NOTES ON OPERADS

HSUAN-YI LIAO

Abstract. This note is for a talk on operads. The main reference is [1]. The books [2, 3] are also useful.

Contents

1. Operad 1
1.1. Tree 1
1.2. Operad and cooperad 2
2. Convolution Lie algebra 3
2.1. Example: cooperad of cocommutative coalgebras 4
2.2. Cobar construction 5
References 5

1. Operad

1.1. Tree.

Definition 1.1. A graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ is a pair of sets where E_{Γ} is contained in the power set $2^{V_{\Gamma}}$ (the set of subsets in $\left.V_{\Gamma}\right)$. A directed graph is a graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ with source map and target map $s, t: E_{\Gamma} \rightarrow V_{\Gamma}$ such that $e=\{s(e), t(e)\}$ for any $e \in E_{\Gamma}$. An isomorphism $\Phi: \Gamma \rightarrow \tilde{\Gamma}$ of graphs from $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$ to $\tilde{\Gamma}=\left(V_{\tilde{\Gamma}}, E_{\tilde{\Gamma}}\right)$ consists of bijections $\Phi_{V}: V_{\Gamma} \rightarrow V_{\tilde{\Gamma}}$ and $\Phi_{E}: E_{\Gamma} \rightarrow E_{\tilde{\Gamma}}$ such that $\Phi_{E}(\{v, w\})=$ $\left\{\Phi_{V}(v), \Phi_{V}(w)\right\}$ for any $\{v, w\} \in E_{\Gamma}$. An isomorphism of directed graphs is an isomorphism of graphs which is compatible with the source and target maps. Let $v \in V_{\Gamma}$. We denote

$$
A(v):=\left\{e \in E_{\Gamma} \mid v \in e\right\} .
$$

The number $|A(v)|$ is called the valency of v. An edge $e \in E_{\Gamma}$ is called a cycle if $|e|=1$.
Definition 1.2. A tree $T=\left(v_{o}, V_{T}, E_{T}\right)$ is a connected graph without cycles which has a special vertex $v_{o} \in V_{T}$, called root vertex, such that $\left|A\left(v_{o}\right)\right|=1$. The edge adjacent to v_{o} is called the root edge, denoted e_{o}. Non-root vertexes of valency 1 are called leaves. The set of leaves of T is denoted $L(T)$. A vertex is called internal if it is neither a root nor a leaf.

Remark 1.3. A tree, with the direction towards the root, is naturally a directed graph.
Definition 1.4. A tree T is called planar if for every internal vertex of T, the set $t^{-1}(v)$ carries a total order. An n-labeled planar tree is a planar tree equipped with an injective map $\mathfrak{l}:\{1, \cdots, n\} \rightarrow L(T)$. (The map \mathfrak{l} is not required to be monotone.) A vertex v of an n-labeled planar tree T is called nodal if $v \in N_{T}:=V_{T} \backslash\left\{v_{o}\right\} \backslash \mathrm{iml}$.
Let S, T be n-labeled planar trees. A (non-planar) morphism $\Phi: S \rightarrow T$ is a pair of bijections $\Phi_{V}: V_{S} \rightarrow$ V_{T} and $\Phi_{E}: E_{S} \rightarrow E_{T}$ which are compatible with source and target maps, and $\Phi_{V} \circ \mathfrak{l}_{S}=\mathfrak{l}_{T}$. The category
of n-labeled planar trees is denoted Tree (n). The full subcategory of n-labeled planar trees with k nodal vertexes is denoted $\operatorname{Tree}_{k}(n)$.

Remark 1.5. There is a natural left S_{n}-action on the objects of $\operatorname{Tree}(n)$.
1.2. Operad and cooperad. Let \mathfrak{C} be the category of cochain complexes.

Definition 1.6. A S-module is a sequence $\{P(n)\}_{n \geq 0}$ of objects in \mathfrak{C} such that for each $n \in \mathbb{N}_{0}$, the object $P(n)$ is equipped with a left S_{n}-action.

Let $T \in \operatorname{Tree}(n)$. Define

$$
P(T):=\bigotimes_{v \in N_{T}} P\left(\left|t^{-1}(v)\right|\right)
$$

where the tensor product is done in the order induced by T.
Definition 1.7. A (dg) operad is an S-module $\{P(n)\}_{n \geq 0}$ equipped with "composition maps"

$$
\mu_{T}: P(T) \rightarrow P(n)
$$

for any $T \in \operatorname{Tree}(n)$, and equipped with a unit $u: \mathbb{k} \rightarrow P(1)$ which satisfies a list of axioms ("associativity," "S-equivalent," "unit").

Proposition 1.8. Let V be a cochain complex. The direct sum

$$
P(V):=\bigoplus_{n=0}^{\infty}\left(P(n) \otimes V^{\otimes n}\right)_{S_{n}}
$$

with the natural P-algebra structure is the free P-algebra generated by V.

Consider the S-module

$$
\Lambda(n):= \begin{cases}s^{1-n} \operatorname{sign}_{n}, & n \geq 1 \\ 0, & n=0\end{cases}
$$

where $\operatorname{sign}_{n}=\mathbb{k}$ with the S_{n}-action $\sigma \cdot 1:=(-1)^{\sigma} \cdot 1$. The compositions are defined by

$$
1_{m} \circ_{i} 1_{n}:=(-1)^{(1-n)(i-1)} 1_{n+m-1} .
$$

Remark 1.9. The sign assignment of insertion is different from [1]. It is not clear to the author how the sign convention was chosen in [1].

Let V be a cochain complex, and let

$$
\Phi: \Lambda \rightarrow \operatorname{End}_{V}
$$

be a morphism of dg operads. Let $\tilde{\Phi}: \operatorname{Com} \rightarrow \operatorname{End}_{V[1]}$ be the map

$$
\tilde{\Phi}\left(\tilde{1}_{n}\right)\left(v_{1}, \cdots, v_{n}\right):=(-1)^{\sum_{j=1}^{n}(n-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(1_{n}\right)\left(s v_{1}, \cdots, s v_{n}\right)
$$

Proposition 1.10. The assignment

$$
\Lambda-\mathrm{Alg} \rightarrow \mathrm{Com}-\mathrm{Alg}_{1}: \Phi \mapsto \tilde{\Phi}
$$

is a bijection, where $V \in \mathrm{Com}-\mathrm{Alg}_{1}$ iff $V[1] \in \mathrm{Com}-\mathrm{Alg}$.
Proof. We prove $\tilde{\Phi}$ is a morphism of operads. The other parts of proof should be easy. Since Φ is a morphism, we have

$$
\Phi\left(1_{n}\right)\left(v_{\sigma(1)}, \cdots, v_{\sigma(n)}\right)=\epsilon(\sigma, v)(-1)^{\sigma} \Phi\left(1_{n}\right)\left(v_{1}, \cdots, v_{n}\right)
$$

Then

$$
\begin{aligned}
\tilde{\Phi}\left(\sigma \star \tilde{1}_{n}\right)\left(v_{1}, \cdots, v_{n}\right) & =(-1)^{\sigma}(-1)^{\sum_{j=1}^{n}(n-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(\sigma \cdot 1_{n}\right)\left(s v_{1}, \cdots, s v_{n}\right) \\
& =(-1)^{\sigma} \epsilon(\sigma, s v)(-1)^{\sum_{j=1}^{n}(n-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(1_{n}\right)\left(s v_{\sigma(1)}, \cdots, s v_{\sigma(n)}\right) \\
& =\epsilon(\sigma, v)(-1)^{\sum_{j=1}^{n}(n-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(1_{n}\right)\left(s v_{\sigma(1)}, \cdots, s v_{\sigma(n)}\right) \\
& =\tilde{\Phi}\left(\tilde{1}_{n}\right)\left(\sigma \star\left(v_{1} \otimes \cdots v_{n}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\Phi}\left(\tilde{1}_{m} \overline{\mathrm{o}}_{i} \tilde{1}_{n}\right)\left(v_{1}, \cdots, v_{m+n-1}\right) \\
&=(-1)^{\sum_{j=1}^{m+n-1}(m+n-1-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(1_{m+n-1}\right)\left(s v_{1}, \cdots, s v_{m+n-1}\right) \\
&=(-1)^{(1-n)(i-1)}(-1)^{\sum_{j=1}^{m+n-1}(m+n-1-j)\left|v_{j}\right|} s^{-1} \circ \Phi\left(1_{m} \circ_{i} 1_{n}\right)\left(s v_{1}, \cdots, s v_{m+n-1}\right) \\
&=(-1)^{(1-n)(i-1)}(-1)^{\sum_{j=1}^{m+n-1}(m+n-1-j)\left|v_{j}\right|}(-1)^{\left|\Phi\left(1_{n}\right)\right|\left(i-1+\sum_{j=1}^{i-1}\left|v_{j}\right|\right)} \\
& \quad \cdot s^{-1} \circ \Phi\left(1_{m}\right)\left(s v_{1}, \cdots, s v_{i-1}, s s^{-1} \Phi\left(1_{n}\right)\left(s v_{i}, \cdots, s v_{i+n-1}\right), s v_{i+n}, \cdots, s v_{m+n-1}\right) \\
&=(-1)^{(1-n)(i-1)}(-1)^{\sum_{j=1}^{m+n-1}(m+n-1-j)\left|v_{j}\right|}(-1)^{(1-n)\left(i-1+\sum_{j=1}^{i-1}\left|v_{j}\right|\right)} \\
& \quad \cdot(-1)^{\sum_{j=i}^{i+n-1}(n+i-1-j)\left|v_{j}\right|}(-1)^{\sum_{j=1}^{i-1}(m-j)\left|v_{j}\right|}(-1)^{\sum_{j=i+n}^{m+n-1}(m+n-1-j)\left|v_{j}\right|}(-1)^{\sum_{j=i}^{i+n-1}(m-i)\left|v_{j}\right|} \\
& \quad \quad \tilde{\Phi}\left(\tilde{1}_{m}\right)\left(v_{1}, \cdots, v_{i-1}, \tilde{\Phi}\left(\tilde{1}_{n}\right)\left(v_{i}, \cdots, v_{i+n-1}\right), v_{i+n}, \cdots, v_{m+n-1}\right) \\
&= \tilde{\Phi}\left(\tilde{1}_{m}\right)\left(v_{1}, \cdots, v_{i-1}, \tilde{\Phi}\left(\tilde{1}_{n}\right)\left(v_{i}, \cdots, v_{i+n-1}\right), v_{i+n}, \cdots, v_{m+n-1}\right) \\
&=\left(\tilde{\Phi}\left(\tilde{1}_{m}\right) \bar{o}_{i} \tilde{\Phi}\left(\tilde{1}_{n}\right)\right)\left(v_{1}, \cdots, v_{m+n-1}\right)
\end{aligned}
$$

Definition 1.11. A (dg) cooperad is an S-module $\{Q(n)\}_{n \geq 0}$ equipped with "decomposition maps"

$$
\Delta_{T}: Q(n) \rightarrow Q(T)
$$

for any $T \in \operatorname{Tree}(n)$, and equipped with a counit $\tilde{u}: Q(1) \rightarrow \mathbb{k}$ which satisfies a list of axioms ("coassociativity," "S-equivalent," "counit").
A cooperad Q is coaugmented if we have a cooperad morphism $\epsilon: * \rightarrow Q$, where $*$ is the natural cooparad with $*(1)=\mathbb{k}$ and $*(n)=0$ if $n \neq 1$.

We denote the pseudo-cooperad coker (ϵ) by Q_{o}.
Example 1.12. The S-module Λ also caries a cooperad structure:

$$
\begin{gathered}
\Delta_{i}: \Lambda_{m+n-1} \rightarrow \Lambda_{m} \otimes \Lambda_{n} \\
\Delta_{i}\left(1_{m+n-1}\right):=(-1)^{(1-n)(i-1)} \cdot 1_{m} \otimes 1_{n}
\end{gathered}
$$

2. Convolution Lie algebra

The notation π_{0} denotes the collection of isomorphism classes in a category.
Let P be a dg (pseudo-)operad, and Q be a dg (pseudo-)cooperad. Consider

$$
\operatorname{Conv}(Q, P):=\prod_{n \geq 0} \operatorname{Hom}_{S_{n}}(Q(n), P(n))
$$

with the operation \bullet defined by the sum of the compositions

$$
Q(n) \xrightarrow{\Delta_{T}} Q\left(n_{1}\right) \otimes Q\left(n_{2}\right) \xrightarrow{f \otimes g} P\left(n_{1}\right) \otimes P\left(n_{2}\right) \xrightarrow{\mu_{T}} P(n)
$$

where $T \in \operatorname{Tree}_{2}(n), n_{i}=\left|t^{-1}\left(v_{i}\right)\right|, N_{T}=\left\{v_{1}, v_{2}\right\}$. More precisely,

$$
f \bullet g(x):=\sum_{T \in \pi_{0}\left(\operatorname{Tree}_{2}(n)\right)} \mu_{T} \circ(f \otimes g) \circ \Delta_{T}(x)
$$

for $x \in Q(n)$.
Lemma 2.1. The bracket

$$
[f, g]:=f \bullet g-(-1)^{|f||g|} g \bullet f
$$

satisfies the Jacobi identity.

The differentials on P and Q induce a differential on the convolution $\operatorname{Conv}(Q, P)$.
Proposition 2.2. The convolution $\operatorname{Conv}(Q, P)$ is a dgla.
2.1. Example: cooperad of cocommutative coalgebras. Let coCom be the cooperad of cocommutative coassociative coalgebras. More precisely,

$$
\operatorname{coCom}(n):= \begin{cases}0, & n=0 \\ \mathbb{k} \cdot \delta^{n}, & n \neq 0\end{cases}
$$

with trivial S_{n}-action and with the cocompositions

$$
\Delta_{T}: \operatorname{coCom}(n) \rightarrow \operatorname{coCom}\left(n_{1}\right) \otimes \operatorname{coCom}\left(n_{2}\right): \delta^{n} \mapsto \delta^{n_{1}} \otimes \delta^{n_{2}}
$$

for $T \in \operatorname{Tree}_{2}(n)$. We endow coCom with the coaugmentation $\epsilon: * \rightarrow \operatorname{coCom}: 1 \mapsto \delta^{0}$.
If V is a cochain complex, then $\operatorname{coCom}(V) \cong S \geq 1 V$ with the differential induced from V and the natural comultiplication.

Proposition 2.3. Let V be a cochain complex. Then

$$
\operatorname{Conv}\left(\operatorname{coCom}_{o}, \operatorname{End}_{V}\right) \cong \operatorname{coDer}^{\prime}(\operatorname{coCom}(V))
$$

where $\operatorname{coDer}^{\prime}(\operatorname{coCom}(V))$ is the set of coderivations on $\operatorname{coCom}(V) \cong S^{\geq 1} V$ which vanish on V.

Proof. Note that

$$
\begin{aligned}
\operatorname{coDer}^{\prime}(\operatorname{coCom}(V)) & \cong \operatorname{Hom}\left(S^{\geq 2} V, V\right) \\
& \cong \prod_{n=2}^{\infty} \operatorname{Hom}\left(S^{n} V, V\right) \\
& \cong \prod_{n=2}^{\infty} \operatorname{Hom}\left(\mathbb{k}, \operatorname{Hom}\left(S^{n} V, V\right)\right) \\
& \cong \prod_{n=0}^{\infty} \operatorname{Hom}\left(\operatorname{coCom}_{o}(n), \operatorname{Hom}\left(S^{n} V, V\right)\right) \\
& \cong \prod_{n=0}^{\infty} \operatorname{Hom}_{S_{n}}\left(\operatorname{coCom}_{o}(n), \operatorname{Hom}\left(V^{\otimes n}, V\right)\right)
\end{aligned}
$$

It's straightforward to check the isomorphisms preserve the dgla structures.
Remark 2.4. According to [1], the above proposition is true for general coaugmented cooperads.
2.2. Cobar construction. Let Q be a coaugmented dg cooperad. Recall that the cobar operad $\Omega(Q)$ associated to Q is quasi-freely generated by $Q_{o}[-1]$ with the differentials induced by the differentials of Q.
Let P be a dg operad, and let $F: \Omega(Q) \rightarrow P$ be a map of dg operads. The restriction

$$
\left.F\right|_{Q_{o}[-1]}: Q_{o}[-1] \rightarrow P
$$

induces a degree one element

$$
\alpha_{F} \in \operatorname{Conv}\left(Q_{o}, P\right) .
$$

Proposition 2.5. The map

$$
\operatorname{Mor}(\Omega(Q), P) \rightarrow \operatorname{MC}\left(\operatorname{Conv}\left(Q_{o}, P\right)\right): F \mapsto \alpha_{F}
$$

is a bijection.
Corollary 2.6. Let V be a cochain complex. The L_{∞} structures on V is in bijection with the Maurer-Cartan solutions $\mathrm{MC}\left(\operatorname{Conv}\left(\operatorname{coCom}_{o}, \operatorname{End}_{V}\right)\right)=\mathrm{MC}\left(\operatorname{coDer}\left(S^{\geq 1} V\right)\right)$.

Proof. $L_{\infty}=\Omega\left(\Lambda \operatorname{coCom}_{o}\right)$.

References

1. Vasily A. Dolgushev and Christopher L. Rogers, Notes on algebraic operads, graph complexes, and Willwacher's construction, Mathematical aspects of quantization, Contemp. Math., vol. 583, Amer. Math. Soc., Providence, RI, 2012, pp. 25-145. MR 3013092
2. Jean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. MR 2954392
3. Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. MR 1898414

School of Mathematics, Korea Institute for Advanced Study
Email address: hsuanyiliao@kias.re.kr

