Testing the Standard Model of Cosmology Using BAO data

Arman Shafieloo Institute for the Early Universe

30th June 2011, KIAS, Seoul-Korea *Future of Large Scale Structure Formation*

Standard Model of Cosmology

Universe is Flat Universe is Isotropic Universe is Homogeneous (large scales) Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n s=const) Dark Matter is cold All within framework of FLRW

Standard Model of Cosmology Vanilla Model

 Ω_{b}

 Ω_m

 H_0

T

 $A_{\rm s}$

n

- Homogeneous and Isotropic FLRW Flat Lambda Cold Dark Matter Universe (LCDM) with power–law form of the primordial spectrum
- It has 6 main parameters:

Era of Precision Cosmology ?

Cosmological Parameters from WMAP

	WMAP Cosmological Pa	rameters	
	Model: lcdm+sz+l	ens	
	Data: wmap5		
$10^2\Omega_b h^2$	2.273 ± 0.062	$1 - n_s$	$0.037^{+0.015}_{-0.014}$
$1 - n_s$	$0.0081 < 1 - n_s < 0.0647~(95\%~{ m CL})$	$A_{\rm BAO}(z=0.35)$	0.457 ± 0.022
C_{220}	5756 ± 42	$d_A(z_{eq})$	14279 ⁺¹⁸⁶ ₋₁₈₉ Mpc
$d_A(z_*)$	$14115^{+188}_{-191} \mathrm{Mpc}$	Δ_R^2	$(2.41 \pm 0.11) \times 10^{-1}$
h	$0.719_{-0.027}^{+0.026}$	H _o	71.9 ^{+2.6} / _{-2.7} km/s/Mpc
keq	0.00968 ± 0.00046	leq	136.6 ± 4.8
ℓ_*	302.08 ^{+0.83} -0.84	n _s	$0.963^{+0.014}_{-0.015}$
Ω_b	0.0441 ± 0.0030	$\Omega_b h^2$	0.02273 ± 0.00062
Ω_c	0.214 ± 0.027	$\Omega_c h^2$	0.1099 ± 0.0062
Ω_{Λ}	0.742 ± 0.030	Ω_m	0.258 ± 0.030
$\Omega_m h^2$	0.1326 ± 0.0063	$r_{\rm hor}(z_{ m dec})$	$286.0\pm3.4~{\rm Mpc}$
$r_s(z_d)$	$153.3\pm2.0~{ m Mpc}$	$r_s(z_d)/D_v(z=0.2)$	0.1946 ± 0.0079
$r_s(z_d)/D_v(z=0.35)$	0.1165 ± 0.0042	$r_s(z_*)$	$146.8\pm1.8~{\rm Mpc}$
R	1.713 ± 0.020	σ_{s}	0.796 ± 0.036
A_{SZ}	$1.04^{+0.96}_{-0.69}$	to	$13.69\pm0.13~\mathrm{Gyr}$
au	0.087 ± 0.017	θ_*	0.010400 ± 0.000029
$ heta_*$	0.5959 ± 0.0017 °	t_*	$380081^{+5843}_{-5841} \mathrm{yr}$
$z_{ m dec}$	1087.9 ± 1.2	z_d	1020.5 ± 1.6
z_{eq}	3176_{-150}^{+151}	$z_{\rm reion}$	11.0 ± 1.4
z_*	1090.51 ± 0.95	Table from LA	MBDA website

Beyond the Standard Model of Cosmology

- The universe may be more complicated than its current standard model (Vanilla Model).
- There might be some extensions to the standard model in defining the cosmological quantities.
- This needs proper investigation, using advanced statistical methods, high performance computational facilities and high quality observational data.

Standard Model of Cosmology

Universe is Flat Universe is Isotropic Universe is Homogeneous (large scales) Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n_s=const) Dark Matter is cold All within framework of FLRW

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

WMAP Cosmol	logical Parameters	
Model: lcdm+ns=1 Data: wmap		
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.1\pm1.2)\times10^{-10}$	
h	0.778 ± 0.032	
H_0	$77.8\pm3.2~\mathrm{km/s/Mpc}$	
$\Omega_b h^2$	$0.02405\substack{+0.00046\\-0.00047}$	
Ω_{Λ}	0.788 ± 0.031	
Ω_m	0.212 ± 0.031	
$\Omega_m h^2$	$0.1271\substack{+0.0086\\-0.0087}$	
σ_8	$0.796\substack{+0.053\\-0.054}$	
A_{SZ}	$0.92^{+0.63}_{-0.61}$	
t_0	$13.353\pm0.096~\mathrm{Gyr}$	
au	0.141 ± 0.029	
$ heta_A$	$0.5986 \pm 0.0017 \ ^{\circ}$	
z_r	14.6 ± 2.0	

Power-Law (PL)

	ogical Parameters el: lcdm	
Data: wmap		
$10^2\Omega_b h^2$	2.229 ± 0.073	
$\Delta^2_{\mathcal{R}}(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$	
h	$0.732^{+0.031}_{-0.032}$	
H_0	$73.2^{+3.1}_{-3.2} \ \mathrm{km/s/Mpc}$	
$\log(10^{10}A_s)$	3.156 ± 0.056	
$n_s(0.002)$	0.958 ± 0.016	
$\Omega_b h^2$	0.02229 ± 0.00073	
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$	
Ω_{Λ}	0.759 ± 0.034	
Ω_m	0.241 ± 0.034	
$\Omega_m h^2$	$0.1277^{+0.0080}_{-0.0079}$	
σ_8	$0.761\substack{+0.049\\-0.048}$	
au	0.089 ± 0.030	
$ heta_A$	$0.5952 \pm 0.0021 \ ^{\circ}$	
z_r	$11.0^{+2.6}_{-2.5}$	

PL with Running (RN)

WMAP Cosmological Parameters			
	Model: lcdm+run		
	Data: wmap		
	$10^2\Omega_b h^2$	2.10 ± 0.10	
$\Delta^2_{\mathcal{R}}$	$(k = 0.002/\mathrm{Mpc})$	$(23.9 \pm 1.3) \times 10^{-10}$	
	$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$	
	h	$0.681\substack{+0.042\\-0.041}$	
	H_0	$68.1^{+4.2}_{-4.1} \text{ km/s/Mpc}$	
	$n_s(0.002)$	$1.050\substack{+0.059\\-0.058}$	
	$\Omega_b h^2$	0.0210 ± 0.0010	
	Ω_{Λ}	$0.703^{+0.056}_{-0.055}$	
	Ω_m	$0.297\substack{+0.055\\-0.056}$	
	$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$	
	σ_8	$0.771_{-0.050}^{+0.051}$	
	A_{SZ}	$1.06\substack{+0.62\\-0.65}$	
	t_0	$13.97\pm0.20~{\rm Gyr}$	
	au	0.101 ± 0.031	
	θ_A	$0.5940 \pm 0.0021 \ ^{\circ}$	
	z_r	12.8 ± 2.8	

Assumptions from the early universe

Tables from NASA - LAMBDA website

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

WMAP Cosmological Parameters		
Model: lcdm+ns=1		
Data: wmap		
$10^2\Omega_b h^2$	$2.405\substack{+0.046\\-0.047}$	
$\Delta_{\mathcal{R}}^2(k=0.002)$	/Mpc) $(23.1 \pm 1.2) \times 10^{-10}$	
h	0.778 ± 0.032	
H_0	$77.8\pm3.2~\mathrm{km/s/Mpc}$	
$\Omega_b h^2$	$0.02405\substack{+0.00046\\-0.00047}$	
Ω_{Λ}	0.788 ± 0.031	
Ω_m	0.212 ± 0.031	
$\Omega_m h^2$	$0.1271\substack{+0.0086\\-0.0087}$	
σ_8	$0.796\substack{+0.053\\-0.054}$	
$A_{\rm SZ}$	$0.92^{+0.63}_{-0.61}$	
t_0	$13.353\pm0.096~\mathrm{Gyr}$	
au	0.141 ± 0.029	
$ heta_A$	0.5986 ± 0.0017 °	
z_r	14.6 ± 2.0	

Power-Law (PL)

WMAP Cosmological Parameters Model: lcdm Data: wmap		
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$	
h	$0.732^{+0.031}_{-0.032}$	
H_0	$73.2^{+3.1}_{-3.2} \ {\rm km/s/Mpc}$	
$\log(10^{10}A_s)$	3.156 ± 0.056	
$n_s(0.002)$	0.958 ± 0.016	
$\Omega_b h^2$	0.02229 ± 0.00073	
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$	
Ω_Λ	0.759 ± 0.034	
Ω_m	0.241 ± 0.034	
$\Omega_m h^2$	$0.1277\substack{+0.0080\\-0.0079}$	
σ_8	$0.761^{+0.049}_{-0.048}$	
au	0.089 ± 0.030	
$ heta_A$	$0.5952 \pm 0.0021 \ ^{\circ}$	
z_r	$11.0^{+2.6}_{-2.5}$	

PL with Running (RN)

-

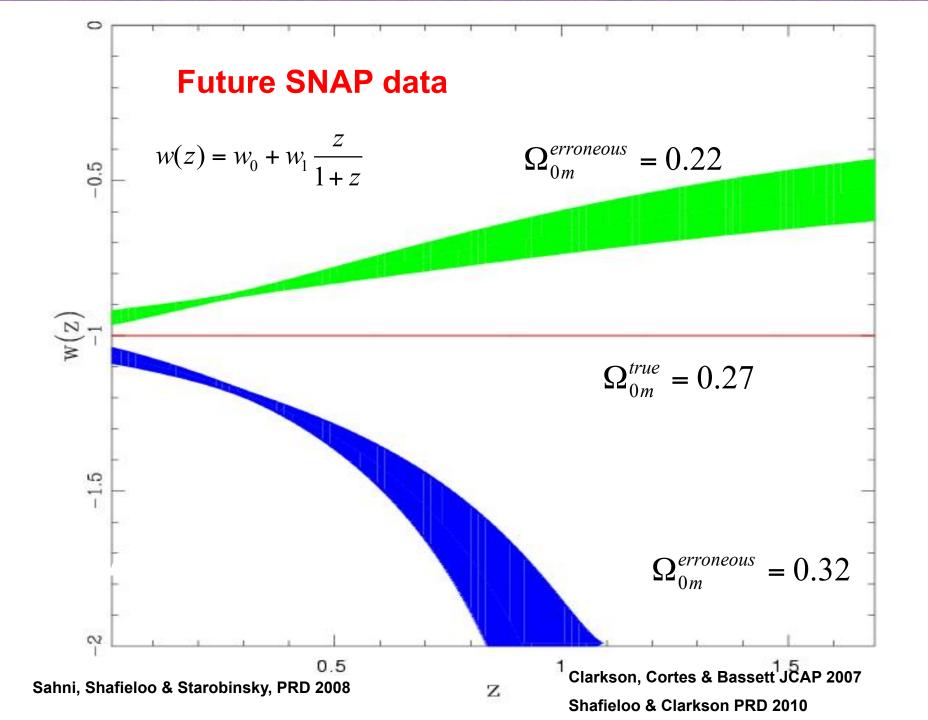
	WMAP Cosmological Parameters		
	Model: lcdm+run		
_	Data: wmap		
$10^2\Omega_bh^2$		2.10 ± 0.10	
$\Delta^2_{\mathcal{R}}($	$(k=0.002/{ m Mpc})$	$(23.9\pm1.3)\times10^{-10}$	
	$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$	
	h	$0.681^{+0.042}_{-0.041}$	
	H_0	$68.1^{+4.2}_{-4.1} \ \mathrm{km/s/Mpc}$	
	$n_s(0.002)$	$1.050\substack{+0.059\\-0.058}$	
	$\Omega_b h^2$	0.0210 ± 0.0010	
	Ω_{Λ}	$0.703^{+0.056}_{-0.055}$	
	Ω_m	$0.297\substack{+0.055\\-0.056}$	
	$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$	
	σ_8	$0.771^{+0.051}_{-0.050}$	
	A_{SZ}	$1.06\substack{+0.62\\-0.65}$	
	t_0	$13.97\pm0.20~{ m Gyr}$	
	au	0.101 ± 0.031	
	θ_A	$0.5940 \pm 0.0021 \ ^{\circ}$	
	z_r	12.8 ± 2.8	

Assumptions from the early universe

Tables from NASA - LAMBDA website

Dark Energy Reconstruction

 Any uncertainties in matter density is bound to affect the reconstructed w(z).


Assumptions from the early universe can affect reconstruction of the late universe.

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

$$\omega_{DE} = \frac{\left(\frac{2(1+z)}{3}\frac{H'}{H}\right) - 1}{1 - \left(\frac{H_0}{H}\right)^2 \Omega_{0M} (1+z)^3}$$

Shafieloo et al, MNRAS 2006 ; Shafieloo MNRAS 2007

Quite tricky to work with

Late Universe and Dark Energy Models

- Lambda-CDM: The most favorite model
- Brane Models
- Quintessence and Quiessence Models
- Phantoms, Ghosts, demons
- Modified Gravity
- etc...

$$\frac{H^2(z)}{H_0^2} = \left[\Omega_{0M}(1+z)^3 + \Omega_{DE} \exp[\int 3(1+w(z))\frac{dz}{1+z}]\right]$$

Dark Energy Parameterizations

Supernovae la as Standardized Candles

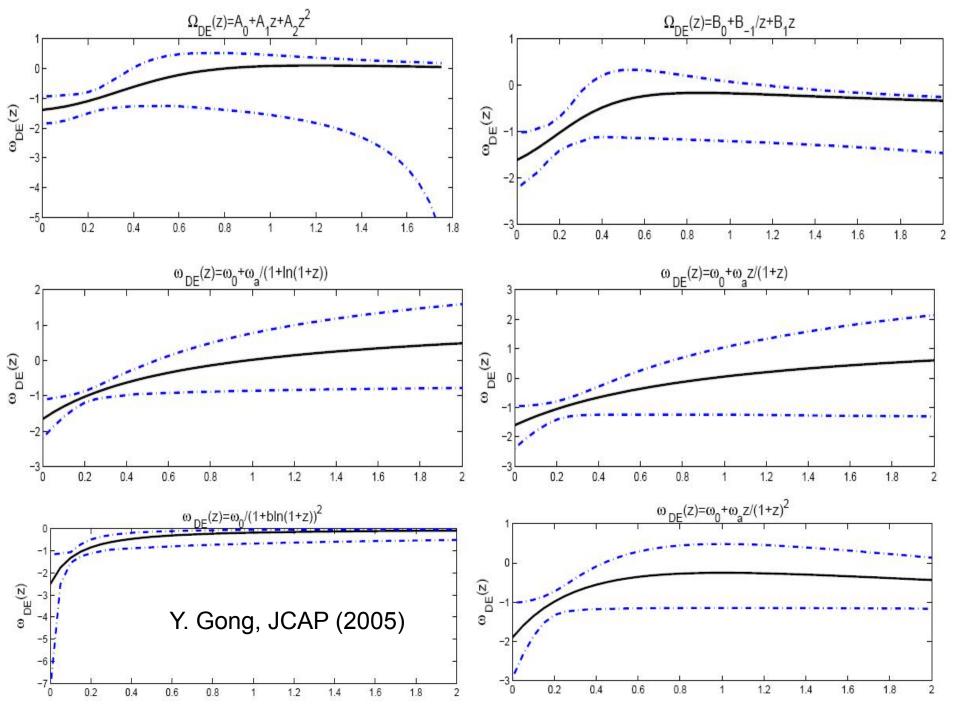
$$\Delta \theta = \frac{\Delta \chi}{d_A(z)}$$

BAO as standard ruler

$$d_L(z) = (1+z) \int_{0}^{z} \frac{dz'}{H(z')}$$

 $F = \frac{L}{4\pi d_I^2}$

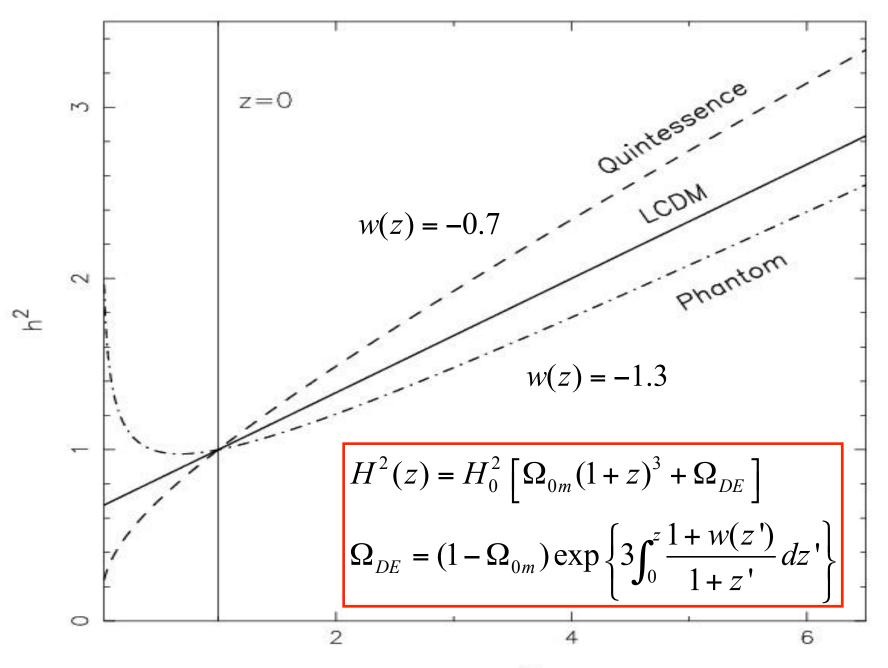
$$\frac{H^{2}(z)}{H^{2}_{0}} = \left[\Omega_{0M}(1+z)^{3} + (1-\Omega_{0M})X(z)\right]$$


1. Fitting functions for d
$$I(z)$$

 $d_{A}(z) = (1+z)^{-1} \int_{0}^{z} \frac{dz'}{H(z')}$

- 2. Fitting functions for DE density
- 3. Fitting functions for EOS

Most general form


$$\frac{H^{2}(z)}{H^{2}_{0}} = \left[\Omega_{0M}(1+z)^{3} + (1-\Omega_{0M})\exp[\int 3\left(1+w(z)\right)\frac{dz}{1+z}\right]$$

Changing the strategy:

 Instead of looking for w(z) and exact properties of dark energy at the current status of data, we can concentrate on a more reasonable problem:

V. Sahni, A. Shafieloo, A. Starobinsky, PRD 2008

 $(1+z)^{3}$

Om diagnostic

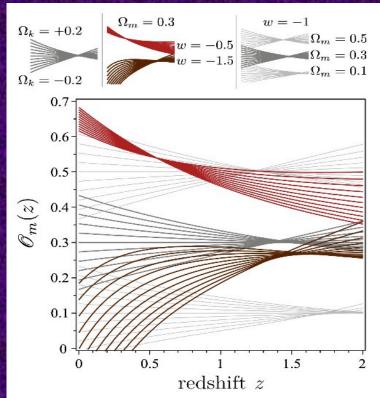
$$Om(z) = \frac{h^2(z) - 1}{(1+z)^3 - 1}$$

Om(z) is constant only for FLAT LCDM model

 $w = -1 \rightarrow Om(z) = \Omega_{0m}$ $w < -1 \rightarrow Om(z) < \Omega_{0m}$ $w > -1 \rightarrow Om(z) > \Omega_{0m}$

LCDM Phantom Quintessence

We Only Need h(z)


V. Sahni, A. Shafieloo, A. Starobinsky, PRD 2008

arXive:0807.3548

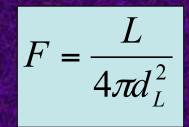
Also look at:

C. Zunckel & C. Clarkson, PRL 2008

arXive:0807.4304

To find cosmological quantities and parameters there are two general approaches:

1. Parametric methods

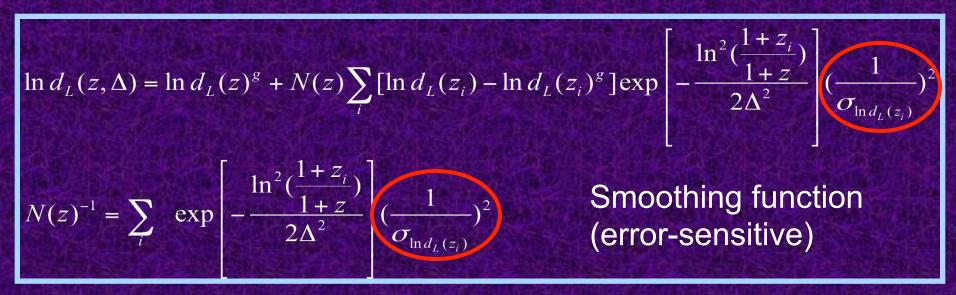

Easy to confront with cosmological observations to put constrains on the parameters, but the results are highly biased by the assumed models and parametric forms.

2. Non Parametric methods

Difficult to apply on the raw data, but the results will less biased and more reliable and independent of theoretical models or parametric forms.

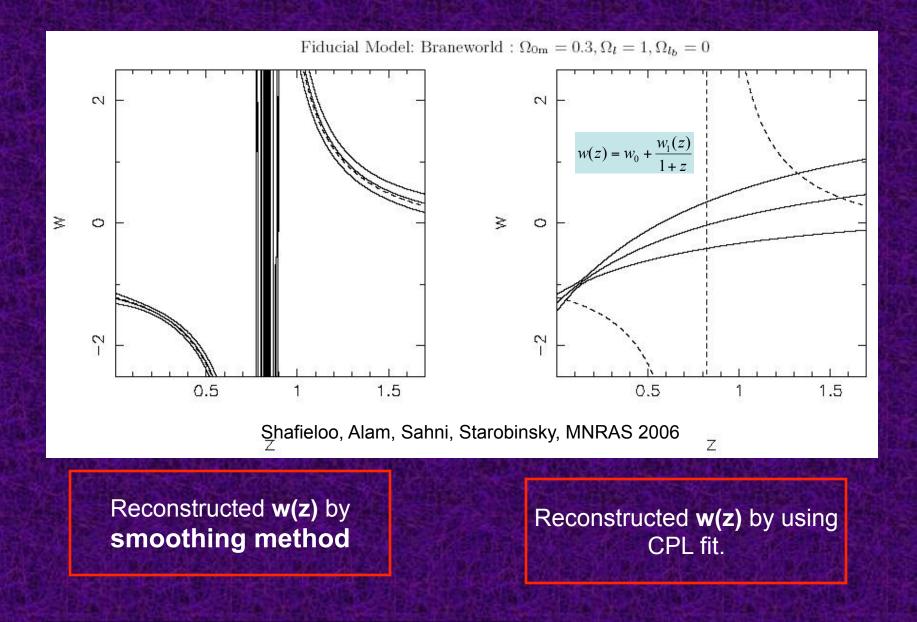
Non Parametric methods of Reconstruction

Usually involves binning and smoothing

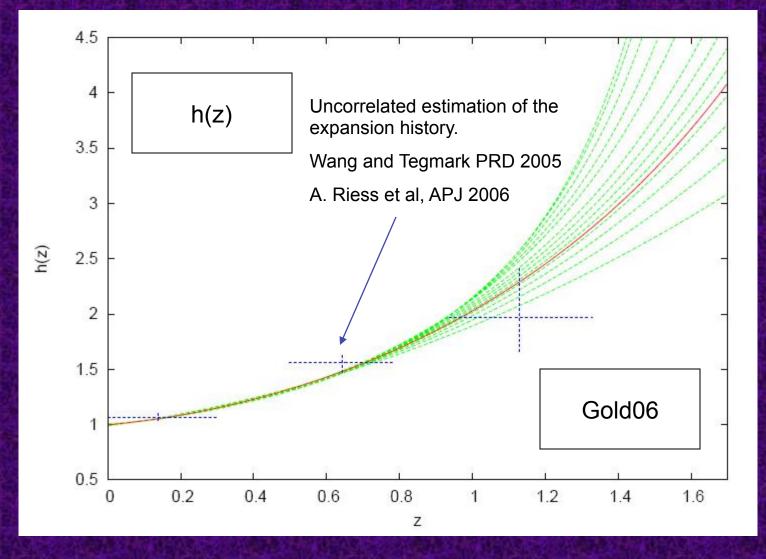


$$d_{L}(z) = (1+z) \int_{0}^{z} \frac{dz'}{H(z')}$$

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_{L}(z)}{1+z}\right)\right]^{-1}$$
$$\frac{H^{2}(z)}{H^{2}_{0}} = \left[\Omega_{0M}(1+z)^{3} + (1-\Omega_{0M})\exp[\int 3(1+w(z))\frac{dz}{1+z}]\right]$$
$$\omega_{DE} = \frac{\left(\frac{2(1+z)}{3}\frac{H'}{H}\right) - 1}{1 - \left(\frac{H_{0}}{H}\right)^{2}\Omega_{0M}(1+z)^{3}}$$

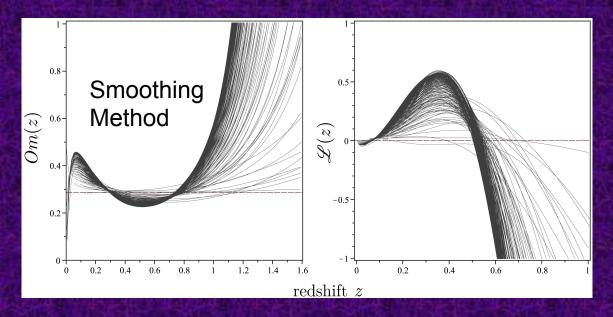

Method of Smoothing

A. Shafieloo, U. Alam, V. Sahni, A. Starobinsky, MNRAS (2006)A. Shafieloo, MNRAS (2007)A. Shafieloo & C. Clarkson PRD (2010)

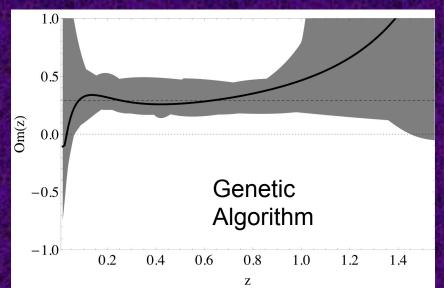


$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

$$\omega_{DE} = \frac{\left(\frac{2(1+z)}{3}\frac{H'}{H}\right) - 1}{1 - \left(\frac{H_0}{H}\right)^2 \Omega_{0M} (1+z)^3}$$



Chevallier et al (2001) and Linder (2003)


A. Shafieloo, MNRAS 2007

Model Independent Reconstruction of the Expansion History of the Universe as a Null Test for the Cosmological Constant

Shafieloo & Clarkson, PRD 2010

Nesseris & Shafieloo, MNRAS 2010

Model Independent Reconstruction of H(z)

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

Smoothing Supernovae data

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

Real time cosmology Age of passively evolving galaxies

$$D_{V}(z)^{3} = \left(\frac{c}{H_{0}}\right)^{3} \frac{zd_{L}(z)^{2}}{(1+z)^{2}h(z)}$$

Volume distance from baryon acoustic oscillation measurements

Model Independent Reconstruction of H(z)

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

Smoothing Supernovae data

$$H(z) = -\frac{1}{1+z}\frac{dz}{dt}$$

Real time cosmology Age of passively evolving galaxies

$$D_{V}(z)^{3} = \left(\frac{c}{H_{0}}\right)^{3} \frac{zd_{L}(z)^{2}}{(1+z)^{2}h(z)}$$

Volume distance from baryon acoustic oscillation measurements

$$\mathscr{R}(z) = rac{r_s(z_{CMB})}{D_V(z)}$$

Observable

$$D_V(z)^3 = \left(\frac{c}{H_0}\right)^3 \frac{zD(z)^2}{h(z)},$$

Effective dilation distance

 $D = (1+z)d_A/(c/H_0)$

Comoving sound horizon at baryon drag epoch

$$r_s(z_d) = \frac{c}{\sqrt{3}} \int_0^{1/(1+z_d)} \frac{da}{a^2 H(a)\sqrt{1 + (3\Omega_b/4\Omega_\gamma)a}}.$$

$$\mathscr{R}(z) = \frac{r_s(z_{CMB})}{D_V(z)}$$

Observable BAO

$$D_V(z)^3 = \left(\frac{c}{H_0}\right)^3 \frac{zD(z)^2}{h(z)},$$

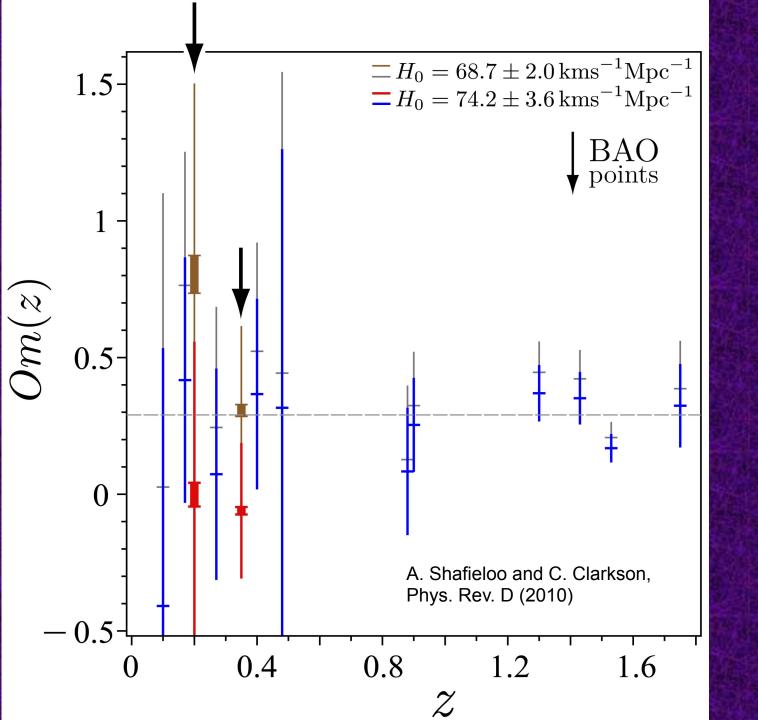
 $D = (1+z)d_A/(c/H_0)$

 $r_s(z_d)$

Effective dilation distance

Comoving sound horizon at baryon drag epoch

$$= \frac{c}{\sqrt{3}} \int_0^{1/(1+z_d)} \frac{da}{a^2 H(a)\sqrt{1 + (3\Omega_b/4\Omega_\gamma)a}}.$$


Observable CMB

$$\mathscr{R}(z) = \frac{r_s(z_{CMB})}{D_V(z)}$$
$$\sigma_{D_V(z)}^2 = \left[\frac{\partial D_V(z)}{\partial r_s(z_{CMB})}\right]^2 \sigma_{r_s(z_{CMB})}^2 + \left[\frac{\partial D_V(z)}{\partial \mathscr{R}(z)}\right]^2 \sigma_{\mathscr{R}(z)}^2$$

$$\begin{split} \mathscr{R}(z) &= \frac{r_s(z_{CMB})}{D_V(z)} \stackrel{\frac{r_s(z_{CMB})}{D_r(z=0.20)} = 0.1905 \pm 0.0061}{=} \frac{\frac{r_s(z_{CMB})}{D_r(z=0.35)} = 0.1097 \pm 0.0036}{D_r(z=0.35)} \\ & \text{Percival et. al. 2010} \\ \\ \sigma_{D_V(z)}^2 &= \left[\frac{\partial D_V(z)}{\partial r_s(z_{CMB})}\right]^2 \sigma_{r_s(z_{CMB})}^2 + \left[\frac{\partial D_V(z)}{\partial \mathscr{R}(z)}\right]^2 \sigma_{\mathscr{R}(z)}^2 \\ & h(z) &= \left(\frac{c}{H_0}\right)^3 \frac{z d_L^{\text{rec}}(z)^2}{(1+z)^2 D_V(z)^3}. \\ \\ h(z) &= \left[\frac{\partial h(z)}{\partial H_0}\right]^2 \sigma_{H_0}^2 + \left[\frac{\partial h(z)}{\partial D_V(z)}\right]^2 \sigma_{D_V(z)}^2 \\ \\ \end{array}$$

$$h(z) = \left(\frac{c}{H_0}\right)^3 \frac{z d_L^{\text{rec}}(z)^2}{(1+z)^2 D_V(z)^3}.$$

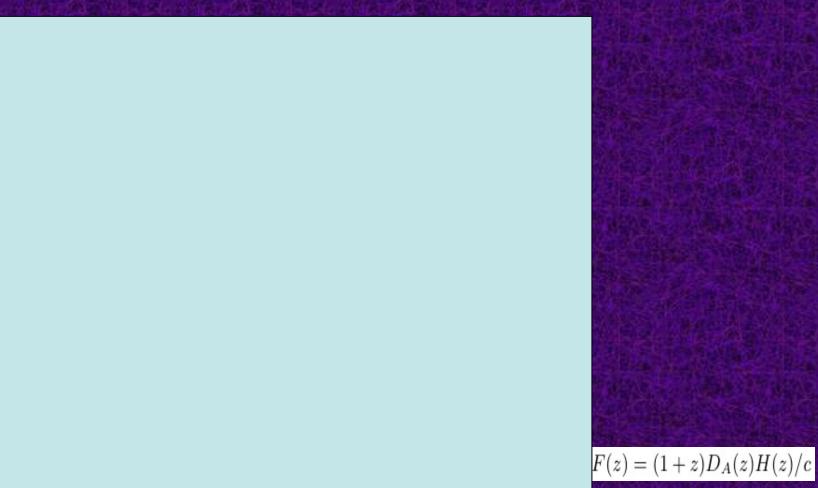
$$\sigma_{h(z)}^2 = \left[\frac{\partial h(z)}{\partial H_0}\right]^2 \sigma_{H_0}^2 + \left[\frac{\partial h(z)}{\partial D_V(z)}\right]^2 \sigma_{D_V(z)}^2$$

$$Om(z) = \frac{h^2(z) - 1}{(1+z)^3 - 1} \qquad \text{Om diagnostic}$$
$$\sigma_{Om(z)}{}^2 = \left[\frac{2h(z)}{(1+z)^3 - 1}\right]^2 \sigma_{h(z)}^2.$$

econstruction of m(Z

Alcock-Paczynski Measurement

 An Alcock-Paczynski measurement can be applied to cosmological objects as well as an isotropic process such as the 2-point statistics of galaxy clustering (Ballinger et al. 1996)


$$\Delta z = L_0 H(z)/c$$

$$\Delta \theta = L_0 / [(1+z)D_A(z)].$$

$$\Delta z/\Delta \theta = (1+z)D_A(z)H(z)/c,$$

Scale Distortion Parameter

C. Blake et. al, in prepration, WiggleZ Survey: Alcock-Paczynski measurement

Amplitude of systematic errors in measurements of the scale distortion parameter F(z) in four redshift slices relative to its fiducial value F_fid (FLCDM with matter density of 0.27), marginalized over the growth rate and galaxy bias b².

Combining the information from supernovae data and AP measurements

Smoothing method reconstruct D_A(z) using supernovae data in a model independent way.

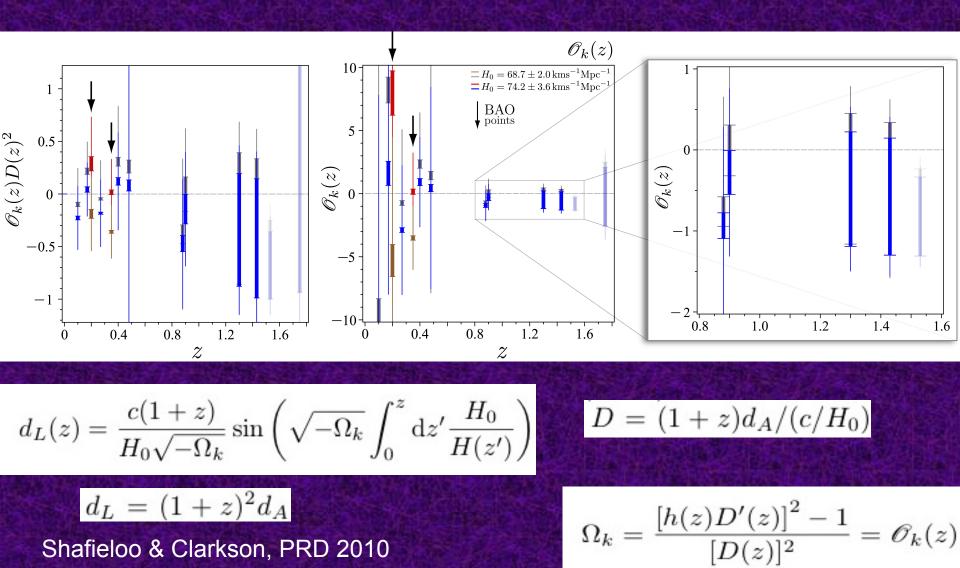
(Shafieloo et al 2006, Shafieloo 2007, Shafieloo and Clarkson 2010)

Assumption of curvature (here assuming flat universe) allow us to relate h(z) and distance measurements. $H(z) = \left[\frac{d}{dz}\left(\frac{d_{\perp}(z)}{1+z}\right)\right]^{-1}$

AP measurements of distortion parameter F(z) put additional constraints on the reconstructed results through consistency check between the D_A(z) and H(z). $F(z) = (1+z)D_A(z)H(z)/c$

Smoothing method can be modified to include SN Ia and AP measurements simultaneously to reconstruct the expansion history of the universe. $h^2(z) - 1$

$$Om(z) = \frac{h^2(z) - 1}{(1+z)^3 - 1}$$



Standard Model of Cosmology

Universe is Flat

Universe is Isotropic Universe is Homogeneous (large scales) Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n_s=const) Dark Matter is cold All within framework of FLRW

Conclusion

- BAO links the early and late universe. It is currently providing us with more and more valuable information about the universe.
- The current standard model of cosmology seems to work fine confronting with BAO data.
- This does not mean all the other models are wrong.
- It is important to analyze the data in a model independent way.
- Challenging the standard model is more affordable and realistic than trying to reconstruct the underlying model of the universe.
- Future data will break many degeneracies and probably we can distinguish between many models. We should wait and see how long the standard model can survive.

A new diagnostic of dark energy, tailored to fit BAO data