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Re-capturing cosmic information with log mapping

Convergence field

Use N-body simulations as a

| function of cosmology,

~ And conduct a full Fisher matrix
~ analysis.

Dark energy parameters are
improved by the log-
mapping.

Shape noise sharply
decreases the improvement.
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Galaxy intrinsic alighment and gravitational lensing
Jonathan Blazek, UC Berkeley
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SUPERSONIC RELATIVE VELOCITY EFFECT ON BAO MEASUREMENTS

e Supersonic relative velocity effect: Tseliakhovich & Hirata, 2010, PRD

e relative velocity between baryons and dark matter ~ 30 kmm/s at recomb. (cs ~ 6 km/s)

e suppress early halo abundance around Jeans scale

e Large scale BAO signature of smallest galaxies: Dalal, Pen & Seljak, 2011, JCAP

e early halos are modulated by relative velocity not matter density

e Impacts on low rledshift BAO mea?urements: Yoo, Dalal & Seljak, 2011 JCAP
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e if ignored, relative velocity effect can shift BAO peak by ~ 10%

e easy to model and marginalize over, error budget is inflated by only 8% in wy

e bispectrum provides unique signature in a model independent way
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WKYC 2011 - Future of Large Scale Structure Formation [Park, Chan-Gyung (KNU)]

What happens if dark energy perturbation (DEP) is ignored?

C.-G. Park, J. Hwang, J. Lee, H. Noh, Phys. Rev. Lett. 103, 151303 (2009) [arXiv:0904.4007]
Quintessence with V(¢)= Ve’ +1,6"? (scaling initial conditions for A;=9.43; A,=1.0)
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DEP-ON: All calculations are made in three different gauge conditions
(CCG, UEG, and UCG). The results in the three gauges coincide exactly (red curves).



WKYC 2011 - Future of Large Scale Structure Formation [Park, Chan-Gyung (KNU)]

What happens if dark energy perturbation (DEP) is ignored?

C.-G. Park, J. Hwang, J. Lee, H. Noh, Phys. Rev. Lett. 103, 151303 (2009) [arXiv:0904.4007]
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Observationally distinguishable substantial differences appear by ignoring DEP.

DEP-OFF: Cases when /ignoring DE perturbation in the CCG, UEG, and

By ignoring it the perturbed system of equations becomes inconsistent and
deviations in (gauge-invariant) power spectra depend on the gauge choice.
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Yong-Seon Song

Cosmological Test of General Relativity




Why do we need multiple probes

Basic notations

Metric :
ds? = —(1420)dt? + a2 (t)(1+2®)dz>
Anisotropic parameter : n = — 2

W

Peculiar velocity potential :

L= k2w
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Growth factor of matter perturbation :
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Why do we need multiple probes 7 : discriminate DE from MG

Basic notations
Metric :
ds? = —(1+2%)dt? +a?(t)(1+20)dF?
Anisotropic parameter : n = — §

Peculiar velocity potential :

2
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Multiple Probes :
: 8Za, BAO : sensitive only to H (a)

: CMB : mostly insensitive 1o MG — ~ turns on
only in late Universe. (ISW efiect and GL)

: WL & Cluster number : capture both H and G



Basic notations

Metric :
ds? = —(1+42¥)dt? +a?(t)(1+20)dZ?
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Pecuiar velocity potential :
K2y
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Multiple Probes :

: SZea, BAO : sensitive only to H (a)

: CMB : mostly insensitive 1o MG — - turns on
only in late Universe. (ISW effect and GL)

: WL & Cluster number : capture both H and G

Why do we need multiple probes 7 : discriminate DE from MG

simple static : x?(pm) =
ZiZmnlpm — Pg))(c(‘)],—nh (Ppn — Psz‘))
parameter degeneracies :

SNe, BAO :(ﬂa. g, 08)

CMB : (wo, Wea ﬂde : ﬂk)



Basic notations

Maetric :

ds? = —(1+2¥)dt? +a?(t)(1+20)dF?
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Multiple Probes :

: SZa, BAO : sensitive only to H(a)

: CMB : mostly insensitive 1o MG — - turns on
only in late Universe. (ISW effect and GL)

: WL & Cluster number : capture both H and G

Why do we need multiple probes 7 : discriminate DE from MG

simple static : x?(pm) =
ZiZm,nlem — l’sr‘s))(c(‘)],_nh (pn — Dsz‘))
parameter degeneracies :

SNe, BAO :(nb' g, 08)

CMB : (wo, Wa Qde : nk)

Cluster number :
2
Ny = “l’f”‘v f::+l dzxgn)—' fm‘m dM x
n(M, =) where
n(M,z) = - Pch DM £(rg, )
Weak lensing : lensing convergence
xi(0) = fooo dx8(6x, x)Wi(x)
< Ri(Dwi (1) >= (27)262(T+ ) Clys;
d
Cuss =I5~ 3, 002 WiWiPs(ki x)
= 1
where k = dA(x)



Contents

@ Dark energy prospect: multiple probes strategy

H.J. Seo Re-capturing cosmic information with log mapping
J. Blazek Galaxy intrinsic alignment and gravitational lensing

J.Y. Yoo Supersonic relative velocity effect on BAO measurements
C.-G. Park What happens if dark energy perturbation is ignored?

@ Is acceleration caused by modified gravity instead?
Y.S. Song Cosmological test of GR using both WL and coherent motions

S.C. Lee Comment on multiple probes
@ Probes of initial conditions: non-Gaussinanity

JW. Gong Cosmological test of GR using both WL and coherent motions
D.H. Jeong Detecting fNL from galaxy surveys



LSS as a probe of early universe
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LSS as a probe of early universe

RX—D—90

© Curvature perturbation %

e Generation and properties from microscopic physics
e Inflation: “The” model? Infrared divergence? Landscape?...
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Early universe in LSS

LSS as a probe of early universe

How is LSS formed?
-y J

© Curvature perturbation &%

e Generation and properties from microscopic physics

o Inflation: “The” model? Infrared divergence? Landscape?...
© Gravitational potential ®

e Sachs-Wolfe limit ® = 322/5: Smaller scales?
o Non-linear mapping: ® = ¢+ fap*+-- > B ="---



Early universe in LSS

LSS as a probe of early universe

How is LSS formed?
-y |

@ Curvature perturbation &

e Generation and properties from microscopic physics

o Inflation: “The” model? Infrared divergence? Landscape?...
© Gravitational potential ®

e Sachs-Wolfe limit ® = 322/5: Smaller scales?

o Non-linear mapping: ®=¢+ f1.¢p* +-+ — B =---
© Density fluctuation 6

e Properties of initial density field: Bias, (local) bispectrum...
e Evolution: Volume effect, dark matter...
e 0 in which gauge?




Early universe in LSS

LSS as a probe of early universe

How is LSS formed?
R—D—0

© Curvature perturbation £

e Generation and properties from microscopic physics
o Inflation: “The” model? Infrared divergence? Landscape?...

© Gravitational potential @

e Sachs-Wolfe limit ® = 322/5: Smaller scales?

o Non-linear mapping: ® =+ fNp.p* +-++ — B =---
© Density fluctuation 6

e Properties of initial density field: Bias, (local) bispectrum...
e Evolution: Volume effect, dark matter...
e 0 in which gauge?

A consistent picture throughout the history of the universe?
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Detecting fnL from galaxy surveys

for HETDEX A convincing detection of fni>1 would rule out ANY

D?(2) Pr(k)

single field inflation models regardless of
One million gaIaX|es
|.9<z<3.5 .
420 sq. deg | - form of potential
: - form of kinetic term
+ - initial vacuum state
- HZQ
Pk, py2) = | (b+ fu2)” + 6fn0b(b+ fu?)d,——m
wave number  [h/Me] cf. Afn for planck ~ 5
V n g kmax AfN L AfN L
z [Gpc/h]? 105[h/Mpc]® | [h/Mpc] P(k) Bk
SDSS LRG 0.315 | .48 136 0.1 4180 | 5.62
BOSS 0.35 5.66 26.6 0.1 21.25 3.34
HETDEX 2.7 2.96 27 0.2 12.4 3.65
BigBOSS LRG 0.5 3.1 30 0.1 | 1.59 2.27
BigBOSS QSO 2.15 138.2 5 0.1 7.80 17.02
ADEPT |.5 107.3 93.7 0.1 2.73 [.11
EUCLID 1.0 102.9 156 0.1 3.70 0.92
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Constraint on neutrino mass using WL

R. Nakajima
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SDSS and high resolution Lya power spectrum
analysis
McDonald, Seljak etal 2006

Rl°® 2<z<41n 11 bins

\- A single CDM model fits the data over a
wide range of redshift and scale

e WDM (6.5keV) does not fit

0.01
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Seljak, McDonald, Slosar 2007
Lya+SDSS+2dF+SN 6p:

> m, <0.17eV(95%) < 0.32eV(99.9%)

Z m, < 0.26eV (95%cl)



Estimation from future Lyman & experiment

From Big-Boss 2my = 0.05 + 0.024 eV

Y¥m, eV
Fiducial values (.05
o— Planck+BAQO(LyaF+galaxies) 0.094

o— Planck+BAQO(LyaF+galaxies)+nBAQO(galaxies) 0.039
o— Planck+BAQO(LyaF+galaxies)+nBAO(LyaF) 0.031
o~ Planck+BAO(LyaF+galaxies)+nBAO(galaxies+LyaF) 0.024
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Kyungjin Ahn

Hydrodynamic Effects from
High-Redshift Objects

< When & how big impacts by high-z sources

< Survey interpretation may alter — estimate!

® Direct impact on matter distribution

® Additional bias of survey targets

1 -
TR T — <h

Planck Z—year

atomic-cooling halos

~~
~
hY
3
IS
o2
~
=i
[
—
~—
=

—_ gB.7_130S_M300.J0.05, = 7=0.0924, z_,
——gl.7_B.78_M300_J0.1, T=0.0851, 2z,

£8.7_1308 (no minihalo), 7=0.0831, =z,
~ - -gl.7.8.7S {no minihalo), 7=0.0693, z,

n

—
o

EE ERE
Cl /Cl fiducial

>DDDDDDDBDD



Contents

@ Dark energy prospect: multiple probes strategy

H.J. Seo Re-capturing cosmic information with log mapping
J. Blazek Galaxy intrinsic alignment and gravitational lensing

J.Y. Yoo Supersonic relative velocity effect on BAO measurements
C.-G. Park What happens if dark energy perturbation is ignored?

@ Is acceleration caused by modified gravity instead?
Y.S. Song Cosmological test of GR using both WL and coherent motions

S.C. Lee Comment on multiple probes
@ Probes of initial conditions: non-Gaussinanity

JW. Gong Cosmological test of GR using both WL and coherent motions
D.H. Jeong Detecting fNL from galaxy surveys

@ Constraints on neutrino mass

C.W. Kim Comment on neutrino mass
R. Nakajima Neutrino mass bound from weak lensing

Ultimate mass constraint using Lyman alpha forest commented by U.Seljak

@ Structure formation at high redshift commented by K.J. Ahn

@ Impact on Astrophysics: commented by C.B. Park



Impact on Astrophysics

@ Photometric survey: advantage to research diverse
characteristics of galaxies. As it targets higher redshift, it
reveals the evolution of galaxies in defail.

@ Spectroscopic survey: advantage fto research chemical
compounds and dynamical states of galaxies, and inner
mechanism and estimated mass of cluster:

@ Photometric + Spectroscopic + redshift information: lead to
ideal combination to study detailed evolution of diverse
characteristics of galaxies.
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