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A Problem Overview:

¢ An old problem in optimization

Az =~ b,
where A € R™*"™ and b € R™ are given.

¢ Linear least square problem

- 2
min  [|Az — b||3,

¢ Box-constrained convex QP

: 2
,in | Az — b||3,



¢ {1- regularization

min || Az — b[|3 + ¢l|z1,
where ¢ > 0 is a user chosen regularization

parameter.

o Recent interests have focussed on finding

solutions that are parsimonious/sparse.

o Ex: the “Basis Pursuit” model for signal

denoising.



¢ Structured Nonsmooth Optimization

o Objective function is sum of smooth func
and nonsmooth separable (convex polyhedral)
func.

min f(x) + cP(z), P(z)= ?Pj(xj)

where ¢ > 0, f smooth, P nonsmooth, (epiP =
{(z,{) | P(x) <} is a polyhedral set).

o Ex1: box-constrained QP
P(x):<0 tl<z<u
Loo  else.

o Ex2: /1- regularization

flz) = Az —bll3,  P(z) =z



Inexact(block)Coordinate Descent Method

¢ Decent Direction
o Choose J(# 0) C {1,...,n},
sym pd H € &<

o Solve:
1
mc%n Viz)'d+ 2dTHd + cP(x + d)
S.t. d]‘ =0V & J,

Using the convexity of P, it can be seen that

1
(f+cP)(z+ad) < (f+cP)(a:)—a2dTHd+0(a),
for 0 < a < 1, whenever d # 0.

| 0 ifli<z<u
QIfJ:{la---vn}7P(x>: 0O else_ N

then d i1s a scaled gradient-projection direc-
tion for box-constrained minimization;

o if f is quadratic, H = V2f(z), then d is a

(block) coordinate minimization direction.

)



o Stepsize

o Choose a stepsize o so that z = z+ad

achieves sufficient descent.

Armijo rule:

Choose o to be the largest element of
{ainitﬁk}kzo,l,... satistying
(f + cP)(x + ad) < (f + cP)(z) — acd! Hd,

WhereO<ﬁ<1,O<a<%,andoz > 0.

init

This rule, like that for SQP, requires only func-
tion evaluations.

o By choosing a. .. based on previous stepsizes,
the number of evaluations can be kept small.



¢ Choose J

o Gauss-Seidel

J cycles through {1},{2},...,{n} or, more
generally, J collectively covers 1,2, ...,n for

every fixed number of consecutive iterations.

o Gauss-Southwell
Owing to the convex separable nature of P,

“natural”’ residual:
R(z) = (R(z);)7=1,

1

- T

J

where g = (g5)7=1, 9=V f(x).

Choose j to satisty
[R(z)jlloc = w]|R(z)]loo, 0 <w <1



o bx: (H=1)

o P = O, R(SC)] = —95-

0 #Hi<z<u

oo else
R(z); = median{l; — x, —g;,u; — x;}.

e Plx) =

)

o P(x) = [z,

R(z); = —median{g; — ¢, z;, gj + c}.



Convergence Analysis

¢ (GGlobal Convergence

o Proposition:

Let {zF} be generated by InexactCD-Gauss-
Southwell "1 = 2F + oFdk.

Assume that P is Isc, {d*} is bounded, and o
is chosen by the Armijo rule.

Then every cluster point of {z*} is a stationary
point.
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¢ Convergence Rate

o Error Bound
dist(x, S) < Kk1||R(x)||co Wwhenever | R(z)]||co < €1,

for some k1 > 0, ¢¢ > 0, where S denotes
the set of stationary points and dist(z,S) =
mingeg ||z — sl|2.

Corollary :

For the case of smooth problems with polyhe-
dral constraints(ref )

flz)—v < kol|R(2)||%, whenever ||R(z)]|oo < €2,
for some k9 > 0, €9 > 0, where v = limy._,, f(z*).

But this key bound used previously for conver-
gence rate analysis fails for the general case.

x Luo, Z.-Q. and Tseng, P., ” Error bounds and
convergence analysis of feasible descent meth-
ods: a general approach”.
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o Example:

min 2° — z + |z

TER

o New key bound:

(f +¢P)(z) — v < rg||R(x)|]” + h(R(z))
whenever ||R(x)||co < €3,

for some k3 > 0, €3 > 0,

where v = lim (f + ¢P)(z") and h(z) is a

. k=0 .
nonnegative linear function.
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o Theorem 1:

Assume f(z) = g(Fx) where E € R"™*™

g 1s strongly convex on R with

IVg(z) = Va(y)ll < Lilz —yl|.

Let {z*} be generated by InexactCD-Gauss-
Seidel (Armijo rule) with ~||z]|? < 2T HFz,
lim supy j of < ¥ and {d*} bdd.

Then {(f+cP)(z*)} converges at least Q-linearly
and {z*} converges at least R-linearly.
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Idea for Proof:
For sufhiciently large k,

(f +eP)(@™) —v < gz — 2|+

(a < AT,uj,dk > +c(Pj(x f) — Pj(xkfﬂ)))

(f +cP) @) = (f + cP)(a") < —5la**! — 2*|*—

(0 < AJuj,dy > +e(Pi(ag) — Py(ay ™)

where (lej,fj) c epin = Ajzljj + a]fj < bj,
x> 0, and ,uk 1s some multiplier vector.
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o Theorem 2:

Theorem 1 still holds if, in addition, f is sepa-
rable and Gauss-Seidel is replaced by Gauss-

Southwell.

o Conjecture: Theorem 2 still holds without
the separability of f
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Numerical Experience

o Coded in Matlab(running Matlabh6.5)
o Time is on a Windows Laptop

o H = dz’ag(max(vzf(az)jj, 1))

o Stop when || R(z)||co < 104

o test funcs(except 5) from the More-Garbow-
Hillstrom collection
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1. Brown almost-linear func(nonconvex)
n

flz)= %

1=1
with n = 100 and 2" = (1, ..., 1).

(wit > xj—(n+1)?+(( 1 zj)—1)?
j= j=

2. Extended Rosenbrock func(nonconvex)

n/2 5 5
fla) = > (100 % (zg; — 25;1) + (1 — 29;—1)
with n = 100 and 2V = (¢j) where (oj_1 =

—1.2,¢5 = 1.

3. Extended Powell singular func(convex)

n/4 9
f(z) = = ((24i-3+1024i-2)"+5(24i—1—24i —
1)? + (2472 — 2245-1)" + 10(z4i_3 — 747)")
with n = 1000 and 2" = (Cj) where C4j—3 =
3,C45—2=—1,045-1=0,045 = 1.
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4. Variably dimensioned func(convex)
flz) = .gl(l’z’—l)%r(glZ'(il?z'—l))QﬂL(.g i(zi—1))"
1= 1=

with n = 100 and 2z = (1 — (j/n)).

5. Quadratic func(satisfy assumption)

f(@)= (% i~ n)

with n = 1000 and z¥ = (1, ..., 1).

6. Linear func-full rank(satisfy assumption)

Fl@) = (& (@i= (£ 2)-D%( (£ 2+

with n = 1000, m = 1001 and z¥ = (1, ..., 1).
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Conclusion

1. Faster convergence if the smooth func f is
(partially) separable.

2. InexactCD- Gauss-Southwell 1s faster than

InexactCD- Gauss-Seidel, especially, if f is
nonseparable.

Future work

1. Prove the conjecture(Linear rate convergence
for Inexact CD- Gauss-Southwellstill holds with-
out the separability of f).

2. In our test, n(J) = 1. Can it be more ef-
ficient if we use block coordinate due to the
separability structure of f7

3. More test on other functions and applica-
tions(e.g., regularized nonlinear least square)

4. Convergence acceleration for nonseparable func-
tion f7
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Problem ff nonzero | Inexact CD | Inexact CD

name C in sol G-Seidel | G-Southwell

iter /cpu iter /cpu

Brown 10 100 | 150518/1958.4 1701/26.8
Lin 100 100 | 124918/1382.0 406/6.4
dim=100 |1000 99 /(>5000) 3589/58.0
Ext 1 100 9499/289.1 9550/287.8
Ros 10 0 1399/40.9 1750/49.9
dim=100 | 100 0 399/9.1 300/8.8
Ext 1 1000 | 32997/4632.7| 22500/3303.1
Pow 10 250 7999/988.8 4000/575.7
dim=1000 | 100 0 3997/266.1 1250/182.6
Var 1 /(>5000) /(>5000)
Dim 1 /(>5000) /(>5000)
dim=100 | 10 /(>5000) /(>5000)
Quad 1 610 /(>3600) | 19962/2928.5
func 1 1 /(>3600) 1998/292.4
dim=1000| 10 0| 100001/945.1 1993/290.0
Lin 1 1000 1000/349.1 1000/321.0
f rank 1 1000 1000/350.3 1000/323.1
dim=1000| 10 0 1000/340.0 1000/322.2

Table 1: test result
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