
NOTES ON OPERADS

HSUAN-YI LIAO

Abstract. This note is for a talk on operads. The main reference is [1]. The books [2, 3] are also useful.

Contents

1. Operad 1
1.1. Tree 1
1.2. Operad and cooperad 2
2. Convolution Lie algebra 3
2.1. Example: cooperad of cocommutative coalgebras 4
2.2. Cobar construction 5
References 5

1. Operad

1.1. Tree.

Definition 1.1. A graph Γ = (VΓ, EΓ) is a pair of sets where EΓ is contained in the power set 2VΓ (the set of
subsets in VΓ). A directed graph is a graph Γ = (VΓ, EΓ) with source map and target map s, t : EΓ → VΓ

such that e = {s(e), t(e)} for any e ∈ EΓ. An isomorphism Φ : Γ → Γ̃ of graphs from Γ = (VΓ, EΓ)

to Γ̃ = (VΓ̃, EΓ̃) consists of bijections ΦV : VΓ → VΓ̃ and ΦE : EΓ → EΓ̃ such that ΦE({v, w}) =
{ΦV (v),ΦV (w)} for any {v, w} ∈ EΓ. An isomorphism of directed graphs is an isomorphism of graphs
which is compatible with the source and target maps. Let v ∈ VΓ. We denote

A(v) := {e ∈ EΓ | v ∈ e}.
The number |A(v)| is called the valency of v. An edge e ∈ EΓ is called a cycle if |e| = 1.

Definition 1.2. A tree T = (vo, VT , ET ) is a connected graph without cycles which has a special vertex
vo ∈ VT , called root vertex, such that |A(vo)| = 1. The edge adjacent to vo is called the root edge, denoted
eo. Non-root vertexes of valency 1 are called leaves. The set of leaves of T is denoted L(T ). A vertex is called
internal if it is neither a root nor a leaf.

Remark 1.3. A tree, with the direction towards the root, is naturally a directed graph.

Definition 1.4. A tree T is called planar if for every internal vertex of T , the set t−1(v) carries a total
order. An n-labeled planar tree is a planar tree equipped with an injective map l : {1, · · · , n} → L(T ).
(The map l is not required to be monotone.) A vertex v of an n-labeled planar tree T is called nodal if
v ∈ NT := VT \ {vo} \ im l.
Let S, T be n-labeled planar trees. A (non-planar) morphism Φ : S → T is a pair of bijections ΦV : VS →
VT and ΦE : ES → ET which are compatible with source and target maps, and ΦV ◦ lS = lT . The category
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of n-labeled planar trees is denoted Tree(n). The full subcategory of n-labeled planar trees with k nodal
vertexes is denoted Treek(n).

Remark 1.5. There is a natural left Sn-action on the objects of Tree(n).

1.2. Operad and cooperad. Let C be the category of cochain complexes.

Definition 1.6. A S-module is a sequence {P (n)}n≥0 of objects in C such that for each n ∈ N0, the object
P (n) is equipped with a left Sn-action.

Let T ∈ Tree(n). Define
P (T ) :=

⊗
v∈NT

P (|t−1(v)|)

where the tensor product is done in the order induced by T .

Definition 1.7. A (dg) operad is an S-module {P (n)}n≥0 equipped with “composition maps”

µT : P (T )→ P (n)

for any T ∈ Tree(n), and equipped with a unit u : k→ P (1) which satisfies a list of axioms (“associativity,”
“S-equivalent,” “unit”).

Proposition 1.8. Let V be a cochain complex. The direct sum

P (V ) :=
∞⊕
n=0

(
P (n)⊗ V ⊗n

)
Sn

with the natural P -algebra structure is the free P -algebra generated by V .

Consider the S-module

Λ(n) :=

{
s1−n signn, n ≥ 1;

0, n = 0,

where signn = k with the Sn-action σ · 1 := (−1)σ · 1. The compositions are defined by

1m ◦i 1n := (−1)(1−n)(i−1)1n+m−1.

Remark 1.9. The sign assignment of insertion is different from [1]. It is not clear to the author how the sign
convention was chosen in [1].

Let V be a cochain complex, and let
Φ : Λ→ EndV

be a morphism of dg operads. Let Φ̃ : Com→ EndV [1] be the map

Φ̃(1̃n)(v1, · · · , vn) := (−1)
∑n

j=1(n−j)|vj | s−1 ◦ Φ(1n)(sv1, · · · , svn).

Proposition 1.10. The assignment

Λ-Alg→ Com -Alg1 : Φ 7→ Φ̃

is a bijection, where V ∈ Com -Alg1 iff V [1] ∈ Com -Alg.

Proof. We prove Φ̃ is a morphism of operads. The other parts of proof should be easy. SinceΦ is a morphism,
we have

Φ(1n)(vσ(1), · · · , vσ(n)) = ε(σ, v)(−1)σ Φ(1n)(v1, · · · , vn)
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Then

Φ̃(σ ? 1̃n)(v1, · · · , vn) = (−1)σ(−1)
∑n

j=1(n−j)|vj | s−1 ◦ Φ(σ · 1n)(sv1, · · · , svn)

= (−1)σε(σ, sv)(−1)
∑n

j=1(n−j)|vj | s−1 ◦ Φ(1n)(svσ(1), · · · , svσ(n))

= ε(σ, v)(−1)
∑n

j=1(n−j)|vj | s−1 ◦ Φ(1n)(svσ(1), · · · , svσ(n))

= Φ̃(1̃n)
(
σ ? (v1 ⊗ · · · vn)

)
.

and

Φ̃(1̃m◦̄i1̃n)(v1, · · · , vm+n−1)

= (−1)
∑m+n−1

j=1 (m+n−1−j)|vj | s−1 ◦ Φ(1m+n−1)(sv1, · · · , svm+n−1)

= (−1)(1−n)(i−1)(−1)
∑m+n−1

j=1 (m+n−1−j)|vj | s−1 ◦ Φ(1m ◦i 1n)(sv1, · · · , svm+n−1)

= (−1)(1−n)(i−1)(−1)
∑m+n−1

j=1 (m+n−1−j)|vj |(−1)|Φ(1n)|(i−1+
∑i−1

j=1 |vj |)

· s−1 ◦ Φ(1m)
(
sv1, · · · , svi−1, ss

−1Φ(1n)(svi, · · · , svi+n−1), svi+n, · · · , svm+n−1

)
= (−1)(1−n)(i−1)(−1)

∑m+n−1
j=1 (m+n−1−j)|vj |(−1)(1−n)(i−1+

∑i−1
j=1 |vj |)

· (−1)
∑i+n−1

j=i (n+i−1−j)|vj |(−1)
∑i−1

j=1(m−j)|vj |(−1)
∑m+n−1

j=i+n (m+n−1−j)|vj |(−1)
∑i+n−1

j=i (m−i)|vj |

· Φ̃(1̃m)
(
v1, · · · , vi−1, Φ̃(1̃n)(vi, · · · , vi+n−1), vi+n, · · · , vm+n−1

)
= Φ̃(1̃m)

(
v1, · · · , vi−1, Φ̃(1̃n)(vi, · · · , vi+n−1), vi+n, · · · , vm+n−1

)
=
(
Φ̃(1̃m)◦̄iΦ̃(1̃n)

)(
v1, · · · , vm+n−1

)
.

�

Definition 1.11. A (dg) cooperad is an S-module {Q(n)}n≥0 equipped with “decomposition maps”

∆T : Q(n)→ Q(T )

for any T ∈ Tree(n), and equipped with a counit ũ : Q(1)→ k which satisfies a list of axioms (“coassocia-
tivity,” “S-equivalent,” “counit”).

A cooperad Q is coaugmented if we have a cooperad morphism ε : ∗ → Q, where ∗ is the natural cooparad
with ∗(1) = k and ∗(n) = 0 if n 6= 1.

We denote the pseudo-cooperad coker(ε) by Qo.

Example 1.12. The S-module Λ also caries a cooperad structure:

∆i : Λm+n−1 → Λm ⊗ Λn,

∆i(1m+n−1) := (−1)(1−n)(i−1) · 1m ⊗ 1n.

2. Convolution Lie algebra

The notation π0 denotes the collection of isomorphism classes in a category.

Let P be a dg (pseudo-)operad, and Q be a dg (pseudo-)cooperad. Consider

Conv(Q,P ) :=
∏
n≥0

HomSn(Q(n), P (n))

with the operation • defined by the sum of the compositions

Q(n)
∆T−−→ Q(n1)⊗Q(n2)

f⊗g−−→ P (n1)⊗ P (n2)
µT−−→ P (n)
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where T ∈ Tree2(n), ni = |t−1(vi)|, NT = {v1, v2}. More precisely,

f • g(x) :=
∑

T∈π0(Tree2(n))

µT ◦ (f ⊗ g) ◦∆T (x)

for x ∈ Q(n).

Lemma 2.1. The bracket
[f, g] := f • g − (−1)|f ||g|g • f

satisfies the Jacobi identity.

The differentials on P and Q induce a differential on the convolution Conv(Q,P ).

Proposition 2.2. The convolution Conv(Q,P ) is a dgla.

2.1. Example: cooperad of cocommutative coalgebras. Let coCom be the cooperad of cocommutative
coassociative coalgebras. More precisely,

coCom(n) :=

{
0, n = 0;

k · δn, n 6= 0,

with trivial Sn-action and with the cocompositions

∆T : coCom(n)→ coCom(n1)⊗ coCom(n2) : δn 7→ δn1 ⊗ δn2

for T ∈ Tree2(n). We endow coCom with the coaugmentation ε : ∗ → coCom : 1 7→ δ0.

If V is a cochain complex, then coCom(V ) ∼= S≥1V with the differential induced from V and the natural
comultiplication.

Proposition 2.3. Let V be a cochain complex. Then

Conv(coComo,EndV ) ∼= coDer′(coCom(V )),

where coDer′(coCom(V )) is the set of coderivations on coCom(V ) ∼= S≥1V which vanish on V .

Proof. Note that

coDer′(coCom(V )) ∼= Hom(S≥2V, V )

∼=
∞∏
n=2

Hom(SnV, V )

∼=
∞∏
n=2

Hom
(
k,Hom(SnV, V )

)
∼=
∞∏
n=0

Hom
(

coComo(n),Hom(SnV, V )
)

∼=
∞∏
n=0

HomSn

(
coComo(n),Hom(V ⊗n, V )

)
.

It’s straightforward to check the isomorphisms preserve the dgla structures. �

Remark 2.4. According to [1], the above proposition is true for general coaugmented cooperads.
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2.2. Cobar construction. Let Q be a coaugmented dg cooperad. Recall that the cobar operad Ω(Q) asso-
ciated to Q is quasi-freely generated by Qo[−1] with the differentials induced by the differentials of Q.
Let P be a dg operad, and let F : Ω(Q)→ P be a map of dg operads. The restriction

F |Qo[−1] : Qo[−1]→ P

induces a degree one element
αF ∈ Conv(Qo, P ).

Proposition 2.5. The map
Mor(Ω(Q), P )→ MC(Conv(Qo, P )) : F 7→ αF

is a bijection.

Corollary 2.6. Let V be a cochain complex. The L∞ structures on V is in bijection with the Maurer–Cartan
solutions MC(Conv(coComo,EndV )) = MC

(
coDer(S≥1V )

)
.

Proof. L∞ = Ω(Λ coComo). �
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