27th June-Ist July, 2011 WKYC2011@KIAS

Precision Cosmology from Redshift-space galaxy Clustering

~ Progress of high-precision template for BAOs ~

Atsushi Taruya

RESearch Center for the Early Universe (RESCEU), Univ. Tokyo

In collaboration with Takahiro Nishimichi, Shun Saito, Kazuhiro Yamamoto

Contents

- Classic method to measure the clustering anisotropies of galaxies is renewed with a great interest to clarify the nature of dark energy and to test theory of gravity.
- Accurate theoretical models for power spectrum have made a rapid progress, and are now available, taking fully account of the effect of clustering anisotropies.
- Large N-body simulations reveal a new feature of clustering anisotropies in halo catalogs, which sensitively depends on clustering bias. Only the improved model can account for this.

Introduction

Lambda CDM model

 Standard cosmological model characterized by 6 parameters

Flat universe filled with the <u>unknowns energy contents</u>

Late-time cosmic acceleration

(Perlmutter et al. '99; Riess et al. '98)

Possible solution ?

Dark energy: dynamical scalar field or cosmological const. **Modified gravity**: IR modification to general relativity

"beyond Lambda CDM model"

Dark energy or Modified gravity ? Q

- Nature of cosmic acceleration
- \checkmark Test of gravity on cosmological scales

Precision measurements of **Growth of structure**

Need independent and complementary probes other than CMB and SN la

Large-scale structure (LSS)

Fundamental observable: Galaxy clustering patterns

Cosmological information in LSS

All information is encoded in statistical quantities:

Power spectrum P(k), or correlation function $\xi(r)$

Shape & amplitude

Historical record of the primordial Universe (Initial condition & late-time evolution)

Additional information coming from observational effect :

Alcock-Paczynski effectRedshift distortion effect

Galaxy clustering offers unique opportunity

With BAOs as standard ruler, measurements of these are now top priority in future surveys

Alcock-Paczynski (A-P) effect

Alcock & Paczynski ('79)

Anisotropies caused by apparent mismatch of underlying cosmological models

Using BAO as standard ruler, H(Z) & DA(Z) can be measured simultaneously

e.g., Seo & Eisenstein ('03); Hu & Haiman ('03); Blake & Glazebrook ('03); Shoji et al.('09)

Redshift distortion (RD) effect

Anisotropies caused by peculiar velocity of galaxies through redshift measurements

redshift space $\vec{s} = \vec{r} + \frac{(\vec{v} \cdot \hat{z})}{a H(z)} \hat{z};$ real space **growth-rate parameter** $f(z) \equiv \frac{d \ln D_+}{d \ln a} \simeq \{\Omega_m(z)\}^{2}$ $\gamma \approx 0.55 \text{ (GR)}, \ 0.68 \text{ (DGP)}$ Linder ('05)

Measurement of f(z) offers a test of gravity on cosmological scales

e.g., Linder ('08); Guzzo et al. ('08); Yamamoto et al. ('08); Song & Dore ('09); Percival & White ('09); White, Song & Percival ('09); Song & Percival ('09); Blake et al. ('11)

Revival of classic method

Measuring clustering anisotropies is not a new method

A-P effect

Matsubara & Suto ('96) Ballinger, Peacock & Heavens ('96)

Use global shape of power spectrum/correlation function to determine $\,\Omega_{\Lambda}\,$

RD effect Hamilton ('92)

Adopt GR valid over cosmological scales to determine Ω_{m}

温故知新 (learning from the past)

Complementarity

g(z): growth factor

Method	Observable	Measure		
SN la	Light curves of distant SNe	DL(Z)		
Weak lensing	Shear field from galaxy images	DA(z), g(z)		
Clusters	Number density of clusters	Da(z), H(z), g(z)		
Galaxy clustering	Spatial clustering of galaxies	Da(z), H(z), f(z)		

Advantage:

galaxy clustering provides a way to separately measure DA, H, & f

New ideas & innovation

Through RD effect, galaxy clustering further provides statistical information of velocity field

alternative probe of structure formation

Reconstruction of velocity power spectrum

Song & Kayo ('10), Tang, Kayo & Takada ('11)

Alternative probe of bulk flow

Song et al ('IIa,b)

Improved technique to reduce 'noises' has been developed

• Reducing cosmic variance

McDonald & Seljak ('09)

- Reducing shot noise/stochasticity Seljak et al. ('09), Hamaus et al. ('10)
- Reducing Finger-of-God damping

Hikage, Takada & Spergel ('11)

Latest results

On-going/up-coming surveys

Spectroscopic surveys aiming at precision measurements of f(z) and/or H(z) & DA(z)

WiggleZ BOSS HETDEX FastSound SuMIRe-PFS Subaru Big-BOSS GAMA **Space** WFIRST EUCLID

Theoretical challenges

For fruitful science from high-precision measurements, Accurate theoretical template for power spectrum/correlation function is crucial and highly demanding

Reducing the systematics is a big issue:

- Non-linear gravitational evolution
- Non-linear redshift distortions
- Galaxy biasing

Small, but non-negligible at ~1% precision

Forward modeling approach

'First-principle' calculations of P(k) & $\xi(r)$ based on perturbation theory (PT) of LSS

Development of improved treatment of PT

Renormalized PT

Closure theory

Lagrangian resummation theory

Regularized PT

Crocce & Scoccimarro ('06ab, '08)

AT & Hiramatsu ('08), AT, Nishimichi, Saito & Hiramatsu ('09)

Matsubara ('08), Okamura, AT & Matsubara ('11)

Bernardeau, Crocce & Scoccimarro ('08), Bernardeau, AT, Crocce & Scoccimarro (in prep.)

For BAO scales of our interest (k<0.2~0.3 h/Mpc @ 0.5<z<1.5), non-linear gravitational evolution is now under control

Improved PT in real space

AT, Nishimichi, Saito & Hiramatsu ('09)

Modeling redshift distortions

Definition

$\vec{\mathbf{s}} = \vec{\mathbf{r}} + \frac{(\vec{\mathbf{v}} \cdot \hat{\mathbf{z}})}{a H(z)} \hat{\mathbf{z}}; \quad \begin{cases} \mathbf{v} : \text{peculiar velocity} \\ \hat{\mathbf{z}} : \text{observer's} \\ \text{line-of-sight direction} \end{cases}$

Observed clustering pattern is apparently distorted.

• Anisotropy (2D power spectrum) $P(k) \longrightarrow P^{(S)}(k, \mu); \quad \mu \equiv (\vec{k} \cdot \hat{z})/|\vec{k}|$ • Power spectrum amplitude Enhancement Kaiser effect (small-k) Suppression Finger-of-God effect (large-k)

Redshift-space power spectrum

Exact expression

$$P^{(S)}(\mathbf{k}) = \int d^3 \mathbf{x} \, e^{i\mathbf{k}\cdot\mathbf{x}} \left\langle e^{-ik\mu\,\Delta u_z} \left\{ \delta(\mathbf{r}) - \nabla_z u_z(\mathbf{r}) \right\} \left\{ \delta(\mathbf{r}') - \nabla_z u_z(\mathbf{r}') \right\} \right\rangle$$

 $u_z = (\vec{\mathbf{v}} \cdot \hat{\mathbf{z}}) / (a H)$ $\Delta u_z = u_z(\mathbf{r}) - u_z(\mathbf{r}')$

 $\mathbf{x} = \mathbf{r} - \mathbf{r}'$

(Popular) streaming model

e.g., Scoccimarro (2004)

$$P^{(S)}(k,\mu) = e^{-(k\mu\sigma_v)^2} \left[P_{\delta\delta}(k) - 2\,\mu^2 \,P_{\delta\theta}(k) + \mu^4 \,P_{\theta\theta}(k) \right]$$

Finger of God (non-linear) Kaiser

fitting parameter (ID velocity dispersion)

... still phenomenological

An improved model

AT, Nishimichi & Saito ('10)

 $+A(k,\mu)+B(k,\mu)$

Low-k expansion from exact formula

$$P^{(S)}(k,\mu) = D_{FoG}[k\mu f\sigma_{v}] \left[P_{\delta\delta}(k) - 2f\mu^{2}P_{\delta\theta}(k) + f^{2}\mu^{4}P_{\theta\theta}(k) \right]$$

Damping func.

Non-linear mode-coupling btw velocity & density

Non-Gaussian correction

$$A(k,\mu) = -2 k \mu \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{p_z}{p^2} B_\sigma(\mathbf{p},\mathbf{k}-\mathbf{p},-\mathbf{k})$$

anti-phase oscillation

 $\left\langle \theta(\mathbf{k}_1) \left\{ \delta(\mathbf{k}_2) - \mu_2^2 \,\theta(\mathbf{k}_2) \right\} \left\{ \delta(\mathbf{k}_3) - \mu_3^2 \,\theta(\mathbf{k}_3) \right\} \right\rangle = (2\pi)^3 \delta_D(\mathbf{k}_{123}) \, B_\sigma(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$

Gaussian correction

$$B(k,\mu) = (k\mu)^2 \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} F(\boldsymbol{p}) F(\boldsymbol{k}-\boldsymbol{p})$$

 $F(\boldsymbol{p}) \equiv \frac{p_z}{p^2} \left\{ P_{\delta\theta}(p) - \frac{p_z^2}{p^2} P_{\theta\theta}(p) \right\}$

small in amplitude (<1-2%)

These also depend on 'f'

Role of corrections in dark matter

Improved model

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell=\mathrm{even}} P_{\ell}^{(\mathrm{S})}(k) \,\mathcal{P}_{\ell}(\mu)$$

AT, Nishimichi & Saito ('10)

Role of corrections in dark matter

Streaming model

$$P^{(\mathrm{S})}(k,\mu) = \sum_{\ell=\mathrm{even}} P_{\ell}^{(\mathrm{S})}(k) \,\mathcal{P}_{\ell}(\mu)$$

Even in 1% convergence limit, discrepancy manifest (few % in P0, >5% in P2)

Blind test: recovery of DA, H & f

AT, Nishimichi & Saito ('10)

Testing PT models against redshift-space halo clustering

T. Nishimichi & AT, arXiv:1106.4562

From dark matter to halos

The improved PT model has successfully passed several tests in the case of dark matter clustering

As a natural step,

"Test against redshift-space halo clustering"

Why halo ?

- Physically well-defined objects easy to handle by N-body simulations
- Reconstruction technique for halo density field from LRG samples
- Annoying Finger-of-God damping is expected to be small

Reid, Spergel & Bode ('09) Reid et al. ('10)

Halo clustering from N-body simulations

Nishimichi & AT ('11)

Large N-body simulations (Lbox=1.14Gpc/h, N=1,028^3) with 15 realizations

• 9 halo catalogs sampled over wide-mass range @ z=0.35 $\overline{M}_{{\rm h},i} \subset [3 \times 10^{12}, \ 7 \times 10^{13}] \ h^{-1}M_{\odot}$

Volume & number density roughly match those of SDSS DR7 LRG

TABLE II: Summary of the halo catalogs. The minimum, maximum and mean mass $(M_{\min}, M_{\max} \text{ and } M_h)$ are in units of $h^{-1}M_{\odot}$, while the halo number density (n_h) is in $h^3 \text{Mpc}^{-3}$. The bias parameter, b_0 , is defined in Eq. (15). See Sec. IV A for more detail.

Sample	bin 1 (light)	bin 2	bin 3	bin 4	bin 5	bin 6	bin 7	bin 8	bin 9 (heavy)
M_{\min}	1.77×10^{12}	2.49×10^{12}	3.54×10^{12}	4.98×10^{12}	7.09×10^{12}	1.00×10^{13}	1.42×10^{13}	2.01×10^{13}	2.84×10^{13}
$M_{\rm max}$	5.54×10^{12}	1.02×10^{13}	1.74×10^{13}	2.66×10^{13}	4.04×10^{13}	6.76×10^{13}	1.19×10^{14}	2.08×10^{14}	
$\overline{M}_{ m h}$	2.96×10^{12}	4.65×10^{12}	7.08×10^{12}	9.37×10^{12}	1.47×10^{13}	2.18×10^{13}	3.21×10^{13}	4.63×10^{13}	7.03×10^{13}
n_h	1.57×10^{-3}	1.26×10^{-3}	9.46×10^{-4}	6.87×10^{-4}	4.87×10^{-4}	3.47×10^{-4}	2.43×10^{-4}	1.64×10^{-4}	1.09×10^{-4}
b_0	1.08	1.16	1.25	1.35	1.47	1.62	1.80	1.99	2.26

Real-space clustering

Adopting a scale-dependent linear bias, $\delta_{h}(\vec{k}) = b(k)\delta_{m}(\vec{k})$ PT models are compared with simulations (--> Next slides)

Power spectrum in 2D

Power spectrum in 2D

Halo mass dependence

Fitted results of velocity dispersion

Goodness of fit

SDSS DR7 LRG samples

Assuming linear scale-(in)dependent bias, monopole & quadrupole spectra _____ fit to PT model

Monopole

Saito, Nishimichi, AT & Yamamoto ('10) in prep.

Constraints on DA, H&f

Saito, Nishimichi, AT & Yamamoto ('10) in prep.

Summary

Clustering anisotropies by AP & RD effects offer unique probe to precisely measure cosmic expansion & growth of structure

- Key science of galaxy surveys in the coming decade
- New ideas & innovations
- Precision power spectrum template from perturbation theory

 New effect of non-linear RD amplified by galaxy/halo bias
 Failure of popular "streaming model"
 Impacts of precision model of RD on future measurements
 The understanding of galaxy bias is still crucial issue