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Abstract

Although useful in many applications, the medial
axis transform (MAT) has a few fit-falls, one of
which is its extreme sensitivity to the boundary per-
turbation. In this paper, we first summarizes the
previous attempts to get around this by bounding
the one-sided Hausdorff distance of the MAT with
respect to the boundary perturbation. We illustrate
these results and their optimality with various ex-
amples. Finally, we suggest an application of them
in pruning. In particular, we discuss the advantage
of the results for the domains which are not weakly
injective, over those for the weakly injective ones.

1 Introduction

The medial axis (MA), sometimes called the skele-
ton, or the symmetric axis, was first introduced by
Blum [4]. It is defined as the set of the centers of the
maximal inscribed circles contained in the given do-
main. The medial axis transform (MAT), which in-
corporates the radius information important for the
reconstruction of the original domain, is defined as
the set of all the pairs of the medial axis point and
the radius of the corresponding inscribed circle. Ex-
plicitly, the medial axis transform �������
	�� and
the medial axis ���
�
	�� of a plane domain 	 is de-
fined by

�������
	���� �����������������! #" $%�'&(�*)+-, ���.� is a maximal ball in 	/���
���0�
	���� � �1�����2)�3%�!45$6�

s.t. �����������7�������
	��8�:9
Having a natural definition, the medial axis trans-

form has a graph structure which preserves the orig-
inal shape homotopically [3, 4, 5]. So it has been

one of the most widely-used tools in shape analy-
sis. But the medial axis transform is very sensitive
to the boundary perturbation [1, 2, 7, 12, 15, 16].
For example, even if we perturb only slightly the
boundary of the domain in (a) of Figure 1, the re-
sulting changes in MA and MAT are big, that is, the
two-sided Hausdorff distances between these MA’s
and MAT’s are large. See the domain in (b) of Fig-
ure 1.

(a) (b)

Figure 1: Sensitivity of MAT to the boundary per-
turbation: Infinitesimally small perturbation of the
boundary can result in a drastic change in MAT. But
the one-sided Hausdorff distance still remains sta-
ble.

On the other hand, it can be observed that the
MA and MAT in (a) are approximately contained
in those in (b) of Figure 1. So the one-sided Haus-
dorff distances of MA and MAT in (a) with respect
to those in (b) still remain small, as long as the per-
turbation is small.

These phenomenon was first quantified for a spe-
cial class of the domains called the injective do-
mains in [7], and has been generalized in [9, 10].
We will review these results, and give an applica-
tion of them in the pruning of the medial axis trans-
form [11, 14, 17].

An important feature of this application is that
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we can calculate a priori error bound of the pruning
only by examining the boundary curves of the ap-
proximating domain. It also provides a theoretical
basis for handling the medial axis transform in the
multi-resolution manner.

2 Hierarchy of Domains

The following is a general assumption on the do-
mains we consider:� 	 is compact, or equivalently, 	 is closed and

bounded.� The boundary
� 	 of 	 is a (disjoint) union

of finitely many simple closed curves, each of
which in turn consists of finitely many real-
analytic curve pieces.

We will call the domains with the above condi-
tion normal. This assumption is optimal [5] in the
sense that it is both general enough and necessary
to guarantee the reasonable behaviour of ����� .

We call an end point of ��� (or ����� ) a � -
prong point. There are exactly three kinds of the� -prong points in � � , which are depicted in Fig-
ure 2; Type (a) is the center of a maximal circle with
only one contact point at which the circle osculates
the boundary. Type (b) is a sharp corner. Type (c)
is a 1-prong point with a contact arc. We call a� -prong point of the type (a) a non-degenerate � -
prong point.

(a) (b) (c)

Figure 2: Three types of � -prong points

We call a normal domain 	 injective, if ev-
ery � -prong point of �������
	�� is of the type (c),
and weakly injective, if �������
	�� has no non-
degenerate � -prong points, i.e., the � -prong points
of the type (a). So we have the following inclusion
relations: �

injective domains ���
weakly injective domains ���

normal domains �

For more details on the properties of the medial
axis transform, see [3, 4, 5].

3 Hausdorff Distances

The (two-sided) Hausdorff distance between � and+
, �0��� � + � , is defined by

�0��� � + � ���
	�� � �0��� ) + � �
�0� + ) � �8� �
for any two (compact) sets � and

+
in ��� , � �� ���%������� , where, �0���!) + � , the one-sided Hausdorff

distance of � with respect to
+

is defined by

�0��� ) + � ���
	������� � ����� + � 9
Here

� ��� ��� � is the usual Euclidean distance. While
the two-sided Hausdorff distance measures the dif-
ference between two sets, the one-sided Hausdorff
distance measures how approximately one set is
contained in another set.

In showing the bounds in the following sections,
it is crucial to use the hyperbolic Hausdorff dis-
tance, which was introduced in [8]. Denote ��� � ��"! �(� ) ! 4 $ � . For two compact sets #%$ , # �
in � �  ��&�'� , the (two-sided) hyperbolic Hausdorff
distance between # $ and # � is defined by

�)( �*#%$ �+# � ����
	�� � �)( �*# $ ) # � � �,�)( �*# � ) # $ �8� �
where

�)(��*#%$ ) # � � �-�
	��.0/ �01 / 2 �4365.�7 �81 7 � ( ��9:$ ) 9 � �";29
Here,� ( ��9 $ ) 9 � � ���
	�� � $%� � ��� $ �
� � �=<(� � � <#� $ �8� �
for 9:$������>$ � �8$'� �
9 � ����� � ��� � � in � �  ��&� � .

The hyperbolic Hausdorff distance is a metric es-
pecially adapted to the medial axis transform. We
mention that a similar, but different metric is pro-
posed in [6].

4 Bounds for Injective and Weakly In-
jective Domain

Let 	 be a normal domain. Except for some fi-
nite number of the special points, the maximal ball

666



��� ������ ��� ��
�

�
	 �����

��


��
Figure 3: Generic point in MA of a normal domain

+ , ��� � for every 9 � ����� ��� � �������
	�� , has ex-
actly two contact points with the boundary

� 	 , and���0�
	�� is a � $ curve around such � in � � . See
Figure 3.

We denote the set of all such generic points in���0�
	�� by � �
	�� , and, for every �1��� �
	�� , define$����6���.����� � to be the angle between ����$ (or
equivalently, ��� � ) and ���
�
	�� at � , where � $ , � �
are the two contact points.

Now, for every normal domain 	 , we define

��� � 3 5! � �6���.�#" �1�
� �
	��8� �$ � � �43 5 � �%" ���*��� ���1�������
	��8�%9

Note that $&�'���(� � � , and $ � is the smallest
radius of the maximal balls contained in 	 .

It is easy to see that ��� � $ , if and only if���0�
	�� has a � -prong point of the type (a), and$ �7� $ , if and only if ���
�
	�� has a � -prong point
of the type (b). Thus, 	 is injective, if and only if$ �*) $ and � �+) $ , and it is weakly injective, if
and only if �,� ) $ . Note that a weakly injective
domain may have a sharp corner (i.e., the type (b)),
while an injective domain may not.

For injective and weakly injective domains, the
one-sided Hausdorff distance of MA and MAT are
bounded linearly by the magnitude of the perturba-
tion in the following ways:

Proposition 1. (One-sided Stability for Injective
Domain) [7, 9]

Let 	 be an injective domain. Then we have

�0�
���
�
	�� ) ���
�
	.- ���� �� <0/21435��� �7698;: �<6'� �
�0�
�������
	�� ) �������
	.- ���� = > 8 �<? <�/7143@� � � ��&<�/71,3���� �A6B8C: �<6'� �

for every normal domain 	 - such that�
	�� � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8�D�E6 .
For � � �
$%�GFBH �AI , let

J �<� � �*?LK �M8 ��N �.8C/71,3 � �� <�/7143@�PO 9
Proposition 2. (One-sided Stability for Weakly
Injective Domain) [9]

Let 	 be a weakly injective domain. Then we
have

�0�
�������
	�� ) �������
	.- ���Q� J �<���.�=�R6B8C: �<6'� ��0�
��� �
	�� ) ���
�
	.- ���Q� J �<���.�=�R6B8C: �<6'� �
for every normal domain 	 - such that�
	�� � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8�D�E6 .
5 Bound for Normal Domain

Now we consider the normal domains which are
not weakly injective. We first classify the non-
degenerate � -prong points into the three types. See
Figure 4.

S T
U

V W
XY

S T
U

Z W
X

Y S T
U

[ W
X

(i) (ii) (iii)

Figure 4: Three types of non-degenerate � -prong
points

Suppose 9 ������� � � is a non-degenerate � -prong
point of �������
	�� , and let � � � 	 be its contact
point. With an appropriate rigid motion in the plane,
we can assume that ��� �
$%�8$ � and �1� �
$6����� . We
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can also assume that for small � ) $ , there is a
function �
" " $6���AI�� � ,

��� ! � � ��
��� �

	 � ! � �
such that the graph of � is on

� 	 . Note that 	 � ��
 � ,
where �1�
� . � $, . When

� 	 is not � $ at � , we
call 9 of type (iii) (See Figure 4 (iii)). Suppose� 	 is � $ at � . Then we can take a function J "" <�� � $�I�� � ,

J � ! � � ��
��� �

� � ! � �
such that the graph of J is on

� 	 . We call 9 of the
type (i) (resp., of the type (ii)), if

�
� � 
 � (resp.,�

���� 
 � ), that is, if
� 	 is � � (resp., not � � ) at � .

See Figure 4 (i), (ii). We assume with no loss of
generality that �����8�#� J ��<��8� (resp., �����8��4 J ��<��8� )
for � � " $6���AI , in the case of the type (i) (resp., of
the type (ii)). So we have

�
� ��
 � in the case of the

type (ii).
Define the arc function � 
 as follows:

� 
 � ! �
� �� < �� = � <�� � ! �
� �� � ! �M8 �� ��� !�� 8 ���� �! !�" 8������
� " ��

�#� � � ��$
$&% � ! � 9 (1)

The graph of � 
 is the lower half of the circle
with the radius � � $
 with the center �
$6����� �' $6� $
)( . See Figure 5.

*

+
,

-.-. / .
0
1

Figure 5: The arc function and the boundary

For each � � �%� ?6�"����� , let � � be the difference
of the coefficient of the � -th term of � 
 with respect
to that of � , i.e., � � �2� �3$ $ % � < 	 � . Denote by

4 . the largest integer such that � � � � � � �����6��6587(��$ . Note that we always have
4 . 4 � and�65 7:9 $ ) $ . Let

4 �1���4365 � 4 . "09 is

a non-degenerate � -prong of �������
	��8� 9
For each non-degenerate � -prong point 9 of� ��� �
	�� , we define

; . � N ���8�"�8< 7>= /< 78?
/ � 4 . 8�� �

� �. � 4 . < � � < 7>= /< 7 ?
/ �"� 7

< 7 ?
/587 9 $ �

if 9 is of the type (i), and

; . � N �����A@B< 7C= /< 7 ?
/ �D�E< 7>= /< 7 ?

/ � 4 7
< 7< 7A?
/.

� �. � 4 . <%� � 7BF < 7>= /HG< 7:?
/ �"� 7

< 7:?
/587 9 $ �

if 9 is of the type (ii).
Suppose that every non-degenerate � -prong point

of �������
	�� is of the type (i) or (ii). We let

; � ���
	�� � ; . "�9 is a non-degenerate� -prong point of � ��� �
	�� s.t.
4 . � 4 � �:9

It is important to note that
; � can be calculated

directly from
� 	 .

Proposition 3. [10]
Let 	 be a normal domain which is not weakly

injective. Suppose that �������
	�� has no non-
degenerate � -prong points of the type (iii). Then we
have

�0�
��� �
	�� ) ���
�
	.- ���� ; � �R6 <JI = /<JI ?
/ 8 :LK 6 <JI = /<JI ?

/ O ��0�
�������
	�� ) � ��� �
	.- ���� ; �)�R6 <JI = /<JI ?
/ 8 :LK 6 <JI = /<JI ?

/ O �
for every normal domain 	 - such that�
	�� � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8� � 6 .

See [10] for the analysis of the case when 	 has
a non-degenerate � -prong point of the type (iii). We
mention here that Morse lemma [13] is an important
tool for showing the above bounds.
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6 Illustrating Examples

Now we illustrate with a few examples the result in
the previous section. See [9] for the examples of the
weakly injective case.

The following three examples correspond to the
type (i) in Figure 4.

Example 1. Let 	 be the domain as depicted in
Figure 6, and let 	 - be the domain such that�������
	 - � is obtained after cutting away the por-
tion of �������
	�� between 9 � ��������� and 9 - ���� - �8� - � .

�

� �
�

����

�

�

	 
� � �

Figure 6: Non-degenerate � -prong point of the type
(i): quadratic case

Here, we let ��� ! � � J � ! �!� 
 �
! � � where � �� . � $, . From (1), we have � � � $ , � � � 
 @� ,

and
4 . �*? . In this case, it turns out that

�0�
���
�
	�� ) � � �
	.- ���
� N �N � � N 6B8C:6� N 6'� �

�0�
�������
	�� ) �������
	.- ���
� �N � � N 6B8C:6� N 6'� �

where 6 � �
	�� � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8� ��0� � 	 � � 	 - � .
Example 2. (Ellipse) Let 	 be the ellipse defined
by ! �	 � 8 ��
 < � � �� � � ���
for some

� ) 	 ) $ , and let 	 - be the domain
such that �������
	 - � is obtained after cutting away

� ��
��

�� � �

� ���

�

�

Figure 7: Non-degenerate � -prong point of the type
(i): ellipse

the portion of � �����
	�� between 9 � ���*��� � and9 - ����� - �8� - � . See Figure 7.
Here, we have � . � $, ���� 7 , and

��� ! � � J � ! �
� � < ��� � < ! �	 �
�

�� 	 � ! �M8 �� 	 � !J� 8 ���� 	 " !�" 8 �����*�
���� 7 � ! �
�

�� 	 � ! �M8 � �� 	 " !J� 8 �  ��� 	 $ � !�" 8 ���"� 9
So we have � � � $ and � � ��� ��� � � � < 	 � � , and

4 . � ? . Let 6 ��
	�� � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8��� �0� � 	 � � 	 - � . In
this case, we have

�0�
��� �
	�� ) ���
�
	.- ���
� N � 	� N � = � � < 	 � � N 6B8C:6� N 6'� ��0�
�������
	�� ) � �����
	.- ���
� � 	� N � = � � < 	 � � N 6B8C: � N 6'� 9

Example 3. Let 	 be the domain as depicted in
Figure 8, and let 	 - be the domain such that�������
	 - � is obtained after cutting away the por-
tion of �������
	�� between 9 � ����� � � and 9 - ���� - ��� - � .

Here, we let

��� ! � � �� ! � < �� > ! � � J � ! � � �� ! � 8 �?8� !J� 9
Now we have �0� � , and from (1), we have � � �
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�
�

� � �� �

�

� �
����

�

�

Figure 8: Non-degenerate � -prong point of the type
(i): non-symmetric case

$
� � , and

4 . � � . In this case, it turns out that

�0�
���
�
	�� ) � � �
	.- ���
� @� ??�� � @N 6B8C: � @N 6'� ��0�
�������
	�� ) �������
	.- ���
� N � @� ??8� � @N 6B8C:6� @N 6'� �

where 6 � �
	�� � �0�
	 �'	 - � ���0� � 	 � � 	 - �8� ��0� � 	 � � 	 - � .
The next example corresponds to the type (ii) in

Figure 4.

Example 4. Let 	 be the domain as depicted in
Figure 9, and let 	 - be the domain such that�������
	 - � is obtained after cutting away the por-
tion of �������
	�� between 9 � ��������� and 9 - ���� - ��� - � .

Here, we let ��� ! �-� 
 �
! � , J � ! ��� $ . From (1),

we have � � � $ , � � � 
 @� , and
4 . � ? . In this

case, it turns out that

�0�
���
�
	�� ) ���
�
	 - ���
� ? N ?N � N � � N 6B8C:6� N 6'� �

�0�
�������
	�� ) �������
	.- ���
� ? N ?N � � N 6B8C: � N 6'� �

where 6 � �
	�� � �0�
	 �'	 - � ���0� � 	 � � 	 - �8� ��0� � 	 � � 	 - � .

�

�� �
�

�� �

�

� ��
�

�
Figure 9: Non-degenerate � -prong point of the type
(ii)

7 Applications

We consider the special case when
� 	 consists of

quadratic splines. Assume that 	 is not weakly
injective, and �������
	�� does not contain a non-
degenerate � -prong point of the type (iii). Let 9
be a non-degenerate � -prong point of �������
	�� .
From the fact that

� 	 is piecewise quadratic

splines, it is easy to see that � � � $ , � � � 
 @7� ,
and

4 . �&? . See Examples 1, 4. From this obser-
vation and from Proposition 3, we have:

Corollary 1. Let 	 be a normal domain which is
not weakly injective, and whose boundary consists
of piecewise quadratic splines. Suppose �������
	��
does not have a non-degenerate � -prong point of
type (iii). Then we have�0�
���
�
	�� ) � � �
	.- ���� � N �N � � � N 6B8C:6� N 6'� �

�0�
�������
	�� ) �������
	.- ���� � N �N � � � N 6B8C:6� N 6'� �
for any normal domain 	 - with�43 5 � �0�
	 �'	 - � �,�0� � 	 � � 	 - �8� � 6 , where

� �1���43 5 � � . "�9 is a non-degenerate� -prong point of �������
	��8� 9
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To illustrate the above Corollary, let 	 - be the
domain as depicted in Figure 10.

Figure 10: Original domain 	 - with its MA :���0�
	 - � and � ��� �
	 - � have many unnecessary
branches.

We approximate 	 - with a domain 	 which sat-
isfies the assumptions in Corollary 1. Let 6 ��
	�� � �0�
	 � 	 - � ���0� � 	 � � 	 - �8� � �0� � 	 � � 	 - � .
See Figure 11. Here, we have � � � $� . So by
Corollary 1, we have the following a priori esti-
mates:�0�
���
�
	�� ) ��� �
	 - ���� � N � N � � N 6B8C:6� N 6'� � (2)�0�
�������
	�� ) ����� �
	.- ���� � N � N � � N 6B8C:6� N 6'� 9 (3)

�
�

Figure 11: Approximation of the original domain	 - by 	 whose boundary consists of piecewise
quadratic splines: ���
�
	�� and �������
	�� have
much simpler forms.

See Figure 12 to compare ���
�
	�� and���0�
	 - � . Note that ���
�
	�� reduces the complex-
ity of � � �
	 - � , while remaining roughly inside of���0�
	 - � .

From (2) and (3), we can see that the one-sided
Hausdorff distances �0�
���
�
	�� ) ���
�
	 - ��� and

Figure 12: Comparison of the original MA and
the approximated MA: The one-sided Hausdorff
distance of ���0�
	�� with respect to ��� �
	 - � is
relatively small, while ���
�
	�� much simplifies���
�
	 - � .
�0�
�������
	�� ) �������
	 - ��� become smaller, when
we shrink

�
and 6 . This means that ���0�
	�� and�������
	�� approximate ��� �
	 - � and �������
	 - �

more faithfully as we grow the maximum curvatures
of the approximating domain 	 .

Another important observation is that we don’t
need to compute the whole MA and MAT to obtain
the bounds (2) and (3), which was the case for the
weakly injective domains [9]. It is sufficient to ex-
amine the boundary of the approximating domain 	
for the maximum curvatures.

We observed that the ���0�
	�� (and �������
	�� )
is simpler than ���0�
	 - � (and � ��� �
	 - � ). The
following Corollary tells that, even though ���0�
	��
(and �������
	�� ) has fewer parts than � �
�
	 - �
(and � ��� �
	 - � ), it nevertheless contains an essen-
tial part.

Corollary 2. Let 	 - be a normal domain,
and let 	 $ , 	 � be normal domains satisfy-
ing the assumptions in Corollary 1. Suppose�
	�� � �0�
	��8�8	 - � �,�0� � 	��'� � 	 - �8� � 6 for ��� ����� .
Then we have

�0�
���
�
	 $ � �8���
�
	 � ���� � �N � � N 6 8 :6� N 6'� �
�0�
���
�
	 $ � �8���
�
	 � ���� � �N � � N 6 8 :6� N 6'� �

where �����
	�� � � � / ��� � 7 � .
Proof. This follows by applying Corollary 1 sym-
metrically to 	 $ and 	 � , and from the fact that
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�0�
	 $ �8	 � � � �0�
	 $ �8	��L8 �0�
	 � �8	���� �,6 ,�0� � 	 $ � � 	 � �L� �0� � 	 $ � � 	��M8��0� � 	 � � � 	��L��,6 .
Note that the above bounds are for the two-sided

Hausdorff distances instead of the one-sided ones.
Thus, if we choose another approximation with the
similar � � , its MA and MAT are guaranteed to be
approximately the same with the first approxima-
tion. This means that these approximations contain
roughly the common parts of the original MA and
MAT, whose degrees of the detail depend on the
constant � � and 6 .
8 Conclusions

We have reviewed the results to bound the one-
sided Hausdorff distance of the MAT with respect
to the perturbed MAT, and illustrated them with
some examples. We then applied them to pruning
of the MAT with a priori error guarantees. For the
weakly injective domains, we have linear bounds,
but whose coefficients depend on the MAT. Though
the linearity of the bounds is slightly violated, the
domains which are not weakly injective have the co-
efficients which depend directly on the boundaries,
which is a significant advantage over the weakly in-
jective case.
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