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Alternating Minimization Algorithm for Speckle
Reduction with Shifting Technique

Hyenkyun Woo and Sangwoon Yun*

Abstract—Speckle (multiplicative noise) in synthetic aperture
radar (SAR) makes it difficult to interpret the observed image.
Due to edge preserving feature of total variation (TV), variational
models with TV regularization have attracted much interest
in reducing the speckle. Algorithms based on the augmented
Lagrangian function have been proposed to efficiently solve
speckle reduction variational models with TV regularization. But
these algorithms require inner iterations or inverses involving
the Laplacian operator at each iteration. In this paper, we
adapt Tseng’s alternating minimization algorithm with shifting
technique to efficiently remove the speckle without any inner
iterations or inverses involving the Laplacian operator. The
proposed method is very simple and highly parallelizable, and so
it is very efficient to despeckle huge size SAR images. Numerical
results show that our proposed method outperforms the state-of-
the-art algorithms for speckle reduction variational models with
the TV regularizer in terms of the CPU time.

Index Terms—Convex optimization, Alternating minimization,
Total variation, Speckle, Synthetic aperture radar, Multiplicative
noise, Denoising

I. INTRODUCTION

Synthetic aperture radar on a satellite is very useful for
monitoring the ground of the Earth, irrespective of the weather
condition [10], [28]. The received backscattered signal of SAR
is corrupted by the speckle. We assume that the speckle is fully
developed, i.e., the number of point scatterers in a resolution
cell is large [11], [22]. The intensity of the observed signal
at each pixel is the product of a backscattering coefficient (or
a radar cross section) of the target and the speckle which is
(negative) exponentially distributed with unit mean [31], [42].
Since the standard deviation of the speckle is equal to the
mean of it, the signal-to-noise ratio (SNR) of the observed
signal is only one (i.e. 0 dB) [4]. Unlike the standard optical
imaging system, such as digital camera, the noise level of SAR
is very high and so the speckle in SAR makes it hard to in-
terpret valuable information, such as edges and patterns, from
the observed signal. Therefore, the reduction of the speckle
from the observed signal is a meaningful preprocessing for
applications, such as segmentation and feature extraction.
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Recently, variational models [2], [6], [15], [20], [25], [30],
[37], [39], [45] with the total variation regularizer have at-
tracted much interest in removing the speckle due to edge
preserving feature of TV [34] (many sharp edges exist in
urban areas). Among them, the model based on maximum
a posteriori (MAP) criterion for a logarithmic transformed
image [6], [37] and the I-divergence model [39] are a convex
variational model for speckle reduction. Algorithms based
on the augmented Lagrangian function with nonlinear block-
Gauss-Seidel method have been proposed to efficiently solve
aforementioned convex variational models for speckle re-
duction [6], [39]. However, inner iterations [6] or inverses
involving the Laplacian operator [39] are required depending
on the formulation of the augmented Lagrangian function.
The computational cost of inner iterations and evaluation of
inverses is rather expensive.

In this paper, we propose a general framework, which
combines an alternating minimization algorithm (AMA) [41]
with shifting technique, to solve convex variational models
for speckle reduction. The shifting technique significantly
improves the performance of the AMA for speckle reduction;
see Section III-B. The proposed algorithm has a simple closed
form solution at each iteration. This is a main advantage of our
algorithm over other state-of-the-art algorithms [6], [39] since
no inner iterations and no inverses involving the Laplacian
operator are required. Numerical results show that our pro-
posed algorithm outperforms the state-of-the-art algorithms for
speckle reduction in terms of the CPU time. The peak signal-
to-noise ratio (PSNR) of the proposed algorithm is comparable
to that of the state-of-the-art algorithms.

A. Variational Models for Speckle Reduction

In this subsection, we briefly describe three variational
models for speckle reduction.

Let Ω ⊂ R2, b be the observed radar image intensity. Then
we want to find the unknown true image intensity, i.e. radar
cross section (RCS) ũ : Ω → R+ from the observed image
intensity:

b = ũη, (1)

where η is the speckle (multiplicative noise). Since the noise
level of the speckle is relatively high, the conventional SAR
system reduces the noise variance of the observed signal
by multi-looking process, i.e., averaging the observed signals
from slightly different angles of the same resolution cell (L-
look SAR image). We note that the same effect is achieved by
averaging neighboring pixels in the image domain. It is known
that the probability density function (PDF) of the speckle η
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of the L-look SAR image is given by the following Gamma
distribution:

p(η) =
LLηL−1

Γ(L)
e−LηH(η), (2)

where H is Heaviside function, the mean value of the speckle
η is 1 (E(η) = 1), and the variance of η is 1/L [31]. The
corresponding conditional probability density function of the
observed pixel intensity b given its mean value ũ, which is the
RCS of the target, is

p(b|ũ) = 1

Γ(L)

(
L

ũ

)L

bL−1e−
Lb
ũ .

For the observed image b, a Bayesian analysis using MAP
criterion with the TV regularizer (prior) leads to the following
energy minimization problem [2]:

min
u

∫
Ω

(
log u+

b

u

)
dx+

λ̂

L

∫
Ω

|∇u|dx, (3)

where λ̂ > 0. Unfortunately, this model is nonconvex. In
order to resolve the nonconvexity, logarithmic transformation
is commonly used [6], [25], [37] (i.e. ul = log(u)). Then the
resulting variational model is expressed as follows:

u∗
l = argmin

ul

{∫
Ω

(ul + be−ul) dx+
λ̃

L

∫
Ω

|∇ul| dx

}
,(4)

u∗ = eu
∗
l ,

where λ̃ > 0. Notice that, since the logarithmic function
is monotonically increasing, the location of edges does not
change, and thus the gradient operator is applied to logarithmic
transformed images; see [25] for more details. We call the
above model (4) as the exponential model. But the logarithmic
transformation expands the values in the dark area, while
compressing those in the bright area. Also, the mean value
is biased [24]. Recently, Steidl and Teuber [39] show that the
solution of the classical I-divergence model:

min
u

∫
Ω

(u− b log u) dx+
λ̃

L

∫
Ω

|∇u| dx (5)

is theoretically equal to the solution of the exponential model
(4). The main advantage of the model (5) is that it does not
need a nonlinear transformation. Even though the theoretical
solution of the model (5) is equal to that of the model (4),
the numerical performance of the state-of-the-art algorithm
depends on the model (i.e. model-specific); see Section IV.

B. Overview

The paper is organized as follows. In Section II, we review
recently proposed algorithms. In Section III, we introduce our
proposed method and show its convergence. In Section IV, we
report our numerical results for speckle reduction. We give our
conclusions in Section V.

II. DISCRETE FORMULATION AND RELATED WORKS

In this section, we review recently developed algorithms for
solving speckle reduction models.

For notational convenience, we use vector notation, i.e., the
2D M × N image is columnwise stacked into a vector, for
the rest of the paper. Therefore, the image u is a vector in
U = (0, C]n, where n = MN and C is a positive real
number. The observed noisy image b is a vector in (0, C̃]n

with a positive scalar C̃ ≥ C. The i-th component of u is
denoted by ui. 1 denotes a vector of ones in Rn. In the sequel,
the multiplication and division of vectors are performed in
component-wise. Hence the exponential model (4) and the I-
divergence model (5) are expressed as the following discrete
formulations respectively:

min
u∈logU

〈u+ be−u, 1〉+ λ‖∇u‖, (6)

where λ = λ̃
L and ‖∇u‖ =

∑n
i=1 ‖(∇u)i‖2 with (∇u)i ∈ R2,

min
u∈U

〈u− b log u, 1〉+ λ‖∇u‖. (7)

The Neumann boundary condition is used for the discrete
gradient operator ∇. Note that the adjoint of the gradient
operator ∇ is the negative divergence operator − div, i.e.
〈p, ∇u〉 = 〈−div p, u〉. For more details, see [9].

The following lemma shows that the exponential model (6)
and the I-divergence model (7) have a unique optimal solution.

Lemma II.1. The exponential model (6) and the I-divergence
model (7) have a unique minimizer.

Proof. If we add the indicator function of the bounded
constraint (δŨ (u) = 0 if u ∈ Ũ , δŨ (u) = ∞ if u 6∈ Ũ with
Ũ = logU for (6) and Ũ = U for (7)) to the objective function
of each model ((6) and (7)) and drop the bound constraint, then
the objective function of each reformulation of (6) and (7) is
proper, lower semicontinuous, level bounded [33]. Therefore,
by [33, Theorem 1.9], the set of minimizers of (6) and that of
(7) are nonempty and compact. In addition, each reformulation
of (6) and (7) is strictly convex. Hence the exponential model
(6) and the I-divergence model (7) have a unique minimizer.

The next lemma shows that the minimizer u∗
exp of the

exponential model (6) is bounded below by the minimum
component of log b and above by the maximum component
of log b, and the minimizer u∗

idiv of the I-divergence model
(7) is bounded below by the minimum component of b and
above by the maximum component of b. Its proof is omitted
since the boundedness can be obtained by proceeding as in
the proof of [39, Proposition 3.1].

Lemma II.2. For all i = 1, ..., n,

log bmin ≤ (u∗
exp)i ≤ log bmax, bmin ≤ (u∗

idiv)i ≤ bmax,
(8)

where bmin = mini∈{1,...,n} bi and bmax = maxi∈{1,...,n} bi.

By Lemma II.2, without loss of generality, we assume that
U = [bmin, C]n in the sequel.
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A. Algorithms for the Exponential Model (6)

Bioucas-Dias and Figueiredo [6] proposed to apply the al-
ternating direction method of multipliers (ADMM) [16], [17],
[35] to solve the following reformulation of the exponential
model (6):

u∗
l = argmin

u∈logU

{
〈u+ be−u, 1〉+ λ‖∇d‖

∣∣ d = u
}
, u∗ = eu

∗
l .

(9)
They called this algorithm as the multiplicative image denois-
ing by augmented Lagrangian (MIDAL). The framework of
the MIDAL can be expressed as follows:

uk+1 = argmin
u∈logU

〈u+ be−u, 1〉+ α
2 ||u− dk − pk||22

dk+1 = argmin
d

λ‖∇d‖+ α
2 ||d− uk+1 + pk||22

pk+1 = pk − (uk+1 − dk+1).
(10)

They proposed to use Newton’s method to approximately
obtain uk+1 and to use Chambolle’s algorithm [8] to approx-
imately get dk+1 at each iteration. Note that the first step of
(10) has a closed form solution in terms of the Lambert W
function [6], [12], but it is difficult to evaluate this closed form
solution.

Huang et al. [25] applied a variable splitting to the penalized
formulation of the form (9), i.e., added the penalty term
ρ‖d − u‖22 to the objective function and removed the linear
constraint. The minimizer of the penalized problem converges
to (9) only when ρ approaches infinity. Hence this causes
numerical difficulties since the penalized problem becomes
severely ill-conditioned when ρ is very large. Besides this
drawback, their method requires inner iterations as the MIDAL
does.

B. Algorithms for the I-divergence Model (7)

Steidl and Teuber [39] proposed to compute the minimizer
of the model (7) by applying Douglas-Rachford splitting
technique [16] (or equivalently ADMM [17], [35]). Actually,
they considered to apply the ADMM to the following three
reformulations:

min
u∈U

{
〈u− b log u, 1〉+ λ‖z‖

∣∣ z = ∇u
}
. (11)

min
u∈U

{
〈u− b log u, 1〉+ λ‖∇d‖

∣∣ d = u
}
. (12)

min
u∈U

{
〈u− b log u, 1〉+ λ‖z‖

∣∣∣ ( u
z

)
=

(
I
∇

)
d

}
,

(13)
where I denotes the identity matrix with dimension defined
within the context. But the authors of [39] commented that
the performance of directly applying the framework of the
MIDAL to (12) is poor. They also commented that, if the
discrete cosine transform (DCT) is used, the ADMM for (13)
performs best. Also, this one has the advantage that it requires
no inner iterations which are required for (11) and (12) when
the ADMM is applied. Hence, in the following, we describe
the framework of the ADMM applied for (13). We call it

as the ADMM-III. The framework of the ADMM-III can be
expressed as follows:

dk+1 = argmin
d

∥∥∥∥( pk1
pk2

)
+

(
I
∇

)
d−

(
uk

zk

)∥∥∥∥2
2

uk+1 = argmin
u∈U

{
〈u− b log u, 1〉+ α

2 ‖p
k
1 + dk+1 − u‖22

}
zk+1 = argmin

z

{
λ‖z‖+ α

2 ‖p
k
2 +∇dk+1 − z‖22

}
(

pk+1
1

pk+1
2

)
=

(
pk1
pk2

)
+

(
I
∇

)
dk+1 −

(
uk+1

zk+1

)
.

We can express the above framework in a simplified form:

dk+1 = (I −∆)−1(uk − pk1 − div(zk − pk2))

uk+1 = 1
2

(
pk1 + dk+1 − µ1+

√
(pk1 + dk+1 − µ1)2 + 4µb

)
uk+1 = PU (u

k+1)

zk+1 = shrink(pk2 +∇dk+1, µλ)(
pk+1
1

pk+1
2

)
=

(
pk1
pk2

)
+

(
I
∇

)
dk+1 −

(
uk+1

zk+1

)
,

(14)
where PU (u) denotes the projection of u onto the set U , µ =
1
α , ∆ is the Laplacian operator, and the shrinkage operator is
defined as in [43]:

zi = shrink(ai, c) = max(‖ai‖2 − c, 0)
ai

‖ai‖2
,

where ai ∈ R2 and c ∈ R. We note that the similar approach
as the ADMM-III has been applied for Poisson noise reduction
models [19], [36], [44].

III. ALTERNATING MINIMIZATION ALGORITHM WITH
SHIFTING TECHNIQUE

In this section, we describe an alternating minimization
algorithm (AMA) studied in [41] for solving speckle reduction
models, i.e., the exponential model (6) and the I-divergence
model (7), by using separable convex reformulations. And we
show the convergence of the iterates generated by the AMA
when it is applied to solve reformulations of (6) and (7). Also
we introduce shifting technique to improve the stability and
the performance of the AMA when it is applied for speckle
reduction variational models.

A. Alternating Minimization Algorithm

In this subsection, we describe briefly the AMA for solving
the following separable convex minimization problem:

min
u,z

f(u) + g(z)

subject to ∇u = z, u ∈ Ũ
(15)

where f : Ũ → R is a twice differentiable function,
g(z) = λ‖z‖, and Ũ is a closed convex set in Rn. The
formulation (15) with f(u) = 〈u+be−u, 1〉 and Ũ = logU is
the separable convex reformulation of the exponential model
(6). The formulation (15) with f(u) = 〈u − b log u, 1〉 and
Ũ = U is the separable convex reformulation of the I-
divergence model (7).
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We assume that f is strongly convex with modulus σ > 0
on Ũ , i.e.,

∇2
uf(u) � σI, ∀u ∈ Ũ ,

which means that ∇2
uf(u)− σI is positive semidefinite. This

together with Taylor expansion implies that, for all v, w ∈ Ũ ,

f(w) ≥ f(v) + 〈∇vf(v), w − v〉+ σ

2
‖w − v‖22. (16)

The Lagrangian function and the augmented Lagrangian
function for (15) are respectively

L(u, z, p) := f(u) + g(z) + 〈p, z −∇u〉 (17)

and

Lα(u, z, p) := f(u)+g(z)+〈p, z−∇u〉+α

2
‖z−∇u‖22. (18)

Then the framework of the AMA for solving (15) can be
expressed as follows:

uk+1 = argmin
u∈Ũ

L(u, zk, pk)

zk+1 = argmin
z

Lα(u
k+1, z, pk)

pk+1 = pk + α(zk+1 −∇uk+1),

(19)

where α is a constant satisfying the condition:

0 < α <
2σ

‖∆‖2
. (20)

Note that ‖∆‖2 is the maximum eigenvalue of the Laplacian
operator and the value of ‖∆‖2 is less than or equal to 8 when
the Neumann boundary condition is used [17].

In the following lemma, we show that the functions 〈u +
be−u, 1〉 of (6) and 〈u−b log u, 1〉 of (7) are strongly convex
on logU and U respectively. This lemma will be used in
Lemma III.3. In what follows,

f1(u) := 〈u+ be−u, 1〉 and f2(u) := 〈u− b log u, 1〉.

Lemma III.1. The function f1(u) is strongly convex with
modulus minj bj

C on logU and the function f2(u) is also
strongly convex with modulus minj bj

C2 on U .

Proof. f1(u) is twice differentiable on the set logU and
∇2

uf1(u) = Diag(b ◦ e−u) for all u ∈ logU , where Diag(v)
denotes a diagonal matrix whose diagonal entries consist
of the components of v. Hence ∇2

uf1(u) � σ1I , where
σ1 :=

minj bj
C , for all u ∈ logU . Therefore f1(u) is strongly

convex with modulus σ1 on logU .
f2(u) is twice differentiable on the set U and ∇2

uf2(u) =
Diag(b ◦ u−2) for all u ∈ U . Hence ∇2

uf2(u) � σ2I , where
σ2 :=

minj bj
C2 , for all u ∈ U . Therefore f2(u) is strongly

convex with modulus σ2 on U .
The next lemma shows that the dual problem of the expo-

nential model (6) and that of the I-divergence model (7) have
an optimal solution. In other words, the exponential model (6)
and the I-divergence model (7) have an optimal Lagrange mul-
tiplier vector corresponding to the linear constraint ∇u = z.

Lemma III.2. The dual problem of the exponential model (6)
has an optimal solution and that of the I-divergence model (7)
has an optimal solution.

Proof. The Lagrangian dual function of the exponential model
(6) and that of the I-divergence model (7) are expressed as
follows:

h(p) = inf
u∈Ũ,z

f(u) + g(z) + 〈p, z −∇u〉

= − sup
u∈Ũ

{〈− div p, u〉 − f(u)} − sup
z

{〈−p, z〉 − g(z)}

= −f∗(− div p)− g∗(−p),

where f = fi, i = 1, 2 and f∗(y) := supu∈Ũ{〈y, u〉−f(u)}.
Hence the dual problems of the exponential model (6) and the
I-divergence model (7) have the following formulation:

min
p

f∗(− div p)

subject to ‖p‖∗ ≤ λ,
(21)

where ‖·‖∗ is a dual norm defined by ‖x‖∗ = max‖y‖≤1 x
T y.

By Lemma III.1, f is strongly convex, and hence f∗ is finite,
convex, and differentiable on the set {p|‖p‖∗ ≤ λ} (see [32,
§12 and Theorem 26.3]). Therefore the dual problem (21) has
an optimal solution.

We note that (15) is a linearly constrained convex mini-
mization problem, and so the strong duality (i.e., there is no
duality gap) is satisfied; see also [39].

The next lemma gives two inequalities which are crucial to
prove the convergence of the AMA when it is applied to solve
the exponential model (6) and the I-divergence model (7). The
proof of this lemma is given in Appendix A.

Lemma III.3. Let {uk}, {zk}, {pk} be sequences generated
by the AMA when it is applied to solve the problem (15)
with f = fi for i = 1, 2. Then we have the following two
inequalities

σ‖uk+1 − u∗‖22 − α‖∇uk+1 −∇u∗‖22
≤ 〈pk+1 − p∗, ∇uk+1 −∇u∗〉

−α〈zk+1 − z∗, ∇uk+1 −∇u∗〉, (22)

where (u∗, z∗) is a solution of the problem (15), p∗ is a
solution of its dual problem (21), σ = σi for i = 1, 2, and

〈pk+1 − p∗, zk+1 − z∗〉 ≤ 0. (23)

The following theorem establishes the global convergence
of the AMA when it is applied to solve the problem (15) with
f = fi for i = 1, 2. It can be proved by proceeding as in the
statement of [41, page 134] with Lemma III.3. But we include
the proof for completion.

Theorem III.4. Let {uk}, {zk}, {pk} be sequences generated
by the AMA with 0 < α < σ/4 when it is applied to solve the
problem (15) with f = fi for i = 1, 2. Then uk converges to
the unique optimal solution u∗.

Proof. Let (u∗, z∗) be a solution of the problem (15) and p∗

be a solution of its dual problem (21). By summing (22) and
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(23), using ∇u∗ = z∗, and rearranging, we obtain

σ‖ûk+1‖22 − α‖∇ûk+1‖22 + 〈p̂k+1, zk+1 −∇uk+1〉
+α〈ẑk+1, ∇ûk+1〉

= σ‖ûk+1‖22 − α‖∇ûk+1‖22 +
1

α
〈p̂k+1, pk+1 − pk〉

+α〈ẑk+1, ∇ûk+1〉
≤ 0,

where p̂k+1 = pk+1− p∗, ûk+1 = uk+1−u∗, ẑk+1 = zk+1−
z∗, and the equality follows from pk+1 = pk + α(zk+1 −
∇uk+1). This together with the identities

2〈p̂k+1, pk+1 − pk〉 = ‖pk+1 − pk‖22 + ‖p̂k+1‖22 − ‖p̂k‖22
1

α2
‖pk+1 − pk‖22 = ‖∇ûk+1‖22 + ‖ẑk+1‖22

−2〈ẑk+1, ∇ûk+1〉,

where the second equality uses pk+1 = pk+α(zk+1−∇uk+1)
and ∇u∗ = z∗, implies that

‖p̂k‖22
≥ ‖p̂k+1‖22 − α2‖∇ûk+1‖22 + 2σα‖ûk+1‖22

+α2‖ẑk+1‖22
≥ ‖p̂k+1‖22 + 2α(σ − 4α)‖ûk+1‖22 + α2‖ẑk+1‖22,

where the second inequality uses the Cauchy-Schwarz inequal-
ity and ‖∇‖22 = ‖∆‖2 ≤ 8. Since the choice of k and p∗ are
arbitrary, by the condition 0 < α < σ/4, we obtain that

‖pk − p∗‖22 ≥ ‖pk+1 − p∗‖22
+2α(σ − 4α)‖uk+1 − u∗‖22 + α2‖zk+1 − z∗‖22 (24)

holds for all k = 0, 1, ... and any solution p∗ of the dual
problem (21). Therefore (24) implies that {pk} is bounded,∑∞

k=0 ‖uk − u∗‖22 < ∞ and
∑∞

k=0 ‖zk − z∗‖22 < ∞, so that
uk+1 → u∗, and zk+1 → z∗ = ∇u∗. Hence uk converges to
the unique optimal solution u∗.

B. Shifting Technique

In this subsection, we introduce the shifting technique to
significantly improve the performance of the AMA.

First of all, we describe the framework of the AMA applied
to solve the exponential model (6) and the I-divergence model
(7). In what follows, Ψ(x) = log x for the exponential model
(6) and Ψ(x) = x for the I-divergence model (7).

The framework can be simply expressed as follows:
uk+1 = PΨ(U)

(
Ψ
(

b
1+div pk

))
,

zk+1 = shrink(∇uk+1 − pk

αi
, λ
αi
),

pk+1 = pk + αi(z
k+1 −∇uk+1),

(25)

where 0 < α1 < σ1

4 with σ1 =
minj bj

C for the exponential
model (6) and 0 < α2 < σ2

4 with σ2 =
minj bj

C2 for the
I-divergence model (7). Hence we do not require any inner
iterations and avoid computing any inverses involving the
Laplacian operator. Those are advantages over the state-of-
the-art algorithms such as the MIDAL (10) and ADMM-III
(14) introduced in Section II.

When the AMA is applied to solve the exponential model
(6) and the I-divergence model (7), each strongly convex
modulus σi, which depends on minj bj by Lemma III.1, of the
fidelity terms is crucial for the performance of the proposed
algorithm. But, it is observed that the minimum value of the
measurement data is very close to 0 (minj bj ≈ 0), especially
when L is small. Note that if L = 1 then the PDF of the
speckle is (negative) exponential distribution with unit mean
and unit variance (see (2) and Fig. 1 (c), (d)). Therefore, the
minimum value of the speckled image is overwhelmed by
the speckle, especially when L is small. For example, the
minimum value of the speckled images in Fig. 6 (b) and
(c) is 0. Hence, if we directly apply the AMA to solve the
exponential model (6) or the I-divergence model (7) with
images such as Fig. 6 (b) and (c), then the AMA converges
very slowly.

In order to overcome this drawback, we can add Tikhonov
regularization 1

2δ‖u‖
2
2 with δ > 0 to each fidelity term of

the exponential model (6) and the I-divergence model (7).
But Tikhonov regularization essentially changes variational
models. Also, inner iterations are required for the exponential
model (6) with Tikhonov regularization. We can also overcome
that drawback by adding the proximal term 1

2δ‖u − uk‖22 to
the first step (minimization of the Lagrangian function) of
the AMA (19) [46]. This modified version is also known as
the relaxed AMA (rAMA), which is equivalent to the primal-
dual hybrid gradient (PDHG) algorithm [9], [18], [48]. When
the rAMA is applied to the exponential model (6), the only
difference from the AMA is the first step of the AMA (19),
i.e.,

uk+1 = argmin
u∈logU

〈u+be−u, 1〉+〈pk, zk−∇u〉+ 1

2δ
‖u−uk‖22.

(26)
There is a closed form solution for (26) in terms of the Lambert
W function [6], [12] but it is difficult to evaluate this closed
form solution. Hence we need an algorithm, such as Newton’s
method, to obtain uk+1 as did for the MIDAL (10).

On the contrary, when the rAMA is applied to the I-
divergence model (7), the first step of the rAMA has a simple
closed form solution:

uk+1 = PU

(
p̂k +

√
(p̂k)2 + 4δb

2

)
, (27)

where p̂k = uk − δ(1 + div pk). Hence the rAMA can also
avoid any inner iterations and inversions for the I-divergence
model.

From the Kuhn-Tucker Theorem [32, Corollary 28.3.1], the
optimal solution u∗ is

u∗ = Ψ

(
b

1+ div p∗

)
. (28)

Since ũ ≈ Ψ−1(u∗) where ũ is the original image, the above
equality (28) together with (1) implies that the corresponding
speckle η can be characterized by

η = 1+ div p∗ =
b

Ψ−1(u∗)
.
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Fig. 1: (a) Original image ũ, (b) Histogram of ũ, (c) Speckle
η, (d) Histogram of the speckle η, (e) Speckled shifted image
(ũ+ T1)η, (f) Histogram of the speckled shifted image (ũ+
T1)η, (g) Shifted speckled image ũη+T1, and (h) Histogram
of the shifted speckled image ũη + T1. Note that L = 1,
T = 100, and 〈(ũ+ T1)η, 1〉 = 〈ũη + T1, 1〉 ≈ 227n.

Hence the speckle η satisfies the unit mean property, i.e.
〈η, 1〉/n = 1, since 〈div p∗, 1〉 = 0; see also [39] for the
case of the I-divergence model.

If we shift the speckled image by T (i.e. b̃ = b+T1) then,
due to the unit mean property of the speckle, the following
equality holds:

〈Ψ−1(u∗)η + T1, 1〉 = 〈(Ψ−1(u∗) + T1)η, 1〉.

We note that, even though Ψ−1(u∗)η + T1 and (Ψ−1(u∗) +
T1)η are equal in average, the minimum values of both terms
are different, i.e. the minimum value of b̃ = Ψ−1(u∗)η+T1 is
minj Ψ

−1(u∗
j )ηj + T and the minimum value of (Ψ−1(u∗) +

T1)η is minj(Ψ
−1(u∗

j ) + T )ηj ; see Fig. 1.
In homogeneous region of the original image, we get

the despeckled image Ψ−1(u∗) by the following averaging
process:

Ψ−1(ũ∗) = E[Ψ−1(u∗)η + T1]

= E[(Ψ−1(u∗) + T1)η]

= Ψ−1(u∗) + T1, (29)

where Ψ−1(ũ∗) is the solution for the shifted speckled image
b̃. Note that we assume that Ψ−1(u∗) + T1 and η are
statistically independent [31]. The above equality (29), i.e.,
the invariance with respect to shifting, is satisfied by various
denoising filters [7], [27], [40]. In axiomatic scale-space theory
of Alvarez et al. [1], [3], it is known as the gray-level shift
invariance.

Similar to the results of Lemma II.2, it can be shown that
Ψ−1(ũ∗) satisfies the following bound condition:

Ψ−1(ũ∗) ∈ U + T1.

When λ = 0, Ψ−1(u∗) = Ψ−1(ũ∗) − T1 since Ψ−1(ũ∗) =
PU+T1(b̃) (see Algorithm 1). Hence, we can roughly consider
that the minimizer of the exponential model (6) and that of
the I-divergence model (7) are approximately obtained from
the shifted speckled image b̃ as follows:

Ψ−1(u∗) ≈ Ψ−1(ũ∗)− T1.

The main purpose of the shifting technique is to increase the
modulus σi which is crucial for the performance of the AMA;
see Fig. 3. Since each modulus σi depends on minj bj and
C (see Lemma III.1), we can obtain larger modulus by the
shifting technique (i.e. adding T to the received backscattered
signal of SAR). In other words, for the exponential model (6),

σ1 =
minj bj + T

C + T
.

It is easy to show that σ1 is an increasing function of T ≥ 0
and σ1 → 1 as T → ∞. For the I-divergence model (7),

σ2 =
minj bj + T

(C + T )2
.

It is easy to prove that σ2 has a maximum value at T =
C−2minj bj . Since the given number of looks L is very small
in practical applications [26], [31], we consider that L = 1, 3
(minj bj ≈ 0) in our numerical experiments in Section IV.
Therefore, if we choose T � minj bj then the parameters σ1

and σ2 mainly depend on the shifting parameter T .
In Algorithm 1, we describe formally our proposed speckle

reduction method. We call this speckle reduction method as
Alternating Minimization Algorithm with Shifting Technique
(AMAST).

Algorithm 1 AMAST

Input: Given the noisy image b
Initialization: Let b̃ = b + T1 with T > 0, u−1 = 0,
p−1 = 0, and u0 = argmin

v∈Ψ(U+T1)

‖v −Ψ(b̃)‖22.

while ‖Ψ−1(uk)−Ψ−1(uk−1)‖2 > ε‖Ψ−1(uk−1)‖2 do

Update uk+ 1
2 = Ψ(b̃/(1+ div pk))

Project uk+1 = argmin
v∈Ψ(U+T1)

‖v − uk+ 1
2 ‖22

Update zk+1 = shrink(∇uk+1 − pk

αi
, λ
αi
)

Update pk+1 = pk + αi(z
k+1 −∇uk+1)

end while
SOLUTION : Ψ−1(u∗) = Ψ−1(uk+1)− T1

IV. EXPERIMENTAL RESULTS

In this section, we report numerical experiments
for speckle reduction with twelve test images, which
include eight remote sensing images, in Fig. 2 and
two real SAR images in Fig. 8 (a) and (c) from
http://www.sandia.gov/radar/sar-data.html.
We compare our proposed algorithm with the MIDAL [6],
ADMM-III [39], rAMA (PDHG [48]), and probabilistic patch
based (PPB) filter which is studied by Deledalle et al. [13].
The PPB is a nonlocal means based algorithm for speckle
reduction. Note that there are two versions for the PPB, i.e.
the iterative PPB (PPBit) and non-iterative PPB (PPBnit).

All algorithms are implemented in C language with interface
to MATLAB through the mex function. All runs are performed
on a laptop with Intel i7-640LM CPU (2.13 - 2.93GHz) and
8GB Memory. The Operating System is 64bit Linux. We note
that the MIDAL is implemented by us based on the guideline
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Fig. 2: Dataset for the numerical experiments - twelve different
test images; the size of images varies from 256×256 to 1500×
1500. The grayscale of the images is [0, 255].

Exponential Model I-Divergence Model
L METHOD λ α1 δ T λ α2 δ T

MIDAL 1.0/L 1.0 - 1 - - - -
ADMM-III - - - - 1.0/L 0.01 - 1

1 rAMA 1.0/L 2.0 0.2 1 1.0/L 0.05 10 1
AMAST 1.0/L 0.043 - 30 1.0/L 1.5e-4 - 30

AMAST-a 1.0/L αk
1 - 30 1.0/L αk

2 - 30
MIDAL 1.5/L 1.5 - 1 - - - -

ADMM-III - - - - 1.5/L 0.01 - 1
3 rAMA 1.5/L 2.0 0.2 1 1.5/L 0.05 10 1

AMAST 1.3/L 0.06 - 30 1.3/L 2.4e-4 - 30
AMAST-a 1.3/L αk

1 - 30 1.3/L αk
2 - 30

TABLE I: The parameter values for numerical experiments.

in [6] and the ADMM-III is implemented by us based on the
MATLAB version which is provided by the authors of [39].
The PPB is available from [14].

A. Results on Synthetic Images

In this subsection, we report numerical experiments for
speckle reduction with twelve synthetic images. All the test
images are corrupted by the speckle (L-look SAR image,
(2)). We note that, in practical applications, the given number
of looks L is very small [26], [31]. Therefore, we choose
L = 1, 3. We terminate all the algorithms except the PPB by
the following stopping condition:

||Ψ−1(uk+1)−Ψ−1(uk)||2 ≤ ε||Ψ−1(uk)||2, (30)

where ε = 3× 10−4. Note that the PPB is terminated by the
fixed number of iterations; see [13], [14] for details.

The structure of the proposed method (see Algorithm 1) is
really simple. But we need to compute log for each image
pixel at each iteration for the exponential model. Therefore,
instead of using standard C library, we use Fastlog [38], which
is faster but less accurate. In Table I, we summarize values for
the parameters, i.e. λ, α, δ of all the algorithms except the PPB.

For the MIDAL, α = λL and the number of Newton
iterations is four for the first step in (10) as recommended
in [5], [6]. The split Bregman method [21] is used for the
second step in (10) instead of Chambolle’s algorithm [8] (the

Fig. 3: (a) The comparison of the empirical maximum value
of αi and the theoretical bound σi/4 with respect to T . Note
that the empirical αi is getting close to the theoretical bound
as T increases. (b) PSNR vs. T , (c) #iterations vs. T , and (d)
λ vs. T . The speckled image (minj bj = 0 and C = 255) in
Fig. 6 (b) is used.

split Bregman method is faster than Chambolle’s algorithm)
and the number of iterations for the split Bregman method is
ten.

For the ADMM-III, we set α = 0.01 (this parameter is
optimized for our experiments) and use the DCT to evaluate
the inverses of the operator I −∆.

For the rAMA, we set α = 2.0, δ = 0.2, the number
of Newton iterations is four when uk+1 is updated (26) for
the exponential model, and set α = 0.05, δ = 10 for the I-
divergence model.

For the MIDAL, ADMM-III, and rAMA, we do not need
to shift the speckled image, but the minimum value of it is
zero for some images, such as speckled images in Fig. 6, and
so we shift speckled images by one as did in [20].

For the proposed method, the shifting parameter T is related
to the performance of the algorithm. As shown in Fig. 3, the
algorithm converges very slowly when T is too small. We
note that it takes 5883 iterations to obtain 19.54dB for the
exponential model and takes 7524 iterations to obtain 19.69dB
for the I-divergence model when T = 1 and ε = 10−5 is used
in (30). It is observed that if the value of the parameter T
increases then the number of iterations decreases. The quality
of the recovered image is worse when T is too large. Based
on our numerical experience, it would be better to choose
T ∈ [10, 100]. We note that it would be better to choose small
λ when T is large. From Fig. 3 (a), we can choose a slightly
higher value of αi than the theoretical bound σi/4 without fail
to converge. We choose T = 30 for all experiments based on
Fig. 3 (b). When T = 30, the theoretical upper bound of α1

is 2.6× 10−2 for the exponential model (6) and that of α2 is
0.9×10−4 for the I-divergence model (7). But we can choose
α1 = 4.3× 10−2 and α2 = 1.5× 10−4 for L = 1 and we can
select α1 = 6.0× 10−2 and α2 = 2.4× 10−4 for L = 3; see
Table I.

It is conservative to use the constant step size αi, especially
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Fig. 4: (a) Relative error vs. CPU time for the exponential
model, (b) PSNR vs. CPU time for the exponential model,
(c) Relative error vs. CPU time for the I-divergence model,
and (d) PSNR vs. CPU time for the I-divergence model. Even
though the intermediate relative error of the AMAST-a is larger
than that of the AMAST, the AMAST-a is stable and the total
computational cost of it is reduced (less number of iterations)
when it is compared to that of the AMAST. The speckled
image in Fig. 7 (c) is used.

at the initial stage. Hence we update αi adaptively at the initial
stage to accelerate the convergence of our proposed algorithm;
see Fig. 4. We update αi adaptively as follows:

αk
i = αi × 100.3max((Q−k)/Q,0), (31)

where Q = 150 for L = 1 and Q = 100 for L = 3. We call
this method as “AMAST-a”.

In Fig. 4, we show the relative error and the PSNR (on the
speckled image in Fig. 7 (c)) for each model with respect to
the CPU time. Even though the intermediate relative error of
the AMAST-a is larger than that of the AMAST, the AMAST-
a is stable and the total computational cost of it is reduced
(less number of iterations) when it is compared to that of the
AMAST.

Table II reports the PSNR, the CPU time, and the number
of iterations of the MIDAL, ADMM-III, rAMA, AMAST(-
a), PPBit for solving speckle reduction models with twelve
different images in Fig. 2. We note that the PSNR is defined
by

10 log10

(
2552n

‖ũ−Ψ−1(u∗)‖22

)
where n is the size of the image, ũ is the original image, and
Ψ−1(u∗) is the recovered image. Based on average CPU time,
the AMAST-a is at least two times faster than MIDAL and
rAMA for the exponential model and is faster than ADMM-
III and rAMA for the I-divergence model. The PSNR of
AMAST(-a) is comparable to that of the MIDAL, ADMM-
III, and rAMA. The AMAST-a for the exponential model
is the fastest algorithm. We note that the performance of
the AMAST(-a) does not much depend on the form of the

variational model. The PSNR of the PPBit is better than all
the other algorithms when L = 3. Especially, if the image,
such as the “Barbara” image, has periodic patterns then the
PSNR of the PPBit is at least 1.0dB higher than that of all the
other algorithms. But the PPBit is too slow.

In Fig. 5, we compare the AMAST-a with the MIDAL for
the exponential model (6), the ADMM-III for the I-divergence
model (7), and the nonlocal means based PPB [13] on the
“Barbara” image. The AMAST-a is faster than all the other
algorithms. The PSNR of the AMAST-a is even better than
that of the PPB when L = 1. When L = 3, the PPB recovers
periodic patterns better than all the other algorithms.

In Fig. 6, we compare the AMAST-a with the MIDAL
for the exponential model (6), the ADMM-III for the I-
divergence model (7), and the nonlocal means based PPB on
the “Remote4” image. The AMAST-a is faster than all the
other algorithms. The PSNR of the AMAST-a is comparable
to that of all the other algorithms. Since there is no periodic
pattern, the PSNR of the PPB is less than that of the AMAST-
a. As commented in [13], the PPB well preserves edges,
but small and thin structures, such as cars on the road, are
removed.

In Fig. 7, we compare the AMAST-a and rAMA with the
MIDAL for the exponential model (6), the ADMM-III for
the I-divergence model (7), and the nonlocal means based
PPB on the “Remote8” image. For the exponential model, the
AMAST-a is at least 2.4 times faster than the MIDAL and
rAMA with comparable PSNR. For the I-divergence model,
the proposed algorithm AMAST-a is the fastest algorithm
with better PSNR. The PPB is very slower than all the other
algorithms.

B. Results on real SAR Images

Exponential Model I-Divergence Model
METHOD λ α1 δ T λ α2 δ T

MIDAL 1.5/L 1.5 1 - - - -
ADMM-III - - - - 1.5/L 0.004 - 1

rAMA 1.5/L 2.0 0.2 1 1.5/L 0.05 10 1
AMAST 1.2/L 0.055 - 70 1.2/L 8e-5 - 70

AMAST-a 1.2/L αk
1 - 70 1.2/L αk

2 - 70

TABLE III: The parameter values for numerical experiments
on real SAR images in Fig. 8. Note that we set L=3.5 based
on the estimated number of looks of the images in Fig. 8 (a)
and (c).

In this subsection, we report numerical experiments on
speckle reduction with two real SAR images in Fig. 8 (a)
and (c). The raw data of each real SAR image in Fig. 8 is in
the grayscale [0, 216]. Even though the dynamic range of the
real SAR image is very high, the meaningful information is
usually in a low grayscale region except the bright scatterers.
Therefore we set U = [0, 16×255] (see also [23], [47]). From
homogeneous regions of real SAR images (white squares in
Fig. 8 (a) and (c)), we estimate the equivalent number of looks
(ENL) [31]; ENL=3.47 for (a) and ENL=3.51 for (b) in Fig. 8.
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Exponential model I-Divergence model Nonlocal
MIDAL[6] rAMA AMAST AMAST-a ADMM-III[39] rAMA AMAST AMAST-a PPBit[13]

L IMAGE PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time/Iter PSNR/Time

Barbara 20.8/1.2/17 20.7/1.6/96 20.9/0.8/220 20.9/0.6/154 20.7/0.7/55 20.7/0.7/128 21.0/0.8/246 21.0/0.6/179 20.8/33.0
Boat 21.7/5.5/17 21.7/7.1/98 21.7/3.7/210 21.7/2.5/146 21.7/3.9/54 21.7/3.3/132 21.7/3.8/242 21.7/2.7/175 21.5/102.7

House 22.0/1.2/17 22.1/1.7/97 22.0/0.8/208 22.0/0.5/146 22.1/0.6/51 22.2/0.8/138 22.0/0.8/239 22.0/0.6/174 21.6/33.2
Lena 23.3/5.6/17 23.3/7.1/97 23.3/3.8/215 23.4/2.7/155 23.3/3.9/55 23.3/3.4/130 23.4/4.2/243 23.4/2.9/176 23.4/102.7

Remote1 19.5/4.3/17 19.4/5.7/96 19.5/3.4/236 19.5/2.5/169 19.4/3.3/56 19.4/2.7/124 19.7/3.5/280 19.7/2.7/212 19.3/89.8
1 Remote2 19.7/6.0/17 19.7/7.3/98 19.5/4.2/203 19.5/2.8/142 19.7/4.7/52 19.7/3.8/135 19.6/4.1/239 19.6/3.0/172 19.6/110.7

Remote3 19.4/1.5/17 19.4/2.2/97 19.5/1.1/211 19.5/0.7/146 19.4/0.9/53 19.4/1.0/129 19.6/1.0/244 19.6/0.8/177 19.1/41.7
Remote4 19.6/5.9/18 19.5/6.9/95 19.5/4.3/241 19.5/3.1/175 19.5/3.7/52 19.5/3.2/124 19.8/4.3/267 19.8/3.3/200 19.2/102.7
Remote5 18.8/5.8/18 18.7/6.5/95 18.6/4.6/256 18.6/3.4/194 18.7/4.2/59 18.7/3.0/113 18.9/4.6/302 18.9/3.6/235 18.6/101.5
Remote6 21.0/13.7/17 20.9/16.4/97 20.8/8.8/224 20.8/6.1/157 20.9/13.2/57 20.9/7.9/130 21.1/9.9/264 21.1/7.4/198 20.5/235.2
Remote7 21.9/25.3/17 21.7/24.9/96 21.8/15.5/230 21.8/10.8/161 21.8/24.2/56 21.7/12.2/126 22.2/16.7/262 22.2/12.7/198 21.2/359.0
Remote8 22.0/55.6/17 21.9/60.1/97 22.3/31.6/219 22.3/22.5/154 21.9/65.4/53 21.9/29.4/131 22.6/34.5/250 22.6/25.3/183 21.4/842.3
Average 20.8/11.0/17 20.8/12.3/97 20.8/6.9/223 20.8/4.9/158 20.8/10.7/54 20.8/6.0/128 21.0/7.4/257 21.0/5.5/190 20.5/179.6

Barbara 22.2/1.3/17 22.1/1.1/62 22.1/0.5/120 22.1/0.3/86 22.1/0.4/33 22.1/0.5/83 22.2/0.5/139 22.2/0.4/98 23.4/34.3
Boat 23.9/5.7/17 23.9/4.5/62 23.7/2.1/114 23.7/1.7/94 23.9/2.3/32 23.8/2.2/84 23.7/2.2/132 23.7/1.6/93 23.9/103.3

House 24.5/1.2/17 24.6/1.1/64 24.3/0.5/111 24.4/0.4/96 24.6/0.4/31 24.6/0.5/89 24.3/0.4/127 24.3/0.4/93 24.7/34.3
Lena 25.6/5.7/17 25.6/4.5/62 25.4/2.1/115 25.4/1.8/90 25.6/2.4/33 25.5/2.2/84 25.4/2.2/135 25.4/1.6/95 26.1/103.3

Remote1 21.1/4.5/18 21.1/3.5/60 21.0/1.9/124 21.0/1.5/93 21.1/1.9/32 21.1/1.7/78 21.1/2.0/150 21.1/1.4/104 21.0/90.6
3 Remote2 21.2/6.4/18 21.2/4.8/63 21.0/2.3/112 21.0/1.9/90 21.2/2.8/32 21.2/2.4/85 21.0/2.4/128 21.0/1.7/91 21.2/111.4

Remote3 20.8/1.6/18 20.7/1.4/61 20.7/0.6/118 20.7/0.5/85 20.7/0.5/32 20.7/0.6/80 20.8/0.6/138 20.8/0.5/97 20.6/42.9
Remote4 21.6/5.9/18 21.6/4.3/60 21.5/2.3/122 21.5/1.8/91 21.6/2.2/31 21.6/2.1/80 21.6/2.4/146 21.6/1.7/102 21.3/103.4
Remote5 20.7/5.8/18 20.7/4.1/59 20.5/2.4/128 20.5/1.8/92 20.7/2.5/34 20.7/1.9/70 20.6/2.6/161 20.6/1.9/116 21.0/102.3
Remote6 22.7/14.8/18 22.7/10.0/61 22.5/5.1/122 22.5/3.8/93 22.7/7.7/33 22.7/5.1/83 22.6/5.6/147 22.6/4.1/103 22.4/235.1
Remote7 23.8/26.5/18 23.8/16.1/61 23.7/8.5/122 23.7/6.6/93 23.8/14.2/33 23.8/8.3/80 23.8/9.7/147 23.8/7.3/109 23.7/360.5
Remote8 24.2/55.6/17 24.2/37.5/61 24.2/18.6/121 24.2/15.6/101 24.2/42.4/32 24.2/19.0/84 24.4/20.2/140 24.3/14.8/102 23.9/838.0
Average 22.7/11.2/18 22.7/7.7/61 22.6/3.9/119 22.6/3.1/92 22.7/6.6/32 22.7/3.9/82 22.6/4.2/141 22.6/3.1/100 22.8/180.0

TABLE II: Comparison of the performance of the AMAST(-a) and rAMA with that of the MIDAL for the exponential model,
the ADMM-III for the I-divergence model, and the PPBit. The proposed method, AMAST-a outperforms all the other algorithms
in terms of the CPU time, while achieving comparable PSNR. The AMAST-a for the exponential model is the fastest algorithm
for speckle reduction.

Therefore, we set L=3.5.1 In Table III, we report parameters
used to despeckle real SAR images in Fig. 8 (a) and (c). For
the AMAST-a, we use the adaptive update scheme in (31) with
Q = 100.

The iterative probabilistic patch based filter (PPBit) seems to
remove the speckle in homogeneous regions well and preserve
edges and small bright scatterers well. But it attenuates thin
strip lines in Fig. 8 (a). It seems that the visual quality of
the AMAST-a is similar to that of the rAMA, MIDAL, and
ADMM-III. The AMAST-a is at least two times faster than the
rAMA, MIDAL, and ADMM-III and at least 37 times faster
than the PPBit.

Note that, for better visualization, all images in Fig. 8 are
displayed after square root transformation is applied.

V. CONCLUSION

In this paper, we have proposed the alternating minimization
algorithm with shifting technique (AMAST(-a)) for convex
speckle reduction variational models - the exponential model
and the I-divergence model - and have shown that our algo-
rithm outperforms the rAMA, MIDAL, ADMM-III, and PPBit
for speckle reduction in terms of the CPU time. The AMAST-
a for the exponential model is the fastest method. Also, the
AMAST(-a) obtains comparable PSNR when it is compared
to the MIDAL, rAMA for the exponential model (6) and
the ADMM-III, rAMA for the I-divergence model (7). We

1Note that real SAR images in Fig. 8 are the absolute values of the complex
raw data and it is theoretically known that the PDF of the speckle is the
Rayleigh distribution rather than the Gamma distribution. But we empirically
find that the Gamma distribution with L = 3.5 does better approximate the
true noise distribution. See also [47].

note that the AMAST(-a) has computational advantages over
other state-of-the-art algorithms, since no inner loops and no
computation of inverses involving the Laplacian operator are
required.

Our proposed algorithm can be applied to solve speckle
reduction variational models with different regularizers other
than local total variation (for example, nonlocal regularization
[13], [29], [39], [46]). When we update values u, z, p by using
(25), each component of those values can be evaluated in par-
allel. Therefore, the AMAST(-a) can be effectively accelerated
on parallel hardware, and hence can be efficiently applied for
huge size SAR images. These can be future research topics.

APPENDIX A
PROOF OF LEMMA III.3

Let (u∗, z∗) be a solution of the problem (15) and p∗ be a
solution of its dual problem (21). Then (u∗, z∗, p∗) is a saddle
point of the Lagrangian function (17) and so we have

L(u∗, z∗, p) ≤ L(u∗, z∗, p∗) ≤ L(u, z, p∗) ∀u ∈ Ũ , z, p.
(32)

By the convexity of Ũ , the first step in (19), and the second
inequality of (32), we have that

f(uk+1)− 〈pk, ∇uk+1〉 ≤ f(ũ∗
β)− 〈pk, ∇ũ∗

β〉,
f(u∗) + g(z∗) + 〈p∗, z∗ −∇u∗〉 ≤ f(ũ∗

1−β) + g(z∗)

+〈p∗, z∗ −∇ũ∗
1−β〉,

where ũ∗
β = (1 − β)uk+1 + βu∗ and ũ∗

1−β = βuk+1 + (1 −
β)u∗ with 0 < β ≤ 1. Adding the above two inequalities and
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rearranging yield that

f(uk+1)− f(ũ∗
β) + f(u∗)− f(ũ∗

1−β)

≤ β〈pk − p∗, ∇uk+1 −∇u∗〉.

This together with (16) and Lemma III.1 implies that

β〈∇uf(ũ
∗
β)−∇uf(ũ

∗
1−β), u

k+1 − u∗〉+ σβ2‖uk+1 − u∗‖22
≤ β〈pk − p∗, ∇uk+1 −∇u∗〉.

This together with the mean value theorem, the convexity of
Ũ , the strong convexity of f , and the fact that ũ∗

β − ũ∗
1−β =

(1− 2β)(uk+1 − u∗) yields that

(β − 2β2)σ‖uk+1 − u∗‖22 + σβ2‖uk+1 − u∗‖22
= (β − β2)σ‖uk+1 − u∗‖22
≤ β〈pk − p∗, ∇uk+1 −∇u∗〉.

By dividing both sides of the above inequality by β and taking
β → 0, we have that

σ‖uk+1 − u∗‖22 ≤ 〈pk − p∗, ∇uk+1 −∇u∗〉. (33)

By subtracting α‖∇uk+1−∇u∗‖22 from both sides, we obtain
that

σ‖uk+1 − u∗‖22 − α‖∇uk+1 −∇u∗‖22
≤ 〈pk − p∗, ∇uk+1 −∇u∗〉 − α‖∇uk+1 −∇u∗‖22
= 〈pk+1 − p∗, ∇uk+1 −∇u∗〉

−α〈zk+1 − z∗, ∇uk+1 −∇u∗〉,

where the equation uses ∇u∗ = z∗ and the third step in (19),
which is (22).

Next, by the second step in (19), we have that

g(zk+1) + 〈pk, zk+1〉+ α

2
‖zk+1 −∇uk+1‖22

≤ g(z̃∗β) + 〈pk, z̃∗β〉+
α

2
‖z̃∗β −∇uk+1‖22

where z̃∗β = (1 − β)zk+1 + βz∗ with 0 < β ≤ 1. Using the
convexity of g with z̃∗β = (1− β)zk+1 + βz∗ and rearranging
terms in the above inequality yield that

g(zk+1)− (1− β)g(zk+1)− βg(z∗)

≤ β〈pk, z∗ − zk+1〉
+β
(
〈α∇uk+1, zk+1 − z∗〉+ 〈αzk+1, z∗ − zk+1〉

)
+
α

2

(
β2‖z∗‖22 − 2β2〈zk+1, z∗〉+ β2〈zk+1, zk+1〉

)
= β〈pk+1, z∗ − zk+1〉+ αβ2

2
‖zk+1 − z∗‖22, (34)

where the equality uses the third step in (19).
By the second inequality of (32), we have that

f(u∗) + g(z∗) + 〈p∗, z∗ −∇u∗〉
≤ f(u∗) + g(z̃∗1−β) + 〈p∗, z̃∗1−β −∇u∗〉,

where z̃∗1−β = βzk+1 + (1− β)z∗ with 0 < β ≤ 1. Using the
convexity of g and rearranging terms in the above inequality
yield that

g(z∗)− βg(zk+1)− (1− β)g(z∗) ≤ β〈p∗, zk+1 − z∗〉. (35)

Adding (34) and (35) and rearranging imply that

β〈pk+1 − p∗, zk+1 − z∗〉 ≤ αβ2

2
‖zk+1 − z∗‖22.

Dividing both sides of the above inequality by β and taking
β → 0 yield (23).

ACKNOWLEDGMENTS

We thank anonymous referees for their detailed comments
and suggestions to improve the paper. Also, we thank G. Steidl
and T. Teuber for providing us the code (ADMM-III) in [39].

REFERENCES

[1] L. ALVAREZ, P.L. LIONS, AND J.M. MOREL, “Axioms and fundamen-
tal equations of image processing”, Arch. Rational Mech. Anal., 123
(1993) pp. 199-257.

[2] G. AUBERT AND J.F. AUJOL, “A variational approach to remove
multiplicative noise”, SIAM J. Appl. Math., 68 (2008), pp. 925-946.

[3] G. AUBERT P. KORNPROBST, “Mathematical problems in Image Pro-
cessing”, Second Edition, Springer-Verlag, 2006.

[4] R. BAMLER, “Principles of synthetic aperture radar”, Surveys in Geo-
physics, 21 (2000), pp. 147-157.

[5] J.M. BIOUCAS-DIAS AND M.A.T. FIGUEIREDO, “Total variation
restoration of speckled images using a split-Bregman algorithm”, Proc.
the IEEE ICIP’09, 2009.

[6] J.M. BIOUCAS-DIAS AND M.A.T. FIGUEIREDO, “Multiplicative noise
removal using variable splitting and constrained optimization”, IEEE
Trans. Image Processing, 19 (2010), pp. 1720-1730.

[7] T.F. CHAN, S. OSHER, AND J. SHEN, “The digital TV filter and
nonlinear denoising”, IEEE Trans. Image Processing, 10 (2001), pp.
231-241.

[8] A. CHAMBOLLE, “An algorithm for total variation minimization and
applications”, J. Math. Imaging and Vis., 20 (2004), pp. 89-97.

[9] A. CHAMBOLLE AND T. POCK, “A first-order primal-dual algorithm for
convex problems with applications to Imaging”, J. Math. Imaging and
Vis., 40 (2011), pp. 120-145.

[10] M. CHENEY AND B. BORDEN, Fundamentals of Radar Imaging, SIAM,
2009.

[11] M. J. COLLINS AND J.M. ALLAN, “Modeling and Simulation of SAR
Image Texture”, IEEE Trans. Geoscience and Remote Sensing, 47
(2009), pp. 3530-3546.

[12] R. CORLESS, G. GONNET, D. D. HARE, D. JEFFREY, AND D. KNUTH,
“On the Lambert W function”, Advances in Computational Mathematics,
5 (1996), pp. 329-359.

[13] C.A. DELEDALLE, L. DENIS, AND F. TUPIN, “Iterative weighted
maximum likelihood denoising with probabilistic patch-based weights”,
IEEE Trans. Image Processing, 18 (2009), pp. 2661-2672.

[14] “The probabilistic patch-based filter”, Available: http://
perso.telecom-paristech.fr/˜deledall/ppb.php.

[15] L. DENIS, F. TUPIN, J. DARBON, AND M. SIGELLE, “SAR Image
regularization with fast approximation discrete minimization”, IEEE
Trans. Image Processing, 18 (2009), pp. 1588-1600.

[16] J. ECKSTEIN AND D. P. BERTSEKAS, “On the Douglas-Rachford split-
ting method and the proximal point algorithm for maximal monotone
operators”, Math. Prog., 55 (1992), pp. 293-318.

[17] E. ESSER, “Applications of Lagrangian-based alternating direction
methods and connections to split Bregman”, Preprint, 2009.

[18] E. ESSER, X. ZHANG, AND T. CHAN, “A general framework for a class
of first order primal-dual algorithms for convex optimization in imaging
science”, SIAM J. Imaging Sci., 3 (2010), pp. 1015-1046.

[19] M.A.T. FIGUEIREDO AND J.M. BIOUCAS-DIAS, “Restoration of Pois-
sonian images using alternating direction optimization”, IEEE Trans.
Image Processing, 19 (2010), pp. 3133-3145.

[20] S. DURAND, J. FADILI, AND M. NIKOLOVA, “Multiplicative noise
removal using L1 fidelity on frame coefficients”, J. Math Imaging Vis.,
36 (2010) pp. 201-226.

[21] T. GOLDSTEIN AND S. OSHER, “The split Bregman method for L1
regularized problems”. SIAM J. Imaging Sci., 2 (2009), pp. 323-343.

[22] J. GOODMAN, “Some fundamental properties of speckle”, J. Optical
Society of America, 66 (1976), pp. 1145-1150.

[23] W. H. HENSLEY AND A. W. DOERRY, “Viewing GFF format SAR
images with Matlab”, Sandia Report, (2006).



IEEE TRANS. ON IMAGE PROCESSING, VOL. X, NO. X, XXX XXXX 11

[24] D. HOEKMAN, “Speckle ensemble statistics of logarithmically scaled
data”, IEEE Trans. Geoscience and Remote Sensing, 29 (1991), pp. 180-
182.

[25] Y. M. HUANG, M. K. NG, AND Y. W. WEN, “A new total variation
method for multiplicative noise removal”, SIAM J. Imaging Sci., 2
(2009), pp. 20-40.

[26] C. R. JACKSON AND J. R. APEL, Synthetic Aper-
ture Radar Marine User’s Manual, 2005, Available at
http://www.sarusersmanual.com.

[27] D.T. KUAN, A.A. SAWCHUK, T.C. STRAND, AND P. CHAVEL, “Adap-
tive noise smoothing filter for images with signal-dependent noise”,
IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), pp. 165-177.

[28] S. LEE, “Overview of KOMPSAT-5 program, mission, and system”,
IEEE Int. Geoscience and Remote Sensing Symposium, (2010), pp. 797-
800.

[29] B. LU, L. ZHANG, AND F. XING, “SAR speckle reduction based on
nonlocal means method”, Second Int. Conf. on Computer modeling and
simulation, (2010), pp. 156-159.

[30] F. LI, M. K. NG, AND C. SHEN, “Multiplicative noise removal with
spatially varying regularization parameters”, SIAM J. Imaging Sci., 3
(2010), pp. 1-20.

[31] C. OLIVER AND S. QUEGAN, Understanding Synthetic Aperture Radar
Imaging, SciTech Publishing, 2004.

[32] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press,
Princeton, 1970.

[33] R.T. ROCKAFELLAR AND R.J.-B. WETS, Variational Analysis,
Springer-Verlag, New York, 1998.

[34] L. RUDIN, S. OSHER, AND E. FATEMI, “Nonlinear total variation based
noise removal algorithms”, Physica D, 60 (1992), pp. 259-268.

[35] S. SETZER, “Operator splitting, Bregman methods and frame shrinkage
in image processing”, Int. J. Comput. Vision, 92 (2011), pp. 265-280.

[36] S. SETZER, G. STEIDL, AND T. TEUBER, “Deblurring Poissonian
images by split Bregman techniques”, J. Vis. Commun. Image R., 21
(2010), pp. 193-199.

[37] J. SHI AND S. OSHER, “A nonlinear inverse scale space method for a
convex multiplicative noise model”, SIAM J. Imaging Sci., 1 (2008), pp.
294-321.

[38] L. DE SORAS, Fast log function, http://www.flipcode.com
/archives/Fast_log_Function.shtml.

[39] G. STEIDL AND T. TEUBER, “Removing multiplicative noise by
Douglas-Rachford splitting”, J. Math Imaging Vis., 36 (2010), pp. 168-
184.

[40] C. TOMASI AND R. MANDUCHI, “Bilateral filtering for gray and color
images”, Proc. of the IEEE Int. Conf. on Computer Vision, Jan. 1998,
pp. 839-846.

[41] P. TSENG, “Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities”, SIAM J. Control and
Optimization, 29 (1991), pp. 119-138.

[42] M. TUR, C. CHIN, AND J.W. GOODMAN, “When is speckle noise
multiplicative”, Applied Optics, 21 (1982), pp. 1157-1159.

[43] Y. WANG, J. YANG, W. YIN, AND Y. ZHANG, “A new alternating
minimization algorithm for total variation image reconstruction”, SIAM
J. Imaging Sci., 1 (2008), pp. 248-272.

[44] C. WU, J. ZHANG, AND X.-C. TAI, “Augmented Lagrangian method for
total variation restoration with non-quadratic fidelity”, Inverse Problems
and Imaging, 5 (2011), pp. 237-261.

[45] L. XIAO, L.L. HUANG, AND Z.H. WEI, “A Weberized total variation
regularization-based image multiplicative noise removal algorithm”,
EURASIP J. Adv. in Signal Processing, 2010, Article ID 490384, 15
pages, doi:10.1155/2010/490384

[46] S. YUN AND H. WOO, “Linearized proximal alternating minimization
algorithm for motion deblurring by nonlocal regularization”, Pattern
Recognition, 44 (2011), pp. 1312-1326.

[47] S. YUN AND H. WOO, “A new multiplicative denoising variational
model based on m-th root transformation”, submitted to IEEE Trans.
on Image Processing, 2011.

[48] M. ZHU AND T. CHAN, “An efficient primal-dual hybrid gradient
algorithm for total variation image restoration”, UCLA CAM-Report,
2008.

Hyenkyun Woo He is a senior researcher at De-
partment of Mathematical Sciences in Seoul Na-
tional University, Seoul, Korea. He received the B.S.
degree in electrical engineering from the Sogang
University, Seoul, Korea, in 1996, and the M.S., and
Ph.D degrees in mathematics from the Yonsei Uni-
versity, Seoul, Korea in 1998, and 2007, respectively.
He was with IDIS and Samsung Electronics and
developed several video surveillance systems, and
image processing algorithms. His research interests
include image and video signal processing, and

inverse problems.

Sangwoon Yun He is in with Department of Math-
ematics Education in Sung Kyun Kwan University.
He received Ph.D. in Mathematics from Univer-
sity of Washington in 2007. His research interest
is convex and nonsmooth optimization, variational
analysis, image processing.



IEEE TRANS. ON IMAGE PROCESSING, VOL. X, NO. X, XXX XXXX 12

Fig. 5: Performance comparison of the AMAST-a with the MIDAL [6] for the exponential model, with the ADMM-III [39]
for the I-divergence model, and the nonlocal means based PPB [13]. The given numbers are PSNR/CPU time. The proposed
algorithm AMAST-a is faster than all the other algorithms. The PSNR of the AMAST-a is even better than that of the PPB
when L = 1. When L = 3, the PPB recovers periodic patterns better than all the other algorithms.
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Fig. 6: Performance comparison of the AMAST-a with the MIDAL for the exponential model, with the ADMM-III for the
I-divergence model, and the nonlocal means based PPB. The given numbers are PSNR/CPU time. The proposed method
AMAST-a is faster than all the other algorithms. The PSNR of the AMAST-a is comparable to that of all the other algorithms.
Since there is no periodic pattern, the PSNR of the PPB is less than that of the AMAST-a. As commented in [13], the PPB
well preserves edges, but small and thin structures, such as cars on the road, are removed.
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Fig. 7: Performance comparison of the AMAST-a and rAMA with the MIDAL for the exponential model, the ADMM-III for
the I-divergence model, and the nonlocal means based PPB. The given numbers are PSNR/CPU time. For the exponential
model, the proposed algorithm AMAST-a is at least 2.4 times faster than the MIDAL and rAMA with comparable PSNR. For
the I-divergence model, the AMAST-a is the fastest algorithm with better PSNR.
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Fig. 8: Performance comparison of the AMAST-a with the MIDAL for the exponential model, with the ADMM-III for the I-
divergence model, and with the nonlocal means based PPBit. The given numbers are CPU time/#iterations. From homogeneous
regions of real SAR images (white squares), we estimate the equivalent number of looks; ENL=3.47 for (a) and ENL=3.51
for (b). Therefore, we set L=3.5. Note that (a) and (c) are the absolute values of the complex raw data and the PDF of the
speckle is theoretically the Rayleigh distribution. But we empirically find that the Gamma distribution with L = 3.5 does better
approximate the true noise distribution.
The PPBit seems to remove the speckle in homogeneous regions well and preserve edges and small bright scatterers well. But
it attenuates thin strip lines in (a). It seems that the visual quality of the AMAST-a is similar to that of the rAMA, MIDAL,
and ADMM-III. The proposed algorithm AMAST-a is at least two times faster than the rAMA, MIDAL, and ADMM-III and at
least 37 times faster than the PPBit. Note that, for better visualization, all images are displayed after square root transformation
is applied.


