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• Classic method to measure the clustering anisotropies of 
galaxies is renewed with a great interest to clarify the nature 
of dark energy and to test theory of gravity.

• Accurate theoretical models for power spectrum have made 
a rapid progress, and are now available, taking fully account of 
the effect of clustering anisotropies.

• Large N-body simulations reveal a new feature of clustering 
anisotropies in halo catalogs, which sensitively depends on 
clustering bias. Only the improved model can account for this. 



Introduction

• Standard cosmological model 23%

4.6%
73%

 today
• Flat universe filled with the unknowns energy contents

Lambda CDM model

characterized by 6 parameters

Late-time cosmic acceleration

Dark energy:  dynamical scalar field or cosmological const.

Modified gravity:  IR modification to general relativity

SN Ia 
obs.

(Perlmutter et al. ’99; Riess et al. ’98)

{
Possible solution ?



“beyond Lambda CDM model”

✓  Nature of cosmic acceleration

✓  Test of gravity on cosmological scales

Dark energy or Modified gravity ?

Cosmic expansion

Q

Precision measurements of 
Growth of structure{Key

Need independent and complementary probes
 other than CMB and SN Ia



Large-scale structure (LSS)
Fundamental observable: Galaxy clustering patterns



Cosmological information in LSS

 Historical record of the primordial Universe
(Initial condition & late-time evolution)

Additional information coming from observational effect :

All information is encoded in statistical quantities:

Power spectrum P(k),  or correlation function ξ(r)

Shape &
amplitude

Alcock-Paczynski effect

Redshift distortion effect

 measurements of these are now top priority in future surveys

{
With BAOs as standard ruler, 

Galaxy clustering offers unique opportunity



Alcock-Paczynski (A-P) effect

∆r⊥ = DA(z)∆ θ

∆r|| = c∆ z/H(z)

observer

(∆θ, ∆z)

H(z) & DA(z) 
Using BAO as standard ruler,

can be measured simultaneously

e.g., Seo & Eisenstein (’03); Hu & Haiman (’03); Blake & Glazebrook (’03); Shoji et al.(’09)

Anisotropies caused by apparent mismatch of underlying 
cosmological models

Alcock & Paczynski (’79)



observer

magnitude of distortion ∝

peculiar 
velocity

f(z)

Redshift distortion (RD) effect

f(z) ≡ d lnD+

d ln a
� {Ωm(z)}γf(z) ≡ d lnD+

d ln a
� {Ωm(z)}γ

e.g., γ ≈ 0.55 (GR), 0.68 (DGP)

Measurement of f(z) offers a test of gravity on cosmological scales

growth-rate parameter

Linder (’05)

e.g., Linder (’08); Guzzo et al. (’08); Yamamoto et al. (’08); Song & Dore (’09); Percival 
& White (’09); White, Song & Percival (’09); Song & Percival (’09); Blake et al. (’11)

Anisotropies caused by peculiar velocity of galaxies 
through redshift measurements  

�s = �r +
(�v · ẑ)
aH(z)

ẑ ;
redshift space

real space

ẑ

Large-scales

�v



Revival of classic method
Measuring clustering anisotropies is not a new method

Matsubara & Suto (’96)

Ballinger, Peacock & Heavens (’96)
A-P effect

RD effect Hamilton (’92)

Use global shape of power spectrum/correlation function
to determine

Adopt GR valid over cosmological scales to determine

温故知新 (learning from the past)

ΩΛ

Ωm



Complementarity 

Method Observable Measure

SN Ia Light curves of 
distant SNe DL(z)

Weak lensing Shear field from 
galaxy images DA(z), g(z)

Clusters Number density of 
clusters DA(z), H(z), g(z)

Galaxy clustering Spatial clustering 
of galaxies DA(z), H(z), f(z)

g(z): growth factor

galaxy clustering provides a way to separately measure DA, H, & f
Advantage:



New ideas & innovation

• Reconstruction of velocity power spectrum

• Alternative probe of bulk flow

Song & Kayo (’10),  Tang, Kayo & Takada (’11)

Song et al (‘11a,b)

 Coherent combination to constrain dark energy (Song ’11)

• Reducing cosmic variance McDonald & Seljak (’09)

Improved technique to reduce ‘noises’ has been developed

• Reducing shot noise/stochasticity Seljak et al. (’09), Hamaus et al. (’10)

Through RD effect, galaxy clustering further provides statistical 
information of velocity field

alternative probe of structure formation

• Reducing Finger-of-God damping Hikage, Takada & Spergel (’11)



Latest results

SDSS DR7 LRG 
(z=0.2 & 0.35)

WiggleZ++

Blake et al. 

(WiggleZ: ~150,000 galaxies)

DV(z) ≡
�
(1 + z)2DA(z)2

c z

H(z)

�1/3

WiggleZ (z=0.6)

arXiv:1105.2862
arXiv:1104.2908

f(z) σ8(z)BAO

w

ΩM

BAO+CMB



On-going/up-coming surveys

WiggleZ

BOSS

HETDEX FastSound

SuMIRe-PFS

Big-BOSS

WFIRST

EUCLID

Spectroscopic surveys aiming at precision measurements 
of

VIPERS

GAMA

f(z) H(z) & DA(z) and/or

Subaru

Ground Space



Theoretical challenges

•  Non-linear gravitational evolution

•  Non-linear redshift distortions

•  Galaxy biasing

For fruitful science from high-precision measurements,
Accurate theoretical template  

for power spectrum/correlation function

Small, but non-negligible 
at ~1% precision

is crucial and highly demanding

Reducing the systematics is a big issue: 



Forward modeling approach
‘First-principle’ calculations of P(k) & ξ(r)

 based on perturbation theory (PT) of LSS

non-linear gravitational evolution is now under control
For BAO scales of our interest (k<0.2~0.3 h/Mpc @ 0.5<z<1.5),

Lagrangian resummation theory

Regularized PT

Closure theory
AT & Hiramatsu (’08),  
AT, Nishimichi, Saito & Hiramatsu (’09)

Matsubara (’08),  
Okamura, AT & Matsubara (’11)

Bernardeau, Crocce & Scoccimarro (’08),  
Bernardeau, AT, Crocce & Scoccimarro (in prep.)

Renormalized PT Crocce & Scoccimarro (‘06ab, ’08)

Development of improved treatment of PT 



Improved PT in real space

Correlation function

Limitation of 
standard PT

(1-loop)

Power spectrum
z=3

For power spectrum, reliable range of improved PT 
becomes twice wider than that of standard PT

AT, Nishimichi, Saito & Hiramatsu (’09)



Modeling redshift distortions

real spaceredshift space
v :
ẑ :{ peculiar velocity

observer’s 
line-of-sight direction

�s = �r +
(�v · ẑ)
aH(z)

ẑ ;

• Anisotropy (2D power spectrum)

P (k) ; µ ≡ (�k · ẑ)/|�k|

Enhancement

Suppression

• Power spectrum amplitude

Kaiser effect
Finger-of-God effect

(small-k)

(large-k)

Observed clustering pattern is apparently distorted.

P (S)(k, µ)

Definition

∝ f(z)



Redshift-space power spectrum

P (S)(k) =
�

d3x eik·x
�
e−ikµ ∆uz {δ(r)−∇zuz(r)} {δ(r�)−∇zuz(r�)}

�

uz = (�v · ẑ)/(aH)
∆uz = uz(r)− uz(r�)

Exact expression x = r− r�

... still phenomenological

(Popular) streaming model e.g., Scoccimarro (2004)

fitting parameter

Finger of God (non-linear) Kaiser 

P (S)(k, µ) = e−(kµ σv)2
�
Pδδ(k)− 2 µ2 Pδθ(k) + µ4 Pθθ(k)

�

(1D velocity dispersion)



An improved model

�
θ(k1)

�
δ(k2)− µ2

2 θ(k2)
� �

δ(k3)− µ2
3 θ(k3)

��
= (2π)3δD(k123) Bσ(k1,k2,k3)

Non-Gaussian 
correction 

A(k, µ) = −2 k µ

�
d3p

(2π)3
pz

p2
Bσ(p,k− p,−k)

Gaussian 
correction 

+A(k, µ) + B(k, µ)
�

Non-linear mode-coupling btw velocity & density

anti-phase 
oscillation

small in amplitude 
(<1-2%)

These also 
depend on ‘f ’

P (S)(k, µ) = e−(kµfσv)2
�
Pδδ(k)− 2fµ2Pδθ(k) + f2µ4Pθθ(k)

B(k, µ) = (kµ)2
�

d3p

(2π)3
F (p)F (k − p)

F (p) ≡ pz

p2

�
Pδθ(p)− p2

z

p2
Pθθ(p)

�

AT, Nishimichi & Saito (’10)

DFoG[kµfσv]

Damping func.

Low-k expansion from exact formula



Role of corrections in dark matter

In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total
power spectrum PðSÞ

total (solid) into the three pieces as PðSÞ
total ¼

PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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Role of corrections in dark matter

Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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Blind test: recovery of DA, H & f

Fitting to P0 & P2 of N-body data 
to estimate (DA, H, f)

Improved model of 
redshift distortions 
correctly recovers 
the input values

11

effect through (e.g., [18, 52, 53])

q = k

[(
DA,fid

DA

)2

+

{(
H

Hfid

)
−

(
DA,fid

DA

)2
}

µ2

]1/2

,

(26)

ν =
(

H

Hfid

)
µ

×
[(

DA,fid

DA

)2

+

{(
H

Hfid

)
−

(
DA,fid

DA

)2
}

µ2

]−1/2

,

(27)

The quantities DA,fid and Hfid are the fiducial values
of the angular diameter distance and Hubble parameter
adopted in the N-body simulations. For a given set of
cosmological parameters, the redshift-space power spec-
trum P (S) is calculated from Eq. (18), but we here treat
the quantity f as free parameter in addition to the ve-
locity dispersion σv. Further, to mimic a practical data
analysis using galaxy power spectrum, we introduce the
bias parameter b, assuming the linear deterministic rela-
tion, i.e., δsim = b δm [69]. Then, fitting the monopole
and quadrupole power spectra of Eq. (25) to those of the
N-body simulation at z = 1, we determine the best-fit
values of DA, H and f , just marginalized over the pa-
rameters σv and b. To do this, we use the Markov chain
Monte Carlo (MCMC) technique described by Ref. [55],
and adopt the likelihood function given by

− 2 lnL =
∑

n

∑

!,!′=0,2

{
P (S)

!,sim(kn) − P (S)
!,model(kn)

}

× Cov−1
!,!′(kn)

{
P (S)

!′,sim(kn) − P (S)
!′,model(kn)

}
,

(28)

where the quantity Cov!,!′ represents the covariance ma-
trix between different multipoles. The range of wavenum-
ber used in the likelihood analysis was chosen as k ≤
kmax = 0.205hMpc−1, so as to satisfy kmax ≤ k1%. As
for the covariance, we simply ignore the non-Gaussian
contribution (see Ref. [56] for validity of this treatment),
and use the linear theory to estimate the diagonal com-
ponents of the covariance, Cov!,!′ , including the effect of
shot-noise contribution assuming the galaxy number den-
sity ng = 5 × 10−4h3Mpc−3. The explicit expression for
the covariance is presented in Appendix C. We checked
that the linear theory estimate reasonably reproduces the
N-body results of the covariance matrix for the range of
our interest k ! 0.3hMpc−1 at z = 1.

Fig. 9 summarizes the result of the MCMC analy-
sis assuming an idealistically large survey with Vs =
20h−3Gpc3. The two-dimensional contour of the 1-σ
marginalized errors are shown for DA/DA,fid vs H/Hfid

(bottom left), DA/DA,fid vs f (middle left), and f vs
DA/DA,fid (bottom center). Also, the marginalized pos-
terior distribution for each parameter are plotted in the
top left, middle center, and bottom right panels. In each
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FIG. 9: Results of MCMC analysis using the model of red-
shift distortion with and without corrections (depicted as blue
and red lines, respectively). Based on the power spectrum
template (25), we derive the posterior distribution for the pa-
rameters DA, H and f from the monopole and quadrupole
spectra of N-body simulations at z = 1, marginalized over
the one-dimensional velocity dispersion σv and linear bias pa-
rameter b. Top left, middle center and bottom right show
the marginalized posterior distribution for DA/DA,fid, H/Hfid

and f . Shaded regions indicate the 1% interval around
the fiducial values. Middle left, bottom left, and bottom
center plot the two-dimensional 1-σ errors on the surfaces
(H/Hfid, f), (DA/DA,fid, H/Hfid), and (f, H/Hfid). Note that
in estimating likelihood function (28), we adopted the lin-
ear theory to calculate the covariance matrix Cov!,!′ , includ-
ing the shot-noise contribution with ng = 5 × 10−4h3Mpc−3

and assuming an idealistically large survey volume Vs =
20h−3Gpc3 (see Appendix C for explicit expression).

panel, blue and red lines respectively represent the results
using the model of redshift distortion with and without
the terms A and B.

As it is clear from Fig. 9, the model including the cor-
rections shows a better performance. Within the 1-σ
errors, which roughly correspond to the precision of a
percent-level, it correctly reproduces the fiducial values
of the parameters (indicated by crosses). On the other
hand, the two-dimensional errors of the results neglecting
the corrections show a clear evidence for the systematic
bias on the best-fit parameters. Accordingly, the resul-
tant value of χ2 around the best-fit parameters, given by
χ2 = −2 lnL, is larger than that of the case including the
corrections: χ2 = 10.1 and 22.2 for the cases with and
without corrections, respectively. Although the deviation
from the fiducial values seems somewhat small except for
the growth-rate parameter f , this is solely due to the fact
that we only use the monopole and quadrupole power
spectra. It would be generally significant in the analy-
sis using the full shape of redshift-space power spectrum,

Fiducial   
Improved model
Streaming model 

(w/o corrections)

 using MCMC

AT, Nishimichi & Saito (’10)



Testing PT models against 
redshift-space halo clustering

T. Nishimichi & AT,  arXiv:1106.4562



From dark matter to halos
The improved PT model has successfully passed several tests 

in the case of dark matter clustering  

As a natural step,

"Test against redshift-space halo clustering"

Why halo ?

• Physically well-defined objects easy to handle by N-body simulations 

• Reconstruction technique for halo density field from LRG samples

• Annoying Finger-of-God damping is expected to be small

Reid, Spergel & Bode ('09)
Reid et al. ('10)



Halo clustering from N-body simulations
Nishimichi & AT ('11)

• 9 halo catalogs sampled over wide-mass range @ z=0.35

• Volume & number density roughly match those of SDSS  DR7 LRG

Large N-body simulations (Lbox=1.14Gpc/h, N=1,028^3) 
with 15 realizations

Mh,i ⊂ [3× 1012, 7× 1013] h−1M⊙



Real-space clustering

PT model prediction works 
very well at k<0.2 h/Mpc

Halo bias possesses (very) 
weak scale-dependenceb(

k
)

Adopting a scale-dependent linear bias, 
PT models are compared with simulations (--> Next slides)

linear

b(k) = Phm(k)/Pm(k)

δh(�k) = b(k)δm(�k)



Power spectrum in 2D
Phalo(k||, k⊥)

(b2 + f µ2)2Plin,no-wiggle(k)
k�

k⊥

Line-of-sight

observerN-body result

Dark matter Light halos
(bin1)

Heavy halos
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‘shot-noise’ corrected



Streaming model

N-body result

Dark matter Light halos
(bin1)

Heavy halos
(bin9)

Dark matter Light halos
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Heavy halos
(bin9)



Improved model

N-body result

Dark matter Light halos
(bin1)

Heavy halos
(bin9)

Dark matter Light halos
(bin1)

Heavy halos
(bin9)



Power spectrum in 2D

improved(L)
Dark matter

improved(L)Light (bin1)

improved(L)
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Multipole power 
spectra
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Halo mass dependence

Goodness of fit

Fitted results of 
velocity dispersion

improved(L,G)

bin1 bin9

heavylight

L: Lorentzian,  G: Gaussian
Choice of 

damping func.



SDSS DR7 LRG samples

monopole & quadrupole spectra fit to PT model

Monopole Quadrupole-to-Monopole ratio

b(k) = b0 + b1 kc

b(k) = b0 + b1 kc

Saito, Nishimichi, AT & Yamamoto (’10) in prep.

Assuming linear scale-(in)dependent bias, 

SDSSS LRG @z=0.35
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Constraints on DA, H & f 
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Taruya et al (2010)  kmax=0.155h/Mpc

b(k) = b0+b1kc

constant bias Simultaneously
constrain DA, H & f 
from SDSS DR7 LRGs

Resultant constraint on 
DA is rather sensitive to 

the galaxy bias

Saito, Nishimichi, AT & Yamamoto (’10) in prep.



Summary
Clustering anisotropies by AP & RD effects offer unique probe 
to precisely measure cosmic expansion & growth of structure

• Precision power spectrum template from perturbation theory

New effect of non-linear RD amplified by galaxy/halo bias

Impacts of precision model of RD on future measurements

Failure of popular “streaming model”{
The understanding of galaxy bias is still crucial issue

• Key science of galaxy surveys in the coming decade

• New ideas & innovations


