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SVM (Dual) Quadratic Program

minx
1
2x

TQx− eTx
subject to 0 ≤ xi ≤ C, i = 1, ..., n,

aTx = 0,

where a ∈ {−1, 1}n, 0 < C ≤ ∞, e = [1, ..., 1]T , Q ∈ <n×n is a sym. pos.
semidef. with Qij = aiajK(zi, zj), K : <p ×<p → < (“kernel function”), and
zi ∈ <p (“ith data point”), i = 1, ..., n.

Popular choices of K:

• Linear kernel K(zi, zj) = zT
i zj

• Radial basis function kernel K(zi, zj) = exp(−γ‖zi − zj‖2)

• Sigmoid kernel K(zi, zj) = tanh(γzT
i zj)

where γ is a constant.

Q is an n× n fully dense matrix and even indefinite. (n ≥ 5000)

Interior-point methods cannot be directly applied, except in the case of linear
kernel.– Typeset by FoilTEX – 2
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Previous methods

Decomposition methods based on iterative block-coordinate descent have
become popular for solving SVM QP.

• Joachims (98)

• Platt (99)

• Chang et al. (00)

• Keerthi et al. (00)

• Hush and Scovel (03)

• Palagi and Sciandrone (05)

• Fan et al. (05)

Decomposition methods use search directions of small support (i.e., few
nonzeros) and achieve linear convergence under additional assumptions such
as Q being positive definite.
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General Problem Model

min
x∈<n

f(x)

s.t. x ∈ X := {x | l ≤ x ≤ u, Ax = b},

f : <n → < is smooth.

A ∈ <m×n, b ∈ <m, and l ≤ u (possibly with −∞ or ∞ components).

• For SVM QP, f is quadratic (possibly nonconvex) and m = 1.
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Coord. Gradient Descent Method

Descent direction .

For x ∈ X, choose J (6= ∅) ⊆ N = {1, ..., n} and H � 0n, Then solve

min
x+d∈X, dj=0 ∀j 6∈J

{∇f(x)Td +
1
2
dTHd}. direc.

subprob

Let dH(x;J ) and qH(x;J ) be the opt. soln and obj. value of the direc.
subprob.

Facts :

• qH(x;N ) = 0 ⇔ x ∈ X is a stationary point of f over X. stationarity

• qH(x;J ) ≤ −1
2d

THd where d = dH(x;J ).
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Choose α: Armijo rule

Choose α to be the largest element of {βk}k=0,1,... satisfying

f(x + αd)− f(x) ≤ σαqH(x;J ) (0 < β < 1, 0 < σ < 1).

For a QP, the minimization rule or the limited minimization rule can also be
used.

Choose J : Gauss-Southwell- q rule

qD(x;J ) ≤ υ qD(x;N ),

Where 0 < υ ≤ 1, D � 0n is diagonal.
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Convergence Results

Global convergence If

• 0 < λ ≤ λi(D), λi(H) ≤ λ̄ ∀i,

• J is chosen by Gauss-Southwell-q rule,

• α is chosen by Armijo rule,

then every cluster point of the x-sequence generated by CGD method is a
stationary point of f over X.
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Local convergence rate If

• 0 < λ ≤ λi(D), λi(H) ≤ λ̄ ∀i,

• J is chosen by Gauss-Southwell-q rule,

• α is chosen by Armijo rule,

in addition, if f satisfies any of the following assumptions, then the
x-sequence generated by CGD method converges at R-linear rate.

C1 f is strongly convex. ∇f is Lipschitz cont. on X

C2 f is (nonconvex) quadratic. (e.g., SVM QP)

C3 f(x) = g(Ex) + qTx, where E ∈ <m×n, q ∈ <n, g is strongly convex, ∇g is
Lipschitz cont. on <m.

C4 f(x) = maxy∈Y {(Ex)Ty − g(y)}+ qTx, where Y ⊆ <m is polyhedral,
E ∈ <m×n, q ∈ <n, g is strongly convex, ∇g is Lipschitz cont. on <m.
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Notes :

Proof of convergence rate uses a local error bound

• Error Bound

dist(x,X∗) ≤ κ‖dI(x;N )‖2 whenever ‖dI(x;N )‖2 ≤ ε,

for some κ > 0, ε > 0, where X∗ denotes the set of stationary points of f
over X and dist(x,X∗) = minx∗∈X∗ ‖x− x∗‖2.
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Complexity Bound

• 0 < λ ≤ λi(D), λi(H) ≤ λ̄ ∀i,

• J is chosen by Gauss-Southwell-q rule,

• α is chosen by Armijo rule,

in addition, if f is convex with Lipschitz continuous gradient, then the number
of iterations for achieving ε-optimality is

O

(
Lr0

υε
+ max

{
0,

L

υ
ln

(
e0

r0

)})
,

where r0 = maxx∈X

{
dist(x, X∗)2 | f(x) ≤ f(x0)

}
, e0 = f(x0)−minx∈X f(x),

and L is a Lipschitz constant.

The constant in O(·) depends on λ, λ̄, σ, β.

When specialized to SVM QP, our complexity bound for achieving ε-optimality
compares favorably with existing bounds.
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Index Subset Selection

Elementary vector (Rockafellar, 1969)

• For any d ∈ <n, the support of d is supp(d) := {j ∈ N | dj 6= 0}.

• A d′ is conformal to d if supp(d′) ⊆ supp(d) and d′jdj ≥ 0 ∀j ∈ N .

• A nonzero d is an elementary vector of Null(A) if d ∈ Null(A) and there is
no nonzero d′ ∈ Null(A) that is conformal to d and supp(d′) 6= supp(d).

• Each elementary vector d satisfies |supp(d)| ≤ rank(A) + 1.
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Find J with |J | = 2 in O(n) opers. (SVM QP, m = 1)

• Step 1: Find dD(x;N ) in O(n) opers. by solving a cont. quad. knapsack
problem:

mind
1
2d

TDd +∇f(x)Td
subject to l ≤ x + d ≤ u,

Ad = 0,

Where D � 0n is diagonal.

• Step 2: Find a conformal realization of dD(x;N ) :

dD(x;N ) =
r∑

i=1

di where di is an elementary vector of Null(A)

and r ≤ n− 1.

Choose J = supp(dī) where ī ∈ arg min
i∈{1,...,r}

gTdi +
1
2
(di)TDdi.

This finds a J satisfying |J | = 2 and qD(x;J ) ≤ 1
n−1qD(x;N ) in O(n) opers.
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Numerical Experience on SVM QP

• Implement CGD method in Fortran.

• Choose J by Gauss-Southwell-q rule with

D = diag
[
max{Qjj, 10−5}

]
j=1,...,n

,

as described in previous slide.

• Our implementation of the CGD method has the form

xnew = x + dQ(x;J ),

with |J | = 2. This corresponds to the CGD method with α chosen by the
minimization rule. (The choice of H is actually immaterial here.)

• Compute dD(x,N ) and qD(x;N ) by using a linear-time Fortran code k1vfo
provided by Krzysztof Kiwiel.
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• x0 = 0: O(n) opers. to compute gradient Qx0 − e.
• (for general x0, O(n2) opers.)

• O(n) opers. per iteration to update gradient Qx− e since |J | = 2.

• The CGD method is terminated when −qD(x;N ) ≤ 10−5.

• Additional refinements such as caching most recently used columns of Q
and using supports of 3 elementary vectors for a conformal realization of
dD(x;N ) are used to speed up the method.

• Numerical tests on some large two-class data classification problems.

• Comparison with LIBSVM (version 2.83), which chooses J differently, but
with the same cardinality of 2.
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Test results (γ = 1/p :default values of LIBSVM)

Data n/p C/kernel LIBSVM CGD-3pair
iter/obj/cpu iter/obj/cpu

a7a 16100/122 1/lin 64108/-5699.253/1.3 56869/-5699.246/6.3
10/lin 713288/-56875.57/4.6 322000/-56873.58/32.8
1/rbf 4109/-5899.071/1.3 4481/-5899.070/1.0

10/rbf 10385/-55195.29/1.4 16068/-55195.30/2.0
1/sig 3941/-6095.529/1.7 4201/-6095.529/1.2

10/sig 9942/-57878.56/1.7 10890/-57878.57/1.8
ijcnn1 49990/22 1/lin 16404/-8590.158/3.0 20297/-8590.155/6.5

10/lin 155333/-85441.01/4.2 155274/-85441.00/46.9
1/rbf 5713/-8148.187/4.6 6688/-8148.187/3.8

10/rbf 6415/-61036.54/3.5 12180/-61036.54/4.8
1/sig 6796/-9156.916/7.0 6856/-9156.916/5.0

10/sig 10090/-88898.40/6.4 12420/-88898.39/6.5
w7a 24692/300 1/lin 66382/-765.4115/0.4 72444/-765.4116/8.2

10/lin 662877/-7008.306/1.1 493842/-7008.307/60.6
1/rbf 1550/-1372.011/0.4 1783/-1372.010/0.5

10/rbf 4139/-10422.69/0.4 4491/-10422.70/0.8
1/sig 1477/-1427.453/0.4 2020/-1427.455/0.4

10/sig 2853/-11668.85/0.3 5520/-11668.86/0.9

• CGD-3pair is slower than LIBSVM when the linear kernel is used, due to the greater times
spent in finding dD(x;N ) and for updating the gradient.
• CGD-3pair is comparable to LIBSVM in speed and solution quality for nonlinear kernel.
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Extension

In order to find sparse solution, a nonsmooth function P is added in the
objective function (e.g. P (x) = ‖x‖1).

Linearly Constrained Nonsmooth Optimization

min
x∈<n

f(x) + cP (x)

s.t. x ∈ X := {x | l ≤ x ≤ u, Ax = b}.

P : <n → (−∞,∞] is proper, convex, lsc, and P (x) =
∑n

j=1 Pj(xj)
(x = (x1, ..., xn)T ).

The CGD method can be extended to solve the linearly constrained
nonsmooth optimization problem.
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Conclusions & Future Work

1. The CGD method is the first globally convergent block-coordinate update
method for general linearly constrained optimization.

2. It is implementable in O(n) opers. per iteration when f is quadratic and
m = 1 and is suited for large scale problems with n large and m small.

3. For SVM QP, numerical results show that CGD method can be competitive
with state-of-the-art SVM code on large data classification problems when a
nonlinear kernel is used.

4. The CGD-3pair can be further speeded up by omitting infrequently updated
components from computation (“shrinkage”), as is done in state-of-the-art
SVM codes LIBSVM and SVMlight.

5. For large-scale applications such as ν-SVM, m = 2. A conformal realization
can be found in O(n log n) operations when m = 2. However, this can still be
slow. Can this be improved to O(n) operations?
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Thank you!

Thank you!

Tseng, P. and Yun S., A coordinate gradient descent method for linearly
constrained smooth optimization and support vector machines training.
Tseng, P. and Yun S., A coordinate gradient descent method for constrained
nonsmooth optimization and bi-level optimization.
(PDF file available at http://www.math.washington.edu/˜sangwoon/)
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Support Vector Classification

• Training points : zi ∈ <p, i = 1, ..., n.

• Consider a simple case with two classes (linear separable case):

Define a vector a :

ai =
{

1 if zi in class 1
−1 if zi in class 2

• A hyperplane (0 = wTz − b) separates data with the maximal margin.
Margin is the distance of the hyperplane to the nearest of the positive and
negative points.
Nearest points lie on the planes ±1 = wTz − b
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Negative Examples

•
•

• •

• •
•

•
Positive Examples

•
Maximize distances to nearest

points

L Space of possible inputs

– Typeset by FoilTEX – 20



A COORDINATE GRADIENT DESCENT METHOD FOR LINEARLY CONSTRAINED SMOOTH OPTIMIZATION

SVM Optimization Problem

• The (original) Optimization Problem

min
w,b

1
2
‖w‖22

s.t. ai

(
wTzi − b

)
≥ 1, i = 1, ..., n.

• The Modified Optimization Problem (allows, but penalizes, the failure of a
point to reach the correct margin, by Cortes and Vapnik, 1995)

min
w,b,ξ

1
2
‖w‖22 + C

n∑
i=1

ξi

s.t. ai

(
wTzi − b

)
≥ 1− ξi, ξi ≥ 0, i = 1, ..., n.
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Caching and Other Choices of J

Using k1vfo and updating the gradient are the dominant computations.

• Cache the most recently used columns of Q, up to a user-specified limit
maxCN, when updating the gradient Qx− e.

• There exists at least one elementary vector in this realization whose support
J satisfies

qD(x;J ) ≤ 1
n− 1

qD(x;N ).

• From among all such J , we find the best one (i.e., has the least qQ(x;J )
value) and make this our choice for index subset.

• In addition, find from among all such J the second-best and third-best ones,
if they exist. (In our tests, they always exist.)
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• If the second-best one is disjoint from the best one, we make it the next
index subset, and if the third-best one is disjoint from both the best and the
second-best, we make it the second-next index subset.

• The procedure of selecting 3 (possible) pairs of the index subset is repeated
at least once every 3 consecutive iterations.
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