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1 Introduction

It is well-known that undirected graphical models offer a way to describe and explain the

relationships among a set of variables, a central element of multivariate data analysis. Given

n variables drawn from a Gaussian distributionN (0, C) for which the true covariance matrix

C Â 0n is unknown, we wish to estimate C from a sample covariance matrix S º 0n by

maximizing its log-likelihood. Of particular interest is imposing a certain sparsity on the

inverse covariance matrix C−1. This is known as the covariance selection (estimation)

problem. Many authors have studied a variety of approaches to estimate sparse inverse

covariance matrix. d’Aspremont, Banerjee, and El Ghaoui [5] formulated this covariance

selection problem as following:

max
X∈Sn

log det X − 〈S, X〉 − ρCard(X)

s.t. αI ¹ X ¹ βI,

where Card(X) is the cardinality of X, i.e., the number of nonzero components in X,

ρ > 0 is a given parameter controlling the trade-off between log-likelihood and cardinality,

0 ≤ α < β ≤ ∞ are bounds on the eigenvalues of the solution. The cardinality penalty term

makes this problem a NP-hard combinatorial problem. Hence they used an argument that

is often used in regression techniques, such as the Lasso [23], when sparsity of the solution

is a concern, to relax Card(X) to
∑n

i,j=1 |Xij|. Hence the above problem can be relaxed as

the following problem:

max
X∈Sn

log det X − 〈S, X〉 − ρ
∑n

i,j=1 |Xij|
s.t. αI ¹ X ¹ βI.

(1)

They proposed a first order method developed in [15] for solving (1) and a block coordinate

descent method, in which a solution of a box constrained quadratic program with n − 1

variables is required at each iteration, for solving (1) and its dual problem when α = 0 and

β = +∞:
min
X∈Sn

− log det X − n

s.t. |(X − S)ij| ≤ ρij, i, j = 1, ..., n,
(2)

where ρij = ρ for all i, j = 1, ..., n. The box constrained quadratic program arises because

only one column (and corresponding row) is updated at each iteration, and is solved by

using either interior point method or the optimal first-order method in [14]. Yuan and Lin

[29] proposed a covariance selection estimation problem (1) with α = 0, β = +∞, and the

term
∑n

i,j=1 |Xij| replaced by
∑

i6=j |Xij|. They proposed the interior point method developed

in [26]. Recently, Lu [11] proposed to solve (1) by applying a variant of Nesterov’s smooth

method [15] to the following generalization of (2):

min
Z∈Sn

h∗(Z)

s.t. |(Z − S)ij| ≤ ρ, i, j = 1, ..., n,
(3)
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where h∗ denotes the conjugate function of h(X) =
{− log det X if αI ¹ X ¹ βI;

∞ else
. Since

h is strictly convex, h∗ is essentially smooth [19, Section 26] with domh∗ = Sn if β < ∞
and domh∗ = Sn

++ if β = ∞. Moreover, h∗(Z) and ∇h∗(Z) can be easily calculated

from the spectral decomposition of Z. The saddle function format for the problem (1) is

different from the one considered in [5]. Friedman, Hastie, and Tibshirani [8] considered

the dual problem (2) and proposed a block coordinate descent method, in which a solution

of an `1-penalized linear least squares problem with n − 1 variables, known as Lasso, is

required at each iteration. This `1-penalized linear least squares problem is a dual problem

of the box constrained quadratic program in [5] and is solved by using coordinate descent

method proposed in [7]. Dahl, Vandenberghe, and Roychowdhury [4] studied the maximum

likelihood estimation of a Gaussian graphical model whose conditional independence is

known and it can be formulated as follows:

max
X∈Sn

log det X − 〈S, X〉
s.t. Xij = 0 ∀(i, j) ∈ V,

(4)

where V is a collection of all pairs of conditional independent nodes. We note that (i, i) 6∈ V

for 1 ≤ i ≤ n and (i, j) ∈ V if and only if (j, i) ∈ V . They proposed Newton’s method and

the preconditioned conjugate gradient method by using efficient methods for evaluating the

gradient and Hessian of the log-likelihood function when the underlying graph is nearly-

chordal.

During the writing of this paper, Scheinberg and Rish [22] proposed a greedy algorithm

based on a coordinate ascent method for solving (1) with α = 0 and β = +∞. Yuan [30]

proposed an alternating direction method for solving (1). Lu [12] considered estimating

sparse inverse covariance of a Gaussian graphical model whose conditional independence

is assumed to be partially known in advance. This can be formulated as the following

constrained `1-penalized maximum likelihood estimation problem:

max
X∈Sn

log det X − 〈S, X〉 −∑
(i,j)6∈V ρij|Xij|

s.t. Xij = 0 ∀(i, j) ∈ V,
(5)

where V is as in (4) and {ρij}(i,j)6∈V is a set of nonnegative parameters. He proposed

adaptive first-order (adaptive spectral projected gradient and adaptive Nesterov’s smooth)

methods for the problem (5). His methods consist of solving a sequence of the following

unconstrained penalization problem:

max
X∈Sn

log det X − 〈S, X〉 −∑

i,j

ρij|Xij| (6)

with a set of moderate penalty parameters {ρij}(i,j)∈V that are adaptively adjusted until a

desired approximate solution is found. The dual problem of (5) is given as follows:

min
X∈Sn

− log det X − n

s.t. |(X − S)ij| ≤ υij, i, j = 1, ..., n,
(7)
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where υij = ρij for all (i, j) 6∈ V and υij = ∞ for all (i, j) ∈ V . Recently, Wang, Sun,

and Toh [27] proposed a Newton-CG primal proximal point algorithm (which employs the

essential ideas of the proximal point algorithm, the Newton method, and the preconditioned

conjugate gradient solver) for solving log-determinant optimization problems that include

the problems (1) with α = 0 and β = +∞, (2), (4), (5), and (7).

In this paper, we consider a more general unconstrained nonsmooth convex optimization

problem of the form:

min
X∈<m×n

F (X) := f(X) + P (X), (8)

where f is real-valued and convex smooth (i.e., continuously differentiable) on its domain

domf = {X ∈ <m×n | f(X) < ∞}, which is assumed to be open, and P : <m×n → (−∞,∞]

is a proper, convex, lower semicontinuous (lsc) [19] function. Of particular interest is when

P is separable, i.e.,

P (X) =
n∑

i,j=1

Pij(Xij), (9)

for some proper, convex, lsc functions Pij : < → (−∞,∞]. We assume that domF 6= ∅.
More generally, P can be block-separable; see (28). The problem (1) with α = 0 and

β = +∞ is a special case of (8) and (9) with

f(X) = − log det X + 〈S, X〉, Pij(Xij) = ρ|Xij|, X ∈ Sn. (10)

The problem (2) is a special case of (8) and (9) with

f(X) = − log det X, Pij(Xij) =
{

0 if Lij ≤ (X − S)ij ≤ Uij;

∞ else,
, X ∈ Sn, (11)

where Lij = −ρ and Uij = ρ for i, j = 1, . . . , n. The problem (4) is a special case of (8) and

(9) with

f(X) = − log det X + 〈S, X〉, Pij ≡ 0 ∀(i, j) 6∈ V, Pij ≡ δ{0} ∀(i, j) ∈ V, X ∈ Sn,

where δQ denotes the indicator function for a set Q. The problem (5) is a special case of

(8) and (9) with

f(X) = − log det X+〈S, X〉, Pij = ρij|Xij| ∀(i, j) 6∈ V, Pij ≡ δ{0} ∀(i, j) ∈ V, X ∈ Sn.

(12)

The problem (7) is a special case of (8) and (9) with

f(X) = − log det X, Pij(Xij) =
{

0 if Lij ≤ (X − S)ij ≤ Uij;

∞ else,
, X ∈ Sn, (13)

where Lij = −ρij, Uij = ρij for all (i, j) 6∈ V and Lij = −∞, Uij = ∞ for all (i, j) ∈ V .

In all five examples, domf = Sn
++. The problem (3) is a special case of (8) and (9) with

f ≡ h∗, Pij given by (11), Z ∈ Sn.
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Recently, Tseng and Yun [25] proposed a block coordinate gradient descent method

for minimizing the sum of a smooth function and a (block) separable convex function on

<n. This method approximates the smooth function by a quadratic function at the current

iterate, applies block coordinate descent to generate a feasible descent direction, and then

updates the current iterate by performing an inexact line search along the descent direction.

Numerical performances in [25, 31] suggest that the BCGD method can be effective in

practice. We extend this method to solve (8) and, in particular, the covariance selection

problems (1) with α = 0 and β = +∞, (5) with ρij > 0 for (i, j) 6∈ V , and the dual

problems (2), (7) with ρij > 0 for (i, j) 6∈ V . As in [25], we choose the coordinate block

according to a Gauss-Seidel rule and choose the stepsize according to an Armijo-like rule;

see (17) and (19). We show that each cluster point of the iterates generated by this method

is a stationary point of F ; see Theorem 3.1. We next show that if a local Lipschizian error

bound on the distance to the set of stationary points holds, then the iterates generated by

the BCGD method converge at least linearly to a stationary point of F ; see Theorem 3.2.

We also give the general iteration complexity bound for the BCGD method; see Theorem

4.1. When the BCGD method is applied to solve (5), we do not need to solve a sequence

of the unconstrained penalization problem (6) as did in [12]. This is the advantage of our

method over the adaptive first-order methods in [12].

The paper is organized as follows. In Section 2, we describe the BCGD method and

discuss how to choose the coordinate block that ensures the convergence. In Section 3,

we establish the global convergence and the asymptotic convergence rate of the BCGD

method. In Section 4, we analyze the complexity of the BCGD method. In Section 5,

for the regularized negative log-likelihood problem, i.e., f(X) = − log det(X) + 〈S, X〉, we

study the boundedness of the level set associated with the initial point and the Lipschitz

continuity of ∇f on this level set. Also we analyze the complexity of the BCGD method

when it is applied to solve the regularized negative log-likelihood problem. When specialized

to the problem (1) with α = 0 and β = +∞, (2), (5) with ρij > 0 for (i, j) 6∈ V , and (7) with

ρij > 0 for (i, j) 6∈ V , the resulting worst-case complexity bound for achieving ε-optimality is

O(n5/ε) operations. In Section 6, we describe an implementation of the BCGD method and

report our numerical experience in solving large-scale covariance selection problems with or

without constraints on randomly generated instances. Also, we compare our method with

first-order methods studied in [11, 12]. In Section 7, we discuss conclusions and extensions.

In our notation, <n denotes the space of n-dimensional real column vectors, T denotes

transpose. <m×n denotes the space of m × n matrices. Sn denotes the space of n × n real

symmetric matrices, Sn
++ denotes the space of n×n real symmetric positive definite matrices.

N = {1, . . . , n} × {1, . . . , n}. For any m× n real matrices X and Y , 〈X, Y 〉 = trace(XY T )

and ‖X‖F =
√
〈X, X〉. For simplicity, we write ‖X‖ = ‖X‖F . For any J ⊆ N , XJ denotes

the submatrix of X comprising Xij, (i, j) ∈ J (we note that we can not use XJ for all

subset J of N ) and ΠJ (X) denotes the element of <m×n obtained by setting the entries of

X not indexed by J to zero. A linear mapping H : <m×n → <m×n is self-adjoint if H = H∗,
where H∗ denotes the adjoint of H, and is positive definite if 〈X,H(X)〉 > 0 whenever
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X 6= 0. The identity linear mapping is denoted by I. We let λmin(H) = min‖X‖=1〈X,H(X)〉,
λmax(H) = max‖X‖=1〈X,H(X)〉. The identity matrix is denoted by I and the matrix of zero

entries is denoted by 0. For any n × n real symmetric matrices A and B, we write A º B

(respectively, A Â B) to mean that A − B is positive semidefinite (respectively, positive

definite). Unless otherwise specified, {Xk} denotes the sequence X0, X1, ... and, for any

integer ` ≥ 0, {Xk+`}K denotes a subsequence {Xk+`}k∈K with K ⊆ {0, 1, ...}.

2 Block Coordinate Gradient Descent Method

In this section, we describe the block coordinate gradient descent method for solving (8).

In our method, we use the gradient ∇f to build a quadratic approximation of f and apply

coordinate descent to generate an improving direction D at X. More precisely, we choose

a nonempty index subset J ⊆ N and a self-adjoint positive definite linear mapping H :

<m×n → <m×n (approximating the Hessian ∇2f(X)), and move X along the direction

D = DH(X;J ), where

DH(X;J ) := arg min
D∈<m×n

{
〈∇f(X), D〉+

1

2
〈D,H(D)〉+ P (X + D) | Dij = 0, ∀(i, j) 6∈ J

}
.

(14)

By the separability of P , if X ∈ Sn and H(D) = (HijDij)ij where H ∈ Sn with Hij > 0 for

all i, j ∈ {1, ..., n}, then (DH(X;N ))ij, the (i, j)th entry of DH(X;N ), is easily computable.

• If P ≡ 0, then (DH(X;N ))ij = − (∇f(X))ij

Hij
.

• If P is given by (9) with Pij in (11), then (DH(X;N ))ij = mid
{
Lij −Xij,− (∇f(X))ij

Hij
, Uij −Xij

}
.

• If P (X) =
∑

i,j ρij|Xij|, then (DH(X;N ))ij = −mid
{

(∇f(X))ij−ρij

Hij
, Xij,

(∇f(X))ij+ρij

Hij

}
.

[mid{a, b, c} denotes the median (mid-point) of a, b, c.] Hence (14) decomposes into sub-

problems that can be solved in parallel.

Using the convexity of P and a similar argument as in the proof of [25, Lemma 1], we

have the following lemma showing that DH(X;J ) is a descent direction at X whenever

DH(X;J ) 6= 0.

Lemma 2.1 For any X ∈ domF , nonempty J ⊆ N and self-adjoint positive definite H,

let D = DH(X;J ). Then

〈∇f(X), D〉+ P (X + D)− P (X) ≤ −〈D,H(D)〉. (15)

F (X + αD) ≤ F (X) + α
(
〈∇f(X), D〉+ P (X + D)− P (X)

)
+ o(α) ∀α ∈ (0, ᾱ], (16)

for any ᾱ ∈ (0, 1] satisfying X + ᾱD ∈ domf .
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We now describe formally the block coordinate gradient descent method.

BCGD method:
Choose X0 ∈ domF . For k = 0, 1, 2, ..., generate Xk+1 from Xk according to the

iteration:

Step 1. Choose a nonempty J k ⊆ N and a self-adjoint positive definite Hk :

<m×n → <m×n.

Step 2. Solve (14) with X = Xk, J = J k and H = Hk to obtain Dk =

DHk(Xk;J k).

Step 3. Choose a stepsize αk > 0 and set Xk+1 = Xk + αkDk.

For the stepsize rule, we use the following adaptation of the Armijo rule based on Lemma

2.1. This rule is simple and requires only function evaluation.

Armijo rule:

Choose αk
init

> 0 such that Xk + αk
init

Dk ∈ domf and let αk be the largest element of

{αk
init

βj}j=0,1,... satisfying

F (Xk + αkDk) ≤ F (Xk) + αkσ∆k, (17)

where 0 < β < 1, 0 < σ < 1, and

∆k := 〈∇f(Xk), Dk〉+ P (Xk + Dk)− P (Xk). (18)

Here ∆k may be interpreted as the predicted descent when moving from Xk to Xk +Dk.

Since Hk is positive definite, we see from Lemma 2.1 that, for some ᾱk ∈ (0, 1] satisfying

Xk + ᾱkDk ∈ domf ,

F (Xk + αkDk) ≤ F (Xk) + α∆k + o(α) ∀α ∈ (0, ᾱk],

and ∆k ≤ −〈Dk,Hk(Dk)〉 < 0 whenever Dk 6= 0. Since 0 < σ < 1, this shows that αk given

by the Armijo rule is well defined and positive. And, by choosing αk
init

based on the previous

stepsize αk−1, the number of function evaluations can be kept small in practice.

For convergence of the BCGD method, the index subset J k must be chosen judiciously.

As in [25], global convergence can be ensured by choosing J k in a Gauss-Seidel manner,

i.e., J 0,J 1, ... collectively cover N for every T consecutive iterations, where T ≥ 1 (also

see [24] and references therein), i.e.,

J k ∪ J k+1 ∪ · · · ∪ J k+T−1 = N , k = 0, 1, ... (19)

For our convergence rate analysis, we need a more restrictive choice of J k, specifically, there

exists a subsequence T ⊆ {0, 1, ...} such that

0 ∈ T , N =
(
disjoint union of J k,J k+1, ...,J τ(k)−1

)
∀k ∈ T , (20)
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where τ(k) := min{k′ ∈ T | k′ > k}. For example, for T = {0, n, 2n, 3n, . . .}, we have

τ(0) = n.

When we apply the BCGD method to solve the covariance selection problems (1), (2),

(4), (5), and (7), f(X) has the form − log det X + 〈S,X〉 with X ∈ Sn and S º 0n.

The specific choices of J k are guided by the need to efficiently compute 〈∇f(Xk), Dk〉
and F (Xk + αkDk) in the Armijo stepsize rule. Hence we want to avoid computing

det(Xk + αkDk) and ∇f(Xk) = (Xk)−1 from scratch since it would require O(n3) oper-

ations. Following the proposal in [5], we will choose J k = {(i, j), (j, i) | i = 1, ..., n} where

j = k + 1(mod n) for the Gauss-Seidel rule (19) and J k = {(i, j), (j, i) | i = 1, ..., j} where

j = k + 1(mod n) for the restricted Gauss-Seidel rule (20). By these choices, we update

only one column (and corresponding row) of X at each iteration. Then det(Xk + αkDk)

can be computed in O(n2) operations by using the Schur complement of (Xk + αkDk)/j/j,

where (Xk + αkDk)/j/j denotes the matrix produced by removing the jth column and row,

in Xk + αkDk. Similarly, (Xk+1)−1 can be updated in O(n2) operations from (Xk)−1 using

the Sherman-Woodbury-Morrison formula; see Section 6 for details.

3 Global Convergence and Asymptotic Convergence

Rate

In this section we analyze the global convergence and asymptotic convergence rate of the

BCGD method, analogous to those obtained in [25], when the (restricted) Gauss-Seidel rule

is used.

We say that X ∈ <m×n is a stationary point of F if X ∈ domF and F ′(X; D) ≥ 0 for all

D ∈ <m×n. The following lemma gives an alternative characterization of stationarity. Its

proof is nearly identical to [25, Lemma 2] and is omitted.

Lemma 3.1 For any self-adjoint positive definite H. An X ∈ domF is a stationary point

of F (X) if and only if DH(X;N ) = 0.

Lemma 3.1 suggests that ‖DH(X;N )‖ acts as a “residual” function, measuring how

close X comes to being stationary for F . In what follows, we denote

X 0 := {X | F (X) ≤ F (X0)}, X 0
% :=

(
X 0 + %B

)
∩ domP, (21)

for some % > 0, where B := {X ∈ <m×n | ‖X‖ ≤ 1} is the unit ball in <m×n. For our

convergence rate analysis and complexity analysis (Theorems 3.2 and 4.1), we will make the

following assumption on f .

Assumption 1 There exist L ≥ 0 and % > 0 such that X 0
% ⊆ domf and

‖∇f(Y )−∇f(Z)‖ ≤ L‖Y − Z‖ ∀Y, Z ∈ X 0
% . (22)
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Assumption 1 is satisfied by (3) with L = β2 and % = ∞ when h∗ is replaced by f , P

is given by (9) with Pij as in (11), and β < ∞. This is because h is strongly convex with

modulus 1/β2 so ∇h∗ is Lipschitz continuous on Sn with constant β2; see [9]. It is also

satisfied by (10), (11), (12), (13) with L = 1/((1−ω)2ζ2), % = ωζ for 0 < ω < 1 when there

exists a positive constant ζ such that ζI ¹ X for all X ∈ X 0; see Section 5.

Since <m×n can be identified with <mn, by using Assumption 2, we will extend the global

convergence and the linear convergence rate analysis of the BCGD method in [25, Theorem

1 and 2] to the problem (8). However, unlike in [25], ∇f need not be Lipschitz continuous

on domP , and so some care is needed to choose the stepsize α so that X + αDH(X;J ) is

in X 0
% ⊆ domf . Next, we have a lemma concerning stepsizes satisfying the Armijo descent

condition (17). Its proof is omitted since it is almost identical to that of [25, Lemma 5(b)].

Lemma 3.2 Under Assumption 1, for any X ∈ X 0, nonempty J ⊆ N , and self-adjoint

positive definite H with λmin(H) ≥ λ > 0, we have that D = DH(X;J ) satisfies the descent

condition

F (X + αD)− F (X) ≤ σα∆, (23)

for any σ ∈ (0, 1) and any 0 ≤ α ≤ min{1, %/‖D‖, 2λ(1− σ)/L}, where ∆ = 〈∇f(X), D〉+
P (X + D)− P (X),

We say that P is block-separable with respect to nonempty J if

P (X) = PJ (XJ ) + PJ c(XJ c) ∀X ∈ <m×n

for some proper, convex, lsc function PJ and PJ c .

The next theorem establishes, under the following reasonable assumption on our choice

of Hk, the global convergence of the BCGD method using the generalized Guass-Seidel rule

(19) to choose {J k}.

Assumption 2 λ ≤ λmin(Hk) and λmax(Hk) ≤ λ̄ for all k, where 0 < λ ≤ λ̄.

The next assumption is a bound assumption on the level set X 0. It will be needed to

prove part (d) of the next theorem.

Assumption 3 There exists a positive constant Λ such that ‖X‖ ≤ Λ for all X ∈ X 0.

Note that Assumption 3 is satisfied for the problems (10), (11), (12) with ρii > 0 for

i = 1, ..., n, and (13); see Section 5.

Theorem 3.1 Let {Xk}, {Hk}, {Dk} be sequences generated by the BCGD method under

Assumption 2, where {αk} is chosen by the Armijo rule with infk αk
init

> 0. Then the

following results hold.

9



(a) {F (Xk)} is nonincreasing and ∆k given by (18) satisfies

−∆k ≥ 〈Dk,Hk(Dk)〉 ≥ λ‖Dk‖2 ∀k, (24)

F (Xk+1)− F (Xk) ≤ σαk∆k ≤ 0 ∀k. (25)

(b) If {Xk}K is a convergent subsequence of {Xk}, then {αk∆k} → 0 and {Dk}K → 0.

(c) If {J k} is chosen by the Gauss-Seidel rule (19), P is block-separable with respect to J k

for all k, and supk αk < ∞, then every cluster point of {Xk} is a stationary point of

F .

(d) If Assumptions 1 and 3 are satisfied, then we have infk αk > 0. Furthermore, if

limk→∞ F (Xk) > −∞, then {∆k} → 0 and {Dk} → 0.

Proof. (a), (b), and (c) can be proved by using nearly identical argument as used in the

proof of [25, Theorem 1 (a), (b), (e)].

(d) Since αk is chosen by the Armijo rule (17), either αk = αk
init

or else, by Lemma 3.2,

αk/β > min{1, %/‖Dk‖, 2λ(1− σ)/L}. Since P is convex, there is a constant Mp such that

λ

4
‖X‖2 + P (X) ≥ Mp, ∀X ∈ domP. (26)

By (14),

0 ≥ 〈∇f(Xk), Dk〉+
1

2
〈Dk,Hk(Dk)〉+ P (Xk + Dk)− P (Xk)

≥ 〈∇f(Xk), Dk〉+
λ

2
‖Dk‖2 − λ

4
‖Xk + Dk‖2 − P (Xk) + Mp

≥ λ

4
‖Dk‖2 − (‖∇f(Xk)‖+

λ

2
‖Xk‖)‖Dk‖ − λ

4
‖Xk‖2 + f(Xk)− F (X0) + Mp, (27)

where the second inequality uses Assumption 2, (26) and the third inequality uses the

Cauchy-Schwarz inequality and (25). By the continuity of ∇f and f , and Assumption 3,

there are constants M1, M2, and M3 such that ‖∇f(Xk)‖ ≤ M1, ‖Xk‖ ≤ M2, f(Xk) ≥ M3

for all k ≥ 0. Then, by (27),

λ

4
‖Dk‖2 − (M1 +

λ

2
M2)‖Dk‖ − λ

4
M2

2 + M3 + Mp − F (X0) ≤ 0

Hence there is a positive constant ϑ such that {‖Dk‖} ≤ ϑ. This together with infk αk
init

> 0

implies infk αk > 0. If limk→∞ F (Xk) > −∞ also, then this and (25) imply {∆k} → 0,

which together with (24) imply {Dk} → 0.

Theorem 3.1 readily extends to any stepsize rule that yields a larger descent than the

Armijo rule at each iteration.
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Corollary 3.1 Theorem 3.1 still holds if in the BCGD method the iterates are instead

updated by Xk+1 = Xk + α̃kDk, where α̃k ≥ 0 satisfies F (Xk + α̃kDk) ≤ F (Xk + αkDk) for

k = 0, 1, . . . and {αk} is chosen by the Armijo rule with infk αk
init

> 0.

Proof. It is readily seen using F (Xk+1) ≤ F (Xk + αkDk) that Theorem 3.1(a) holds. The

proofs of Theorem 3.1(b), (c) and (d) remain unchanged.

For example, α̃k may be generated by the minimization rule:

α̃k ∈ arg min
α≥0

{F (Xk + αDk) | Xk + αDk ∈ domF}

or by the limited minimization rule:

α̃k ∈ arg min
0≤α≤s

{F (Xk + αDk) | Xk + αDk ∈ domF},

where 0 < s < ∞. The latter stepsize rule yields a larger descent than the Armijo rule with

αk
init

= s. We will use the limited minimization rule in our numerical test on the covariance

selection problem of the dual form (2) and (7); see Section 6.

The next theorem establishes the convergence rate of the BCGD method under Assump-

tion 2 and the following assumption that is analogous to [25, Assumption 2 (a)]. (Since f and

P are convex, the assumption that is analogous to [25, Assumption 2 (b)] is not required.)

In what follows, X̄ denotes the set of stationary points of F , and

dist(X, X̄ ) = min
X̄∈X̄

‖X − X̄‖ ∀X ∈ <m×n.

Assumption 4 X̄ 6= ∅ and, for any ξ ≥ minXF (X), there exist scalars τ > 0 and ε̄ > 0

such that

dist(X, X̄ ) ≤ τ‖DI(X;N )‖ whenever F (X) ≤ ξ, ‖DI(X;N )‖ ≤ ε̄.

Assumption 4 is a local Lipschitzian error bound assumption, saying that the distance from

X to X̄ is locally in the order of the norm of the residual at X; see [13, 25] and references

therein. By applying similar argument used in the proof of [25, Theorem 4] to the problem

(8), we obtain the following sufficient conditions for Assumption 4 to hold.

Proposition 3.1 Suppose that X̄ 6= ∅ and any of the following conditions hold.

C1 f is strongly convex and Assumption 1 is satisfied.

C2 f(X) = g(E(X)) + 〈Q,X〉 for all X ∈ <m×n, where E : <m×n → <m×n is a linear map-

ping, Q ∈ <m×n, and g is differentiable on domg, g is strongly convex and Assumption

1 is satisfied with replacing f by g and X 0 by any level set of g. P is polyhedral.
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C3 f(X) = maxY ∈Y{〈(E(X)), Y 〉 − g(Y )} + 〈Q,X〉 for all X ∈ <m×n, where Y is a poly-

hedral set in <m×n, E : <m×n → <m×n is a linear mapping, Q ∈ <m×n, and g is

differentiable on domg, Assumption 1 is satisfied with replacing f by g and X 0 by any

level set of g. P is polyhedral.

Then Assumption 4 holds.

The next theorem establishes, under Assumptions 1, 2, 3 and 4, the linear rate of

convergence of the BCGD method using the restricted Gauss-Seidel rule (20) to choose

J k, assuming that P is block-separable, i.e.,

P (X) =
τ(k)−1∑

`=k

PJ `(XJ `) ∀X ∈ <m×n, k ∈ T (28)

for some proper, convex, lsc function PJ ` . This assumption is satisfied when P (X) =∑
J ωJ ‖XJ ‖, with ωJ > 0 and J = {(i, j) ∈ N | i ∈ N1, j ∈ N2} for some N1,N2 ⊆

{1, ..., n}, or P (X) =
∑
J ωJ ‖XJ ‖∗, with ωJ > 0, ‖·‖∗ denote the nuclear norm, i.e., the sum

of singular values [18] and J = {(i, j) ∈ N | i ∈ N1, j ∈ N2} for some N1,N2 ⊆ {1, ..., n}.
We omit the proof of the theorem since it is nearly identical to that of [25, Theorem 2].

In what follows, by Q-linear and R-linear convergence, we mean linear convergence in the

quotient and the root sense, respectively [17, Chapter 9].

Theorem 3.2 Under Assumption 1, let {Xk}, {Hk}, {Dk} be sequences generated by the

BCGD method satisfying Assumption 2, where {J k} is chosen by the restricted Gauss-Seidel

rule (20) with T ⊆ {0, 1, ...} and assuming (28). Then the following results hold.

(a) ‖DI(Xk;N )‖ ≤ supj αjCrk for all k ∈ T , where rk =
∑τ(k)−1

`=k ‖D`‖ and C > 0 depends

on n, L, λ, λ̄.

(b) If Assumption 3 is satisfied and F satisfies Assumption 4, {αk} is chosen by the Armijo

rule with supk αk
init ≤ 1 and infk αk

init > 0, then either {F (Xk)} ↓ −∞ or {F (Xk)}T
converges at least Q-linearly and {Xk}T converges at least R-linearly.

4 Iteration Complexity

In this section we give an upper bound on the number of iterations for the BCGD method

to achieve ε-optimality. For simplicity, we give the proof for the case when {J k} is chosen

by the restricted Gauss-Seidel rule (20). Extension of this result to the generalized Gauss-

Seidel rule (19) can be achieved; see Remark 1. In what follows, d·e denotes the ceiling

function and τ i(0) = τ(τ i−1(0)) for a positive integer i and τ 0(0) = 0.
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Theorem 4.1 Under Assumptions 1, 3 and assuming also infX F (X) > −∞, let {Xk},
{Hk}, {Dk} be sequences generated by the BCGD method under Assumption 2, where {J k}
is chosen by the restricted Gauss-Seidel rule (20) with T ⊆ {0, 1, ...} and assuming (28),

and {αk} is chosen by the Armijo rule with infk αk
init > 0 and supk αk

init < ∞. Suppose

Xk + min{αk
init,

αk

β
}Dk ∈ X 0

% for all k and we define ek := F (Xk) − infX F (X). Let tk =

max{i | τ i(0) ≤ k}, C1 = 2C0

σ
, C2 =

√
2λ̄C1r

0, C0 = 1
α

+
sup` α` max` {∑τ(`)−1

i=`
Li}

λ2 with

the Lipschitz constant Li of ∇f(·)J i over X 0, r0 := maxX

{
dist(X, X̄ ) | X ∈ X 0

}
, α :=

min{infk αk
init, β min{1, 2λ(1−σ)/L, %/ supk ‖Dk‖}}. If

√
ek − eτ(k) ≥ C2/C1, ∀ k > 0, then

ek ≤ ε whenever

tk ≥
⌈
ln

(
e0

ε

)
/ ln

(
1− 1

2C1

)−1
⌉

;

otherwise, ek ≤ ε whenever

tk ≥
⌈
4C2

2

ε

⌉
.

Proof. By (20), N is the disjoint union of J k,J k+1, . . . ,J τ(k)−1. This together with (18)

and (28) yields that

τ(k)−1∑

i=k

∆i ≤ min
D∈<m×n

{
〈G̃k, D〉+

1

2
〈D, H̃k(D)〉+ P (Xk + D)− P (Xk)

}
, (29)

where G̃k :=
∑τ(k)−1

i=k ΠJ i(Gi), Gi := ∇f(X i), and H̃k : <m×n → <m×n is the self-adjoint

positive definite mapping satisfying

〈D, H̃k(D)〉 =
τ(k)−1∑

i=k

〈ΠJ i(D),Hi(ΠJ i(D))〉 ∀D ∈ <m×n. (30)

Letting

D̃k := DH̃k(Xk;N ), ∆̃k := 〈Gk, D̃k〉+ P (Xk + D̃k)− P (Xk),

we then have from (29) that

τ(k)−1∑

i=k

∆i ≤ 〈G̃k, D̃k〉+
1

2
〈D̃k, H̃k(D̃k)〉+ P (Xk + D̃k)− P (Xk)

= ∆̃k + 〈G̃k −Gk, D̃k〉+
1

2
〈D̃k, H̃k(D̃k)〉

≤ ∆̃k

2
+ ‖G̃k −Gk‖‖D̃k‖ ≤ ∆̃k

2
+

1

λ
‖G̃k −Gk‖2 +

λ

4
‖D̃k‖2,

where the second inequality uses Lemma 2.1 and the third inequality uses ab ≤ (a2 + b2)/2

for any a, b ∈ <. Also, letting Li be the Lipschitz constant of ∇f(·)J i over X 0, we have

‖G̃k −Gk‖2 =
τ(k)−1∑

i=k

‖ΠJ i(∇f(X i))− ΠJ i(∇f(Xk))‖2
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≤
τ(k)−1∑

i=k

Li‖X i −Xk‖2 ≤
τ(k)−1∑

i=k

Li

i−1∑

j=k

(αj)2‖Dj‖2 ≤
τ(k)−1∑

i=k

Li

i−1∑

j=k

(αj)2 |∆j|
λ

=
τ(k)−2∑

j=k




τ(k)−1∑

i=j+1

Li


 (αj)2 |∆j|

λ
≤


sup

`
α`

τ(k)−1∑

i=k

Li




τ(k)−1∑

j=k

αj |∆j|
λ

≤

sup

`
α` max

`





τ(`)−1∑

i=`

Li








τ(k)−1∑

j=k

αj |∆`|
λ

.

Using the above two inequalities and −|∆i| = ∆i ≥ αi∆i/α (since αi ≥ α by Lemma 3.2),

we have

0 ≤ ∆̃k

2
+

λ

4
‖D̃k‖2 − C0

τ(k)−1∑

j=k

αj∆j ≤ 1

4
∆̃k − C0

τ(k)−1∑

j=k

αj∆j, (31)

where C0 := 1
α
+

sup` α` max` {∑τ(`)−1

i=`
Li}

λ2 , and the second inequality uses−∆̃k ≥ 〈D̃k, H̃k(D̃k)〉 ≥
λ‖D̃k‖2 (it can be seen using Assumption 2 that λ ≤ λmin(H̃k) ≤ λmax(H̃k) ≤ λ̄).

By Fermat’s rule [20, Theorem 10.1],

D̃k ∈ arg min
D

〈Gk + H̃k(D̃k), D〉+ P (Xk + D).

Let X̄k ∈ X̄ satisfy ‖Xk − X̄k‖ = dist(Xk, X̄ ). Then

∆̃k = 〈Gk + H̃k(D̃k), D̃k〉+ P (Xk + D̃k)− P (Xk)− 〈H̃k(D̃k), D̃k〉
≤ 〈Gk + H̃k(D̃k), X̄k −Xk〉+ P (X̄k)− P (Xk)− λmin(H̃k)‖D̃k‖2

≤ f(X̄k)− f(Xk) + 〈H̃k(D̃k), X̄k −Xk〉+ P (X̄k)− P (Xk)− λ‖D̃k‖2

= F (X̄k)− F (Xk) + 〈H̃k(D̃k), X̄k −Xk〉 − λ‖D̃k‖2,

where the second inequality uses the convexity of f , Assumption 2, and (30). Thus

F (Xk)− F (X̄k) ≤ 〈H̃k(D̃k), X̄k −Xk〉 − ∆̃k − λ‖D̃k‖2

≤ ‖H̃k(D̃k)‖‖X̄k −Xk‖ − ∆̃k − λ

2
‖D̃k‖2

≤
√

λ̄〈H̃k(D̃k), D̃k〉r0 − ∆̃k − λ

2
‖D̃k‖2

≤
√

λ̄|∆̃k| r0 − ∆̃k − λ

2
‖D̃k‖2

≤
√√√√√−4λ̄C0

τ(k)−1∑

j=k

αj∆j r0 − 2C0

τ(k)−1∑

j=k

αj∆j, (32)

where the third inequality uses the self-adjoint positive definite property of H̃k and the last

inequality uses (31).
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Finally, we have from the Armijo rule (17) that

F (Xj+1)− F (Xj) ≤ σαj∆j, j = k, k + 1, . . . , τ(k)− 1.

Summing this over j = k, k + 1, ..., τ(k)− 1 yields that

F (Xτ(k))− F (Xk) ≤ σ
τ(k)−1∑

j=k

αj∆j. (33)

Combining (33) with (32) yields

ek ≤ C2

√
ek − eτ(k) + C1(e

k − eτ(k)),

where C1 := 2C0

σ
and C2 :=

√
2λ̄C1r

0. Consider the two cases: (i)
√

ek − eτ(k) ≥ C2/C1 (ii)√
ek − eτ(k) ≤ C2/C1. In case (i), we have ek ≤ 2C1(e

k− eτ(k)) and rearranging terms yields

eτ(k) ≤
(
1− 1

2C1

)
ek.

This implies that if
√

ek − eτ(k) ≥ C2/C1, ∀k ≥ 0 then ek ≤ ε whenever

e0
(
1− 1

2C1

)tk

≤ ε

or, equivalently,

tk ≥
⌈
ln

(
e0

ε

)
/ ln

(
1− 1

2C1

)−1
⌉

.

In case (ii), we have ek ≤ 2C2

√
ek − eτ(k) and rearranging terms yields

eτ(k) ≤ ek − (ek)2

4C2
2

. (34)

We may assume ek > 0, ∀k ≥ 0 (otherwise, ek ≤ ε). Then we consider the reciprocals

ξj = 1/ej. By (34) and ek > 0, we have 0 ≤ ek/(4C2
2) < 1. Thus (34) yields

ξτ(k) − ξk ≥ 1

ek(1− ek/(4C2
2))

− 1

ek
=

1

4C2
2 − ek

≥ 1

4C2
2

.

This implies that if
√

ek − eτ(k) ≤ C2/C1, ∀k ≥ 0 then ξτ tk (0) = ξ0+
∑tk−1

i=0 (ξτ i+1(0)−ξτ i(0)) ≥
tk

4C2
2

and consequently

eτ tk (0) =
1

ξτ tk (0)
≤ 4C2

2

tk
.

It follows that ek ≤ ε whenever

tk ≥
⌈
4C2

2

ε

⌉
.
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Remark 1 By (19), J k ∪ J k+1 ∪ · · · ∪ J k+T−1 = N for k = 0, 1, .... Let J k1 = J k

and J ki = J k+i−1 − (J k ∪ J k+1 ∪ · · · ∪ J k+i−2) for i = 2, . . . , T . By excluding empty

sets and renumbering if necessary, there is a set {J k1 , . . . ,J kr(k)} such that r(k) ≤ T ,

J k1 ∪ J k2 ∪ · · · ∪ J kr(k) = N , J ki ∩ J kj = ∅ for i 6= j, and J ki 6= ∅ for all i = 1, . . . , r(k).

Also, for each i = 1, . . . , r(k), there is the smallest integer qk
i such that J ki ⊆ J qk

i and

k ≤ qk
i < k + T . Then qk

i 6= qk
j if i 6= j. Hence if we assume that

P (X) =
r(k)∑

`=1

PJ k` (XJ k` ) ∀X ∈ <m×n, k ≥ 0. (35)

instead of assuming (28). Then, since ∆k ≤ 0 for all k ≥ 0,

k+T−1∑

i=k

∆i ≤
r(k)∑

i=1

∆qk
i .

By the choice of J ki and (35),

∆qk
i

≤ 〈Gqk
i , Dqk

i 〉+
1

2
〈Dqk

i ,Hqk
i (Dqk

i )〉+ P (Xqk
i + Dqk

i )− P (Xqk
i )

≤ 〈Gqk
i , D̃ki〉+

1

2
〈D̃ki ,Hqk

i (D̃ki)〉+ P (Xqk
i + D̃ki)− P (Xqk

i )

= min
D∈<m×n

{
〈G̃ki , D〉+

1

2
〈D,Hqk

i (D)〉+ P (Xk + D)− P (Xk) | Dij = 0, ∀(i, j) 6∈ J ki

}
,

where G̃ki := ΠJ ki (G
qk
i ), Gqk

i := ∇f(Xqk
i ), D̃ki := DHqk

i
(Xqk

i ;J ki), and the second inequality

uses J ki ⊆ J qk
i , the equality uses ΠJ ki (X

qk
i ) = ΠJ ki (X

k). Using the above two inequalities,

we have
k+T−1∑

i=k

∆i ≤ min
D∈<m×n

{
〈G̃k, D〉+

1

2
〈D, H̃k(D)〉+ P (Xk + D)− P (Xk)

}
,

where G̃k :=
∑r(k)

i=1 G̃ki and H̃k : <m×n → <m×n is the self-adjoint positive definite mapping

satisfying

〈D, H̃k(D)〉 =
r(k)∑

i=1

〈ΠJ ki (D),Hqk
i (ΠJ ki (D))〉 ∀D ∈ <m×n.

Then proceeding as in the proof of Theorem 4.1 and using C0 := 1
α

+
sup` α` max` {∑r(`)

i=1
L

q`
i
}

λ2 ,

we can obtain the similar results of Theorem 4.1.

5 Regularized Log-likelihood Problem: Covariance Se-

lection

In this section, we study the boundedness of level set

X 0 = {X ∈ Sn | F (X) ≤ F (X0)}
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and the Lipschitz continuity of ∇f on X 0 for the regularized log-likelihood problem, i.e.,

f(X) = − log det X + 〈S, X〉

with S º 0n, which includes the covariance selection problems (1), (2), (5), and (7). The

former ensures the existence of cluster point of {Xk} while the latter will be used for the

convergence rate analysis and the complexity analysis of the BCGD method when applied

to the regularized log-likelihood problem. In what follows, f(X) = − log det X + 〈S,X〉
with S º 0n. Also we assume X̄ 6= ∅. Then, since the objective function is strictly convex,

the optimal solution is unique and is denoted by X∗.

Assumption 5 There exist positive constants ζ and ζ̄ such that ζI ¹ X ¹ ζ̄I for all

X ∈ X 0, where X 0 = {X ∈ Sn | F (X) ≤ F (X0)}.

If Assumption 5 is satisfied, then the function f is strongly convex on X 0, with a con-

vexity parameter of 1/ζ̄2, in the sense that 〈Y,∇2f(X)Y 〉 = 〈Y, X−1Y X−1〉 ≥ ζ̄−2‖Y ‖2

for every Y ∈ Sn. Also, f has a gradient that is Lipschitz continuous with respect to the

Frobenius norm on X 0, with Lipshitz constant L = 1/ζ2.

The following lemma shows that Assumption 5 is satisfied when P has linear growth

asymptotically.

Lemma 5.1 Suppose P (X) ≥ $tr(X) whenever X Â 0 and tr(X) ≥ ζ, for some scalars

$ > 0, ζ > 0. Then Assumption 5 is satisfied.

Proof. For any X ∈ X 0 with tr(X) ≥ ζ, we have

F (X0) ≥ − log det X + 〈S, X〉+ P (X) ≥ − log det X + $tr(X)

=
n∑

i=1

(− log(λi(X)) + $λi(X)) ≥ − log(λi(X)) + $λi(X) + (n− 1) min
t>0

(− log(t) + $t)

= − log(λi(X)) + $λi(X) + (n− 1)(log($) + 1), (36)

for any i = 1, . . . , n, where the first inequality uses S º 0n, X Â 0n.

Using − log(t) ≥ − log(t̄)− 1
t̄
(t− t̄), with t̄ = 2

$
, we obtain from (36) that

F (X0) ≥ log($/2) +
$

2
λi(X) + 1 + (n− 1)(log($) + 1).

Rearranging terms yields

λi(X) ≤ 2

$

(
F (X0)− n(log($) + 1) + log(2)

)
, i = 1, . . . , n.

This shows that X ¹ ζ̄I for all X ∈ X 0, where ζ̄ is the constant on the right-hand side.
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Since X ∈ X 0 so that X Â 0, we also have λi(X) > 0 so (36) implies

F (X0) > − log(λi(X)) + (n− 1)(log($) + 1).

Rearranging terms and taking exponential yields

λi(X) > exp((n− 1)(log($) + 1)− F (X0)), i = 1, . . . , n.

Therefore there is a positive constant ζ such that X º ζI for all X ∈ X 0.

The assumption of Lemma 5.1 is satisfied by P (X) = ρ
∑n

i,j=1 |Xij| with $ = ρ and ζ

any positive scalar. This is also satisfied with P given by (9) and Pij as in (11) or (13), with

$ any positive scalar and ζ any scalar greater than tr(S +U), when Uii < ∞ for i = 1, ..., n,

and P given by (9) with Pij as in (12), with $ = mini{ρii} and ζ any positive scalar, when

ρii > 0 for i = 1, ..., n.

The following lemma shows that, for any X ∈ X 0, ‖X−X∗‖ can be bounded from above

by the Frobenius norm of the solution of the subproblem (14) under Assumption 5. It can

be proved by proceeding as in the proof of [25, Theorem 4].

Lemma 5.2 Suppose Assumption 5 holds. Then, for any X ∈ X 0,

‖X −X∗‖ ≤ (ζ̄2 + (ζ̄/ζ)2)‖DI(X;N )‖. (37)

The following theorem establishes, under Assumptions 1, 2, and 5, the linear rate of

convergence of the BCGD method and gives an upper bound on the number of iterations

for the BCGD method to achieve ε-optimality when J k is chosen by the restricted Gauss-

Seidel rule (20).

Theorem 5.1 Under Assumptions 1 and 5, let {Xk}, {Hk}, {Dk} be sequences generated

by the BCGD method under Assumption 2, where {J k} is chosen by the restricted Gauss-

Seidel rule (20) with T ⊆ {0, 1, ...} and assuming (28) and {αk} is chosen by the Armijo

rule with infk αk
init > 0 and supk αk

init < ∞. Then the following results hold.

(a) If we further assume that {αk} is chosen by the Armijo rule with supk αk
init ≤ 1, then ei-

ther {F (Xk)} ↓ −∞ or {F (Xk)}T converges at least Q-linearly and {Xk}T converges

X∗ at least R-linearly.

(b) Suppose Xk+min{αk
init,

αk

β
}Dk ∈ X 0

% for all k and we define ek := F (Xk)−F (X∗) for all

k ≥ 0. Let tk, C1, C2, r0 be defined as in Theorem 4.1 with C0 = 1
α

+ sup` α` max`{τ(`)−`}
(λζ)2

and α = min{infk αk
init, β min{1, 2λ(1−σ)(1−ω)2ζ2, %/ supk ‖Dk‖}}. If

√
ek − eτ(k) ≥

C2/C1, ∀ k > 0, then ek ≤ ε whenever

tk ≥
⌈
ln

(
e0

ε

)
/ ln

(
1− 1

2C1

)−1
⌉

;
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otherwise, ek ≤ ε whenever

tk ≥
⌈
4C2

2

ε

⌉
.

Proof. (a) By Assumption 5 and Lemma 5.2, Assumption 4 holds with τ = (ζ̄2 + (ζ̄/ζ)2)

and ε̄ = ∞. Then, by Theorem 3.2 (b), either {F (Xk)} ↓ −∞ or {F (Xk)}T converges at

least Q-linearly and {Xk}T converges X∗ at least R-linearly.

(b) The results are obtained by using Theorem 4.1 with Li = 1/ζ2 and L = 1/(1−ω)2ζ2.

The following lemma gives the upper bound of 〈A,B〉 in terms of the maximum eigen-

value of A, the rank and the Frobenius norm of B when A º 0n and B ∈ Sn. It will be

used in Lemma 5.4.

Lemma 5.3 Suppose A º 0n and B ∈ Sn. Then 〈A,B〉 ≤ λmax(A)
√

rank(B)‖B‖.

Proof. By Fan’s inequality [3, Theorem 1.2.1], we have

〈A,B〉 ≤
n∑

i=1

λi(A)λi(B) ≤
n∑

i=1

λmax(A)|λi(B)| = λmax(A)
rank(B)∑

i=1

|λi(B)|

≤ λmax(A)

√√√√√rank(B)
rank(B)∑

i=1

(λi(B))2 = λmax(A)
√

rank(B)‖B‖

where λi(A) and λi(B) are the i-th eigenvalue of A and B respectively.

The next lemma gives an explicit bound on ‖DH(X;J )‖ if Assumption 5 is satisfied and

P is Lipschitz continuous on domP .

Lemma 5.4 Suppose Assumption 5 holds. For any X ∈ X 0, nonempty J ⊆ N , and

self-adjoint positive definite H with 0 < λ ≤ λmin(H), let D = DH(X;J ) and G =

∇f(X). If P is Lipschitz continuous on domP with Lipshitz constant Lp, then ‖D‖ ≤
2(‖S‖ +

√
rank(D)/ζ + Lp)/λ, where D = DH(X;J ). Moreover, the descent condition

(23) is satisfied for σ ∈ (0, 1) whenever 0 ≤ α ≤ min{ᾱ, 2λ(1 − σ)(1 − ω)2ζ2}. with

ᾱ = min{ωζλ/2(‖S‖+
√

rank(D)/ζ + Lp)} and ω ∈ (0, 1).

Proof. By (14),

〈G,D〉+
1

2
〈D,H(D)〉+ P (X + D) ≤ P (X).
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Since G = −X−1 + S and ζI ¹ X, by Lemma 5.3 with A = X−1 and B = D, we have

〈G,D〉 = 〈S, D〉 − 〈X−1, D〉 ≥ −(‖S‖+
√

rank(D)/ζ)‖D‖.
This together with the Lipschitz continuity of P and 〈D,H(D)〉 ≥ λ‖D‖2 implies that

−(‖S‖+
√

rank(D)/ζ)‖D‖+
λ

2
‖D‖2 − Lp‖D‖

≤ 〈G,D〉+
1

2
〈D,H(D)〉+ P (X + D)− P (X) ≤ 0

Hence

‖D‖ ≤ C0, (38)

where C0 = 2(‖S‖ +
√

rank(D)/ζ + Lp)/λ. If X ∈ X 0, then, for any α ∈ [0, ᾱ] with

ᾱ = min{1, ωζλ/2(‖S‖+
√

rank(D)/ζ + Lp)} and ω ∈ (0, 1),

0 ≺ (1− ω)ζI = (ζ − ωζ)I ¹ (ζ − ᾱC0)I ¹ X − ᾱ‖D‖I ¹ X + αD.

Hence ‖(X + αD)−1 − X−1‖ ≤ 1
(1−ω)2ζ2‖αD‖. Therefore there is some % > 0 such that f

satisfies (22) with L = 1
(1−ω)2ζ2 . By Lemma 3.2, the descent condition (23) is satisfied for

σ ∈ (0, 1) whenever 0 ≤ α ≤ min{ᾱ, 2λ(1− σ)(1− ω)2ζ2}.

For the problem (2) (or (11)) and (7) (or (13)), Lp = 0 and Assumption 5 is satisfied.

Hence if, for all k, we take Hk = I, Li = 1/ζ2, L = 4/ζ2, αk
init = min{1, ᾱ} that is given

in Lemma 5.4, and we choose J k = {(i, j), (j, i) | i = 1, ..., n} where j = k + 1(mod n) or

J k = {(i, j), (j, i) | i = 1, ..., j} where j = k + 1(mod n), then rank(Dk) = 2 and so the

iteration bounds in Theorem 5.1 reduced to

O

(
n

ζ2 ln

(
e0

ε

))
or O

(
n2ζ̄2

εζ2

)
.

Since N is the union of J k,J k+1, . . . ,J k+n−1, the resulting complexity bounds on the

number of iterations for achieving ε-optimality can be

O

(
n2

ζ2 ln

(
e0

ε

))
or O

(
n3ζ̄2

εζ2

)
.

For the problems (1) with α = 0, β = +∞ (or (10)) and (5) with ρij > 0 for (i, j) 6∈ V

(or (12)), we have Lp = nρ̃ with ρ̃ = ρ for (1) and ρ̃ = max(i,j)6∈V {ρij} for (5). Hence

if, for all k, we take Hk = I, Li = 1/ζ2, L = 4/ζ2, αk
init = min{1, ᾱ} that is given in

Lemma 5.4, and we choose J k = {(i, j), (j, i) | i = 1, ..., n} where j = k + 1(mod n) or

J k = {(i, j), (j, i) | i = 1, ..., j} where j = k + 1(mod n), then the resulting complexity

bounds on the number of iterations for achieving ε-optimality can be

O

(
n2(1 + ζ)

ζ2 ln

(
e0

ε

))
or O

(
n3ζ̄2(1 + ζ)

εζ2

)
.
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The computational cost per each iteration of the BCGD method is O(n2) operations

except the first iteration when it is applied to solve (1) with α = 0, β = +∞, (2), (5)

with ρij > 0 for (i, j) 6∈ V , (7), and we choose J k = {(i, j), (j, i) | i = 1, ..., n} where

j = k + 1(mod n); see Section 6. Hence the BCGD method can be implemented to achieve

ε-optimality in

O

(
n5ζ̄2(1 + ζ)

εζ2

)

operations. In contrast, The worst-case iteration complexity of interior point methods for

finding an ε-optimal solution to (1) is O(n ln(e0/ε)), where e0 is an initial duality gap.

But each iterate of interior point methods requires O(n6) arithmetic cost for assembling

and solving a typically dense Newton system with O(n2) variables. Thus, the total worst-

case arithmetic cost of interior point methods for finding an ε-optimal solution to (1) is

O(n7 ln(e0/ε)) operations. And the first-order method proposed in [11] requires O(n3) op-

erations per iteration dominated by eigenvalue decomposition and matrix multiplication of

n×n matrices. As indicated in [11], the overall worst-case arithmetic cost of this first-order

method for finding an ε-optimal solution to (1) is O(βn4/
√

ε) operations.

6 Numerical Experiments on Covariance Selection Prob-

lems

In this section, we describe the implementation of the BCGD method and report our numer-

ical results for solving the covariance selection problems (2) and (7) on randomly generated

instances. In particular, we report the comparison of the BCGD method with a first-order

method (called ANS, the matlab code is available) [11, 12] for solving the covariance se-

lection problem of the form (1) with α = 0 and β = +∞ and the covariance selection

problem of the form (5). We have implemented the BCGD method in matlab. All runs

are performed on an Intel Xeon 3.20GHz, running Linux and matlab (Version 7.6)

6.1 Implementation of the BCGD method

In our implementation of the BCGD method, we choose a self-adjoint positive definite linear

mapping as follows:

Hk(D) = (Hk
ijDij)ij, (39)

where Hk = hk(hk)T with hk
j = min{max{((Xk)−1)jj, 10−10}, 1010} ∀j = 1, ..., n. If 10−10 ≤

((Xk)−1)jj ≤ 1010 for all j = 1, ..., n, then 〈D,Hk(D)〉 = 〈diag((Xk)−1)Ddiag((Xk)−1), D〉.
By (2), f(X) = − log det X − n. Hence ∇2f(Xk)[D,D] = 〈(Xk)−1D(Xk)−1, D〉. Then

the above choice Hk can be viewed as a diagonal approximation to the Hessian. Also this

choice has the advantage that (Xk)−1 is already evaluated for the gradient and Dk has

a closed form and can be computed efficiently in matlab using vector operations. We
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tested the alternative choice of Hk = ηkI for some fixed constant ηk including 1, but its

overall performance was much worse. Also we tested another alternative choice of (39) with

Hk = hk(hk)T + (W k
ijW

k
ij)ij where W k

ij = ((Xk)−1)ij for i 6= j and W k
ij = 0 for i = j. This

choice is a somewhat better approximation of Hessian than (39), but its overall performance

was similar to that of (39). We choose the index subset J k by the Gauss-Seidel (cyclic)

rule, J k = {(i, j), (j, i) | i = 1, ..., n} where j = k + 1(mod n). Hence we update only one

column (and corresponding row) at each iteration. In order to satisfy the Armijo descent

condition (17), αk should be chosen to satisfy Xk + αkDk Â 0. Since Xk Â 0, there is a

positive scalar ᾱk that satisfies Xk + ᾱkDk Â 0. Hence if αk ∈ (0, ᾱk], then Xk +αkDk Â 0.

We describe below how to compute ᾱk > 0 that satisfies Xk + ᾱkDk Â 0. By permutation

and the choice of J k, we can always assume that we are updating the last column (and last

row). Suppose we partition the matrices Xk and Dk in block format:

Xk =

(
V k uk

(uk)T wk

)
and Dk =

(
0n−1 dk

(dk)T rk

)
, (40)

where V k ∈ Sn−1, uk, dk ∈ <n−1, and wk, rk ∈ <. Then, by [10, Theorem 7.7.6], Xk +

αDk Â 0 if and only of V k Â 0 and wk + αrk − (uk + αdk)T (V k)−1(uk + αdk) > 0. Since

Xk Â 0, V k Â 0. This implies that Xk + αDk Â 0 if and only if

ak
1α

2 + 2ak
2α− ak

3 < 0, (41)

where ak
1 = (dk)T (V k)−1(dk), ak

2 = (uk)T (V k)−1(dk)− 0.5rk and ak
3 = wk− (uk)T (V k)−1(uk).

Since Xk Â 0, ak
3 > 0. If Dk 6= 0, then either dk 6= 0 or dk = 0 and rk 6= 0.

Case (1): If dk 6= 0, then ak
1 > 0. This together with ak

3 > 0 implies that (41) is satisfied for

all α ∈ (0, ᾱ) where ᾱ =
−ak

2+
√

(ak
2)2+ak

1ak
3

ak
1

. Therefore Xk + αDk Â 0 for all α ∈ (0, ᾱ).

We set ᾱk = max{0.9ᾱ,−ak
2/a

k
1}.

Case (2): If dk = 0 and rk > 0, then ak
1 = 0 and ak

2 = −0.5rk < 0. Hence the inequality

(41) is satisfied for all α > 0. Therefore Xk + αDk Â 0 for all α ∈ (0,∞). We set

ᾱk = 10.

Case (3): If dk = 0 and rk < 0, then ak
1 = 0 and ak

2 = −0.5rk > 0. Hence the inequality

(41) is satisfied for all α ∈ (0, ᾱ), where ᾱ = ak
3/(2a

k
2). Therefore Xk + αDk Â 0 for

all α ∈ (0, ᾱ). We set ᾱk = 0.9ᾱ.

The stepsize αk can be chosen by the Armijo rule (17) by setting αk
init = ᾱk. But, for (2)

and (7) (see (11) and (13)) with 0 < α ≤ 1, by using (40),

f(Xk + αDk) + P (Xk + αDk)− f(Xk)− P (Xk) = f(Xk + αDk)− f(Xk)

= − log det V k − log (wk + αrk − (uk + αdk)T (V k)−1(uk + αdk))− n

+ log det V k + log (wk − (uk)T (V k)−1(uk)) + n

= − log (ak
3 − ak

1α
2 − 2ak

2α) + log ak
3. (42)
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Hence if − log (ak
3 − ak

1α
2 − 2ak

2α) + log ak
3 < 0, then ak

3 − ak
1α

2 − 2ak
2α > ak

3. And so

ak
1α

2 + 2ak
2α < 0. Since α > 0, ak

2 < 0 and so 0 < α < −2ak
2/a

k
1 if ak

1 6= 0 or α > 0 if ak
1 = 0.

Also ak
1 = 0 if and only if dk = 0. This together with ak

2 < 0 implies that, for 0 < α ≤ 1,

the quantity f(Xk + αDk) + P (Xk + αDk)− f(Xk)− P (Xk) is minimized when

α =
{

min{1,−ak
2/a

k
1} if dk 6= 0 ;

1 else.

Hence we would better use the limited minimization rule:

min
0<α≤Γ

− log (ak
3 − ak

1α
2 − 2ak

2α) + log ak
3,

where Γ = min{1,−ak
2/a

k
1} if dk 6= 0 or Γ = 1 if dk = 0.

Remark 2 We can directly apply the BCGD method to the primal covariance selection

problem (1) with α = 0, β = ∞. Suppose that the Gauss-Seidel (cyclic) rule is employed to

choose {J k}. Then only one column and corresponding row are updated at each iteration.

Since P (X) = ρ
∑n

i,j=1 |Xij|, by using (40),

f(Xk + αDk) + P (Xk + αDk)− f(Xk)− P (Xk)

= − log det V k − log (wk + αrk − (uk + αdk)T (V k)−1(uk + αdk))

+ log det V k + log (wk − (uk)T (V k)−1(uk)) + 2(‖uk + αdk‖1 − ‖uk‖1) + |wk + αrk| − |wk|
= − log (ak

3 − ak
1(α)2 − 2ak

2α) + log ak
3 + 2(‖uk + αdk‖1 − ‖uk‖1) + |wk + αrk| − |wk|,

where ak
1, ak

2, and ak
3 are as defined previously. Hence the limited minimization rule can

be used for finding a stepsize, but finding such a stepsize is not as simple as that of the

dual formulation (2). But the method can still be implementable in O(n2) operations per

iteration. Similarly, we can directly apply the BCGD method to the more general covariance

selection problem (5).

Next, we give a comment on the computational complexity of the BCGD method when

it is applied to the problems (2) and (7). We analyze the cost of each iteration of the BCGD

method. The main computational cost per iteration is a number of inner products, vector-

scalar multiplications and vector additions, each requiring O(n) floating-point operations,

plus a number of matrix-vector multiplications and matrix additions, each requiring O(n2)

floating-point operations. In addition, each iteration requires 1 gradient (the inverse of

the n × n matrix X) evaluation to find the direction, and 1 evaluation for the inverse of

the (n − 1) × (n − 1) submatrix of X to find the stepsize. These generally requires O(n3)

floating-point operations. But we only updates one column and corresponding row of the

current matrix, and so the inverse of X can be updated by using the Sherman-Woodbury-

Morrison formula [16, Appendix A.2] and the inverse of (n−1)×(n−1) submatrix of X can

be evaluated by using the Schur complement [21, Subsection 13.2.2]. Both computations
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require O(n2) operations . Therefore we only compute the full inverse of the initial matrix at

the first iteration. For the evaluation of the current function value, the computation of the

determinant of n×n matrix is needed and generally requires (n3) floating-point operations.

But, by using (42), it only requires O(n2) operations.

As indicated at the end of Section 5, the iteration bound of the BCGD method for

achieving ε-optimality, when it is applied to (2) and (7), reduces to O
(

n3ζ̄2

εζ2

)
, where ζ̄ , ζ are

two constants that satisfy Assumption 5. Hence the BCGD method can be implemented to

achieve ε-optimality in O
(

n5ζ̄2

εζ2

)
operations.

Throughout our numerical experiments, we terminate the BCGD method when the

following conditions are satisfied:

√
〈DHk(Xk;N ),Hk(DHk(Xk;N ))〉 ≤ ε1, (43)

|〈S,(Xk)−1〉+
∑

(i,j) 6∈V
ρij |((Xk)−1)ij |−n|

1+| log det(Xk)+〈S,(Xk)−1〉+
∑

(i,j) 6∈V
ρij |((Xk)−1)ij || ≤ ε2, (44)

where ε1 and ε2 are a small positive numbers. (In our numerical runs, we set ε1 = 5× 10−3

and ε2 = 10−4.) Here we scale DHk(Xk;N ) by Hk to reduce its sensitivity to Hk. The

criterion (43) is motivated by Lemma 3.1 and is an extension of a criterion that has been

suggested previously in [25]. The criterion (44) is based on the relative duality gap between

the problems (5) and (7). We should note that the sequence of iterates {Xk} generated

by the BCGD method is for the dual problem (7), and we use (Xk)−1 to estimate an

approximate primal optimal solution for (5).

The stopping conditions for the ANS method are set as suggested in [12]. But we mod-

ified the “absolute gap” condition in the ANS method to the “relative gap” condition (44),

with the same tolerance ε2 = 10−4, since the latter is more commonly used in optimization

algorithms. Note that each iteration of the ANS method requires the computation of the

full eigenvalue decomposition of a symmetric matrix. In its original implementation, the

ANS method use the routine eig.m in Matlab to carry out this task. Here we replaced

eig.m by the LAPACK routine dsyevd.f (via mex-interface to Matlab), which is based

on a divide-and-conquer strategy. On our machine, the latter routine is about 5-10 times

faster than the former.

6.2 Numerical Experiments on Covariance Selection Problems of

the form (1) and (5)

In this subsection, we report the performance of the BCGD method and compare it to the

ANS method [12] for solving the covariance selection problem of the form (1) (with α = 0

and β = +∞) and (5) on randomly generated instances. We note that the BCGD method

is applied to solve the dual problems (2) and (7).
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The BCGD method can be directly applied to solve (1) (with α = 0 and β = +∞)

and (5). In this case, the stepsize can also be chosen by the Armijo rule or the limited

minimization rule; see Remark 2. But its overall performance was worse than that of using

the dual formulation. Hence we only present the numerical results of the BCGD method

being applied to the dual formulation.

All the test instances used in this subsection were generated randomly in a similar

manner as described in [5, 11, 12]. First, we generate a random sparse matrix A ∈ Sn whose

nonzero elements are set randomly to be ±1. Then we generate a sparse inverse covariance

matrix Σ−1 from A as follows:

A = A ∗ A′; d = diag(A); T = diag(d) + max(min(A− diag(d), 1),−1);
Σ−1 = T −min{1.2λmin(T )− ϑ, 0}I,

where ϑ is a small positive number. Then we generate a matrix B ∈ Sn by

B = Σ + τ
‖Σ‖F

‖Ξ‖F

Ξ,

where Ξ ∈ Sn is a random matrix whose elements are drawn from the uniform distribution

on the interval [−1, 1], and τ is a small positive number. Finally, we obtain the following

randomly generated sample covariance matrix:

S = B −min{λmin(B)− ϑ, 0}I.

In our experiments, we set τ = 0.15 and ϑ = 10−4 for generating all instances. Let Ω =

{(i, j) | (Σ−1)ij = 0, |i− j| ≥ 2}. For the problem (5), we set V to be a random subset of Ω

such that card(V ) is about 50% of card(Ω).

The regularization parameters ρij are set to the constant values of 5/n for all the in-

stances. The parameter values are chosen empirically to achieve a reasonable recovery of

the true inverse covariance matrix Σ−1. We should note that in general, it is impossible to

recover Σ−1 accurately based on S by solving (1) or (5). Thus the purpose of solving (1)

or (5) is not to recover the true matrix Σ−1 accurately but to detect the sparsity pattern

of Σ−1 while maintaining a reasonable approximation to the true matrix. We evaluate the

recovery success of Σ−1 by a matrix X based on the following criteria:

LQ := 1
n
‖ΣX − I‖F , LE := 1

n
(〈Σ, X〉 − log det(ΣX)− n) (45)

Specificity = TN
TN+FP

, Sensitivity = TP
TP+FN

, (46)

where TP, TN, FP, and FN denotes the number of true positives, true negatives, false

positives, and false negatives, respectively, with respect to the sparsity pattern of Σ−1. In

our situation, LE and LQ (which were considered in [28] without the normalization factor

1/n), measure the quality of the approximation of Σ−1 by X, and Specificity measures the

quality of zero entries while Sensitivity measures the quality of nonzero entries. We should
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mention that the estimated matrix X would not be sparse in general but have many small

entries. Thus we postprocess the matrix X by setting all entries which are smaller than

5× 10−2 in absolute value to 0.

Table 1: Comparison of the BCGD and ANS methods in solving the problems (1) and (5)
with the data matrix S generated randomly. The regularization parameters ρij are set to
ρij = 5/n for all the problems. The numbers in each parenthesis are: LQ, LE , Specificity
and Sensitivity, respectively.

problem n | density(%) | card(V ) iteration count primal objective value time (secs)

BCDG ANS BCDG ANS BCDG ANS

random 500 | 2.74 | 0 1662 ( 2.9-2| 5.2-1| 0.99| 0.72) 46 -8.18195357 2 2.42-2 5.5 11.5

random 1000 | 4.15 | 0 8701 ( 1.5-2| 2.2-1| 0.99| 0.99) 87 -4.32170724 2 8.60-5 145.7 117.7

random 1500 | 4.63 | 0 12661 ( 1.4-2| 2.9-1| 0.99| 0.98) 84 -4.35887269 2 1.65-3 491.9 371.1

random 2000 | 5.14 | 0 18781 ( 1.2-2| 3.2-1| 0.98| 0.97) 93 -2.80176287 2 6.03-4 1285.1 953.9

random 500 | 1.97 | 60702 3601 ( 2.9-2| 5.5-1| 1.00| 0.76) 619 -8.42619444 2 -1.54-1 12.5 146.9

random 1000 | 3.33 | 241887 11341 ( 1.6-2| 2.2-1| 1.00| 0.99) 807 -4.45131714 2 -3.53-3 195.8 1053.4

random 1500 | 3.71 | 542496 13321 ( 1.4-2| 2.9-1| 1.00| 0.99) 969 -4.63013088 2 -1.21-1 528.2 3839.5

random 2000 | 4.13 | 961274 20681 ( 1.3-2| 3.2-1| 1.00| 0.99) 1256 -3.19691367 2 -7.90-2 1448.8 10845.3

Table 1 reports the performance of the BCGD and ANS methods. The dimension n and

density (percentage of nonzero entries) of the inverse covariance matrix and the number of

constraints card(V ) are given in the second major column. In the third major column, we

report the number of iterations taken by the BCGD and ANS methods. The numbers in

each parenthesis correspond to LQ, LE, Specificity, and Sensitivity, respectively. From the

Specificity and Sensitivity values, we see that the solution of (1) or (5) can estimate the

sparsity pattern of Σ−1 very accurately, but it is less accurate in the actual approximation of

Σ−1. The fourth major column gives the primal objective values. Note that the sub-column

under “ANS” gives the difference in the primal objective values between the ANS and BCGD

methods. As we are reporting the primal objective value for (1) or (5), a positive difference

means that the ANS method achieved a better objective value than the BCGD method.

Conversely, a negative difference would indicate that the BCGD method has achieved a

better objective value. The last major column reports the CPU times.

From Table 1, we see that the BCGD and ANS methods are comparable in their per-

formance when solving the problem (1) with α = 0 and β = +∞. But for the problem (5),

the BCGD method substantially outperforms the ANS method in terms of the CPU time

taken and the quality of the primal objective values attained.

7 Conclusions

In this paper we have proposed a block coordinate gradient descent method for solving con-

vex nonsmooth optimization problems on a set of matrices. We also analyzed its computa-

tional complexity. Important applications of such convex nonsmooth optimization problems
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include the covariance selection problem. On the both primal and dual formulation of the

covariance selection problems (1) with α = 0, β = +∞, (2), (5), and (7), this method

achieves linear convergence, and terminates in O(n5/ε) operations with an ε-optimal solu-

tion. The BCGD method can be applied to solve (5) without solving a sequence of the

unconstrained penalization problem (6) as did in [12]. Hence our preliminary numerical

experience suggests that our method is efficient to solve the dual formulation of large-scale

covariance selection problems especially with a lot of constraints.

There are some topics that can be considered as a future study. Can the complexity

bound in Section 4 and 5 be sharpened? The Gauss-Southwell type rules for choosing

J k, studied in [25], can also be extended to our general problem. We did not consider

it here because we do not have a better choice for updating a coordinate block than the

choice of one column and corresponding row. Can we still efficiently find J k satisfying the

Gauss-Southwell type rules?
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