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Matrix Completion

Compressed Sensing & Matrix Completion

Is it possible to reconstruct signal exactly or at least accurately from a few
observed samples of a signal? (impossible! in general)

However, if the signal is known to be sparse then accurate recovery is
possible by `1 minimization (Candés et al. ’06, Donoho ’06):

min
x∈<n

{
‖x‖1 : Ax = b

}
,

where A ∈ <p×n (p < n or p � n).
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Now, imagine that we only observe a few entries of a data matrix. Then is it
possible to accurately guess the entries that we have not seen?

Netflix problem : suppose we observe a few movie ratings from a large data
matrix in which rows are users and columns are movies.
Can we predict the rating a user would hypothetically assign to a movie
he/she has not seen? i.e., we would like to infer users preference for unrated
movies. (impossible! in general)

However, if the unknown matrix is known to have low rank or approximately
low rank, then accurate recovery is possible by nuclear norm minimization
(Candés & Recht ’08, Candés & Tao ’09).

This is known as the matrix completion problem.
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Can be formulated as the the following minimization problem:

min
X∈<m×n

{
rank(X) : Xij = Mij, (i, j) ∈ Ω

}
,

where M is the unknown matrix with p available sampled entries and Ω is a
set of pairs of indices of cardinality p.

By (Candés & Recht ’08), a random low-rank matrix can be recovered exactly
with high probability from a rather small random sample of its entries and it
can be done by solving the following convex relaxation:

min
X∈<m×n

{
‖X‖∗ : Xij = Mij, (i, j) ∈ Ω

}
.

where ‖X‖∗ =
∑q

i=1 σi(X) and σi(X)’s are the singular values of X and
q = min{m,n}.

4



APG ALGORITHM FOR NUCLEAR NORM REGULARIZED LEAST SQUARES PROBLEMS ARISING IN MATRIX COMPLETION

The above problem can be reformulated as a semidefinite program as follows:

min
X,W1,W2

1
2 (TrW1 + TrW2)

subject to Xij = Mij, (i, j) ∈ Ω,

(
W1 X
XT W2

)
� 0.

But this semidefinite problem has one (m + n)× (m + n) semidefinite
constraint and p affine constraints.

The state-of-art solver SDPT3 and others like SeDuMi are based on
interior-point methods and they are not suitable for problems with large m + n
or p because the computational cost grows like O(p(m+n)3 + p2(m+n)2 + p3)
and the memory requirement grows like O((m + n)2 + p2).
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General Problem Model: Nuclear Norm Regularized Linear
Least Squares Problem

A convex relaxation of an affine rank minimization problem (Fazel ’02):

min
X∈<m×n

{
‖X‖∗ : A(X) = b

}
.

The matrix completion problem is a special case of the above problem with
A(X) = XΩ, where XΩ is the vector in <|Ω| obtained from X by selecting
those elements whose indices are in Ω.

When the matrix variable is restricted to be diagonal, the above problem
reduces to the following `1 minimization problem:

min
x∈<n

{
‖x‖1 : Ax = b

}
.

This problem has attracted much interest in compressed sensing.
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Nuclear Norm Regularized Linear Least Squares Problem

If the observation b is contaminated with noise, then Ax = b might not be
feasible and so an appropriate norm of the residual Ax− b should be
minimized.

The appropriate model to consider can be the following `1-regularized linear
least squares problem:

min
x∈<n

1
2
‖Ax− b‖22 + µ‖x‖1,

where µ > 0.

This motivates us to consider the following nuclear norm regularized linear
least squares problem:

min
X∈<m×n

1
2
‖A(X)− b‖22 + µ‖X‖∗.
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Accelerated Proximal Gradient Algorithm
We consider the proximal regularized subproblem:

min
X∈<m×n

τ

2
‖X −G‖2F + µ‖X‖∗,

where G = Y − τ−1A∗(A(Y )− b).

Suppose the singular value decomposition (SVD) of G is given by:

G = UΣV T , Σ = Diag(σ),

where U ∈ m× q and V ∈ n× q with orthogonal columns, σ ∈ <q is the vector
of positive singular values with σ1 ≥ σ2 ≥ . . . ≥ σq > 0 and q ≤ min{m,n}.

Let x+ = max{x, 0}. Then the solution Sτ(G) of the above problem is given by

Sτ(G) = UDiag((σ − µ/τ)+)V T .
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Recent Algorithms

• Singular Value Thresholding (SVT) algorithm (Cai, et al. ’08)

The Tikhonov regularized version of linear constrained nuclear norm
minimization:

min
X∈<m×n

{
‖X‖∗ +

1
2µ
‖X‖2F : A(X) = b

}
.

The SVT algorithm can be expressed as follows:{
Xk = Sτk(Gk)
Gk+1 = Gk − δkA∗(A(Xk)− b),

where τk = 1 for all k and δk is a positive step size.

SVT algorithm is a gradient method applied to the dual problem of the above
problem, where each step moves the current dual iterate in the direction of the
gradient.
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The advantage of SVT algorithm for matrix completion:

1. Selecting a large µ gives a sequence of low-rank iterates.
2. The matrix Gk is sparse for all k because the sparsity pattern of Ω is fixed
throughout.

• Fixed Point Continuation (FPC) algorithm (Ma, et al. ’08) for solving the nuclear
norm regularized linear least squares problem.

FPC algorithm is a matrix extension of the fixed point continuation algorithm
proposed by (Hale et al. ’07) for an `1-regularized linear least squares problem.

The FPC algorithm can be expressed as follows:{
Xk = Sτk(Gk)
Gk+1 = Xk − (τk)−1A∗(A(Xk)− b).

This algorithm may terminate in O(1/ε) iterations with an ε-optimal solution.
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Singular Value Decomposition

When the current point Xk of the FPC and SVT algorithms is updated at
iteration k, Sτk(Gk) is obtained by the SVD of Gk.

Main computational cost of both algorithms lies in computing the SVD of Gk.

For the FPC, a fast Monte Carlo algorithm such as the Linear Time SVD
algorithm is used.

For the SVT, the PROPACK (a variant of the Lanczos algorithm) is used.

But we only need singular values that are greater than µ/τk.

Even though the algorithms for SVD can choose the number of S.V. to
compute, they can not automatically compute only those S.V. we need.

Both FPC and SVT have their own procedure to choose and update the
predetermined number of largest S.V. to reduce the computational time.
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APG algorithm

Question: Can an algorithm be developed to take an advantage of the SVT
algorithm and to have better iteration complexity?

Recently, Beck and Teboulle proposed a fast iterative shrinkage-thresholding
algorithm (FISTA) to solve `1-regularized linear least squares problems.

Accelerated proximal gradient algorithms have an attractive iteration
complexity of O(1/

√
ε) for achieving ε-optimality.

The APG algorithm can be expressed as follows:
Xk = Sτk(Gk)

tk+1 = 1+
√

1+4(tk)2

2

Y k+1 = Xk + tk−1
tk+1 (Xk −Xk−1)

Gk+1 = Y k+1 − (τk)−1A∗(A(Y k+1)− b).

12



APG ALGORITHM FOR NUCLEAR NORM REGULARIZED LEAST SQUARES PROBLEMS ARISING IN MATRIX COMPLETION

Iteration Complexity

Let {Xk}, {Y k}, {tk} be the sequences generated by APG with
τk = λmax(A∗A) for all k. Then, for any k ≥ 1, we have

F (Xk)− F (X∗) ≤ 2λmax(A∗A)‖X∗ −X0‖2F
(k + 1)2

,

where F (X) = 1
2‖A(X)− b‖22 + µ‖X‖∗ and X∗ is an optimal solution. Hence

F (Xk)− F (X∗) ≤ ε whenever k ≥
√

2λmax(A∗A)
ε

(
‖X0‖F + χ

)
− 1,

where

χ =
{

min{‖b‖22/(2µ), ‖A∗(AA∗)−1b‖∗} if A is surjective
‖b‖22/(2µ) otherwise.
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We have O(1/
√

ε) iteration complexity result.

Key inequality for the proof of the iteration complexity:

F (Xk) ≤ τk

2
‖Xk −Gk‖2F + µ‖Xk‖∗ +

1
2
‖A(Y k)− b‖22 −

1
2τk

‖A∗(A(Y k)− b)‖2F

=
1
2
‖A(Y k)− b‖22 + Tr

(
(A∗(A(Y k)− b))T (Xk − Y k)

)
+

τk

2
‖Xk − Y k‖2F + µ‖Xk‖∗

(
=: Qτk(Xk, Y k)

)
,

where Gk = Y k − (τk)−1A∗(A(Y k)− b).
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• Comparison of APG and FPC, without using continuation strategy.

The matrix M is randomly generated.

Unknown M FPC APG
n/r p µ iter #sv error iter #sv error

100/10 5666 8.21e-03 7723 61 1.88e-01 655 13 1.06e-03
200/10 15665 1.05e-02 12180 96 2.45e-01 812 12 1.02e-03
500/10 49471 1.21e-02 10900 203 5.91e-01 1132 16 7.63e-04

error := ‖Xsol −M‖F/‖M‖F .
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Techniques for Further Acceleration

• Linesearch-like technique:

In practice, too conservative to set τk = λmax(A∗A) for all k.
To accelerate the convergence, it’s desirable to take a smaller value for τk by
performing a linesearch-like procedure (we call this version as APGL).

τ̂0 = ητk−1 with η ∈ (0, 1).

For j = 0, 1, 2, . . .,
Set G = Y k − (τ̂j)−1A∗(A(Y k)− b), compute Sτ̂j

(G).
If F (Sτ̂j

(G)) ≤ Qτ̂j
(Sτ̂j

(G), Y k),
set τk = τ̂j, stop;

else,
τ̂j+1 = min{η−1τ̂j, λmax(A∗A)}

end
end
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This technique has another important advantage: τk is typically smaller than
λmax(A∗A), and so the number of S.V. of Gk that are greater than µ/τk is
smaller.

• Continuation technique:

If the parameter µ is larger, then the number of S.V. to be evaluated is smaller.
But the target parameter µ is usually chosen to a moderately small number.

This motivates us to use the continuation technique employed in the FPC.

We solve a sequence of the nuclear norm linear least squares problem
defined by a decreasing sequence {µ0, µ1, . . . , µ` = µ} with a given finite
positive integer `.

When a new problem, associated with µj+1 is to be solved, the approximate
solution for the current problem with µj is used as the starting point.
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• Truncation technique:

For the APG algorithm without any acceleration techniques, Xk is generally
not low-rank before the final phase of the algorithm.

But positive S.V. of Xk typically would separate into two clusters with the first
cluster having much large mean value than that of the second cluster.

One may view the number of S.V. in the first cluster as a good estimate on the
rank of the low-rank optimal solution.

The second cluster of smaller positive S.V. can be attributed to the presence
of noise in the given data b.

The second cluster of smaller S.V. can generally be discarded without
affecting the convergence of the APG algorithm.

This motivates us to set the second cluster of small positive S.V. to zero when
the new iterate is updated.
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1. For the SVT algorithm, selecting a large µ gives a sequence of low-rank
iterates.

By using the acceleration techniques, the APGL algorithm can give a
sequence of low-rank iterates.

2. For the SVT algorithm, The matrix Gk is sparse for all k because the
sparsity pattern of Ω is fixed throughout.

By using the acceleration techniques, Y k in the APG algorithm can keep the
low-rank property for all k.

A∗(A(Y k)− b) are sparse because of the sparsity pattern of Ω.

The matrix Gk in the APG algorithm is typically the sum of a low-rank matrix
and a sparse matrix.

Hence this property can also make the APG algorithm computationally as
attractive as the SVT algorithm.
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Numerical Experience on Matrix completion

• Implement APG(L) method in Matlab using PROPACK package to evaluate
partial singular value decompositions.

• η = 0.8 for linesearch-like technique

• For continuation technique: Initially, we set µ0 = ‖A∗(b)‖2 and update
µk = max{0.7µk−1, µ} with µ = 10−4µ0 at iteration k.

• For truncation technique: Choose rk be the smallest integer such that
χrk ≥ 5 where χj := mean(%k(1 : j))/mean(%k(j + 1 : q)) with
%k = (σk − µk/τk)+, σk being the vector of positive S.V. of Gk, and q being the
number of positive components of %k.
Set Xk+1 = UDiag(%̄k)V T , where %̄k is obtained from %k by setting %̄k

i = %k
i for

i = 1, ..., r, and %̄k
i = 0 for i = r + 1, ..., q.
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• Termination Criterion:

‖Sk‖F

τk−1 max{1, ‖Xk‖F}
≤ 10−4,

where
Sk = τk−1(Y k−1−Xk)+A∗(A(Xk)−A(Y k−1)) ∈ ∂(1

2‖A(Xk)−b‖22+µ‖Xk‖∗).

In addition, we also stop the APG(L) algorithm when∣∣‖A(Xk)− b‖2 − ‖A(Xk−1)− b‖2
∣∣

max{1, ‖b‖2}
< 5× 10−4.
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Noiseless random matrix

• n (we set m = n): matrix dimension, r: predetermined rank, p : the number
of entries to sample.

Generate the original matrix M = MLMT
R (ML, MR are n× r matrices with

i.i.d. standard Gaussian entries).

Then select a subset Ω of p elements uniformly at random from
{(i, j) : i, j = 1, . . . , n}.

b = A(M), A(M) = MΩ.

• Measure the accuracy of the computed solution Xsol by the relative error
defined by:

error := ‖Xsol −M‖F/‖M‖F .
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Test Results

• run 5 random instances.

Unknown M Results
n p r µ iter #sv time error
1000 119406 10 1.44e-02 40 10 3.00e+00 2.90e-04

389852 50 5.39e-02 40 50 1.69e+01 3.08e-04
569900 100 8.63e-02 48 100 5.02e+01 3.82e-04

5000 597973 10 1.38e-02 51 10 1.56e+01 2.52e-04
2486747 50 6.10e-02 53 50 1.27e+02 6.21e-04
3957533 100 1.03e-01 53 100 3.20e+02 3.86e-04

10000 1199532 10 1.36e-02 53 10 2.98e+01 2.98e-04
4987078 50 5.96e-02 51 50 2.43e+02 2.40e-04
7960222 100 9.94e-02 55 100 6.73e+02 3.60e-04

20000 2401370 10 1.35e-02 56 10 6.71e+01 3.29e-04
30000 3599920 10 1.35e-02 60 10 1.10e+02 2.01e-04
50000 5998352 10 1.35e-02 61 10 2.14e+02 2.15e-04

100000 12000182 10 1.34e-02 68 10 5.31e+02 1.80e-04

The APGL algorithm was able to solve random matrix completion problems
with m = n = 105 each in less than 10 minutes.
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Noise random matrix

• For the noisy random matrix completion problems, the matrix M created by
the same way as we did for noiseless case

Corrupted by a noise matrix Ξ, and

b = A(M + σΞ),

where the entries of Ξ are i.i.d. standard Gaussian random variables.

In our experiments, σ is chosen to be

σ = 0.1
‖A(M)‖F

‖A(Ξ)‖F
.

• Measure the accuracy of the computed solution Xsol by the relative error
defined by:

error := ‖Xsol −M‖F/‖M‖F .
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Test Results

• run 5 random instances.

Unknown M Results
n p r µ iter #sv time error
1000 119406 10 1.44e-02 35 10 2.75e+00 4.49e-02

389852 50 5.39e-02 38 50 1.53e+01 5.51e-02
569900 100 8.63e-02 44 100 4.23e+01 6.38e-02

5000 597973 10 1.38e-02 44 10 1.52e+01 4.52e-02
2486747 50 6.10e-02 52 50 1.24e+02 4.97e-02
3957533 100 1.03e-01 48 100 2.64e+02 5.86e-02

10000 1199532 10 1.37e-02 48 10 3.06e+01 4.52e-02
4987078 50 5.97e-02 44 50 1.92e+02 4.99e-02
7960222 100 9.95e-02 53 100 6.30e+02 5.73e-02

20000 2401370 10 1.36e-02 52 10 6.50e+01 4.53e-02
30000 3599920 10 1.35e-02 55 10 1.03e+02 4.53e-02
50000 5998352 10 1.35e-02 57 10 2.00e+02 4.53e-02

100000 12000182 10 1.34e-02 60 10 4.68e+02 4.53e-02

The errors are smaller than the noise level 0.1 and are consistent with
(actually more accurate) the theoretical result (Candés and Plan ’09).
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Two real matrix completion problems

• The Jester joke data set contains 4.1 million ratings for 100 jokes from
73421 users.
(1) jester-1: 24983 users who have rated 36 or more jokes;
(2) jester-2: 23500 users who have rated 36 or more jokes;
(3) jester-3: 24938 users who have rated between 15 and 35 jokes.
We let jester-all be the data set obtained by combining all the above data
sets.

For each data set, we let M be the original incomplete data matrix such that
the i-th row of M corresponds to the ratings given by the i-th user on the
jokes.

For each user, we randomly choose 10 ratings from the set of indices for which
Mij is given, to form the data vector b.
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• The MovieLens data has 3 data sets with the following characteristics.
(1) movie-100K: 100,000 ratings for 1682 movies by 943 users;
(2) movie-1M: 1 million ratings for 3900 movies by 6040 users;
(3) movie-10M: 10 million ratings for 10681 movies by 71567 users.

For each data set, the matrix M is very sparse.

In our experiments, we randomly select about 50% of the ratings given by
each user to form the data vector b.
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• Since some of the entries in M are missing, we cannot compute the relative
error of the estimated matrix X.

Instead, we computed the Normalized Mean Absolute Error (NMAE).

NMAE =
MAE

rmax − rmin
,

where rmin and rmax are lower and upper bounds for the ratings, the Mean
Absolute Error (MAE) is defined as

MAE =
1
|Γ|

∑
(i,j)∈Γ

|Mij −Xij|,

Γ is the set of indices for which Mij is given.

For jester joke, ratings ∈ [−10,+10] (rmin = −10, rmax = 10).

For MovieLens, ratings ∈ {1, 2, 3, 4, 5} (rmin = 1, rmax = 5).
28
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Test Results

m/n |Γ|, |Ω|/|Γ| µ iter time NMAE #sv
jester-1 24983/ 100 1.81e+06, 13.80% 5.76e-01 26 2.74e+01 1.64e-01 88

jester-2 23500/ 100 1.71e+06, 13.75% 5.66e-01 26 2.58e+01 1.65e-01 88

jester-3 24938/ 100 6.17e+05, 40.42% 8.30e-01 32 4.21e+01 1.18e-01 80

jester-all 73421/ 100 4.14e+06, 17.75% 1.06e+00 27 8.62e+01 1.59e-01 89

moive-100K 943/ 1682 1.00e+05, 49.92% 3.21e-01 58 2.61e+00 1.84e-01 1

moive-1M 6040/ 3706 1.00e+06, 49.86% 9.47e-01 61 1.17e+01 1.81e-01 1

moive-10M 71567/ 10674 9.91e+06, 49.84% 2.66e+00 72 2.14e+02 1.55e-01 11

Here, we set 10−3 instead of 10−4 in the stopping condition.

We can solve the matrix completion problem with dimension 73421× 100
within 2 minutes with an NMAE value of 1.59× 10−1.

We can also solve the matrix completion problem with dimension
71567× 10674 in less than 4 minutes with an NMAE value of 1.55× 10−1.
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Conclusions & Future Work
1. The accelerated proximal gradient algorithm with a fast method, such as
PROPACK, for computing partial singular value decomposition is simple and
suitable for solving large-scale matrix completion problems.

2. Three techniques, linesearch-like, continuation, and truncation techniques,
have been developed to accelerate the convergence of the original APG
algorithm.

3. Numerical results shows the practical efficiency of the APGL algorithm for
large-scale matrix completion problems.

4. Can other methods, such as interior point methods, or semismooth Newton
methods, developed for `1-regularized linear least squares problems be
extended to solve the nuclear norm linear least squares problems?

5. Can other acceleration techniques be developed for solving large-scale
matrix completion problems?
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Thank you!

Thank you!

Toh K.-C. and Yun S., An accelerated proximal gradient algorithm for nuclear
norm regularized least squares problems.
(PDF file available at http://www.math.nus.edu.sg/ matys/index.html)
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