A Coordinate Gradient Descent Method for Linearly Constrained Smooth Optimization

Sangwoon Yun Mathematics, National University of Singapore Singapore

> INFORMS Annual Meeting November 5, 2007 (Joint work with Paul Tseng)

> > – Typeset by $\ensuremath{\mathsf{FoilT}}_E \ensuremath{X}$ –

Talk Outline

- SVM (Dual) Quadratic Program
- General Problem Model
- Coordinate Gradient Descent Method
- Convergence Results
- Complexity Bound
- Index Subset Selection
- Numerical Experiance on SVM QP
- Extension
- Conclusions & Future Work
- Typeset by FoilT $_{\rm E}$ X –

SVM (Dual) Quadratic Program

$$\min_{x} \qquad \frac{1}{2}x^{T}Qx - e^{T}x \\ \text{subject to} \qquad 0 \le x_{i} \le C, \quad i = 1, \dots, n, \\ a^{T}x = 0,$$

where $a \in \{-1,1\}^n$, $0 < C \le \infty$, $e = [1,...,1]^T$, $Q \in \Re^{n \times n}$ is a sym. pos. semidef. with $Q_{ij} = a_i a_j K(z_i, z_j)$, $K : \Re^p \times \Re^p \to \Re$ ("kernel function"), and $z_i \in \Re^p$ ("*i*th data point"), i = 1, ..., n.

Popular choices of K:

- Linear kernel $K(z_i, z_j) = z_i^T z_j$
- Radial basis function kernel $K(z_i, z_j) = \exp(-\gamma ||z_i z_j||^2)$
- Sigmoid kernel $K(z_i, z_j) = \tanh(\gamma z_i^T z_j)$

where γ is a constant.

Q is an $n \times n$ fully dense matrix and even indefinite. ($n \ge 5000$)

Interior-point methods cannot be directly applied, except in the case of linear kernely FoilTEX –

2

Previous methods

Decomposition methods based on iterative block-coordinate descent have become popular for solving SVM QP.

- Joachims (98)
- Platt (99)
- Chang et al. (00)
- Keerthi et al. (00)
- Hush and Scovel (03)
- Palagi and Sciandrone (05)
- Fan et al. (05)

Decomposition methods use search directions of small support (i.e., few nonzeros) and achieve linear convergence under additional assumptions such as Q being positive definite.

General Problem Model

$$\min_{\substack{x \in \Re^n \\ \text{s.t.}}} \quad \begin{array}{l} f(x) \\ x \in X := \{x \mid l \le x \le u, \ Ax = b\}, \end{array}$$

 $f: \Re^n \to \Re$ is smooth.

 $A \in \Re^{m \times n}$, $b \in \Re^m$, and $l \le u$ (possibly with $-\infty$ or ∞ components).

• For SVM QP, f is quadratic (possibly nonconvex) and m = 1.

– Typeset by $\mbox{FoilT}_{\!E}\!{\rm X}$ –

Coord. Gradient Descent Method

Descent direction.

For $x \in X$, choose $\mathcal{J}(\neq \emptyset) \subseteq \mathcal{N} = \{1, ..., n\}$ and $H \succ 0_n$, Then solve

$\min_{x+d\in X,\ d_j=0\ \forall j\notin\mathcal{J}} \{\nabla f(x)^T d + \frac{1}{2} d^T H d\}.$	direc. subprob
--	-------------------

Let $d_H(x; \mathcal{J})$ and $q_H(x; \mathcal{J})$ be the opt. soln and obj. value of the direc. subprob.

Facts:

- $q_H(x; \mathcal{N}) = 0 \iff x \in X$ is a stationary point of f over X. stationarity
- $q_H(x; \mathcal{J}) \leq -\frac{1}{2}d^T H d$ where $d = d_H(x; \mathcal{J})$.

Choose α : **Armijo rule**

Choose α to be the largest element of $\{\beta^k\}_{k=0,1,\dots}$ satisfying

 $f(x + \alpha d) - f(x) \le \sigma \alpha q_H(x; \mathcal{J})$ ($0 < \beta < 1, 0 < \sigma < 1$).

For a QP, the minimization rule or the limited minimization rule can also be used.

Choose \mathcal{J} : **Gauss-Southwell-***q* rule

$$q_D(x;\mathcal{J}) \leq \upsilon q_D(x;\mathcal{N}),$$

Where $0 < v \leq 1$, $D \succ 0_n$ is diagonal.

Convergence Results

Global convergence If

- $0 < \underline{\lambda} \leq \lambda_i(D), \lambda_i(H) \leq \overline{\lambda} \ \forall i,$
- \mathcal{J} is chosen by Gauss-Southwell-q rule,
- α is chosen by Armijo rule,

then every cluster point of the *x*-sequence generated by CGD method is a stationary point of f over X.

Local convergence rate If

- $0 < \underline{\lambda} \leq \lambda_i(D), \lambda_i(H) \leq \overline{\lambda} \ \forall i$,
- \mathcal{J} is chosen by Gauss-Southwell-q rule,
- α is chosen by Armijo rule,

in addition, if f satisfies any of the following assumptions, then the x-sequence generated by CGD method converges at R-linear rate.

- **C1** f is strongly convex. ∇f is Lipschitz cont. on X
- **C2** f is (nonconvex) quadratic. (e.g., SVM QP)

C3 $f(x) = g(Ex) + q^T x$, where $E \in \Re^{m \times n}$, $q \in \Re^n$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m .

C4 $f(x) = \max_{y \in Y} \{(Ex)^T y - g(y)\} + q^T x$, where $Y \subseteq \Re^m$ is polyhedral, $E \in \Re^{m \times n}$, $q \in \Re^n$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m . - Typeset by FoilT_Ex -

Proof of convergence rate uses a local error bound

• Error Bound

dist $(x, X^*) \leq \kappa \| d_I(x; \mathcal{N}) \|_2$ whenever $\| d_I(x; \mathcal{N}) \|_2 \leq \epsilon$,

for some $\kappa > 0$, $\epsilon > 0$, where X^* denotes the set of stationary points of fover X and $dist(x, X^*) = \min_{x^* \in X^*} ||x - x^*||_2$.

Complexity Bound

- $0 < \underline{\lambda} \leq \lambda_i(D), \lambda_i(H) \leq \overline{\lambda} \; \forall i$,
- \mathcal{J} is chosen by Gauss-Southwell-q rule,
- α is chosen by Armijo rule,

in addition, if f is convex with Lipschitz continuous gradient, then the number of iterations for achieving ϵ -optimality is

$$O\left(\frac{Lr^{0}}{v\epsilon} + \max\left\{0, \frac{L}{v}\ln\left(\frac{e^{0}}{r^{0}}\right)\right\}\right),\,$$

where $r^0 = \max_{x \in X} \{ \operatorname{dist}(x, X^*)^2 \mid f(x) \leq f(x^0) \}$, $e^0 = f(x^0) - \min_{x \in X} f(x)$, and L is a Lipschitz constant.

The constant in $O(\cdot)$ depends on $\underline{\lambda}, \overline{\lambda}, \sigma, \beta$.

When specialized to SVM QP, our complexity bound for achieving ϵ -optimality compares favorably with existing bounds.

– Typeset by FoilT $_{E}X$ –

Index Subset Selection

Elementary vector (Rockafellar, 1969)

- For any $d \in \Re^n$, the support of d is $\operatorname{supp}(d) := \{j \in \mathcal{N} \mid d_j \neq 0\}$.
- A d' is conformal to d if $\operatorname{supp}(d') \subseteq \operatorname{supp}(d)$ and $d'_j d_j \ge 0 \ \forall j \in \mathcal{N}$.
- A nonzero *d* is an *elementary vector* of Null(A) if $d \in Null(A)$ and there is no nonzero $d' \in Null(A)$ that is conformal to *d* and $supp(d') \neq supp(d)$.
- Each elementary vector d satisfies $|\operatorname{supp}(d)| \leq \operatorname{rank}(A) + 1$.

Find \mathcal{J} with $|\mathcal{J}| = 2$ in O(n) opers. (SVM QP, m = 1)

• Step 1: Find $d_D(x; \mathcal{N})$ in O(n) opers. by solving a cont. quad. knapsack problem:

$$\min_{d} \qquad \frac{1}{2}d^{T}Dd + \nabla f(x)^{T}d \\ \text{subject to} \qquad l \leq x + d \leq u, \\ Ad = 0,$$

Where $D \succ 0_n$ is diagonal.

• Step 2: Find a *conformal realization* of $d_D(x; \mathcal{N})$:

 $d_D(x;\mathcal{N}) = \sum_{i=1}^r d^i \text{ where } d^i \text{ is an elementary vector of } \operatorname{Null}(A)$ and $r \leq n-1$. Choose $\mathcal{J} = \operatorname{supp}(d^{\overline{i}})$ where $\overline{i} \in \underset{i \in \{1,...,r\}}{\operatorname{arg\,min}} g^T d^i + \frac{1}{2} (d^i)^T D d^i$.

This finds a \mathcal{J} satisfying $|\mathcal{J}| = 2$ and $q_D(x; \mathcal{J}) \leq \frac{1}{n-1}q_D(x; \mathcal{N})$ in O(n) opers.

– Typeset by $\mbox{FoilT}_{\!E}\!{\rm X}$ –

Numerical Experience on SVM QP

- Implement CGD method in Fortran.
- Choose \mathcal{J} by Gauss-Southwell-q rule with

$$D = \operatorname{diag} \left[\max\{Q_{jj}, 10^{-5}\} \right]_{j=1,\dots,n},$$

as described in previous slide.

Our implementation of the CGD method has the form

 $x^{\text{new}} = x + d_Q(x; \mathcal{J}),$

with $|\mathcal{J}| = 2$. This corresponds to the CGD method with α chosen by the minimization rule. (The choice of *H* is actually immaterial here.)

• Compute $d_D(x, \mathcal{N})$ and $q_D(x; \mathcal{N})$ by using a linear-time Fortran code k1vfo provided by Krzysztof Kiwiel.

– Typeset by $\operatorname{FoilT}_{E}X$ –

- $x^0 = 0$: O(n) opers. to compute gradient $Qx^0 e$. (for general x^0 , $O(n^2)$ opers.)
- O(n) opers. per iteration to update gradient Qx e since $|\mathcal{J}| = 2$.
- The CGD method is terminated when $-q_D(x; \mathcal{N}) \leq 10^{-5}$.

• Additional refinements such as caching most recently used columns of Q and using supports of 3 elementary vectors for a conformal realization of $d_D(x; \mathcal{N})$ are used to speed up the method.

- Numerical tests on some large two-class data classification problems.
- \bullet Comparison with LIBSVM (version 2.83), which chooses ${\cal J}$ differently, but with the same cardinality of 2.

– Typeset by $FoilT_EX$ –

Test results ($\gamma = 1/p$:default values of LIBSVM)

Data	n/p	C/kernel	LIBSVM	CGD-3pair
			iter/obj/cpu	iter/obj/cpu
a7a	16100/122	1/lin	64108/-5699.253/ <mark>1.3</mark>	56869/-5699.246/ <mark>6.3</mark>
		10/lin	713288/-56875.57/4.6	322000/-56873.58/32.8
		1/rbf	4109/-5899.071/1.3	4481/-5899.070/1.0
		10/rbf	10385/-55195.29/1.4	16068/-55195.30/2.0
		1/sig	3941/-6095.529/1.7	4201/-6095.529/1.2
		10/sig	9942/-57878.56/1.7	10890/-57878.57/1.8
ijcnn1	49990/22	1/lin	16404/-8590.158/ <mark>3.0</mark>	20297/-8590.155/ <mark>6.5</mark>
		10/lin	155333/-85441.01/ <mark>4.2</mark>	155274/-85441.00/ <mark>46.9</mark>
		1/rbf	5713/-8148.187/ <mark>4.6</mark>	6688/-8148.187/ <mark>3.8</mark>
		10/rbf	6415/-61036.54/ <mark>3.5</mark>	12180/-61036.54/4.8
		1/sig	6796/-9156.916/ <mark>7.0</mark>	6856/-9156.916/ <mark>5</mark> .0
		10/sig	10090/-88898.40/ <mark>6</mark> .4	12420/-88898.39/6.5
w7a	24692/300	1/lin	66382/-765.4115/ <mark>0.4</mark>	72444/-765.4116/ <mark>8.2</mark>
		10/lin	662877/-7008.306/1.1	493842/-7008.307/60.6
		1/rbf	1550/-1372.011/ <mark>0.4</mark>	1783/-1372.010/0.5
		10/rbf	4139/-10422.69/0.4	4491/-10422.70/0.8
		1/sig	1477/-1427.453/0.4	2020/-1427.455/0.4
		10/sig	2853/-11668.85/ <mark>0.3</mark>	5520/-11668.86/0.9

• CGD-3pair is slower than LIBSVM when the linear kernel is used, due to the greater times spent in finding $d_D(x; \mathcal{N})$ and for updating the gradient.

• CGD-3pair is comparable to LIBSVM in speed and solution quality for nonlinear kernel. – Typeset by $\mathsf{FoilT}_{\!E\!X}$ –

Extension

In order to find sparse solution, a nonsmooth function P is added in the objective function (e.g. $P(x) = ||x||_1$).

Linearly Constrained Nonsmooth Optimization

$$\min_{\substack{x \in \Re^n \\ \text{s.t.}}} f(x) + cP(x)$$

s.t. $x \in X := \{x \mid l \le x \le u, Ax = b\}.$

 $P: \Re^n \to (-\infty, \infty]$ is proper, convex, lsc, and $P(x) = \sum_{j=1}^n P_j(x_j)$ $(x = (x_1, ..., x_n)^T).$

The CGD method can be extended to solve the linearly constrained nonsmooth optimization problem.

Conclusions & Future Work

1. The CGD method is the first globally convergent block-coordinate update method for general linearly constrained optimization.

2. It is implementable in O(n) opers. per iteration when f is quadratic and m = 1 and is suited for large scale problems with n large and m small.

3. For SVM QP, numerical results show that CGD method can be competitive with state-of-the-art SVM code on large data classification problems when a nonlinear kernel is used.

4. The CGD-3pair can be further speeded up by omitting infrequently updated components from computation ("shrinkage"), as is done in state-of-the-art SVM codes LIBSVM and SVM^{*light*}.

5. For large-scale applications such as ν -SVM, m = 2. A conformal realization can be found in $O(n \log n)$ operations when m = 2. However, this can still be slow. Can this be improved to O(n) operations?

Thank you!

Tseng, P. and Yun S., A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training. Tseng, P. and Yun S., A coordinate gradient descent method for constrained nonsmooth optimization and bi-level optimization. (PDF file available at http://www.math.washington.edu/~sangwoon/) – Typeset by FoilTeX –

Support Vector Classification

- Training points : $z_i \in \Re^p$, i = 1, ..., n.
- Consider a simple case with two classes (linear separable case):

Define a vector a :

$$a_i = \begin{cases} 1 & \text{if } z_i \text{ in class } 1\\ -1 & \text{if } z_i \text{ in class } 2 \end{cases}$$

• A hyperplane ($0 = w^T z - b$) separates data with the maximal margin. Margin is the distance of the hyperplane to the nearest of the positive and negative points.

Nearest points lie on the planes $\pm 1 = w^T z - b$

SVM Optimization Problem

• The (original) Optimization Problem

$$\min_{\substack{w,b \\ w,b}} \quad \frac{1}{2} \|w\|_2^2$$

s.t. $a_i \left(w^T z_i - b \right) \ge 1, \ i = 1, ..., n.$

• The Modified Optimization Problem (allows, but penalizes, the failure of a point to reach the correct margin, by Cortes and Vapnik, 1995)

$$\min_{\substack{w,b,\xi \\ w,b,\xi }} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \xi_i$$
s.t. $a_i \left(w^T z_i - b \right) \ge 1 - \xi_i, \quad \xi_i \ge 0, \ i = 1, ..., n.$

Caching and Other Choices of ${\cal J}$

Using klvfo and updating the gradient are the dominant computations.

• Cache the most recently used columns of Q, up to a user-specified limit maxCN, when updating the gradient Qx - e.

• There exists at least one elementary vector in this realization whose support ${\mathcal J}$ satisfies

$$q_D(x;\mathcal{J}) \le \frac{1}{n-1} q_D(x;\mathcal{N}).$$

• From among all such \mathcal{J} , we find the best one (i.e., has the least $q_Q(x; \mathcal{J})$ value) and make this our choice for index subset.

• In addition, find from among all such ${\cal J}$ the second-best and third-best ones, if they exist. (In our tests, they always exist.)

– Typeset by FoilT $_{\rm E}$ X –

• If the second-best one is disjoint from the best one, we make it the next index subset, and if the third-best one is disjoint from both the best and the second-best, we make it the second-next index subset.

• The procedure of selecting 3 (possible) pairs of the index subset is repeated at least once every 3 consecutive iterations.