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SVM (Dual) Quadratic Program

min,, %CETQLE —el'y
subject to 0<x; <C, 1=1,....n,
al'rz =0,

wherea € {-1,1}1",0< C < o0, e =[1,...,1]1, Q € R"*" is a sym. pos.
semidef. with Q;; = a;a; K (2;, 2;), K : RP x P — R (“kernel function”), and
z; € kP (“ith data point™), i =1, ..., n.

Popular choices of K:

e Linear kernel K (z;, z;) = 2} z;

e Radial basis function kernel K(z;, z;) = exp(—v||z; — 2;|?)

e Sigmoid kernel K(z;, z;) = tanh(yz] z;)

where v is a constant.

Q@ 1s an n x n fully dense matrix and even indefinite. (n > 5000)

Interior-point methods cannot be directly applied, except in the case of linear
kergehy Foimex - 2
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Previous methods

Decomposition methods based on iterative block-coordinate descent have
become popular for solving SVM QP.

e Joachims (98)

e Platt (99)

e Chang et al. (00)

e Keerthi et al. (00)

e Hush and Scovel (03)

e Palagi and Sciandrone (05)
e Fan et al. (05)

Decomposition methods use search directions of small support (i.e., few
nonzeros) and achieve linear convergence under additional assumptions such
as () being positive definite.
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General Problem Model

min f(x)

rxeRn
st. zeX ={zr|l<x<u, Ar=">},

f : R" — R is smooth.

AeRm" be R™, and | < u (possibly with —oco or oo components).

e For SVM QP, f is quadratic (possibly nonconvex) and m = 1.
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Coord. Gradient Descent Method
Descent direction .

For z € X, choose J(# 0) CN ={1,...,n} and H > 0,, Then solve

direc.

: 1
min (Vf(x)'d+ §dTHd}. subprob

r+deX, dj:O Vi&TJ

Let dy(z; J) and g (x; J) be the opt. soln and obj. value of the direc.
subprob.

e qu(x;N) =0 & x € X is a stationary point of f over X. stationarity

e gu(z;J) < —3d"Hd whered=dg(x;J).
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Choose a:
Choose « to be the largest element of {ﬂ’f}kzo,l,_,_ satisfying
flx+ad)— f(z) <ocaquy(x;T) 0<pf<1,0<0<]).

For a QP, the minimization rule or the limited minimization rule can also be
used.

Choose 7:

qp(z; J) < v qp(x; N),

Where0 < v <1, D > 0, Is diagonal.
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Convergence Results

Global convergence If

e 7 is chosen by Gauss-Southwell-q rule,

e « IS chosen by Armijo rule,

then every cluster point of the x-sequence generated by CGD method is a
stationary point of f over X.
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Local convergence rate If

o 0 <A< N(D), Ni(H) < A\ Vi,
e 7 is chosen by Gauss-Southwell-q rule,

e « IS chosen by Armijo rule,

In addition, if f satisfies any of the following assumptions, then the
x-sequence generated by CGD method converges at R-linear rate.

C1 f is strongly convex. V f is Lipschitz cont. on X
C2 f is (nonconvex) quadratic. (e.g., SVM QP)

C3 f(z) = g(Ex) + q'z, where E € R™*", q € R, g is strongly convex, Vg is
Lipschitz cont. on k™.

C4 f(z) = maxyey{(Ex)'y — g(y)} + ¢* =, where Y C R™ is polyhedral,

E e ™™ g € R™, g Is strongly convex, Vg is Lipschitz cont. on R™.
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Proof of convergence rate uses a local error bound

e Error Bound
dist(z, X*) < k||d(x; N)||2 whenever ||d;(z; N)||2 < e,

for some k > 0, e > 0, where X* denotes the set of stationary points of f
over X and dist(x, X*) = ming«c x+ ||z — 2*||2.
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Complexity Bound

o 0 <A< N(D), Ni(H) < A\ Vi,
e 7 Is chosen by Gauss-Southwell-q rule,

e « IS chosen by Armijo rule,

In addition, if f is convex with Lipschitz continuous gradient, then the number
of iterations for achieving e-optimality Is

0 0
O (L—T + max {O, £ln (6—0> }) :
Ve v r
where r? = max,¢e x {dist(z, X*)? | f(z) < f(29)}, €® = f(2") — mingex f(x),
and L is a Lipschitz constant.

The constant in O(-) depends on )\, A, o, 3.

When specialized to SVM QP, our complexity bound for achieving e-optimality

compares favorably with existing bounds.
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Index Subset Selection

Elementary vector (Rockafellar, 1969)
e For any d € R, the support of d is supp(d) := {j € N | d; # 0}.
e Ad'is conformal to d if supp(d’) C supp(d) and d’;d; > 0Vj € N.

e A nonzero d is an elementary vector of Null(A) if d € Null(A) and there is
no nonzero d’ € Null(A) that is conformal to d and supp(d’) # supp(d).

e Each elementary vector d satisfies |supp(d)| < rank(A) + 1.
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Find J with |7| = 2in O(n) opers. (SVM QP, m = 1)

e Step 1: Find dp(x; V) in O(n) opers. by solving a cont. quad. knapsack
problem:
ming  :d"Dd+ V f(z)"d
subject to [ <x+d<u,
Ad = 0,

Where D > 0,, is diagonal.

e Step 2: Find a conformal realization of dp(x; ) :

dp(z;N) = d’ where d' is an elementary vector of Null(A)
1=1

andr <n — 1.

1 .

—(d)"' Dd".

ie{l,...,r} 2

This finds a J satisfying | 7| = 2 and ¢p(z; J) < —t5¢qp(z;N) in O(n) opers.
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Numerical Experience on SVM QP
e Implement CGD method in Fortran.

e Choose J by Gauss-Southwell-¢g rule with

D = diag [max{Q;;, 10_5}]

j=1,..,n’

as described in previous slide.

e Our implementation of the CGD method has the form
"V =x+do(z; J),

with | 7| = 2. This corresponds to the CGD method with o chosen by the
minimization rule. (The choice of H is actually immaterial here.)

e Compute dp(z,N) and qp(z; N) by using a linear-time Fortran code k1vfo
provided by Krzysztof Kiwiel.
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e ¥ = 0: O(n) opers. to compute gradient Qz° — e.
(for general z°, O(n?) opers.)

e O(n) opers. per iteration to update gradient Qx — e since | 7| = 2.

e The CGD method is terminated when —gp(z; N) < 1075,

e Additional refinements such as caching most recently used columns of ()
and using supports of 3 elementary vectors for a conformal realization of
dp(x; N') are used to speed up the method.

e Numerical tests on some large two-class data classification problems.

e Comparison with LIBSVM (version 2.83), which chooses 7 differently, but

with the same cardinality of 2.
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Test results (y = 1/p :default values of LIBSVM)

Data nlp Clkernel LIBSVM CGD-3pair
iter/obj/cpu iter/obj/cpu

a7a 16100/122 1/1in 64108/-5699.253/1.3 56869/-5699.246/6.3

10/lin | 713288/-56875.57/4.6 | 322000/-56873.58/32.8

1/rbf 4109/-5899.071/1.3 4481/-5899.070/1.0

10/rbf 10385/-55195.29/1.4 16068/-55195.30/2.0

1/sig 3941/-6095.529/1.7 4201/-6095.529/1.2

10/sig 9942/-57878.56/1.7 10890/-57878.57/1.8

jjcnnl 49990/22 1/1in 16404/-8590.158/3.0 20297/-8590.155/6.5

10/lin | 155333/-85441.01/4.2 | 155274/-85441.00/46.9

1/rbf 5713/-8148.187/4.6 6688/-8148.187/3.8

10/rbf 6415/-61036.54/3.5 12180/-61036.54/4.8

1/sig 6796/-9156.916/7.0 6856/-9156.916/5.0

10/sig 10090/-88898.40/6.4 12420/-88898.39/6.5

w7a 24692/300 1/lin 66382/-765.4115/0.4 72444/-765.4116/8.2

10/lin | 662877/-7008.306/1.1 | 493842/-7008.307/60.6

1/rbf 1550/-1372.011/0.4 1783/-1372.010/0.5

10/rbf 4139/-10422.69/0.4 4491/-10422.70/0.8

1/sig 1477/-1427.453/0.4 2020/-1427.455/0.4

10/sig 2853/-11668.85/0.3 5520/-11668.86/0.9

e CGD-3pair is slower than LIBSVM when the linear kernel is used, due to the greater times

spent in finding dp (x; ') and for updating the gradient.

e CGD-3pair is comparable to LIBSVM in speed and solution quality for nonlinear kernel.
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Extension

In order to find sparse solution, a nonsmooth function P is added in the
objective function (e.g. P(z) = ||z||1).

Linearly Constrained Nonsmooth Optimization

min f(z) + cP(x)

st. zeX: ={zx|l<zx<u, Ar=>b}.

P :R" — (—o0, 00] is proper, convex, Isc, and P(x) = Z?Il P;i(z;)

(x = (x4, ..., z0) 7).

The CGD method can be extended to solve the linearly constrained
nonsmooth optimization problem.
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Conclusions & Future Work

1. The CGD method is the first globally convergent block-coordinate update
method for general linearly constrained optimization.

2. Itis implementable in O(n) opers. per iteration when f is quadratic and
m = 1 and is suited for large scale problems with n large and m small.

3. For SVM QP, numerical results show that CGD method can be competitive
with state-of-the-art SVM code on large data classification problems when a
nonlinear kernel is used.

4. The CGD-3pair can be further speeded up by omitting infrequently updated
components from computation (“shrinkage”), as is done in state-of-the-art
SVM codes LIBSVM and SVM! 9"t

5. For large-scale applications such as v-SVM, m = 2. A conformal realization
can be found in O(nlogn) operations when m = 2. However, this can still be
slow. Can this be improved to O(n) operations?
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Thank you!

Tseng, P. and Yun S., A coordinate gradient descent method for linearly
constrained smooth optimization and support vector machines training.
Tseng, P. and Yun S., A coordinate gradient descent method for constrained
nonsmooth optimization and bi-level optimization.

(PDF file available at http://www.math.washington.edu/"sangwoon/)
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Support Vector Classification
e Training points : z; e kP, i =1, ..., n.
e Consider a simple case with two classes (linear separable case):

Define a vector a :

S 1 If z; in class 1
1 =1 ifz in class 2

e A hyperplane (0 = w'! z — b) separates data with the maximal margin.
Margin is the distance of the hyperplane to the nearest of the positive and
negative points.

Nearest points lie on the planes +£1 = w!z — b
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Negative Examples

Space of possible inputs

points

Positive Examples

Maximize distances {0 nearest
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SVM Optimization Problem

e The (original) Optimization Problem

. |-
min - Sjwl
s.t. a; (TUTZ@ — b) >1, 1=1,...,n.

e The Modified Optimization Problem (allows, but penalizes, the failure of a
point to reach the correct margin, by Cortes and Vapnik, 1995)

. L, o -
min inHQ—I-C;&

s.t. a; (szi — b) >1—-&, &2>0,1=1,...,n.

— Typeset by FoilTpX —

21



A COORDINATE GRADIENT DESCENT METHOD FOR LINEARLY CONSTRAINED SMOOTH OPTIMIZATION

Caching and Other Choices of 7

Using klvfo and updating the gradient are the dominant computations.

e Cache the most recently used columns of (), up to a user-specified limit
maxCN when updating the gradient Qx — e.

e There exists at least one elementary vector in this realization whose support

J satisfies .

QD(fL’;j)Sn_l

qD(x;N).

e From among all such 7, we find the best one (i.e., has the least qg(z; J)
value) and make this our choice for index subset.

e In addition, find from among all such 7 the second-best and third-best ones,

If they exist. (In our tests, they always exist.)
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e If the second-best one is disjoint from the best one, we make it the next

Index subset, and if the third-best one is disjoint from both the best and the
second-best, we make it the second-next index subset.

e The procedure of selecting 3 (possible) pairs of the index subset is repeated
at least once every 3 consecutive iterations.
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