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Abstract

Medial axis transform (MAT) is very sensitive to the noise, in the sense that,
even if a shape is perturbed only slightly, the Hausdorff distance between
the MATSs of the original shape and the perturbed one may be large. But it
turns out that MAT is stable, if we view this phenomenon with the one-sided
Hausdorff distance, rather than with the two-sided Hausdorff distance. In
this paper, we show that, if the original domain is weakly injective, which
means that the MAT of the domain has no end point which is the center of
an inscribed circle osculating the boundary at only one point, the one-sided
Hausdorff distance of the original domain’s MAT with respect to that of the
perturbed one is bounded linearly with the Hausdorff distance of the pertur-
bation. We also show by example that the linearity of this bound cannot be
achieved for the domains which are not weakly injective. In particular, these
results apply to the domains with the sharp corners, which were excluded in
the past. One consequence of these results is that we can clarify theoretically
the notion of extracting “the essential part of the MAT”, which is the heart
of the existing pruning methods.

Keywords

medial axis transform, stability, Hausdorft distance, hyperbolic Hausdorff
distance, pruning



1 Introduction

The medial azis (MA) of a plane domain is defined as the set of the centers
of the maximal inscribed circles contained in the given domain. The medial
azis transform (MAT) is defined as the set of all the pairs of the medial axis
point and the radius of the corresponding inscribed circle. Because of the
additional radius information, M AT can be used to reconstruct the original
domain. More explicitly, the medial axis transform MAT(S2) and the medial
axis MA(Q2) of a plane domain (2 is defined by

MAT(Q) = { (p,7) € R* x [0,00) |

B, (p) is a maximal ball contained in Q },

MA(Q)={peR*|Ir >0, s.t. (p,r) € MAT(Q)}.

Medial axis (transform) is one of the most widely-used tools in shape anal-
ysis. It has a natural definition, and has a graph structure which preserves
the original shape homotopically [2, 3].

But the medial axis transform has one weak point; It is not stable under
the perturbation of the domain [9, 4, 1]. See Figure 1. Even when the domain
on the left (a) is slightly perturbed to the domain on the right (b) (that is, the
Hausdorff distance between the domains in (a) and (b) is small), the MAT
(MA) changes drastically, which results in a large value of the Hausdorff
distance between the MATs (MAs) of the domains in (a) and (b).

AN

v

(a) (b)

Figure 1: Instability of MAT: Although a small perturbation of the domain

may lead to a drastic change of the MAT (MA) in the (two-sided) Hausdorff
distance, the one-sided Hausdorff distance still remains small.

This seemingly unplausible phenomenon can produce a lot of problems,
especially in the recognition fields, since the data representing the domains
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have inevitable noises. So there has been many attempts to reduce the com-
plexity of the MAT by “pruning” out what is considered less important, or
considered to be caused by the noise [8, 10, 6].

One important observation that can be made from Figure 1 is that the
MAT (MA) in (a) is contained approximately in the MAT (MA) in (b).
In other words, although the two-sided Hausdorff distance of the ML AT's in
(a) and (b) is large, the one-sided Hausdorff of the MAT in (a) with respect
to that in (b) is still small.

In this paper, we analyze this phenomenon, and show that MA and
MAT are indeed stable, if we measure the change by the one-sided Hausdorff
distance instead of the two-sided Hausdorff distance. We will prove that,
when a plane domain €2 satisfies a certain smoothness condition which we call
the weak-injectivity, then the one-sided Hausdorff distance of MLA(Q) (resp.,
MAT(Q)) with respect to MA(§Y') (resp., MAT(Y')) has an upper bound
which is linear with the Hausdorff distances between Q, Q' and between 02,
0 for arbitrary domain €'. In particular, the weak-injectivity is shown to
be essential for having the linear bound. This result extends the previous
one for the injective domains [4]; We now can allow the sharp corners in the
domains for which the linear one-sided stability is valid.

It turns out that the coefficient of the linear bound grows as the angle
fq (See Section 2) characteristic to a weakly injective domain € decreases.
An important consequence of this is that we can approximately measure the
degree of the “detailed-ness” of a domain §2 by the value fg. Along with
this, we will discuss about the relation between our result and the pruning
of MAT.

2 Preliminaries

2.1 Normal Domains

Contrary to the common belief, MAT(2) and MA () may not be graphs
with finite structure, unless the original domain €2 satisfies the following
rather strong conditions [3]:

e () is compact, or equivalently, 2 is closed and bounded.

e The boundary 092 of Q2 is a (disjoint) union of finite number of simple
closed curves, each of which in turn consists of finite number of real-
analytic curve pieces.

So we will consider only the domains satisfying these conditions, which we
call normal.



Rz(]
MAT(Q)

R2

Figure 2: Local geometry of MA and MAT around a generic point

Let €2 be a normal domain. Then, except for some finite number of the
special points, the maximal ball B,(p) for every P = (p,r) € MAT(Q) has
exactly two contact points with the boundary 0€2. It is well known that
MA(Q) (resp., MAT(Q)) is a C' curve around such p in R? (resp., P in
R? x Rso). Here, we denote Rsg = {z € R|z > 0}. See Figure 2. We will
denote the set of all such generic points in MA () by G(2), and, for every
p € G(Q), define 0 < O(p) < T to be the angle between pg; (or equivalently
Pgz) and MA(Q) at p, where ¢, ¢ are the two contact points (Figure 2
(a)). We also define a(p) > 0 to be the angle between the plane R? (that is,
R? x {0} in R? x Ryo) and MAT(Q) at P (Figure 2 (b)). It is easy to see
that

cos O(p) = tan a(p), (1)

for every p € G(€2). Note that, for every p € G(Q2), we have 0 < a(p) < 1,
since 0 < 0(p) < 3.
Now, for every normal domain €2, we define

0o = inf{0(p):p€ G(Q)},
ag = sup{a(p) :p € G(Q)}.

Then, from (1), we have
cos O = tan ag. (2)
Note that 0 < fg < 7 and 0 < ag < 7. We also define

po =min{r: (p,r) € MAT(Q)},



that is, pq is the smallest radius of the maximal balls contained in €2.

We call an end point of MA (or MAT) a 1-prong point. There are exactly
three kinds of the 1-prong points in MA, which are depicted in Figure 3;
Type (a) is the center of a maximal circle with only one contact point at
which the circle osculates the boundary. Type (b) is a sharp corner. Type
(c) is a 1-prong point with a contact arc. It is easy to see that g = 0, if and
only if MA(Q) has a 1-prong point of the type (a), and pg = 0, if and only
if MA(€2) has a 1-prong point of the type (b).

(a) (b) (c)

Figure 3: Three types of 1-prong points

We call a normal domain € injective, if 0 > 0 and pg > 0, and weakly
injective, if Og > 0. Thus, 2 is injective, if and only if every end point of
MA (Q) is of the type (c), and it is weakly injective, if and only if MA(2)
does not have the end points of the type (a). Note that a weakly injective
domain may have a sharp corner (i.e., the type (b)), while an injective domain
may not.

For more details on the properties of the medial axis transform, see [2, 3,
7).

2.2 Hausdorff Distance : Euclidean vs. Hyperbolic

Although sometimes it might be misleading [5], the Hausdorff distance is a
natural device to measure the difference between two shapes. Let A and B
be two (compact) sets in R?. The one-sided Hausdorff distance of A with
respect to B, H(A|B), is defined by

H(A|B) = maxd(p, B),
pEA

where d(-,-) is the usual Euclidean distance. The (two-sided) Hausdorff dis-
tance between A and B, H(A, B), is defined by

H(A, B) = max {H(A|B),H(B|A)}.
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Note that, whereas the two-sided Hausdorff distance measures the difference
between two sets, the one-sided Hausdorff distance measures how approxi-
mately one set is contained in another set.

Though the Hausdorff distance is intuitively appealing, it cannot capture
well the seemingly unstable behaviour of MAT under the perturbation. Re-
cently, there has been the introduction of a new measure called the hyperbolic
Hausdorff distance, so that MAT (and MA) becomes stable, if the differ-
ence between two MATSs is measured by this measure [5] (See Proposition 1
below).

Let P = (p1,71),P» = (p2,72) be in R? X Ryo. Then the hyperbolic
distance dy,(Py|P) from Py to Py is defined by

dp(P1|P2) = max {0, d(p1,p2) — (re — r1) }- (3)

We will need the following triangular inequality for the hyperbolic distance [5]:
For any Pi, P>, P; € R? x Ry,

dp(P1|Ps) < dp(Py|Py) + dp(Po| Ps3). (4)

Let M,, M, be compact sets in R? x R>. Then the one-sided hyperbolic
Hausdorff distance Hp(M;|Ms) of M; with respect to M, is defined by

Hp (M| M) = max { min dh(Pl\Pz)}, (5)

pPieM; | P2eMa2

and the (two-sided) hyperbolic Hausdorff distance between M; and M, is
defined by

Hh(Ml,MQ) = maX{Hh(M1|M2),%h(M2|M1)}. (6)
Proposition 1. ([5]) For any normal domains Q; and Qs, we have

max {%(Ql, QQ), ’H(@Ql, 892)} S %h(MAT(Ql), MAT(QQ)),
Hh(MAT(Q]_),MAT(QQ)) S 3 - max {’H(Ql,QQ),’H((?Ql,OQQ)}
In this paper, we will use the second inequality to extend the result for

the injective domains in [4] to a result for the weakly injective domains.

3 Infinitesimal Perturbation of Injective Do-
main

Before we prove our result on the weakly injective domains, we first review
the previous result for the injective domains.
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Proposition 2. ([4]) Let Q2 be an injective domain, and let Q' be a normal
domain with max {H (2, '), H(99, 00 )} < ¢, where e < min {pq tan? (6q/2),
pa/2}. Then we have

H(MA(Q)MA(Q)) <

H(MAT(Q)MAT () < /n2+ {e+1n}>,

_ P - €
pa sin’ (0q/2) — ecos? (0q/2)

where

Note that this result applies only to the small perturbation of the injective
domain, i.e., when € < min {pq tan® (6/2), po/2}. By using the Taylor ex-
pansion, the following infinitesimally linear bound of the one-sided Hausdorff
distance for injective domains can easily be deduced:

Corollary 1. (Infinitesimal Perturbation of Injective Domain) Let )
be an injective domain. Then we have

HMA(Q)MA(QY)) < ﬁ-e%—o(e),
H(MAT(Q) MAT(®Y)) < \/4TE’>C;Sc;);09)2 e+ o(e),

for every normal domain Q' such that max {H (2, Q'), H(0$2,00')} < e.

4 Perturbation of Weakly Injective Domain

Let P, = (pi, i), 1 = 1,2 be two different points in R? X Rso. We will denote
by —% < a(Py, P») < % the angle from R* x {0} to P, P, in R? x Rso, i.e.,
a(Py, PQ) is given by

P112

Sina(Pl,PQ) = 6_7? . CZ(TPZ)’

where € = ((0,0),1). See Figure 4.
Suppose |a(P1, )| < 7, which, in fact, is always true when Py, P, €
MAT(Q) for some normal domain €. From (3), it is clear that

dh(Pl‘PQ) = {COSOJ(Pl,PQ) — sinoz(Pl, PQ)} . d(Pl,PQ).



Figure 4: Two points in R* X R

So we have

d(P, Py) 1 -
dh(P1|P2) N COSO((Pl,PQ) — SiIle(Pl, PQ)

We will show that, both infinitesimally and globally, the one-sided Haus-
dorff distance of MAT (and MA) of a weakly injective domain is bounded
linearly by the magnitude of the perturbation. For these results, we need the
following two key lemmas, which will be proved in Appendices.

Lemma 1. Let ) be a weakly injective domain. Then we have

- { d(Py, P)

. P, # P, € MAT() b < oo,
PRI Rt “}

and

d(Pla-PQ)
— =L P # P, € MAT(Q),dy(P1| ) <
Sup{dh(P1|Pz) 1 # P € (), dn (P 2)_6}
< V1+cos?ho

1 — cosfq

+o(1).

Lemma 2. Let P, P, P; be in R? x Ryq. Suppose dp(Pi|P) < € and
dn(Py|Ps) < € for some € > 0. Then we have

d(Pl,PQ) Sd(Pl,P3)+6.

Define a function g : (0,7/2] — R by

2v/1 + cos? 0)

1 —cosf

g(0) =3 (1+



See Figure 5 for the graph of ¢g. Also, by Lemma 1, we can define
ko =3(142Rg),
for every weakly injective domain €2, where

d(Py, Py)

fia = sup {dh<P1|P2>

P #£ D€ MAT(Q)}.

Theorem 1. (Infinitesimal Perturbation of Weakly Injective Do-
main) Let Q) be a weakly injective domain. Then we have

9(0q) - € + o(e),
9(0q) - € + ofe),

for every € > 0, and for every normal domain Q' such that max {H (2, Q'),
H(00,00)} <e.

#(MAT() [ MAT(S))

<
H(MA(Q)MA()) <

Theorem 2. (Global Perturbation of Weakly Injective Domain) Let

Q be a weakly injective domain. Then we have
H(MAT(Q2)|MAT())
H(MA(Q)[MA(Q))

S kﬂ'ea
S kQ'ea

for every € > 0, and for every normal domain ' such that max {H (2, ),
H(02,00)} <e.

Proof of Theorems 1 and 2. First, note that H(MA(Q2) MA(Q)) <

H(MAT(Q)MAT(€2')). So we only need to bound the latter. Let P €
MAT(Q). By Proposition 1, we have H;, (MAT(2), MAT(€')) < 3e. So by
(5) and (6), there exists P’ € MAT(£') such that d,(P|P’) < 3¢, and, again,
there exists P" € MAT(2) such that d,(P'|P") < 3e. So d(P|P") < 6e by

(4). From Lemma 1, we have d(P, P") < ¥Y——— Ltcos* o -6e+o0(e) and d(P, P") <

1—cos fg

Rq-6e. So, by Lemma 2, d(P, P') < 3¢+ Y——— [cos” O -6e+0(€) = g(fq)-€+o0(e)

1-cos (9]

and d(P, P') < 3¢+ Rq - 6€ = kq - €. Since P is taken arbitrarily in MAT(£2)
these imply Theorems 1 and 2 respectively.

Y

Y

O

Example 1. Let Q) be a weakly injective domain with a sharp corner P,
depicted as in Figure 6. Let Q' be the domain obtained by smoothing  near
Py so that MAT(Q)) = P,Ps. Let P; = (p;,r;) for i =1,2,3. Note that

H(Q, Q) =H(0Q,00) =,
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(a) (b)
Figure 5: The graph of the coefficient function g(#) = 3 (1 + QW), (a)

The logarithmic graph of g on the whole interval (0, %], (b) The (normal)
graph of g on the interval [%, 7].

and

1

H(MA(Q) MA()) = d(p1,p2) = T—costy ©

, 14 cos?6
H(MAT () MAT((Y)) = d(P1, P,) = gost%ﬂ h

Figure 6: One-sided stability for weakly injective domain

This example shows that the factor m in g(fq), which blows up as
fq — 0, is indeed unavoidable. One important consequence is that the class
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of the weakly injective domains is the largest possible class for which we have
a linear bound for the one-sided Hausdorff distance of MAT (and MA) with
respect to the perturbation.

From Lemma 1, it is easy to see that kg > ¢(fg). The example in
Figure 7 shows that the global constant kg can be strictly greater than the
infinitesimal constant g(fg).

Figure 7: Global constant can differ from infinitesimal constant; Here, g =
%, and hence, g(fa) = 3 (1+2v3(1+V2)) = 28.089243---. But kq =

(P, P) (r+2€)2+(r—e)?
34+6- dh(;l‘é) =3+6-Y—7p—F

— 00 as € — 0.

5 The Essential Part of the MAT : Relation
to Pruning

Theorem 1 together with Example 1 says that the angle fg is an impor-
tant quantity reflecting the degree of the “detailed-ness” of a domain 2. The
smaller fq becomes, the finer approximation, that is, the smaller max {#H (2, '),
H(0Q,00)} is needed for MAT(Y') and MA(Q') of another domain Q' to
contain (approximately) MAT(Q2) and MA () respectively.

Suppose we perturb a weakly injective domain with domains which are
also weakly injective. In this case, MAT and MA become stable under
the “two-sided” Hausdorff distance. In particular, we have the following
corollary:

Corollary 2. (Approximation by Weakly Injective Domains) Let 2
be a normal domain, and let 21 and €29 be two weakly injective domains such
that max {H (4, Q), H(04;,00)} < € fori =1,2. Let § = min{fq,,0q,}.
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Then we have

H (MAT(Q;), MAT(Q,)) < 2¢(8)- e+ o(e),
H(MA(1), MA(S)) < 2g(0) - €+ o(e).

Proof. This follows by applying Theorem 1 symmetrically to €2; and €25, and
from the fact that H(Q1, Q) < H(Q, Q) + H(Q, Q) < 26, H(ON,00) <

Thus, the effect on MAT and MA which arises from the choice of the
weakly injective domains to approximate a normal domain is relatively small.
So the MAT and the MA of an approximating weakly injective domain may
be considered as a common part among all the other approximations with
the same g, and hence, an essential part of the original MAT and MA
with the fine details determined by the value of fy. This suggests that, by
approximating a given normal domain with the weakly injective domains, it
is possible to extract approximately the most essential part of the original
MAT and MA, which is the main objective of the existing pruning methods.

6 Illustrating Examples

Now we will consider a few examples, and calculate explicitly the constants
fa, g(0q) and kq for each of them. Keep in mind that kq is determined by

the supremum of the value di(gil’ﬁﬁg), and hence from (7), by that of the angle

a(Pl,PZ), for P1 7é P2 in MAT(Q)

Example 2. Consider an equilateral triangle and a star-shaped domain de-
picted respectively as in Figure 8 (a) and (b). Note that 6 = % for (a),
and bq = T for (b). So g(6a) = 3(1 +2v/5) = 16.416408 - for (a), and
g(0q) = 43.410203 - - - for (b). In both cases, it is easy to see that ko = g(6).

Example 3. Consider the tubular domains with (a) constant width, and (b)
with increasing width, which are depicted as in Figure 9. Their MATSs are
parametrized respectively by

P(t) = ((Rsint,R— Rcost),r),
P(t) = ((Rsint,R— Rcost),r + at),

fort €[0,%]. Here, it is assumed that R >> r >> a > 0. For (a), it easy easy

to see that g = 5, and kg = g(0q) = 9. For (b), we have g = arccos %,

11



(a) (b)

Figure 8: (a) Equilateral triangle; 0o = %, (b) five-sided star; 6o = £. For
both cases, we have ko = g(6q).

and so
2
V14 (%
g0e) =346 VTR
1-%
But
2
1+ T, a
P \/ 2v/2 R
dn(O|P) l—=37% &

Thus, it is easy to see that ko > g(0q).

Figure 9: (a) Tube with constant width; fg = 7 and kq = g(6q) = 9. (b)
Tube whose width increases at a constant ratio a > 0; 6 = arccos ¢ and

ko > g(6q).

Example 4. Consider the rectangular domains with constant widths depicted
as in Figure 10. Note that 0q = 7 for all cases. It is also easy to see that
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ko = g(0a) = 3 (1 +2v3(1 +/2)) = 28.089243 - - - for all cases. Note that
the same result applies to the domain in Figure 11.

,01 < =T
/6 ! \ %97 \
\
(s SEUAVZ.
\ /
AY I 7/ \ _
| N AN
-
/ \
\
F--- 1
I !
\ 1 /
~ ! -
L
il BN
N 7N 7
S Nfaba, N g A
I
} LA
\ RS I
\ / NS
N 7 N/ > A
P .
[N I \

Figure 10: Rectangular domains with constant widths; For all cases, we have
o =% and ko = g(fa) = 3 (1 +2v/3(1 +/2)) = 28.089243 - - -.

Figure 11: Complex tubular shape with constant width; here, we also have
o =T and ko = g(fo) =3 (1 +2v/3(1 + V2)) = 28.089243 - - -

Appendix A. Proof of Lemma 1

First, note that the first inequality comes immediately from the second one,
since the set MAT(Q)xMAT(Q)\{(P1, P,) | P1, P, € MAT(Q), dn(P1|P;) < €}
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d(P1,P»)

4, (PP, 18 continuous on it. Let

is compact for any € > 0, and the function
A = sup {Oj(Pl,PQ) Py 75 P, € MAT(Q),dh(Pl‘Pz) < 6}.

Note that |A| < T for any € > 0, since |a(Py, P5)| <  for any Py # P, €
MAT(£2). We will show that lim sup, , Ac < aq. Note that aq < § by (2),
since () is weakly injective. Suppose limsup,_,; Ac > aq. Then there exist
sequences {P"}, {Py"} in MAT(Q2) such that P* # Pj*, d(P"|Py") <
1/2™ and lim,, . (P]", Py*) > agq. Since MAT(Q)) is compact, we can
assume d(P", P;) — 0 and d(PJ", P,) — 0 as m — oo for some P, P, €
MAT(Q). Since dy(P"|Pj*) — 0 as m — oo, it follows that P; = P, which
we denote P = (p, 7).

Note that, around every point in MAT (including, of course, the generic
ones) of a normal domain, MAT consists of n C! curves (called prongs)
emanating from the point for some n > 1 [3]. We call such point an n-prong
point. See Figure 12. Now P is an n-prong for some n > 1. Let Py, -+, P,
be the prongs of MAT(2) around P. Since each of the prongs is C! at P,
we can define a; = limg,pgep, (P, Q) for j = 1,--- ,n. It is easy to see
that |oj| < aq for j=1,---,n.

Figure 12: Local geometry of MAT around an n-prong point

With no loss of generality, we can assume that, for each i = 1,2, the
sequence {P/™} lies only on one prong of MAT(Q2) around P. If the two se-
quences {P/"} and { PJ"} are on the same prong, say P;, then it is easy to see
that lim, o |a(P]", P3")| = |on| < agq, which contradicts the assumption.
So we can assume with no loss of generality that {P/"} is on P; for i =1, 2.

Parametrize 731 and PQ by Pl(tl) = (pl(tl);rl(tl))a tl 2 0 and Pz(tg) =
(p2(t2), r2(t2)), ta > 0 respectively so that |pi| = 1 and P;(0) = P fori =1, 2.

14



Then, within the first order approximation, we have

totanay — ¢t tan o
tan o (P (t), Po(ts)) = \/;Hj 2tlt Cosl il (8)
1 2 — 4v1t2

for t1,t3 > 0, where 0 < § < 7 is the angle between p}(0) and p,(0). Let
t1 =t and to = kt for k > 0. Then the right side of (8) becomes

ktan ay — tan oy
\/k2+1—2kcosﬂ.
Note that 8 > 6; + 0y, where cosf; = —tanq;, 0 < 6; < 7w for i = 1,2

(See Figure 12). So cos < cos(#; +6;) = cosf; cosfy — sinfysinfy <
cos 0 cos B = tan a; tan ap. So (9) is less than

(9)

ktan as — tan oy
VE2+1—2ktana; tanay

(10)

Now it is easy to see that (10) is less than max {|tan |, | tan as|} < tan agq
for every £ > 0. This implies that lim,, ,o, a(P™, PJ") < agq, since {P/"} is
on P;, and is approaching to P for : = 1,2. Thus we have a contradiction to
the assumption, and hence, we conclude that limsup,_,, A < aq.

Thus, from (7), we have

d(Py, P)
———= P # P, € MAT(Q2 P P) <

1 1
< - < -
cos A, —sin A, — cosaqn — sin aq

+o(1).
This shows the second inequality, since, from (2), we have

1 V1 + cos? g

Cos aig — sin ag 1 — cosfq

Appendix B. Proof of Lemma 2

From the assumptions and (3), we have

d(p1,p2) < r2—11i+6 (11)
d(pa,p3) < T3—r9+te (12)

Let Dy = d(P;, P5) and D3 = d(Py, P3). Suppose the result does not hold,
1.€.,

Dy > D3 + €. (13)
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Note that D, > €, and hence Dy > 0. Choose —5 < 6,03 < 7 such that

d(p1,p2) = D cos by, ro — 11 = Dy sin by,
d(p1,ps) = D3cosbs, 13 —r1 = Dssinbs.

Note that cosf > 0. From (11), we have
Dy(cos By —sinfy) < e. (14)

Since Dy > €, we have cosfy — sinfly < 1 from (14), which implies that
sinfy > 0. So

cos By + sin 6y > 0. (15)

Note that d(p2,ps) > |d(p1,p2) — d(p1,ps)| by the triangular inequality for
the Euclidean distance. So from (12), we have

d(p1,p2) —d(p1,p3) < (rs—r1) — (ra—11) + ¢,
d(p17p3) - d(p1;P2) < (7“3 - 7“1) - (7“2 — 7‘1) + €,

which are equivalent respectively to

Dy (cos 0y + sinfy) < Ds(cos s + sin f;) + €, (16)
Dy(cos 6y — sinfy) > Ds(cosf3 — sinfs) — e. (17)

From (14), (15), (16), and (17), we have

0 < Do(cos By + sinfy) < D3(cosf3 + sinfs) + e,
D3(cosf3 — sinfls) — € < Dy(cos by —sinfy) < e,

and so

D2(cos By +sinfy)? < {Ds(cosbs + sin f3) + €},
D3(cosfy —sinfh)? < max {e?, {Dj(cos s — sin63) — e}’ }.

By adding the above two inequalities, we get
2D2 < {Ds(cos 3 + sin 3) + €}
+ max { €, {D3(cos 3 — sin ;) — 6}2}. (18)

If Dy = 0, then it follows that Dy < ¢, contradicting (13). So we assume
D3 > 0. Now from (18) and (13), we have

2(Ds + €)% < {Ds(cos B3 + sin fs) + €}
+ max {€?, {Dj(cos 3 — sinfs) — e}*}. (19)
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Suppose |Ds(cosf3 — sinfl3) — €| < e. Then (19) becomes

2(Ds +€)? < {Ds(cosbf; +sinfs) + €} + ¢
2
< (\/§D3 + 6) + 62,

which reduces to the contradiction that v/2 < 1. So we must have

|D3(cos O3 — sinfls) — €| > €.

Now (19) becomes

2(Ds 4 €)? < {Ds(cosbs + sinfs) + €}’
+ {Ds(cos 05 — sin ) — €}
= 2D§ + 4esin3D3 + 262,

which reduces to the contradiction 1 < sinf3. Thus we conclude that the
assumption (13) is false, and hence, we have the desired result.
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