
An Accelerated Proximal Gradient Algorithm for
Nuclear Norm Regularized Least Squares Problem

Sangwoon Yun

Computational Sciences
Korea Institute for Advanced Study

November, 2009
(Joint work with Kim-Chuan Toh (NUS))

Outline

Matrix Completion

General Problem Model:
Nuclear Norm Regularized Least Squares Problem

Accelerated Proximal Gradient Algorithm

Techniques for Acceleration/Reducing Computation

Numerical Experience on Large-Scale Matrix Completion

Conclusions & Future Work

Matrix Completion

Compressed Sensing: Is it possible to reconstruct a signal accurately from a
few observed samples?

Impossible in general, but if the signal is known to be sparse in some basis,
then accurate recovery is possible by `1 minimization (Candés et al. 06,
Donoho 06):

min
x∈<n

{
‖x‖1 : Ax = b

}
,

where A ∈ <p×n (p � n) satisfies certain restricted isometry property.

Now, imagine that we only observe a few entries of a data matrix. Then is it
possible to accurately guess the entries that we have not seen?

Netflix problem: Given a sparse matrix where Mij is the rating given by user i
on movie j , predict the rating a user would assign to a movie he has not seen,
i.e., we would like to infer users preference for unrated movies. (impossible!
in general)

The problem is ill-posed. Intuitively, users’ preferences depend only on a few
factors, i.e., rank(M) is small.

Thus can be formulated as the low-rank matrix completion problem:

min
X∈<m×n

{
rank(X) |Xij = Mij , (i , j) ∈ Ω

}
, (NP hard!)

where Ω = index set of p observed entries.

We assume m ≤ n w.l.o.g.

By (Candés & Recht 08, Candés & Tao 09), a random rank-r matrix can be
recovered exactly with high probability from a uniform random sample of
p = O(rn polylog(n)) entries by solving the following convex relaxation:

(NNM) min
X∈<m×n

{
‖X‖∗ :=

m∑
i=1

σi (X) |Xij = Mij , (i , j) ∈ Ω
}
.

where σi (X)’s are singular values of X .

Euclidean distance matrix completion: Given partial distance matrix M, find
points z1, . . . , zn ∈ <d such that ‖zi − zj‖ = Mij ∀ (i , j) ∈ Ω. Typically want d to
be small. A convex relaxation is:

min
X∈Sn

{
Tr(X) |Tr(AijX) = M2

ij , (i , j) ∈ Ω, X � 0
}

Aij : outer product of ei − ej .

General Problem Model: Nuclear Norm
Regularized Least Squares Problem

Here we first consider a more general NNM problem (Fazel ’02):

(NNM) min
X∈<m×n

{
‖X‖∗ : A(X) = b

}
.

Can also include X � 0 if X is symmetric.

The matrix completion problem is a special case of the above problem with
A(X) = XΩ, where XΩ is the vector in <|Ω| obtained from X by selecting those
elements whose indices are in Ω.

When the matrix variable is restricted to be diagonal, the above problem
reduces to the following `1 minimization problem:

min
x∈<n

{
‖x‖1 : Ax = b

}
.

If the observation b is contaminated with noise, then Ax = b might not be
feasible and so an appropriate norm of the residual Ax − b should be
minimized.

The appropriate model to consider can be the following `1-regularized linear
least squares problem:

min
x∈<n

1
2
‖Ax − b‖2 + µ‖x‖1,

where µ > 0.

This motivates us to consider the following nuclear norm regularized LS
problem:

(NNRLS) min
X∈<m×n

1
2
‖A(X)− b‖2 + µ‖X‖∗.

where µ > 0 is a given parameter.

The problem (NNM) can be reformulated as an SDP:

min
{

(TrW1 + TrW2) /2 | A(X) = b,
(

W1 X
X T W2

)
� 0

}
matrix dimension = m + n; number of linear constraints = p.

The state-of-the-art interior-point method solvers like
CSDP/SDPA/SeDuMi/SDPT3 are not suitable for large problems with
m + n ≥ 3000 or p ≥ 6000 because the computational cost grows like
O(pn3 + p2n2 + p3) and the memory requirement grows like O(n2 + p2).

Recent focus: first-order methods.

Accelerated Proximal Gradient Algorithm

Proximal point mapping of the nuclear norm function

Given G and τ > 0, we consider the proximal point mapping of µ‖X‖∗:

Sτ (G) := argminX∈<m×n
τ

2
‖X −G‖2

F + µ‖X‖∗.

Sτ (G) can be computed analytically! Let the SVD of G be

G = UΣV T , Σ = Diag(σ),

where U ∈ <m×q and V ∈ <n×q have orthonormal columns, σ ∈ <q is the
vector of positive singular values with σ1 ≥ σ2 ≥ · · · ≥ σq > 0 and q ≤ m.

Let x+ = max{x ,0}. Then

Sτ (G) = UDiag((σ − µ/τ)+)V T .

Recent Algorithms (For brevity, we let f (X) := 1
2‖A(X)− b‖2.)

Singular Value Thresholding (SVT) algorithm (Cai, et al. ’08): designed to
solve a Tikhonov regularized version of NNM:

min
X∈<m×n

{
‖X‖∗ +

1
2µ
‖X‖2

F : A(X) = b
}
.

The SVT algorithm is a gradient ascent method applied to the dual of the
above problem:

X k = Sτk (Gk)

Gk+1 = Gk − δk∇f (X k),

where τk = 1 and δk is a positive step size (∇f (X k) = A∗(A(X k)− b)).

Advantage of SVT algorithm for matrix completion:

Selecting a large µ gives a sequence of low-rank iterates X k .

The matrix Gk is sparse⇒ matrix-vector multiply is cheap.

Fixed Point Continuation (FPC) algorithm (Ma, et al. 08) for solving the
NNRLS problem:

X k = Sτk (Gk)

Gk+1 = X k − τ−1
k ∇f (X k).

This algorithm may terminate in O(1/ε) iterations with an ε-optimal solution.

It is a matrix extension of the FPC algorithm for `1-regularized LLS problem
proposed by (Hale et al. 07).

Singular Value Decomposition

When the current point X k of the FPC and SVT algorithms is updated at
iteration k , Sτ k (Gk) is obtained by the SVD of Gk . Hence main computational
cost of both SVT and FPC algorithms lies in computing a partial SVD of Gk .

SVT uses PROPACK (a variant of the Lanczos algorithm);

FPC uses a fast Monte Carlo algorithm such as the Linear Time SVD
algorithm.

Note that we only need singular values larger than µ/τk .

The algorithms can choose the number of s.v. to compute, but cannot
automatically compute only those we need.

Both FPC and SVT have their own procedure to choose and update the
predetermined number of largest s.v. to reduce the computation.

APG algorithm

Motivation: to develop an algorithm having the same advantage as the SVT
algorithm but has better iteration complexity, efficiency and robustness.

(Beck and Teboulle 08) proposed a fast iterative shrinkage-thresholding
algorithm (FISTA) to solve `1-regularized LLS problems. It belongs to the
class of accelerated proximal gradient (APG) algorithms studied earlier by
Nesterov, Nemirovski, and others. Recently, (Tseng 08) gave a unified
treatment.

The APG algorithms have an attractive iteration complexity of O(1/
√
ε) for

achieving ε-optimality.

The APG algorithm we adapted has the following template:

X k = Sτk (Gk)

tk = 1
2 (1 +

√
1 + 4t2

k−1)

Y k = X k +
tk−1−1

tk
(X k − X k−1)

Gk+1 = Y k − τ−1
k ∇f (Y k).

Iteration Complexity

Define F (X) = f (X) + µ‖X‖∗ and let X ∗ be an optimal solution.

Let {X k} be the sequence generated by APG with τk = ‖A‖2. Then,

F (X k)− F (X ∗) ≤
2‖A‖2 ‖X ∗ − X 0‖2

F
(k + 1)2 .

Hence

F (X k)− F (X ∗) ≤ ε whenever k ≥
√

2‖A‖2

ε

(
‖X 0‖F + ‖X ∗‖F

)
,

Note: ‖X ∗‖F ≤ ‖b‖2/(2µ).

Key inequality for the proof of iteration complexity

Given τk ≥ ‖A‖2. At Y k , consider the following upper quadratic
approximation of F (X):

Qτk (X ,Y k) = f (Y k) +
〈
∇f (Y k), X − X k〉+

τk

2
‖X − Y k‖2

F + µ‖X‖∗

=
τk

2
‖X −Gk‖2

F + µ‖X‖∗ + f (Y k)− 1
2τk
‖∇f (Y k)‖2

F

where Gk = Y k − τ−1
k ∇f (Y k). Then

F (X) ≤ Qτk (X ,Y k) ∀ X

Let X k = Sτk (Gk) = argminX Qτk (X ,Y k). Then

F (X k) ≤ Qτk (X k ,Y k) = min
X

Qτk (X ,Y k)

Comparison of APG and FPC, without using continuation strategy

Original rank-r matrix: M = M1MT
2 , where M1,M2 ∈ <n×r are random

matrices with i.i.d. standard Gaussian entries.

Then randomly select a subset of p entries to form the vector b.

Set µ = 10−4‖A∗(b)‖.

Unknown M FPC APG
n/r p µ iter #sv error iter #sv error

100/10 5666 8.21e-03 7723 61 1.88e-01 655 13 1.06e-03

500/10 49471 1.21e-02 10900 203 5.91e-01 1132 16 7.63e-04

error :=
‖Xsol −M‖F

‖M‖F
.

Techniques for Acceleration/Reducing Computation

A. Linesearch-like technique. Setting τk = ‖A‖2 ∀ k is too conservative. The
APG algorithm can be accelerated by taking smaller τk by performing a
linesearch-like procedure (we call this version as APGL).

τ̂0 = ητk−1 with η ∈ (0,1), say η = 0.8.

For j = 0,1,2, . . . ,
Set G = Y k − (τ̂j)

−1∇f (Y k), compute Sτ̂j (G).

If F (Sτ̂j (G)) ≤ Qτ̂j (Sτ̂j (G),Y k),

set τk = τ̂j , stop; (accept a smaller τ if above inequality holds)

else,
τ̂j+1 = min{η−1τ̂j , ‖A‖2}

end
end

This technique has another important advantage: τk is typically smaller than
‖A‖2, and so the number of s.v. of Gk larger than µ/τk is fewer.

B. Continuation technique. If the parameter µ is larger, then the number of
s.v. of Gk larger than µ/τk is fewer. But the target parameter µ is usually
chosen to a moderately small number. This motivates us to use a
continuation strategy:

Solve a sequence of problems corresponding to a decreasing sequence
of parameters: µ0 > µ1 > · · · > µ` = µtarget.

Specifically, we set µ0 = ‖A∗(b)‖ and update µk = max{0.7µk−1, µtarget}
with µtarget = 10−4µ0.

For the new problem associated with µj+1, the approximate solution for
the current problem associated with µj is used as the starting point.

C. Truncation technique. For the pure APG algorithm, X k is initially not
low-rank. But the positive s.v. would typically separate into two clusters with
the first cluster having much large mean value than the second cluster.

One may use the number of s.v. in the first cluster to estimate the rank of the
optimal solution. The second cluster of smaller positive s.v. can be attributed
to the presence of noise in the data b, or the fact that X k has yet to converge
to a low-rank optimal solution.

The second cluster of smaller s.v. can usually be discarded without affecting
the convergence of the APG algorithm. This motivates us to set the second
cluster of small positive s.v. to 0 when the new iterate is updated.

We take X k+1 = UDiag(e ◦ (σ − µk/τk)+)V T ,
e = [1, . . . ,1,0, . . . ,0]T is the indicator vector for the clusters.

SVT versus APGL for matrix completion

(Empirical observation)
SVT: selecting a large µ gives a sequence of low-rank iterates X k .

APGL: with truncation and continuation also gives a sequence of
low-rank iterates X k .

SVT: Gk is sparse since the sparsity pattern of Ω is fixed.

APGL: Y k is low-rank since X k ’s are low-rank. The matrix ∇f (Y k) is
sparse since the sparsity pattern of Ω is fixed. Thus
Gk = Y k − τ−1

k ∇f (Y k) is the sum of a low-rank and a sparse matrix⇒
matrix-vector multiply is cheap & able to store very large matrix.

For computing Sτk (Gk), the above comparison shows that APGL is
computationally as attractive as SVT.

Numerical Experience on Large-Scale Matrix
Completion

Implemented APGL in MATLAB running on a 3.2GHz PC with 4G RAM. We
use PROPACK to compute partial SVD.

Termination Criterion:

‖Sk‖F

τ k−1 max{1, ‖X k‖F}
≤ 10−4,

where Sk = τ k−1(Y k−1 − X k) +∇f (X k)−∇f (Y k−1) ∈ ∂F (X k).

In addition, we also stop the APGL algorithm when∣∣‖A(X k)− b‖ − ‖A(X k−1)− b‖
∣∣

max{1, ‖b‖}
< 5× 10−4.

Test Results: Noiseless random matrix completion problem (average
over 5 random instances)

Unknown M Results
n p r µ iter #sv time (secs) error

10,000 1.2e+06 10 1.36e-02 48 10 2.36e+01 2.62e-04

5.0e+06 50 5.96e-02 67 50 3.14e+02 1.96e-04

8.0e+06 100 9.94e-02 67 100 8.61e+02 2.69e-04

50,000 6e+06 10 1.35e-02 63 10 1.76e+02 1.75e-04

100,000 12e+06 10 1.34e-02 69 10 4.63e+02 2.16e-04

The APGL algorithm solves the random matrix completion problems with
m = n = 105 in less than 8 minutes on the average.

Test Results: Noisy random matrix completion problem (average over 5
random instances)

Original rank-r matrix M is generated as before. Then corrupt M by a noise
matrix Ξ with i.i.d standard Gaussian entries. Specifically, set

b = A(M + σΞ),

In our experiments,

σ = 0.1
‖A(M)‖F

‖A(Ξ)‖F
.

Unknown M Results
n p r µ iter #sv time (secs) error

10,000 1.2e+06 10 1.37e-02 45 10 2.89e+01 5.01e-02

5.0e+06 50 5.97e-02 62 50 2.89e+02 5.01e-02

8.0e+06 100 9.95e-02 64 100 8.17e+02 5.81e-02

50,000 6.0e+06 10 1.35e-02 55 10 2.02e+02 4.51e-02

100,000 12e+06 10 1.34e-02 59 10 5.50e+02 4.52e-02

The errors are smaller than the noise level 0.1 and are consistent with
(actually more accurate) the theoretical result (Candés and Plan 09).

Two real matrix completion problems

Jester joke data set contains 4.1 million ratings on 100 jokes from 73421
users.

(1) jester-1: 24983 users who have rated 36 or more jokes;
(2) jester-2: 23500 users who have rated 36 or more jokes;
(3) jester-3: 24938 users who have rated between 15 and 35jokes.
(4) jester-all:the data set obtained by combining all the above data sets.

For each data set, we let M be the original incomplete data matrix such that
the i-th row of M corresponds to the ratings given by the i-th user on the
jokes.

For each user, we randomly choose 10 ratings from the set of indices for
which Mij is given, to form the data vector b.

The MovieLens data has 3 data sets:
(1) movie-100K: 100,000 ratings for 1682 movies by 943 users;
(2) movie-1M: 1 million ratings for 3900 movies by 6040 users;
(3) movie-10M: 10 million ratings for 10681 movies by 71567 users.

We randomly select about 50% of the ratings given by each user to form the
vector b.

Since some of the entries in M are missing, we cannot compute the relative
error as before. Instead, we compute the Normalized Mean Absolute Error
(NMAE):

NMAE =
MAE

rating range
,

where
MAE =

1
|Γ\Ω|

∑
(i,j)∈Γ\Ω

|Mij − Xij |,

Γ is the index set of given ratings.

Test Results

m/n |Γ| iter time (secs) NMAE #sv
j-1 24983/ 100 1.81e+06 50 7.15e+01 1.89e-01 79

j-2 23500/ 100 1.71e+06 50 6.86e+01 1.88e-01 79

j-3 24938/ 100 6.17e+05 47 6.24e+01 1.94e-01 78

j-all 73421/ 100 4.14e+06 51 2.18e+02 1.91e-01 79

m-100K 943/ 1682 1.00e+05 100 7.39e+00 2.05e-01 5

m-1M 6040/ 3706 1.00e+06 89 2.45e+01 1.76e-01 5

m-10M 71567/ 10674 9.91e+06 100 2.02e+02 1.64e-01 5

Here, we set the maximum number of iterations allowed in the algorithm to
100.

The 73421× 100 problem is solved in 4 minutes: NMAE = 1.91× 10−1.

The 71567× 10674 problem is solved in 4 minutes: NMAE
= 1.64× 10−1.

Conclusions & Future Work

The APG algorithm with a fast method, such as PROPACK, for
computing partial SVD is simple and suitable for solving large-scale
matrix completion problems.

Three techniques: linesearch-like, continuation, and truncation, have
been incorporated to accelerate the convergence of the original APG
algorithm.

Numerical results shows the practical efficiency of the APGL algorithm
for large-scale matrix completion problems. Able to solve random MC
problems with dimension 105 × 105 in less than 10 minutes.

We expect first-order methods to work well mainly for problems where
‖A‖ is small. Can other methods, such as interior point or semismooth
Newton methods, be developed to solve the nuclear norm least squares
problems for which ‖A‖ is large.

Thank You!

Toh K.-C. and Yun S., An accelerated proximal gradient algorithm for nuclear
norm regularized linear least squares problems.

