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Sparse Covariance Selection
Given m i.i.d. observations x (1), ..., x (m) drawn from a n-dimensional
Gaussian distribution N(x ;µ; Σ), sample covariance matrix Σ̂ is defined as

Σ̂ :=
1
m

m∑
k=1

(x (k) − µ̂)(x (k) − µ̂)T ,

where µ̂ = 1
m

∑m
i=1 x (i) is the sample mean.

If Σ is nonsingular, to estimate Σ from m samples, consider log-likelihood

log P(X ;µ; Σ) = −m
2

log(detΣ)− 1
2

m∑
k=1

(x (k) − µ̂)T Σ−1(x (k) − µ̂) + constant,

By using inner product 〈X , Y 〉 = Trace(XY ) for X ,Y ∈ Sn, rewritten as

log P(X ;µ; Σ) =
m
2

log(detΣ−1)− m
2

〈
Σ−1, Σ̂

〉
+ c

If Σ̂ is nonsingular (hence m ≥ n), then
Σ̂−1 = arg max{log P(X ;µ; Σ)|Σ ∈ Sn

++} is maximum likelihood est. of Σ−1.



Covariance selection problem was first introduced by Dempster (1972).
Since then, cov. sel. model has become a common statistical tool to
distinguish direct from indirect interactions among a set of variables.

Gaussian Graphical Model (GGM, Laurizen ’96, Edwards ’00) is the
graphical interpretation of covariance selection model.
In this GGM, the inverse of the covariance matrix is assumed to be
sparse, and the sparsity pattern reveals the conditional independence
relations satisfied by the variables.

In the research of dependency networks of genome data
(sparse gene association network exhibited in GGM can help to explain
known biological pathways and to provide insights on the unknowns)

Recent advances in DNA microarray technology have led to the challenge
problem of modeling associations for a large number of genes (say,
103 − 104) from a small number of available samples (say, 102). In such an
application, sample covariance matrix Σ̂ is singular.



Sparse covariance selection problems can be modeled as log-det
semidefinite programming (SDP) problems
• If no sparsity pattern is assumed,

Estimation of the sparsity pattern can be achieved by `1-regularized
maximum log-likelihood estimation:

max
X∈Sn

log detX −
〈

Σ̂, X
〉
−

n∑
i,j=1

ρij |Xij |,

ρij > 0: parameter controlling the trade-off between the goodness-of-fit
and the sparsity of X .

− log det X +
〈

Σ̂, X
〉

is strictly convex, cont. diff. on its domain Sn
++,

O(n3) opers. to evaluate.
∑n

i,j=1 ρij |Xij | is convex, nonsmooth.
In applications, n can exceed 5000.

The dual problem can be formulated as follows:

min
X∈Sn

− log detX − n

s.t. |(X − Σ̂)ij | ≤ ρij , i , j = 1, ...,n.



• If conditional independence structure between all the variables are given,

can be formulated as a log-det maximization problem with linear
constraints, that is, finding the maximum log-likelihood value subject to
given entry-wise constraints:

max
X∈Sn

log detX −
〈

Σ̂, X
〉

s.t. Xij = 0, ∀(i , j) ∈ V ,

where V is a collection of all pairs of conditional independent nodes.
We note that (i , i) 6∈ V for 1 ≤ i ≤ n and (i , j) ∈ V if and only if (j , i) ∈ V .



Previous primal problems can be considered as special cases of the
following more general log-det semidefinite programming problem:

max
X∈Sn

log detX −
〈

Σ̂, X
〉
−
∑

(i,j) 6∈V ρij |Xij |
s.t. Xij = 0, ∀(i , j) ∈ V ,

The dual problem can be expressed:

min
X∈Sn

− log det X − n

s.t. |(X − Σ̂)ij | ≤ υij , i , j = 1, ...,n,

where υij = ρij for all (i , j) 6∈ V and υij =∞ for all (i , j) ∈ V .

Can in principle be solved by popular interior-point method based
solvers such as SDPT3 or SeDuMi.

Resulting log-det SDP problems typically have large number of linear
constraints p (even for moderate n, say n ≤ 100)

Solvers (SDPT3 or SeDuMi) cannot handle since the computational cost
in each iteration is at least O(p3) and the memory required is at least
O(p2) bytes.



Recent Algorithms

• Unconstrained Problems (no given sparsity pattern)

Nesterov’s smooth gradient method (d’Aspremont ’08)

Block coordinate descent method (d’Aspremont ’08, Friedman ’08)
Use coord. des. method to solve dual problem, cycling thru columns (&
rows) of X . Each iter. reduces (via determinant property) to

min
x∈<n−1

xT X−1
ic ic x

s.t. |x − Σ̂ic i | ≤ ρic i ,

(Solve this using IP method O(n3) opers. or coordinate descent method)
or (via determinant property & duality) to

min
x∈<n−1

1
2

xT Xic ic x − Σ̂T
ic ix + ρT

ic i |x |.

(Solve this using coordinate descent method).



Greedy algorithm (based on a coordinate ascent method) (Scheinberg
’09)

Alternating direction method (Yuan ’09)

• Constrained Problems:

Newton method (PCG) (Dahl ’08)

(Adaptive) Nesterov’s smooth method (Lu ’09)
solving a sequence of penalized problems of the primal form.

Semismooth Newton-CG method (PCG) (Wang ’09)



General Form

min
X∈Sn

F (X ) := f (X ) + P(X ),

where
• for primal problem,

f (X ) = − log det X +
〈

Σ̂, X
〉

Pij (Xij ) = ρij |Xij | ∀(i , j) 6∈ V , Pij ≡ δ{0} ∀(i , j) ∈ V .

• for dual problem,

f (X ) = − log det X − n

Pij (Xij ) =

{
0 if − Uij ≤ (X − S)ij ≤ Uij ;

∞ else,
,

where Uij = ρij for all (i , j) 6∈ V , and Uij =∞ for all (i , j) ∈ V .



Block Coordinate Gradient Descent Method

Descent direction

For X ∈ domF , choose J (6= ∅) ⊆ N = {11,12, ...,nn} and a self-adjoint p.d.
linear map. H, Then solve

min
D∈<m×n,Dij =0,∀(i,j) 6∈J

{〈∇f (X ), D〉+
1
2
〈D, H(D)〉+ P(X + D)− P(X )} direc.

subprob

Let DH(X ;J ) and qH(X ;J ) be the opt. soln & obj. value of the direc.
subprob.



Properties:

• DH(X ;N ) = 0 ⇔ F ′(X ; D) ≥ 0 ∀D ∈ <m×n. stationarity

• if H(D) = (HijDij )ij where H ∈ Sn with Hij > 0 ⇒
DH(X ;J ) =

∑
(i,j)∈J

DH(X ; (i , j)), qH(X ;J ) =
∑

(i,j)∈J

qH(X ; (i , j)). separab.

If Pij is an indicator function of the bounded constraint (i.e.,
−Uij ≤ Xij ≤ Uij ),

then (DH(X ;N ))ij = median
{
−Uij − Xij ,−

(∇f (X))ij
Hij

,Uij − Xij

}
.

If Pij (X ) = ρij |Xij |, then

(DH(X ;N ))ij = −median
{

(∇f (X))ij−ρij
Hij

,Xij ,
(∇f (X))ij +ρij

Hij

}
.

• qH(X ;J ) ≤ − 1
2 〈D, H(D)〉 where D = DH(X ;J ).



Stepsize: Armijo rule

Choose α to be the largest element of {βk}k=0,1,... satisfying

F (X + αD) ≤ F (X ) + ασqH(X ;J ) (0 < β < 1,0 < σ < 1).

The limited minimization rule

α ∈ arg min
t
{F (X + tD) | 0 ≤ t ≤ s},

where 0 < s <∞, can also be used (especially for dual).



Choose J :

• want to avoid computing det(X + αD) and ∇f (X ) = X−1 + Σ̂ from scratch
since it would require O(n3) opers.

• Gauss-Seidel: J 0,J 1, ... collectively cover N for every T consecutive
iterations, where T ≥ 1

J k ∪ J k+1 ∪ · · · ∪ J k+T−1 = N , k = 0,1, ...

(ex: J k = {(i , j), (j , i) | i = 1, ...,n} where j = k + 1(mod n))

Update only one column (and corresponding row) of X at each iteration.

det(X + αD) can be computed in O(n2) opers. by using the Schur
complement of (X + αD)jc jc .

(X new)−1 can be updated in O(n2) operations from X−1 using the
Sherman-Woodbury-Morrison formula.



Convergence Results

Global convergence If

0 < λ ≤ λmin(H) and λmax(H) ≤ λ̄, and α is chosen by Armijo rule

then every cluster point of the X -sequence generated by BCGD method
using Gauss-Seidel rule is a stationary point of F .

Iteration Complexity

For the dual problems, BCGD method can be implemented to achieve
ε-optimality in

O
(

n5

ε

)
operations.

Worst-case arithmetic cost of the first-order method proposed by Lu to
achieve ε-optimality for unconstrained problem is O(n4/

√
ε) operations.



Numerical Experience

The dual form:
min
X∈Sn

− log det X − n

s.t. |(X − Σ̂)ij | ≤ υij , i , j = 1, ...,n,

where υij = ρij for all (i , j) 6∈ V and υij =∞ for all (i , j) ∈ V .

Implement BCGD method in Matlab.

Choose Hk to satisfy Hk (D) = (Hk
ij Dij )ij , where Hk = hk (hk )T with

hk
j = min{max{((X k )−1)jj ,10−10},1010} ∀j = 1, ...,n.

If 10−10 ≤ ((X k )−1)jj ≤ 1010 for all j = 1, ...,n, then this choice can be
viewed as a diagonal approximation to the Hessian.

Choose J by Gauss-Seidel rule, J k = {(i , j), (j , i) | i = 1, ...,n} where
j = k + 1(mod n).
Update only one column (and corresponding row) at each iteration.



Choose αk by the limited minimization rule.

αk ∈ arg min
0≤α≤s

{− log det(X k + αDk )− n | |(X k + αDk − Σ̂)ij | ≤ υij},

By permutation

X k =

(
V k uk

(uk )T wk

)
and Dk =

(
0n−1 dk

(dk )T r k

)
,

where V k ∈ Sn−1, uk , dk ∈ <n−1, and wk , r k ∈ <.
Quantity − log det(X k + αDk )(+ log det(X k )) is minimized when

α =

{
min{1,−ak

2/a
k
1} if dk 6= 0;

1 else.

where ak
1 = (dk )T (V k )−1(dk ), ak

2 = (uk )T (V k )−1(dk )− 0.5r k .

Termination Criterion:√
〈DHk (X k ;N ), Hk (DHk (X k ;N ))〉 ≤ 5× 10−3,∣∣〈S, (X k )−1〉+∑

(i,j)6∈V ρij |((X k )−1)ij |−n
∣∣

1+
∣∣ log det(X k )+〈S, (X k )−1〉+

∑
(i,j)6∈V ρij |((X k )−1)ij |

∣∣ ≤ 10−4.



Generating test problems:

Generate a random sparse matrix A ∈ Sn whose nonzero elements are
set randomly to be ±1.

Generate a sparse inverse covariance matrix Σ−1 from A as follows:

A = A ∗ A′; d = diag(A);

T = diag(d) + max(min(A− diag(d),1),−1);

Σ−1 = T −min{1.2λmin(T )− 10−4,0}I.

Finally, obtain randomly generated sample covariance matrix:

Σ̂ = B −min{λmin(B)− 10−4,0}I,

where B = Σ + 0.15‖Σ‖F
‖Ξ‖F

Ξ and Ξ ∈ Sn is a random matrix whose
elements are drawn from the uniform distribution on the interval [−1,1].

Ω = {(i , j) | (Σ−1)ij = 0, |i − j | ≥ 2}, ρij = 5/n for all (i , j) 6∈ V

For the constraint problem, set V to be a random subset of Ω such that
card(V ) is about 50% of card(Ω).



Test Results

Estimated matrix X would not be sparse in general but have many small
entries. Postprocess the matrix X by setting all entries which are smaller than
5× 10−2 in absolute value to 0.

n | density(%) | card(V ) iteration count primal objective value time (secs)
BCDG(LQ |Sp|Sen) ANS BCDG ANS BCDG ANS

500 | 2.74 | 0 1662 ( 2.9-2| 0.99| 0.72) 46 -8.18195357 2 2.42-2 5.5 11.5
1000 | 4.15 | 0 8701 ( 1.5-2| 0.99| 0.99) 87 -4.32170724 2 8.60-5 145.7 117.7
1500 | 4.63 | 0 12661 ( 1.4-2| 0.99| 0.98) 84 -4.35887269 2 1.65-3 491.9 371.1
2000 | 5.14 | 0 18781 ( 1.2-2| 0.98| 0.97) 93 -2.80176287 2 6.03-4 1285.1 953.9

500 | 1.97 | 60702 3601 ( 2.9-2| 1.00| 0.76) 619 -8.42619444 2 -1.54-1 12.5 146.9
1000 | 3.33 | 241887 11341 ( 1.6-2| 1.00| 0.99) 807 -4.45131714 2 -3.53-3 195.8 1053.4
1500 | 3.71 | 542496 13321 ( 1.4-2| 1.00| 0.99) 969 -4.63013088 2 -1.21-1 528.2 3839.5
2000 | 4.13 | 961274 20681 ( 1.3-2| 1.00| 0.99) 1256 -3.19691367 2 -7.90-2 1448.8 10845.3

LQ := 1
n‖ΣX − I‖F (quality of the approximation of Σ−1 by X )

Specificity = TN
TN+FP and Sensitivity = TP

TP+FN (quality of sparsity pattern)

TP, TN, FP, and FN denotes the number of true positives, true negatives, false
positives, and false negatives, respectively, with respect to the sparsity
pattern of Σ−1.



Latent Variable Graphical Model Selection
In many applications throughout science and engineering, a challenge is
that some of the relevant variables may be hidden or unobserved.

Assume that we have samples of a subset of a collection of random
variables. No information is provided about the number of latent
variables, nor the relationship between the latent & observed variables.

Latent variables pose a significant difficulty for model selection.

The proposed optimization problem:

min
S,L∈Sn,S−L�0,L�0

− log det(S − L) +
〈

Σ̂, S − L
〉

+ λ

 n∑
i,j=1

ρij |Sij |+ ‖L‖∗

 .
This modeling framework consistently estimates both the number of hidden
components (low rank) and the conditional graphical model structure (sparsity
pattern) among the observed variables.



Conclusions & Future Work

1. The BCGD method may be viewed as a hybrid of gradient-projection and
SOR methods, or as a block-coordinate version of descent methods.

2. The method achieves linear convergence, and terminates in O(n5/ε)
operations with an ε-optimal solution.

3. Preliminary numerical experience suggests that our method is efficient to
solve the dual formulation of large-scale covariance selection problems
especially with a lot of constraints.

4. Can BCGD method simply be extended to solve the problem arising in
latent variable graphical model selection?

5. Other efficient algorithms for the problem arising in latent variable graphical
model selection?



Thank you!
Thank you!

Yun S., Tseng, P., and Toh K.-C., A block coordinate gradient descent method
for regularized convex separable optimization and covariance selection.


