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Abstract

This paper is the second half of the two-part installment of the
result dealing with the two-dimensional offset curves by utilizing the
medial axis transform. We present an algorithm for the offset curve
computation of a planar domain whose boundary is composed of ra-
tional curve segments. All such offset algorithms involve the two-stage
process: the computation of offsets to each curve segments and the
decision of valid portions of each offset curve segment. Since there
are plenty of literature regarding the first issue, we primarily focus on
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the second issue here. Most known methods dealing with the second
process involve a step of computing curve/curve intersection, which in
some cases cause numerical errors that may cause subtle topological
difficulties. Our method proposed here differs in its basic principle.
It advocates the philosophy that once the domain is decomposed in
a suitable way the medial axis transform can be fully utilized to pro-
vide a numerically stable algorithm. Furthermore, this algorithm is
designed in such a way that the topological feature is handled in a
localized manner. In fact, this localization procedure enables one to
isolate any problem areas, be they numerical or topological. The basic
strategy of our localization procedure is to break up the domain into
many subdomains each of whose medial axis transform has a mono-

tone increasing/decreasing radius component. In these subdomains,
the problem reduces to that of root finding, where we can apply any
numerical schemes such as the Newton-Raphson method. The concept
of monotonicity plays a key role in enhancing the stability of the algo-
rithm. One of the novelty of this paper is the way it is systematically
incorporated in the algorithms. Once we locate the self-intersection
points and construct the offset curves of the subdomains, we can link
them together to form the offset curve of the whole domain by follow-
ing the principle of domain decomposition.

1 Introduction

The offset curve we consider in this paper is the inner offset curve of a planar
domain which can be multiply connected and whose boundary is composed
of piecewise rational curves.

One of the problems when dealing with this kind of offset curve is that
a rational curve r(t) = (x(t), y(t)) does not allow in general a rational offset
curve. In contrast to a polygon and an arc, the untrimmed d-offset curve

rd(t) = r(t) + d
(−y′(t), x′(t))√
x′(t)2 + y′(t)2

, (1)

which is at a d distance away from r(t), is not in general rational. (Here we
chose one of the two possible offset curves of r(t) such that rd(t) is on the
left side of r(t) as we traverse r(t) in the direction of increasing t.)

This is, of course, the consequence of the term
√
x′(t)2 + y′(t)2. Thus,

rd(t) can be a rational curve if and only if

x′(t)2 + y′(t)2 = σ(t)2 (2)

for some rational function σ(t). Those curves satisfying Equation (2) are
called Pythagorean hodograph curves. They are introduced by Farouki and
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Figure 1: A fish tail

Sakkalis [15], and have a rational expression for their offset curves. In general,
however, a rational curve r(t) is not a Pythagorean hodograph curve. So,
we cannot expect a rational expression for rd(t), and the best job we can do
may be generating a finite sequence of points lying on rd(t) as accurately as
possible, and then interpolating these points such that the interpolant r̃d(t)
is within the given error tolerance with respect to rd(t).

Another and yet tougher problem arises as d increases. For some large d,
the untrimmed offset curve rd(t) given by Formula (1) is no longer the true
d-offset curve of r(t). See Figure 1. This kind of phenomena happens when
the offset distance d is too large compared to the radius of curvature of r(t).
Especially, the cusps of rd(t) lie on the evolute e(t) of r(t) defined by

e(t) = r(t) +
1

κ(t)
n(t),

where κ(t) is the (signed) curvature of r(t). See [12]. Now if d > 1/κ(t) > 0
for some t, then rd(t) may interfere with itself, forming a self-intersection
point. To get the true d-offset curve of r(t), we need to remove the “fish-
tail” portion.

The untrimmed offset curve rd(t) may intersect itself even if κ(t) < 0.
This happens when the domain is too “narrow” compared with the offset
distance d. See Figure 2. This kind of self-intersection is not due to the local
geometry of the boundary curve as in the fish-tail case, but due to the global
shape of the domain. But in this case too, we can obtain the true d-offset
curve by deleting the segments defined by two self-intersection points.

Hence, we must have a method for identifying self-intersection points. If
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Figure 2: A narrow domain (partial view)

Figure 3: A medial axis and self-intersection points

the boundary curve consists of polygons and arcs, this is not a hard problem
since all we have to compute are the intersections of pairs of line and line,
line and arc, and arc and arc. But with a generic piecewise rational boundary
curve, the computation is not so simple. In fact, Farouki and Neff [11] have
shown that this computaion amounts to solving very high-degree algebraic
equations.

Self-intersection points are closely related to the medial axis or the medial
axis transform. For each self-intersection point p of a d-offset curve, there
are two corresponding foot points q1 and q2 on the boundary curve such
that |pq1| = |pq2|. Thus the circle centered at p with radius r = |pq1| is
maximally inscribed in the domain. That is, p, the self-intersection point, is
also a medial axis point. In Figure 3, we can see that the medial axis passes
through all the self-intersection points. In fact, all the self-intersection points
of rd(t) exactly correspond to the medial axis transform points with a d radius
component.
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Although the medial axis transform cannot be expressed in a closed-form
using the parameter of the boundary curve, we have seen its geometric na-
ture; the medial axis transform is a geometric graph. (See [4].) A geometric
graph is a usual graph with real analytic curves as edges. Being a geomet-
ric graph has two implications to the algorithm for computing the medial
axis transform. Firstly, the points of the medial axis transform we succes-
sively find can be organized into a graph data structure (actually, a tree data
structure thanks to the homology-killing process). Secondly, each real ana-
lytic edge can be approximated as accurately as possible by a Bézier curve.
In doing so, a divide-and-conquer strategy, called domain decomposition, is
the basis of the algorithm, which decomposes a complex domain into many
simple and easy to handle subdomains. In this way we can extract the medial
axis transform from a domain with high accuracy. For more detail, one can
refer to [5].

On the other hand, we clarified the relation between the medial axis
transform and offset curves in the preceding paper. It says that the d-offset
curve of a domain can be recovered (using the envelope formula) from the
d-cutoff of the domain’s medial axis transform, where the d-cutoff is a result
of a simple operation which pulls down the medial axis transform to the
negative z-direction by d and removes what is below the xy-plane. By using
the relation we thoroughly examined the geometry of offset curves.

Armed with the medial axis transform, and bearing in mind its relation
with the offset curves, we can now tackle the problem of offset computation.
This will be carried out in the following order. Roughly speaking, our goal is
to chop the domain into such simple pieces that it is straightforward to com-
pute the offset curve of each piece. Firstly, we will review the basic definitions
and key properties of the medial axis transform, for example, the geometric
graph and the domain decomposition lemma. Secondly, an algorithm for
locating some special points of the medial axis transform will be discussed.
These are the horizontal sections of the preceding paper with critical radius
values. After identifying the critical horizontal sections, we have our domain
decomposed into many fundamental domains whose medial axis transform
have a monotone increasing/decreasing radius function component. Then, it
is simple to compute the offset curve of this kind of fundamental domain,
which is the content of Section 4. Finally, we will discuss the error of the
computed offset curve and conclude with some illustrative examples.
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2 Domain decomposition revisited

Although the medial axis transform does not allow in general any closed-form
expression via the parameterization of the boundary, one can find the contact
disk corresponding to any boundary points. In [5] and [14], algorithms are
presented to pinpoint the medial axis transform point (p, r) corresponding to
a given boundary point q. The first one draws a suspect disk contacting the
boundary curve at q and intersecting the other boundary curve, and then
reduce this disk until it is tangent to the other boundary curve. On the other
hand, the second one, called curve/curve-bisector, is based on the observation
that p is the intersection point of the normal line of the boundary curve at
q and the point/curve bisector of q and the other boundary curve. These
algorithms are the workhorse of our algorithm and we will call them, in a
general term, the medial axis transform engines.

The medial axis transform can be approximated by interpolating the
points found by the medial axis transform engines. The very property of
the medial axis transform that makes this process possible is that they are
one-dimensional objects composed of a finite number of real analytic curves.
We can clarify this idea by saying the medial axis transform is a geometric
graph. We call a set in R3 a geometric graph, if it is topologically a usual
connected graph with a finite number of vertices and edges, where a vertex is
a point in or R3 and an edge is a real analytic curve with finite length whose
limits of tangents at the end points exist. (The same holds for the medial
axis in R2.)

If we have an approximation of the medial axis transform, we can fig-
ure out the shape of a domain since the medial axis transform is a strong
deformation retract of the domain. To get a more accurate approximation
of the medial axis transform, we find more contact disks using the medial
axis transform engines, and include them in the interpolation scheme. Now,
when we run the medial axis transform engines to find those additional con-
tact disks, we don’t have to consider the whole domain. All we need to
consider is the region around such contact disks. For example if we want to
find a medial axis point p in Figure 4, we can concentrate our attention on
the shaded region only, not the whole domain. This is the idea of the domain
decomposition.

Theorem 1 (Domain Decomposition Lemma). For any fixed medial

axis point p ∈MA(Ω), let Br(p) be the corresponding contact disk. Suppose
A1, . . . , Am are the connected components of Ω \ Br(p). Denote Ωi = Ai ∪
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Figure 4: A subdomain around p

Br(p) for i = 1, . . . ,m. Then

MA(Ω) =
m⋃

i=1

MA(Ωi) and

MAT(Ω) =
m⋃

i=1

MAT(Ωi).

Moreover, we have

MA(Ωi) ∩ MA(Ωj) = {p} and

MAT(Ωi) ∩ MAT(Ωj) = {(p, r)}

for every distinct i and j.

Thus, each contact disk decomposes the domain into subdomains. Espe-
cially, if we find all the bifurcation points (where at least three edges meet)
of the medial axis transform, then the original domains are decomposed into
subdomains whose medial axis transforms are piecewise real analytic curves.
We call such a subdomain a fundamental domain and the above theorem tells
us that it is sufficient to deal with fundamental domains only.

The idea of domain decomposition is also the cornerstone of our offset
algorithm. We have seen in [3] that once we construct the offset curves of
the original boundary curve segments in fundamental domains, then domain
decomposition takes care of how to link them into the whole offset curve of
the domain. In Figure 5, for example, we can see that the offset curve of
each subdomain does not interfere with other subdomain’s offset curve, but
can be easily linked with each other, forming the offset curve of the whole
domain.

7



Figure 5: Domain decomposition for offset curves

By the way, the self-intersection points of the d-offset curve fall on the
medial axis where its radius is d. As we have seen in [3], the set of all medial
axis transform points whose radius component is c, for a given c > 0, are
composed of finite number of points or piecewise C1 curves. We call a compo-
nent of this set a c-horizontal section. The various geometry of c-horizontal
section and the offset curve near self-intersection points is thoroughly dis-
cussed in [3]. Hence, it is very important to locate d-horizontal section to
capture the exact nature of d-offset curve.

However, given a fundamental domain ΩF and d > 0, locating such d-
horizontal section in ΩF is by no means an easy task. If we assume that
MAT(ΩF ) is represented by a piecewise real analytic curve (p(t), r(t)), the
problem is equivalent to solve the equation r(t) = d. But we don’t have any
closed form expression for the function r(t). What we have at hand is some
engines that compute the value of p(t) and r(t) for given t. To incorporate
such engines into a stable root-finding schemes, one must carefully examine
the problem space beforehand.

Thus for the preparation, we are going to further decompose the domain
such that the medial axis transform of each subdomain has monotone in-
creasing/decreasing radius component. Once this is done, the solution of
the equation r(t) = d can be efficiently and stably obtained by any tradi-
tional numerical methods such as Newton-Raphson method. Thus, special
c-horizontal section which has locally maximum or minimum radius value,
which are called peak or valley respectively, needed to be located in advance.
To do so, we use iterative algorithms to approximately locate peaks and val-
leys. As long as we know in advance that there are no other peaks or valleys
nearby, these iterative algorithms work well. The trouble occurs when there
are other, sometimes infinite, peaks and valleys nearby. One has to have a
way of roughly counting these. This can be done by looking at the boundary

8



geometry. In particular, it is advantageous to decompose the domain such
that each of the boundary curve segments of subdomains whose curvature
does not change sign.

In doing so, one can also encounter the situation where there are infinitely
many peaks or valleys. Since the medial axis transform our domain is real
analytic curve, infinitely many peaks or valleys occur only when the fun-
damental domain is parallel, this is, the two boundary curve segments are
offset to each other. Using Bezout’s theorem we will provide an algorithm to
determine whether a given domain is parallel.

Now the following section will deal with how to decompose the domain
into subdomains whose medial axis transform have monotone radius com-
ponents, then in Section 4 we can easily compute the points satisfying the
equation r(t) = d.

3 Critical horizontal sections

We now discuss how to locate horizontal sections with a critical radius value.
Such horizontal sections will be shortly called critical horizontal sections.
Peaks and valleys are kinds of horizontal sections.

We begin with fixing some conventions on the boundary which will be used
throughout this discussion. We assume every curve segment r(t) composing
the boundary is positively oriented. That is, the parameter t is so chosen
that if one is going along the curve in the direction of increasing t, then the
domain remains to the left.

Let ΩF be a fundamental domain at hand and r and s be its two bound-
ary curves of the domain defined on the interval [0, 1]. Let p(t) be the
corresponding medial axis point of r(t), and let s(u) be the foot point of

p(t) on s. The opening angle θ(t) of p(t) (or r(t)) is the angle from
−−−−−→
p(t)r(t)

to
−−−−−→
p(t)s(u) in the counterclockwise direction. See Figure 6. If p(t) is on a

critical horizontal section, then θ(t) = π since we know that

cos
θ(t)

2
= − tanφ(t) (3)

where φ(t) is the angle between the tangent vectors (p′(t), r′(t)) and p′(t).
Thus locating critical horizontal sections is equivalent to locating π-opening
angle sections.

We have found that it is advantageous to further decompose the funda-
mental domain such that the curvature of its boundary curves have constant
sign. To do that, we need to locate the boundary parameter where the curva-
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p(t)

x

y

z

r(t)
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(p'(t),r(t)')

Figure 6: Opening angle

ture changes its sign. Candidates are those parameters where the curvature
is discontinuous or zero.

The curvature κ(t) of a boundary curve r(t) is defined by

κ(t) =
det(r′(t), r′′(t))

|r′(t)|3/2
. (4)

According to this definition, a curve with positive (resp., negative) curvature
will bend to the left (resp., right) as one is going along the curve in the
direction of increasing t. See Figure 7.

For a rational r(t) = (x(t)/w(t), y(t)/w(t)), we have

κ =
w3(x(y′w′′ − y′′w′) + y(w′x′′ − w′′x′) + w(x′y′′ − x′′y′))

((xw′ − x′w)2 + (yw′ − y′w)2)3/2
(5)

Thus, if r(t) is a rational curve of degree n, locating zero-curvature points of
r amounts to solving 3n− 3 order univariate polynomial equations (2n− 3 if
polynomial curve). At the zero-curvature points on the boundary, we can get
the corresponding medial axis transform points. By these medial axis trans-
form points, the original domain is further decomposed into fundamental
domains whose boundary curves have constant curvature sign except possi-
bly at the end points. We can classify these fundamental domains into four
possible cases according to the curvature sign. For convenience’ sake, we
adopt the following conventions for the curvatures κr and κs of r and s, re-
spectively: we denote κ∗ > 0 if κ∗(t) > 0 for all t except possibly for t = 0, 1
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κ > 0

κ < 0

Figure 7: Curvature sign convention

and κ∗ ≥ 0 if κ∗ > 0 or κ∗(t) ≡ 0 for all t. Similarly κ∗ < 0 and κ∗ ≤ 0 are
defined.

Now we describe how to locate π-opening angle sections case by case.

Case 1: κr ≤ 0 and κs ≤ 0

For any given contact point r(t) on r, let s(u) be the corresponding contact
point of r(t) on s. Note that u = u(t) is a decreasing function of t due to
the orientation convention of the boundary curve. Let α(t) and β(u) be the
angle of r′(t) and s′(u) with respect to the positive x-axis, respectively. Then
we have

θ(t) = β(u)− α(t), (6)

which means that the opening angle θ(t) is equal to the angle from r′(t) to
s′(u). (See Figure 8.) Since β(u) is a decreasing function of u and u = u(t)
and α(t) are decreasing functions of t, θ(t) is increasing function of t.

From this observation we have the following result.

Proposition 2. If θ(0) > π or θ(1) < π, there is no critical horizontal

sections in ΩF . If θ(0) ≤ π and θ(1) ≥ π, there exists exactly one critical

horizontal section, which is a valley in ΩF . In this case, if both r and s are

line segments, i.e., κr ≡ 0 and κs ≡ 0 then the whole MAT(ΩF ) is a critical
horizontal section. Otherwise, the critical horizontal section is a single point.

The location of this valley point can be approximated to any given toler-
ance by bisection method: Let r(t) be a given point with 0 < t < 1. Compute
the intersection point of s and the normal line of r(t). The angle ξ defined
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Figure 8: κr ≤ 0, κs ≤ 0
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Figure 9: Valley locating process

by s′(u) and
−−−−−→
s(u)r(t) indicates which side of t the valley exists. That is, if

ξ < π/2 then the valley’s contact point lies on r(c) for some 0 < c < t and if
ξ > π/2, then for t < c < 1. Applying this process recursively, we can trap
the valley in a sufficiently small region.

Case 2: κr ≥ 0, κs ≥ 0

This case is analogous to the Case 1. Proposition 3.1 can be adapted as
follows.

Proposition 3. If θ(0) < π or θ(1) > π, there is no critical horizontal

sections in ΩF . If θ(0) ≥ π and θ(1) ≤ π, there exists exactly one critical

horizontal section, which is a peak in ΩF . In this case, if both r and s are

line segments, i.e., κr ≡ 0 and κs ≡ 0 then the whole MAT(ΩF ) is a critical
horizontal section. Otherwise, the critical horizontal section is a single point.

The locating algorithm is similar as in Case 1.

Case 3: κr > 0, κs < 0

(By changing the roles of r and s, we can also cover the case κr < 0, κs > 0.)

12



�� �!�"

#	 �$�"

Figure 10: κr ≥ 0, κs ≥ 0

%'&

(

)
%�*

%,+

Figure 11: κr > 0, κs < 0

In this case we cannot tell the existence of peak or valley, or how many
there are, if any, with only the data of θ(0) and θ(1). In general, one can
cook up an example which has as many peaks and valleys as one wishes with
given θ(0) and θ(1) and under the condition κr > 0, κs < 0. For example, in
Figure 11 we have one peak and one valley between p1 and p3 whereas none
of them between p2 and p3. (Note that p1 and p2 have the same opening
angle and radius.) Moreover, we cannot exclude the possibility that portions
of r and s are offset curves to each other. We begin with this problem. Since
MAT(Ω) is a real analytic curve at every generic 2-prong point and our
fundamental domain consists of generic 2-prong only (except possibly at the
end points), MAT(ΩF ) is a real analytic curve. By the real analyticity of
radius component of MAT(ΩF ), we have the following:

Theorem 4. Either the whole MAT(ΩF ) is a c-horizontal section for some

c > 0, or every c-horizontal section of MAT(ΩF ) consists of a finite number
of points.
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That is, either the whole r and s are offset curves to each other (in this
case we call ΩF a parallel fundamental domain), or there is a finite number
of critical radius points. The decision whether or not ΩF is parallel can be
made in finite steps. The criterion for this is given in Theorem 6. Bezout’s
theorem is crucial in proving this theorem.

Theorem 5 (Bezout’s Theorem). Two relatively prime polynomials f, g ∈
C[x, y] of degree d1 and d2 can have at most d1d2 simultaneous solutions.

For a given polynomial h(x, y), the equation h(x, y) = 0 usually defines
a curve in R2. But in some cases, the solution of h(x, y) = 0 consists of a
single point. (For example h(x, y) = x2 + y2.) We call such a solution an
isolated solution. To be precise, a point (x0, y0) is called an isolated solution
of the equation h(x, y) = 0, if for some neighborhood V of (x0, y0), there is
no other solution than (x0, y0) in V .

The next is then an easy corollary of Bezout’s theorem.

Corollary. Let h(x, y) be an irreducible polynomial over R of positive degree

d. Then h(x, y) = 0 can have at most d(d− 1) isolated solutions.

Proof. If (x0, y0) is an isolated solution of h(x, y) = 0, then ∂h
∂x
(x0, y0) =

∂h
∂y
(x0, y0) = 0. That is, (x0, y0) is a simultaneous solution of

h(x, y) = 0 (7)

∂h

∂x
(x, y) = 0 (8)

∂h

∂y
(x, y) = 0. (9)

Since h is irreducible, h and ∂h
∂x

(or ∂h
∂y
) are relatively prime. Now the result

follows from Bezout’s theorem.

Theorem 6. Let ΩF be a fundamental domain with boundary curves r and

s. Suppose r and s are rational curves of degree m and n respectively. Then

ΩF is parallel if and only if:

1. r(0) = r(1), and

2. For some distinct N + 1 points 0 = t0, . . . , tN = 1, where N = (2m +
2n− 1)2, we have θ(t0) = · · · = θ(tN) = π.

If ΩF is parallel, then for any N +1 points, the second condition is satisfied.
What this theorem says is that any one set S of N+1 points is enough. If one
of ti in S does not satisfy the condition, then ΩF is not parallel. Otherwise,
i.e., if every ti in S does satisfy the condition, then ΩF is parallel.
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Proof. One way is obvious. Conversely, let s(ui), i = 0, . . . , N be the corre-
sponding contact points of r(ti) on s. Since θ(ti) = π, (ti, ui) are solutions
of

r′(t) · (r(t)− s(u)) = 0 (10)

s′(u) · (s(u)− r(t)) = 0. (11)

If one substitutes

r(t) =
1

c(t)
(a(t), b(t)) (12)

s(u) =
1

f(u)
(d(u), e(u)), (13)

the above equations are reduced to polynomial equations

P (t, u) = (af − cd)(a′c− ac′) + (bf − ce)(b′c− bc′) = 0 (14)

Q(t, u) = (af − cd)(d′f − df ′) + (bf − ce)(e′f − ef ′) = 0. (15)

Note that both P and Q have total degree of at most 2m+2n−1. In view of
Bezout’s theorem, P and Q must have a common factor of positive degree.
Let h be the greatest common divisor of P and Q. Suppose h is written as
a product

h = h1 · · ·hr (16)

of irreducibles over R of positive degree d1, . . . , dr. Now if we write P = P1h
and Q = Q1h, then (ti, ui) are simultaneous solutions of

P1(t, u) = 0 (17)

Q1(t, u) = 0 (18)

or solutions of one of the equations

h1 = 0
...

hr = 0.

Put d0 = 2m + 2n − 1 − d where d = d1 + · · · + dr. Since P1 and Q1 are
relatively prime polynomials of degree d0, they have at most d0

2 solutions
and each hi has at most di(di−1) isolated solutions. The number of all these
solutions amount to d2

0+d1(d1−1)+· · ·+dr(dr−1) < (d0+· · ·+dr)
2 < N+1.
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Thus, at least one of (ti, ui) is the solution of hj which is not isolated.
That is, for some i, j we have hj(ti, ui) = 0 and one of the partial derivative,

say
∂hj

∂u
(ti, ui), is not equal to zero. By the implicit function theorem, there

is φ ∈ C1 such that (t, φ(t)), for some neighborhood of ti, is the solution
of hj(t, u) and hence Equation (8) and (9). By the way, L(t, u) = (r(t) −
s(u))·(r(t)−s(u)) under the constraints of (8) and (9) measures the diameter
of the contact disks. If we substitute u = φ(t), then it is easy to see that
dL
dt
(t, φ(t)) = 0 in a neighborhood of ti, which means that ΩF contains a

parallel fundamental domain. By theorem 3.3, the whole ΩF must be parallel.

Now we continue to locate critical horizontal sections in Case 3. After go-
ing through the above test, we are left to locate the discrete critical horizontal
sections in ΩF as stated in Theorem 4. To achieve this goal, we introduce a
procedure that is incrementally securing regions that are free of any critical
horizontal sections.

Let us continue to suppose κr > 0 and κs < 0 as in Case 3. Let α(t) be
the angle of r′(t) and β(u) be that of s′(u) as in the proof of Proposition 2.
Assume also that total angle variations of r′(t) and s′(u) do not exceed π,
i.e.,

∆α =

∫ 1

0

κr(t)|r
′(t)|dt < π, (19)

∆β =

∫ 1

0

κs(u)|s
′(u)|du > −π. (20)

The reason behind this assumption is that we don’t want to deal with too bent
fundamental domains. And this assumption can be easily satisfied by insert-
ing some contact disks, if necessary, in the fundamental domain concerned.
Now we are ready to start the procedure. Take r(t1) for any 0 < t1 < 1 and
let s(u1) be the corresponding contact point on s. Let θ1 be the opening angle
at r(t1). Note that r′(t) rotates positively and s′(u) negatively as the corre-
sponding parameters increase. Suppose first θ1 > π. Since β(u1) = α(t1)+θ1,
the parameter t2 such that α(t2) + π = β(u1), i.e., such that r′(t2) is parallel
to s′(u1) satisfies t2 > t1. Then we can claim that

Proposition 7. The fundamental domain defined by contact disks r(t1) and
r(t2) has no critical horizontal sections.

Proof. Let s(u2) be the corresponding contact point of r(t2), p be a medial
axis point in the fundamental domain, and r(t) and s(u) be the contact
points of p. To prove that p is not a critical horizontal section, it is enough
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to show that the opening angle of p, i.e., β(u) − α(t) never equals 2kπ + π
for any integer k. Note that we have t1 < t < t2 and u1 > u > u2. Since
β(u1) < β(u) < β(u2) and α(t1) < α(t) < α(t2), we have β(u1) − α(t2) <
β(u)− α(t) < β(u2)− α(t1). Now the result follows by the observation that
β(u1)−α(t2) = π and β(u2)−α(t1) = β(u2)−β(u1)+ θ1 < π+ θ1 < 3π.

Now if θ1 < π, we have t2 < t1 and the procedure follows similarly.
Applying the above procedure recursively, we can obtain a sequence {tk}.

Theorem 8. If the sequence {tk} converges to some 0 ≤ τ ≤ 1, then the

medial axis transform point corresponding to r(τ) is a critical horizontal sec-
tion.

Proof. Since α(tk) + θk = β(uk) and β(uk)− α(tk+1) = π, we have α(tk+1)−
α(tk) = θk − π. Furthermore, we have

α(tk+1)− α(tk) =

∫ tk+1

tk

κr(t)|r
′(t)|dt.

Since θ(t) is continuous and θ(tk) − π = α(tk+1) − α(tk), we must have
θ(τ) = π.

Given any fundamental domain ΩF with κr > 0 and κs < 0, we first
take the medial axis transform point corresponding to the boundary point
r(1

2
). From this medial axis transform point, we march (in both directions)

to the nearest critical horizontal section in ΩF . If we are out of ΩF during
the march, then ΩF has no critical horizontal section. Otherwise, if we come
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to a critical horizontal section p, we keep the record of p and restart with
the fundamental domain defined by p and one of the medial axis transform
points p(0) and p(1) that is closer to p. In this way, we can locate all critical
horizontal sections in ΩF .

4 Monotonic fundamental domain

Following the procedures of the previous sections, we can decompose the
original domain into many fundamental domains containing no critical hori-
zontal sections, i.e., no locally maximal or minimal radius component. Thus
all of our fundamental domains have monotone increasing or decreasing ra-
dius function. We will call them monotonic fundamental domains.

Now we discuss the computation of offset curves in a monotonic funda-
mental domain ΩF . We can assume that a parameterization (p(v), r(v)) of
MAT(ΩF ), defined on the interval [0, 1], so chosen that r(v) is monotone
increasing. First of all, then, with the data of r(0) and r(1), we can answer
the question whether or not there exists any self-intersection points of the
d-offset curves. Recall that the self-intersection points of d-offset curves are
the medial axis points with a d radius value. We have also seen in [4] that
d-offset curve is the envelope of d-cutoff of MAT(ΩF ), where a d-cutoff of a
subset A of R3

+ = R2 × (R+ ∪ {0}) is defined by

Ad = {(x, y, r) ∈ R3
+|(x, y, r + d) ∈ A}. (21)

Now, if d < r(0), there exists no self-intersection point since r(v) > d
for all 0 ≤ u ≤ 1. And the d-offset curves consist of pair of curves rd(t)
and sd(u) for t, u ∈ [0, 1]. On the other hand, if r(0) ≤ d ≤ r(1), then
r(v) = d for exactly one v ∈ [0, 1]. (Unless r(0) = r(1), i.e., ΩF is a parallel
fundamental domain. In this case, the d-offset curve is MA(ΩF ) itself.)
Finally, if r(1) < d, then the d-cutoff of MAT(ΩF ) is an empty set, which
means that there is no d-offset curve at all in ΩF . We summarize these results
as follows (see also Figure 13,14, and 15):

• d < r(0): Since r(v) > d for all v ∈ [0, 1], (p(v), r(v)− d) is a parame-
terization of MAT(ΩF )d for v ∈ [0, 1] and there is no self-intersection
points.

• r(0) ≤ d ≤ r(1): Since r(v) is monotonic increasing, there exists unique
c ∈ [0, 1] satisfying r(c) = d. Then (p(v), r(v) − d) for c ≤ u ≤ 1 is a
parameterization of MAT(ΩF )d and p(c) is the self-intersection point.

• r(1) < d: Since r(v) < d for all v ∈ [0, 1], MAT(ΩF )d is empty, and so
is the d-offset curve.
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Figure 13: d < r(0) ≤ r(1)

So, as we go through each monotonic fundamental domain ΩF , one by
one, of the original domain Ω, we do nothing and just ignore it if d > r(0)
and d > r(1). If d < r(0) and d < r(1), we compute rd and sd and record
them as d-offset curve of ΩF . Finally, if r(0) ≤ d ≤ r(1) or r(0) ≥ d ≥ r(1),
we first check if ΩF is parallel. If so, rd, sd, and MA(ΩF ) are all the same
and each of them is the d-offset curve of ΩF . If ΩF is not parallel, the
unique self-intersection point can be located as follows. We can consider
that MAT(ΩF ) is parameterized by t or u, the parameters of the boundary
curve r or s, respectively. The fact that we can get the medial axis transform
point (p(t), r(t)) for any given boundary point r(t) for t ∈ [0, 1] amounts
to that we can “evaluate” the MAT(ΩF ) as a function of t, especially the
radius component r(t). Recall that the self-intersection point is equivalent
to solution of r(t) = d. Thus we can apply any numerical approximation
scheme to solve this equation, for example the Newton-Raphson method.
(Note that we can evaluate the derivative r′(t) by the relation 3.) After we
find the self-intersection point, or equivalently the contact disk with radius
d, the fundamental domain ΩF is divided by the contact disk. The resulting
two fundamental domains are just those considered above and we treat them
accordingly.

5 Error analysis

In fact, what we have done so far is to specify parameter intervals of the
boundary curve r(t) such that rd(t) on those intervals are the d-offset curve
of the boundary. To complete the whole work, one need approximate rd(t) on
each interval. As we have pointed out in the introduction, the approximation
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of rd(t) is unavoidable due to the irrational term in Equation (1). Of course,
if r(t) is a Pythagorean hodograph curve, then the irrational term disappears
and rd(t) can be represented by an exact rational curve.

There are a lot of literature dealing with approximation of rd(t) from
r(t) in the given interval, and we do not address any new approximation
method here. Instead we are going to discuss how to compute error of rd(t).
If the computed error is beyond the given tolerance, we have to subdivide
the interval to increase the precision of approximation.

Let w(s) be an approximation of rd(t). We may suppose that w(s) and
r(t) are defined on the unit interval [0, 1]. Then the error is defined by

E(s, t) = |w(s)− r(t)| − d,

where s and t must satisfy the constraint

F (s, t) = (w(s)− r(t)) · r′(t) = 0.

That is, for a given point r(t), we measure the length w(s)r(t) such that
w(s)r(t) is normal to the tangent of r(t), and see how much it deviates from
d. Of course, if w is true d-offset curve, then E ≡ 0.

The extreme points of E(s, t), constrained by F (s, t) = 0, are among the
critical points of the function H

H(s, t, λ) = E(s, t) + λF (s, t).

The critical points of H are the solutions of the equations

0 =
∂H

∂s
=
∂E

∂s
+ λ

∂F

∂s
(22)

0 =
∂H

∂t
=
∂E

∂t
+ λ

∂F

∂t
(23)

0 =
∂H

∂λ
= F (s, t), (24)

where

∂E

∂s
+ λ

∂F

∂s
=

(
w(s)− r(t)

|w(s)− r(t)|
+ λr′(t)

)
·w′(s)

∂E

∂t
+ λ

∂F

∂t
= −

w(s)− r(t)

|w(s)− r(t)|
· r′(t)−

λ
(
|r′(t)|2 − (w(s)− r(t)) · r′′(t)

)
.

Then Equation (24) reduces Equation (23) to

λ(|r′(t)|2 − (w(s)− r(t)) · r′′(t) = 0. (25)
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Now, if λ = 0, Equation (22) becomes

(w(s)− r(t)) ·w′(s) = 0, (26)

that is, w(s)r(t) is normal to the tangent of w(s). And if λ 6= 0, Equa-
tion (24) and (25) generate

w(s)− r(t) = m
r′(t)

|r′(t)|
× z, (27)

where z is the unit normal vector to the plane and

m = −
|r′(t)|3

(r′(t)× r′′(t)) · z
.

One can easily check that w(s) of Equation (27) coincides the center of
curvature of r(t).

Now, to identify extreme points of E, i.e, to find the maximal deviation
of |w(s)r(t)| from d, we increment t from 0 to 1 in step 4t, and find the
intersection point w(s) of the normal line of r(t) and w. Then we calculate

cosφ,

(w(s)− r(t)) · r′′(t)− |r′(t)|2,

where φ is the angle between
−−−−−→
w(s)r(t) and w′(s). If any of these quantities

change their signs between successive t, say k4t and (k+1)4t, they indicates
the existence of a maximal deviation in the interval [k4t, (k + 1)4t]. By
recursively applying the above procedure to the interval [k4t, (k+1)4t], we
can locate the parameter t where the maximal deviation occurs. If the error
is beyond the given tolerance, we have to insert a contact disk at r(t) and
reduce the error until the tolerance is satisfied.

6 Illustrative example

In Figure 16, a domain with a hole inside is decomposed into three funda-
mental domains. This process was addressed in [5]. In Figure 17, we inserted
three contact disks that correspond to the inflection points of the boundary
curve. Now the resulting fundamental domains’ boundaries have constant
curvature signs. In Figure 18, all peaks and valleys are found, if any, in each
fundamental domain. Now the resulting fundamental domains are monotonic
fundamental domains. In Figure 19, the self-intersection points for a given
value d are found, if any, in each monotonic fundamental domain. Finally in
Figure 20, offset curves are computed in each valid fundamental domain.
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Figure 16: step 1

Figure 17: step 2

Figure 18: step 3
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Figure 19: step 4

Figure 20: step 5
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