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Motivations
Physical motivations:

I Gravity exists! we are not really in Minkowski spacetime.

I We do not have a working theory of quantum gravity.

I Important effects and predictions.
I Curved spacetimes and spontaneous particle creation:

I Cosmology.
I Black hole radiation.

I Flat spacetimes and spontaneous particle creation:
I Unruh effect.
I Casimir effect.

I What is a particle?

Mathematical motivations:

I What is the mathematical structure of quantum field theory?

I Are spacetime isometries and Hamiltonians necessary for
defining QFT?

I What are states and observables in curved spacetimes?
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QFT in flat spacetime

Minkowski: (R4, η), η = −dt2 + dx2 + dy2 + dz2.
The theory consists of

I A Hilbert space (usually many particle Fock space), H.

I Unitary operators Λ(α, L) representing Poincaré
transformations (Minkowski isometries) (+ certain spectral
conditions).

I A distinguished Poincaré-invariant state Ω ∈ H – the vacuum.

I Observables O localised in Minkowski spacetime generated by
quantum fields.

I O transform covariantly under Poincaré, e.g.
O(λx) = Λ(α, L)−1O(x)Λ(α, L).

I (Anti-)commutation relations [O1,O2] 6= 0.

I Some PDE – the field equation (KG, Dirac, Maxwell, YM...).
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QFT in flat spacetimes

The Klein-Gordon fied
We heuristically know that:

I Fock space: H = C⊗sym ⊕∞
n=1L

2(R3)⊗symn

I Minkowski vacuum: Ω = (1, 0, 0, . . .).

I Creation and annihilation operators, â∗k , âk :

[âk , âp] = 0 [â∗k , â
∗
p] = 0 [âk , â

∗
p] = iδ(k , p)1̂1

such that âkΩ = 0.

I KG field obeying (�−m2)Φ̂ = (−∂2
t +4−m2)Φ̂ = 0,

Φ̂(t, x) =

∫
R3

d3k

(2ωk)1/2

(
e−iωk tψk(x)âk + eiωk tψk(x)â

∗
k

)
.

with ω2
k = k · k +m2, ψk(x) = (2π)−3/2eik·x eigenvalues and

generalised eigenfunctions of −4+m2.
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QFT in curved spacetimes

I Suppose one attempts the previous construction in general,
globally hyperbolic (M, g), such that curvature of g is
non-trivial?

In General relativity the curvature of g is gravity, i.e.,

Rab −
1

2
Rgab +Λgab =

8πGN

c4
Tab, (1)

Matter field equation. (2)

I Rab and R: Ricci tensor and scalars, resp.

I Constants: Λ, GN, c .

I Stress-energy tensor of matter: Tab.

I Field equation, e.g. KG:
(�−m2 + ξR)Φ = (gab∇a∇b −m2 + ξR)Φ = 0.
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QFT in curved spacetimes

Example: KG in ultrastatic spacetime
Assume spacetime is ultrastatic: g = dt2 + h.

I Fock space: H = C⊗sym ⊕∞
n=1L

2(Σ, dvolh)
⊗symn

I Distinguished vacuum: Ω = (1, 0, 0, . . .).

I Creation and annihilation operators, â∗j , âj :

[âm, ân] = 0 [â∗m, â
∗
n] = 0 [âm, â

∗
n] = iδh(m, n)1̂1

such that âmΩ = 0.

I KG field obeying (�−m2)Φ̂ = (−∂2
t +4h −m2)Φ̂ = 0,

Φ̂(t, x) =

∫
σ

dµ(j)

(2ωj)1/2

(
e−iωj tψj(x)âj + eiωj tψj(x)â

∗
j

)
.

with (−4h +m2)ψj = ω
2
j ψj .
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QFT in curved spacetimes

I In previous case there exists distinguished notion of time,
generated by global timelike KVF, ∂t .

I Not every spacetime has timelike KVF.

I Assume a spacetime has asymptotic KVF, v in the remote
future and w in the remote past.

  

Out KFV: v

In KFV: w

Figure: Spacetime where QFT admits in and out construction.
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QFT in curved spacetimes
I Two distinguished constructions: Hin and Hout.
I Φ admits representation as op. in Hin and as op. in Hout,

namely

Φ̂in(t, x) =

∫
dµin(i)

(2ωin,i )1/2

(
e−iωin,i t1ψin,i (x)âi + eiωin,i t1ψin,i (x)â

∗
i

)
,

Φ̂out(t, x) =

∫
dµout(j)

(2ωout,j)1/2

(
e−iωout,j t2ψout,j(x)b̂j + eiωout,j t2ψout,j(x)â

∗
j

)
.

I Hamiltonians: Ĥin=
∫
dµin,iωin,i â

∗
i âi , Ĥout=

∫
dµout,jωout,j b̂

∗
j b̂j .

I Formally b̂j =
∫
dµin(i) (αij âi + βij â

∗
i ).

I 〈Ωin|ĤinΩin〉 = 0 = 〈Ωout|ĤoutΩout〉, but

〈Ωin|ĤoutΩin〉 =
∫
dµout(j)ωout,j〈Ωinb̂

∗
j b̂jΩin〉

=

∫
dµout(j)ωout,j

∫
dµin(i)|βij |

2 6= 0 ⇒ Ωin not vacuum in Hout!
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QFT in curved spacetimes

Previous discussion implies that spacetime curvature produces
spontaneous particle creation!
Question: In previous example, is the vacuum state empty or not?
Who is right? Answer: Everyone is right! Relativity’s lesson: space
and time notions are observer-dependent. QFT in CS shows that
the notion of particle is observer-dependent too!

I Relevant e.g. in cosmology.

I In black holes Hawking radiation is understood similarly, but
the situation is even more interesting when considering
backreaction.

I Emphasis: QFT is a theory of fields not of particles. The
quantum field is the fundamental object; particles (like
beauty) are in the eye of the beholder.
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Back to flat spacetime

I In general curved spacetimes the notion of particle is abiguous.

I In absence of symmetries, there is no distinguished notion of
particle (but fields and correlation functions are
unambiguously defined).

I In fact, in Minkowski spacetime there are also different
notions of particles.

I The Unruh effect shows that for a linearly uniformly
accelerated observer in Minkowski spacetime the Minkowski
vacuum looks like a thermal state at temperature proportional
to their acceleration.
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Unruh effect
I Consider Minkowski spacetime and divide in four so-called

Rindler wedges.
I On right Rindler wedge Lorentz boosts are timelike KVF,
ξ = a(x∂t + t∂x), a > 0.

I Quantisation w.r.t. time-notion generated by ξ:
Fulling-Rindler vacuum, ΩFR.

I Minkowski vacuum looks thermal in FR representation.

  

Boost

Minkowski

Time 
translation
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Unruh effect

I A linearly uniformly accelerated observer with acceleration a,
perceives the Minkowski vacuum at a temperature
TU = h̄a

2πckB
– the Unruh temperature.

I ¡TU is very cold! E.g., 1020m/s, TU ∼ 1K .

I Detecting the Unruh temperature is a massive experimental
challenge. (Detection ⇒ Nobel prize.)

I In Minkowski spacetime the notion of particle is also
observer-dependent!

I More generally, an observer following an arbitrary trajectory,
will generally too detect particles when interacting with a field
in the Minkowski vacuum, although not in a thermal
distribution. This can be understood in terms of so-called
particle detectors in QFT in CS.
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Evaporation of black holes
I The gravitational effects during black hole formation produce

quantum radiation.
I Radiation makes black holes lose mass. M decreases.
I Radiation is thermal at TH = h̄c3

8πGNkBM
.

I We expect black holes to theoretically radiate off all of their
mass and disappear.

I Information loss puzzle.

  

RadiationSingularity

Asympt. future

Asympt. past
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Mathematical structure of QFT

In the absense of distinguished representations for the fields and
vacua, what is really QFT?
Example: KG theory in CS
Let (M, g) be a globally hyperbolic spacetime (iff admits a Cauchy
surface). We call A(M) the Klein-Gordon field algebra the unital
∗-algebra generated by smeared fields Φ(f ) with f ∈ C∞

0 (M)
subject to the relations

1. Linearity: f 7→ Φ(f ) is linear,

2. Hermiticity: Φ(f ) = Φ(f )∗,

3. Field equation: Φ((�−m2 − ξR)f ) = 0,

4. Commutation relations: [Φ(f ), Φ(g)] = −iE (f , g)11,

where E = E+ − E− causal propagator of the Klein-Gordon
operator (�−m2 − ξR).
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Mathematical structure of QFT
What is a state for KG theory in CS?
We call a linear map ω : A(M) → C an algebraic state if

1. ω(11) = 1

2. ω(a∗a) ≥ 0 for all a ∈ A(M).

ω prescribes correlation functions, but notice that we have
commited to no Hilbert space representation. E.g. the Wightman
two-point function of the theory is

ω(Φ(f )Φ(g)) = G+(f , g). (3)

I If ω is quasi-free, all n-point functions follow from Wightman
function.

I Renormalisation requires Hadamard property.

G+(x , y)−

[
1

2π2

∆1/2(x , y)

σε(x , y)
+ V (x , y) ln(σε(x , y))

]
∈ C∞(M×M)
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Mathematical structure of QFT

How to recover Hilbert space representation?
The GNS construction theorem allows one to obtain a Hilbert
space representation, such that

I Input: algebra A(M) and state ω : A(M) → C.

I Output: GNS representation (Hω, πω,Dω,Ωω)

Such that πω is faithful, Dω ⊂ Hω is dense, Ωω is cyclic (the
“vacuum” state) and

ω(A) = 〈Ωω|πω(A)Ωω〉. (4)

In particular, π(Φ(f )) = Φ̂(f ) is an operator-valued distribution in
Hilbert space – our textbook quantum field and

ω(Φ(f )Φ(g)) = 〈Ωω|Φ̂(f )Φ̂(g)Ωω〉 (5)
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Final remarks

I QFT is a theory of fields, while the notion of particle is
secundary.

I No distinguished representation for QFT in CS: Algebraic
programme. The KG construction here presented can be
generalise to other (non-linear) field theories. Modern
formulation in terms of category theory.

I Experimental challenges: Unruh & Hawking effects ⇒ Nobel.

I Theoretical challenges: Black hole evaporation, measurement
problem, semiclassical gravity.

I Mathematical challenges: Mathematical structure of QFT,
perturbative problems, renormalisation, semiclassical gravity.

I Technological applications? (Exploiting Unruh, Casimir
effects...?)
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Some literature:

I N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space (Cambridge University Press, 1982)

I S. A. Fulling, Aspects of Quantum Field Theory in Curved
Space-time (Cambridge University Press, 1987).

I L. E. Parker and D. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity (Cambridge
University Press, 2009).

I R. M. Wald, Quantum Field Theory in Curved Space-Time
and Black Hole Thermodynamics (University of Chicago
Press, 1994).

I B. A. Juárez-Aubry, Minicourse On Quantum Field Theory in
Curved Spacetimes (2018).

Thanks!
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