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Abstract

Frame based image restorations by using balanced approach have been developed over
the last decade in [5, 6, 7, 8, 14, 15, 16, 17, 18]. The algorithm developed in these papers
can be viewed as an acceleration of the proximal forward-backward splitting algorithm (see
e.g.[5, 6, 7, 8, 14]). Accelerated proximal gradient algorithms studied in [1, 38, 44] have been
demonstrated to be efficient in solving various regularized convex optimization problems arising
in compressive sensing, machine learning, and control. In this paper, we apply the accelerated
proximal gradient algorithm to the balanced approach in frame based image restoration which
is formulated as an `1-regularized linear least squares problem. This algorithm terminates in
O(1/

√
ε) iterations with an ε-optimal solution, and it leads to a set of new frame based image

restoration algorithms that can universally handle several image restoration problems, such
as image deblurring, denoising, inpainting, and cartoon-texture decomposition. The numerical
results suggest that our algorithm is efficient and robust in solving large-scale image restoration
problems. Our algorithms are able to successfully restore 512×512 images in image deblurring,
denoising, inpainting and cartoon-texture decomposition in less than 50 seconds on a modest
PC. We also compare the numerical performance of our proposed algorithms applied to image
problems by using one frame based system with that by using cartoon and texture systems for
image deblurring, denoising, and inpainting.
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1 Introduction

Image restoration is often formulated as an inverse problem. The objective is to find the unknown
true image u ∈ <n from an observed image (or measurements) b ∈ <` defined by

b = Au + η, (1)

where η is a white Gaussian noise with variance σ2, and A ∈ <`×n is a linear operator, typically
a convolution operator in image deconvolution, a projection in image inpainting and the identity
in image denoising.

Our approach for the image restoration is based on tight frames. For simplicity, we denote
images by vectors in <n by concatenating their columns. Tight frames are redundant system in
<n. In particular, suppose W ∈ <m×n (with m ≥ n) satisfies W T W = I, where I is the identity
matrix. Then, the rows of W form a tight frame in <n. Thus, for every vector u ∈ <n,

u = W T (Wu).

The components of the vector Wu are called the canonical coefficients representing u. In this paper,
the tight frame system W used is generated from piecewise linear B-spline framelet constructed via
the unitary extension principle in [42]. We refer interested readers to [21, 42] and the references
therein for the general wavelet frame theory and its corresponding constructions. The details in
the construction of W from a given wavelet tight frame system can be found in, for example,
[5, 6, 7, 8, 14, 15, 16, 17, 18].

Since tight frame systems are redundant systems, the mapping from the image u to its coeffi-
cient is not one-to-one, i.e., the representation of u in the frame domain is not unique. Therefore,
there are two formulations for the sparse approximation of the underlying images, namely analysis
based and synthesis based approaches. The analysis based approach was first proposed in [24, 25].
In that approach, we assume that the analyzed coefficient vector Wu can be sparsely approxi-
mated, and it is usually formulated as a linear least squares problem involving a penalty on the
term ‖Wu‖1. The synthesis based approach was first introduced in [22, 26, 27, 28, 29]. In that
approach, the underlying image u is assumed to be synthesized from a sparse coefficient vector x

with u = W T x, and it is usually formulated as a linear least squares problem involving a penalty
on the term ‖x‖1.

The balanced approach was first used in [16, 17] for high resolution image reconstruction. It
was further developed for various image restorations in [5, 6, 7, 8, 14, 15, 18]. Although the
synthesis based, analysis based and the balanced approaches are developed independently in the
literature, the balanced approach can be motivated from our desire to balance the analysis based
and synthesis based approaches.

Next, we give the exact definitions of the above three approaches. Before that, we set up

some notation. For any x ∈ <n, ‖x‖p =
(∑n

j=1 |xj |p
)1/p

, 1 ≤ p < ∞. For simplicity, we write
‖x‖ = ‖x‖2 and |x| denotes the vector obtained from x by taking the absolute values of its
components. Let ‖x‖D denote the D-norm, where D is a symmetric positive definite matrix,
defined by ‖x‖D =

√
xT Dx. For any real symmetric matrices H1 and H2, λmax(H1) denotes

the maximum eigenvalue of H1. And we write H1 º H2 (respectively, H1 Â H2) to mean that
H1 − H2 is positive semidefinite (respectively, positive definite). For any m × n real matrices
A, ‖A‖2 =

√
λmax(AT A). The identity matrix is denoted by I and the matrix of zero entries is

denoted by 0.
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The balanced approach can be formulated as the following `1-regularized linear least squares
problem:

min
x∈<m

1
2
‖AW T x− b‖2

D +
κ

2
‖(I −WW T )x‖2 + λT |x|, (2)

where κ > 0, λ is a given positive weight vector, |x| denotes the `1 norm of the vector x, and D is
a given symmetric positive definite matrix. When κ = 0, the problem (2) is reduced to a synthesis
based approach:

min
x∈<m

1
2
‖AW T x− b‖2

D + λT |x|. (3)

On the other extreme, when κ = ∞, the problem (2) is reduced to an analysis based approach.
To see this, we note that the distance ‖(I −WW T )x‖ must be 0 when κ = ∞. This implies that
x is in the range of W , i.e., x = Wu for some u ∈ <n, so we can rewrite (2) as

min
x∈Range(W )

1
2
‖AW T x− b‖2

D + λT |x| = min
u∈<n

1
2
‖Au− b‖2

D + λT |Wu| (4)

The problem (4) is the analysis based minimization problem. It is clear that when 0 < κ < ∞,
the problem (2) balances between (3) and (4), hence is called a balanced approach.

We note that when the rows of W form an orthonormal basis, instead of being a redundant
tight frame, the above three approaches are exactly the same, since in this case, WW T = I.
However, for redundant tight frame system W , the analysis based, the synthesis based and the
balanced approaches cannot be derived from one another. In fact, it was observed in, for examples,
[9, 24] that there is a gap between the analysis based and the synthesis based approaches. Both of
them have their own favorable data sets and applications. In general, it is hard to draw definitive
conclusions as to which approach is better, without specifying the applications and data sets.
We further note that the `1-minimization problem arising from compressed sensing is akin to the
synthesis based approach by nature. On the other hand, the TV-norm minimization problem
in imaging restoration is, in many cases, an analysis based approach. For frame based image
restorations, numerical simulation results in [12, 13] show that the analysis based approach tends
to generate smoother images. This is because the coefficient Wu is quite often linked to the
smoothness of the underlying image. However, the synthesis based approach tends to explore
more on the sparse representation of the underlying solution in terms of the given frame system
by utilizing the redundance. Our balanced approach bridge the analysis based and synthesis based
approaches in image restorations and it provides an additional approach in the rich literature of
frame based image restoration as shown in [5, 6, 7, 14, 15, 16, 17, 18].

Recently, the linearized Bregman iteration was proposed for solving the `1-minimization prob-
lems in compressed sensing by [11, 39, 45] and the nuclear norm minimization in matrix completion
by [4]. The linearized Bregman iteration was then used to develop a fast algorithm for the synthesis
based approach for frame based image deblurring in [12]. Furthermore, the split Bregman iteration
proposed in [30] was shown to be powerful in [30, 46] when it is applied to various PDE based
image restoration approaches, e.g., ROF model and nonlocal PDE models. The split Bregman
iteration is further used to develop a fast algorithm for the analysis based approach in frame based
image restorations in [13]. While the balanced approach in frame based image restoration gives
satisfactory simulation results, as shown in [5, 6, 7, 14, 15, 16, 17, 18], when solved by a variant of
the proximal forward-backward splitting algorithm. But as shown in [5, 6, 7, 14, 15, 16, 17, 18],
the numerical convergence speed achieved is not as fast as the synthesis based approach by us-
ing the linearized Bregman iteration, or the analysis based approach by using the split Bregman
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iteration. The main goal of this paper is to develop fast algorithms for the balanced approach
in frame based image restorations whose convergence speeds are competitive to those of the lin-
earized Bregman iteration for the synthesis based approach and the split Bregman iteration for
the analysis based approach. With this, one can free to chose either synthesis based approach,
analysis based approach or balanced approach according to his priorities and applications.

Our accelerated algorithms are based on several variants of accelerated proximal gradient al-
gorithms that were studied by Nesterov, Nemirovski, Beck and Teboulle, and others; see [1, 34,
35, 36, 38, 44] and references therein, and that were proposed to solve `1-regularized linear least
squares problems arising in signal/image processing [1], compressed sensing [2, 33] and nuclear
norm regularized linear squares problems [43]. These accelerated proximal gradient algorithms
have an attractive iteration complexity of O(1/

√
ε) for achieving ε-optimality; see Section 2. Also

these accelerated proximal gradient algorithms are simple and use only the soft-thresholding oper-
ator, just like algorithms such as, the linearized Bregman iteration, the split Bregman iteration and
the proximal forward-backward splitting algorithm. In this paper, we extend Beck and Teboulle’s
algorithm [1], which is proposed to solve linear inverse problems, to solve the problems (2), and
more general (5), on large-scale problems arising in image restoration.

Next, we extend our algorithm for (2) to the balanced approach in image restoration of two-
layered images. Real images usually have two layers, referring to cartoons (the piecewise smooth
part of the image) and textures (the oscillating pattern part of the image). The layers usually have
sparse approximations under different tight frame systems. Therefore, these two different layers
should be considered separately. One natural idea is to use two tight frame systems that can
sparsely represent cartoons and textures separately. The corresponding image restoration problem
can be formulated as the following `1-regularized linear least squares problem:

min
x1,x2

1
2
‖A(

2∑

i=1

W T
i xi)− b‖2

D +
2∑

i=1

κi

2
‖(I −WiW

T
i )xi‖2 +

2∑

i=1

λT
i |xi|, (5)

where, for i = 1, 2, W T
i Wi = I, κi > 0, λi is a given positive weight vector, and D is a given

symmetric positive definite matrix.
The paper is organized as follows. In Section 2, we introduce some gradient algorithms using

proximal regularization and accelerated versions which can be applied to solve (2) and (5). We
give the iteration complexity of algorithms. In Section 3, we estimate the Lipschitz constant
of the gradient of the linear least squares of problems (2) and (5), especially for the problems
arising in image inpainting since the Lipschitz constant is crucial for the convergence speed of our
proposed algorithms. In Section 4, we present some preliminary numerical results for solving (2)
and (5) on a set of large-scale problems arising from several topics in image restorations, such as
image deblurring, denoising, inpainting, and cartoon-texture image decomposition. Comparison of
numerical performance of our proposed algorithms applied to image problems by using one frame
based system with that by using cartoon and texture systems is also given. Finally, we give our
conclusions in Section 5.

2 Accelerated Proximal Gradient Algorithm

In this section we introduce accelerated proximal gradient algorithms for solving (2) and (5). We
also give the analysis of their iteration complexity.
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In what follows,

f(x) =
1
2
‖AW T x− b‖2

D +
κ

2
‖(I −WW T )x‖2 (6)

and, for (5),

f(x) = f(x1, x2) =
1
2
‖A

( 2∑

i=1

W T
i xi

)
− b‖2

D +
2∑

i=1

κi

2
‖(I −WiW

T
i )xi‖2. (7)

Note that the gradient of f is given by

∇f(x) = WAT D(AW T x− b) + κ(I −WW T )x (8)

and for (5),
∇f(x) = (∇x1f(x)T ,∇x2f(x)T )T , (9)

where

∇xjf(x) = WjA
T D(AW T

1 x1 + AW T
2 x2 − b) + κj(I −WjW

T
j )xj , j = 1, 2.

For any y ∈ <m, consider the approximation of f(x) + λT |x| by replacing f with its linear
approximation at y:

`f (x; y) := f(y) + 〈∇f(y), x− y〉+ λT |x|. (10)

Since ∇f is Lipschitz continuous on <m, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ <m, (11)

for some L > 0, this together with the convexity of f implies that

f(x) + λT |x| − L

2
‖x− y‖2 ≤ `f (x; y) ≤ f(x) + λT |x| ∀ x, y ∈ <n. (12)

The main step of the accelerated proximal gradient algorithm for solving (2) uses the following
subproblem:

min
x

`f (x; y) +
L

2
‖x− y‖2. (13)

Since the objective function of the above subproblem is strictly convex, the solution is unique. By
ignoring constant terms in y, (13) can be rewritten as follows:

min
x

L

2
‖x− g‖2 + λT |x|, (14)

where g = y −∇f(y)/L.
For a given nonnegative vector ν ∈ <m, we define the mapping sν : <m → <m as follows:

sν(x) := sgn(x)¯max{|x| − ν, 0} (15)

where ¯ denotes the component-wise product, i.e., (x¯ y)i = xiyi, and sgn is the signum function
defined by

sgn(t) :=





+1 if t > 0;
0 if t = 0;
−1 if t < 0.
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Then sλ/L(g) is the unique solution of (13) and (14).
We now describe formally the accelerated proximal gradient (abbreviated as APG) algorithm

for solving (2).

APG algorithm:
For a given nonnegative vector λ, choose x0 = x−1 ∈ <n, t0 = t−1 = 1. For k = 0, 1, 2, ...,
generate xk+1 from xk according to the following iteration:

Step 1. Set yk = xk + tk−1−1
tk

(xk − xk−1).

Step 2. Set gk = yk −∇f(yk)/L,

Step 3. Set xk+1 = sλ/L(gk).

Step 4. Compute tk+1 = 1+
√

1+4(tk)2

2 .

When the APG algorithm with tk = 1 for all k is applied to the problem (2), it is the pop-
ular iterative shrinkage/thresholding (IST) algorithms [20, 28, 29, 31] and it is also the proximal
forward-backward splitting (PFBS) algorithm developed in [5, 6, 7, 8, 14, 15, 16, 17, 18] for the
balanced approach in frame based image restorations. The IST and PFBS algorithms have been
developed and analyzed independently by many researchers. These algorithms only require gra-
dient evaluations and soft-thresholding operations, so the computation at each iteration is very
cheap. But, for any ε > 0, these algorithms terminate in O(L/ε) iterations with an ε-optimal
solution [1, 43]. Hence the sequence {xk} converges slowly. On the other hand, we show in this
section that the APG algorithm proposed here gets an ε-optimal solution in O(

√
L/ε) iterations.

Thus the APG algorithm accelerates the PFBS algorithm used in [5, 6, 7, 8, 14, 15, 16, 17, 18] for
the balanced approach in frame based image restorations.

We first prove the following lemma which shows that the optimal solution set of (2) is bounded.
In what follows, X ∗ denotes the set of optimal solutions.

Lemma 2.1 For each positive vector λ, the optimal solution set X ∗ of (2) is bounded. In addition,
for any x∗ ∈ X ∗, we have

‖x∗‖1 ≤ χ (16)

where

χ =





min{‖b‖2
D/2, λT |xLS |}/λmin if A is surjective

‖b‖2
D/(2λmin) otherwise.

with λmin = mini=1,...,n{λi} and xLS = WAT (AAT )−1b.

Proof. Considering the objective value of (2) at x = 0, we obtain that for any x∗ ∈ X ∗,

λmin‖x∗‖1 ≤ f(x∗) + λT |x∗| ≤ 1
2
‖b‖2

D.

Hence ‖x∗‖1 ≤ ‖b‖2
D/(2λmin). In addition, if A is surjective, then by considering the objective

value of (2) at x = xLS , we obtain that for any x∗ ∈ X ∗, λmin‖x∗‖1 ≤ f(x∗) + λT |x∗| ≤ λT |xLS |.
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The following theorem gives an upper bound on the number of iterations for the APG algorithm
for solving (2) to achieve ε-optimality. This theorem can be proved by using [1, Theorem 4.1] or
[44, Corollary 2]. We include its proof for completeness. For this, we note the following fact given
by [1, Lemma 4.3]:

tk ≥ k + 1
2

∀k ≥ 1. (17)

Theorem 2.1 Let {xk}, {yk}, {tk} be the sequences generated by APG. Then, for any k ≥ 1, we
have

f(xk) + λT |xk| − f(x∗)− λT |x∗| ≤ 2L‖x∗ − x0‖2

(k + 1)2
, ∀x∗ ∈ X ∗. (18)

Hence

f(xk) + λT |xk| − f(x∗) + λT |x∗| ≤ ε whenever k ≥
√

2L

ε

(
‖x0‖+ χ

)
− 1, (19)

where χ is defined as in Lemma 2.1.

Proof. Fix any k ∈ {0, 1, ...} and any x∗ ∈ X ∗. Let sk = sλ/L(gk) and x̂ = ((tk − 1)xk + x∗)/tk.
By the definition of sk and Fermat’s rule [41, Theorem 10.1],

sk ∈ arg min
x

{`f (x; yk) + L〈sk − yk, x〉}.

Hence

`f (sk; yk) + L〈sk − yk, sk〉 ≤ `f (x̂; yk) + L〈sk − yk, x̂〉. (20)

Since

〈sk − yk, x̂〉+
1
2
‖sk − yk‖2 − 〈sk − yk, sk〉 =

1
2
‖x̂− yk‖2 − 1

2
‖x̂− sk‖2,

adding L
2 ‖sk − yk‖2 − L〈sk − yk, sk〉 to both sides of the inequality (20) yields

`f (sk; yk) +
L

2
‖sk − yk‖2 ≤ `f (x̂; yk) +

L

2
‖x̂− yk‖2 − L

2
‖x̂− sk‖2. (21)

For notational convenience, let F (x) = f(x) + λT |x| and zk = (1 − tk−1)xk−1 + tk−1xk. The
inequality (21) with sk = xk+1 and the first inequality in (12) implies that

F (xk+1) ≤ `f (xk+1; yk) +
L

2
‖xk+1 − yk‖2 ≤ `f (x̂; yk) +

L

2
‖x̂− yk‖2 − L

2
‖x̂− xk+1‖2

≤ tk − 1
tk

`f (xk; yk) +
1
tk

`f (x∗; yk)

+
L

2(tk)2
‖(tk − 1)xk + x∗ − tkyk‖2 − L

2(tk)2
‖(tk − 1)xk + x∗ − tkxk+1‖2

=
tk − 1

tk
`f (xk; yk) +

1
tk

`f (x∗; yk) +
L

2(tk)2
‖x∗ − zk‖2 − L

2(tk)2
‖x∗ − zk+1‖2

≤ tk − 1
tk

F (xk) +
1
tk

F (x∗) +
L

2(tk)2
‖x∗ − zk‖2 − L

2(tk)2
‖x∗ − zk+1‖2 (22)
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In the above, the second last inequality used that fact that tk ≥ 1 for all k and the convexity of
`f , and the last inequality used (12).

Subtracting F (x∗) from both sides of (22) and then multiplying both sides by (tk)2 yields

(tk)2(F (xk+1)− F (x∗)) ≤ (tk−1)2(F (xk)− F (x∗)) +
L

2
‖x∗ − zk‖2 − L

2
‖x∗ − zk+1‖2. (23)

In (23), we used the fact that (tk−1)2 = tk(tk − 1). From (23), t0 = 1 and z0 = x0, we get

(tk)2(F (xk+1)− F (x∗)) ≤ L

2
‖x∗ − x0‖2. (24)

By (17), we obtain (18). In addition, by using the inequality, ‖x∗−x0‖ ≤ ‖x∗‖+‖x0‖ ≤ ‖x∗‖1+‖x0‖
and Lemma 2.1, we get the required result in (19).

We observe that the APG algorithm is as simple as the IST and the PFBS algorithms, and
yet it has a better iteration complexity. Hence the main advantage of the APG algorithm over the
algorithms just mentioned is its O(

√
L/ε) iteration complexity. This is also demonstrated by the

numerical simulations in Section 4.
By using f(x1, x2) instead of f(x), the APG algorithm for solving (2) can be easily extended

to solve (5). Hence the O(
√

L/ε) iteration complexity still holds for the APG algorithm for solving
(5). We omit the detailed discussions here for the extended problem.

3 Estimation of Lipschitz Constants

The Lipschitz constant is crucial for the iteration complexity of the APG algorithm described in
Section 2. From Theorem 2.1, we see that a tighter Lipschitz constant for ∇f will lead to better
iteration complexity. In this section, we estimate the Lipschitz constants for the gradients of f(x)
in (2) and (5), arising from image restoration problems.

From (8), we have
∇2f(x) = WAT DAW T + κ(I −WW T ).

Since W T W = I and D Â 0, ∇2f(x) º 0, the Lipschitz constant L of ∇f can be taken to be
the following upper bound: L ≤ λmax(∇2f(x)) ≤ λmax(AT DA) + κ. This leads to the following
proposition.

Proposition 3.1 For the problem (2), the Lipschitz constant L of ∇f defined in (6) has the
following upper bound:

L ≤ λmax(AT DA) + κ. (25)

For the problem (5), where one uses a two frame system, we have the following result on the
Lipschitz constant L of ∇f defined in (7).

Proposition 3.2 For the problem (5), the Lipschitz constant L of ∇f defined in (7) has the
following upper bound:

L ≤ λmax

((
W1

W2

)
AT DA

(
W T

1 W T
2

))
+ max{κ1, κ2}. (26)
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Proof. Indeed, from (9), we have

∇2f(x1, x2) =

(
W1A

T DAW T
1 + κ1(I −W1W

T
1 ) W1A

T DAW T
2

W2A
T DAW T

1 W2A
T DAW T

2 + κ2(I −W2W
T
2 )

)

=

(
W1

W2

)
AT DA

(
W T

1 W T
2

)
+

(
κ1(I −W1W

T
1 ) 0

0 κ2(I −W2W
T
2 )

)

Since W T
1 W1 = I, W T

2 W2 = I, and D Â 0, ∇2f(x1, x2) º 0, we can take the Lipschitz constant L

to be the following upper bound:

λmax(∇2f(x1, x2)) ≤ λmax

((
W1

W2

)
AT DA

(
W T

1 W T
2

))
+ max{κ1, κ2}.

The above propositions derived an upper bound for the Lipschitz constant of ∇f for a general
frame based image restoration problem. Next we consider the special case of image inpainting
problem using the model (2) with D = I. Note that for the image inpainting problem, A is a
diagonal matrix with diagonals 1 if the corresponding pixel values are known, but 0 otherwise. In
this case, by using Proposition 3.1, one can derive straightforwardly the upper bound, 1 +κ, from
(25) for the Lipschitz constant of ∇f . However, for the image inpainting problem (2) with D = I,
we can obtain a tighter Lipschitz constant for ∇f , as shown in the next proposition.

Proposition 3.3 For the inpaiting problem (2) with D = I the Lipschitz constant L of ∇f de-
fined in (6) is bounded by max{1, κ}. Note that A is a diagonal matrix with diagonals 1 if the
corresponding pixel values are known, but 0 otherwise.

Proof. By permuting the rows of W T if necessary, we have

W T =

(
W T

1

W T
2

)
, W =

(
W1 W2

)
, A =

(
I 0
0 0

)
.

Hence

∇2f(x) =
(
W1 W2

) (
I 0
0 0

) (
W T

1

W T
2

)
+ κ(I −WW T )

= W1W
T
1 + κ(I −W1W

T
1 −W2W

T
2 ).

We have two cases to consider.

Case 1. If 0 ≤ κ ≤ 1. Then

∇2f(x) ¹ W1W
T
1 + κ(I −W1W

T
1 ) = κI + (1− κ)W1W

T
1

¹ κI + (1− κ)I = I.

Case 2. If κ ≥ 1. Then

∇2f(x) = κI − (κ− 1)W1W
T
1 − κW2W

T
2 ¹ κI.
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Therefore λmax(∇2f(x)) ≤ max{1, κ}. Thus the Lipschitz constant of ∇f can be taken to be
max{1, κ}.

Similarly, when one uses a two frame system for the inpainting problem in (5) with D = I,
the Lipschitz constant L of ∇f defined in (7) can be bounded by the shaper constant 1 + κmax +
max{0, 1 − κmin}, instead of the obvious bound of 2 + κmax derived from (26). Here, κmin =
min{κ1, κ2} and κmax = max{κ1, κ2}.
Proposition 3.4 For cartoon and texture inpainting problem (5) with D = I, the Lipschitz con-
stant L of ∇f defined in (7) is bounded by 1 + κmax + max{0, 1− κmin}.
Proof. By permuting the rows of W T

1 and W T
2 if necessary, we have

W T
1 =


 W T

1a

W T
1b


 , W T

2 =


 W T

2a

W T
2b


 , A =

(
I 0
0 0

)
.

Hence

∇2f(x1, x2) =


 W1aW

T
1a + κ1(I −W1aW

T
1a −W1bW

T
1b) W1aW

T
2a

W2aW
T
1a W2aW

T
2a + κ2(I −W2aW

T
2a −W2bW

T
2b)


 .

We have two cases to consider.

Case 1. If 0 ≤ κmin ≤ 1. Then

∇2f(x1, x2) ¹

 W1aW

T
1a + κ1(I −W1aW

T
1a) W1aW

T
2a

W2aW
T
1a W2aW

T
2a + κ2(I −W2aW

T
2a)




=


 (1− κ1)W1aW

T
1a + κ1I W1aW

T
2a

W2aW
T
1a (1− κ2)W2aW

T
2a + κ2I




¹
(

κ1I 0
0 κ2I

)
+ (1− κmin)


 W1aW

T
1a W1aW

T
2a

W2aW
T
1a W2aW

T
2a


 + κmin


 0 W1aW

T
2a

W2aW
T
1a 0




¹ κmax

(
I 0
0 I

)
+ (1− κmin)


 W1a

W2a




(
W T

1a W T
2a

)
+ κmin


 0 W1aW

T
2a

W2aW
T
1a 0


 .

This implies

λmax(∇2f(x1, x2)) ≤ κmax + (1− κmin)λmax





 W1a

W2a




(
W T

1a W T
2a

)

 + κmin‖W1aW

T
2a‖2

≤ 2 + κmax − κmin.

Case 2. If κmin ≥ 1. Then

∇2f(x1, x2) =


 κ1I − (κ1 − 1)W1aW

T
1a − κ1W1bW

T
1b W1aW

T
2a

W2aW
T
1a κ2I − (κ2 − 1)W2aW

T
2a − κ2W2bW

T
2b




¹
(

κ1I 0
0 κ2I

)
+


 0 W1aW

T
2a

W2aW
T
1a 0


 .
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This implies that

λmax(∇2f(x1, x2)) ≤ κmax + ‖W1aW
T
2a‖2 ≤ κmax + 1.

Therefore λmax(∇2f(x1, x2)) ≤ 1 + κmax + max{0, 1 − κmin}. Thus the Lipschitz constant of ∇f

can be taken to be 1 + κmax + max{0, 1− κmin}.

4 Numerical Implementation

In this section, we give a brief description of an acceleration strategy for the APG algorithm and
describe the stopping condition for the APG algorithm. We also report some numerical results for
solving a collection of `1-regularized linear least squares problems of the form (2) or (5) arising
in image restoration. In Section 4.1, we discuss a stopping condition for the APG algorithm. In
Section 4.2, we apply the APG algorithm to frame based image inpainting by using the balanced
approach. The carton and texture image decomposition and noise removal are also presented as
special cases. In Section 4.3, we apply the APG algorithm to the frame based image deblurring
by using the balanced approach.

In order to further accelerate the convergence speed of the APG algorithm, we adopt the
continuation strategy that is used in [31, 43]. We briefly describe this strategy. If the both
problems (2) and (5) are to be solved with the target parameter value λ̄, we propose solving a
sequence of problems of the forms (2) and (5) defined by a decreasing sequence {λ0, λ1, . . . , λ` = λ̄}
with a given finite positive integer `. When a new problem, associated with λj+1, is to be solved,
the approximate solution for the current problem with λ = λj is used as the starting point. Our
computational experience indicates that the performance of this continuation strategy is generally
superior to that of directly applying the APG algorithm to the problem with the specified target
value λ̄. In our numerical experiments in sections 4.2 and 4.3, we set the initial λ0 = 10λ, and
update λk = max{υλk−1, λ}, where υ is a real number in the open interval (0, 1), once at every
3 consecutive iterations or whenever the condition (30) is satisfied with Tol = 10−2. We set
υ = 0.8 for the problem (2) and set υ = 0.7 for (5). The reduction factors were found after some
experimentation.

We have implemented the APG algorithms in Matlab. All runs are performed on an Intel
Xeon 3.20GHz PC with 4GB RAM, running Linux and Matlab (Version 7.6). Throughout the
experiments, we choose the initial iterate to be x0 = 0.

4.1 A stopping condition for the APG algorithm

The natural stopping condition for the unconstrained convex minimization problem (2) is that
δ(x) := dist(0; ∂(f(x) + λT |x|)) is sufficiently small, where ∂(·) denotes the sub-differential. Here
dist(x;S) denotes the distance between a point x and a set S. Since

∂|xi| =



{+1} if xi > 0;
[−1, 1] if xi = 0;
{−1} if xi < 0,

the upper bound on δ(x) can be given by
√√√√

n∑

i=1

(
max{|(∇f(x))i + λiui| : ui ∈ ∂|xi|}

)2
. (27)

11



In the course of running the APG algorithm, one can actually get a good upper bound on δ(x)
without incurring extra computational cost as follows. At the k-th iteration, let gk = yk −
∇f(yk)/L. From the subproblem (13), we can observe that

∂(λT |xk+1|) 3 L(gk − xk+1) = L(yk − xk+1)−∇f(yk).

Thus we have L(yk − xk+1) +∇f(xk+1)−∇f(yk) ∈ ∂(f(xk+1) + λT |xk+1|). Since ∇f is Lipschitz
continuous with Lipschitz constant L, we have

‖L(yk − xk+1) +∇f(xk+1)−∇f(yk)‖ ≤ 2L‖yk − xk+1‖.

Hence we have the following upper bound for δ(xk+1) with δ(xk+1) ≤ 2L‖yk − xk+1‖. From the
above, we derive the following stopping condition for the APG algorithm:

2L‖yk−1 − xk‖
max{1, ‖xk‖} ≤ Tol, (28)

where Tol is a moderately small tolerance. In addition, we stop the APG algorithm when

|‖AW T xk − b‖D − ‖AW T xk−1 − b‖D|
‖AW T xk − b‖D

≤ Tol. (29)

For the image deblurring problems, we use 0.2 × Tol instead of Tol for (29) in order to prevent
our algorithm from stopping prematurely. The scaling constant 0.2 was found after some exper-
imentation. We also stop the APG algorithm when the relative error of the iterates satisfies the
following condition:

‖xk − xk−1‖
max{1, ‖xk‖} ≤ Tol. (30)

Similar stopping conditions for the unconstrained convex minimization problem (5) can be
obtained simply by replacing f(x) with f(x1, x2).

Throughout the experiments, we choose Tol = 5× 10−4 for the stopping conditions (28)-(30).
The matrices W and W1 are set to the tight frame generated by piecewise linear B-spline framelets.
For W2, we set it to be the tight frame generated by a local DCT.

We set the parameters κ = κ1 = κ2 = 1 throughout. Our numerical experience showed
that this choice produces the best results in terms of the number of APG iterations taken and
the PSNR values obtained. In fact this choice is consistent with the results in Propositions 3.3
and 3.4. Indeed, for the image inpainting problem, κ = 1 would produce the smallest Lipschitz
constant L = 1 for ∇f in the problem (2) while placing the maximum penalty on ‖(I −WW T )x‖
among all the choices of κ such that the associated Lipschitz constant for ∇f is fixed at L = 1. A
similar statement also holds for the image inpainting problem involving the problem (5). It is also
interesting to note that the parameter κ is also chosen to be one in [5, 6, 7, 8, 14, 15, 16, 17, 18],
although the derivation of algorithms is different from here. In [7, 15, 16, 17, 18], each algorithm
was developed by using both properties of frames and the nature of the image restoration problem.
It was then proven that its limit is the minimizer of (2) with κ = 1. In this paper, we formulate
the image restoration problem in terms of the minimization problems (2) or (5) as motivated by
results of [5, 6, 7, 8, 14, 15, 16, 17, 18], and develop a fast algorithm to find the minimizer.
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4.2 Image Inpainting

In this section, we apply the APG algorithm to the image inpainting problem, which refers to the
problem of filling-in the missing part in a damaged image. Let Ω be the region of known pixels of
an observed image. Our aim is to recover the original image u from the observed image b, which
is given by

b = PΩ(u + σξ),

where PΩ is projection, or more precisely, a diagonal matrix with diagonals 1 if the corresponding
pixels are known, or 0 otherwise, the elements of ξ are i.i.d. standard Gaussian random variables,
and σ is the noise level contained in the image. The image inpainting problem arises, for examples,
in removing scratches in photos, in restoring ancient drawings, and in filling in the missing pixels
of images transmitted through a noisy channel. In this problem, we need to extract information
such as edges and textures from the observed data to fill in the missing part such that shapes and
patterns are consistent with our human vision.

We propose to recover the true image u by solving either (2) or (5), with

A = PΩ, D = I. (31)

To measure the quality of the restored image, we use the PSNR value defined by

PSNR = −20 log10

‖u− ũ‖
255mn

where u and ũ are the original and restored images, respectively, and m,n are the dimensions of
u.

In Table 1, we report the numerical performance of the APG algorithm applied to (2) and
(5) for the image inpainting problem. In the table, we report the number of iterations taken by
the APG algorithm; the PSNR value of the restored image; and the CPU time (in seconds). As
indicated in the table, the APG algorithm took no more than 27 iterations to solve the model
(2) for all the images. For the model (5), the APG algorithm took no more than 35 iterations
to solve all the problems. Though the second model (5) is more expensive to solve, the PSNR
values of the restored images are consistently better than those obtained from the first model (2)
for the last five images which have obvious cartoon and texture structures. As mentioned in the
Introduction, for an image that has a two-layer structure, the cartoon and texture parts with very
different characteristics, it is more appropriate to represent the layers by two different tight frames
to capture their respective characteristics. For the last five images we considered in Table 1, they
have obvious two-layer structures. Hence, it is not surprising that when the two different parts
are represented by appropriate tight frame systems, the restored images can have better qualities.
The restored barbara512 images are shown in Figure 1.

In this paper, we will mainly compare our numerical results with those obtained by various
algorithms in [13]. Although [13] focuses on the split Bregman iterations for image restoration by
analysis based approach , it also provides a rather complete comparison with other frame based
image restoration methods in the literature. For brevity, we summarize the comparison in Table
2. As we can see from the table, the APG algorithm solved the inpainting problem for the image
peppers256 in 22 iterations via the model (2) and achieved a PSNR value of 33.69. In contrast,
the numerical result for proximal forward-backward splitting (PFBS) algorithm took 329 iterations
to solve the same problem provided in [13] and achieved a slightly better PSNR value of 33.82.
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Since the computational cost of each iteration of the APG algorithm is almost the same as that for
the PFBS algorithm, we see that for this example, the APG algorithm much more efficient than
the PFBS algorithm for image inpainting problems based on the balanced approach. Similarly,
we can also see that the APG algorithm is more efficient than the split Bregman iteration applied
to the analysis based problem (4) for the inpainting problem involving the cartoon-texture image
barbara512. For this case, the former took 31 iterations to achieve a PSNR value of 33.82, whereas
the latter took 67 iterations and obtained a PSNR value of 33.77.

Table 1: Numerical results for the APG algorithm in solving (2) and (5)

arising from image inpainting without noise (i.e., σ = 0 in (1)).

inpainting one system two systems

σ = 0 λ = 0.03 λ1 = λ2 = 0.01

iter psnr time iter psnr time

peppers256 22 33.69 3.38 29 33.66 6.39

goldhill256 24 32.21 3.79 32 32.09 7.10

boat256 23 30.99 3.63 29 30.87 6.51

camera256 23 30.13 3.58 29 30.44 6.47

bridge256 26 31.31 4.15 33 31.08 7.47

bowl256 23 34.38 3.53 35 36.02 7.66

barbara512 27 31.33 22.47 31 33.82 34.12

baboon512 26 29.12 22.23 32 29.10 35.79

fingerprint512 25 26.51 21.23 34 28.00 38.20

zebra512 25 28.47 20.93 33 29.32 36.43

Table 2: Comparison of the APG algorithm in solving (2) with other

algorithms. The numbers are in the format: iteration count/PSNR

value/CPU time in seconds.

image problem type APG on (2) [13]

split

Bregman

on (4)

linearized

Bregman

on (3)

proximal

forward

backward

on (2)

pepper256 inpainting 22/33.69/3.4 51/33.86/10.1 329/33.82/46.0

barbara512

inpainting

cartoon

texture

31/33.82/34.1 67/33.77/71.5

barbara512

denoising

cartoon

texture

29/28.44/31.5 55/29.01/71.6

goldhill256

deblur

average, 9

σ = 3

27/26.45/5.1 19/26.40/14.6 11/26.21/7.1 171/26.21/107.3

boat256

deblur

disk, 4

σ = 3

28/25.46/5.8 18/25.30/13.8 12/25.32/7.7 155/25.00/99.9
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Next, we consider the problem of denoising. That is, PΩ = I, but σ = 20. Note that the pixel
values in the image u are in the interval [0, 255]. The numerical results obtained by the APG
algorithm are presented in Table 3. From the table, we see that the APG algorithm took no more
than 32 iterations to solve all the problems in less than 40 seconds. Observe that the number of
iterations taken to solve the problem (2) is consistently less than that for the problem (5). This is
not surprising since the Lipschitz constant for ∇f in (2) is smaller than that for the corresponding
function in (5).

Table 3: Numerical results for the APG algorithm in solving (2) and (5)

arising from image denoising with σ = 20.

denoising one system two systems

λ = 0.11 λ1 = λ2 = 0.08

iter psnr time iter psnr time

bowl256 16 28.77 2.48 29 29.29 6.33

barbara512 17 27.39 14.36 29 28.44 31.47

baboon512 17 25.81 14.37 29 25.39 31.72

fingerprint512 17 27.74 14.75 32 27.51 34.78

zebra512 17 28.19 14.35 29 28.10 31.43

From Table 2, we see that the APG algorithm is more efficient than the split Bregman iteration
developed in [13] for the denoising problem involving the cartoon-texture image barbara512. In
this case, the former took 29 iterations to achieve a PSNR value of 28.44 whereas the latter took
55 iterations and obtained a PSNR value of 29.01.

Our next experiment is to consider the image decomposition problem, i.e., to decompose a
given image into its cartoon and texture parts. In this case, PΩ = I and σ = 0. For this problem,
it is meaningful to consider only the model (5). Table 4 reports the numerical results for the APG
algorithm in solving 5 image decomposition problems. The restored barbara512 images are shown
in Figure 2.

To summarize, we conclude that comparing with the numerical results of [7, 13], the APG
algorithm is much faster than the PFBS algorithm in obtaining comparable quality in the restored
images for frame based image inpainting by using the balanced approach. It is comparable to the
split Bregman iteration for frame based image inpainting by using the analysis based approach.
The large number of images we used in our simulations also indicates that the performance of the
APG algorithm is independent of the images and robust.
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Figure 1: Image inpainting results (σ = 0).

(a) original: 512× 512 (b) observed image

(c) inpainted from (2): one

system

(d) inpainted from (5): two

systems

Table 4: Numerical results for the APG algorithm in solving (5) arising

from image decomposition.

decomposition one system two systems

σ = 0 λ1 = 0.007, λ2 = 0.01

iter psnr time iter psnr time

peppers256 28 41.64 6.34

goldhill256 28 39.99 6.39

boat256 27 40.81 6.13

camera256 28 41.96 6.29

bridge256 27 39.58 6.33

bowl256 28 43.46 6.20

barbara512 29 41.88 32.43

baboon512 27 39.39 31.33

fingerprint512 27 41.06 31.21

zebra512 28 42.95 31.53
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Figure 2: Image decomposition results.

(a) original: 512× 512 (b) decomposition via (5)

(c) cartoon part (d) texture part
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4.3 Image Deblurring

Images can be blurred for various reasons which can significantly degrade the visual quality of
images. For example, it can be blurred by the motions. Motion blurring caused by camera
shake has been one of the prime causes of poor image quality in digital imaging, especially when
using telephoto lenses or long shuttle speeds. In many imaging applications, there is simply not
enough light to produce a clear image by using a short shutter speed. As a result, the image
will appear blurry due to the relative motion between the camera and the scene. In this section,
we use frame based deblurring method via the balanced approach to restore images degraded by
some convolution operators. The aim is to find the underlying image u = W T x from its blurred
observation b in (1), where A is a convolution operator, by applying the APG algorithm to solve
the problem (2) with D being a positive definite matrix depending on A. As mentioned in the
Introduction, real images usually have two layers. Hence we also consider the problem (5). Note
that the observed image in (1) is the transformed image Au with noise corruption given by η = σξ,
where the elements of ξ are i.i.d. standard Gaussian random variables and σ2 is the noise variance.

Since A is usually ill-conditioned, we choose a symmetric positive definite matrix D to ap-
proximate (AAT )−1 so that AT DA may have a good condition number. The choice of D can be
done as follows. The blurring operator A is usually a convolution operator, and it is a Toeplitz-
like or block-Toeplitz-like matrix with a suitable boundary condition. Hence A can be efficiently
approximated by a circulant matrix or a fast transform based matrix C [19, 32]. In this paper,
we use convolution matrices with circular or Neumann boundary conditions to approximate A,
and D = (CCT )−1 is usually a good approximation for (AAT )−1. In order for the approximation
to be numerically stable and robust to noise, we choose D = (CCT + θI)−1, where θ is a small
positive number. Note that, for any y ∈ <`, (CCT + θI)−1y can be computed efficiently by fast
Fourier transforms or Discrete cosine transforms [32]. For our numerical experiments, we consider
4 blurring kernels: (a) 7 × 7 disk kernel; (b) 15 × 30 motion kernel; (c) 15 × 15 Gaussian kernel
with standard deviation 2; and (d) 9× 9 average kernel.

Table 5: Numerical results for the APG algorithm in solving (2) and (5)

arising from image deblurring with noise level σ = 3.

deblurring one system two systems

λ = 0.003 λ1 = λ2 = 0.003

blur θ iter psnr time θ iter psnr time

peppers256 disk,3 0.40 28 28.17 5.64 0.24 34 27.51 8.81

peppers256 motion,15,30 0.50 28 27.37 5.55 0.30 28 26.99 7.04

peppers256 gaussian,15,2 0.30 22 25.82 4.31 0.18 21 25.74 5.29

peppers256 average,9 0.35 28 27.84 5.26 0.21 29 27.23 7.11

goldhill256 disk,3 0.40 27 27.28 5.46 0.24 37 27.05 9.45

goldhill256 motion,15,30 0.50 27 26.86 5.26 0.30 29 26.74 7.16

goldhill256 gaussian,15,2 0.30 22 26.51 4.27 0.18 22 26.52 5.51

goldhill256 average,9 0.35 27 26.45 5.12 0.21 31 26.31 7.55

boat256 disk,3 0.40 28 26.49 5.56 0.24 36 25.92 9.16

boat256 motion,15,30 0.50 27 25.95 5.24 0.30 29 25.61 7.33

boat256 gaussian,15,2 0.30 23 25.15 4.43 0.18 21 25.02 5.27

boat256 average,9 0.35 27 25.29 5.13 0.21 31 25.08 7.65

camera256 disk,3 0.40 28 26.98 5.63 0.24 35 26.39 8.89
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Table 5: Numerical results for the APG algorithm in solving (2) and (5)

arising from image deblurring with noise level σ = 3.

deblurring one system two systems

λ = 0.003 λ1 = λ2 = 0.003

blur θ iter psnr time θ iter psnr time

camera256 motion,15,30 0.50 28 26.44 5.42 0.30 29 26.05 7.25

camera256 gaussian,15,2 0.30 22 25.08 4.16 0.18 22 24.97 5.43

camera256 average,9 0.35 28 25.47 5.22 0.21 30 25.17 7.27

bridge256 disk,3 0.40 28 25.47 5.66 0.24 38 25.26 9.73

bridge256 motion,15,30 0.50 28 25.04 5.54 0.30 33 24.82 8.24

bridge256 gaussian,15,2 0.30 24 24.42 4.66 0.18 22 24.38 5.56

bridge256 average,9 0.35 28 24.35 5.32 0.21 32 24.23 7.77

bowl256 disk,3 0.40 26 29.09 5.14 0.24 35 29.08 8.87

bowl256 motion,15,30 0.50 26 29.34 5.03 0.30 29 29.57 7.24

bowl256 gaussian,15,2 0.30 22 28.54 4.24 0.18 21 28.66 5.28

bowl256 average,9 0.35 25 28.84 4.65 0.21 31 29.05 7.60

barbara512 disk,3 0.40 29 25.35 29.39 0.24 36 25.78 44.67

barbara512 motion,15,30 0.50 28 25.02 27.89 0.30 35 25.64 42.66

barbara512 gaussian,15,2 0.30 21 24.21 20.63 0.18 19 24.20 23.37

barbara512 average,9 0.35 26 24.12 25.03 0.21 30 24.18 35.92

baboon512 disk,3 0.40 29 23.49 29.62 0.24 39 23.47 48.54

baboon512 motion,15,30 0.50 28 23.44 28.04 0.30 37 23.34 45.52

baboon512 gaussian,15,2 0.30 24 22.20 23.46 0.18 22 22.16 27.08

baboon512 average,9 0.35 28 22.31 27.00 0.21 33 22.22 39.81

fingerprint512 disk,3 0.40 29 27.42 29.81 0.24 37 27.84 47.17

fingerprint512 motion,15,30 0.50 30 25.49 29.98 0.30 32 25.54 39.35

fingerprint512 gaussian,15,2 0.30 26 27.32 25.83 0.18 24 27.42 29.88

fingerprint512 average,9 0.35 31 24.48 29.89 0.21 30 24.67 36.16

zebra512 disk,3 0.40 29 27.28 29.57 0.24 39 27.46 48.40

zebra512 motion,15,30 0.50 30 25.99 29.86 0.30 36 26.21 43.75

zebra512 gaussian,15,2 0.30 25 25.98 24.80 0.18 27 25.96 32.97

zebra512 average,9 0.35 29 24.74 28.20 0.21 30 24.73 35.87

Table 6: Numerical results for the APG algorithm in solving (2) and (5)

arising from image deblurring with noise level σ = 5.

deblurring one system two systems

λ = 0.003 λ1 = λ2 = 0.003

blur θ iter psnr time θ iter psnr time

peppers256 disk,3 1.00 28 26.68 5.47 0.60 26 26.37 6.54

peppers256 motion,15,30 1.00 31 25.72 5.90 0.60 30 25.50 7.50

peppers256 gaussian,15,2 1.00 25 25.27 4.72 0.60 22 25.12 5.55

peppers256 average,9 1.00 31 26.29 5.71 0.60 28 25.74 6.87

goldhill256 disk,3 1.00 26 26.63 5.05 0.60 23 26.57 5.91

goldhill256 motion,15,30 1.00 30 25.80 5.78 0.60 29 25.80 7.27

goldhill256 gaussian,15,2 1.00 24 26.15 4.51 0.60 21 26.11 5.25
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Table 6: Numerical results for the APG algorithm in solving (2) and (5)

arising from image deblurring with noise level σ = 5.

deblurring one system two systems

λ = 0.003 λ1 = λ2 = 0.003

blur θ iter psnr time θ iter psnr time

goldhill256 average,9 1.00 29 25.62 5.30 0.60 26 25.54 6.31

boat256 disk,3 1.00 27 25.49 5.29 0.60 26 25.17 6.60

boat256 motion,15,30 1.00 31 24.75 5.94 0.60 30 24.56 7.53

boat256 gaussian,15,2 1.00 25 24.62 4.69 0.60 22 24.48 5.52

boat256 average,9 1.00 30 24.42 5.50 0.60 26 24.20 6.30

camera256 disk,3 1.00 28 25.67 5.43 0.60 29 25.29 7.38

camera256 motion,15,30 1.00 32 25.04 6.10 0.60 29 24.71 7.28

camera256 gaussian,15,2 1.00 25 24.55 4.63 0.60 23 24.42 5.76

camera256 average,9 1.00 30 24.36 5.43 0.60 27 24.08 6.60

bridge256 disk,3 1.00 28 24.66 5.48 0.60 26 24.51 6.59

bridge256 motion,15,30 1.00 31 23.99 5.96 0.60 31 23.87 7.74

bridge256 gaussian,15,2 1.00 26 23.91 4.95 0.60 23 23.83 5.78

bridge256 average,9 1.00 31 23.50 5.71 0.60 28 23.38 6.80

bowl256 disk,3 1.00 26 28.36 5.01 0.60 23 28.42 5.75

bowl256 motion,15,30 1.00 29 28.05 5.50 0.60 29 28.35 7.10

bowl256 gaussian,15,2 1.00 24 27.68 4.46 0.60 22 27.71 5.48

bowl256 average,9 1.00 28 28.16 5.03 0.60 25 28.42 6.07

barbara512 disk,3 1.00 26 24.47 26.11 0.60 32 24.79 39.66

barbara512 motion,15,30 1.00 30 24.15 29.69 0.60 30 24.43 36.58

barbara512 gaussian,15,2 1.00 23 24.04 22.48 0.60 20 24.02 24.48

barbara512 average,9 1.00 28 23.78 26.67 0.60 25 23.82 29.88

baboon512 disk,3 1.00 28 22.52 28.32 0.60 37 22.49 46.11

baboon512 motion,15,30 1.00 31 22.49 30.94 0.60 31 22.38 37.89

baboon512 gaussian,15,2 1.00 25 21.79 24.17 0.60 22 21.74 27.02

baboon512 average,9 1.00 30 21.59 28.40 0.60 27 21.50 32.44

fingerprint512 disk,3 1.00 30 26.78 30.88 0.60 26 27.17 32.68

fingerprint512 motion,15,30 1.00 34 24.17 33.99 0.60 39 24.17 48.53

fingerprint512 gaussian,15,2 1.00 27 26.49 26.90 0.60 26 26.43 32.15

fingerprint512 average,9 1.00 34 23.38 32.87 0.60 33 23.45 39.87

zebra512 disk,3 1.00 29 26.04 29.01 0.60 28 26.03 34.77

zebra512 motion,15,30 1.00 33 24.62 32.68 0.60 35 24.72 42.26

zebra512 gaussian,15,2 1.00 28 25.16 27.37 0.60 25 25.04 30.69

zebra512 average,9 1.00 32 23.65 30.46 0.60 28 23.55 33.77

Tables 5 and 6 report the number of iterations, the PSNR values, and the CPU times for the
APG algorithm to solve image deblurring problems via (2) and (5), corresponding to the cases
σ = 3 and σ = 5, respectively. As indicated in the tables, it took the AGP algorithm no more
than 40 iterations to solve all the image deblurring problems via (2) or (5), and all the 512× 512
problems are solved in less than 50 seconds. The restored barbara512 images are shown in Figure
3.

20



Figure 3: Image deblurring results when σ = 5 and motion blurring kernel is used.

(a) original: 512× 512 (b) noisy blurred image

(c) deblurred via (2) (d) deblurred via (5)
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Next, we compare the performance of the APG algorithm with the split Bregman algorithm
and PFBS algorithm in [13] on some image deblurring problems. In Table 2, for the image
goldhill256, which is blurred by the 9 × 9 average kernel and contaminated with noise level
σ = 3, the APG algorithm is able to solve the model (2) in 27 iterations and achieved a PSNR
value of 26.45. This result is competitive to the result obtained by the split Bregman algorithm
in [13] applied to the analysis based problem (4), where it took 19 iterations to achieve a PSNR
value of 26.40. The linearized Bregman algorithm applied to the synthesis based problem (3) took
11 iterations to achieve a PSNR value of 26.21. For the problem (2) in the balanced approach, the
PFBS algorithm took 171 iterations to achieve a PSNR value of 26.21. Clearly, the APG algorithm
is much more efficient than the PFBS algorithm for deblurring problems based on the balanced
approach (2).

For the image boat256, which is blurred by the disk kernel of radius 4, and contaminated with
noise level σ = 3 in Table 2, the APG algorithm took 28 iterations to solve the problem (2) and
achieved a PSNR value of 25.46. Our APG algorithm is again competitive to the split Bregman
and linearized Bregman algorithms. In [13], the split Bregman and linearized Bregman algorithms
took 18 and 12 iterations to solve the analysis and synthesis based problems, (4) and (3), and
achieved the PSNR values of 25.30 and 25.32, respectively. For the balanced model (2), the PFBS
algorithm took 155 iterations to solve the problem and obtained a PSNR value of 25.00.

5 Conclusions

In this paper we have considered `1-regularized linear least squares problems arising from frame
based image restoration via the balanced approach. We have proposed an accelerated proximal
gradient algorithm for solving this convex nonsmooth minimization problem and given an estima-
tion for the Lipschitz constant (which determines the convergence speed of our algorithm) of the
gradient of the smooth part of the objective function. This leads to a set of frame based image
restoration algorithms that are applied to solve large-scale instances in several image restoration
problems, such as image deblurring, inpainting, denoising, and cartoon-texture image decompo-
sition. The numerical simulation results show that our algorithms are fast, efficient and robust
for frame based image restoration via the balanced approach. In fact, all the 512 × 512 images
we considered in image inpainting, denoising, deblurring, and cartoon-texture decomposition are
successfully restored in less than 50 seconds on a modest PC.
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