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ABSTRACT
Despite its usefulness in many applications, the medial axis trans-
form (MAT) is very sensitive to the change of the boundary in the
sense that, even if a shape is perturbed only slightly, the Hausdorff
distance between the MATs of the original shape and the perturbed
one may be large. However, it is known that MATs of 2D domains
are stable if we view this phenomenon with the one-sided Haus-
dorff distance. This result depends on the fact that MATs are stable
if the differences between them are measured with the recently in-
troduced hyperbolic Hausdorff distance. In this paper, we extend
the result for the one-sided stability of the MAT to a class of 3D
domains called weakly injective, which contains many important
3D shapes typically appearing in solid modeling. Especially, the
weakly injective 3D domains can have sharp features like corners
or edges. In fact, by using the stability of the MAT under the hy-
perbolic Hausdorff distance, we obtain an explicit bound for the
one-sided Hausdorff distance of the MAT of a weakly injective 3D
domain with respect to that of a perturbed domain, which is linear
with respect to the domain perturbation. We discuss some conse-
quences of this result concerning the computation and the approxi-
mation of the medial axis transform of 3D objects.

Keywords
medial axis transform, skeleton, stability, Hausdorff distance, hy-
perbolic Hausdorff distance, weakly injective domain

1. INTRODUCTION
For a given a shape in a Euclidean space, its medial axis (MA)

is defined as the set of the centers of maximal inscribed balls con-
tained in the shape, and the medial axis transform (MAT) is defined
as the set of all the pairs of medial axis point and the radius of the
corresponding inscribed ball. While the MA captures the overall
features of a shape in a compact form, MAT has the full information
about a shape, which is enough to reconstruct it. More precisely,
the medial axis transform MAT(Ω) and the medial axis MA(Ω)
of an n-dimensional domain Ω is defined by

MAT(Ω) = { (p, r) ∈ R
n × [0,∞) |

Br(p) is a maximal ball contained in Ω } ,

MA(Ω) = {p ∈ R
n | ∃r ≥ 0, s.t. (p, r) ∈ MAT(Ω)} .

Since its introduction [3], MAT has been one of the most in-
tensively investigated and widely used objects in shape analysis.
Some of its applications include: biological shape recognition [20],
character recognition and representation [24], fingerprint classifica-
tion [17], and visual analysis of circuit boards [25]. In general, it

shrinks the dimension of a given shape by 1, while preserving the
the topology in a homotopically equivalent way [3, 4, 23]. It also
has a natural definition closely connected to the Voronoi diagram,
which can in fact be utilized in some applications [1].

The analysis of the MAT in 2D concerns mostly about dealing
with the images, and hence has a large impact in fields like image
processing, pattern recognition, and computer vision. On the other
hand, 3D MAT is becoming more important in fields such as CAD,
computer graphics, and mechanical engineering, which should nat-
urally deal with 3D objects. But compared to the vast amount of
works on the MAT in 2D, the corresponding works in 3D are still
in a premature state in view of their importance. This is in part
caused by the fact that there are few existing theoretical bases for
the 3D MAT. In fact, the exact geometry of the 3D MAT has not
been understood completely yet [12, 13, 14, 15, 16, 22, 23]. Thus
basic theoretical analysis on the geometry of the 3D MAT is much
in need at present.

In the meanwhile, one nuisance in using the MAT is its notorious
instability: In general, MAT is not stable under the perturbation of
domains [2, 19]. See Figure 1: Even when the upper domain is
slightly perturbed to the lower domain, their corresponding MATs
(MAs) have a drastic difference.

Figure 1: Instability of MAT: A small perturbation (under the
Hausdorff distance) of the domain on the upper left to the one
on the lower left leads to a drastic change in their correspond-
ing MATs (upper right and lower right, resp.). But the one-
sided Hausdorff distance of the original MAT (upper right)
with respect to the perturbed one (lower right) still remains
small.

Combined with the well-known difficulty of computing the me-
dial axis transform, this phenomenon can cause a lot of problems
in real applications, since, in many cases, shapes in problems come
with inevitable noises. In 2D, there have been many attempts to



overcome this difficulty by reducing the complexity of the MAT by
“pruning” out the less important parts [10, 18, 21]. Also in 3D,
there have been attempts to approximate a more stable part of the
MAT rather than to compute the whole complex MAT [1]. But most
of these attempts come without precise error analysis, thus lacking
in firm theoretical guarantee (with some notable exceptions includ-
ing [1]).

While the instability of the MAT is inherent from its definition,
we still can have one important observation from Figure 1; The
original MAT (upper right) is contained approximately in the per-
turbed MAT (lower right). More precisely, the one-sided Haus-
dorff distance of the original MAT with respect to the perturbed
one still changes little. In this paper, we will closely analyze this
phenomenon, and show that this is in fact a general property of
the MAT regarding its stability. In particular, for a class of the
3D domains called weakly injective, we will show that the one-
sided Hausdorff distance of a given original MAT with respect to
a perturbed one can be bounded linearly with the magnitude of the
perturbation on the domain.

Weakly injective domains are domains without degenerate types
of end points in their MATs so that they satisfy some smoothness
condition. They include many domains that naturally arise in solid
modeling and CAD applications, and, especially, they can still have
sharp corners or edges. In fact, the weakly injective domains form
the largest class of 3D domains with linear bound for the one-sided
Hausdorff distance of the MAT, and the constant for this linear
bound can serve as a new indicator of the level of detail for a given
3D shape.

These results generalize the corresponding ones in 2D [7], which
will be reviewed in Section 4. We mention that the proofs given
here for the 3D case can obviously be generalized to any higher
dimension. As well as the theoretical importance of these results,
we will also point out some possible effects they will have on the
general computation of the 3D MAT.

2. GEOMETRY OF MAT
In this section, we explore some facts about the geometry of the

MAT in 2D and 3D, which are relevant to our further analysis.

2.1 Situation in 2D
For 2D domains, much about the geometry of the MAT are known.

The most basic and fundamental fact is the following:

PROPOSITION 1. [4]
Let Ω be a normal domain in 2D. Then MA(Ω) and MAT(Ω)

have finite graph structures, and MA(Ω) is homotopically equiv-
alent to Ω.

Here, the condition ‘normal’ is important. We call a compact 2D
domain Ω normal, if its boundary ∂Ω consists of finitely many sim-
ple closed curves, each of which in turn consists of finitely many
real-analytic curve pieces. Though the real-analycity seems rather
strong, MAT(Ω) and MA(Ω) may not be graphs with finite struc-
ture, unless the original domain Ω satisfies the normality condi-
tion [4]. Furthermore, most domains in applications fall into the
category of normal domains. So it is natural to consider only the
normal domains.

Normal domains also have the following nice properties: Let Ω
be a normal domain. Then except for some finite number of special
points, the maximal ball Br(p) for every P = (p, r) ∈ MAT(Ω)
has exactly two contact points with the boundary ∂Ω. See Figure 2.
Around such p and P , MA(Ω) and MAT(Ω) are C1 curves in
R

2 and in R
2 × R≥0 respectively. Here, we denote R≥0 = {x ∈

θ(p)

θ(p)
p

r

Ω

MA(Ω)

q1

q2

�

(a)

α(p)

R
2

R≥0

p

r
P = (p, r)

MAT(Ω)

�

(b)

Figure 2: Local geometry of 2D MA and MAT around a generic
point: MA and MAT are C1 curves around a generic point.

(a) (b) (c)

Figure 3: Three types of 1-prong points for 2D MAT

R |x ≥ 0}. For every p in the set of such generic points in MA(Ω)
(denoted by G(Ω)), we define the angle 0 < θ(p) ≤ π

2
to be the

angle between pq1 (or equivalently pq2) and MA(Ω) at p, where
q1, q2 are the two contact points (See Figure 2 (a)). We also define
the angle 0 ≤ α(p) < π

2
to be the angle which MAT(Ω) makes

with the point plane R
2 at P (See Figure 2 (b)). Then it is easy to

see the following general relation:

cos θ(p) = tan α(p), (1)

for every p ∈ G(Ω).
Now, for every normal domain Ω (except for the special case of

circular disks), we define

θΩ = inf {θ(p) : p ∈ G(Ω)},
αΩ = sup {α(p) : p ∈ G(Ω)}.

Note that 0 ≤ θΩ ≤ π
2

, 0 ≤ αΩ ≤ π
4

, and, from (1), we have
cos θΩ = tan αΩ. When Ω is a circular disk, we define θΩ = π

2

and αΩ = 0. We also define ρΩ = min {r : (p, r) ∈ MAT(Ω)},
which is the smallest radius of the maximal balls contained in Ω.

We call an end point of MA a 1-prong point. There are exactly
three types of 1-prong points in MA. See Figure 3: Type (a) is a
1-prong point with a contact arc, Type (b) is a sharp corner, and
Type (c) is a degenerate case when it is the center of a maximal
circle with only one contact point at which the circle osculates the
boundary. Especially, the center of a circular disk is a 1-prong point
of Type (a). It is easy to see that θΩ = 0, if and only if MA(Ω) has
a 1-prong point of Type (c), and ρΩ = 0, if and only if MA(Ω)
has a 1-prong point of Type (b).

We call a normal domain Ω injective, if θΩ > 0 and ρΩ > 0,
and weakly injective, if θΩ > 0. Thus, Ω is injective, if and only
if every 1-prong point of MA(Ω) is of Type (a), and it is weakly
injective, if and only if MA(Ω) does not have a 1-prong point of
Type (c). Note that a weakly injective domain may have a sharp
corner (i.e., Type (b)), while an injective domain may not.

2.2 Situation in 3D



Figure 4: MA (MAT) can be decomposed into finitely many
patches called elements. Each patch has trivial topology, and
according to its dimension, it is either called a surface element
or a line element. Note that such a decomposition is not unique.

Compared to the 2D case, the geometry of the 3D MAT is not
well understood yet. In fact, there still does not exist a result in
3D which is analogous to Proposition 1. In general, MAs (resp.,
MATs) of 3D domains would be (2-dimensional) CW-complexes in
R

3 (resp., R
3 × R≥0), which means that they can be decomposed

into simpler 2D and 1D patches. See Figure 4 for an example of
such decomposition. But, of course, they are not the most general
types of CW-complexes, since they are MAs and MATs of specific
3D domains. In view of the 2D situation, we introduce the follow-
ing reasonable conditions for MA and MAT in our analysis:

1. They can be decomposed into a finite number of parts called
elements.

2. An element has one of the following two forms:

(a) Surface Element (Figure 5 (a)): A 2-dimensional C1

manifold with boundary, embedded in R
3 (or R

3 ×
R≥0), which is homeomorphic to a closed disk, and
whose boundary consists of finitely many C1 curve
pieces.

(b) Line Element (Figure 5 (b)): A C1 curve piece (with-
out self intersections) embedded in R

3 (or R
3 × R≥0)

including its two end points.

3. Each pair of two different elements can meet only at their
boundaries.

4. If a MAT point P = (p, r) is in the interior of a surface el-
ement, then the maximal ball Br(p) has exactly two contact

(a) (b)

Figure 5: Two types of the elements in MA: (a) A surface ele-
ment (left), and (b) a line element (right). Both can be extended
slightly at their boundaries in the C1 manner (so that the re-
sulting extensions are locally C1 manifolds at the boundaries),
with possible exceptions at some boundary points of a surface
element (c.f., the top corner point in (a)).

points with the domain boundary. If P is in the interior of a
line element, the contact points form a circle.

5. A line element can be extended slightly at their boundaries in
the C1 manner (See Figure 5 (b)). A surface element can also
be extended slightly at their boundaries to become an em-
bedded C1-manifold, except possibly at some finitely many
boundary points (See Figure 5 (a)).

We will call a compact set in R
3 pseudonormal, if its MA and

MAT satisfy the above conditions. In fact, the finiteness of the num-
ber of elements, which is connected to the compactness of MA and
MAT, is quite important and subtle in proving our results. On the
domain side, the notion corresponding to MA and MAT decom-
position into patches, would be the domain decomposition. See
Figure 6 for an example of domain decomposition for 3D domain.

Now, following the definition in 2D, we call a compact set Ω
in R

3 normal, if its boundary ∂Ω consists of finitely many (mu-
tually disjoint) piecewise real-analytic compact 2-manifolds (with-
out boundary). Note that we can easily cook up non-normal ex-
amples of 3D domains (analogous to the ones in [4]) whose MAs
and MATs inevitably have infinitely many patches, thus not being
pseudonormal. But in view of Proposition 1, we can justifiably
conjecture the following:

CONJECTURE 1. If a compact set in R
3 is normal, then it is

pseudonormal.

For the rest of our analysis, we will confine ourselves to pseudonor-
mal domains. Let Ω be a pseudonormal domain. Let P = (p, r)
be a point in MAT(Ω), which is not on the boundaries of ele-
ments of MAT(Ω). There are two types of such generic points in
MAT(Ω). One is on a surface element, and the other is on a line
element. See Figure 7. If P is on a surface element, then the max-
imal ball Br(p) has exactly two contact points with the boundary
∂Ω. In this case, we define an angle 0 < θ(p) ≤ π

2
by the angle

1

2
∠q1pq2, where q1, q2 ∈ ∂Ω ∩ ∂Br(p) are the contact points. If

P is on a line element, then the contact points form a circle. In this
case, we define θ(p) to be the inner angle of the cone generated
by p and the circle of contact points. For both cases, we define an
angle 0 ≤ α(p) < π

4
by

tan α(p) = cos θ(p). (2)



⇓

Figure 6: Domain decomposition for 3D Domain: Correspond-
ing to their MAT decomposition, 3D domains can also be de-
composed into simpler ones.

Analogously to 2D, we define (except when Ω is a spherical ball)

θΩ = inf {θ(p) : p ∈ G(Ω)},
αΩ = sup {α(p) : p ∈ G(Ω)},

where G(Ω) denotes the set of all such generic points in MA(Ω).
Then, from (2), we have

cos θΩ = tan αΩ. (3)

Note that 0 ≤ θΩ ≤ π
2

and 0 ≤ αΩ ≤ π
4

. When Ω is a spherical
ball, then we define θΩ = π

2
and αΩ = 0. We call a pseudonormal

domain weakly injective, if θΩ > 0, or equivalently, αΩ < π
4

.
Like the 2D case, we call an end point of MA (or MAT) a 1-

prong point. But in 3D, we have more types of 1-prong points than
in 2D, some of which are depicted in Figure 8. Here, the center of
a spherical ball corresponds to Type (a1). It is easy to see that, if a
pseudonormal domain is weakly injective, then its MA cannot have
1-prong points of Type (c1) and (c2) in Figure 8. In general, there
occurs a principal curvature maximum at the boundary point corre-
sponding to an MA point of Type (c), although the converse is not
always true. This is a useful criterion when determining whether a
given shape is weakly injective or not.

Note that a weakly injective 3D domain may have sharp corners
or edges (Type(b1) and (b2) in Figure 8). See Figure 9 for an ex-

p

r θ(p)

θ(p)

p

r
θ(p)

Figure 7: Two kinds of generic points in MAT(Ω): (Up)
Generic point in a surface element. The maximal ball has ex-
actly two contact points with the domain boundary. (Below)
Generic point in a line element. The contact points form a cir-
cle, which, together with the MA point, makes a cone.

ample of weakly injective 3D domain, and another which is not
weakly injective.

3. DISTANCES

3.1 Hausdorff Distances
We will use the Hausdorff distance in our analysis, since it is a

most natural device to measure the difference between shapes. In
fact, we will use three different types of Hausdorff distances: the
one-sided, the two-sided and the hyperbolic, where the last one has
recently been introduced specifically for MAT. Let A and B be two
(compact) sets in a Euclidean space of arbitrary dimension, and let
d(·, ·) be the usual Euclidean distance.

One-sided Hausdorff distance: H(A|B)
The one-sided Hausdorff distance of A with respect to B, de-

noted by H(A|B), is defined by

H(A|B) = max
p∈A

d(p,B).

Note that H(A|B) < ε, if and only if A is contained in the ε-
neighborhood of B (See Figure 10). So the one-sided Hausdorff
distance measures how approximately a set is contained in another
set, and hence our results on the one-sided stability of MAT (The-
orem 1) will be concerned with bounding this distance for MAT.

(Two-sided) Hausdorff distance: H(A, B)
The two-sided Hausdorff distance (or just the Hausdorff dis-

tance) between A and B, H(A, B), is defined by

H(A, B) = max {H(A|B),H(B|A)}.
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Figure 8: Types of 1-prong points in 3D MAT: In addition to
these, there are other types which are more 3D specific.

This is the one usually called the Hausdorff distance in the liter-
ature. It has many nice properties including that it is a complete
metric on the class of all compact sets in the Euclidean space [11].
Since it is defined by symmetrizing the one-sided Hausdorff dis-
tance, it measures how similar two sets are. Later in Section 6, we
will obtain a bound (Corollary 1) for the two-sided Hausdorff dis-
tance between two different MAT approximations. See Figure 11
for an illustration of the two-sided Hausdorff distance.

Hyperbolic Hausdorff distance: Hh(M1|M2), Hh(M1, M2)
In spite of its intuitive appeal, the Hausdorff distance cannot cap-

ture the unstable behaviour of MAT under the boundary perturba-
tion. The hyperbolic Hausdorff distance has recently been intro-
duced in [8], so that MAT becomes stable if the difference between
two MATs is measured by this distance (See Proposition 2 below).

Since MAT is the set of pairs of centers (points in the usual Eu-
clidean space) and radii (nonnegative real numbers), the natural
space where MAT lives is the product space R

n × R≥0. The hy-

Figure 9: Examples of 3D domains: (left) weakly injective and
(right) not weakly injective.

ε

A
B

ε-neighborhood
of B

Figure 10: One-sided Hausdorff distance measures how ap-
proximately a set A is contained in a set B. Here, A is contained
in the ε-neighborhood of B, which is equivalent to H(A|B) < ε.

perbolic Hausdorff distance measures the difference between two
sets in this space. It is defined in a similar way to the usual Haus-
dorff distance, but uses the hyperbolic distance between two points
in R

n × R≥0 instead of the usual Euclidean distance. Let P1 =
(p1, r1), P2 = (p2, r2) be in R

n × R≥0. Then the hyperbolic dis-
tance dh(P1|P2) from P1 to P2 is defined by

dh(P1|P2) = max {0, d(p1, p2) − (r2 − r1)}. (4)

See Figure 12.
Note that this is not a real distance, since it is not symmetric

(i.e., dh(P1|P2) 6= dh(P2|P1) in general). But, analogously to the
usual Euclidean distance, the hyperbolic distance has some nice
properties like the following triangular inequality [8]:

dh(P1|P3) ≤ dh(P1|P2) + dh(P2|P3), (5)

for any P1, P2, P3 ∈ R
n × R≥0.

Now let M1, M2 be compact sets in R
n × R≥0. Then the one-

sided hyperbolic Hausdorff distance Hh(M1|M2) of M1 with re-
spect to M2 is defined by

Hh(M1|M2) = max
P1∈M1

{

min
P2∈M2

dh(P1|P2)

}

, (6)

and the (two-sided) hyperbolic Hausdorff distance between M1 and
M2 is defined by

Hh(M1, M2) = max {Hh(M1|M2),Hh(M2|M1)}. (7)

The following fact says that the hyperbolic Hausdorff distance
between two MATs is almost the same with the Hausdorff distance
between the corresponding original shapes. This implies that the
hyperbolic Hausdorff distance is a most natural device to measure
the difference between MATs.
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Figure 11: Two-sided Hausdorff distance measures how similar
two sets A and B are. Here, each of A and B is contained in
each other’s ε-neighborhood, which is equivalent to H(A, B) <
ε.
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Figure 12: The hyperbolic distance dh(P1|P2) from P1 =
(p1, r1) to P2 = (p2, r2) is the same with the one-sided Haus-
dorff distance H(Br1 (p1)|Br2 (p2)).

PROPOSITION 2. [8]
For any compact sets Ω1, Ω2 ⊂ R

n (n = 1, 2, · · · ) such that
MAT(Ω1), MAT(Ω2) are compact, we have

max {H(Ω1, Ω2),H(∂Ω1, ∂Ω2)} ≤
Hh(MAT(Ω1),MAT(Ω2)),

Hh(MAT(Ω1),MAT(Ω2)) ≤
3 · max {H(Ω1, Ω2),H(∂Ω1, ∂Ω2)}.

In this paper, the second inequality of Proposition 2 will be used
in a crucial way to show the main results regarding the one-sided
stability of MATs of weakly injective 3D domains.

3.2 Distance between Two Points
Now we will explore some relations between the hyperbolic dis-

tance and the Euclidean distance between two MAT points (hence,
two points in R

n ×R≥0), which is important for understanding the
further analysis. For concreteness, we will restrict to R

3 × R≥0,
though the relations hold in every dimension. Let Pi = (pi, ri),
i = 1, 2, be two different points in R

3 × R≥0. We will denote
by −π

2
≤ α(P1, P2) ≤ π

2
, the angle from R

3 × {0} (the space

for centers) to
−−−→
P1P2 in R

3 × R≥0. More specifically, α(P1, P2) is
given by

sin α(P1, P2) = −→er ·
−−−→
P1P2

d(P1, P2)
,

where −→er = ((0, 0, 0), 1). Here d(P1, P2) denotes the usual Eu-
clidean distance

d(P1, P2) =
√

d(p1, p2)2 + (r1 − r2)2,

with P1, P2 regarded as points in R
4 ⊃ R

3 × R≥0. See Figure 13
for an illustration.

p1 p2
R

3

R≥0

P1

P2

r2 − r1

d(p1, p2)

α(P1, P2)

d(P1, P2)
−→er

r1

r2

Figure 13: Two points in R
3 × R≥0

Suppose P1, P2 are two different points in the MAT of a 3D
domain Ω. Then we have the following basic observation from the
maximality of the two balls Br1(p1), Br2(p2) in MAT(Ω):

|α(P1, P2)| <
π

4
.

Now from (4), it is clear that

dh(P1|P2) = {cos α(P1, P2) − sin α(P1, P2)} · d(P1, P2).

So we have

d(P1, P2)

dh(P1|P2)
=

1

cos α(P1, P2) − sin α(P1, P2)
. (8)

4. PREVIOUS RESULTS IN 2D
Recently, there has been a series of results on the one-sided sta-

bility of the MAT in 2D. Let us briefly review these results. Chrono-
logically, they were developed in the order of the restrictiveness of
the domains dealt with: the injective, the weakly injective, and the
general normal. The first result was for injective domains.

PROPOSITION 3. (One-sided Stability for Injective 2D Do-
main) [6, 7]

Let Ω be an injective 2D domain. Then we have

H(MA(Ω)|MA(Ω′))

≤ 2

1 − cos θΩ

· ε + o(ε),

H(MAT(Ω)|MAT(Ω′))

≤
√

4 + (3 − cos θΩ)2

1 − cos θΩ

· ε + o(ε),

for every normal 2D domain Ω′ such that

max
{

H(Ω, Ω′),H(∂Ω, ∂Ω′)
}

≤ ε.

After the introduction of the hyperbolic Hausdorff distance in
[8], this result was extended to the weakly injective case and the
general normal case.

PROPOSITION 4. (One-sided Stability for Weakly Injective
2D Domain) [7]



Let Ω be a weakly injective 2D domain. Then we have

H(MAT(Ω)|MAT(Ω′)) ≤ g(θΩ) · ε + o(ε),

H(MA(Ω)|MA(Ω′)) ≤ g(θΩ) · ε + o(ε),

for every normal 2D domain Ω′ such that

max
{

H(Ω, Ω′),H(∂Ω, ∂Ω′)
}

≤ ε.

Here,

g(θ) = 3

(

1 +
2
√

1 + cos2 θ

1 − cos θ

)

,

for θ ∈ (0, π/2]. See Figure 14 for the graph of g.
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Figure 14: The graph of the coefficient function g(θ) =

3
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1 +
2

√
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)

; (a) the logarithmic graph of g on the

whole interval (0, π
2
], (b) the (normal) graph of g on the interval

[π
6
, π

2
].

The bounds are linear in the weakly injective case. But it turns
out that this linearity does not hold in the general case of the normal
domains in 2D.

PROPOSITION 5. (One-sided Stability for Normal 2D Domain)
[9]

Let Ω be a normal 2D domain which is not weakly injective.
Then we have

H(MA(Ω)|MA(Ω′))

≤ KΩ · ε
NΩ−1

NΩ+1 + o

(

ε
NΩ−1

NΩ+1

)

,

H(MAT(Ω)|MAT(Ω′))

≤ KΩ · ε
NΩ−1

NΩ+1 + o

(

ε
NΩ−1

NΩ+1

)

,

for every normal 2D domain Ω′ such that

max
{

H(Ω, Ω′),H(∂Ω, ∂Ω′)
}

≤ ε.

Here the constant NΩ is the degree of contact of maximal balls
of Type (c) in Figure 3 with the domain boundary. So NΩ can take
an integer value greater or equal to 2, and hence we have bounds
like 3

√
ε,
√

ε, ε
3
5 , · · · . In the worst case, we have 3

√
ε, and, when

the boundary curves are quadratic splines, we have
√

ε. The con-
stant KΩ depends on the maximal curvature of the boundary near
1-prong points of Type (c) in Figure 3. This implies that, in contrast
to the constant θΩ in the weakly injective case, we can compute KΩ

directly from the domain boundary.

5. RESULT IN 3D
We now show that, the one-sided Hausdorff distance of the MAT

(and the MA) of a weakly injective 3D domain is bounded linearly
by the magnitude of the boundary perturbation. For these results,
we will need the following key lemmas:

LEMMA 1. Let Ω be a weakly injective 3D domain which is not
a spherical ball. Then we have

sup

{

d(P1, P2)

dh(P1|P2)
: P1 6= P2 ∈ MAT(Ω), dh(P1|P2) ≤ ε

}

≤
√

1 + cos2 θΩ

1 − cos θΩ

+ o(1).

See Appendix A for the proof of Lemma 1.

LEMMA 2. Let P1, P2, P3 be in R
3×R≥0. Suppose dh(P1|P2)

≤ ε and dh(P2|P3) ≤ ε for some ε ≥ 0. Then we have

d(P1, P2) ≤ d(P1, P3) + ε.

See Appendix B for the proof of Lemma 2.

THEOREM 1. (One-sided Stability for Weakly Injective 3D
Domain)

Let Ω be a weakly injective 3D domain. Then we have

H(MAT(Ω)|MAT(Ω′)) ≤ g(θΩ) · ε + o(ε),

H(MA(Ω)|MA(Ω′)) ≤ g(θΩ) · ε + o(ε),

for every pseudonormal 3D domain Ω′ such that max {H(Ω, Ω′) ,
H(∂Ω, ∂Ω′)} ≤ ε.

PROOF OF THEOREM 1. First, it is easy to see that
H(MA(Ω)|MA(Ω′)) ≤ H(MAT(Ω)|MAT(Ω′)). So we only
need to bound the H(MAT(Ω)|MAT(Ω′)). Assume Ω is not a
spherical ball. Let P ∈ MAT(Ω). By Proposition 2, we have
Hh (MAT(Ω),MAT(Ω′)) ≤ 3ε. So by (6) and (7), there exists
P ′ ∈ MAT(Ω′) such that dh(P |P ′) ≤ 3ε, and, again, there exists
P ′′ ∈ MAT(Ω) such that dh(P ′|P ′′) ≤ 3ε. So dh(P |P ′′) ≤ 6ε

by (5). From Lemma 1, we have d(P, P ′′) ≤
√

1+cos2 θΩ

1−cos θΩ
· 6ε +

o(ε). So, by Lemma 2, d(P, P ′) ≤ 3ε +

√
1+cos2 θΩ

1−cos θΩ
· 6ε + o(ε) =

g(θΩ) · ε + o(ε). Since P is taken arbitrarily in MAT(Ω), this
implies the desired result.

For the case when Ω is a spherical ball, see the argument in Ex-
ample 5.

In fact, we have a globally linear bound:

THEOREM 2. Let Ω be a weakly injective 3D domain. Then
there is a constant kΩ < ∞ such that

H(MAT(Ω)|MAT(Ω′)) ≤ kΩ · ε,
H(MA(Ω)|MA(Ω′)) ≤ kΩ · ε,

for every pseudonormal 3D domain Ω′ such that max {H(Ω, Ω′),
H(∂Ω, ∂Ω′)} ≤ ε.

PROOF. From Lemma 1 and the fact that MAT(Ω) is compact,
it is easy to see that

sup

{

d(P1, P2)

dh(P1|P2)
: P1 6= P2 ∈ MAT(Ω), dh(P1|P2) ≤ ε

}

≤ kΩ,

for some kΩ < ∞. Now the rest of the proof follows using the
same argument as in the proof of Theorem 1.



Note the essential role of the hyperbolic Hausdorff distance (Propo-
sition 2) in the proofs of Theorems 1 and 2.

In the 2D result [7], it was shown that the bound corresponding
to that in Theorem 1 is tight up to constant. This is also true in 3D,
which can be seen from the following example.

EXAMPLE 1. Let Ω be a weakly injective 3D domain with a
sharp corner p1 depicted as in Figure 15. Let Ω′ be the domain
obtained by smoothing Ω with a sphere near p1 so that MA(Ω) =
p2p3. Let Pi = (pi, ri) be the corresponding points in MAT(Ω)
for i = 1, 2, 3. Note that

H(Ω, Ω′) = H(∂Ω, ∂Ω′) = ε,

and

H(MA(Ω)|MA(Ω′)) = d(p1, p2) =
1

1 − cos θΩ

· ε,

H(MAT(Ω)|MAT(Ω′)) = d(P1, P2) =

√
1 + cos2 θΩ

1 − cos θΩ

· ε.

p3p3

p1

p2

θΩ

θΩθΩ

ε

Ω Ω′

Figure 15: Example showing the tightness of the bound in The-
orem 1.

This example shows that the factor 1

1−cos θΩ
in g(θΩ), which

blows up as θΩ → 0, is indeed unavoidable. In fact, it can be
shown that the class of weakly injective 3D domains is the largest
possible class for which we have linear bound for the one-sided
Hausdorff distance of MAT (and MA) with respect to the boundary
perturbation.

Now we calculate explicitly the constants θΩ and g(θΩ) for a few
simple but illustrative examples.

EXAMPLE 2. When Ω is a hexahedron (Figure 16) or a cylin-
der (Figure 17), it is easy to see that θΩ = π

4
. So we have g(θΩ) =

3(1 + 2
√

3(1 +
√

2)) = 28.089243 . . ..

EXAMPLE 3. Let Ω be a regular tetrahedron shown in Fig-
ure 18. Here we have cos θΩ = 1√

3
, and so θΩ = 54.73561 . . .◦.

Hence we have g(θΩ) = 9 + 6
√

3 = 19.3923 . . ..

EXAMPLE 4. Let Ω be a torus shown in Figure 18. Here we
have θΩ = π

2
. Hence we have g(θΩ) = 9.

θΩ

θΩ

Figure 16: Hexahedron: θΩ = π
4

, g(θΩ) = 28.089243 . . ..

θΩ

θΩ

Figure 17: Cylinder: θΩ = π
4

, g(θΩ) = 28.089243 . . ..

EXAMPLE 5. Let Ω be the unit spherical ball centered at the
origin O. (See Figure 20 (left).) For λ > 0, let Ωλ be a domain
such that

MAT(Ωλ) = {((x, 0, 0), 1) | 0 ≤ x ≤ λ}.
See Figure 20 (right). Note that, for every λ > 0, Ωλ is weakly
injective, θΩλ

= π
2

, and

max {H(Ω, Ωλ),H(∂Ω, ∂Ωλ)} = λ.

Suppose Ω′ is a pseudonormal domain such that

max {H(Ω, Ω′),H(∂Ω, ∂Ω′)} ≤ ε.

Then by the triangular inequality for the Hausdorff distance, it is
easy to see that

max {H(Ωλ, Ω′),H(∂Ωλ, ∂Ω′)} ≤ ε + λ.

By Theorem 1 for non-spherical cases, we have

H(MAT(Ωλ)|MAT(Ω′)) ≤ g
(π

2

)

· (ε + λ) + o(ε + λ),

H(MA(Ωλ)|MA(Ω′)) ≤ g
(π

2

)

· (ε + λ) + o(ε + λ).

Since MAT(Ω) ⊂ MAT(Ωλ) (and MA(Ω) ⊂ MA(Ωλ)) for
every λ > 0, we have

H(MAT(Ω)|MAT(Ω′)) ≤ H(MAT(Ωλ)|MAT(Ω′)),

H(MA(Ω)|MA(Ω′)) ≤ H(MA(Ωλ)|MA(Ω′)),

for every λ > 0. Thus,

H(MA(Ω)|MA(Ω′)) ≤ g
(π

2

)

· ε + o(ε),

H(MAT(Ω)|MAT(Ω′)) ≤ g
(π

2

)

· ε + o(ε),



θΩ

θΩ

Figure 18: Regular tetrahedron: θΩ = 54.73561 . . .◦, g(θΩ) =
19.3923 . . ..

θΩ

Figure 19: Torus: θΩ = π
2

, g(θΩ) = 9.

which completes the proof of Theorem 1 for the spherical cases.

EXAMPLE 6. For n = 2, 3, · · · , let Ωn be the polyhedral do-
main as depicted in Figure 21 (top left), which approximates the
unit spherical ball centered at the origin as n → ∞. The vertex
points of ∂Ωn are given by

(cos iαn cos jαn, cos iαn sin jαn, sin iαn) ,

for i = −n,−(n − 1), · · · , n and j = 1, 2, · · · , 4n, where αn =
π
2n

. The MAT of Ωn has a complex shape consisting of many poly-
gons joining the edges of ∂Ωn and points (or line segments) on the
z-axis near the origin. See Figure 21 (top right). By an elementary
geometric analysis, it can be shown that

cos 2θΩn =
− cos2 αn + 4 cos αn + 1

cos2 αn + 3
, (9)

and θΩn is realized at the MAT points which have foot points on the
triangular boundary pieces around the poles (0, 0,±1) (Figure 21
(bottom)). Thus, we can see from (9) that θΩn ↘ 0 as n → ∞
(i.e., as Ωn approaches the unit spherical ball closer and closer).

6. CONSEQUENCES
Now we discuss a few consequences and applications of the one-

sided stability of 3D MAT. The importance of Theorem 1 lies not
only in that it confirms the intuition of the one-sided stability of the

Ω Ωλ

O O
(λ, 0, 0)

θΩλ

Figure 20: Spherical ball and Ωλ: θΩ = θΩλ
= π

2
, g(θΩ) =

g(θΩλ
) = 9. The spherical ball Ω can be regarded as the limit

of Ωλ as λ → 0.

MAT, but also in that it provides a quantitative bound of the MAT
deviations which is linear in the weakly injective case.

In many situations, a given 3D domain has small noises in its
boundary. Yet another situation is that the boundary is given by
the popular polygonal mesh which inevitably has numerous small
sharp edges. In these cases, it is often more reasonable to com-
pute a simpler approximate MAT, instead of the exact one which
contains many unilluminating parts caused by the noise or the lo-
cal sharp features. A traditional approach to this would be to cut
away some parts of the exact MAT according to various existing
importance measures [21]. While this approach guarantees that the
resulting simpler MAT lies completely inside the exact MAT, one
disadvantage is that one still should compute the proliferous exact
MAT in advance.

Theorem 1 provides a different strategy: First approximate the
given domain with a simpler weakly injective domain and then
compute directly the MAT of this simpler domain. Then the result-
ing simpler MAT is guaranteed to approach to a part of the exact
MAT as the Hausdorff distance between the approximating domain
and the original one shrinks. Furthermore, we have a quantitative
bound for the amount of the deviation of the approximating MAT
from the exact one.

We can also see that the approximating MAT contains the impor-
tant global features of the original one.

COROLLARY 1. (Independence of Approximations)
Let Ω be a pseudonormal 3D domain, and let Ω1 and Ω2 be two

weakly injective 3D domains such that

max {H(Ωi, Ω),H(∂Ωi, ∂Ω)} ≤ ε

for i = 1, 2. Let θ = min {θΩ1 , θΩ2}. Then we have

H (MAT(Ω1),MAT(Ω2)) ≤ 2g(θ) · ε + o(ε),

H (MA(Ω1),MA(Ω2)) ≤ 2g(θ) · ε + o(ε).

PROOF. This follows by applying Theorem 1 symmetrically to
Ω1 and Ω2, and from the fact that H(Ω1, Ω2) ≤ H(Ω1, Ω) +
H(Ω2, Ω) ≤ 2ε, H(∂Ω1, ∂Ω2) ≤ H(∂Ω1, ∂Ω)+H(∂Ω2, ∂Ω) ≤
2ε.

Note that the Hausdorff distances in Corollary 1 are the two-
sided ones. Corollary 1 tells the following: Suppose we have two
different approximating weakly injective domains Ω1 and Ω2 to
a given pseudonormal domain Ω. Then the difference between
MAT(Ω1) and MAT(Ω2) under the two-sided Hausdorff dis-
tance is also bounded linearly. This means that, even if we choose



Ωn MA(Ωn)

z z

O

P P

αn

αn

6
P

z

O

θΩn θΩn

q

A

Figure 21: (Top left) the polyhedral domain Ωn approximating
the unit spherical ball centered at the origin, and (Top right)
its MA. The vertices of ∂Ωn are distributed regularly on the
unit sphere with the angle αn = π

2n
. Actually, the origin is

slightly outside of the MA pieces (except the ones on the xy-
plane). (Bottom) The angle θΩn is realized by a point A on an
MA piece between two triangular boundary pieces around the
north pole P .

only one approximation, it is guaranteed to contain approximately
a common part of the exact MAT which is (approximately) shared
by all the other approximations.

See Figure 22 which illustrates the overall strategy. By The-
orem 1, we can get a bound from the constant θΩ on how ap-
proximately MA(Ω) is contained in MA(Ω′), or how faithfully
MA(Ω) approximates parts of MA(Ω′). By Corollary 1, MA(Ω)
can be considered as the essential part of MA(Ω′) up to the bound
in Corollary 1. Thus, by computing the much simpler MA(Ω), we
can get the essential part (within the bounds) of MA(Ω′) without
ever computing the more complex MA(Ω′) at all.

Of course, there still remains the problem of how to effectively
approximate/smooth the original noisy boundary. But we claim
that, whatever method is used for such approximation, our bounds
can serve as a theoretical guarantee for the correctness of the ap-
proximation/pruning, which is absent in most of the existing prun-
ing schemes.

As yet another situation, suppose that, instead of approximat-
ing only an important part of the MAT, we want to approximate the
whole part of the exact MAT of a noiselessly given weakly injective
domain, which often appears in CAD applications. For example,
this was nicely achieved in 2D by successively finding the impor-
tant maximal balls, and interpolating them with splines [5]. In this
type of approach, Corollary 1 can also be served for bounding the

(a) (b)

θΩ

(c)

ε

(d)

Figure 22: Pruning strategy: (a) The original normal domain
Ω′ with its MA. (b) The approximating weakly injective do-
main Ω with its MA. (c) The Hausdorff distance between Ω
and Ω′, Here, ε = max {H(Ω, Ω′),H(∂Ω, ∂Ω′)}. (d) Compar-
ison of MA(Ω) and MA(Ω′). Note that MA(Ω) captures an
essential part of MA(Ω′), while simplifying MA(Ω′).

difference between the interpolated MAT and the exact one.
Even though the bound we obtained in Theorem 1 is tight as we

can see from Example 1, it is still true that the bound is quite large
especially when the angle θΩ is small (See Figure 14). This would
be a problem in applying our result to practical pruning problems.
One possible approach would be to seek probabilistic bounds if we
are given the probabilistic types of boundary noise involved. These
average bounds would be more fit to practical estimates than the
analytic worst case bound we obtained in this paper.

Finally, we observe from Theorem 1 and Examples 1 and 6 that
the angle θΩ is an important quantity reflecting the degree of the
“detailed-ness” of a weakly injective domain Ω; Suppose we are
approximating a given pseudonormal domain by a weakly injective
domain Ω. Then, in general, the value of θΩ gets small as the ap-
proximation gets finer. Thus, the angle θΩ can be used as a new
indicator of the level-of-detail for 3D domains in the weakly injec-
tive class.
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APPENDIX

A. PROOF OF LEMMA 1
Before we proceed, we mention that the compactness of the MAT,

which is connected to the finiteness of the number of elements, is a
key ingredient in the proof. Let

Aε = sup {α(P1, P2) : P1 6= P2 ∈ MAT(Ω), dh(P1|P2) ≤ ε}.

Note that |Aε| ≤ π
4

for any ε > 0, since |α(P1, P2)| < π
4

for any
P1 6= P2 ∈ MAT(Ω). We will show that lim supε→0 Aε ≤ αΩ.
Then the proof would follow, since

Bε ≤ 1

cos (tan αΩ) − sin (tan αΩ)

=

√
1 + cos2 θΩ

1 − cos θΩ

,

by (3) and (8), where

Bε = sup

{

d(P1, P2)

dh(P1|P2)
: P1 6= P2 ∈ MAT(Ω), dh(P1|P2) ≤ ε

}

.

Note that αΩ < π
4

, since Ω is weakly injective. Suppose

lim sup
ε→0

Aε > αΩ.

Then there exist sequences {P1,m = (p1,m, r1,m)} and {P2,m =
(p2,m, r2,m)} in MAT(Ω) such that P1,m 6= P2,m, dh(P1,m|P2,m)
≤ 1/2m, and limm→∞ α(P1,m, P2,m) > αΩ. Since MAT(Ω) is
compact, we can assume d(P1,m, P1) → 0 and d(P2,m, P2) → 0
as m → ∞ for some P1, P2 ∈ MAT(Ω). Since dh(P1,m|P2,m) →
0 as m → ∞, it follows that P1 = P2, which we denote P =
(p, r).

We can assume r1,m < r2,m for every m, for, otherwise, we
would have limm→∞ αm = 0, where αm = α(P1,m, P2,m) for
m = 1, 2, · · · . For the moment, we also assume r > 0. Since Ω is
weakly injective, this implies that there exist at least two different
contact points q1,m, q2,m ∈ ∂Ω ∩ ∂Br1,m (p1,m). Let θ1,m =
1

2
∠q1,mp1,mq2,m (0 < θ1,m ≤ π

2
). See Figure 23. From the

q1,m

q2,m

θ1,m

θ1,m

r1,m
r2,m

dmO

x

Figure 23: Two spheres Br1,m (p1,m) and Br2,m(p2,m): Since Ω
is weakly injective, there exist two different contact points q1,m

and q2,m for each P1,m.



definition of θΩ, we can see that

θ1,m ≥ θΩ, (10)

for every m.
Fix m. We assume with no loss of generality that p1,m = (0, 0, 0),

p2,m = (dm, 0, 0), where dm = d(p1,m, p2,m) > 0. Note that

tan αm =
r2,m − r1,m

dm

. (11)

Define 0 < θm ≤ π/2 as follows: When d2
m + r2

1,m ≤ r2
2,m,

we have the situation shown in Figure 24 (a). Let q = (qx, qy)
(qy > 0) be the point where the two circles intersect. Here θm

is defined by the angle between O(qx, qy) and the x-axis. When
d2

m + r2
1,m > r2

2,m (Figure 24 (b)), define θm = π/2. It is easy to
see from Figure 23 that

θm ≥ θ1,m. (12)

x

y

O
� �

dm

r1,m
r2,m

θm

θm

(qx, qy)

(a)

x

y

O
� �

dm

r1,m
r2,m

θm

θm

(b)

Figure 24: Two spheres Br1,m (p1,m) and Br2,m (p2,m) pro-
jected onto the xy-plane

Suppose first d2
m + r2

1,m < r2
2,m for infinitely many m’s, in

which case, we can assume with no loss of generality that d2
m +

r2
1,m < r2

2,m for every m. Now we have

q2
x + q2

y = r2
1,m,

(qx − dm)2 + q2
y = r2

2,m.

From these, we can easily get

qx =
d2

m + r2
1,m − r2

2,m

2dm

,

and hence

cos θm =
−d2

m − r2
1,m + r2

2,m

2dmr1,m

. (13)

From (11) and (13) we have

cos θm − tan αm =
−d2

m − r2
1,m + r2

2,m

2dmr1,m

− r2,m − r1,m

dm

=
(r1,m − r2,m)2 − d2

m

2dmr1,m

=
dm

2r1,m

(

(r2,m − r1,m)2

d2
m

− 1

)

.

So we have

cos θm − tan αm = − dm

2r1,m

(

1 − tan2 αm

)

. (14)

From (14), we get

tan αm − cos θm → 0,

as m → ∞. So it follows from (3), (10), and (12) that

lim
m→∞

tan αm ≤ lim
m→∞

cos θ1,m ≤ cos θΩ = tan αΩ,

and hence

lim
m→∞

αm ≤ αΩ,

which is a contradiction. So there should be infinitely many m’s
such that d2

m+r2
1,m > r2

2,m, and we can assume d2
m+r2

1,m > r2
2,m

for every m. In this case, note that

tan2 αm =
(r2,m − r1,m)2

d2
m

=
r2
2,m − 2r2,mr1,m + r2

1,m

d2
m

=
r2
2,m − r2

1,m

d2
m

− 2 · r2,m − r1,m

dm

· r1,m

dm

=
r2
2,m − r2

1,m

d2
m

− 2 tan αm · r1,m

dm

.

So we have

lim
m→∞

tan2 αm = lim
m→∞

r2
2,m − r2

1,m

d2
m

−2r · lim
m→∞

tan αm

dm

. (15)

Since we assumed that d2
m + r2

1,m > r2
2,m, we have

0 ≤ lim
m→∞

r2
2,m − r2

1,m

d2
m

≤ 1.

So from (15), it follows that

lim
m→∞

tanαm = 0

since limm→∞ dm = 0, 0 ≤ limm→∞ tanαm ≤ 1, and r > 0.
So we again have the contradiction that

lim
m→∞

αm = 0 ≤ αΩ.

From the above arguments, we must have r = 0. Now let Ω′ be
the domain obtained by inflating Ω by small δ > 0, i.e.,

Ω′ = Ω + Bδ(O).

Then is is easy to see that

MAT(Ω′) = MAT(Ω) + ((0, 0, 0), δ).



Obviously, Ω′ is a pseudonormal domain, and it is also weakly
injective. Moreover, it is also easy to see that α′

Ω = αΩ. Let
P ′

i,m = (p′
i,m, r′i,m) = (pi,m, ri,m + δ), P ′ = (p′, r′) = (p, δ),

d′
m = d(p′

1,m, p′
2,m), and α′

m = α(P ′
1,m, P ′

2,m) for i = 1, 2 and
m = 1, 2, · · · . Then it is clear that d′

m = dm, α′
m = αm for

i = 1, 2 and m = 1, 2, · · · . Now we can apply the same argu-
ments as above to show that limm→∞ αm ≤ αΩ′ = αΩ, since
limm→∞ r′1,m = limm→∞ r′2,m = r′ = δ > 0. Thus we have a
contradiction, and the proof is complete.

B. PROOF OF LEMMA 2
From the assumptions and (4), we have

d(p1, p2) ≤ r2 − r1 + ε, (16)

d(p2, p3) ≤ r3 − r2 + ε. (17)

Let D2 = d(P1, P2) and D3 = d(P1, P3). Suppose the result does
not hold, i.e.,

D2 > D3 + ε. (18)

Note that D2 > ε, and hence D2 > 0. Choose −π
2
≤ θ2, θ3 ≤ π

2

such that

d(p1, p2) = D2 cos θ2, r2 − r1 = D2 sin θ2,

d(p1, p3) = D3 cos θ3, r3 − r1 = D3 sin θ3.

Note that cos θ2 ≥ 0. From (16), we have

D2(cos θ2 − sin θ2) ≤ ε. (19)

Since D2 > ε, we have cos θ2 − sin θ2 < 1 from (19), which
implies that sin θ2 > 0. So

cos θ2 + sin θ2 > 0. (20)

Note that d(p2, p3) ≥ |d(p1, p2) − d(p1, p3)| by the triangular
inequality for the Euclidean distance. So from (17), we have

d(p1, p2) − d(p1, p3) ≤ (r3 − r1) − (r2 − r1) + ε,

d(p1, p3) − d(p1, p2) ≤ (r3 − r1) − (r2 − r1) + ε,

which are equivalent respectively to

D2(cos θ2 + sin θ2) ≤ D3(cos θ3 + sin θ3) + ε, (21)

D2(cos θ2 − sin θ2) ≥ D3(cos θ3 − sin θ3) − ε. (22)

From (19), (20), (21), and (22), we have

0 < D2(cos θ2 + sin θ2) ≤ D3(cos θ3 + sin θ3) + ε,

D3(cos θ3 − sin θ3) − ε ≤ D2(cos θ2 − sin θ2) ≤ ε,

and so

D2
2(cos θ2 + sin θ2)

2 ≤ {D3(cos θ3 + sin θ3) + ε}2 ,

D2
2(cos θ2 − sin θ2)

2 ≤ max
{

ε2, {D3(cos θ3 − sin θ3) − ε}2
}

.

By adding the above two inequalities, we get

2D2
2 ≤ {D3(cos θ3 + sin θ3) + ε}2

+ max
{

ε2, {D3(cos θ3 − sin θ3) − ε}2
}

. (23)

If D3 = 0, then it follows that D2 ≤ ε, contradicting (18). So we
assume D3 > 0. Now from (23) and (18), we have

2(D3 + ε)2 < {D3(cos θ3 + sin θ3) + ε}2

+ max
{

ε2, {D3(cos θ3 − sin θ3) − ε}2
}

. (24)

Suppose |D3(cos θ3 − sin θ3) − ε| ≤ ε. Then (24) becomes

2(D3 + ε)2 < {D3(cos θ3 + sin θ3) + ε}2 + ε2

≤
(√

2D3 + ε
)2

+ ε2,

which reduces to the contradiction that
√

2 < 1. So we must have

|D3(cos θ3 − sin θ3) − ε| > ε.

Now (24) becomes

2(D3 + ε)2 < {D3(cos θ3 + sin θ3) + ε}2

+ {D3(cos θ3 − sin θ3) − ε}2

= 2D2
3 + 4ε sin θ3D3 + 2ε2,

which reduces to the contradiction 1 < sin θ3. Thus we conclude
that the assumption (18) is false, and hence, we have the desired
result.


