
A Coordinate Gradient Descent Method for

`1-regularized Convex Minimization

Sangwoon Yun ∗, and Kim-Chuan Toh †

January 30, 2009

Abstract

In applications such as signal processing and statistics, many problems involve find-
ing sparse solutions to under-determined linear systems of equations. These problems
can be formulated as a structured nonsmooth optimization problems, i.e., the problem
of minimizing `1-regularized linear least squares problems. In this paper, we propose
a block coordinate gradient descent method (abbreviated as CGD) to solve the more
general `1-regularized convex minimization problems, i.e., the problem of minimizing
an `1-regularized convex smooth function. We establish a Q-linear convergence rate
for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to
ensure sufficient descent. We propose efficient implementations of the CGD method
and report numerical results for solving large-scale `1-regularized linear least squares
problems arising in compressed sensing and image deconvolution as well as large-scale
`1-regularized logistic regression problems for feature selection in data classification.
Comparison with several state-of-the-art algorithms specifically designed for solving
large-scale `1-regularized linear least squares or logistic regression problems suggests
that an efficiently implemented CGD method may outperform these algorithms de-
spite the fact that the CGD method is not specifically designed just to solve these
special classes of problems.

Key words. Coordinate gradient descent, Q-linear convergence, `1-regularization, com-

pressed sensing, image deconvolution, linear least squares, logistic regression, convex opti-

mization

∗Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576 (smaysw@nus.edu.sg).
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

(mattohkc@nus.edu.sg); and Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576. Research
supported in part by NUS Academic Research Grant R146-000-076-112.

1



1 Introduction

Recent interests in signal/image denoising [7, 15, 37] and data mining/classification [26, 27,

30, 34, 40] have focused on the following minimization problem with `1-regularization:

min
x∈<n

Fρ(x)
def
= f(x) + ρT |x| (1)

where f : <n → < is smooth (i.e., continuously differentiable) and convex, but not neces-

sarily strictly convex, ρ is a given nonnegative weight vector, and |x| denotes obtained from

x by taking absolute values. The weighted `1 term has the desirable property of inducing

sparsity in the solution, i.e., few nonzero components. In particular, a special case of (1),

with ρ = µe where µ is a positive constant and e is a vector of ones, that has attracted

much interest in statistical and signal processing contexts is the following `1-regularized

under-determined linear least squares problem:

min
x∈<n

1

2
‖Ax− b‖2 + µ‖x‖1, (2)

where A ∈ <m×n is dense, m < n or even m ¿ n, and b ∈ <m. In applications of interest,

the problems are often large and A may not be explicitly given as a matrix but as a linear

map.

Several methods have been proposed to solve the `1-regularized linear least squares

problem (2). Homotopy methods that find the full path of solutions, for all nonnegative

values of the scalar parameters, have been proposed in [10, 11, 29]. Homotopy meth-

ods start with the zero vector and an initial parameter µ0 ≥ ‖AT b‖∞ and successively

build a sparse solution by adding or removing elements from its active set (the set of in-

dices of zero components). Hence, if the solution of (2) is very sparse, these methods

can be very fast even for large-scale problems. Some methods that require only matrix-

vector multiplications involving A and AT have also been proposed in [7, 14, 18, 19, 41].

Chen, Donoho and Saunders [7] proposed a primal-dual interior point method, for which a

preconditioned conjugate gradient (PCG) method is used to solve the linear equations at

each iteration, requiring only the multiplication by A and AT . Recently, Kim et al. [19]

proposed another interior-point (called l1-ls) method, that uses a different PCG method

for computing the search direction at each iteration, to solve large-scale problems. The

code is available from http://www.stanford.edu/~boyd/l1_ls/. Figueiredo, Nowak and

Wright [14] proposed a gradient projection (called GPSR) method for solving the bound

constrained quadratic programming reformulation of (2). In order to accelerate conver-

gence, a technique based on Barzilai-Borwein (BB) steps is used. The code is available

from http://www.lx.it.pt/~mtf/GPSR/. Hale, Yin and Zhang [18] proposed a fixed-point

continuation (FPC) method, which is based on operator splitting, to solve the more gen-

eral problem (1). They established a Q-linear rate of convergence of the method with-

out assuming strict convexity nor uniqueness of solution. The code is available from

http://www.caam.rice.edu/~optimization/L1/fpc/. During the writing of this paper,

2



Wright, Nowak and Figueiredo [41] proposed an iterative (called SpaRSA) method, in which

a sequence of iterates xk is generated by solving a subproblem of the following form:

xk+1 = arg min
y∈<n

∇f(xk)T (y − xk) +
ηk

2
‖y − xk‖2 + µ‖y‖1, (3)

where ηk > 0 is a given parameter, to solve the problem (1). The SpaRSA method was

originally proposed for solving a more general problem of (1), for which separable (but

not necessarily smooth nor convex) regularization term is used instead of `1 norm. But

the theoretical convergence properties have not been analyzed. This method and the FPC

method are closely related to the iterative shrinkage/thresholding (IST) methods [8, 12, 13].

The FPC method and the IST methods use the same form of subproblem (3) to generate a

sequence of iterates xk with a more conservative choice of ηk where ηk is fixed at a constant

value. Convergence of IST methods was shown in [8].

Besides the `1-regularized linear least squares problem (2), another important special

case of (1), with ρ = µē where µ is a positive constant and ē = (1, · · · , 1, 0), is the `1-

regularized logistic regression problem, which has been proposed as a promising method for

feature selection in classification problems. The `1-regularized logistic regression problem

has the following form:

min
w∈<n−1,v∈<

1

m

m∑

i=1

log(1 + exp(−(wT ai + vbi))) + µ‖w‖1, (4)

where ai = bizi and (zi, bi) ∈ <n−1 × {−1, 1}, i = 1, ..., m are a given set of (observed or

training) examples. Recently, several methods have been developed for solving (4). Lee et al.

[21] proposed a method that requires the solution of a bound constrained convex quadratic

programming (QP) at each iteration. The bound constrained convex QP arises because

the objective function is approximated by the second order Taylor expansion at the current

point, while the `1 penalty term is reformulated as linear inequality constraints. Genkin,

Lewis and Madigan [16] proposed a method that is based on a (cyclic) coordinate descent

method for solving a ridge logistic regression problem and (4). Koh, Kim and Boyd [20]

proposed an inexact interior-point (called l1-logreg) method, which uses a PCG method for

computing the search direction at each iteration, for solving (4). The code is available from

http://www.stanford.edu/~boyd/l1_logleg/. The SpaRSA method that is mentioned

above can be applied to solve the problem (4).

Recently, Tseng and Yun [39] proposed a block coordinate gradient descent (CGD)

method for minimizing the sum of a smooth function and a separable convex function.

This method was shown to have a local linear rate convergence under a local Lipschitzian

error bound assumption. Numerical results in [39] show the practical efficiency of the CGD

method when it is applied to solve small and medium scale `1-regularized nonlinear least

squares problems. The problem (1) is a special case of the problem that is considered in

[39]. In this method, a descent direction is computed from the subproblem (3) but with

the term ηk‖y − xk‖2 replaced by (y − xk)T Hk(y − xk) where Hk Â 0n and yj = xk
j for a

3



certain selected subset of {1, ..., n}; see Section 2. Hence the CGD method is more general

but closely related to the IST, FPC and SpaRSA method when it is applied to solve (1).

In this paper, our main contributions are three-fold. First, we designed and implemented

an efficient and robust method (CGD method), which can be viewed as a hybrid of the

block coordinate descent with FPC/IST, for solving the convex `1-minimization problems

(1). In particular, we demonstrate its effectiveness on large-scale problems (2) arising from

applications such as compressed sensing [4, 5, 9, 37, 38] and image deconvolution [12, 13, 36],

and (4) arising from data classification. At each iteration of this method, we replace f in Fρ

by a strictly convex quadratic approximation and apply block coordinate descent to generate

a feasible descent direction. Then we perform an inexact line search along this direction

and re-iterate. This method is simple, highly parallelizable, and is suited for solving large-

scale problems. We choose the coordinate block according to the Gauss-Southwell (GS)

type rules; see (12) and (13). We choose the stepsize according to an Armijo type rule for

the general problem (1) and (4); see (8) and Section 5. For the `1-regularized linear least

squares problem (2), we choose the stepsize according to a minimization rule; see (10) and

Section 4. This proposed method is efficient for (2) especially when A is explicitly stored;

see Subsection 4.2. Second, we prove a new Q-linear rate convergence of this method using

Gauss-southwell type rules for the convex `1-minimization (1). Roughly speaking, if f is a

convex function with Lipschitz continuous gradient and positive semidefinite Hessian on the

level set associated with the initial point of the iterates, then under a bounded scaled Hessian

assumption, we strengthen the convergence rate of the iterates from R-linear to Q-linear

for the CGD method with GS-q-rule when it is applied to (1); see Subsection 3.2. We also

establish the Q-linear rate convergence of the CGD method with GS-r-rule when it is applied

to (1). Third, an efficient and robust implementation of the CGD method may outperform

algorithms specifically designed just to solve large-scale `1-regularized linear least squares

problems arising in compressed sensing and image deconvolution as well as large-scale `1-

regularized logistic regression problems for feature selection in data classification.

In Section 2, we briefly describe the block coordinate gradient descent method. We

also describe the rules, that ensure the convergence, of choosing the coordinate block. In

Section 3, we summarize the known results on the global convergence and the local linear

rate convergence of the CGD method using the Gauss-southwell type rules to choose the

coordinate block and present a new Q-linear rate convergence of this method. In Section 4,

we describe an efficient and robust implementation of the CGD method for solving (2) and

report our numerical experience when A are Gaussian matrices or partial discrete cosine

transform (DCT) matrices for compressed sensing experiments, and A = RW , where R is a

matrix representation of the blur operation and W represents the inverse orthogonal wavelet

transform with Haar wavelets, for image deconvolution experiments. For compressed sensing

experiments, we compare the CGD method with l1-ls [19], GPSR [14] and FPC [18]. For

image deconvolution experiments, we compare the CGD method with IST [13], GPSR and

FPC. Our comparison suggests that the CGD method can be effective in practice. In Section

5, we describe an efficient implementation of the CGD method for solving (4) and report

4



our numerical results. We compare the CGD method with l1-logreg [20] and SpaRSA [41].

Our comparison suggests that the CGD method can be effective in practice for large-scale

problems. We discuss conclusions and extensions in Section 6.

In our notation, <n denotes the space of n-dimensional real column vectors, T denotes

transpose. For any x ∈ <n, xj denotes the jth component of x, xJ denotes the subvector of x

comprising xj, j ∈ J , and ‖x‖p =
(∑n

j=1 |xj|p
)1/p

for 1 ≤ p < ∞ and ‖x‖∞ = maxj |xj|. For

simplicity, we write ‖x‖ = ‖x‖2. For any nonempty J ⊆ N def
= {1, . . . , n}, |J | denotes the

cardinality of J . For any symmetric matrices H,D ∈ <n×n, we write H º D (respectively,

H Â D) to mean that H−D is positive semidefinite (respectively, positive definite). We use

HJ J̄ = [Hij](i∈J , j∈J̄ ) to denote the submatrix of H indexed by J and J̄ . The minimum

and maximum eigenvalues of H are denoted by λmin(H) and λmax(H), respectively. ‖H‖2 =√
λmax(HT H). For simplicity, we write ‖H‖ = ‖H‖2. The identity matrix is denoted by I

and the matrix of zero entries is denoted by 0n. e is the vector of all ones. Unless otherwise

specified, {xk} denotes the sequence x0, x1, ....

2 Block Coordinate Gradient Descent Method

In this section, we briefly describe the block coordinate gradient descent method.

At a current point x ∈ <n, we choose a nonempty subset J ⊆ N and a symmetric matrix

H Â 0n (approximating the Hessian ∇2f(x)), and move x along the direction d = dH(x;J ),

where

dH(x;J )
def
= arg min

d∈<n

{
∇f(x)T d +

1

2
dT Hd + ρT |x + d| | dj = 0 ∀j 6∈ J

}
. (5)

Here dH(x;J ) depends on H through the submatrix HJJ only.

Using the convexity of ρT |x|, we have the following lemma showing that d is a descent

direction at x whenever d 6= 0.

Lemma 2.1 For any x ∈ <n, nonempty J ⊆ N and H Â 0n, let d = dH(x;J ) and

g = ∇f(x). Then

Fρ(x + αd) ≤ Fρ(x) + α
(
gT d + ρT |x + d| − ρT |x|

)
+ o(α) ∀α ∈ (0, 1], (6)

gT d + ρT |x + d| − ρT |x| ≤ −dT Hd. (7)

Proof. See the proof of [39, Lemma 1] with c = 1 and P (x) = ρT |x|.

We next choose a stepsize α > 0 so that x′ = x + αd achieves sufficient descent, and

re-iterate. We now describe formally the block coordinate gradient descent (abbreviated as

CGD) method.

5



CGD method:
Choose x0 ∈ <n. For k = 0, 1, 2, ..., generate xk+1 from xk according to the iteration:

1. Choose an Hk Â 0n and a nonempty set J k ⊆ N .

2. Solve (5) with x = xk, J = J k, H = Hk to obtain dk = dHk
(xk;J k).

3. Set xk+1 = xk + αkdk, with αk > 0.

The following adaptation of the Armijo rule, based on Lemma 2.1, is simple and seems

effective from both theoretical and practical standpoints.

Armijo rule:

Choose αk
init > 0 and let αk be the largest element of {αk

initβ
j}j=0,1,... satisfying

Fρ(x
k + αkdk) ≤ Fρ(x

k) + αkσ∆k, (8)

where 0 < β < 1, 0 < σ < 1, 0 ≤ γ < 1, and

∆k def
= ∇f(xk)T dk + γdkT

Hkdk + ρT |xk + dk| − ρT |xk|. (9)

Since Hk Â 0n and 0 ≤ γ < 1, we see from Lemma 2.1 that ∆k ≤ (γ − 1)dkT
Hkdk < 0,

whenever dk 6= 0, and

Fρ(x
k + αdk) ≤ Fρ(x

k) + α∆k + o(α) ∀α ∈ (0, 1].

Since 0 < σ < 1, this shows that αk given by the Armijo rule is well defined and positive.

This rule requires only function evaluations, and by choosing αk
init based on the previous

stepsize αk−1, the number of function evaluations can be kept small in practice. Notice that

∆k increases with γ. Thus, larger stepsizes will be accepted if we choose either σ near 0 or

γ near 1. The minimization rule:

αk ∈ arg min{Fρ(x
k + αdk) | α ≥ 0} (10)

or the limited minimization rule:

αk ∈ arg min{Fρ(x
k + αdk) | 0 ≤ α ≤ s}, (11)

where 0 < s < ∞, can be used instead of the Armijo rule if the minimization is relatively

inexpensive, such as for the problem (2). The latter stepsize rule yields a larger descent

than the Armijo rule with αk
init = s. We will use the minimization rule in our numerical

experiments for the `1-regularized linear least squares problems (2) in Section 4.

For convergence, the index subset J k must be chosen judiciously. We will see in Lemma

3.1 that x ∈ <n is a stationary point of Fρ if and only if dH(x;N ) = 0. Thus, ‖dH(x;N )‖∞
acts as a scaled “residual” function (with scaling matrix H), measuring how close x comes

6



to being stationary for Fρ. Moreover, if H is diagonal, then the separability of ρT |x| means

that dH
j (x;N ), the jth components of dH(x;N ), depends on xj and ρj only and is easily

computable. Accordingly, we choose J k to satisfy

‖dDk

(xk;J k)‖∞ ≥ υ‖dDk

(xk;N )‖∞, (12)

where 0 < υ ≤ 1 and Dk Â 0n is diagonal (e.g., Dk = ηkI with ηk > 0 or Dk = diag(Hk)).

Following [39], we will call (12) the Gauss-Southwell-r rule. Notice that J k = N is a valid

choice.

For any x ∈ <n, nonempty J ⊆ N , and H Â 0n, define qH(x;J ) to be the difference

between the optimal objective value of (5) and ρT |x|, i.e.,

qH(x;J )
def
=

(
∇f(x)T d +

1

2
dT Hd + ρT |x + d|

)

d=dH(x;J )
− ρT |x|.

Thus qH(x;J ) estimates the descent in Fρ from x to x + dH(x;J ). We have from (7) in

Lemma 2.1 that qH(x;J ) ≤ −1
2
dH(x;J )T HdH(x;J ) ≤ 0, so that qH(x;N ) = 0 if and only

if dH(x;N ) = 0. Thus, like ‖dH(x;N )‖∞, −qH(x;N ) acts as a “residual” function, measur-

ing how close x comes to being stationary for Fρ. Since ρT |x| is separable, if H is diagonal,

then qH(x;J ) is separable in the sense that qH(x;J ) =
∑

j∈J qH(x; j). Accordingly, we

choose J k to satisfy

qDk

(xk;J k) ≤ υ qDk

(xk;N ), (13)

where 0 < υ ≤ 1, Dk Â 0n is diagonal. Following [39], we will call (13) the Gauss-Southwell-q

rule. Again, J k = N is a valid choice.

3 Convergence Analysis

In this section, we study the convergence of the CGD method as applied to our general

`1-regularized convex minimization problem (1).

Formally, we say that x ∈ <n is a stationary point of Fρ if Fρ
′(x; d) ≥ 0 for all d ∈ <n.

The following lemma gives an alternative characterization of stationarity.

Lemma 3.1 For any H Â 0n, x ∈ <n is a stationary point of Fρ if and only if dH(x;N ) =

0.

Proof. See the proof of [39, Lemma 2] with c = 1 and P (x) = ρT |x|.

3.1 Known Convergence Results

In this subsection, we summarize the results of the global convergence and local linear rate

convergence of the CGD method; see [39] for details.

7



Lemma 3.2 For any H Â 0n and nonempty J ⊆ N , let d = dH(x;J ). If f satisfies

‖∇f(y)−∇f(z)‖ ≤ L‖y − z‖ ∀y, z ∈ <n, (14)

for some L ≥ 0, and H º ζI, where ζ > 0, then the descent condition

Fρ(x + αd)− Fρ(x) ≤ σα∆,

where ∆ = ∇f(x)T d+γdT Hd+ρT |x+d|−ρT |x| with γ ∈ [0, 1), is satisfied for any σ ∈ (0, 1)

whenever 0 ≤ α ≤ min{1, 2ζ(1− σ + σγ)/L}.

Proof. See the proof of [39, Lemma 3.4 (b)] with c = 1 and P (x) = ρT |x|.

Assumption 1 ζ̄I º Hk º ζI for all k, where 0 < ζ ≤ ζ̄.

The following proposition states the global convergence properties of the CGD method

when it is applied to the problem (1). For its proof, we refer to that of [39, Theorem 1 (a),

(b), (c), (d), (f)] with c = 1 and P (x) = ρT |x|.

Proposition 3.1 Let {xk}, {dk}, {Hk} be the sequences generated by the CGD method

under Assumption 1, where {αk} is chosen by the Armijo rule with infk αk
init > 0. Then the

following results hold.

(a) {Fρ(x
k)} is nonincreasing and ∆k given by (9) satisfies

Fρ(x
k+1)− Fρ(x

k) ≤ σαk∆k ≤ 0 ∀k.

(b) If {J k} is chosen by the Gauss-Southwell-r rule (12) and δ̄I º Dk º δI for all k,

where 0 < δ ≤ δ̄, then every cluster point of {xk} is a stationary point of Fρ.

(c) If {J k} is chosen by the Gauss-Southwell-q rule (13) and δ̄I º Dk º δI for all k, where

0 < δ ≤ δ̄, then every cluster point of {xk} is a stationary point of Fρ.

(d) If ∇f is Lipschitz continuous on <n satisfying (14), then infk αk > 0. Furthermore, if

limk→∞ Fρ(x
k) > −∞ also, then {∆k} → 0 and {dk} → 0.

Proposition 3.1 readily extends to any stepsize rule that yields a larger descent than the

Armijo rule at each iteration.

Corollary 3.1 Proposition 3.1 still holds if in the CGD method the iterates are instead

updated by xk+1 = xk + α̃kdk, where α̃k ≥ 0 satisfies Fρ(x
k + α̃kdk) ≤ Fρ(x

k + αkdk) for

k = 0, 1, . . . and {αk} is chosen by the Armijo rule with infk αk
init > 0.

8



Proof. It is readily seen using Fρ(x
k+1) ≤ Fρ(x

k + αkdk) that Proposition 3.1(a) holds.

The proofs of Proposition 3.1(b)–(d) remain unchanged.

For example, α̃k may be generated by the minimization rule (10) or by the limited

minimization rule (11).

In what follows, X∗ denotes the set of stationary points of Fρ and

dist(x,X∗) = min
x∗∈X∗ ‖x− x∗‖ ∀x ∈ <n.

Assumption 2 (a) X∗ 6= ∅ and, for any η ≥ minxFρ(x), there exist scalars % > 0 and

ε > 0 such that

dist(x,X∗) ≤ %‖dI(x;N )‖ whenever Fρ(x) ≤ η, ‖dI(x;N )‖ ≤ ε.

(b) There exists a scalar δ > 0 such that

‖x− y‖ ≥ δ whenever x, y ∈ X∗, Fρ(x) 6= Fρ(y).

Assumption 2(a) is a local Lipschitzian error bound assumption, saying that the distance

from x to X∗ is locally in the order of the norm of the residual at x; see [24] and references

therein. Assumption 2(b) says that the isocost surfaces of Fρ restricted to the solution

set X∗ are “properly separated.” Assumption 2(b) holds automatically if f is convex or

f is quadratic; see [24, 39] for further discussions. Upon applying [39, Theorem 4] to the

problem (1), we obtain the following sufficient conditions for Assumption 2(a) to hold.

Proposition 3.2 Suppose that X∗ 6= ∅ and any of the following conditions hold.

C1 f is strongly convex and ∇f is Lipschitz continuous on <n.

C2 f is quadratic.

C3 f(x) = g(Ex) + qT x for all x ∈ <n, where E ∈ <m×n, q ∈ <n, and g is a strongly

convex differentiable function on <m with ∇g Lipschitz continuous on <m.

C4 f(x) = maxy∈Y {(Ex)T y − g(y)} + qT x for all x ∈ <n, where Y is a polyhedral set in

<m, E ∈ <m×n, q ∈ <n, and g is a strongly convex differentiable function on <m with

∇g Lipschitz continuous on <m.

Then Assumption 2(a) holds.

The next proposition states, under Assumptions 1, 2 and (14), the linear rate of conver-

gence of the CGD method using the Gauss-Southwell-q rule to choose {J k}. For the proof

of this proposition, we refer to that of [39, Theorem 3] with c = 1 and P (x) = ρT |x|.

9



Proposition 3.3 Assume that ∇f is Lipschitz continuous on <n satisfying (14). Let {xk},
{Hk}, {dk} be the sequences generated by the CGD method satisfying Assumption 1, where

{J k} is chosen by Gauss-Southwell-q rule (13) and δ̄I º Dk º δI for all k, with 0 < δ ≤ δ̄.

If Fρ satisfies Assumption 2 and {αk} is chosen by the Armijo rule with supk αk
init ≤ 1 and

infk αk
init > 0, then either {Fρ(x

k)} ↓ −∞ or {Fρ(x
k)} converges at least Q-linearly and

{xk} converges at least R-linearly.

Similar to Corollary 3.1, Proposition 3.3 readily extends to any stepsize rule that yields

a uniformly bounded stepsize and a larger descent than the Armijo rule at each iteration.

An example is the limited minimization rule (11).

Corollary 3.2 Proposition 3.3 still holds if in the CGD method the iterates are instead

updated by xk+1 = xk + α̃kdk, where α̃k ≥ 0 satisfies supk α̃k ≤ 1 and Fρ(x
k + α̃kdk) ≤

Fρ(x
k + αkdk) for k = 0, 1, . . . and {αk} is chosen by the Armijo rule with supk αk

init ≤ 1

and infk αk
init > 0.

Remark 1 As explained in the end of [39, Section 5], the Lipschitz continuity assumption

on ∇f in Propositions 3.1 (d) and 3.3 can be relaxed to ∇f being Lipschitz continuous on

(X0 + εB) for some ε > 0, where B denotes the unit Euclidean ball in <n and X0 = {x |
Fρ(x) ≤ Fρ(x

0)}.

3.2 New Convergence Results

In this subsection, by using the relation between the descent direction and the mappings

that are extensions of the corresponding mappings defined in [18], we can strengthen the

convergence rate of {xk} from R-linear to Q-linear for the CGD method using the Gauss-

Southwell-q rule to choose {J k} and establish the Q-linear convergence rate of {xk} for the

CGD method using the Gauss-Southwell-r rule to choose {J k}.
First, we define two mappings sν : <n → < and hD : <n → < as follows:

hD(x)
def
= x−D−1∇f(x),

sν(x)
def
= sgn(x)¯max{|x| − ν, 0},

where D Â 0n is diagonal and ν ∈ <n is a vector whose components are all nonnegative, ¯
denotes the component-wise product, i.e., (x ¯ y)i = xiyi, and sgn is the signum function

defined by

sgn(t)
def
=





+1 if t > 0;

0 if t = 0;

−1 if t < 0.

It is easy to prove that sν(y), where ν = D−1ρ, is the unique solution of

min
z∈<n

1

2
(z − y)T D(z − y) + ρT |z|,

10



for any y ∈ <n. Also, for any diagonal D Â 0n, we have

min
d∈<n

{
∇f(x)T d +

1

2
dT Dd + ρT |x + d|

}

=
n∑

i=1

min
di∈<

{
∇f(x)idi +

1

2
diDiidi + ρi|xi + di|

}

=
n∑

i=1

Dii min
di∈<





1

2

(
di +

1

Dii

∇f(x)i

)2

+
ρi

Dii

|xi + di| − 1

2

(∇f(x)i

Dii

)2




=
n∑

i=1

Dii min
ui∈<





1

2

(
ui −

(
xi − 1

Dii

∇f(x)i

))2

+
ρi

Dii

|ui| − 1

2

(∇f(x)i

Dii

)2




= min
u∈<n

1

2

(
u− (x−D−1∇f(x))

)T
D

(
u− (x−D−1∇f(x))

)
+ ρT |u|

−1

2
∇f(x)T D−1∇f(x).

This implies that

dD(x;N ) = sD−1ρ(hD(x))− x. (15)

By Lemma 3.1, if x∗ ∈ X∗ then, for any diagonal D Â 0n, dD(x∗;N ) = 0 and so

sD−1ρ(hD(x∗)) = x∗. (16)

The next lemma shows some component-wise properties of sν . This result will be used

to prove Lemma 3.4, Theorem 3.1, and Corollary 3.3.

Lemma 3.3 The mapping sν(·) is component-wise non-expansive, i.e., for any y, z ∈ <n,

|(sν(y))i − (sν(z))i| ≤ |yi − zi|, ∀i.

Also we have, for each index i,

(sν(y))i 6= 0 = (sν(z))i ⇒ |yi| > νi, |zi| ≤ νi, |(sν(y))i − (sν(z))i| ≤ |yi − zi| − (νi − |zi|).

Proof. See the proof of [18, Lemma 3.2].

The following assumption, which states that f is a convex function with Lipschitz con-

tinuous gradient and positive semidefinite Hessian on the level set associated with the initial

point of the iterates, is needed to establish the Q-linear rate of convergence of the CGD

method.

Assumption 3 (a) X∗ 6= ∅ and, for X0
ε

def
= {x | Fρ(x) ≤ Fρ(x

0)} + εB with some ε > 0,

f ∈ C2(X0
ε ), ∇2f(x) º 0 for all x ∈ X0

ε .

11



(b) ∇f is Lipschitz continuous on the set X0
ε with Lipschitz constant L0.

Note that Assumption 3 holds for a convex quadratic f that is bounded below.

From the mean-value theorem, we recall that for any y, z ∈ X0
ε

∇f(y)−∇f(z) =
(∫ 1

0
∇2f(z + t(y − z))dt

)
(y − z)

def
= Ψ(y, z)(y − z). (17)

We first define, for x ∈ X0
ε , x∗ ∈ X∗

QH(x; x∗) = I −H−1Ψ(x, x∗),

where H Â 0n.

Given x∗ ∈ X∗, we define the following partitions of indices in N :

P ∗ def
= {i : |g∗i | < ρi} and P̄ ∗ def

= {i : |g∗i | = ρi}.

where g∗ = ∇f(x∗). By the following optimality condition:

x∗ ∈ X∗ ⇐⇒ g∗i





= −ρi if x∗i > 0

∈ [−ρi, ρi] if x∗i = 0

= ρi if x∗i < 0,

we obtain that, for any x∗ ∈ X∗,

P ∗ ∪ P̄ ∗ = N , supp(x∗) ⊆ P̄ ∗, and x∗i = 0, ∀i ∈ P ∗,

where supp(x)
def
= {j ∈ N | xj 6= 0}.

The next lemma shows that we obtain finite convergence for components in P ∗. It will

be used to prove Theorem 3.1.

Lemma 3.4 Suppose f is a function that satisfies Assumption 3. Let {xk}, {Hk}, {dk} be

the sequences generated by the CGD method satisfying Assumption 1 with ζ ≥ L0, where

{αk} is chosen by the Armijo rule with 0 < σ ≤ 1/2 and αk
init = 1 for all k, Hk = Dk is

diagonal for all k, and {J k} is chosen by the Gauss-Southwell-r rule (12) or the Gauss-

Southwell-q rule (13). Then {xk} converges to some x∗ ∈ X∗. In addition, if

‖QHk

(xk; x∗)‖ ≤ 1 (18)

is satisfied for all k, then for all but finitely many iterations, we have

xk
i = x∗i = 0, ∀i ∈ P ∗.

12



Proof. By Assumption 3, limk→∞ Fρ(x
k) > −∞ and ∇f is Lipschitz continuous on X0

ε .

Hence Lemma 3.2 with ζ ≥ L0, σ ≤ 1/2 and αk
init = 1 ∀k imply that αk = 1 for all k. Thus

xk+1 = xk + dk. (19)

By Proposition 3.1(d) (see Remark 1), {∆k} → 0 and {dk} → 0. Next we will show that

{dHk

(xk;N )} → 0. (20)

Case (1): If {J k} is chosen by the Gauss-Southwell-r rule (12). By (12) with Dk = Hk,

‖dk‖∞ ≥ υ‖dHk
(xk;N )‖∞, where 0 < υ ≤ 1. This together with {dk} → 0 yields (20).

Case (2): If {J k} is chosen by the Gauss-Southwell-q rule (13). Since qHk
(xk;J k) =

∆k + (1
2
− γ)(dk)T Hkdk ≤ 0, the boundedness of {Hk}, {∆k} → 0, and {dk} → 0

imply that {qHk
(xk;J k)} → 0. This and (13) with Dk = Hk yield

{qHk

(xk;N )} → 0. (21)

By Hk º ζI and (D) in Lemma 2.1 with H = Hk and J = N ,

qHk

(xk;N ) ≤ −1

2
(dHk

(xk;N ))T HkdHk

(xk;N ) ≤ −ζ

2
‖dHk

(xk;N )‖2.

Hence this together with (21) yields (20).

Since {dk} → 0, there is an x∗ ∈ <n such that

lim
k→∞

xk = x∗. (22)

This together with (20) implies that dH̄(x∗;N ) = 0 where H̄ is any cluster point of {Hk}.
Since Hk º ζI for all k, H̄ Â 0n. Therefore, by Lemma 3.1, x∗ ∈ X∗.

By (16), we obtain that, for any x∗ ∈ X∗ and Hk,

s(Hk)−1ρ(hHk(x∗)) = x∗. (23)

This together with letting h(·) = hHk(·), and the mean value theorem yields

h(xk)− h(x∗) = xk − x∗ − (Hk)−1(∇f(xk)−∇f(x∗))

= (I − (Hk)−1Ψ(xk, x∗))(xk − x∗) = QHk

(xk; x∗)(xk − x∗).

Thus

‖h(xk)− h(x∗)‖ ≤ ‖QHk

(xk; x∗)‖‖xk − x∗‖ ≤ ‖xk − x∗‖. (24)

13



Fix any k ≥ 0. Letting J = J k, s(·) = s(Hk)−1ρ(·), h(·) = hHk(·), sJ (·) = (s(·))J , and

hJ (·) = (h(·))J , we have from (15) with D = Hk, (19), and (23) that,

|xk+1
j − x∗j | = |xk

j + dHk

j (xk;J )− x∗j |
≤ |xk

j + dHk

j (xk;N )− x∗j |+ |dHk

j (xk;N )− dHk

j (xk;J )|
= |sj(h(xk))− sj(h(x∗))|+ |dHk

j (xk;J c)|
≤ |hj(x

k)− hj(x
∗)|+ |dHk

j (xk;J c)| ∀ j ∈ N , (25)

where the fourth step uses Lemma 3.3.

Let g∗ = ∇f(x∗) and ω = min{(ρi − |g∗i |)/ζ̄ | i ∈ P ∗}. Consider any i ∈ P ∗. Note that

x∗i = 0. By (20) and (22), there is a sufficiently large integer k0 such that ‖xk − x∗‖ ≤ ω/3

and ‖dHk
(xk;N )‖ ≤ ω/3 for all k ≥ k0. We will show that if xt

i = 0 for some t ≥ k0 then

xt+1
i = 0.

Case (1): If i 6∈ J t, then it is obvious that xt+1
i = 0.

Case (2): If i ∈ J t, then we will prove that xt+1
i = 0 by contradiction. Suppose xt+1

i 6= 0.

We have from (15) with D = Hk, (19), and (23) that

|xt+1
i − x∗i | = |xt

i + dt
i − x∗i | = |si(h(xt))− si(h(x∗))|

≤ |hi(x
t)− hi(x

∗)| − (ρi − |g∗i |)/H t
ii

≤ |hi(x
t)− hi(x

∗)| − (ρi − |g∗i |)/ζ̄
≤ |hi(x

t)− hi(x
∗)| − ω,

where the first inequality uses Lemma 3.3; the second inequality uses ρi−|g∗i | > 0 and

H t
ii ≤ ζ̄. Thus by using (25), we have

|xt+1
i − x∗i | ≤ |hi(x

t)− hi(x
∗)| − ω + |dHt

i (xt;J c)|. (26)

This together with (24) and (25) implies that,

‖xt+1 − x∗‖2

≤ ‖h(xt)− h(x∗)‖2 − ω2 + ‖dHt

(xt;J c)‖2 + 2‖h(xt)− h(x∗)‖‖dHt

(xt;J c)‖
≤ ‖xt − x∗‖2 − ω2 + ‖dHt

(xt;J c)‖2 + 2‖xt − x∗‖‖dHt

(xt;J c)‖

≤
(
‖xt − x∗‖+ ‖dHt

(xt;J c)‖
)2 − ω2

≤ −5

9
ω2 < 0, (27)

which is a contradiction. Hence xt+1
i = 0.

14



This together with using induction on t implies that if xt
i = 0 for some t ≥ k0 then xk

i = 0

for all k ≥ t. We will show that there is an integer ki such that xk
i = 0 for all k ≥ ki. The

latter implies that the number of iterations where xk
i 6= 0 for some i ∈ P ∗ must be finite.

If xk0
i = 0, then, by the above argument, xk

i = 0 for all k ≥ k0. If xk0
i 6= 0, then, since

xk
i → 0, there is an integer l ≥ k0 such that xl

i = xk0
i and i ∈ J l. We will show xl+1

i = 0

by contradiction. Suppose xl+1
i 6= 0. Then, by (27) with t = l, it is a contradiction. Hence

xl+1
i = 0. Since l ≥ k0, xk

i = 0 for all k ≥ l + 1.

The following theorem establishes, under Assumptions 1 and 3, the Q-linear convergence

of the CGD method using either the Gauss-Southwell-r rule or Gauss-Southwell-q rule to

choose {J k}.

Theorem 3.1 Suppose f is a function that satisfies Assumption 3. Let {xk}, {Hk}, {dk}
be the sequences generated by the CGD method satisfying Assumption 1 with ζ ≥ L0, where

{αk} is chosen by the Armijo rule with 0 < σ ≤ 1/2 and αk
init = 1 for all k, Hk = Dk

is diagonal for all k, {J k} is chosen by the Gauss-Southwell-r rule (12) or the Gauss-

Southwell-q rule (13), P̄ ∗ ⊆ J k for all sufficiently large k. If (18) is satisfied, and

lim sup
k→∞

‖
(
QHk

(xk; x∗)
)

P̄ ∗P̄ ∗
‖ < 1, (28)

then {xk} converges at least Q-linearly to some x∗ ∈ X∗.

Proof. For this proof, we let Qk
P̄ ∗P̄ ∗ =

(
QHk

(xk; x∗)
)

P̄ ∗P̄ ∗
. By Lemma 3.4 and assumption

on J k, there is an index k̄ > 0 and an x∗ ∈ X∗ such that, for all k ≥ k̄, xk
i = x∗i = 0 ∀i ∈ P ∗

and P̄ ∗ ⊆ J k. Since xk
i = x∗i = 0 ∀i ∈ P ∗, the mean-value theorem yields

hP̄ ∗(x
k)− hP̄ ∗(x

∗) = xk
P̄ ∗ − x∗̄P ∗ − (Hk)−1

(
∇f(xk)−∇f(x∗)

)
P̄ ∗

=
(
I − (Hk)−1Ψ(xk, x∗)

)
P̄ ∗P̄ ∗

(xk
P̄ ∗ − x∗̄P ∗) = Qk

P̄ ∗P̄ ∗(x
k
P̄ ∗ − x∗̄P ∗). (29)

Fix any k ≥ k̄. Letting s(·) = s(Hk)−1ρ(·), h(·) = h(Hk)−1(·), sP̄ ∗(·) = (s(·))P̄ ∗ , and hP̄ ∗(·) =

(h(·))P̄ ∗ , we have from (15) with D = Hk, (19) and (23) that

‖xk+1 − x∗‖ = ‖xk
P̄ ∗ + dk

P̄ ∗ − x∗̄P ∗‖
= ‖sP̄ ∗(h(xk))− sP̄ ∗(h(x∗))‖
≤ ‖hP̄ ∗(x

k)− hP̄ ∗(x
∗)‖

≤ ‖Qk
P̄ ∗P̄ ∗‖‖xk

P̄ ∗ − x∗̄P ∗‖,

where dk = dHk
(xk;J k) and the third step uses Lemma 3.3; the last step uses (29). Hence

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ lim sup

k→∞
‖Qk

P̄ ∗P̄ ∗‖ < 1.

15



Under Assumption 3 (a), if Hk = τI ∀k with τ chosen such that τ > λ̂max/2 > 0, where

λ̂max
def
= sup{λmax(∇2f(x)) : x ∈ X0

ε },

then, since 0 ¹ Ψ(xk, x∗) ¹ λ̂maxI, we have ‖QHk
(xk; x∗)‖ ≤ 1 ∀k. In addition, if

λP̄ ∗
min

def
= λmin

((
∇2f(x∗)

)
P̄ ∗P̄ ∗

)
> 0, (30)

then (28) is satisfied.

The next corollary establishes, under Assumption 3 (a), the Q-linear convergence of the

CGD method with Hk = τI with τ ≥ λ̂max > 0 for all k.

Corollary 3.3 Suppose f is a function that satisfies Assumption 3 (a). Let {xk}, {Hk},
{dk} be the sequences generated by the CGD method, where {αk} is chosen by the Armijo

rule with 0 < σ ≤ 1/2 and αk
init = 1 for all k, Hk = Dk = τI with 0 < λ̂max ≤ τ ≤ ζ̄

for all k, {J k} is chosen by the Gauss-Southwell-r rule (12) or the Gauss-Southwell-q rule

(13), P̄ ∗ ⊆ J k for all sufficiently large k. If (30) is satisfied, then {xk} converges at least

Q-linearly to some x∗ ∈ X∗, and

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ lim sup

k→∞
‖QHk

(xk; x∗)P̄ ∗P̄ ∗‖ ≤ max
{
|1− λ̂max

τ
|, |1− λP̄ ∗

min

τ
|
}

< 1.

(31)

Proof. By (17), ‖∇f(y) − ∇f(z)‖ ≤ λ̂max‖y − z‖ for all y, z ∈ X0
ε . Hence f satisfies

Assumption 3 (b) with L0 = λ̂max. Then, by Lemma 3.4 with Hk = τI, and the continuity

of the Hessian of f , without loss of generality, we can assume that there is an index k̄ > 0

and an x∗ ∈ X∗ such that, for all k ≥ k̄, xk
i = x∗i = 0 ∀i ∈ P ∗ and the spectrum of

(∇2f(xk))P̄ ∗P̄ ∗ falls in the interval [λP̄ ∗
min − ε, λ̂max] for an arbitrary ε > 0 and P ∗ ⊆ J k. Fix

any k ≥ k̄. Since (λP̄ ∗
min − ε)I ¹ (∇2f(xk))P̄ ∗P̄ ∗ ¹ λ̂maxI, we have

(1− λ̂max

τ
)I ¹ (QHk

(xk; x∗))P̄ ∗P̄ ∗ = I − τ−1(Ψ(xk, x∗))P̄ ∗P̄ ∗ ¹ (1− λP̄ ∗
min − ε

τ
)I.

Thus

lim sup
k→∞

‖(QHk

(xk; x∗))P̄ ∗P̄ ∗‖ ≤ max{|1− λ̂max/τ |, |1− λP̄ ∗
min/τ |}.

The required result (31) then follows from Theorem 3.1.

Remark 2 In Lemma 3.4 and Theorem 3.1, we assume Hk º ζI for all k with ζ ≥ L0,

where L0 is Lipschitz constant on X0
ε , and 0 < σ ≤ 1/2 to ensure the stepsize αk = 1. If the

16



Lipschitz constant L0 is unknown, we can still ensure that αk = 1 by adaptively scaling Hk

when generating dk, analogous to the Armijo rule along the projection arc for constrained

smooth optimization [2, page 236]. In particular, we choose sk to be the largest element of

{sβj}j=0,1,... (s > 0) such that

dk = dHk/sk

(xk;J k)

satisfies the Armijo descent condition (8) with αk = 1. This adaptive scaling strategy is

more expensive computationally since dk needs to be recomputed each time sk is changed.

Remark 3 In Lemma 3.4 and Theorem 3.1, the assumption on ζ and on σ can be replaced

by ζ > L0/2 and 0 < σ ≤ (1−L0/(2ζ)) to ensure the stepsize αk = 1. If we choose Hk = τI

for some constant τ > 0 and J k = N for all k, then the CGD method is similar to the

IST method (and fixed point method [18]). If we assume that 0 < σ ≤ (1− λ̂max/(2τ)) and

Hk = τI with τ > λ̂max/2 in Corollary 3.3, then Corollary 3.3 still holds. Moreover, if

τ = (λ̂max + λP̄ ∗
min)/2, then (31) is replaced by

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ λ̂max/λ

P̄ ∗
min − 1

λ̂max/λP̄ ∗
min + 1

which is similar to those of [18, Theorem 4.3]. Hence the CGD method may be viewed as a

hybrid of the block coordinate descent and IST (or fixed point) method when Hk = τI with

some constant τ > 0.

Remark 4 In Lemma 3.4, we only need αk = 1 whenever i ∈ J k for some i ∈ P ∗ with

xk
i 6= 0 to prove the finite convergence of all the indexes in P ∗. Hence the assumption

on ζ ≥ L0 and on {αk} being chosen by Armijo rule with σ ≤ 1/2 can be relaxed by the

following assumption:

{αk} is chosen by Armijo rule and αk = 1 whenever i ∈ J k for some i ∈ P ∗ with xk
i 6= 0.

4 Numerical Experience I (`1-regularized linear least

squares problem)

In this section, we describe the implementation of the CGD method and report our numerical

results on three types of problems of the form (2). In particular, we report the comparison

of the CGD method with state-of-the-art algorithms, namely l1-ls [19], IST [13], GPSR

[14] and FPC [18]. All runs are performed on an Intel Xeon 3.80GHz, running Linux and

matlab (Version 7.6). Throughout the experiments, we choose the initial iterate to be

x0 = 0.

17



4.1 Implementation of the CGD method

We have implemented the CGD method in matlab to solve a large-scale `1-regularized

linear least squares problem (2). In our implementation of the CGD method, we choose a

diagonal positive matrix

Hk = θkI. (32)

Initially, we set θ0 = ‖Au‖2 where u is a random unit vector. Then it is updated as follows:

θk+1 =





max{θk/αk, 1} if αk > 10

min{θk/αk, 1} if αk < 10−1

θk otherwise.

The above updating formulas for θk are guided by the observation that smaller θk results

in a smaller stepsize αk, while a larger θk has the opposite effect. Thus if αk is large, we

decrease θk and if αk is small, we increase θk. The thresholds 10 and 10−1 were found after

some experimentation. We tested the alternative choice of Hk = I and

Hk = diag
[
min{max{(AT A)jj, 10−10}, 1010}

]
j=1,...,n

, (33)

but its overall performance was worse. The number of iterations to meet a given stopping

tolerance is almost same for using both (32) and (33). But the CPU time for evaluating

(32) is less than that for evaluating (33), especially when the problem is large-scale. The

advantage of choosing Hk diagonal is that dk has a closed form solution. We choose the

index subset J k by either (i) the Gauss-Southwell-r rule (12) with Dk = Hk,

J k =
{
j | |dDk

j (xk;N )| ≥ υk‖dDk

(xk;N )‖∞
}

, υk+1 =





max{10−2, 0.8υk} if αk > 10

max{10−2, 0.9υk} if 1 < αk ≤ 10

max{10−2, 0.98υk} if 0.5 < αk ≤ 1

min{0.2, 2υk} if αk < 10−1

υk otherwise

(initially υ0 = 0.9) or (ii) the Gauss-Southwell-q rule (13) with Dk = Hk,

J k =
{
j | qDk

(xk; j) ≤ υk min
i

qDk

(xk; i)
}

, υk+1 =





max{10−2, 0.8υk} if αk > 10

max{10−2, 0.9υk} if 1 < αk ≤ 10

max{10−2, 0.98υk} if 0.5 < αk ≤ 1

min{0.2, 2υk} if αk < 10−1

υk otherwise

(initially υ0 = 0.5). The above updating formulas for υk in (i) and (ii) are guided by the

observation that smaller υk results in more coordinates being updated but a smaller stepsize

αk is obtained, while a larger υk has the opposite effect. Thus if αk is large, we decrease υk

and if αk is small, we increase υk. The thresholds 10−2, 10−1, 0.2, 0.5, 1, 10 and the scaling

constants 0.8, 0.9, 0.98, 2 were found after some experimentation.

18



Since the problem (2) is quadratic, the stepsize αk is chosen by the minimization rule

(10) instead of the Armijo rule (8). Hence αk is the solution of the following minimization

problem:

min
α>0

1

2
‖(b− Axk)− αAdk‖2 + µ‖xk + αdk‖1.

This problem can be reformulated as follows:

min
α>0

Π(α)
def
=

a1

2
α2 − a2α + µ

∑

j∈J k

|xk
j + αdk

j |+ a3, (34)

where a1 = ‖Adk‖2, a2 = (Adk)T (b − Axk), and a3 = 1
2
‖b − Axk‖2. For simplicity, we will

only discuss the efficient computation of αk for the harder case where a1 > 0. Under the

assumption that a1 > 0, the function Π is a strictly convex piecewise quadratic function.

Consider the set of positive break-points of Π, which is given by {−xk
j /d

k
j | dk

j 6= 0, xk
j /d

k
j <

0, j ∈ J k}. Since Π is a strictly convex function and αk > 0, there is at least one positive

break-point whose objective value is less than the objective value at 0. Let the positive

break-points be denoted by 0 < s1 < s2 < · · · < sl < ∞ (l ≤ |J k|). If there is a break-point

sj ∈ {s1, ..., sl−1} such that Π(sj) ≤ Π(sj+1), then the optimal solution αk is in the interval

[si−1, si] or [si, si+1] (if i = 1 then s0 = 0) where si is the smallest break-point in {s1, ..., sl−1}
satisfying Π(si) ≤ Π(si+1). Otherwise, the optimal solution αk is in the interval [sl−1, sl] or

[sl,∞). Once we find the two intervals, it is easy to obtain an optimal solution of minimizing

Π on each interval. Then the stepsize αk is the one whose corresponding objective value is

smaller. In order to find the smallest break-point si satisfying Π(si) ≤ Π(si+1) or no such

a break-point, we should recursively compare Π(si) with Π(si+1) from i = 1. But αk−1 and

αk may be the same or differ by a moderate factor. Hence it might save computing time to

solve (34) by starting to compare the function value at the largest break-point that is less

than or equal to αk−1 with the function value at the smallest break-point that is greater

than αk−1. We briefly explain the procedure to find two intervals by using previous stepsize

αk−1. First, we partition the set of the break-points {s1, ..., sl−1} into three subsets sortl

= {si|si < αk−1}, stepf = {si|si = αk−1}, and sortg = {si|si > αk−1}. Then we compare

the objective value at the largest point of the subset sortl with the objective value at the

smallest point of the subset sortg and the objective value at the previous stepsize αk−1.

If the objective value at the smallest point of the subset sortg is less than the other two,

then we recursively compare the objective value of the break-points in the subset sortg to

find two intervals. If the objective value at the largest point of the subset sortl is less than

the other two, then we recursively compare the objective value of the break-points in the

subset sortl to find two intervals. If the objective value at the previous stepsize αk−1 is

less than the other two, then αk is on the closed interval between the largest point of the

subset sortl and αk−1 or on the closed interval between αk−1 and the smallest point of the

subset sortg.

It is difficult to decide when to terminate the method to get an approximate solution

which is of sufficiently high quality. A standard criterion that has been suggested previously

19



for `1-regularized nonlinear least squares problems [39] is

‖HkdHk

(xk;N )‖∞ ≤ Tol, (35)

where Tol is a small real number. Here we scale dHk
(xk;N ) by Hk to reduce its sensitivity

to Hk. The criterion (35) was motivated by the fact that the left-hand side is zero if and

only if xk is optimal; see Lemma 3.1.

The alternative criterion that was recently proposed in [18] is

‖xk+1 − xk‖
max{‖xk‖, 1} < Tol.

Unless otherwise noted, we use (35) with Tol = 10−3.

In order to accelerate the convergence, we adopt the continuation strategy that is used

in [18]. We briefly describe this strategy. If the problem (2) is to be solved with µ = µ̄, we

propose solving a sequence of problems (2) defined by a decreasing sequence {µ0, µ1, . . . , µ` =

µ} with a given finite positive integer `. When a new problem, associated with µj+1, is to be

solved, the approximate solution for the current problem with µ = µj is used as the starting

point. Our computational experience indicates that the performance of this continuation

strategy is generally superior to that of directly applying the CGD method with the specified

value µ.

4.2 Analysis of Computational Cost

In this subsection, we give a comment on the computational complexity of the CGD method

when it is applied to the problem (2). We analyze the cost of each iteration of the CGD

method. The main computational cost per iteration is a small number of inner products,

vector-scalar multiplications and vector additions, each requiring n floating-point opera-

tions, plus one sorting which requires O(n ln n) floating-point operations (it is for the worst

case. Since sorting is needed to find the stepsize, the cost is O(|J | ln |J |) for each iteration)

and a small number of matrix-vector multiplications. For matrix-vector multiplications,

there are three cases in our numerical experiences. In the first case, the mn elements of

A are explicitly stored. Hence matrix-vector multiplications involving AT cost O(mn) op-

erations which are the same as the computational cost of other state-of-the-art algorithms

compared with the CGD method in this Section. But, for matrix-vector multiplications

involving A, we only needs to evaluate Ad, where d is a descent direction, once at each

iteration. Since the number of nonzero components of d is |J | which is usually small, the

matrix-vector multiplication Ad reduces to AJ dJ . Hence, in our implementation of the

CGD method, we use the matlab function “sparse” and so O(m|J |) operations are re-

quired at each iteration. The small support of a descent direction is an advantage to save

CPU time over other state-of-the-art algorithms for matrix-vector multiplications involving

A. In the second case, A is identified by listing the rows of the n×n transform matrix (dis-

crete cosine transform). Hence the mn elements of A can not be explicitly stored. But, by

20



using fast transform operators, such as the DCT, matrix-vector multiplications involving A

and AT cost O(n ln n) operations (in our matlab (version 7.6), we don’t have the matlab

function DCT. Hence we use FFT to get the same transform. But, in order to get the same

transform matrix as DCT, we increase the dimension n to 4n by adding zero components

to the vector that we want to transform. The code is as follows:

xtmp = zeros(4*n,1);

xtmp(2:2:2*n) = x;

xtmp(2*n+2:4*n) = xtmp(2*n:-1:2);

ytmp = real(fft(xtmp));

y = (1/sqrt(2*n))*ytmp(1:n); y(1) = y(1)/sqrt(2);

So the constant in O(·) is greater than that for using DCT). In the third case, A = RW

where R is an n×n matrix representation of the blur operation and W represents the inverse

orthogonal wavelet transform with Haar wavelets. By using fast transform operators, such

as the FFT, matrix-vector multiplications involving A and AT cost O(n ln n) operations.

But, for the second and third cases, we lose the advantage of “sparse” multiplication which

is used for the first case.

4.3 Compressed Sensing

In this subsection, we report the performance of the CGD method using either the Gauss-

Southwell-r (CGD-GS-r) rule or the Gauss-Southwell-q (CGD-GS-q) rule with the contin-

uation strategy and compare it with the performances of l1-ls, GPSR-BB (in what follows,

GPSR-BB denotes the nonmonotone version using BB step) and FPC-BB (in what follows,

FPC-BB denotes the version using BB step) in two compressed sensing scenarios. In our

first experiment we considered a typical compressed sensing scenario similar to the one

presented in [14], where the goal is to reconstruct a length-n sparse signal from m observa-

tions with m < n. In this experiment, the m × n matrix A was obtained by first filling it

with independent samples of the standard Gaussian distribution and then orthonormalizing

the rows. For this experiment, n = 4096, m = 1024, the original signal x contained 160

randomly placed ±1 spikes, or n = 8192, m = 2048, the original signal x contained 320

randomly placed ±1 spikes. The measurements Ax were corrupted by noise ξ,

b = Ax + ξ,

where ξ is Gaussian white noise with variance (0.01‖Ax‖)2. If µ ≥ ‖AT b‖∞, then the unique

minimum of (2) is the zero vector; see [19] for details. Hence the parameter µ is chosen as

µ = c‖AT b‖∞,

21



where 0 < c < 1. For the continuation strategy, we choose the initial µ0 = 0.01‖AT b‖∞ and

update µk+1 = max{0.25µk, µ} whenever the following criterion is satisfied:

‖HkdHk
(xk;N )‖∞

max{1, ‖xk‖∞} ≤ Tol, (36)

where Tol = max{10blog(µk)c, 10−3)} and b·c is a floor function. In our experiments, this

updating rule works better than the rule with (36) and Tol = 10−3 which is similar to the

updating rule used in [18].

Tables 1 and 2 report the number of iterations, the number of nonzero components

(nnz(x)) in the final solution found, the final objective value, the CPU time (in seconds),

and the relative error ‖x− xs‖/‖xs‖, where xs is the original signal, of the first 2 ones out

of 10 random instances. We note that we use matlab function “nnz” to obtain the number

of nonzero components of the final solution found except for l1-ls algorithm (for l1-ls, the

number is always n). Hence each component for the final solution x of l1-ls is considered

as a nonzero component when its absolute value is greater than 0.001‖x‖∞. Tables 1 and 2

also report the mean values of the number of iterations, the number of nonzero components,

the CPU time, and the relative error of 10 random instances. To perform this comparison,

we first ran the l1-ls algorithm and then each of the other algorithms until each reached the

same value of the objective function reached by l1-ls. For each n, three different values of c

were chosen to track the sensitivity to µ. CGD outperforms l1-ls, GPSR-BB, and FPC-BB

for all random instances in terms of CPU time. Based on the average CPU time, CGD is

at least 11.4 times faster than l1-ls, 2.5 times faster than GPSR-BB, and 1.8 times faster

than FPC-BB. When µ is large (µ = 0.05‖AT b‖∞), CGD is at least 18.2 times faster than

l1-ls and 3.3 times faster than FPC-BB. When µ = 0.01‖AT b‖∞, CGD is at least 4.5 times

faster than GPSR-BB. l1-ls is robust to µ and produces accurate reconstructions in terms

of error, but is much slower than GPSR-BB, FPC-BB and CGD. CGD and FPC-BB are

also robust to µ. In contrast, when µ is small, GPSR-BB reaches its maximum iterations

and so is no longer able to recover the original signal as mentioned in [18]. This could be

due to the use of BB steps.

In our second experiment we considered another compressed sensing scenario which is

similar to the one in [18]. In this case, the m×n matrix A was a partial DCT matrix whose

m rows were chosen at random (uniformly) from the n×n discrete cosine transform (DCT)

matrix (as we mentioned in Subsection 4.2, we used FFT to get A). In this experiment,

the choices of m, n, the original signal x and the noise corruption were same as those of

the first experiment. Tables 3 and 4 report the same results as Tables 1 and 2 do. We

performed this comparison the same way we did for the first experiment. Two different

values of c were chosen to track the sensitivity to µ. Based on the average CPU time, CGD

outperforms l1-ls, GPSR-BB, and FPC-BB for all cases–except when µ = 0.005‖AT b‖∞, for

which CGD is 1.1 times slower than FPC-BB (this could be due to lose the advantage of

“sparse” multiplication as indicated in Subsection 4.2). CGD is at least 5.6 times faster than

l1-ls and 2.1 times faster than GPSR-BB. When m = 1024, n = 4096, µ = 0.01‖AT b‖∞,

22



CGD is at least 6.5 times faster than l1-ls, 2.1 times faster than GPSR-BB, 1.1 times faster

than FPC-BB. As we observed for the first experiment, l1-ls, CGD and FPC-BB are robust

to µ but GPSR-BB is not.

In the next experiment we considered the compressed sensing scenario in the first exper-

iment to observe how well the CGD method performs on different types of original solutions

with have both large, median, and small nonzero components. For this experiment, the

m×n matrix A was obtained by the same way as did for the first experiment with n = 4096

and m = 1024, but the original signal x contained 50 randomly placed ±0.1 spikes, 60

randomly placed ±1 spikes, and 50 randomly placed ±10 spikes. Table 5 reports the same

results as Table 1 does. We performed this comparison the same way we did for the first

experiment. By comparing the results in Tables 1 and 5, the ratio ((mean iteration of Table

1 - mean iteration of Table 5)/(mean iteration of Table 1), for CGD: 0.42-0.77, for GPSR-

BB: 0.33-0.55, for FPC-BB: 0.43-0.46, no reduction for l1-ls) of reduction of the number of

iterations for each algorithm shows that CGD works better than other algorithms on this

experiment. Based on the average CPU time, CGD is at least 11.4 times faster than l1-ls,

2.5 times faster than GPSR-BB, and 1.8 times faster than FPC-BB. We note that CGD first

chose the coordinates with large magnitudes as expected. Table 6 reports the mean values

of relative errors ‖x− xs‖/‖xs‖ (denoted as error) and relative errors of ‖xL − (xs)L‖/‖xs‖
(denoted as error-L), where xs is the original signal and L denotes the set of coordinates of

components with large magnitude, of 10 random instances. In addition, the second column

of Table 6 presents the mean values of relative errors of l1-ls with stopping tolerance 10−8

(more accurate final solution of the problem of the type (2)). From Table 6, we see that

CGD has better reconstructions for the problems with large magnitude (the reconstruction

of CGD is as good as that of l1-ls in terms of errors).

4.4 Image Deconvolution

In this subsection, our goal is to compare the speed of the proposed CGD method using the

Gauss-Southwell-r rule or the Gauss-Southwell-q rule with the continuation strategy with

that of IST, GPSR-BB and FPC-BB in image deconvolution. Following [14], we considered

three standard benchmark problems summarized in Table 7, all based on the well-known

Cameraman image [12, 13]. The description of A = RW is found in the end of Subsection

4.3. In order to perform the comparison, we first ran the IST and then each of the other

algorithms until each reached the same value of the objective function reached by IST. Tables

8 reports the number of iterations, the number of nonzero components (nnz(x)) in the final

solution found, the final objective value, the CPU time (in seconds), and the relative error

‖x − xs‖F /‖xs‖F , where xs is the original solution and ‖ · ‖F is the Frobenius norm, of 3

problems. From Table 8, we see that CGD is at least 1.6 times faster than IST and almost

at least 3.8 times faster than FPC-BB, but almost 2 times slower than GPSR-BB for all

cases.

23



5 Numerical Experience II (`1-regularized logistic re-

gression problem)

In this section, we describe the implementation of the CGD method and report our numerical

experience on randomly generated problems and three benchmark problems of the form (4).

In particular, we report the comparison with l1-logreg [20], which is written in C, and

SpaRSA (the matlab code follows the algorithm presented in [41]). All runs are performed

on an Intel Xeon 3.80GHz, running Linux and matlab (Version 7.3) and C codes are

compiled using gcc compiler (Version 3.4.5). Throughout the experiments, we choose the

initial iterate to be (w0, v0) = (0, 0).

5.1 Implementation of the CGD method

We have implemented the CGD method in matlab to solve a large-scale `1-regularized

logistic regression problem (4). In our implementation of the CGD method, we choose a

diagonal Hessian approximation

Hk = diag
[
min{max{∇2f(xk)jj, 10−10}, 1010}

]
j=1,...,n

, (37)

where xk = ((wk)T , vk)T . We tested the alternative choice of Hk = ηI for some fixed con-

stant η including 1, which does not require the evaluation of the diagonal part of Hessian,

but its overall performance was much worse. For example, for CGD-GS-q with the rcv1

problem, it takes more 100000 iterations to meet a given stopping criterion when the alter-

native choice Hk = I is used, whereas it takes 151 iterations when (37) is used. In order

to speed up the computation of the Hessian diagonal, we compute it in C language with

interface to Matlab through the mex-function. We choose the index subset J k by either

(i) the Gauss-Southwell-r rule (12) with Dk = Hk,

J k =
{
j | |dDk

j (xk;N )| ≥ υk‖dDk

(xk;N )‖∞
}

,

or (ii) the Gauss-Southwell-q rule (13) with Dk = Hk,

J k =
{
j | qDk

(xk; j) ≤ υk min
i

qDk

(xk; i)
}

.

We update υk = max{0.05, 0.95υk} at iteration k whenever k = 0 (mod 20) or k < 10

(initially υ0 = 0.9). The thresholds 0.05 and the scaling constant 0.95 were found after

some experimentation. The stepsize αk is chosen by the Armijo rule (8) with

σ = 0.1, β = 0.5, γ = 0, α0
init = 1, αk

init = min

{
αk−1

β5
, 1

}
∀k ≥ 1.

We experimented with other values of the above parameters, but the above choice works

well.

24



Each CGD iteration requires 1 gradient evaluation and 1 Hessian diagonal evaluation

to find the direction dk (finding the direction dk costs O(mn) operations), and at least 1

function evaluation to find the stepsize αk. These are the dominant computations.

We terminate the CGD method when

‖HkdHk

(xk)‖∞ ≤ 10−6. (38)

5.2 Numerical Results

In this subsection, we report the performance of the CGD method using either the Gauss-

Southwell-r (CGD-GS-r) rule or the Gauss-Southwell-q (CGD-GS-q) rule and compare it

with the performance of l1-logreg and SpaRSA on three two-class data classification bench-

mark problems, namely, the leukemia cancer gene expression data [17], the rcv1 data [22],

and the real-sim data from the LIBSVM data webpage [6]. Also we compare the CGD

method with l1-logreg on randomly generated problems described in [20] to see the effect

of problem size. Each randomly generated problem has an equal number of positive and

negative examples. Features of positive (negative) examples are independent and identi-

cally distributed, drawn from a normal distribution N (ν, 1), where ν is in turn drawn from

a uniform distribution on [0, 1]([−1, 0]).

Table 9 reports the number of iterations, the final objective value, and the CPU time

(in seconds) of three benchmark problems. For each instance, we chose µ = 0.01µmax and

µ = 0.001µmax where µmax = 1
m
‖m−

m

∑
bi=1 ai+

m+

m

∑
bi=−1 ai‖∞, m− is the number of negative

examples, and m+ is the number of positive examples. If µ ≥ µmax, we get a maximally

sparse weight vector, i.e. w = 0; see [20] for details. To perform this comparison, we

first ran the l1-logreg algorithm with a stopping tolerance 10−4 and then each of the other

algorithms until each reached the same value of the objective function reached by l1-logreg.

From Table 9, we see that CGD is faster than l1-logreg when µ is large (µ = 0.01µmax).

SpaRSA is as fast as CGD, when it reaches the final objective value that is founded by

l1-logreg, but is not able to reach the final objective of l1-logreg on the leukemia problem.

To examine the effect of problem size on the number of iterations and the CPU time,

we generated 10 random problems for each case (n = 1001, 10001, m = 0.1(n − 1) or

n = 101, 1001, m = 10(n− 1)). Note that the data of each randomly generated problem is

dense. Tables 10 and 11 report the number of iterations, the final objective value, and the

CPU time (in seconds) of the first 2 ones out of 10 random instances. Also Tables 10 and 11

report the mean values of the number of iterations and the CPU time of 10 random instances.

For each instance, we chose µ = 0.1µmax and µ = 0.01µmax. We terminated the CGD method

when (38) was satisfied and terminated the l1-logreg algorithm with a stopping tolerance

10−4. As described in [20], the computational cost for the search direction of l1-logreg is

O(min(n − 1,m)2 max(n − 1,m)) operations per iteration. In contrast, the computational

cost of CGD is O(mn) operations per iteration. Hence, based on the average iteration and

CPU time, when we increase the number of observed examples and the dimension of the

25



variable w by 10 times, we see that the CPU time of l1-logreg is increased by more than

1000 times but the CPU time of CGD is increased by less than 100 times. And so CGD is

typically much faster than l1-logreg when either m = 10000 or n = 10001.

For the benchmark problems in Table 9, the data sets are sparse, and l1-logreg can fully

exploit the sparsity of the data. Hence l1-logreg is slower but not significantly slower than

CGD even when the data is large. Based on the numerical results presented in Tables 9–11,

the CGD method can be expected to be more efficient than the l1-logreg algorithm for a

large-scale problem for which the data is not highly sparse.

6 Conclusions and Extensions

In this paper we have proposed a block coordinate gradient descent method for solving `1-

regularized convex nonsmooth optimization problems arising in compressed sensing, image

deconvolution, and classification. We have established the Q-linear convergence rate for our

method when the coordinate block is chosen by either a Gauss-Southwell-r rule or a Gauss-

Southwell-q rule. We evaluated the numerical performance of the CGD method when it is

applied to solve `1-regularized linear least squares (the smooth convex function f of (1) is

quadratic) problems and `1-regularized logistic regression (the smooth convex function f of

(1) is nonquadratic) problems. We also reported numerical results of comparisons to state-

of-the-art algorithms. The numerical results show that, for the large-scale problems arising

in compressed sensing and classification, the CGD method, overall, outperforms state-of-

the-art algorithms. Hence the CGD method is efficient not only in minimizing a quadratic

convex smooth function with `1-regularization but also in minimizing a nonquadratic convex

smooth function with `1-regularization.

The Barzilai-Borwein steps used in both GPSR [14] and FPC [18] generally accelerates

the convergence. But the performance of the CGD method using the Barzilai-Borwein

steps was generally worse than that of the CGD method using the minimization rule when

it was applied to solve `1-regularized linear least squares problems. Can the efficiency

be further improved by using nonmonotone descent? When the CGD method with the

continuation strategy was applied to solve `1-regularized logistic regression problems, its

overall performance was worse than that of the CGD method without the continuation

strategy. Can other acceleration techniques be developed for solving `1-regularized logistic

regression problems? The above are some issues that need further investigation.

Recently Shi et al. [35] considered a large-scale `1-penalized log likelihood problem of

the form:

min
w∈<n

1

m

m∑

i=1

(
− bif(zi) + log(1 + exp(f(zi)))

)
+ µ‖w‖1. (39)

where zi = (zi
1, ..., z

i
p) with zi

j ∈ {0, 1}, bi ∈ {0, 1}, and f(z) = c +
∑n

l=1 wlBl(z) with

Bl(z) = 0 or 1 (see [35] for details). They proposed a specialized algorithm that solve (3) to

26



estimate the active set (the set of components wl that are zero at the minimizer of (39)) and

use a Newton-like enhancement to the search direction using the projection of the Hessian of

the log likelihood function onto the set of nonzero components wl. Lin et al. [23] proposed a

trust region Newton method to solve a large-scale `2-regularized logistic regression problem

of the form:

min
w∈<n

m∑

i=1

log(1 + exp(−wT ai)) +
µ

2
‖w‖2

2. (40)

Our CGD method can also be applied to solve both (39) and (40). How the CGD method

performs on these problems is a topic for future study.

Acknowledgement. We thank an anonymous referee for helpful comments and sugges-

tions.

References

[1] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods, Aca-

demic Press, New York, 1982.

[2] Bertsekas, D. P., Nonlinear Programming, 2nd edition, Athena Scientific, Belmont,

1999.

[3] Bradley, P. S., Fayyad, U. M., and Mangasarian, O. L., Mathematical programming

for data mining: formulations and challenges, INFORMS J. Comput. 11 (1999),

217–238.

[4] Candès, E. J., Romberg, J., and Tao, T., Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information, IEEE Trans.

Info. Theory 52 (2006), 489–509.

[5] Candès, E. J. and Tao, T., Nearly optimal signal recovery from random projections:

Universal encoding strategies, IEEE Trans. Info. Theory 52 (2006), 5406–5425.

[6] Chang, C.-C. and Lin, C.-J., LIBSVM – A Library for Support Vector Machines,

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

[7] Chen, S., Donoho, D., and Saunders, M., Atomic decomposition by basis pursuit,

SIAM J. Sci. Comput. 20 (1999), 33–61.

[8] Daubechies, I., De Friese, M., and De Mol, C., An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint, Comm. on Pure and Applied

Math. 57 (2004), 1413–1457.

[9] Donoho, D., Compressed sensing, IEEE Trans. Info. Theory 52 (2006), 1289–1306.

27



[10] Donoho, D. and Tsaig, Y., Fast solution of `1-norm minimization problems when

the solution may be sparse, IEEE Trans. Inform. Theory 54 (2008), 4789-4812.

[11] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., Least angle regression,

Ann. Stat. 32 (2004), 407–499.

[12] Figueiredo, M. and Nowak, R., An EM algorithm for wavelet-bassed image restora-

tion, IEEE Trans. Image Proc. 12 (2003), 906–916.

[13] Figueiredo, M. and Nowak, R., A bound optimization approach to wavelet-based

image deconvolution, IEEE Intern. Conf. on Image Processing-ICIP’05, 2005.

[14] Figueiredo, M., Nowak, R., and Wright, S. J., Gradient projection for sparse recon-

struction: Application to compressed sensing and other inverse problems, IEEE J.

of Selected Topics in Signal Proc. 1 (2007), 586–598.

[15] Fuchs, J.-J., On sparse representations in arbitrary redundant bases, IEEE Trans.

Inform. Theory 50 (2004), 1341-1344.

[16] Genkin, A., Lewis, D., and Madigan, D., Large-scale Bayesian logistic regression

for text categorization, Technometrics 49 (2007), 291–304.

[17] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov,

J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C.

D., and Lander, E. S., Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring, Science 286 (1999), 531–537.

[18] Hale, E. T., Yin, W., and Zhang, Y., A fixed-point continuation method for `1-

regularized minimization with applications to compressed sensing, CAAM Tech-

nical Report TR07-07, Department of Computational and Applied Mathematics,

Rice University, July 2007.

[19] Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., An interior-point

method for large-scale `1-regularized least squares, IEEE J. Selected Topics in Sig-

nal Proc. 1 (2007), 606–617.

[20] Koh, K., Kim, S.-J., and Boyd, S., An interior-point method for large-scale `1-

regularized logistic regression, J. Mach. Learn. Res. 8 (2007), 1519–1555.

[21] Lee, S., Lee, H., Abeel, P., and Ng, A., Efficient `1-regularized logistic regression,

In Proceedings of the 21st National Conference on Artificial Intelligence, 2006.

[22] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F., RCV1: A new benchmark collection

for text categorization research, J. Mach. Learn. Res. 5 (2004), 361–397.

[23] Lin, C.-J., Weng, R. C., and Keerthi, S. S., Trust region Newton method for large-

scale logistic regression. J. Mach. Learn. Res. 9 (2008), 627–650.

28



[24] Luo, Z.-Q. and Tseng, P., Error bounds and convergence analysis of feasible descent

methods: a general approach, Ann. Oper. Res. 46 (1993), 157–178.

[25] Mangasarian, O. L, Sparsity-preserving SOR algorithms for separable quadratic

and linear programming, Comput. Oper. Res. 11 (1984), 105–112.

[26] Mangasarian, O. L. and Musicant, D. R., Large scale kernel regression via linear

programming, Machine Learning 46 (2002), 255–269.

[27] Ng, A. Y., Feature selection, `1 vs. `2 regularization, and rotational invariance, In

Proceedings of the 21st International Conference on Machine Learning, 2004.

[28] Nocedal, J. and Wright S. J., Numerical Optimization, Springer-Verlag, New York,

1999.

[29] Osborne, M., Presnell, B., and Turlach, B., A new approach to variable selection

in least squares problems, IMA J. Numer. Anal. 20 (2000), 389–403.

[30] Park, M. and Hastie, T., An `1 regularization-path algorithm for generalized linear

models, J. R. Statist. Soc. B 69 (2007), 659-677.

[31] Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, 1970.

[32] Rockafellar, R. T. and Wets R. J.-B., Variational Analysis, Springer-Verlag, New

York, 1998.

[33] Sardy, S., Bruce, A., and Tseng, P., Block coordinate relaxation methods for non-

parametric wavelet denoising, J. Comput. Graph. Stat. 9 (2000), 361–379.

[34] Sardy, S. and Tseng, P., AMlet, RAMlet, and GAMlet: automatic nonlinear fit-

ting of additive models, robust and generalized, with wavelets, J. Comput. Graph.

Statist. 13 (2004), 283–309.

[35] Shi, W., Wahba, G., Wright, S. J., Lee, K., Klein, R., and Klein, B., Lasso-

patternsearch algorithm with application to ophthalmology and genomic data, Stat.

Interface 1 (2008), 137-153.

[36] Starck, J.-L. Nguyen, M., and Murtagh, F., Wavelets and curvelets for image de-

convolution: a combined approach, Signal Processing 83 (2003), 2279-2283.

[37] Tropp, J. A., Just relax: Convex programming methods for identifying sparse sig-

nals, IEEE Trans. Info. Theory 51 (2006), 1030–1051.

[38] Tsaig, Y. and Donoho, D., Extensions of compressed sesning, Signal Processing 86

(2005), 533–548.

[39] Tseng, P. and Yun S., A coordinate gradient descent method for nonsmooth sepa-

rable minimization, Math. Prog. 117 (2009), 387–423.

29



[40] Wang, L., Efficient Regularized Solution Path Algorithms with Applications in

Machine Learning and Data Mining, PhD thesis, University of Michigan, 2008.

[41] Wright, S. J., Nowak, R., and Figueiredo, M., Sparse reconstruction by separable

approximation, October 2007; to appear in IEEE Trans. Signal Proc.

30



l1-ls CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

Gaussian n = 4096, m = 1024, µ = 0.05‖AT b‖∞
iterations 13 19 22 40 40
nnz(x) 376 229 198 310 342
obj value 3.288e+00 3.285e+00 3.285e+00 3.285e+00 3.283e+00
CPU time 6.8e+00 3.0e-01 3.4e-01 1.1e+00 1.1e+00
error 1.2e-01 1.4e-01 1.3e-01 1.4e-01 1.3e-01

iterations 13 16 17 31 36
nnz(x) 628 195 213 324 339
obj value 3.595e+00 3.593e+00 3.586e+00 3.590e+00 3.578e+00
CPU time 6.7e+00 2.6e-01 2.6e-01 8.3e-01 9.8e-01
error 1.3e-01 1.6e-01 1.5e-01 1.5e-01 1.4e-01

mean iterations 12 17 19 33 39
mean nnz(x) 474 214 215 302 323
mean CPU time 6.2e+00 2.6e-01 3.0e-01 8.8e-01 1.0e+00
mean error 1.3e-01 1.5e-01 1.5e-01 1.5e-01 1.4e-01

Gaussian n = 4096, m = 1024, µ = 0.01‖AT b‖∞
iterations 13 62 41 126 57
nnz(x) 491 573 527 640 690
obj value 6.879e-01 6.876e-01 6.876e-01 6.875e-01 6.867e-01
CPU time 8.5e+00 9.4e-01 6.1e-01 3.3e+00 1.6e+00
error 3.1e-02 4.2e-02 4.0e-02 4.0e-02 3.3e-02

iterations 13 55 39 156 57
nnz(x) 782 665 647 896 624
obj value 7.541e-01 7.537e-01 7.537e-01 7.528e-01 7.505e-01
CPU time 8.0e+00 8.4e-01 5.8e-01 4.1e+00 1.5e+00
error 3.7e-02 5.6e-02 5.4e-02 4.8e-02 3.5e-02

mean iterations 13 48 44 125 59
mean nnz(x) 559 480 602 600 616
mean CPU time 8.4e+00 7.3e-01 6.6e-01 3.3e+00 1.6e+00
mean error 3.3e-02 4.7e-02 4.5e-02 4.4e-02 3.5e-02

Gaussian n = 4096, m = 1024, µ = 0.005‖AT b‖∞
iterations 13 70 50 1001 58
nnz(x) 657 735 813 4090 1087
obj value 3.464e-01 3.460e-01 3.460e-01 6.316e-01 3.464e-01
CPU time 9.3e+00 1.0e+00 7.4e-01 2.6e+01 1.5e+00
error 2.2e-02 2.8e-02 2.7e-02 7.3e-01 3.1e-02

iterations 14 67 50 1001 59
nnz(x) 580 750 874 4089 770
obj value 3.785e-01 3.783e-01 3.784e-01 7.012e-01 3.783e-01
CPU time 9.4e+00 1.0e+00 7.5e-01 2.6e+01 1.6e+00
error 2.1e-02 2.9e-02 2.9e-02 7.1e-01 3.0e-02

mean iterations 13 57 53 1001 60
mean nnz(x) 569 670 859 4090 788
mean CPU time 9.8e+00 8.8e-01 8.0e-01 2.6e+01 1.6e+00
mean error 2.1e-02 2.8e-02 2.8e-02 7.3e-01 3.0e-02

Table 1: Comparing the CGD method using the Gauss-Southwell rules with l1-ls, GPSR-BB

and FPC-BB on the problem (2) with A being a Gaussian matrix.

31



l1-ls CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

Gaussian n = 8192, m = 2048, µ = 0.05‖AT b‖∞
iterations 12 17 21 26 33
nnz(x) 1007 394 432 615 639
obj value 9.310e+00 9.301e+00 9.293e+00 9.291e+00 9.276e+00
CPU time 1.9e+01 1.0e+00 1.2e+00 2.7e+00 3.5e+00
error 1.7e-01 2.0e-01 1.9e-01 1.9e-01 1.9e-01

iterations 13 18 23 28 41
nnz(x) 717 431 453 488 687
obj value 7.659e+00 7.653e+00 7.653e+00 7.643e+00 7.647e+00
CPU time 2.3e+01 1.0e+00 1.3e+00 2.9e+00 4.2e+00
error 1.4e-01 1.6e-01 1.6e-01 1.5e-01 1.6e-01

mean iterations 12 17 21 28 39
mean nnz(x) 842 399 437 574 629
mean CPU time 2.0e+01 9.2e-01 1.1e+00 2.8e+00 3.8e+00
mean error 1.4e-01 1.5e-01 1.5e-01 1.6e-01 1.5e-01

Gaussian n = 8192, m = 2048, µ = 0.01‖AT b‖∞
iterations 12 46 37 84 53
nnz(x) 1228 919 1009 1010 1138
obj value 1.979e+00 1.979e+00 1.977e+00 1.976e+00 1.972e+00
CPU time 2.5e+01 2.4e+00 1.9e+00 8.0e+00 5.1e+00
error 4.2e-02 6.2e-02 5.6e-02 5.4e-02 4.5e-02

iterations 14 57 54 104 67
nnz(x) 645 824 963 800 1276
obj value 1.610e+00 1.610e+00 1.610e+00 1.610e+00 1.610e+00
CPU time 3.3e+01 2.9e+00 2.8e+00 9.8e+00 6.5e+00
error 3.2e-02 4.1e-02 3.9e-02 3.6e-02 3.9e-02

mean iterations 13 39 45 111 57
mean nnz(x) 1026 800 1122 928 1204
mean CPU time 2.8e+01 2.0e+00 2.3e+00 1.1e+01 5.5e+00
mean error 3.4e-02 4.6e-02 4.5e-02 4.0e-02 3.7e-02

Gaussian n = 8192, m = 2048, µ = 0.005‖AT b‖∞
iterations 13 58 47 1001 57
nnz(x) 1020 1088 1467 8155 878
obj value 9.962e-01 9.956e-01 9.957e-01 1.854e+00 9.957e-01
CPU time 3.1e+01 2.9e+00 2.4e+00 9.3e+01 5.5e+00
error 2.4e-02 3.4e-02 3.3e-02 7.0e-01 3.3e-02

iterations 13 64 60 1001 64
nnz(x) 1339 1235 1754 8173 1574
obj value 8.134e-01 8.121e-01 8.121e-01 1.488e+00 8.124e-01
CPU time 3.2e+01 3.3e+00 3.1e+00 9.5e+01 6.2e+00
error 2.4e-02 3.1e-02 3.0e-02 7.4e-01 3.4e-02

mean iterations 13 48 53 1001 58
mean nnz(x) 1245 1206 1704 8175 1588
mean CPU time 3.2e+01 2.5e+00 2.8e+00 9.4e+01 5.6e+00
mean error 2.3e-02 2.8e-02 2.8e-02 7.1e-01 3.1e-02

Table 2: Comparing the CGD method using the Gauss-Southwell rules with l1-ls, GPSR-BB

and FPC-BB on the problem (2) with A being a Gaussian matrix.

32



l1-ls CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

partial DCT n = 4096, m = 1024, µ = 0.01‖AT b‖∞
iterations 13 20 36 121 56
nnz(x) 423 306 503 458 578
obj value 7.056e-01 7.054e-01 7.052e-01 7.054e-01 7.043e-01
CPU time 1.2e+00 9.0e-02 1.4e-01 4.0e-01 1.9e-01
error 2.8e-02 3.6e-02 3.6e-02 3.6e-02 3.0e-02

iterations 13 26 39 141 63
nnz(x) 417 392 576 576 586
obj value 6.878e-01 6.876e-01 6.877e-01 6.873e-01 6.864e-01
CPU time 1.2e+00 1.2e-01 1.6e-01 4.6e-01 2.0e-01
error 2.7e-02 3.7e-02 3.8e-02 3.4e-02 2.9e-02

mean iterations 12 41 39 109 58
mean nnz(x) 585 454 530 539 603
mean CPU time 1.1e+00 1.7e-01 1.6e-01 3.6e-01 1.9e-01
mean error 3.3e-02 4.6e-02 4.5e-02 4.5e-02 3.4e-02

partial DCT n = 4096, m = 1024, µ = 0.005‖AT b‖∞
iterations 13 28 41 1001 56
nnz(x) 711 537 800 4086 1086
obj value 3.556e-01 3.547e-01 3.550e-01 6.779e-01 3.554e-01
CPU time 1.2e+00 1.2e-01 1.7e-01 3.3e+00 1.8e-01
error 2.1e-02 2.3e-02 2.6e-02 7.0e-01 2.9e-02

iterations 14 35 47 1001 65
nnz(x) 489 675 776 4089 750
obj value 3.458e-01 3.457e-01 3.456e-01 6.541e-01 3.458e-01
CPU time 1.4e+00 1.5e-01 2.0e-01 3.3e+00 2.1e-01
error 1.7e-02 2.3e-02 2.3e-02 7.3e-01 2.4e-02

mean iterations 13 50 48 1001 59
mean nnz(x) 616 641 824 4090 899
mean CPU time 1.4e+00 2.3e-01 2.1e-01 3.5e+00 2.0e-01
mean error 2.1e-02 2.7e-02 2.7e-02 7.1e-01 3.0e-02

Table 3: Comparing the CGD method using the Gauss-Southwell rules with l1-ls, GPSR-BB

and FPC-BB on the problem (2) with A being a partial DCT matrix.

33



l1-ls CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

partial DCT n = 8192, m = 2048, µ = 0.01‖AT b‖∞
iterations 13 38 40 154 58
nnz(x) 847 785 945 763 1174
obj value 1.454e+00 1.454e+00 1.453e+00 1.451e+00 1.451e+00
CPU time 2.5e+00 3.4e-01 3.6e-01 1.2e+00 4.0e-01
error 2.9e-02 4.0e-02 3.8e-02 3.1e-02 3.2e-02

iterations 13 31 43 168 60
nnz(x) 817 593 900 1029 1151
obj value 1.567e+00 1.566e+00 1.566e+00 1.566e+00 1.564e+00
CPU time 2.5e+00 2.7e-01 3.5e-01 1.3e+00 3.9e-01
error 3.1e-02 3.9e-02 4.1e-02 3.7e-02 3.5e-02

mean iterations 13 46 46 119 58
mean nnz(x) 912 830 1090 917 1215
mean CPU time 2.6e+00 4.2e-01 4.1e-01 9.4e-01 4.3e-01
mean error 3.3e-02 4.4e-02 4.3e-02 3.8e-02 3.6e-02

partial DCT n = 8192, m = 2048, µ = 0.005‖AT b‖∞
iterations 13 46 47 1001 57
nnz(x) 1361 1142 1464 8182 2178
obj value 7.328e-01 7.312e-01 7.312e-01 1.355e+00 7.326e-01
CPU time 2.6e+00 4.2e-01 4.2e-01 7.9e+00 4.3e-01
error 2.1e-02 2.6e-02 2.5e-02 7.0e-01 3.0e-02

iterations 13 39 51 1001 61
nnz(x) 1239 901 1381 8178 1972
obj value 7.899e-01 7.882e-01 7.884e-01 1.486e+00 7.896e-01
CPU time 2.8e+00 3.5e-01 4.6e-01 7.9e+00 4.7e-01
error 2.2e-02 2.6e-02 2.7e-02 7.0e-01 3.2e-02

mean iterations 13 55 54 1001 60
mean nnz(x) 1204 1199 1584 8179 1593
mean CPU time 2.9e+00 5.2e-01 4.9e-01 7.9e+00 4.6e-01
mean error 2.2e-02 2.8e-02 2.8e-02 7.2e-01 3.1e-02

Table 4: Comparing the CGD method using the Gauss-Southwell rules with l1-ls, GPSR-BB

and FPC-BB on the problem (2) with A being a partial DCT matrix.

34



l1-ls CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

Gaussian n = 4096, m = 1024, µ = 0.05‖AT b‖∞
iterations 17 10 12 15 20
nnz(x) 102 68 69 90 108
obj value 1.019e+02 1.019e+02 1.019e+02 1.018e+02 1.018e+02
CPU time 3.9e+00 3.1e-01 2.1e-01 4.8e-01 6.0e-01
error 1.3e-01 1.4e-01 1.4e-01 1.4e-01 1.4e-01

iterations 16 8 10 24 22
nnz(x) 141 80 77 152 133
obj value 8.878e+01 8.849e+01 8.853e+01 8.857e+01 8.838e+01
CPU time 3.6e+00 1.3e-01 1.5e-01 6.3e-01 5.8e-01
error 1.1e-01 1.2e-01 1.2e-01 1.3e-01 1.3e-01

mean iterations 16 9 11 22 21
mean nnz(x) 125 77 75 121 124
mean CPU time 3.8e+00 1.6e-01 1.8e-01 6.0e-01 5.8e-01
mean error 1.2e-01 1.3e-01 1.3e-01 1.2e-01 1.3e-01

Gaussian n = 4096, m = 1024, µ = 0.01‖AT b‖∞
iterations 14 12 14 50 31
nnz(x) 182 112 111 166 345
obj value 2.209e+01 2.205e+01 2.205e+01 2.204e+01 2.202e+01
CPU time 4.8e+00 2.0e-01 2.2e-01 1.3e+00 8.5e-01
error 3.4e-02 3.7e-02 3.8e-02 3.5e-02 4.0e-02

iterations 14 10 12 53 32
nnz(x) 217 110 111 328 355
obj value 1.896e+01 1.895e+01 1.891e+01 1.895e+01 1.888e+01
CPU time 4.9e+00 1.7e-01 1.9e-01 1.4e+00 8.6e-01
error 2.9e-02 3.4e-02 3.0e-02 4.2e-02 3.3e-02

mean iterations 14 11 13 56 32
mean nnz(x) 208 113 114 306 347
mean CPU time 5.2e+00 1.9e-01 2.2e-01 1.5e+00 8.9e-01
mean error 3.1e-02 3.3e-02 3.3e-02 3.8e-02 3.5e-02

Gaussian n = 4096, m = 1024, µ = 0.005‖AT b‖∞
iterations 13 13 15 92 33
nnz(x) 323 114 113 616 497
obj value 1.121e+01 1.119e+01 1.119e+01 1.115e+01 1.117e+01
CPU time 5.8e+00 2.1e-01 2.4e-01 2.4e+00 8.9e-01
error 2.3e-02 2.6e-02 2.5e-02 2.4e-02 2.9e-02

iterations 14 13 14 117 35
nnz(x) 264 138 138 515 508
obj value 9.568e+00 9.553e+00 9.561e+00 9.558e+00 9.558e+00
CPU time 6.2e+00 2.2e-01 2.2e-01 3.1e+00 9.5e-01
error 1.9e-02 1.9e-02 2.0e-02 2.4e-02 2.5e-02

mean iterations 13 13 15 103 34
mean nnz(x) 297 128 145 516 648
mean CPU time 6.1e+00 2.1e-01 2.4e-01 2.7e+00 9.2e-01
mean error 2.0e-02 2.1e-02 2.2e-02 2.7e-02 2.9e-02

Table 5: Comparing the CGD method using the Gauss-Southwell rules with l1-ls, GPSR-BB

and FPC-BB on the problem (2) with A being a Gaussian matrix, the original solution has

nonzero components with various magnitudes.

35



l1-ls(10−8) l1-ls(10−2) CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

Gaussian n = 4096, m = 1024, µ = 0.05‖AT b‖∞
#1 mean error 1.2e-01 1.3e-01 1.5e-01 1.5e-01 1.5e-01 1.4e-01

mean error-L 1.2e-01 1.3e-01 1.5e-01 1.5e-01 1.4e-01 1.4e-01

#2 mean error 1.2e-01 1.2e-01 1.3e-01 1.3e-01 1.2e-01 1.3e-01
mean error-L 8.1e-02 8.3e-02 8.6e-02 8.7e-02 8.9e-02 9.1e-02

Gaussian n = 4096, m = 1024, µ = 0.01‖AT b‖∞
#1 mean error 2.6e-02 3.3e-02 4.7e-02 4.5e-02 4.4e-02 3.5e-02

mean error-L 2.6e-02 3.3e-02 4.4e-02 4.3e-02 4.2e-02 3.4e-02

#2 mean error 2.7e-02 3.1e-02 3.3e-02 3.3e-02 3.8e-02 3.5e-02
mean error-L 1.7e-02 2.0e-02 2.0e-02 2.1e-02 2.4e-02 2.2e-02

Gaussian n = 4096, m = 1024, µ = 0.005‖AT b‖∞
#1 mean error 1.6e-02 2.1e-02 2.8e-02 2.8e-02 7.3e-01 3.0e-02

mean error-L 1.6e-02 2.0e-02 2.6e-02 2.6e-02 6.4e-01 2.8e-02

#2 mean error 1.7e-02 2.0e-02 2.1e-02 2.2e-02 2.7e-02 2.9e-02
mean error-L 1.0e-02 1.2e-02 1.2e-02 1.3e-02 1.7e-02 1.8e-02

Table 6: Comparing the errors for the problem (2) with A being a Gaussian matrix and

the original solution having nonzero components with same magnitude with those for the

problem (2) with A being a Gaussian matrix and the original solution having nonzero

components with various magnitudes.

#1: experiments in the Table 1, #2: experiments in the Table 5

Problem blur kernel σ2

1 9 × 9 uniform 0.562

2 hij = 1/(i2 + j2) 2

3 hij = 1/(i2 + j2) 8

Table 7: Image Deconvolution Experiments

IST CGD-GS-q CGD-GS-r GPSR-BB FPC-BB

image n = 2562, m = 2562, ρ = 0.35, experiment 1

iterations 60 35 29 20 205
nnz(x) 8326 4449 6100 8944 4009
obj value 4.551e+05 4.549e+05 4.541e+05 4.544e+05 4.333e+05
CPU time 5.3e+00 2.9e+00 2.3e+00 1.5e+00 1.4e+01
error 1.2e-01 1.4e-01 1.4e-01 1.2e-01 1.2e-01

image n = 2562, m = 2562, ρ = 0.35, experiment 2

iterations 52 33 26 19 156
nnz(x) 12640 7823 10495 13369 8599
obj value 5.360e+05 5.351e+05 5.347e+05 5.350e+05 5.187e+05
CPU time 4.6e+00 2.6e+00 2.4e+00 1.3e+00 1.0e+01
error 8.5e-02 1.0e-01 1.0e-01 8.4e-02 8.6e-02

image n = 2562, m = 2562, ρ = 0.35, experiment 3

iterations 48 33 25 16 167
nnz(x) 17726 10070 13602 19449 11473
obj value 7.081e+05 7.065e+05 7.070e+05 7.076e+05 6.760e+05
CPU time 4.2e+00 2.6e+00 2.2e+00 1.1e+00 1.1e+01
error 8.8e-02 1.1e-01 1.0e-01 8.8e-02 9.7e-02

Table 8: Comparing the CGD method using the Gauss-Southwell rules with IST, GPSR-BB

and FPC-BB on the three experiments from Table (7).

36



l1-logreg (10−4) CGD-GS-q CGD-GS-r SpaRSA

leu n = 7130, m = 38, µ = 0.01µmax

iterations 25 92 146 fail
obj value 3.14477e-02 3.14458e-02 3.14212e-02
CPU time 1.1e+00 6.6e-01 1.0e+00

leu n = 7130, m = 38, µ = 0.001µmax

iterations 37 54 207 fail
obj value 4.44821e-03 4.44633e-03 4.44361e-03
CPU time 1.4e+00 4.1e-01 1.5e+00

rcv1 n = 47237, m = 20242, µ = 0.01µmax

iterations 28 118 105 191
obj value 2.12420e-01 2.12420e-01 2.12420e-01 2.12420e-01
CPU time 1.1e+01 7.5e+00 6.9e+00 7.5e+00

rcv1 n = 47237, m = 20242, µ = 0.001µmax

iterations 43 484 312 676
obj value 6.91300e-02 6.91300e-02 6.91294e-02 6.91298e-02
CPU time 3.0e+01 3.4e+01 2.3e+01 2.7e+01

real-sim n = 20959, m = 72309, µ = 0.01µmax

iterations 22 71 72 88
obj value 2.14289e-01 2.14289e-01 2.14287e-01 2.14289e-01
CPU time 1.4e+01 7.5e+00 7.9e+00 7.6e+00

real-sim n = 20959, m = 72309, µ = 0.001µmax

iterations 21 185 214 232
obj value 8.70759e-02 8.70755e-02 8.70744e-02 8.70752e-02
CPU time 2.1e+01 1.9e+01 2.3e+01 2.0e+01

Table 9: Comparing the CGD method using the Gauss-Southwell rules with l1-logreg on

three benchmark problems.

37



l1-logreg
10−4

CGD-GS-q
10−6

CGD-GS-r
10−6

random n = 10001, m = 1000, µ = 0.1µmax

iterations 23 205 218
obj value 2.10391e-01 2.10317e-01 2.10317e-01
CPU time 2.8e+02 1.1e+01 1.1e+01

iterations 23 182 231
obj value 2.07347e-01 2.07274e-01 2.07274e-01
CPU time 2.8e+02 9.5e+00 1.2e+01

mean iterations 23 191 203
mean CPU time 2.8e+02 1.0e+01 1.1e+01

random n = 10001, m = 1000, µ = 0.01µmax

iterations 20 239 236
obj value 3.41319e-02 3.40723e-02 3.40723e-02
CPU time 2.4e+02 1.2e+01 1.2e+01

iterations 20 242 286
obj value 3.35281e-02 3.34698e-02 3.34699e-02
CPU time 2.5e+02 1.3e+01 1.5e+01

mean iterations 20 230 260
mean CPU time 2.4e+02 1.2e+01 1.4e+01

random n = 1001, m = 100, µ = 0.1µmax

iterations 19 114 132
obj value 2.24251e-01 2.24178e-01 2.24178e-01
CPU time 2.1e-01 1.6e-01 1.7e-01

iterations 19 148 200
obj value 2.17554e-01 2.17489e-01 2.17489e-01
CPU time 2.4e-01 1.8e-01 2.4e-01

mean iterations 19 128 180
mean CPU time 2.3e-01 1.8e-01 2.4e-01

random n = 1001, m = 100, µ = 0.01µmax

iterations 16 191 192
obj value 3.73507e-02 3.72936e-02 3.72936e-02
CPU time 1.8e-01 2.2e-01 2.3e-01

iterations 16 219 253
obj value 3.56790e-02 3.56274e-02 3.56274e-02
CPU time 2.0e-01 2.7e-01 3.3e-01

mean iterations 17 187 220
mean CPU time 1.9e-01 2.4e-01 2.9e-01

Table 10: Comparing the CGD method using the Gauss-Southwell rules with l1-logreg on

the randomly generated problems.

38



l1-logreg
10−4

CGD-GS-q
10−6

CGD-GS-r
10−6

random n = 1001, m = 10000, µ = 0.1µmax

iterations 19 74 78
obj value 2.17625e-01 2.17562e-01 2.17562e-01
CPU time 2.8e+02 4.2e+00 4.4e+00

iterations 19 60 64
obj value 2.14949e-01 2.14887e-01 2.14887e-01
CPU time 2.8e+02 3.3e+00 3.5e+00

mean iterations 19 68 75
mean CPU time 2.8e+02 3.8e+00 4.3e+00

random n = 1001, m = 10000, µ = 0.01µmax

iterations 16 84 99
obj value 3.61274e-02 3.60768e-02 3.60768e-02
CPU time 2.3e+02 4.6e+00 5.5e+00

iterations 16 64 65
obj value 3.56762e-02 3.56267e-02 3.56267e-02
CPU time 2.3e+02 4.5e+00 5.6e+00

mean iterations 16 82 88
mean CPU time 2.3e+02 4.8e+00 5.2e+00

random n = 101, m = 1000, µ = 0.1µmax

iterations 17 44 36
obj value 2.48722e-01 2.48698e-01 2.48698e-01
CPU time 2.3e-01 4.0e-02 4.0e-02

iterations 17 36 40
obj value 2.45341e-01 2.45321e-01 2.45321e-01
CPU time 2.2e-01 4.0e-02 5.0e-02

mean iterations 17 41 45
mean CPU time 2.2e-01 4.5e-02 5.9e-02

random n = 101, m = 1000, µ = 0.01µmax

iterations 14 54 51
obj value 4.53546e-02 4.53336e-02 4.53336e-02
CPU time 2.0e-01 5.0e-02 6.0e-02

iterations 13 63 67
obj value 4.40478e-02 4.40181e-02 4.40181e-02
CPU time 2.2e-01 7.0e-02 8.0e-02

mean iterations 14 60 66
mean CPU time 1.9e-01 6.8e-02 9.0e-02

Table 11: Comparing the CGD method using the Gauss-Southwell rules with l1-logreg on

the randomly generated problems.

39


