Mirror Symmetry of Pairings

Sangwook Lee

School of Mathematics, KIAS

W-Seminar, Spring 2020.

An identity

Consider following formal power series:

$$egin{aligned} \phi(q) &= \sum_{k \in \mathbb{Z}} (-1)^{k+1} (k + rac{1}{2}) q^{(6k+3)^2}, \ \psi(q) &= \sum_{k \in \mathbb{Z}} (-1)^{k+1} (6k+1) q^{(6k+1)^2}, \ c &= \sum_{k \geq 0} (-1)^k ig(q^{(6k+1)^2} - q^{(6k+5)^2} ig). \end{aligned}$$

Theorem (Cho-Kim-L.-Shin)

$$c^{2}\left(\phi\cdot q\frac{\partial\psi}{\partial q}-\psi\cdot q\frac{\partial\phi}{\partial q}\right)=8\phi(27\phi^{3}-\psi^{3}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Proof & Why

 $c^2\left(\phi \cdot q \frac{\partial \psi}{\partial q} - \psi \cdot q \frac{\partial \phi}{\partial q}\right)$ and $8\phi(27\phi^3 - \psi^3)$ are modular forms with same level and weight, so it suffices to check the identity up to certain order (576 in this case).

Question

Where on earth do they come from?

Answer

They arose in the study of pairings of closed string algebras.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mirror symmetry

- Mirror symmetry means an equivalence of two string theories.
- Mathematically, it is a duality between symplectic geometry and complex geometry.

Closed string mirror symmetry

Example: \mathbb{P}^1

Construction of a mirror pair is due to *T*-duality, by Strominger-Yau-Zaslow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mirror function is a disc counting on \mathbb{P}^1 . (cf. Cho-Oh, Fukaya-Oh-Ohta-Ono etc)

Example: \mathbb{P}^1

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

History

- There have been several works on equivalences of ring structures (cf. Batyrev, Givental, Iritani, Fukaya-Oh-Ohta-Ono etc).
- There have been only few works on equivalences of pairings (cf. Fukaya-Oh-Ohta-Ono '10, for toric manifolds with Morse mirror functions).
- Idea (Cho-L.-Shin): modify the ring isomorphism suitably by the quantum volume c.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An elliptic orbifold sphere $\mathbb{P}^1_{3,3,3}$

Figure: $\mathbb{Z}/3$ -group action on T^2

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

An elliptic orbifold sphere $\mathbb{P}^1_{3,3,3}$

Mirror function is given by counting suitable discs whose boundaries are on the dotted lines.

$$W = \phi(q)(x^3 + y^3 + z^3) - \psi(q)xyz.$$

 $\phi(q)$ and $\psi(q)$ are areas of discs.

Closed string mirror symmetry of $\mathbb{P}^1_{3,3,3}$

Theorem (Amorim-Cho-Hong-Lau) There is a ring isomorphism

$$\mathfrak{ks}: QH(\mathbb{P}^1_{3,3,3}) \to Jac(W),$$

and in particular,

$$\mathfrak{ks}(pt) = rac{1}{8}qrac{\partial W}{\partial q}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Does *ts* also preserve pairings?

What to check

If \mathfrak{ks} preserves pairings, then the following should commute:

$$QH(\mathbb{P}^{1}_{3,3,3}) \xrightarrow{tr_{A}} k$$

$$\downarrow id$$

$$Jac(W) \xrightarrow{tr_{B}} k,$$

where

$$tr_{A}(\alpha) = \langle \alpha, 1 \rangle = \int_{\mathbb{P}^{1}_{3,3,3}} \alpha,$$

 $tr_{B}(f) = \langle f, 1 \rangle = Res \left(\begin{array}{c} f \\ \partial_{x}W \cdot \partial_{y}W \cdot \partial_{z}W \end{array} \right)$

•

(ロ)、(型)、(E)、(E)、 E) の(()

What to check

If \mathfrak{ks} preserves pairings, then the following should commute:

$$\begin{array}{c|c} QH(\mathbb{P}^{1}_{3,3,3}) \xrightarrow{tr_{A}} k \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ Jac(W) \xrightarrow{tr_{B}} k, \end{array}$$

hence

$$tr_{A}(pt) = \int_{\mathbb{P}^{1}_{3,3,3}} pt = 1,$$

$$tr_{B}(\mathfrak{ks}(pt)) = Res \left(\begin{array}{c} \frac{1}{8}q \frac{\partial W}{\partial q} \\ \partial_{x}W \cdot \partial_{y}W \cdot \partial_{z}W \end{array} \right) = 1.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Computation of residue pairing

$$tr_B(\mathfrak{ts}(pt)) = Res \left(\begin{array}{c} \frac{1}{8}q \frac{\partial W}{\partial q} \\ \partial_x W \cdot \partial_y W \cdot \partial_z W \end{array} \right) = Res \left(\begin{array}{c} \frac{1}{8}q \frac{\partial W}{\partial q} \cdot \det C \\ x' y' z' \end{array} \right),$$

where

$$C \cdot \left(\begin{array}{c} \partial_x W \\ \partial_y W \\ \partial_z W \end{array}\right) = \left(\begin{array}{c} x^l \\ y^l \\ z^l \end{array}\right).$$

Define

$$C = \frac{1}{3\phi(27\phi^3 - \psi^3)} \left(\begin{array}{ccc} (27\phi^3 - \psi^3)x^2 - 9\phi^2\psi yz & 3\phi\psi^2z^2 & \psi^3xz \\ -\psi^3xy & (27\phi^3 - \psi^3)y^2 + 9\phi^2\psi xz & 3\phi\psi^2x^2 \\ 3\phi\psi^2y^2 & -\psi^3yz & (27\phi^3 - \psi^3)z^2 - 9\phi^2\psi xy \end{array} \right),$$

then

$$C \cdot \left(\begin{array}{c} \partial_x W \\ \partial_y W \\ \partial_z W \end{array}\right) = \left(\begin{array}{c} x^4 \\ y^4 \\ z^4 \end{array}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ts does NOT preserve pairings

We come up with

$$tr_{\mathcal{B}}(\mathfrak{ts}(pt)) = Res_{\{x=y=z=0\}} \begin{pmatrix} \frac{1}{8}q \frac{\partial W}{\partial q} \cdot \det C \\ x^4 y^4 z^4 \end{pmatrix} = 1$$

$$\Leftrightarrow \phi \cdot q \frac{\partial \psi}{\partial q} - \psi \cdot q \frac{\partial \phi}{\partial q} = 8\phi(27\phi^3 - \psi^3),$$

which is not true. Indeed, recalling the theorem,

$$\boldsymbol{c}^{2}\left(\phi\cdot\boldsymbol{q}\frac{\partial\psi}{\partial\boldsymbol{q}}-\psi\cdot\boldsymbol{q}\frac{\partial\phi}{\partial\boldsymbol{q}}\right)=8\phi(27\phi^{3}-\psi^{3})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for some power series c.

Question What is c?

Homological Mirror Symmetry

The right framework to investigate pairings is provided by Homological Mirror Symmetry.

Theorem (Fukaya-Oh-Ohta-Ono)

The upper diagram commutes.

Theorem (Cho-L.-Shin)

The lower diagram commutes with scaling factor *c*.

Proofs by figures

c as a quantum volume

c is given by Lagrangian quantum products of degree 1 elements.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modification of #s

Combining two theorems above, we are led to the modified diagram:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Goal

Show that $c \cdot \mathfrak{ts}$ preserves pairings.

Computation of c in $\mathbb{P}^1_{3,3,3}$

Counting of triangles gives rise to

$$c = \sum_{k \ge 0} (-1)^k (q^{(6k+1)^2} - q^{(6k+5)^2}).$$

э

・ロト ・ 一下・ ・ ヨト・

Mirror symmetry of pairings for $\mathbb{P}^1_{3,3,3}$

$$c \cdot \mathfrak{ts} : QH(\mathbb{P}^1_{3,3,3}) \to Jac(W)$$
 preserves pairings

$$\Leftrightarrow c^{2} tr_{B}(\mathfrak{ks}(pt)) = c^{2} Res \left(\begin{array}{c} \frac{1}{8} q \frac{\partial W}{\partial q} \cdot \det C \\ x^{4} y^{4} z^{4} \end{array} \right) = 1$$

$$\Leftrightarrow c^{2} \left(\phi \cdot q \frac{\partial \psi}{\partial q} - \psi \cdot q \frac{\partial \phi}{\partial q} \right) = 8\phi(27\phi^{3} - \psi^{3}).$$

Now, we figured out the meaning of the mysterious identity.

Generalization of Fukaya-Oh-Ohta-Ono's result

For compact toric manifolds, the following was known.

Theorem (Fukaya-Oh-Ohta-Ono '10)

ts preserves pairings up to some constant, when the toric manifold has Morse mirror function.

• We found that the constant is *c*.

By considering

we can generalize FOOO's theorem.

Idea of the generalization

By disassmbling holomorphic annulus, we have

Theorem (Polishchuk-Vaintrob, Amorim-Cho-L.)

The right hand side is det(Hess(W)).

Now we can use a property of residues (see Hartshorne's *"Residue and duality"* for example):

$$\operatorname{Res}\left(\begin{array}{c} \operatorname{det}(\operatorname{Hess}(W))\\ \partial_{x_1}W\cdots\partial_{x_n}W\end{array}\right) = \mu \text{ where } \mu = \operatorname{dim} \operatorname{Jac}(W).$$

What's next?

- Deal with manifolds before taking global quotients.
- Consider Mukai pairings on Hochschild homologies, and investigate the relation with previous pairings.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you very much!

(ロ)、(型)、(E)、(E)、 E) の(()