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Abstract

This paper is the first half of the two-part installment of our re-
sult dealing with the two-dimensional offset curves by utilizing the
medial axis transform. In this paper, a mathematical theory of two-
dimensional offset curves of a planar domain is presented: their rela-
tion with the medial axis transform is revealed and all the possible ge-
ometric configuration is classified. Every level of the offset curves has
similar relation with the medial axis transform as the original bound-
ary curve does. Hence, once the medial axis transform is available—
although it is computationally expensive to compute the medial axis
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transform of a free-form domain—the offset curves can be easily con-
structed using the envelope formula. We give a complete list of all
the possible local shape of the offset curves. These results will serve
as a theoretical foundation of our algorithm which to be presented in
the accompanying paper1. Without this priori knowledge of qualita-
tive nature of offset curves, however, mere numerical approximation
scheme is prone to miss its subtle topological feature such as where
and how the offset curve bifurcates.

1 Introduction

Mathematically, an offset curve is the curve of fixed distance from a given
curve. This simple enough definition begets very complicated problems. The
complication can be crudely classified into two types: one is the curve repre-
sentation problem of the so-called untrimmed offsets, and the other is a more
global one, namely, the trimming process of the untrimmed offset curves.

It is easy to see that even if the curve is a polynomial curve, the offset
curve need not be a rational curve (of the original parameter). Although
one can easily write down the formula for the offset curve with the origi-
nal curve parameter, the resulting representation is not in general rational.
This may cause some serious problems in handling the offset curves in the
computer aided geometric design. The first kind, i.e., the representation
problem, thus received a lot of attention, as far as we know, since Klass [19]
had approximated offset curves of cubic splines by another cubic splines.
Since then, the spline approximation problem of the offset curve has been
extensively studied. For example, to find the control polygon of the offset
spline of non-uniform rational B-spline, Tiller and Hanson [27] used the offset
lines of the original control polygon and Coquillart [8] computed the offset of
the control vertex of the original curve using its closest point on the curve.
Hoschek [18] used various geometric continuity conditions to determine ap-
proximating spline curves, and Pham [23] provided an interactive algorithm
using uniform B-splines. Recently, Lee et al. [20] presented another method
using approximation of the unit circle with piecewise quadratic polynomial
curve segments. For more information on all of the above approaches, one is
referred to the survey by Pham [24] and the comparison result by Elber et
al. [9]. Also notable study on conic offsets were developed by Farouki [10].

In addition to these efforts to approximate offset curves with existing
spline curves, there have been attempts to invent new types of spline curves
whose offsets are easy to handle. Meek and Walton [21] studied the offsets of
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curves consisting of clothoidal splines. In this regard, an important pioneer-
ing work has been done by Farouki and Sakkalis [14]. They introduced the
Pythagorean hodographs which are special kinds of splines admitting ratio-
nal offset curves. This fact makes it easier to manipulate the offset curves.
Later, Pottmann [25, 26] introduced a rational generalization. Namely, he
characterized the rational curves with rational offsets.

The second kind, the trimming problem, is of somewhat different nature.
This kind of problem occurs due to the presence of cut or focal loci. An ob-
vious approach is to compute the intersection of the untrimmed offset curves
and decide which portion should be removed to generate the genuine offset
curve. Hoschek [17] devised an intersection algorithm and criterion to delete
the undesirable portion of the untrimmed offset. Tiller and Hanson [27] and
Meek and Walton [21] also considered this issue. Lee et al. [20] used polygo-
nal approximation of the offset curve segments to determine self-intersection
points.

A well-known way of getting around this difficulty is to use the medial
axis. For domains whose boundary consists of circular arcs and line segments,
Voronoi diagram which is almost equivalent to the medial axis, has been
widely used for a long time in the NC machining industry since the work
of Persson [22]. Chou and Cohen [7] elaborated this idea and one can find
thorough treatments in Held [15] and Held et al. [16]. The trouble, however,
is that most algorithms of finding the medial axis are restricted to the domain
whose boundary is made up of circular arcs and line segments. And when
the boundary of the domain is free-form, finding the medial axis has been an
even more difficult problem, thereby begging the question.

Some studies of the medial axis transform when the boundary curves are
free-form have been done more carefully by some of the present authors:
In [3] and [4], a new mathematical theory and algorithm for approximately
finding the medial axis transform are presented. It is based on the so-called
Domain Decomposition Lemma, which enables one to decompose a compli-
cated domain into simpler, hence easier to handle, subdomains. It is to be
noted that there also has been some work on this feature by Chiang et al. [1].

This paper is the first installment of our two-part series of papers that
deal with the mathematical as well as algorithmic issues related to the offset
curves. In this paper, we concentrate on the purely intrinsic geometric issues
without paying attention to algorithmic or the curve representation issues.
It should be noted that somewhat related theoretical works from different
viewpoint are also done by Farouki et al. [11, 12, 13]. Our approach to
this problem relies heavily on the domain decomposition lemma as was the
case in [3] and [4]. In fact, we are using a modified version of the domain
decomposition lemma. Our overriding viewpoint is the attention we pay to
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the close relationship between the offset curves and the medial axis transform
regarded as an embedded geometric graph in R3. This way, a lot of geometric
information can be easily deciphered from the three-dimensional data of the
medial axis transform. As a result, we are able, among others, to classify
all possible local geometric shapes of the inner offset curves of the planar
domains. This result will be the mathematical foundation on which our
algorithm for computing the offset curves is based. This new algorithm is
sketched in [5], and the full details will be published in [2]. (In this regard,
another algorithm combining the medial axis transform and the Minkowski
Pythagorean hodograph recently developed by the authors [6].)

We develop our theory as follows. In Section 2 we briefly present the
basic definition of the medial axis transform and the assumptions on the
domains. The mathematical relation between the offset curve and the me-
dial axis transform of a domain is discussed in Section 3. In Section 4 we
enrich our knowledge on the medial axis transform by studying the geomet-
ric property of its intersection with horizontal planes. With these abundant
information on the medial axis transform and a slightly modified version
of the domain decomposition lemma, tailored for offset curves in Section 5,
we categorize all the possible geometric configuration of the offset curves in
Section 6. Finally, some concluding remarks follow in Section 7.

2 Preliminaries

The offset curve considered throughout our discussion is an inner offset curve
of a planar region. We investigate the offset curve by analyzing the medial
axis transform of the region. Since the concept of the medial axis transform
is so widely used in many research area in as many different forms, we first fix
the relating terminologies of the medial axis transform to avoid the reader’s
confusion. We also introduce the specification of the region we will deal
with. This section is concluded by showing our special treatment for the
corner points of the region’s boundary—the extended boundary.

Definition 1. Let S be a general subset of R2 and Br(p) denote the closed
disk of radius r centered at p. We define a set D(S) by

D(S) = {Br(p) |Br(p) ⊂ S and int(Br(p)) ⊂ int(S)},

where X and int(X) denote the set-theoretic closure and interior of the set
X, respectively.

Remark 1. Throughout this paper, all disks are assumed to be closed disks
unless stated otherwise. The radius of a disk is allowed to be zero, in which
case the disk is just one point.
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Definition 2. The core CORE(S) of a set S is the set of all maximal
elements in D(S), that is,

CORE(S) = {Br(p) ∈ D(S) |

Br(p) = Bs(q) if Bs(q) ∈ D(S) and Bs(q) ⊃ Br(p)}.

If Br(p) ∈ CORE(S), we call Br(p) a maximal, or contact disk and ∂Br(p)
a maximal, or contact circle.

Definition 3 (Medial axis transform). The medial axis of a set S ⊂ R2

is the set of the centers of disks in CORE(S). That is,

MA(S) = {p ∈ R2 |Br(p) ∈ CORE(S)}.

The medial axis transform of a domain S is the set of the ordered pairs of
centers and radii of disks in CORE(S). That is,

MAT(S) = {(p, r) ∈ R2 × R+ |Br(p) ∈ CORE(S)},

where R+ is the set of all non-negative real numbers.

Remark 2. Note that the radius value r is allowed to be zero. Such a case
occurs at a sharp corner point of ∂S.

The apparently redundant condition in Definition 1 is in fact intentional.
Consider for example the set

S = {(x, y) |x2 + y2 < 1 and (x, y) 6= (c, 0) for any c with 0 < c < 1}.

Without the closure inclusion, every point outside S is a medial axis point
with a zero radius, which is far from the expected property of the medial
axis transform. But just the closure inclusion without the interior inclusion
drastically distort the nature of D(S) as S is just the unit disk. So the above
double-checking enables the medial axis transform to faithfully describe the
geometry of S.

Definition 4. A curve r : (a, b)→ Rn (n = 1, 2, . . .), is a Ck curve, if there
is a reparameterization r(t) = (x1(t), . . . , xn(t)) of r by the arc length, such
that x1(t), . . . , xn(t) are Ck functions of t, where k = 1, 2, . . . ,∞, or k = ω
when it is real analytic.

Definition 5. A curve r : [a, b] → Rn (n = 1, 2, . . .) is a Ck curve, if there
exists a Ck curve r̃ : (a− ε, b+ ε)→ Rn for some ε > 0 such that r̃(t) = r(t)
for all t ∈ [a, b], where k = 1, 2, . . . ,∞, ω. A Cω curve will also be called a
real analytic curve.
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Remark 3. A curve r : (a, b) → Rn (n = 1, 2, . . .), is a Ck curve, if and only
if, for any point p on r, there exists a small number ε > 0 such that the
curve r can be represented as the graph of a Ck function with respect to the
tangent line at p inside the ε-disk Bε(p) in Rn, where k = 1, 2, . . . ,∞, ω.

We now list the assumptions which a planar region Ω in our study should
satisfy.

Assumption 1. Ω is the closure of a connected and bounded open subset
in R2 bounded by finite number of mutually disjoint simple closed curves.
(Here a simple closed curve means an embedding of the unit circle in R2.)

The closedness and the connectedness of the domain simplifies much of
the technical arguments. And the boundedness is not only appropriate for
the practical settings, but also essential sometimes in our analysis of the
medial axis transform, since it, together with the closedness, implies the
compactness. The simple closed curve of ∂Ω which bounds the unbounded
connected component of R2\Ω, is called the outer boundary (curve), and the
rest of the simple closed curves of ∂Ω are called the inner boundary (curves).
The number of the inner boundary curves of ∂Ω is called the genus of Ω.

Assumption 2. Each simple closed curve in ∂Ω consists of finite number of
pieces of real analytic curves.

Let us be clearer about this assumption: Assumption 2 means that each
simple closed curve of ∂Ω is represented as a closed curve r : [a, b] → R2

such that there exist finite number of points a = t0 < t1 < · · · < tn = b such
that r[ti−1,ti] is a real analytic curve for i = 1, . . . , n. We call r[ti−1,ti] a real
analytic piece (of r). It should be noted that r is C1 at a point where two
real analytic pieces join as long as the unit tangent vector fields along each
piece coincide at that point. However, it is not realistic to expect it to be C2

in general because the curvature of the two pieces may not coincide at the
joint point. But, assuming each piece should be a polynomial curve is too
restrictive, because, for example, conic sections, such as ellipses, parabolas,
or hyperbolas, which are frequently used as NURBS curves are in general
not polynomial curves. (Note that their x and y coordinates may have a
polynomial relation, but the x and y coordinates of these conic sections
cannot be polynomial functions of some parameter simultaneously.) Thus
the right kinds of general class of curves are real analytic pieces joined in the
C1 manner except at corner points.

Standing assumption. From now on, by the term domain, we mean a
non-circular domain satisfying the above two assumptions unless otherwise
stated.
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The reason we usually exclude the circular domain, i.e., the disk, is that
the disk poses an exception to many of our technical results. But since it is
a trivial domain with the medial axis consisting of one point, everything is
known. Thus there is no real loss of generality in excluding the disk. It is
also worthwhile to remember that a domain is always a closed set.

Definition 6 (Corner). A boundary point is a corner (point) if the unit
tangent vector field is discontinuous at that point. It is called a sharp (resp.,
dull) corner if the interior angle is strictly less (resp., greater) than π.

In our analysis, we need to analyze the correspondence between the points
of ∂Ω and the points of MAT(Ω). For each point q of ∂Ω, which is not a
corner point, we can define the corresponding medial axis transform point as
the one which is contacting at q. For a sharp corner point, the correspondent
will be the sharp corner point itself. (Remember we allowed zero-radius disk.)
For a dull corner point p, however, there are infinitely many disks contacting
at p. The following is a precise description of this case.

Definition 7 (Inward unit cone). Let r(t) be a piecewise real analytic
curve which is a part of the boundary of Ω. We assume that r(t) is oriented
in such a way that the interior of Ω is always on the left of r(t). Let p = r(0)
and suppose p is not a sharp corner. We define the inward unit cone IC(p)
at p by

IC(p) = {v : |v| = 1 and v is an inward pointing vector at p

such that v · r′(0+) ≤ 0 and v · r′(0−) ≥ 0}.

See Figure 1. Thus if r is differentiable at p, IC(p) consists of the single
inward unit normal vector.

Now there corresponds a contact disk for each inward pointing vector of
a dull corner, and this prevents us to define a map from ∂Ω to MAT(Ω).
Thus we need some concept generalizing the real boundary ∂Ω, which we call
the extended boundary.

Definition 8 (Extended boundary). Let p be a dull corner of ∂Ω and φ
be the angle of IC(p). Let us “parameterize” the dull corner p by agreeing
to define p(θ) = p for θ ∈ [0, φ] and the “tangent” vector p′(θ) to be the
tangent vector of IC(p) at the angle θ. (See Figure 1.) When each dull corner
of ∂Ω is “parameterized” in this manner, we call it the extended boundary of
Ω.
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Figure 1: An inward unit cone and the extended boundary

The concept of extended boundary plays a crucial role in [3] when de-
veloping various regularity properties of the medial axis transform by using
the medial axis transform map along the extended boundary. The merit
of having the extend boundary is that the vectors of the inward unit cone
can be treated in the same manner as the smooth points in the subsequent
discussions. One is referred to [3] for more detailed discussion.

Remark 4. We will just say the “boundary” for both the real boundary and
the extended boundary since it will not cause any misunderstanding.

3 Medial axis transform and offset

We present here basic definitions of the offset of a domain and its fundamental
relationship with the medial axis transform.

Definition 9. Let Ω be a domain and d > 0. Then we define the d-offset
curve Od(Ω) as the inner offset curve to the boundary ∂Ω with a distance d,
i.e., the set

Od(Ω) = {p ∈ Ω | dist(p, ∂Ω) = d},

where dist(A,B) is the Euclidean distance between two sets A and B.

Definition 10. Let Ω be a domain and d > 0. Then we define the d-offset
region Ωd as the set inside the d-offset curve, i.e.,

Ωd = {p ∈ Ω | dist(p, ∂Ω) ≥ d}.

A set in R2 is called an offset region, if it is a d-offset region of a domain for
some d > 0.
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Ω

Ω

Figure 2: Br+d(p) ∈ D(Ω)⇔ Br(p) ∈ D(Ωd)

Definition 11. Let A be a subset of R2×R+. If we consider that each point
(p, r) of A represents a disk Br(p) in R2, we denote by R(A) the region
recovered by the disks of A, i.e., the set

R(A) =
⋃

(p,r)∈A

Br(p) = {q ∈ R2 | ∃(p, r) ∈ A, s.t. |pq| ≤ r}.

Although R(A) may not be closed in general, R(MAT(Ω)) is closed if Ω
is a domain. It is obvious by the definition of the medial axis transform that

Ω = R(MAT(Ω)),

i.e., the domain is the union of all of its maximally inscribed disks.

Lemma 1. Let Ω be a domain in R2, r ≥ 0, and d > 0. Then Br+d(p) ∈
D(Ω), if and only if Br(p) ∈ D(Ωd).

Proof. (⇒) Suppose Br+d(p) ∈ D(Ω) and choose any x ∈ Br(p). Then
clearly dist(x, ∂Br+d(p)) ≥ d. Let y ∈ ∂Ω be a point such that |xy| =
dist(x, ∂Ω). (See Figure 2.) Thus there exists a (unique) point q ∈ ∂Br+d(p)
which lies on the line segment xy. Now

dist(x, ∂Ω) = |xy| ≥ |xq| ≥ dist(x, ∂Br+d(p)) ≥ d.
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Thus x ∈ Ωd and hence Br(p) ⊂ Ωd, which means that Br(p) ∈ D(Ωd) since
Ωd is closed.
(⇐) Suppose Br(p) ∈ D(Ωd), i.e., Br(p) ⊂ Ωd, and z ∈ Br+d(p). Then
|zp| ≤ r + d. Suppose z /∈ Ω. Then |zp| > r, since Br(p) ⊂ Ωd. So there
exists a point w ∈ ∂Br(p) which lies on the line segment zp, and |zw| ≤ d.
But since w is in Ωd, the ball Bd(w) is contained in Ω, which means that z
is in Ω. Thus Br+d(p) ⊂ Ω.

Definition 12. The d-cutoff of A ⊂ R2 × R+ for d ≥ 0, denoted by Ad, is
defined by

Ad = {(p, r) ∈ R2 × R+ | (p, r + d) ∈ A}.

That is, to get Ad, we first pull A down in the negative z-axis by d, then
remove what is below the xy-plane. Then, the remainder is Ad.

Even if Ω is a domain, Ωd may not be a domain satisfying Standing
assumption of Section 2. However, since the medial axis transform is defined
for general subsets of R2, it still makes sense to talk about MAT(Ωd). Now
we state the relation between the medial axis transform and the offset region.

Lemma 2. Let Ω be a domain in R2 and d > 0. Then

MAT(Ω)d =MAT(Ωd).

That is, the medial axis transform of d-offset region is the d-cutoff of the
medial axis transform of the original domain.

Proof. (⊇) Suppose (p, r) is in MAT(Ωd). That is, Br(p) ∈ D(Ωd). By
Lemma 1, we have Br+d(p) ∈ D(Ω). It suffices to show that Br+d(p) ∈
CORE(Ω), i.e., (p, r + d) ∈MAT(Ω).

Suppose Br+d(p) is not a maximal element of D(Ω). Then there exists a
ball Br′+d(p

′) of D(Ω) such that Br+d(p) Ã Br′+d(p
′) with r < r′. Note that

we then have Br(p) Ã Br′(p
′). On the other hand, By Lemma 1, we also

have Br′(p
′) ∈ D(Ωd). But this contradicts the fact that Br(p) is a maximal

element of D(Ωd).
(⊆) The other half is just the same. Suppose (p, r) is in MAT(Ω)d. That
is, (p, r+ d) is in MAT(Ω). Since Br+d(p) ∈ D(Ω), we have Br(p) ∈ D(Ωd)
by Lemma 1. Now it suffices to show that Br(p) ∈ CORE(Ωd).

Suppose there is a ball Br′(p
′) of D(Ωd) such that Br(p) Ã Br′(p

′). Then
we have Br+d(p) Ã Br′+d(p

′) and by Lemma 1 we have Br′+d(p
′) ∈ D(Ω).

But this contradicts the fact that Br+d(p) is a maximal element of D(Ω).

The following is a characterization of the offset curve via the medial axis
transform.
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Theorem 1. Let Ω be a domain and d > 0. Then we have

Od(Ω) = ∂R(MAT(Ω)d).

That is, the d-offset curve is the boundary (or envelope) of the region satu-
rated by the disks corresponding to the d-cutoff of the medial axis transform
of the original domain.

Proof. Note that Od(Ω) = ∂Ωd. Also Ωd = R(MAT(Ωd)) as noted above,
and thus Od(Ω) = ∂R(MAT(Ωd)). Thus the result follows from Lemma 2.

4 Local geometry of medial axis transform

The various geometric aspects of the medial axis transform is revealed in [3].
Especially, we could characterize the medial axis transform as a geometric
graph: A geometric graph is a usual topological graph with a finite number
of vertices and edges, where a vertex is a point in R3 and an edge is a real
analytic curve with finite length and whose limits of tangents at the end
points exist.

As a continuing investigation of the geometry of the medial axis trans-
form, here we explore some local geometric property of the cross sections of
the medial axis transform cut by horizontal planes. To classify all the pos-
sible configurations of the offset curve around its self-intersection points, it
is crucial to understand the geometric nature of the cross section, since the
self-intersection points of the d-offset curve fall on the cross section by the
horizontal plane with height d. Before we start, let us fix some terminologies
that will be used in the subsequent discussion.

Let Ω be a domain and let (p, r) ∈ MAT(Ω). Let T (p) be the union
of the line segments joining p and the contact points of Br(p). Suppose
Br(p) \ T (p) has n connected components. We denote them by U1, . . . , Un.
See Figure 3. In [3], it is proved that the medial axis emanating from p
consists, near p, of exactly n curves s1, . . . , sn. Thus we called (p, r) an n-
prong point. We may assume each si is contained in Ui for i = 1, . . . , n. We
define θi > 0 to be the angle of Ui at p for i = 1, . . . , n. Let ri be the segment
of the medial axis transform emanating from (p, r) corresponding to si. (See
Figure 4.) Let αi be the angle at (p, r) between ri and the xy-plane. The
sign of αi is chosen to be positive if ri lies above the plane R2 × {r} near
(p, r). Then, as shown in [3], we have

tanαi = − cos
θi
2
, (1)
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Figure 3: A contact circle

Figure 4: A 3D view of the contact circle
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for i = 1, . . . , n.

Lemma 3. Let Ω be a domain and (p, r) ∈ MAT(Ω) be an n-prong point
such that n ≥ 2. For 1 ≤ i ≤ n, let ri : [0, ε]→MAT(Ω) and θi, αi be given
as in Figure 3 and 4. Suppose one of the αi’s, say α1, is greater than 0, then
αi < 0 for 2 ≤ i ≤ n.

Proof. By Equation (1) and the fact
∑n

i=1 θi ≤ 2π, the proof follows imme-
diately.

Theorem 2. Let Ω be a domain and (p, r) ∈MAT(Ω) be an n-prong point
with n ≥ 2. For 1 ≤ i ≤ n, let ri : [0, ε] →MAT(Ω) and θi, αi be given as
in Figure 3 and 4 such that ri(0) = (p, r). Suppose that at least two of the
αi’s, say α1 and α2, are non-negative. Then (p, r) is a 2-prong point i.e.,
n = 2 and we have α1 = α2 = 0. Furthermore, r′1(0) and r

′

2(0) point in the
opposite directions and each of the two contact components of (p, r) is an
isolated contact point. Thus MAT(Ω) is a C1 curve in R2×R+ near (p, r).

Proof. Observe that if one of the αi’s is greater than 0, say α1 > 0, then
θ1 > π, which implies the rest of the θi’s are all less than π. This in turn
implies that αi < 0 for i = 2, . . . , n. Thus we should have α1 = α2 = 0.
But then θ1 = θ2 = π by Equation (1), so n must be 2 from the fact that
∑n

i=1 θi ≤ 2π, and θi > 0 for 1 ≤ i ≤ n. So the two contact components of
(p, r) must be isolated contact points. For the C1 connectivity near (p, r),
one may refer to Section 8.2 in [3]).

Definition 13 (Horizontal section). Let Ω be a domain and c ≥ 0. A
c-horizontal section of MAT(Ω) is a connected component of the set

{(p, r) ∈MAT(Ω) | r = c}.

Since MAT(Ω) is a finite geometric graph embedded in R3 as mentioned
earlier, it is easy to see that there are finite number of c-horizontal sections
ofMAT(Ω) for given c ≥ 0, and each horizontal section is either a point or a
graph (i.e., a finite geometric graph which is a subset of MAT(Ω)). In fact,
we can tell more from the above results.

Lemma 4. Let Ω be a domain and let c > 0. Let H be a c-horizontal section
of MAT(Ω). Then H is either a point or a C1 curve segment (possibly a
closed curve). Moreover, if H is a curve segment (or a closed curve), every
point in H, with possible exception at the end points, is a 2-prong point of
MAT(Ω).
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Proof. Suppose H is not a point. Suppose (p, r) ∈ H is an n-prong point of
MAT(Ω), but not an end point of H. For 1 ≤ i ≤ n, let ri and θi, αi be
given as in Figure 3 and 4. Note that n ≥ 2 and at least two of αi’s, say
α1 and α2, are non-negative, since (p, r) is not an end point of H. Thus by
Theorem 2, (p, r) is a 2-prong point of MAT(Ω), and MAT(Ω) is locally a
C1 curve near (p, r).

Remark 5. An end point of a horizontal section may not be a 2-prong point
of MAT(Ω). For example, let Ω be the rectangular domain defined by

Ω = {(x, y) ∈ R2 | − 2c ≤ x ≤ 2c,−c ≤ y ≤ c},

for some c > 0. Then the set H = {(x, y, r) ∈ R2 × R+ | − c ≤ x ≤ c, y =
0, r = c} is a c-horizontal section of MAT(Ω), but the end points (−c, 0, c)
and (c, 0, c) of H are 3-prongs of MAT(Ω).

Remark 6. A c-horizontal section may be a closed curve, when, for example,
Ω is an annulus and c is the half of the annulus’ width.

Definition 14 (Peak, valley, and slope). Let Ω be a domain and H is a
c-horizontal section of MAT(Ω) for c ≥ 0. H is called a peak, if it is locally
maximal in r, i.e., there exists a neighborhood N of H in R2×R+ such that
r ≤ c for any (p, r) in N ∩MAT(Ω). Similarly, H is called a valley, if it is
locally minimal in r. Finally if H is neither a peak nor a valley, it is called
a slope.

Remark 7. Note that the results in [3] easily implies that the number of peaks
and valleys of MAT(Ω) is finite.

Remark 8. Note that a c-horizontal section can be a peak and a valley at the
same time. This is the case when, for example, Ω is a stadium defined by

Ω = {(x, y) ∈ R2 | − a ≤ y ≤ a,−
√

a2 − y2 − a ≤ x ≤
√

a2 − y2 + a},

and c = a, the half of the stadium’s width.

Theorem 3 (Shape of valley). Let Ω be a domain. Suppose V is a valley
of MAT(Ω) and not a 0-horizontal section of MAT(Ω). Then V has the
following properties:

(1) V is either a point or a C1 (possibly closed) curve segment. if V is a
(closed) curve segment, each point on V , which is not an end point of
V , is a 2-prong point of MAT(Ω).

(2) None of the points in V (including the possible end points) is a bifur-
cation point of MAT(Ω).
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(3) Suppose V is a curve segment. If an end point (p, r) of V is a 2-prong
point of MAT(Ω), then MAT(Ω) is a C1 curve near (p, r).

(4) If V is a connected component of MAT(Ω), then it is either a closed
curve or a curve segment both of whose end points are 1-prong points
of MAT(Ω).

Proof. The first property is just Lemma 4. Let (p, r) be a point in V . We
will show that (p, r) cannot be a bifurcation point of MAT(Ω). We can
assume that V is a curve segment and (p, r) is an end point of V . Suppose
(p, r) is an n-prong point of MAT(Ω) with n ≥ 1. For 1 ≤ i ≤ n, let ri, θi,
and αi be given as in Figure 3 and 4. Note that αi ≥ 0 for each i, since V
is a valley. Thus by Equation (1) and the fact that

∑n

i=1 θi ≤ 2π, we have
n ≤ 2. The third property immediately follows from Theorem 2.

Now assume V is a connected component of MAT(Ω). Note that if V
is a closed curve then it is a connected component of MAT(Ω). Suppose
V is not a closed curve. Then by the second property, each of the two end
points of V is either a 1-prong point or a 2-prong point of MAT(Ω). But
if one of the end points of V is a 2-prong point of MAT(Ω), then V is not
a component of MAT(Ω). So both of the two end points of V are 1-prong
points of MAT(Ω).

Lemma 5. Let Ω be a domain and let r : [0, 1] → MAT(Ω), r(t) =
(p(t), r(t)) be a continuous path with no self-intersections. (Here we allow
the possibility that r(0) = r(1).) Suppose there exist a and b (0 < a ≤ b < 1)
such that the function r(t) takes a local minimum on [a, b]. That is, r is con-
stant on [a, b] and there exists a neighborhood N of [a, b] in [0, 1] such that
r(t) < r(τ) for every t ∈ [a, b] and τ ∈ N \ [a, b]. Then r([a, b]) is a valley of
MAT(Ω).

Proof. We may assume r([a, b]) > 0.The assumption says that r([a, b]) is a
local minimum in the “path” r([0, 1]). It remains to show that r([a, b]) is
also a local minimum in the “whole” MAT(Ω). To show that, it remains to
prove that there is no bifurcation point on r([a, b]). Let (p, r) be any n-prong
point of MAT(Ω) on r([a, b]). For 1 ≤ i ≤ n, let ri : [0, ε] →MAT(Ω) and
θi, αi be given as in Figure 3 and 4. By the assumption, there are at least
two αi’s, say α1 and α2, greater than 0. By Theorem 2, (p, r) is a 2-prong
point.

Theorem 4 (Existence of valley between two peaks). Let Ω be a do-
main and P1 and P2 be two (not necessarily distinct) peaks of MAT(Ω).
Suppose that r : [0, 1] → MAT(Ω), r(t) = (p(t), r(t)) is a continuous, not
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self-intersecting path (possibly closed if P1 = P2) in MAT(Ω) with the fol-
lowing properties:

(1) The path r connects P1 and P2, i.e., we have r(0) ∈ P1 and r(1) ∈ P2.

(2) There exists a t0 ∈ [0, 1] such that r(t0) /∈ P1 ∪ P2.

Then, there is a valley of MAT(Ω) on the path r.

Proof. In view of Lemma 5, it is sufficient to show that there exist a and
b (0 < a ≤ b < 1) such that r(t) takes a local minimum on [a, b] in the
sense of the lemma. Suppose not. Then r(t) must be either non-decreasing
or non-increasing. Note that r(t) is not constant since there exists a point
on r which is not in P1 ∪ P2. But if r(t) is non-decreasing (respectively,
non-increasing), P1 (respectively, P2) cannot be a peak.

5 Domain decomposition lemma and offset

One of the weak points of the medial axis transform is that it is very sensi-
tive to the perturbation of the domain’s boundary. If you wrinkle a smooth
segment of the boundary, you will see many branches of the medial axis trans-
form coming out toward the wrinkled boundary. However, the dependence
of the medial axis transform on the domain’s boundary is in substance local.
That is, the wrinkled boundary affects only the contact disks that does con-
tact the boundary. In addition to this localized property, on the other hand,
the global information about the medial axis transform can be obtained by
combining local information about the medial axis transform. The following
is an abstract of the above statements.

Theorem 5 (Domain decomposition lemma). For any fixed medial axis
point p ∈ MA(Ω), let Br(p) be the corresponding contact disk. Suppose
A1, . . . , Am are the connected components of Ω \ Br(p). Denote Ωi = Ai ∪
Br(p) for i = 1, . . . ,m. Then we have

MA(Ω) =
m
⋃

i=1

MA(Ωi),

MAT(Ω) =
m
⋃

i=1

MAT(Ωi).

Moreover, we have

MA(Ωi) ∩ MA(Ωj) = {p},

MAT(Ωi) ∩ MAT(Ωj) = {(p, r)}
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Figure 5: Domain decomposition at (p, r)

for every distinct i and j. See Figure 5.

Proof. See [3].

The domain decomposition method was the basic tool for the construction
of the medial axis transform in [4]. Now we have at hand the relation between
the medial axis transform and the offset curve, it is advantageous if we know
how the domain decomposition method can be applied to the offset curve
construction.

Let (p, r) be an n-prong point of MAT(Ω) and let C1, . . . , Cn be the
corresponding contact components. Let A1, . . . , Am and Ω1, . . . ,Ωm be the
sets as given in Theorem 5. Though in general we have m ≤ n, let us suppose
we have m = n for the clearer argument. (The general m < n case is almost
the same.) Let Si = ∂Br(p) ∩ Ai, a segment of ∂Br(p). (See Figure 6.) Let
Ui be the union of the closed sectors of Br(p) corresponding to Si. That is,
Ui = {z ∈ pq |q ∈ Si}. By setting A′

i = Ai ∪ Ui, we can divide Od(Ωi) into
two sets: one in A′

i and the other in Ωi \A
′

i. (See Figure 7.) It is easy to see
that the segment of Od(Ωi) in Ωi \A

′

i is the d-offset curve to complementary
arc S̃i (= ∂Br(p) \ Si) of Si, which is just the same arc as S̃i with the same
center but smaller radius r− d (if d > r, no such arc exists). Note that S̃i is
an open arc, i.e., it does not contain its end points.

Lemma 6. For any z ∈ A′

i, we have dist(z, ∂Ωi) = dist(z, ∂Ω). Hence we
have Od(Ωi) ∩ A

′

i = Od(Ω) ∩ A
′

i.

Proof. Denote dist(z, ∂Ωi) by d. Let w be a foot point of z on ∂Ωi. We
first show that w is on ∂Ω and thus we have dist(z, ∂Ωi) ≥ dist(z, ∂Ω).
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Figure 6: The partition of the contact circle
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Figure 7: d-offset curve of the subdomain Ωi
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Suppose w is not on ∂Ω but on S̃i. Since z is inside A′

i (including the
boundary) but w is outside A′

i, zw intersects the boundary of A′

i, which
is (∂Ai ∩ ∂Ω) ∪ pq1 ∪ pq2, where q1 and q2 are the end points of Si. By
the assumption, zw must intersect pq1 or pq2. (Otherwise, the intersection
point on ∂Ai ∩ ∂Ω realizes dist(z, ∂Ωi) with a smaller value than d.) Then it
is easy to see that there are points on S̃i realizing dist(z, ∂Ωi) with a smaller
value than d.

Now we show that dist(z, ∂Ωi) ≤ dist(z, ∂Ω). Let v be a foot point
of z on ∂Ω realizing dist(z, ∂Ω). If v is on ∂Ωi, we have dist(z, ∂Ωi) ≤
|zv| = dist(z, ∂Ω). If v is not on ∂Ωi, then zv must intersect ∂Ωi. Let
y be the intersection point. Then we have dist(z, ∂Ωi) ≤ |zy| ≤ |zv| =
dist(z, ∂Ω).

Theorem 6 (Domain decomposition lemma for offset). At any contact
disk Br(p), the d-offset curve Od(Ω) can be decomposed into the following
components;

(1) Od(Ωi) ∩ A
′

i for i = 1, . . . ,m,

(2) d-offset curves to the arcs Cj, for j = 1, . . . , n.

Furthermore, each pairs of the above components can at best share their end
points. See Figure 8.

Proof. Let Tj be the sector of ∂Br(p) corresponding to the contact compo-
nent Cj, i.e., Tj = {z ∈ pq |q ∈ Cj}. (See Figure 6.) It is easy to see that
Od(Ω) ∩ Tj is the d-offset curve to the arc Cj, which is just the same arc as
Cj with the same center but r − d radius. (If d > r, no such arc exists.)

Since the union of all A′

i and Tj is the whole domain Ω, we have

Od(Ω) =
m
⋃

i=1

(Od(Ω) ∩ A
′

i) ∪
n

⋃

j=1

(Od(Ω) ∩ Tj) .

By Lemma 6, we have Od(Ω) ∩ A′

i = Od(Ωi) ∩ A′

i. Finally, note that any
pair of distinct A′

i and A
′

k or A′

i and Tj can at best share their boundary line
segments.

6 Classification of points on offset curves

Now we are ready to investigate the local geometry of the offset curves of a
domain. For a real analytic curve “segment”, the geometric and topological
features of its offset curve are already familiar in the CAGD context. When
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Figure 8: The partition of the offset curve

the offset distance d is relatively small, its offset curve is very similar to
the original one. As d increases, however, the offset curve exhibits irregular
points such as cusps, infinite curvature points, or self-intersections. For more
information on the irregularity of offset curves, one is referred to [11, 12].

The domain of our concern is bounded by many real analytic curve seg-
ments. So the offset curve of the domain is a subset of the union of the offset
curve segments to the boundary curve segments. In addition to the irreg-
ularity of the offset curve segments, caused by the corresponding boundary
segments by itself, now the offset curve segments can intersect themselves
(depending on the global geometry of the domain) to introduce another kind
of irregularity.

Observing that the irregular points always occurs on the medial axis of
the domain, we will separately treat points of the offset curve that are on
the medial axis and off the medial axis after a brief review of the offset of a
curve segment.
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6.1 Untrimmed offset curves

Definition 15. By the untrimmed d-offset curve to a boundary curve seg-
ment r(t) for d > 0, we mean the curve

rd(t) = r(t) + dn(t),

where n(t) is the unit normal vector of r(t) pointing inside the domain. Due
to the orientation convention of the boundary, the normal vector n(t) can be
obtained by rotating the vector r′(t)/|r′(t)| counterclockwise by π/2.

The unit tangent vector τd(t) and curvature κd(t) of the untrimmed offset
curve rd(t) can be readily computed [12] by

τd(t) =
1− dκ(t)

|1− dκ(t)|
τ (t) (2)

κd(t) =
κ(t)

|1− dκ(t)|
(3)

where τ (t) is the unit tangent vector and κ(t) is the curvature of r(t). Note
that rd(t) exhibits singularities in its tangent vector (abrupt change of its
direction) and curvature (infinite curvature) where κ(t) = 1/d, i.e., at the
center of curvature of r(t). For more analytic properties of the untrimmed
offset curve, one is referred to [12].

6.2 Points of offset curve off medial axis

We first consider points of the offset curve which is not on the medial axis.

Theorem 7. Let p be a point on Od(Ω). If p is not onMA(Ω), the following
are true:

(1) There is a unique foot point q of p on ∂Ω.

(2) Let r(t) be a parameterization of ∂Ω near q with r(0) = q. There exists
an ε > 0 such that the untrimmed offset curve rd(t) for t ∈ (−ε, ε) is
Od(Ω) near p.

(3) p is not a singular point of rd(t).

Proof. If there are more than one foot point of p on ∂Ω, we should have
p ∈MA(Ω). Now we prove the second claim. Let Br(x) be the maximal disk
of Ω tangent to ∂Ω at q. Clearly, we have r > d. Since the mapping from the
boundary to the medial axis transform (the medial axis transform map in [3])
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prong valley peak slope

1 yes yes no
2 yes yes yes

n(≥ 3) no yes yes

Table 1: Single-point horizontal section

is continuous, there exists an ε > 0 such that the corresponding maximal
disk contacting at r(t) has a larger radius value than d for t ∈ (−ε, ε). We
show that the untrimmed offset curve rd(t) for t ∈ (−ε, ε) is the d-offset
curve of Ω near p. It suffices to show that for any point rd(t), we have
dist(rd(t), ∂Ω) = d. Draw a disk Bd(rd(t)) and Br′(p

′), where Br′(p
′) is

the maximal disk at r(t). By our choice of ε, we have r′ > d. Since the
two disks Bd(rd(t)) and Br′(p

′) are tangent to each other at r(t), we have
Bd(rd(t)) ⊂ Br′(p

′). Hence there is no other point of ∂Ω which is closer to
rd(t) than r(t).

To prove the last claim, it suffices to show κ(0) < 1/d, where κ(t) is the
curvature of r(t). Since we have r ≤ 1/κ(0) (the radius of the contact disk
cannot be larger than the radius of curvature), we have d < r ≤ 1/κ(0).

In summary, around the point which is off the medial axis, the offset curve
of the domain is essentially the untrimmed offset curve for some boundary
curve segments of the domain and the tangent vector and the curvature are
well defined by Equation (2) and (3).

6.3 Points of offset curve on medial axis

Now we study points of the offset curve which is on the medial axis. Let p
be a point on Od(Ω) and MA(Ω). Note that p is basically a self-intersection
point of the offset curve. Let H be the d-horizontal section of MAT(Ω)
having (p, d). By Lemma 4, H is either a single point or a C1 curve segment.
We first consider the case in which H is a single point.

Single point horizontal section

Let p be a point on Od(Ω). Suppose the single point (p, d) is a d-horizontal
section of MAT(Ω). We list the possible status of (p, d) as a medial axis
transform point in Table 1. Here, there is no 1-prong slope by definition
and 3-prong valley is also impossible by Theorem 3. Other possible cases are
depicted in Figure 9.
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Figure 9: Typical figures near single-point horizontal sections
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Figure 10: Typical figures near 1-prong valleys

Case 1 (1-prong valley). The contact disk Bd(p) corresponding to (p, d) is
an inscribed osculating disk. The (only one) contact component C of Bd(p)
is either a point or an arc, but cannot be the whole circle. Let C(t) be a
parameterization of C for t ∈ [0, φ], where φ is the angle over which the arc
C extends. (See Figure 10.) Since (p, d) is a valley, we have 0 ≤ φ ≤ π.
The case φ = 0 occurs when C is a point. Let a and b be the boundary
curve segments of Ω connected by C. (See Figure 10.) Assume that a and
b are parameterized in the intervals (−ε, 0] and [0, ε) respectively such that
a(0) = C(0) and b(0) = C(φ).

Theorem 8. The d-offset curve of Ω near p is the union of the untrimmed
offset curve ad and bd.

Proof. Since (p, d) is a valley point and the mapping from the boundary to
the medial axis transform is continuous, we can assume that the contact disk
at a(t) or b(t) has greater radius than d for t 6= 0. Now the proof can go the
same as in that of Theorem 7.

Remark 9. Note that ad or bd has infinite curvature at p if the curvature
of a(t) or b(t) is 1/d at t = 0. Hence if φ = 0, at least one of ad and bd

must have infinite curvature at p while having continuous tangent direction.
And if φ = π, one can easily show that none of ad and bd can have infinite
curvature at p.

In summary, the d-offset curve near p can be decomposed into two curve
segments at p. The interior angle of the offset curve at p is π − φ. If φ = 0,
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in particular, the offset curve has continuous tangent direction but infinite
curvature at p.

Case 2 (1-prong peak). Since (p, d) is a peak point, we can assume that
any contact disk near p (except Bd(p) itself) has smaller radius value than
d. This means that any point near p (except p itself) cannot have d distance
to ∂Ω. Hence d-offset curve near p is just p itself.

Case 3 (2-prong valley). If we decompose Ω at Bd(p) into Ω1 and Ω2,
then (p, d) is a single 1-prong valley point for each Ωi. Now we can apply
Theorem 6. Since the contact components C1 and C2 are isolated points (by
Theorem 2), Od(Ω) is the union of Od(Ω1)∩A

′

1 and Od(Ω2)∩A
′

2. Note that
we have examined each O(Ωi) in Case 1 with φ = π. Hence, the d-offset curve
near p is composed of four untrimmed offset curve segments emanating at p
with the same tangent line. None of them have infinite curvature at p. See
Figure 9.

Case 4 (2-prong peak). Applying Theorem 6 and Case 2, we can see that
the d-offset curve near p is just p itself.

Case 5 (2-prong slope). Decompose Ω at Bd(p) into Ω1 and Ω2 such that
(p, d) is a valley for MAT(Ω1) and a peak for MAT(Ω2). By Case 1 and 2,
we can see that Od(Ω) near p is just the same as Od(Ω1) near p, which we
have described in Case 1 with φ 6= 0.

Case 6 (n-prong peak (n ≥ 3)). Applying Theorem 6 and Case 2, we can
see that the d-offset curve near p is just p itself.

Case 7 (n-prong slope (n ≥ 3)). Decompose Ω at Bd(p) into Ω1, . . . ,Ωn

where (p, d) is a valley for only one of the medial axis transforms, say
MAT(Ω1) and a peak for MAT(Ω2), . . . ,MAT(Ωn). By Case 1 and 2,
we can see that Od(Ω) near p is just the same as Od(Ω1) near p, which we
have described in Case 1 with φ 6= 0.

Curve segment horizontal section

Now we consider the case in which H is a C1 curve segment. First, suppose
(p, d) is not an end point of H. Since H is a d-horizontal section, for every
point (q, d) of H we have dist(q, ∂Ω) = d, i.e., the whole H is a d-offset curve
of Ω. Since every point of H except the end points is a 2-prong point, there
are two corresponding boundary segments near (p, d). (See Figure 11.) And
H and the corresponding two boundary curve segments are d-offset curves to
each other. In summary, the d-offset curves of Ω near p is a C1 untrimmed
offset curve to the corresponding boundary curve segments.
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Figure 11: Near a curve segment horizontal section

prong “valley” “peak” “slope”

1 - - -
2 yes yes -

n(≥ 3) no yes -

Table 2: At the end point of horizontal section

Case 8 (Curve segment horizontal section). If (p, d) is in the C1 curve
segment d-horizontal section H but it is not an end point of H, then the d-
offset curves of Ω near p is a C1 untrimmed offset curve to the corresponding
boundary curve segments.

Now it remains to investigate the case p is an end point of H. We can
classify this case as in Table 1. Here we temporarily modify the definitions
of the peak, valley, and slope. Note that they were defined for the whole
horizontal section. We will call a single point (p, r) a “peak” of MAT(Ω), if
there is a neighborhood N of (p, r) such that r is a locally maximal radius
value in N ∩MAT(Ω). A “valley” and “slope” are similarly modified for the
single point case.

We list the possible status of (p, d), which is an end point of the C1 curve
segment horizontal section H, in Table 2. Note that the concept “slope” is
irrelevant here since the radius value of MAT(Ω) is constant in the direction
of H near (p, d). And for the 1-prong case, there is no need to artificially
divide it into a “valley” and “peak”. Typical examples of Table 2 are depicted
in Figure 12.

Case 9 (1-prong end point). This case is just Case 8 except that there is
only one d-offset curve segment emanating from p. That is, the d-offset curve
of Ω near p is a C1 untrimmed offset curve to the corresponding boundary
curve segments emanating from p.
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Figure 12: Typical figures near end points of C1 curve horizontal sections
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Case 10 (2-prong “valley” end point). By dividing the domain at Bd(p),
we have two subdomains Ω1 and Ω2 such that p is a 1-prong valley point of
MAT(Ω1) with φ = π (Case 1) and a 1-prong end point of MAT(Ω2) as
in Case 9. Hence, the d-offset curve of the domain near p consists of three
untrimmed offset curve segments emanating at p with the same tangent line
and none of them have infinite curvature at p. See Figure 12.

Case 11 (2-prong “peak” end point). Decompose Ω at Bd(p) into Ω1

and Ω2 such that MAT(Ω1) = H. Since (p, d) is a peak for Ω2, there is no
contribution to the d-offset curve from the subdomain Ω2 except the point p
itself. Hence the d-offset curve near p is the same as in Case 9.

Case 12 (n-prong “peak” end point (n ≥ 3)). Decompose Ω at Bd(p)
into Ω1, . . . ,Ωn such that MAT(Ω1) = H. Now (p, d) is a peak for all other
Ω2, . . . ,Ωn. As we have seen in Case 1, there is no contribution to the d-offset
curve from the subdomains Ω2, . . . ,Ωn except the point p itself. Hence the
d-offset curve near p is the same as in Case 9.

Now that we have exhausted all the possible cases of the offset curve
points of a domain, we can summarize the classification in the following
theorem. For the convenience of the enumeration, we introduce the following
term.

Definition 16. A point p of Od(Ω) is an n-fork point if there are n pieces
of curve segments of Od(Ω) emanating from p.

Remark 10. We use the term “fork” to distinguish it from the term “prong”
used in the description of the medial axis transform in [3, 4].

Theorem 9 (Classification of points on offset curves). Let p be a point
of the d-offset curve of a domain with d > 0. Then p is one of the following
types; (See Figure 13.)

(0) a 0-fork point, i.e., an isolated point;

(1) a 1-fork point, where a C1 curve segment is emanating with finite cur-
vature;

(2) a 2-fork point,

(a) where two C1 curve segments are emanating with finite curvature
and opposite tangent direction;

(b) where two C1 curve segments are emanating with opposite tangent
direction and at least one of them having infinite curvature;
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Figure 13: A domain and the offset curve
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(c) where two C1 curve segments are emanating with interior angle
0 < φ < π and each of them may or may not has infinite curvature;

(d) where two C1 curve segments are emanating with the same tangent
direction and finite curvature;

(3) a 3-fork point where three C1 curve segments are emanating with finite
curvature such that two of them have the same tangent direction but
the third has the opposite tangent direction;

(4) a 4-fork point where four C1 curve segments are emanating with finite
curvature such that two of them have a common tangent direction and
the other two have also a common tangent direction but opposite to the
first one.

Remark 11. Near a 2-fork point with discontinuous tangent direction, the
d-offset region is on one side of d-offset curve such that the interior angle at
that point is less than π, i.e., there is no “dull” corner point on the boundary
of d-offset region.

Remark 12. One can show that the number of fork points except (2a) is
finite.

7 Concluding remarks

For one curve segment, there have been a lot of literature on the geometric
and topological features of its offset curve. However, for many pieces of
curve segments bounding a planar region, the interference of the offset curve
segments with each other makes the analysis much more cumbersome. Using
the medial axis transform, which holds the complete data of the region, we
were able to rigorously give a full description of the offset curve of the region,
albeit people in the CAGD community are well aware by experience. In a
subsequent paper, we will present an algorithm to compute the offset curve
using the medial axis transform.
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