0}.$$

Accelerated Proximal Gradient Algorithm

Proximal point mapping of the weighted ℓ_1 norm function

Given g and $\tau > 0$, we consider the proximal point mapping of $\lambda^T |x|$:

$$s_{\lambda/L}(g) = \arg\min_{x} \frac{L}{2} ||x - g||^2 + \lambda^T |x|,$$

where $g = y - \nabla f(y)/L$ with

$$f(y) = \frac{1}{2} \|AW^{T}x - b\|^{2} + \frac{\kappa}{2} \|(I - WW^{T})x\|^{2} + \frac{\alpha}{2} \|x\|^{2}.$$

Then

 $s_{\lambda/L}(g) = \operatorname{sgn}(g) \odot \max\{|g| - \lambda/L, 0\},\$

where \odot denotes the component-wise product, i.e., $(x \odot y)_i = x_i y_i$, and

$$sgn(t) := \begin{cases} +1 & \text{if } t > 0; \\ 0 & \text{if } t = 0; \\ -1 & \text{if } t < 0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The APG algorithm we adapted has the following template:

$$\begin{split} y^{k} &= x^{k} + \frac{t^{k-1}-1}{t^{k}}(x^{k}-x^{k-1}) \\ g^{k} &= y^{k} - \nabla f(y^{k})/L \\ x^{k+1} &= s_{\lambda/L}(g^{k}) \\ t^{k+1} &= \frac{1+\sqrt{1+4(t^{k})^{2}}}{2}. \end{split}$$

 (Beck and Teboulle 08) proposed a fast iterative shrinkage-thresholding algorithm (FISTA) to solve ℓ₁-regularized linear least squares problems.

- It belongs to the class of accelerated proximal gradient algorithms studied earlier by Nesterov, Nemirovski, and others.
- Recently, (Tseng 08) gave a unified treatment.

- When the APG algorithm with $t^k = 1$ for all k, it is the popular iterative shrinkage/thresholding algorithm and it is also the proximal forward-backward splitting algorithm.
- IST and PFBS only require gradient evaluations and soft-thresholding operations, so the computation at each iteration is very cheap.
- But, for any ε > 0, those algorithms terminate in O(L/ε) iterations with an ε-optimal solution.
- Hence the sequence $\{x^k\}$ converges slowly.

The APG algorithms have an attractive iteration complexity of $O(1/\sqrt{\epsilon})$ for achieving ϵ -optimality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Convergence Results

Iteration Complexity: Let $\{x^k\}$, $\{y^k\}$, $\{t^k\}$ be the sequences generated by Algorithm APG. Then, for any $k \ge 1$, we have

$$f(x^k) + \lambda^T |x^k| - f(x^*_\alpha) - \lambda^T |x^*_\alpha| \leq \frac{2L \|x^*_\alpha - x^0\|^2}{(k+1)^2}, \qquad \forall x^*_\alpha \in \mathcal{X}^*_\alpha.$$

where \mathcal{X}^*_{α} is the set of optimal solutions.

Global convergence: Let $\{x^k\}$ be the sequence generated by Algorithm APG. Then $\{x^k\}$ is bounded and each cluster point of the sequence $\{x^k\}$ is an optimal solution. In addition, if $\alpha > 0$, then the sequence $\{x^k\}$ converges to a unique optimal solution.

Minimal Euclidean Norm Solution when $\alpha = 0$

Let x_{α}^* be the unique solution of Tikhonov regularized balanced approach $(\alpha > 0)$ and x_0^* be the unique solution of the following problem:

 $\min_{x\in\mathcal{X}_0^*}\|x\|.$

Then $||x_{\alpha}^*||$ is a nonincreasing function of α and

 $\lim_{\alpha\downarrow 0} \|x_{\alpha}^* - x_0^*\| = 0.$

Numerical Experience

Lipschitz Constant

The Lipschitz constant *L* of ∇f has the following upper bound:

 $L \leq \lambda_{\max}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) + \kappa + \alpha.$

For the inpainting problem, the Lipschitz constant *L* of ∇f has the following upper bound:

 $L \leq \max\{\mathbf{1}, \kappa\} + \alpha.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Note that *A* is a diagonal matrix with diagonals equal to 1 if the corresponding pixel values are known, but 0 otherwise.

Stopping Condition

The natural stopping condition: δ(x) := dist(0; ∂(f(x) + λ^T|x|)) is sufficiently small, where ∂(·) denotes the sub-differential and

$$\partial |x_i| = \begin{cases} \{+1\} & \text{if } x_i > 0; \\ [-1, 1] & \text{if } x_i = 0; \\ \{-1\} & \text{if } x_i < 0. \end{cases}$$

• At the k-th iteration, we can observe that

$$L(g^{k} - x^{k+1}) (= L(y^{k} - x^{k+1}) - \nabla f(y^{k})) \in \partial(\lambda^{T} |x^{k+1}|).$$

Thus we have

$$L(y^{k} - x^{k+1}) + \nabla f(x^{k+1}) - \nabla f(y^{k}) \in \partial(f(x^{k+1}) + \lambda^{T} |x^{k+1}|).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Good upper bound on $\delta(x)$ without incurring extra computational cost: $\delta(x^{k+1}) < \|L(y^k - x^{k+1}) + \nabla f(x^{k+1}) - \nabla f(y^k)\| < 2L\|y^k - x^{k+1}\|.$ • Condition 1:

$$\frac{2L\|y^{k-1} - x^k\|}{\max\{1, \|x^k\|\}} \le \text{Tol.}$$

Condition 2:

$$\frac{|\|\boldsymbol{A}\boldsymbol{W}^{\mathsf{T}}\boldsymbol{x}^{k} - \boldsymbol{b}\| - \|\boldsymbol{A}\boldsymbol{W}^{\mathsf{T}}\boldsymbol{x}^{k-1} - \boldsymbol{b}\||}{\|\boldsymbol{A}\boldsymbol{W}^{\mathsf{T}}\boldsymbol{x}^{k} - \boldsymbol{b}\|} \leq \text{Tol.}$$

• Condition 3:

$$\frac{\|x^k - x^{k-1}\|}{\max\{1, \|x^k\|\}} \le \text{Tol.}$$

For our tests, $Tol = 5 \times 10^{-4}$ except for the image deblurring problems (0.2 × Tol instead of Tol for condition 2 in order to prevent our algorithm from stopping prematurely).

- Continuation Strategy: solving a sequence of ℓ₁LS problems defined by a decreasing sequence {λ⁰, λ¹,..., λ^ℓ = λ}.
- Initially, we set λ⁰ = 10λ, and update λ^k = max{0.8λ^{k-1}, λ} once at every 3 consecutive iterations or whenever the condition 3 is satisfied with Tol = 10⁻².

- We set $\alpha = 0.1 e^T \lambda / m^2$.
- κ = 1.

- Real images usually have two layers, referring to cartoons (the piecewise smooth part of the image) and textures (the oscillating pattern part of the image).
- The layers usually have sparse approximations under different tight frame systems.
- Formulation:

$$\min_{x_1\in\mathfrak{R}^{m_1},x_2\in\mathfrak{R}^{m_2}} \ \frac{1}{2} \|A(\sum_{i=1}^2 W_i^T x_i) - b\|^2 + \sum_{i=1}^2 \left(\frac{\kappa_i}{2} \|(I - W_i W_i^T) x_i\|^2 + \frac{\alpha_i}{2} \|x_i\|^2 + \lambda_i^T |x_i|\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

where, for i = 1, 2, $W_i^T W_i = I$, $\kappa_i > 0$, $\alpha_i \ge 0$, $\lambda_i > 0$.

Figure: Image Decomposition

(a) original: 512×512

(b) cartoon part

(c) texture part

・ロト ・日下・ ・日下

Numerical Comparison

image	problem type	APG on Tbal		[1]	
		iter/psnr/time	split Bregman on ana	linearized Bregman on syn	proximal forward backward on bal
pepper256	inpainting $\lambda = 0.03$	22/33.69/3.4	51/33.86/10.1		<mark>329</mark> /33.82/46.0
barbara512	inpainting cartoon & texture $\lambda = 0.01$	<mark>31</mark> /33.82/34.1	<mark>67</mark> /33.77/71.5		
barbara512	denoising cartoon & texture $\sigma = 20, \ \lambda = 0.08$	29 /28.39/31.5	55 /29.01/71.6		
goldhill256	deblur average,9 $\sigma=3, \lambda=0.03$	27/26.41/5.0	19 /26.40/14.6	<mark>11</mark> /26.21/7.1	171/26.21/107.3
boat256	deblur disk,4 $\sigma=3, \lambda=0.03$	28 /25.46/5.8	18/25.30/13.8	12/25.32/7.7	155/25.00/99.9

$$\mathsf{PSNR} = -20 \log_{10} \frac{\|u - \tilde{u}\|}{255N}$$

where u and \tilde{u} are the original and restored images, respectively, and N is the total number of pixels in u.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

[1] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling and

Simulation: A SIAM Interdisciplinary Journal, to appear.

Conclusions

- Convergence speed of the APG algorithm is competitive to that of the linearized Bregman iteration for the synthesis based approach and the split Bregman iteration for the analysis based approach.
- Demonstrate that this single algorithmic framework can universally handle several image restoration problems, such as image deblurring, denoising, inpainting, and cartoon-texture decomposition.
- The algorithms we implemented are able to restore 512×512 images in various image restoration problems in less than 50 seconds on a modest PC.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで