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MINKOWSKI SUM OF SEMI-CONVEX DOMAINS IN R?

SUNG WOO CHOI

ABSTRACT. The Minkowski sum of two sets A, B in R"™ is defined to be the set of all points of the form a+b
for a € A and b € B. Due to its fundamental nature, the Minkowski sum is an important subject in many
practical application areas such as image processing, geometric design, robotics, etc. However, compared to
the simplicity of the definition, a Minkowski sum of plane domains can have quite complicated topological
and geometric features in general. This is the case even when the summands are relatively simple. For
example, even if the summands are homeomorphic to the unit disk, the Minkowski sum of them need not
be.

We first introduce natural curve classes called Minkowski classes, and show that the set of all planar
domains, called M-domains, whose boundaries consist of finite number of curves in a Minkowski class M, is
closed under the Minkowski sum. Then we introduce the notion of semi-convezity for plane domains, which
extends the convexity, and show that the Minkowski sum of semi-convex M-domains is homeomorphic to
the unit disk for any Minkowski class M. We also show that, in some sense, the semi-convexity is the
weakest condition, so that the Minkowski sum be homeomorphic to the unit disk. It is also shown that the
set of all semi-convex M-domains is closed under the Minkowski sum for any Minkowski class M. These
results reveal a new topological behaviour of the Minkowski sum.

1. INTRODUCTION

Let A and B be subsets of R”. Their sum A + B, called the Minkowski sum of A and B, is defined by
A+B={a+bla€ A,be B}.

Being one of the most fundamental operations on the sets in the spaces with the addition operation, the
Minkowski sum has been used, both implicitly and explicitly, in virtually all branches of mathematics.
However, there have not been many mathematical analyses of the properties of the Minkowski sum itself.
One notable exception is the pioneering works by H. Brunn, H. Minkowski, and others on the so-called
Brunn-Minkowski theory, which compares the volumes of the Minkowski sum and its summands [1, 16, 19].

Meanwhile, mainly due to the convenience of describing various geometric relations, the Minkowski sum
has been adopted and used extensively in engineering and computer science. A few examples are mechanical
engineering (collision-free path planning [13]), image processing and mathematical morphology [6, 20], com-
puter graphics (metamorphosis [5]), geometric modeling (offset and sweep curve/surface generation [15, 21],
computation of CSG operations [18]), and computational geometry [7].

The common problem persistent in all such applications is the efficient computation of the Minkowski
sum [8, 9, 11]. But, the need for dealing with complex geometric objects encountered in real-world appli-
cations, makes this goal seem far from satisfactory. Thus there naturally arises the need for fundamental
geometric and topological analysis of the Minkowski sum, which should be more detailed than just comparing
volumes.

In this paper, we will investigate some global topological properties of the Minkowski sum in relation
with the geometric structures of its summands. Although the Minkowski sum has a simple definition, it
may cause a lot of complicated phenomena. In general, the Minkowski sum operation does not preserve
topological properties of the sets in the Euclidean space. To give an idea, we first show some examples: See
Figures 1, 2 and 3. Note that all the summands in these figures are homeomorphic to the unit disk. But in
Figure 1, the result of the Minkowski sum is not simply-connected. In Figure 2, the Minkowski sum is not
simply-connected, and its boundary is not homeomorphic to the unit circle. Worse still, the Minkowski sum
has infinitely many ‘holes’ in Figure 3.
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FI1GURE 3. Minkowski Sum with Infinitely Many Holes
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These examples show that even when the summands are topologically simple, the Minkowski sum of them
can become quite complex in the topological sense. Especially, the Minkowski sum does not preserve even
the simplest topological property of the sets in R2, that is, that of being homeomorphic to the unit disk.

Thus there arises the following natural problem:

Problem 1 : Find a class of sets in R2 which are homeomorphic to the unit disk, such that the Minkowski
sums of sets in that class, are always homeomorphic to the unit disk.

An immediate answer to this problem is the class of all convex sets which are homeomorphic to the unit
disk, since it can be shown easily that the Minkowski sum of convex sets is also convex. But a serious
drawback of the convexity is that it is too strong; There are too many useful sets which are not convex. So
another important problem to be posed is:

Problem 2 : Find a class of sets in R2 which contains all convex sets homeomorphic to the unit disk,
and is mazimal among aoll the classes satisfying the condition in Problem 1.

If we consider two bounded sets A and B in the plane as rigid, mutually impenetrable objects, then the
complement of the Minkowski sum of A + B in R? represents the set of all possible relative positions of
the translates of A and —B. One such configuration can be continuously moved into another by translation
without mutual penetrating, if and only if the two configurations are in the same connected component of
the complement of A + B in R?. So, the Minkowski sum A + B is simply-connected, if and only if any two



MINKOWSKI SUM 3

relative positions of the translates of A and —B can be continuously moved into each other by translation
without mutual penetrating, or, in other words, any relative positions can be continuously pulled over to
separate A and —B indefinitely.

We will show that there exists an important class of planar domains that we call semi-convez, which
satisfy the conditions both in Problems 1 and 2. Intuitively speaking, a planar domain is defined to be semi-
convex, if the normal vector field along the boundary does not turn concavely by more than the angle 7.
We mention that our definition of semi-convexity differs from that introduced in [14]. It is also significantly
more general than the usual notion of star-shapedness, and, as far as the author’s knowledge, it is the first
among the many variations of the convexity, which has an optimal property with respect to the Minkowski
sum.

In general, the boundary curves of a Minkowski sum are given by the results of the operation called
convolution on the boundary curves of the summands. The convolution can be considered as a basic building
block in analyzing the Minkowski sum of the shapes represented by boundary curves. But there has been few
precise mathematical treatises on the convolution of curves in the literature. Also, we will observe in Section 2
that the convolution can behave wildly unless we restrict the class of the curves to be convolved, which is
a fact not often noted in both theory and practice. So in Section 2, we carefully analyze the mathematical
properties of the convolution of curves, and classify the curve classes according to their differential regularity
with particular adaption to the convolution.

Often in practice, the curve pieces used to describe shape boundaries come from specific fixed classes such
as the class of the rational curves or the various classes of splines (e.g., the NURBS curves). However, most
of these important curve classes are not closed under convolution, which makes it impossible to represent
the Minkowski sum boundary in a uniform manner (i.e., with the curve pieces in the same curve class used
to represent the summands), and thus causes serious problems in practice. Meanwhile, it also turns out
that the curve classes C*!’s and C¥’s introduced in Section 2, are not closed under convolution. Now these
imply that the usual conditions on the boundary curves such as the rationality or the differentiability are
not preserved under the Minkowski sum. In particular, it is not clear whether the notion of semi-convexity
is closed under the Minkowski sum, unless we restrict the boundary curves to be inside special curve classes.
Thus it is a necessary and important problem to find a condition on the classes of curves, which guarantees
that the curve classes with that condition, be closed under convolution.

In Section 2, we introduce special curve classes, called Minkowsk: classes, which are closed under convo-
lution. An important example of a Minkowski class, denoted by W, is given in Section 3, for which we use
Lojasiewicz’s structure theorem for real analytic varieties [12]. It is shown that W contains practically all
the curves used in engineering applications. This especially means that it is not so restrictive to consider the
Minkowski sum only in the category of M-domains for a Minkowski class M. Here, an M-domain means a
subset in R? whose boundary consists of finitely many curves in M.

Note that we consider a fairly general class of domains, especially with corners on their boundaries. In
fact, this is also necessary, since these domains can arise naturally as a result of the Minkowski sum operation
on quite nice domains. To handle them, we introduce two concepts: sector in Section 4, and virtual boundary
in Section 5. A sector is a local germ of a domain near a boundary point whether cornered or not. So, by
examining the effect of the Minkowski sum on sectors, we can understand the essential and local behavior of
the Minkowski sum. By integrating these results, we obtain the global result in Section 6 that the set of all
M-domains is closed under the Minkowski sum for any Minkowski class M, which is a basis for the further
closedness result for the semi-convexity.

The notion of virtual boundary is a generalization of that of the usual boundary in a way that incorporates
corners in a uniform manner. It is defined to be in one-to-one correspondence in a continuous manner with
the outer normal vectors on the boundary including those at the corners. Together with the analysis of
sectors, the notion of virtual boundary enables a uniform and easy treatment of cornered domains, thus
reducing the globally complex problem of the Minkowski sum into the analysis of a few local genotypes of
the sectors.

The notion of semi-converity, which generalizes that of convexity, will formally be introduced in Section 7.
Let M be a Minkowski class. It is proved that the Minkowski sum of any two semi-convex M-domains,
is homeomorphic to the unit disk, which answers Problem 1 above within the category of M-domains. In
Section 8, we prove that for any M-domain which is homeomorphic to the unit disk but is not semi-convex,
there exists a semi-convex M-domain such that their Minkowski sum is not homeomorphic to the unit disk.
This answers Problem 2 above within the category of the M-domains. In fact, it is shown that the set
of all semi-convex M-domains is uniquely maximal among all the classes of M-domains, which satisfy the
condition in Problem 1 and contain all the M-domains called flag domains. Finally, we prove in Section 9
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FIGURE 4. Inclusion Relations for C*! and Ck

that the set of all semi-convex M-domains is closed under the Minkowski sum. In proving these results, we
will use the Gauss-Bonnet Theorem, translated into the language of virtual boundary, as one of the main
tools. In Section 10, we summarize the results in this paper, and discuss some further research directions.

Since the semi-convexity is geometric in nature, the properties of semi-convex domains proved in this
paper reveal a new relationship between the geometric and the topological properties of the Minkowski sum.
Also, since semi-convexity can be checked easily algorithmically, it is expected to be utilized for various
application areas using the Minkowski sum.

2. CURVES

The boundaries of reasonable domains consist of curves. So, for an analysis of domains, we first do an
analysis of curves. In this section, we define various special curve classes according to their regularities, and
study their properties with respect to the operation of convolution. In particular, the Minkowski classes are
introduced, which are defined essentially to be closed under convolution. We also set up some conventions
and notations which will be used throughout this paper.

Let v = (v1,v3), w = (w1,ws) be in R2. We denote v J w, if at least one of v and w is 0 = (0,0), or
v = kw for some k € R. Let p € R? and r > 0. By B,(p), we always mean the closed ball in R?, centered at
p and with radius 7. The open ball will be denoted by B?(p). The unit circle in R? will be denoted by S?.
Thus, S* = {v € R? | |v| = 1} = 8B (0).

2.1. Convolution.

Definition 2.1. (C*! Curve)

Let k,0l = 1,2,--- ,00,w (w for real-analytic), and k¥ > I. Let n = 1,2,---. A curve 7y : (a,b) = R" is
called a C* curve, if there exists a reparametrization ¥ : (&,b) — R2 of v such that ¥' # 0 on (&,b), and ¥
is C*. A curve v : [a,b] — R™ is called a C*! curve, if the restriction of y to (a,b) is a C* curve, and there
exists an extension 7 : (a — €,b + €) = R” of «y for some € > 0, such that 7 is a C! curve.

Here, it is important to note that §' # 0. Without this condition, a curve v may not be a C* curve, even
if it is k-times differentiable.

Definition 2.2. (The Class C*)

Let k,1 = 1,2,--- ,00,w (w for real-analytic), and k& > I. Then we denote by C*! the class of all C*?
curves in R? defined on closed intervals, which have no self-intersections. An element in C*! will be called
a C*l_curve.

Note that closed loops are excluded in this definition. The inclusion relations in Figure 4 are immediate
from the definition.

Remark 2.1. Given a C¥l-curve v : [a,b] — R2, we usually assume that it is defined on some slightly larger
open interval (a — €,b+ €), and + is k-times differentiable on (a,b), I-times differentiable on (a — €,b + €),
and v #0on (a —€,b+¢).

Let v : [a,b] = R? be a Ct!-curve, and let ¥ : (a —¢€,b+¢€) — R? be a C! extension of . It is easy to see
that the limit
— i (D =)

=t [¥(r) = 7(t)]
exists in S' for every t € [a,b], and v[y] : [a,b] — S! is continuous. We will denote v[y](a) also by

v[y]. Note that these are independent of the choice of 5. Let u : R — S! be the covering map defined by
u(t) = (cost,sint) for t € R. Now there exists a continuous function 6 : [a,b] — R such that v[y](t) = p (6(2))

vi(®)
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for every t € [a,b]. We call  an angle function of v. Note that, if 6 is another angle function of -y, then, for
some integer n, we have §(t) = 0(t) + 2nx for every t € [a,b]. So the following is well-defined:

Definition 2.3. (Convex Curve)

Let v : [a,b] — R? be a C''-curve, and let @ : [a,b] — R be an angle function of v. Then 7 is called
convex, if 6 is either strictly increasing or strictly decreasing, unless it is constant. The signature of v, o ()
is defined to be + (resp., —) if 6 is strictly increasing (resp., strictly decreasing), and 0 if 8 is constant.

For k,I = 1,2,-++ ,00,w (w for real-analytic) with k& > I, we denote by C¥! the class of all the convex
curves in C*¥!. An element of C¥! will be called a C¥!-curve.

From the above definition, the inclusion relations between the classes C¥! in Figure 4 are obvious.

Definition 2.4. (x-Admissible Curves)
Two Cll-curves 71, 7o are said to be x-admissible to each other, if v[y1] / v[y2] and o(71) = o(v2) # 0.

Note that the x-admissibility is a transitive relation. Let 7; : [a;,b;] = R, i = 1,--- ,n be C}l-curves
which are x-admissible to each other. Let 6; : [ai,bi] = R be an angle function of v; for each i. For each
i, define 6; : [a;,b;] = R by 6;(t) = 6;(t) if v[v;] = v[v1], and 6;(t) = 6;(t) + 7 if v[y;] = —v[y]. Then,
with no loss of generality, we can assume 6;(a;) = 6;(ay) for each i. Define & = min {6;(b1),--- ,0,(b,)} if
o(y1) =+, and @ = max {61(b1),--- ,0,(bn)} if o(11) = —. Let h : [0,1] — R be the linear function with
h(0) = 6;(a;) and h(1) = a. Now we define v = y; * - -+ %7, : [0,1] = R2, the convolution of v1,- -+ ,yn, by

¥() = (07 (h(2) + - + 1 (607 (h(D)),

for t € [0,1]. Note that v[y1](67  (h(t))) / --- [ V[1a](0; (h(t))) for every t.
From the definition, it is clear that the result of convolution does not depend on the order of the operands.

It is also easy to see that convolutions are continuous curves. But in general, a convolution of Cll-curves
can exhibit quite anomalous behaviors, and it cannot be expected to be even a C'*'-curve. This can happen
even when the operands belong to C¢**°, as can be seen from the following example:

Example 2.1. For some small § > 0, let y4,v_ : [0,6] = R? be given by v+(t) = (¢, f+(t)) for t € [0, 4],
where f1 : [0,0] = R are defined by

fOI‘ t € 0,6 . NOle ‘hat

o< g () [ evamn (¢ 5))] < 6o g ()

for every £ > 0. So we have

0< f+(t) < (5+x/§) /Ot glzexp (—%)df = (5+\/§) exp (—%)

for every t € (0,6]. This shows that fi and f_ are well-defined. It is easy to see that fi are real-analytic
on (0,6], and lim;_,o4 fik) =0 for every k < co. From this, we can see that v+ € C¥**°. Note that

" (f) = tl exp( 1) [(1—27:) [4i{1+\/§sin(%—%>}] :li\/icos(%—%)],

for t > 0. So it follows that fY(t) > 0 for t € (0,4], if we choose sufficiently small § > 0. This shows that
V4,7— € C¢*°, and v[n] = v[1e] = (1,0), 0(11) = 0(12) = +. Let f = f1 — f—. Then

0 - 3] den (e (i)
= e () (14n),

fort € (0,8]. Let t, = (3n+2nN+2nn) ' forn=1,2,---, where (37 +2rN+2r) ' <5< 3n+2aN) !
Let S = {(s,t) € [0,d] x [0,8] | v4+(s) = v_(¢)}. It is easy to see that S = {(t,,tn)|n =1,2,---}U {(0,0)}.
Note also that f'(t,) = f} (tn) — f"(t,) =0forn =1,2,---. Now 74 and —y_ are in C¥**°, and *-admissible
to each other. Let v =71 x (—72) : [0,1] = R2. Then, from the above argument, it is easy to see that there
exist sequences a,b, \, 0 with a,+1 < b, < a,, such that vy(a,) = 0 and ~(b,) # 0 for every n. Clearly,
this cannot happen for a C'*1-curve. Thus we conclude that v ¢ C11.
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The following lemma shows that the convolution behaves as expected, if we know beforehand that it has
only a mild regularity, 4.e., C1'1.

Lemma 2.1. Let v; : [a;,bi] — R?, i = 1,2 be two CL'-curves which are x-admissible to each other. Let
¥ = y1%72. Supposey € C¥L. Then, for every t,ti,ta such that v1(t1), Y2(t2) are summed in the convolution
1 * Y2, we have v[Y](t) [ v[v1](t1) J v[2](t2). In consequence, 7y is in CY'! and is x-admissible to y1 and .

Proof. Let v = v[y1](t1) = £V[y2](t2). First, note that
—(t 1 1
W) =) _ I S
[v(1) = ()] [vi + kva Ve + £vil
where
_ m(n) —m(h) _ 2(m) —na(te) b= [v2(72) — 72(t2)]
1 - —7 v2 - 9 - bl
[71(m1) — 71 (t1)] [72(72) — Y2 (t2)] [71(m1) — 71(t1)]
and (1) = 71(11) + y2(72). Let v =1lim, o vy = £lim,_,o vs. Then we have
1 1
viy](t) = lim + -V
1) Tt (|v1 +hva|  fva + %v1|>
. 1+k
= lim———-v
Tt |V1 + kV2|

. 1
= hmt 1 & ’
T2 |5 Vi + g - Vel

. 1 v
= 11rnt % -
=t g g [V

Since we know that v[y](t) € S!, it follows that v[y](t) = v or —v. Now the rest of the proof follows
easily. O

2.2. Minkowski Class.

Definition 2.5. (Minkowski Class)

A subclass M of C!*! is called a Minkowski class, if the following two conditions are satisfied:

(1) M is closed under restriction, i.e., if v : [a,b] — R? is in M, then Ylie,q1 is also in M for any
[e,d] C [a,b].

(2) M is closed under initial convolution, i.e., for any two *-admissible M-curves v : [a1,b1] = R? and
Y2 : [az,ba] = B2, the convolution Y1l[a1,a14€ * V2|[az,az+¢ 1S €ither an M-curve or constant for some € > 0.

As an example, let LA be the set of all the line segments and the circular arcs in R2. It can be easily
checked that £A is a Minkowski class. In Section 3, we will present a nontrivial Minkowski class called W,
which is significantly larger than LA.

Let v; : [ai, bi] = R?, i = 1,2 be two continuous curves. We say that 1, 72 have an intersection at (s, t),
if 1 (8) = v2(t). We say that 1, v2 have an isolated intersection at (s,t), if v1(s) = y2(t) and 71 (s") # y2(¢')
for every (s',t') € (s —e,s+€) X (t —e,t+€) \ {(s,t)} for some € > 0.

The next lemma shows an important property of Minkowski classes:

Lemma 2.2. Any two v1,%2 in a Minkowski class M cannot have infinitely many isolated intersections.

Proof. With no loss of generality, assume a; = as = 0, where v; : [a;,b;] — R? for i = 1,2. Suppose 71 and
v have infinitely many isolated intersections. Since [a1,b1] X [az, b2] is compact, there exists an accumulation
point of the isolated intersections, which we can assume to be 71(0) = 42(0). With no loss of generality,
we can assume 71(0) = v2(0) = 0 and v[y1] = (1,0). Since v1(0) = 72(0) is an accumulation point of the
isolated intersections, we can also assume that v[y,] = v[y1] = (1,0) and o(y1) = o(y2) = +. Thus, for
i =1,2, we can write v;(t) = (t, fi(t)) for small ¢ > 0, where f; is a C* function such that f;(0) = f/(0) =0
and f] is strictly increasing. Now there should exist a sequence ¢, N\, 0 such that v; and 7, have an isolated
intersection at (¢,,t,) for every n = 1,2,---. If f{(t,) = f4a(tn) except at most finitely many n’s, then the
convolution v = 41 x (—y2) would not be in C!*!, which can be seen from the argument in Example 2.1. So
we can assume fi(t,) # f4(tn) for every n. We also assume with no loss of generality that fi(t) # fo(t) if
t # t,, for any n. In this case, it is easy to see that y(¢,)’s are in the regions D; and D3 alternating with n,
where D; = {(z,y) € R? |z > 0,y > 0} and D3 = {(z,y) € R? |z < 0,y < 0}. But this is impossible, since
7 should be in M, and thus in C}'. Thus we conclude that v; and 72 cannot have infinitely many isolated
intersections. O
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Remark 2.2. Example 2.1 shows that two C¥**°-curves can have infinitely many isolated intersections, which
implies that C*! is not a Minkowski class for k,1 =1,2,--+ ,00,w, k > [, except for C¥*. Later, we will also
see that C¥*“ is not a Minkowski class.

Let ; : [a;,b;] — R?, i = 1,2 be two one-to-one continuous curves. We denote 7; ~ 72, if there
exist a; < ¢; < b; for i = 1,2 and a homeomorphism h : [a1,¢1] — [az2,¢2], such that h(a;) = as and
1 (t) = v2(h(t)) for every t € [a1,c1]. We denote 1 ~ 72, if 71 can be moved to a curve 7; by a rigid motion
in the plane so that 4; = 2. Note that both of the relations &~ and ~ are symmetric and transitive.

Let v; : [ai, b)) = R%, i = 1,2 be two Cll-curves. Note that, with appropriate rigid motions in the
plane, we can always move 7, and <, to the curves 7, J2 respectively, so that F;(a1) = F2(a2) = 0,
v[y1] = v[32] = (1,0) and 0(31),0(F2) > 0. We denote v1 I> 72 (resp., 71 < 72), if there exist continuous
functions fi, fo : [0,€] = R for some € > 0, such that the graph of f; is contained in the image of ¥; for
i=1,2,and fi(z) > fa(x) (resp., f(z) < f2(z)) for every z € (0, €].

Let M be a Minkowski class. As an important consequence of Definition 2.5 and Lemma 2.2, note that,
given any two curves 1,72 in M, there are only three possibilities, i.e., either 4 > v2, or v1 <y2, Or ¥1 ~ Ya.
Suppose v1 and 72 are x-admissible to each other. Then the convolution v = 1 * 5 is initially constant
(that is, constant for some interval from the start), if and only if 3 ~ 72 and v[y1] = —v[y2]. For the rest
of the cases, v is initially in M, and the next lemma shows the relation between ~ and s, 2 with respect
to the above relations >, <1 and ~. See Figure 5 for the illustration of these results.

Lemma 2.3. (Convolution in Minkowski Class)

Let M be a Minkowski class, and let ~y; : [a;,b;] = R?, i = 1,2 be two M-curves which are x-admissible
to each other. Let v be an initial piece of the convolution vy * 2, which is either in M, or is a constant.
Then:

(1) Suppose v[y1] = v[y]. Then v is always in M, v[y] = v[y1] = v[y], o(y) = o(m1) = o(y2), and
Y <471, Y <72

(2) Suppose v[y1] = —v[yz]. v is constant, if and only if y1 ~ Y2. If y1 > ¥2 (resp., 11 <¥2), then v € M,
v[v] = v[ye] (resp., v[y] = v[n]), o(v) = a(n1) = o(72), and v > 72 (resp., v > ).

Proof. With no loss of generality, assume that a; = az = 0, 71(0) = v2(0) = 0, v[y1] = (1,0), and o(y1) =
o(y2) = +. There are two possibilities for v[yz], i.e., (1,0) and (—1,0). We can assume 7, (t) = (¢, f1(¢)),
v2(t) = (£t,£f2(t)) (£ depending on the direction of v[ys]) for small ¢ > 0, where f; is a C* function such
that f;(0) = f/(0) = 0 and f] is strictly increasing for ¢ = 1,2. Since we have either v1 > 2, or 71 ~ 72, or
71 <2, we can assume that either fi(t) > fa(t), or fi(t) = fa(t), or f1(t) < fa(t) for every small ¢ > 0.

Consider first the case when v[y;] = (1,0). By Lemma 2.1, it is clear that, v € M, v[y] = (1,0)
and o(y) = +. So we can write y(t) = (¢, f(t)) for small + > 0, where f is a C! function such that
f(0) = f'(0) = 0, f' is strictly increasing for small ¢. Since v is in M, we can see that, for ¢ = 1,2, f(t) is
either greater than, or equal to, or less than f;(t) for every small ¢ > 0.

Now, for any small ¢ > 0, we can take small #;,t5 > 0 such that ¢ = ¢ + t2, f{(t1) = f'(t2), and
f@) = fi(t1) + f2(t2). By Lemma 2.1, it follows that f'(t) = f{(t1) = f'(t2). Since t > t1,t2 and fi, fs are
strictly increasing, we have f{(t), f5(t) > f'(t). Thus we have f;(t) > f(¢), i = 1,2, for every small ¢ > 0,
which implies that v <y; and v < 7,. This shows (1).

Y Y
V2
/ " e
T e
// T / T
0 0
V2

FIGURE 5. Convolutions of M-curves

Now consider the case when v[y;] = (=1,0). Obviously, v is constant, if and only if v; ~ ¥2. So assume
v1 # 2. Then, either 1 > 2 or 1 < 2. Suppose v; < ¥2. By Lemma 2.1, we have either v[y] = (1,0)
or v[y] = (=1,0). If v[y] = (-=1,0), then we must have f|(t) > fi(t) for every small ¢t > 0, since f], f}
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are strictly increasing. It follows that fi(t) > f2(t) for every sufficiently small ¢ > 0, which contradicts the
assumption that y; < y2. So we should have v[y] = (1,0). Since v € M and o(y) = +, we can assume
v(t) = (t, f(t)) for small t > 0, where f is a C! function such that f(0) = f'(0) = 0, and f’ is strictly
increasing for every small t > 0. Now for any small ¢ > 0, we can take small #;,t> > 0 such that t = ¢t; — ta,
fi(t1) = f'(t2), and f(t) = f1(t1) — f2(t2). By Lemma 2.1, we have f'(t) = f{(t1) = f'(t2). Since t < t; and
f1 strictly increasing, we have f](t) < f'(t), and thus fi(¢) < f(t) for every small ¢ > 0. This implies that
~ > 1. By a symmetric argument, we can also show that v[y] = v[y2] and 7 > 72, when 7, I> 72. Thus we
showed (2). O

3. THE CLASS W

In this section, we present an important example of Minkowski class called W, which is large enough
to contain practically all the important curves such as the NURBS curves. We will need the following
proposition which is part of Lojasiewicz’s Structure Theorem for real analytic varieties ( [10], [12]).

Proposition 1. (S. Lojasiewicz)

Let @ : U — R be a real-analytic function on an open setU 30 R*, n > 1, and let Z = {(z1,--- ,2,) €
U|®(z1,--- ,2,) = 0}. Then there exist T € SO(n,R) and an open set N 5 0 such that the set ZN N can
be decomposed as

ZONN=Vou-..uv™1,

where, for each k=0,--- ,n—1, V¥ can be decomposed again as
Pk
vi=Jri,
i=1

for some 0 < pr < co. Here, each T is a point, and for each T¥ with k > 1, there exist a connected open
set UF € R* and real-analytic functions £fy - --€F, on UF, such that
Ff ZT{(mla 7$n) e R" | (mla"' ,117]9) € Uzkawj zgﬁj(wla 7'Z'k) fOTj = k+17 7”}'
In fact, what we essentially need is the following consequence of the above proposition.

Corollary 1. Let ® : U — R be a real-analytic function on an open set U 3 0 in R*, n > 1, and let
Z ={(z1,- ,mp) €U |®(x1, -+ ,x,) = 0}. Then there exists an open neighborhood N of 0 in R? such that
the set Z N N has a finite number of connected components.

By using the above result, we first see how convolution behaves in the class C¢*“. Here, we define
vV X W = vjwy — vawy for v = (vi,v2),w = (w1, wz) € R%. Note that v / w if and only if v x w = 0.

Lemma 3.1. Letv; : [a;,bi] = R%, i =1,--- ,n be C¥*“-curves which are x-admissible to each other. Then,
for some €1,--+ €, > 0, 7 = Vil[a1,a14e1] **** * Vnl{an,an+en] 5 €ither constant, or is a Ce-curve which is
x-admissible to each ;.

Proof. With no loss of generality, we assume a1 = --- = a, =0, 11(0) = --- = 7,(0) =0, o(71) = --- =
o(vn) = +, and v[y1] = (1,0). For each i, let 6; be the angle function of ~; such that 6;(0) = 0 or m, and
define 6; : [0,b;] = R by §; = 6; if v[yi] = (1,0), and 6; = 6; —  if v[vi] = (=1,0). Then 6; is strictly
increasing and 6;(0) = 0 for every . Take small 0 < ¢; < b; for each ¢ such that §(e1) = --- = 0,(e,). Let
a = 6(e1). Since v;’s are in C¥**, we view each +; is defined and real-analytic on (—d, ¢;] for some § > 0. We
can also assume that each ~; is unit-speed.

Let U = (=6,€1) X --- X (—=d,€,) C R". Then the function F : U — R and the map G : U — R?, which
are defined by

n
Flzy,--,mn) = Y ;) x v,
ik

G(x1, -+, @) = Z Kp(2p) ’Yzl'(mi);
i=1 \ p#i
are real-analytic on U. Here, for each i, k; : (—d,¢;] — R is the curvature function of ~;, i.e., k;(z;) =
~vi(z;) x vi (x;). Let Zp be the zero set of Fin U. Let @ = [0,€1) X - -- X [0,€,). Then it is easy to see that
ZpnQ = {¢(t) |t € [0,a)}, where the one-to-one map ( : [0,a] — R™ is defined by (t) = (67 *(2),--- , 0, (t)).
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Note that r;(2;) = 6}(z;) for z; € [0,¢;] for each i. So (8;1)' (t) = 1/k:i(6; (1)) for ¢ € [0,q] for every i.
Since ; is real analytic on (—d, ;] for each i, we can take ¢;’s small enough so that x; does not vanish on
(0, €] for every i. So 6; ! is real-analytic on (0, ] for each 4, and hence ( is real-analytic on (0,a]. Note that
V() =y (071 (t) + - + (6,1 (2)) for t € [0,a]. So v is also real-analytic on (0, a]. Now

! _ Y O ()
Y (t) - ; Yi (01 (t)) K; (91—1 (t))
R a0

[Ty R0, 1(1)
Note that |G o ¢|? is a real-analytic function on (0,a]. If |G o {|* = 0 on (0, ], then + is constant. Suppose
|Go(¢|?#20o0n (0,a). Let S = {t € (0,a]||G o (|*>(t) = 0}. Suppose S has infinitely many elements. Then,
since |Go(|? is real-analytic on (0, o], there exists a sequence ¢, N\, 0in (0, @) such that S = {t; |k =1,2,---}.
Define the real analytic function ® by ® = F +|G|? on U. Let Zs be the zero set of ® in U. By Corollary 1,
there exists an open connected neighborhood N of 0 in U such that Zs NN has a finite number of connected
components. Let x5 = ((tx) for k¥ = 1,2,---. Since tx \, 0 and ((0) = 0, there exist infinitely many
x1’s contained in N. Denote these points in N again by xx, & = 1,2,---. Then it is easy to see that
ZeNNNQ = {xx |k =1,2,--- }U{0}. This means that Zs NN has infinitely many isolated points, which is
a contradiction to Corollary 1. Thus we conclude that S is finite. Now we can take €;’s small enough again
such that /() never vanishes on (0,a]. So v on (0,a] is a C* curve. Note that v'(t) /v.(8; ' (t)) for every
te (0,a] andi=1,---,n. So v is convex, C! on [0,a], v[] / (1,0), and o(y) = +. We can take ¢;’s smaller
still so that v is one-to-one. Thus we proved that v is a C¥*!-curve x-admissible to each ;. O

We have seen that the convolutions of any C#*“-curves belong to C«*!. In fact, this is the best we can tell.
A convolution of C¥*“-curves may not be even a C¥2-curve in general, which can be seen from the following
example:

Example 3.1. Let
m(t) = (t, %t2) , t€[0,1], 72(0) = (—sinb,cosb), 6 € [0, ﬁ].
Then 1,72 € C¢*“. It is easy to see that, with some reparametrization,
~¥(60) = (tanﬁ —siné, % tan® 0 + cos0) , €0, %],

where v = 1 * 2. From this, we can show that
! "
o VO X 7O _
™o |y(6)]
So the curvature of y blows up at § = 0, which is impossible for a C<*?-curve. Thus y ¢ C¥*2.

Note that Example 3.1 shows that the class C*“ is not a Minkowski class.
Now we define the curve class YW, which is an example of a Minkowski class.

Definition 3.1. (The Class W)
W is the union of the set of all the straight line segments and the set of all C+!-curves which are of the
form 7y % - %y, for some 7y, , 7y in C¥¥, n > 1.

As an easy consequence of Lemma 3.1, we have the following fact:
Theorem 3.1. W is a Minkowski class.
Proof. First, it is obvious that W satisfies condition (1) in Definition 2.5. Let 1,72 € W be x-admissible to

each other. Then 73 = g *--- * a,, and 5 = (1 *--- * (8, for some ay,--- ,am,B1, -, Pn € C&*. By the
definition of convolution, it is easy to see that v * v = a1 * - -+ x @, *x B * - - - ¥ B,. Now from Lemma 3.1,
we can easily see that condition (2) in Definition 2.5 is satisfied. O

Note that W is the smallest Minkowski class containing C¥*“. Now we explore the relations of W with
respect to other curve classes. Note first that C¥*“ C W C C¥*! by definition. Example 2.1 and Lemma 2.2
shows that W # C«*!. Example 3.1 shows W # C¥*“. So we have C¥** C W C C¥*!. Examples 2.1 and 3.1
also show respectively that C¥**° ¢ W and W ¢ C¥?. Moreover, the following Example 3.2 shows that
W (Com\ C¥mH) £ for every 1 < n < oo. Combining all these, Figure 6 shows the inclusion relations
of W with respect to other curve classes.
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FIGURE 6. Inclusion Relations for W

Example 3.2. Let n > 1 be an integer. For some small 0 < T < 1, let 1 (¢) = (¢, f(2)), y2(t) = (
for t € [0,T'], where

¢ 2\2 2n+1
f(t)=/0(T—T) dr, g(t) = 5t

_ta _g(t))a

Clearly, 1,72 € C*. Putting f'(t) = ¢'(s), we have s = t — t2. So, with reparametrization, we have

v(t) = m(t) +72(s)
t
— (t2,‘/0 (7_ _ TZ)anT _ 2n1+ I (t _ t2)2n+1> ,

where 7 = 71 *y2. Let

t
F= _ 2 2nd _ t—t2 2TL+1_
/O(T ) = S )

By Lemma 3.1, we know that v is in C¥!. Note that, for 1 < k < oo, 7 is in C¥** for k = 1,2,
only if the limit limy\ o d*F/du® exists, where u = t*>. Now

Vi
F = / (1 —7%)*"dr — ! (Vu — u)2n+1 .
0

2n+1
So
dF 2n 2n 1
Dl - — — I |
I (a-w™ - (Vi-u) (wa )
2\ 2n 2\2n 1
= - — (t— — =1
(t—1%) (t—1¢%) ( 5 )
1 2n—1 : .
= —=t + higher order terms in t.
Note that dt™/du = %mtm_2 for every integer m. So, for each k =1,2,---, we have

d*"F _
= g 212k

JuF + higher order terms in ¢,
u

-, if and

for some a; # 0. It follows that limy\ o d"F/du™ = 0 and limy o d" ™' F/du™! = —oco. This shows that

¥ € Ccu)n \Cw:n+1‘

4. SECTORS AND DOMAINS

We will now define the exact meaning of the word domain used in this paper. With our definition, the
domains can be of fairly general shape. For example, ones consisting only of curve segments, which cannot
be regarded as domains in the conventional sense, are also included. Our analysis of the domains and their
Minkowski sum will be based on the global integration of various local results. The sector introduced below,

is a basic local object we will use.
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Let C be a class of the curves in C1''. We say C is closed under restriction, if, for every v : [a,b] — R?
in C, v|[¢,q is also in C for every [c,d] C [a,b]. We will only consider the curve classes which are closed
under restriction. Note that C*!, C¥! for k,1 =1,2,--- ,00,w, k > [ and every Minkowski class satisfy this
condition.

Definition 4.1. (Sector)

Let C be a class of curves in C1*! which is closed under restriction. A closed set S in R? is called a C-sector
with center p € R? and radius r > 0, if S is bounded by three continuous curves a, 3, and 7, which satisfy
the following conditions:

(1) a:[ay,as] = B.(p) and B : [by,bs] = B,.(p) are C-curves such that a(a;) = B(b1) = p.

(2) The functions p, : [a1,a2] — [0,7] and pg : [by,b2] — [0,7], defined by p,(t) = |a(t) — p| and
pa(t) = |B(t) — p|, are homeomorphisms.

(3) Either a([a1, az]) = B([b1,b2]), or @ and S have no intersections except at p.

(4) « traverses on 0B, (p) from a(az) to B(b2) in the counter-clockwise direction.

Here, if a(az) = B(ba) (or equivalently, if a([a1,as]) = B([b1,b2])), then v is constant just at the point
a(az) = B(b2), and S is just the set of all the points on the curve a (or equivalently, 8). The two curves
and a are called the start curve and the end curve of S respectively. The cone C(S) of S is defined as:

C(S) = {ve S |Iyect :[0,1] = S such that y(0) = p,7'(0) = v}.

S is called sharp (resp., dull, flat), if the center angle of C(S) is less than 7 (resp., greater than m, equal to
m). If a([a1, az]) = B([b1,b2]), then we call S degenerate, and otherwise we call S non-degenerate.

B, (p) B:(p)

alaz) = B(b2) = v

a(az)

Non-degenerate Sector Degenerate Sector

FIGURE 7. Sector

Let S; and Sy be two Cll-sectors with center p and radius ». Then S; and S, are said to be non-
overlapping, if S1 NSy = {p}. We list some elementary properties of sectors, which follow immediately from
Definition 4.1 and Lemma, 2.2.

Lemma 4.1. (1) Let C be a class of curves in C*** which is closed under restriction, and let S be a C-sector

with center p and radius r. Then B (p) NS is a C-sector with center p and radius ' for every 0 <r' < r.
(2) Let M be a Minkowski class, and let S1 and Sy be two M-sectors with center p and radius r. Then

there exists 0 < ' < r such that, for every 0 < p < r', the set B,(p) N (S1 U S2) is either B,(p), or an

M-sector with center p and radius p, or a union of two non-overlapping M-sectors with center p and radius

p-

Proof. (1) is obvious, and (2) is immediate from Lemma 2.2. O
Now we define the domains:

Definition 4.2. (Domain)

Let C be a class of curves in C'. A subset Q of R? is called a C-domain, if it satisfies the following
conditions:

(1) Q is connected and compact.

(2) 09 is a union of a finite number of C-curves, no two of which meet at infinitely many points.

Remark 4.1. If C is C¥*¥, C¥*, or a Minkowski class (W, for example), then condition (2) in Definition 4.2
can be omitted.
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Ficure 8. Example of a ‘Domain’ with General Shape

Note that, in view of this definition, the Minkowski sum in Figure 3 is not a C¥**°-domain, though its
boundary consists of finitely many C¥*-curves. In fact, it is not even a C'*!-domain. But the domains in
our definition can be of fairly general shape such as the one in Figure 8.

Now we start to use the local object sector to describe global properties.

Lemma 4.2. (Local Condition for Domain)

Let Q be a connected and compact set in R%, and let C be a class of curves in C*' which is closed under
restriction. Then the following two conditions are equivalent:

(1) Q is a C-domain.

(2) For every point p in 0N}, there exists r > 0 such that B,(p) N Q is a union of a finite number of
mutually non-overlapping C-sectors with center p and radius r.

Proof. Suppose  is a C-domain. Let p € 9Q. Since C C C'1, it is easy to see from Definition 4.2 (2)
that there exist r > 0 and C-curves ; : [0,a;] = B,(p) for ¢ = 1,--- ,n for some 1 < n < oo, such that
B,(p) N 9Q = U;—, 7([0,a;]), and the function p; : [0,a;] — [0,7], defined by p;(t) = |v(t) —pl, is a
homeomorphism with p;(0) =0 for i = 1,--- ,n. Again by Definition 4.2 (2), we can assume +; and ~y; do
not meet except at p for every 1 <1 # j <n. Now it is clear that B,(p) N Q is a union of a finite number of
mutually non-overlapping C-sectors with center p and radius r. Thus (1) implies (2).

Conversely, suppose (2). Then, for every p € €2, we can choose 7(p) > 0 such that B,(,)(p) N is a finite
union of mutually non-overlapping C-sectors with center p and radius r, and B,.(,)(p)N0< is a union of a finite
number of C-curves, each pair of which have no intersections except at p. Note that {B;’(p) (p)NOQ : pe 0N}
is an open cover of the compact set 2. So there exist a finite number of points py,- - ,p, € 0§ such that
9 = U, Bﬁ(m)(Pz’) N oQ. Thus 0Q = J;—; Br(p,)(pi) N 0Q, and so 9N is a union of a finite number
of C-curves. From the definition of sector, it is easy to see that each pair of these C-curves cannot have
infinitely many isolated intersections. This implies that 92 can be represented as a union of a finite number
of C-curves, each pair of which may meet at, at most finitely many points. Thus {2 is a C-domain. O

As can be seen from Definition 4.2, the domains can have quite general shapes. We give a special name
for the domains with some relatively good geometry.

Definition 4.3. (Regular Domain)
A C%'-domain is called regular, if each connected component of 8 is homeomorphic to S', and is not
itself a connected component of 2.

So, the snowman in Figure 8 is not a regular domain. Also, the Minkowski sum in Figure 2 is a C¥*“-
domain, but not a regular C¥*“-domain. Note that, for any C C C'*!, the number of the connected components
of 90 should be finite for a C-domain 2.

Lemma 4.3. (Local Condition for Regular Domain)

Let Q be a connected and compact set in R?, and let C be a class of the curves in CY! which is closed
under restriction. Then the following two conditions are equivalent:

(1) Q is a regular C-domain.

(2) For every point p in 02, there exists r > 0 such that B.(p) N Q is a non-degenerate C-sector with
center p and radius T.
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Proof. Suppose Q is a regular C-domain. Let p € 9. Since C C C!*!, it is easy to see that there exists r > 0
such that B,.(p) N QN is a union of two C-curves v; : [0,a;] = B.(p), i = 1,2 such that 7;(0) = 72(0) = p,
v1 and 72 do not meet except at p, and the function p; : [0,a;] — [0,7] defined by p;(t) = |vi(t) — p| is a
homeomorphism for ¢ = 1,2. Note that B,.(p) N Q # B,.(p), since p € Q. So B,(p) NN is either a non-
degenerate C-sector with center p and radius 7, or B,(p) N = v1([0, a1]) U¥2([0, az]). Suppose the latter.
Then it is easy to see that the connected component of 2 which contains B, (p) N, is itself a connected
component of . So we conclude that B,(p) N Q is a non-degenerate C-sector with center p and radius r.
Thus (1) implies (2).

Conversely, suppose (2). Then it is clear that 99 is locally homeomorphic to R at every point in 912,
and that 01 is a disjoint union of a finite number of 1-dimensional (topological) manifolds embedded in R?.
Since 09 is bounded, this implies that each of these manifolds should be homeomorphic to S'. So 09 is a
disjoint union of a finite number of sets, each of which is homeomorphic to S;. Note that each of these sets
consists of a finite number of C-curves, since S! is compact. From the assumption, it is also obvious that
each of the connected components of 99 is not itself a connected component of 2. Thus (2) implies (1). O

Remark 4.2. A subset Q of R? is a regular C**“-domain, if and only if it satisfies the standing assumptions
for domains in [2] and [3]. Note that a domain is a C“*“-domain, if and only if it is a C¥*“-domain, since a
C¥*“-curve can be cut into a finite number of C¥*“-curves.

Finally, we introduce the following terminologies.

Definition 4.4. (Sharp Corner, Dull Corner and Flat Point)

Let 2 be a regular C'*!-domain. Then a point p € 9N is called a sharp corner (resp., dull corner, flat
point), if there exists r > 0 such that B,(p) N Q is a sharp sector (resp., dull sector, flat sector) with center
p and radius r.

Note that the above properties are of a local nature of Q around p, and thus are independent of the choice
of r.

5. VIRTUAL BOUNDARY

In this section, we introduce the concept virtual boundary for regular domains. This will enable us to
treat the regular domains in a more uniform manner, whether they have corners or not.

Let Q be a regular C'*'-domain. By definition, each connected component of 9 is homeomorphic to
S'. Among them, exactly one is the outer boundary, and the remaining ones are inner boundaries. To
each of these components, we give the standard orientation, i.e., counter-clockwise orientation to the outer
boundary, and clockwise orientation to the inner boundaries. Let C' be a connected component of 9f). Fix
an orientation-preserving covering map h : R — C. Note that for any continuous curve 7 : [a,b] — C, there
exists a lifting of v to R with respect to h, i.e., a continuous function 7 : [a, b] — R such that y(t) = h(5(¢))
for t € [a,b]. We will use the notation Oq(y), which can take the values +, —, 0, and is defined as follows:

+, if :y/(b) - :7(0’) > 03
Oq(v) =4 0, if5(b) —7(a) =0,
™ if 5(1’) - %(a‘) <0.
Note that this definition is independent of the choice of h. We will say that «y is in the standard orientation
on Q, if Oq(y) is +.

Definition 5.1. (Normal Cone)

Let Q be a regular C1*'-domain, and let p € Q. Let 74,7 : [0,€] = 0Q be one-to-one C'*!-curves such
that v, (0) = v_(0) = p and Oq(v+) = £. Then the normal cone of Q at p, denoted by NCq(p), is defined
as follows:

(1) If p is a sharp corner, then NCq(p) = {n € S' |n-v[y4] <0 and n-v[y_] <0}.

(2) If p is a dull corner, then NCq(p) = {n € S! |n-v[y+] >0 and n - v[y_] > 0}.

(3) If p is a flat point, then NCq(p) consists of the (unit) vector obtained from rotating v[y4] clockwise
by 90°.

We denote v, (p) = v[y4] and v (p) = —v[y_]. Note that these are independent of the choice of y.. Note
also that v (p) = v (p), if and only if p is a flat point of 2. In this case, we denote va(p) = vd (p) = vg (p).
We denote by ng(p) (resp., ng (p), na(p)), the vector obtained from rotating v{ (p) (resp., vg (p), va(p))
clockwise by 90°. Note that nd(p) and ng (p) are the two ends of NCq(p).
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Definition 5.2. (Virtual Boundary)
Let Q be a regular C'*!' domain. Then the virtual boundary of Q, denoted by 9?, is defined to be

8°Q = {(p,n) € I x S* |n € NCq(p)}.

Let Q be a regular C''-domain. Then it is easy to see that 8V} consists of a finite number of connected
components, each of which is homeomorphic to S', and the connected components of 9¥() are in one-to-one
correspondence to those of 9€). Thus we can also give the standard orientation to each of the connected
components of 0} in an obv1ous way. Let C be a connected component of 8"9 Fix an orientation-
preserving covering map h:R — C. Note that for any continuous map ¢ : [a,b] — C there exists a lifting
of ¢ to R with respect to h, i.e., a continuous function ¢ : [a,b] = R such that ¢(t) = h(¢( ) for t € [a,b].
We will also use the notation OQ(¢) which can take the values +, —, 0, and is defined as follows:

+,ﬁ@m—@@>m
-, if ¢(b) — ¢(a) < 0.

Note that this definition is independent of the choice of h. We will say that ¢ is in the standard orientation
on Q, if Oq(¢) is +.

Let ¢ : [a,b] = R? x S, ¢(t) = (y(t),n(t)) be a continuous map. Then there exists a continuous function
0 : [a,b] — R such that n(t) = p(0(t)), where u(s) = (coss,sins) for s € R. We call 8 an angle function of
¢. We define O(¢), called the total angle of ¢, by

O(¢) = 6(b) — 6(a).

Note that, the total angle is independent of the choice of angle functions.
We will use the following notations throughout this paper: Let X be a topological space. Let v : [a,b] = X
be a continuous curve. Then the curve 7 : [a,b] — X is defined by

7(t) =v(a+b—-1),

for t € [a,b]. Let v; : [ai,bi] = X, i = 1,2 be two continuous curves with v (b1) = y2(a2). Then the curve
Y=y -7 :[a1,b1 + ba — as] = X is defined by

) = 71(t), if € [ay, b1],
v 72(t—b1+a2)7 iftE[b17b1+b2—a2] .

We will denote by Ind, (p) the indez of p € R* with respect to a continuous closed curve v : [a,b] = R? \{p}
(v(a) = v(b)). It is well-known that the index of a point takes integer values and remains the same if we
vary the curve homotopically.

The following lemmas are easy consequences of the above definitions.

Lemma 5.1. Let Q be a regular C**'-domain, and let ¢ : [a,b] — 0YQ, ¢; : [a;,b;] — 0¥Q, i = 1,2 be
continuous maps such that ¢1(b1) = ¢2(az). Then:

(1) © (¢) = —6(9).

(2) O(¢1 - ¢2) = O(¢1) + O(¢2).

(3) Suppose ¢q : [a,b] = 0" is a continuous map which is homotopic to ¢ in QY relative to ¢p(a) and
o(b), i.e., there exists a continuous map H : [a,b] x [0,1] = 0¥Q such that H(t,0) = ¢o(t), H(t,1) = ¢(t)
for t € [a,b], and H(a,s) = ¢(a), H(b,s) = ¢(b) for s € [0,1]. Then O(dy) = O(¢).

Proof. (1), (2) are obvious from the definitions. For (3), let H(t,s) = (v(t,s),n(t, s)) for (¢, s) € [a,b] X [0, 1].
From the assumption, it is easy to see that there exists a continuous map 6 : [a,b] x [0,1] — R such that
(uo 6)(t,s) = n(t,s), where p : R — S! is defined by u(t) = (cost,sint) for t € R. Thus O(¢g) =
6(b,0) —6(a,0) = 6(b,1) —6(a,1) = O(¢), since n(a, s) = n(a,0) and n(b,s) = n(b,0) for every s € [0,1]. O

Lemma 5.2. Let Q be a regular C'''-domain, and let p € intQ. Let ¢ : [a,b] — 8°Q, ¢(t) = (y(t),n(t)) be
a continuous map such that ¢(a) = ¢(b) and Oq(¢) = +. Let C be the connected component of OQ such that
v([a,b]) C C. Then:

(1) If ¢(a,p) is one-to-one, then

0(¢) = 27, if C is the outer boundary of 012,
| —2m, ifC is an inner boundary of ON).
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(2)

Ind. (p) = =0(¢), if C is the outer boundary,
7\P 0, if C' is an inner boundary.

Proof. (1) This is an easy consequence of the Gauss-Bonnet theorem (See [17], Theorem 8.4).

(2) It is obvious that Ind,(p) = 0, if C' in an inner boundary. Suppose C is the outer boundary, and
let C be the connected component of §”Q corresponding to C. Let ¢ : [0,1] = C, ¢o(t) = (Yo(t),no(t))
be a continuous map such that ¢o(0) = ¢o(1) = @(a) = #(b), ¢olj,1) is one-to-one, and Ogq(dg) = +.

By (1), we have O(¢g) = 2n. It is easy to see that ¢ is homotopic to ¢g- --- - ¢g if Ind,(p) > 0, to
—_——
Ind (p)
$o - --- - ¢p if Ind,(p) < 0, and to the constant map ¢(a) (= ¢(b)) if Ind,(p) = 0. Now the proof follows
H—/
—Indy(p)
from Lemma 5.1. O

Let A be a subset of R? and p € R. Then we will denote
A+p={q+plag€ A}, and — A={—q|q€ A}.

For later reference, we collect the following elementary facts without proofs which can easily be deduced
from the definitions.

Lemma 5.3. Let Q be a regular C'*'-domain, and let ¢ € R*. Let p € 0%, and let ¢ : [a,b] — 0°Q,
o(t) = (v(t),n(t)) be a continuous map. Then:
(1) n&, ,(p+q) = 05 (p) and v, ,(p+q) = v (D).
(2) 2 (=p) = —ng (p) and vi4(=p) = —vg ().
(8) ©(¢p+q) = O(¢), where p+q : [a,b] = 8*(Q+q) is defined by (p+4q)(t) = (v(t) +¢,n(t)) fort € [a,b].
(4) ©(—¢) = O(¢), where —¢ : [a,b] — 0°(—Q) is defined by (—¢)(t) = (—v(¢t), —n(t)) for t € [a,b].

Now we define the angle of converity of a regular domain. This will be used in defining the semi-converity
of domains in Section 7.

Definition 5.3. (Angle of Convexity)
Let Q be a regular C''-domain. The angle of convezity of 2, denoted by ©(Q), is defined by

0(2) = inf{0(¢) : ¢ € S},
where S is the set of all continuous maps from a closed interval to 9?2 such that Oq(¢) = +.
Finally, we introduce the notion of contact position which is important for analyzing the Minkowski sum.

Definition 5.4. (Contact Position)
Two regular C*!-domains 2; and Q, are said to be in contact position to each other, if they meet at their
boundaries only, i.e., if Q; N Qs = 00y NN, # 0.

Let ©; and Q3 be two simply-connected regular C**!-domains which are in contact position to each other.
Let U be the unbounded component of R? \ (Q; U Q2). Suppose p1 # p» be two points in 901 N 6€s.
For i = 1,2, let ¢; : [0,1] = 0¥y, ¢:(t) = (v:(t),n;(¢)) be one-to-one continuous maps such that ¢;(0) =
(01,0, (1)), 61(1) = (p2,ng, (p2)), ¢2(0) = (P2, 0, (12)), $2(1) = (p1,ng, (1)), and Og, (¢1) = Oq,(¢2) =
+. Note that, by interchanging p; and ps if necessary, we can assume (v;([0,1]) \ {p1,p2}) N U = 0 for
i =1,2. Let ay (resp., az) be the non-negative angle of the counter-clockwise rotation from —vg, (p1) to
v (1) (resp., from —vg (p2) to v (p2)). See Figure 9.

With the above notations, we have the following lemma:

Lemma 5.4. Let Q) and Qy be simply-connected regular C**-domains which are in contact position to each
other. Suppose p1 # pa € 001 NNy and «;, ¢; for i = 1,2 be given as above. Then:

(1) ©(¢1) + O(¢2) + a1 + a2 = 0.

(2) If ©(21),0(22) > —0O for some © > 0, then —0 < O(¢;) <O fori=1,2.

(3) There erists a continuous map H : [0,1] x [0,1] — V, such that H(t,0) = v1(t), H(t,1) = 7 (t) for
t €[0,1], and H(0,8) = p1, H(1,8) = p2 for s € [0,1], where V is the region in R% \ (Q1 U Qy) bounded by
v and ys.



16 SUNG WOO CHOI

U

FIGURE 9. Contact Position

Proof. (1) This is an easy consequence of Lemma 5.2.

(2) By (1), we have ©(¢;) = —0O(¢2) — a1 — a. Since O(Q),0(Qs) > —0O, we have O(¢1),O(¢2) > —O.
Note that ay,as > 0 by definition. Thus we have O(¢;) < ©. We can also see that ©(¢2) < © in the same
way.

(3) Obvious. See figure 9. O

6. MINKOWSKI SUM OF DOMAINS

Now we consider the Minkowski sum of domains. For reasonable results, we restrict our analysis to M-
domains, where M is a Minkowski class. After introducing the preliminary facts in Section 6.1, we analyze
the behaviour of the Minkowski sum of M-sectors in Sections 6.2 and 6.3. Finally, by using these results,
we show in Section 6.4 that the set of all M-domains is closed under the Minkowski sum for any Minkowski
class M.

6.1. Preliminaries. Let A and B be two subsets of R2. We define
A+B={p+q|lp€ A q€ B},

and call it the Minkowski sum of A and B. The map M4 p: Ax B — A+ B, defined by M4 5(p,q) =p+g
for p € A, q € B, is called the Minkowski map associated to A and B. Note that M4, g is continuous for any
A, B C R?. The following are easy consequences of the definition.

Lemma 6.1. Let A,B C R*. Suppose A =J;c; Ai and B = J,c; Bj. Then,

A+B= |J Ai+B).
iel,jeJ
Proof. D is trivial. Suppose p € A+ B. Then there exist p; € A and p» € B such that p = p; + p>. So there
exist 4 € I and j € J such that p; € A; and p> € B;. This shows C. O

Lemma 6.2. Let A,B C R?, and let p € (A + B). Then, for any p, € A and p> € B such that p = p, +po,
we have p1 € 0A and p» € OB. FEquivalently, we have

M, (B(A+ B)) C 0A x 8B.

Proof. Suppose p; € intA. Then we can take a small ball B,(p1) around p; such that B,.(p;) C A. Clearly,
B,.(p) = B,(p1)+p2 C A+ B, and this implies that p € int(A+ B). This is a contradiction to the assumption,
and we conclude p; € 0A. In the same way, we can show that p, € OB, and we have the proof. O

Lemma 6.3. Let Q1,0 CR2, and let Q = Q1 + Qo. Let p € R2. Then we have:

(1) p € Q, if and only if Q1 N (=N +p) # 0.

(2) If intQ1 N (—Qa + p) # 0, then p € intQ.

(3) Suppose Q, Qo are regular C'*-domains. If p € 89, then the two domains Qy and —Qs + p are in
contact position to each other.
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Proof. Suppose p € 2. Then there exist p; € Q; and p; € s such that p; + p» = p. So we have
Q1 3 p1 = —pa+p € —Qs+p, which means that Q;N(—Q + p) # 0. Conversely, suppose Q1N (=N + p) # 0.
Let p1 € Q1 N (—Qs + p). Then there exists pa € Q5 such that p; = —ps + p. Thus p = p; + p2 € Q. This
shows (1).

Suppose p1 € intd; N(—Q +p). Let po» = —p1 +p. Then py € Oy, and p = p; +p2 € Q. Since p; € intQy,
we have p & 002 by Lemma 6.2. Thus p € intQ. This shows (2).

Suppose p € 90. By (1), 01N (—Q2 + p) # §. Let p1 € Q1N(—Q2 + p), and let p» = —p1+p. Then we have
p1 € Q1,p2 € Qo and p1 +p2 = p. By Lemma 6.2, p1 € Q1 and pa € 90, and so p1 = —pa+p € 9 (—Q2 + p).
Thus p; € 9021 N9 (—Qs + p). Since p; is taken arbitrarily, it follows that Q; and —{, + p are in contact
position to each other. This shows (3). O

Remark 6.1. The converse of (3) in Lemma 6.3 is false; It is possible that ; and —{Qs + p are in contact
position to each other, but still p & 0f2.

Definition 6.1. (Admissible Sectors)

Two CY1-sectors S; and S» with respective centers pi, p» and radius = are said to be admissible to each
other, if they satisfy the following conditions:

(1) int (S1 — p1) N (= (S2 — p2)) = 0 and int (Sz — p2) N (= (S1 —p1)) = 0.

(2) For i = 1,2, let ; be the end curve or the start curve of S;. If the two curves y1 — p1 and — (2 — p2)
(or equivalently, — (71 — p1) and 72 — p2) meet at a point in R? other than 0, then ~;, v have the same
image.

It is easy to see that if S; and S, are admissible to each other, then B,:(p1) N'S1 and B, (p2) N Sa are
also admissible to each other for every 0 < r' < r.

Lemma 6.4. Let M be a Minkowski class, and let Q1 and Qs be two M-domains. Let p1 € 01 and
P2 € 082. Suppose p = p1 + p2 € 0N, where 2 = Oy + Q2. Then for every sufficiently small r > 0, we have:

(1) For i = 1,2, B.(p;) N Q; = Upl, SE, where SF is an M-sector with center p; and radius r for
k=1,---,n;, and S¥’s are mutually non-overlapping.
(2) S¥ and SL are admissible to each other for everyk =1,--- ,ny andl =1,--- ns.

Proof. (1) follows from Lemma 4.2. For (2), fix S} and S}. Let a1, 81 be the end curve and the start curve
of S¥ — p; respectively, and let as, B2 be the end curve and the start curve of —(S4 — ps) respectively. Note
that SF — p1 and —(S% — p2) are M-sectors with center 0 and radius r. Since M is a Minkowski class, we
can assume that any two of ay, 1, as, [ either have the same image, or do not meet except at 0. So, if
Sk and S} are not admissible, then we would have either intS¥ N (=S% + p) # 0 or intS, N (=S¥ +p) # 0.
Then by Lemma 6.3 (2), we would have p € intQ, which is a contradiction. So Sf and S} are admissible to
each other. O

Let S be a finite union of mutually non-overlapping C'!-sectors Sy, - - - , S,, with center p and radius r > 0.
Then we denote C(S) = Uj_; C(Sk)-

Lemma 6.5. Let Oy and Qs be two Ct-domains, and let 2 = Q1 +Qs. Let pi € 004, pa € 8Os, and choose
r > 0 such that S; = B,.(p;) N$Y; is a finite union of mutually non-overlapping C*'1-sectors with center p; and
radius r for i =1,2. Suppose (p1,p2) € M§11,92 (09Q) and Sy is a flat CY1-sector with center p and radius r.
Then C(SQ) C C(Sl)

Proof. With no loss of generality, assume C(S;) = {(z,y) € S'|y < 0}. Suppose C(S2) ¢ C(S1). Then
there exists a C''-curve v : [0,€] = S» such that v(0) = p, and v[y] € C(S1). So we have ¥(0) = py,
7([0,€]) C —S2 + p, and v[y] € {(z,y) € S' |y < 0}, where p = p; + p» and the C!*l-curve 7 : [0,¢] — R2
is defined by (t) = —v(t) + p for t € [0,¢€]. It follows that intS; N (=S2 +p) # 0. So by Lemma 6.3 (2),
p € int(S; + S2) C intf), which is a contradiction. Thus C(S2) C C(S1). O

Lemma 6.6. Let C be a subclass of CY'' which is closed under restriction, and let Q1 and Qg be two C-
domains. Let p € 0, where Q = Q; + Qy. Then for any € > 0, there exist 0 < ry,---,r, < € and
(pl,p}), -+, (PR, pR) in Méll,gz (p) for some 1 < n < oo, such that each B, (pF) N Q; is a finite union of

mutually non-overlapping C-sectors with center p¥ and radius ry, and M§11,Qz (p) C U, where

n

U=J (By, @) n) x (B, (05) N Q).
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Proof. By Lemma 6.2, M§11,92 (p) C 09 x 9Ns. So, by Lemma, 4.2, we can choose 0 < r(py,p2) < € for
each (p1,p2) € M§11,Q2 (p), such that By, 5,)(p:) N is a finite union of C-sectors with center p; and radius

r(p1,p2) for i = 1,2. Note that {(Bg(pm)(pl) N Ql) x (B;’(pl,m)(m) N 92) : (p1,p2) € Mglq, (p)} is an
open cover of the compact set Mgll’m (p) in Q1 X Q. Thus there exists a finite subcover {(B2 (p¥) N Q1) x
(B2, (P%) N Q2) : 1 <k <n}, which completes the proof. O
6.2. Minkowski Sum of Admissible Sectors. Let v : [a,b] = R? be a continuous curve. We define
3 : [a,b] = R? by

() =v(a+b—1)+7(a) — v(b).

Note that, if we translate the image of v so that v(b) is moved to v(a), then we get the image of 7. Note
also that J(a) = v(a). See Figure 10.

FIGURE 10. ~ and ¥

Lemma 6.7. Let M be a Minkowski class, and let S; and Sy be two admissible M-sectors with center 0 and
radius R > 0. For some sufficiently small 0 <r < R, let S; = B.(0)NS; for i = 1,2, and let S = S] + S5.
Let a; and B; be the end curve and the start curve of S} respectively for i = 1,2. Then, for every sufficiently
small p > 0, the set B,(0) N OS is contained in the union of the images of the following curves:

(1) a1, pr, az, Po.

(2) a1 * as, ay * B, B1 * az, B1 * B (if defined).

(3) a1, ﬁ; (if a1, —f2 have the same image), and E, as (if B1, —as have the same image).

Proof. With abuse of notation, we will denote the image of a curve  also by . Denote M = Msg; s;. Note
that M~1(8S) C 8S; x 8S4 by Lemma 6.2. Let A; = 85!\ (a; U B;) for i = 1,2. Then we have 85] x S} =
(A1 x As) U (A1 X (a2 U B2)) U ((a1 U B1) X A2) U ({1 U B1) X (a2 U B2)). Suppose M((p1,p2)) € 9S for
some (p1,p2) € Ay X Ay. Let p = p; + p2- By applying Lemma 6.5, it is easy to see that p; = ps. So
|p| = |2p1| = 2r. This shows that M(A4; x A) N (B,(0) N dS) = O for sufficiently small p > 0.

Suppose that {(p?,p5)} is a sequence in (A; X (az U B2)) U ((ap U B1) X Az) such that M ((p},ps)) =
Pt +p% — 0 as n = co. With no loss of generality, we can assume that (p7,p%) € A1 x (az U f2) for every
n. Suppose a;(0) = £;(0) = 0 and |a;(a;)| = |8i(b;)| = r for i = 1,2. Since pt € A1, p§ € az U B2, and Sy,
Sy are admissible, it is easy to see that there exists a subsequence {p7*} such that either pi* — a1 (a;1) or
pt* — B1(b1) as k — oo. Denote this subsequence again by {p}'}, and assume with no loss of generality that
Pt — ai(ay) as n — oo. Since S] and S} are admissible to each other, it follows that B2(b2) = —ay(a1) and
P8 — B2(bz). So we must have oy & —f2. Since we have assumed r to be sufficiently small, we can also assume
that B2 and 0B, (0) meet transversally at 82(b2). So, from Lemma 6.5, it is easy to see that (p?,p%) & 05 for
every sufficiently large n. Thus we conclude that M ((A; x (a2 U B2))U((a1 U B1) x A2))N(B,(0)Na3S) =0
for sufficiently small p > 0.

It follows that B,(0)NdS C M ((a1 U 1) X (az U f)) for sufficiently small p > 0. Denote of = ;((0, a;))
and 3?7 = B;((0,b;)) for i = 1,2. We divide (o US1) x (a2 U B2) into the four parts af x a3, 8{ x 53, af x 3,
B9 x a3, and the twelve parts a; x {0}, f1 x{0}, {0} xaa, {0} X B2, a1 X {az(a2)}, a1 x{B2(b2)}, f1 x{az(a2)},
B1 x {B=2(b2)}, {oa(a1)} x aa, {B1(b1)} X az, {a1(a1)} x B2, {B1(b1)} x Ba. Since r is assumed small, it is
easy to see from Lemma 6.5 that the intersections of 9S and the images of the first four parts under M are
contained in the union of a; * as, B1 * B2, a1 * B2, as * f1. The images of the last twelve parts under M are
a1, B, az, B, ar + az(az), ar + Ba(ba), Bi + aa(az), Bi + B2(b2), a2 + ar(ar), az + Bi(br), B2 + ai(ar),
B2+ 1 (b1) respectively. It is easy to see that, if 0 € ay +B2(b2), then B2(by) = —ai(a1) and a; + B2(b2) = a7,
since fa(b2) € 0B, (0) and oy N OB, (0) = a1(ar). Also, if 0 € a1 + as(az), then as(az) = —a1(a1), which
implies Ba2(b2) = —ay(a1) and oy + az(az) = @, since S; and S} are admissible to each other. Applying
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the same argument to the eight curves, a; + as(az), a; + B2(b2), B1 + az(as), B1 + B2(b2), az + ai(ay),
as + P1(by), B2 + ai(ay), B2 + B1(b1), we can see that, among these curves, the ones containing 0 are ag,
,5’; (if a1, —B2 have the same image), and ,5’;, ay (if f1, —as have the same image). Now summarizing the
above arguments, we have the desired result. O

From the above result, we are now able to derive the following theorem:

Theorem 6.1. (Minkowski Sum of Admissible Sectors)

Let M be a Minkowski class, and let S1, Sa be admissible M-sectors with respective centers p1, pa and
radius R > 0. Let S} = B,(p;) N S; for i =1,2 for some sufficiently small 0 < r < R, and let S = S] + S5.
Then, for every sufficiently small p > 0, either B,(p)NS = B,(p), or B,(p) NS is a finite union of mutually
non-overlapping M-sectors with center p and radius p, where p = p1 + pa.

Proof. Note that B,(p) NS = [B,(0) N {(S] —p1) + (S5 —p2)}] + p for every r > 0 and p > 0. So we can
assume with no loss of generality that p; = p; = 0. By Lemma 6.7, we can take a finite number of M-curves
Y1, 3 ¢ [0,€] = R? for some n > 1 such that 41 (0) = --- = ,(0) = 0 and B,(0)NdS C Uj_; % ([0,€]) C
S for every sufficiently small p > 0. Since M is a Minkowski class, we can assume that, for every sufficiently
small p > 0, vx([0,€]) N 0B,(0) consists of exactly one point for k =1,--- ,n, and v;([0, €]) N v; ([0, €]) = {0}
for every i # j. Since dS is compact and p is small, we can assume that either B,(0) N dS = 0, or there
exists 0 < m < n such that B,(0) N9S = Use, ([0, €]). O

6.3. Minkowski Sum of Admissible Non-degenerate Sectors. When both S; and S» are non-degenerate,
we have more refined results, which will provide a local building block for dealing with the semi-convexity
later.

Lemma 6.8. Let M be a Minkowski class, and let Sy, S2 be non-degenerate M-sectors with center 0 and ra-
dius v > 0, which are admissible to each other. Suppose there existri,--- ,r, > 0 and (p},p3),---, (P}, p}) €
Mlel’S2 (0) such that B, (p¥) N'S; is an M-sector with center p¥ and radius ry for each i and k, and
Mgls,(0) C U, where U = Up_, (B2, (¥) N S1) x (Bg, (p5) N Sa). Then Ms, 5,(U \ Mg, (0)) is con-
nected.

Proof. Denote M = Ms, s,, and denote the image of a curve ~ also by v. Let Uy = (Bg (pf)NS1) x
(B2, (pk) N S,) for k = 1,--- ,n. Note that MU \ M~*(0)) = Uy_; MUx \ M1(0)). Since S; and S
are admissible, we must have (pi,p}),---, (p?,p%) € (a1 U B1) x (aa UB2), where a;,3; : [0,¢] — S; are
the end curve and the start curve of S; respectively for i = 1,2. We first show that Uy \ M~1(0) is
connected for k = 1,--- n. Let (q},ad),(¢?,¢3) € Uy \ M~1(0). It is easy to see that B, (pf)N S is a
non-degenerate M-sector with center p¥ and radius ry for k =1,--- ,n. So we can take a continuous curve
7 :[0,1] = B2 (p¥) N Sy such that v1(0) = ¢}, 71 (1) = ¢f, and 71 ((0,1)) C int (B2, (p¥) N S1). Take any
continuous curve ¥, : [0,1] = BZ, (p§) NS> such that 2(0) = ¢3, 72(1) = ¢3. Define v : [0,1] — Uy by
v(t) = (71(t),72(t)). Since the set {p1 | (p1,p2) € M 1(0) for some ps € Q»} is contained in oy Uy, it follows
that int (B2 (p}) N S1) N {p1 | (p1,p2) € M 1(0) for some p» € N} = 0. Thus ([0,1]) € Uy, \ M 1(0), and
this shows Uy, \ M ~1(0) is connected for k = 1,--- ,n.
Now, since Sy, S, are admissible to each other, we can assume that M ~1(0) is one of {(0,0)}, {(a1(t), B2(t)) |0 <

t < e}, {(B1(t),a2(t)) |0 < t < €}, or {(a1(t),B2(8)) |0 <t < e} U{(B1(t),a2(t)) |0 <t < €}. So we can
assume with no loss of generality that (U \ M~1(0)) N (Ug41 \ M1(0)) # 0 for k = 1,--- ,n — 1, since
M~1(0) C U. Sotheset U\M~1(0) = Uy_, (Ux \ M~1(0)) is connected. Thus M (U\M~1(0)) is connected,
since M is continuous. U

Theorem 6.2. (Minkowski Sum of Admissible Non-degenerate Sectors)

Let M be a Minkowski class, and let S, So be non-degenerate M-sectors with respective centers py, pa
and radius R > 0, which are admissible to each other. Let S = S| + S5, where S} = B.(p;) NS; fori=1,2
for some sufficiently small 0 < r < R. Let p = p1 + p2. Suppose B,(p) NS # B,(p) for every p > 0. Then,
for every sufficiently small p > 0, we have the following:

1. B,(p) N S is a non-degenerate M-sector with center p and radius p.

2. Let a and (3 be the end curve and the start curve of B,(p) N S. Suppose that the image of a (resp.,
B) is contained in one of the images of oy + p2, B1 + p2, a2 + p1, B2 + p1, a1 * @z, B * B2, a1 * B2, B1 * az,
where «a; and f; are the end curve and the start curve of S} respectively for ¢ = 1,2. Then there exists a
continuous map ¢¢ : [0,€] — 8S}, ¢F(t) = (v (1), ng (1)) (resp., ¢ : [0,€] = 8"S}, 47 (1) = (] (1), 0 (¢)))
for i = 1,2, with the following properties:
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)

(1) 77(0) = p1 and 7§(0) = ps (resp., 7 (0) = p1 and 75 (0) = pa)-
(2) a(t) = 72(t) + 18 (t) (resp., B(t) =7 (t) + 5 (1)), for every t € [0,€].
(3) 0}y yns(@(®)) = nf(t) = ng(t) (resp., np ) (B(t)) = nf (t) = ng (1)), for every t € [0, ¢].
(4) For i = 1,2, ¢¢ and v{* (resp., ¢? and 'yf ) are either one-to-one or constant, and, if one of Og, (v{*)
and Ogs,(7$) (resp., Os, (77) and Os, (7)) is — (resp., +), then the other is + (resp., —).
3. Suppose that the image of a (resp., ) is not contained in any of the images of ay + p2, 81 +p2, az +p1,
B2 + p1, a1 * aa, B1 * Pa, a1 * B2, B1 * az. Then a\ {p} C int(S1 + S2) (resp., B\ {p} Cint(S1 + S2)).

Proof. We will denote Mg: s; by M. Note that we can assume p; = p2 = 0 with no loss of generality. By
Theorem 6.1, B,(0) N S is either B,(0) or a finite union of mutually non-overlapping M-sectors with center
0 and radius p, for sufficiently small p > 0. Note that S and S} are non-degenerate. So by Lemma 6.6,
there exist 0 < rq,---,r, < p/2 and (p},pd),---, (P}, p%) € M~1(0), such that B, (p¥) N S!is a non-
degenerate M-sector with center p¥ and radius ry, for i = 1,2, k = 1,---,n, and M~1(0) C U, where
U = U, (B2 (p¥) N ST) x (Bg, (pk) N S3). Note that M ((S] x S)\ U) is compact and does not contain 0.
So there exists 0 < € < p such that B.(0) N M ((S] x S5)\U) = 0. It follows that B.(0)NS = B.(0)N M (U).
Since 7y < p/2 for k = 1,--- ,n, it is clear that M(U \ M~1(0)) C B,(0) N (S\ {0}). By Lemma 6.8,
MU\ M~1(0)) is connected, since both S| and S} are non-degenerate. So M (U\ M ~1(0)) is contained in one
connected component of B,(0) N (S \ {0}). Since B.(0)NS = B.(0) N M (U), it follows that B,(0)N (S \ {0})
has exactly one connected component. This implies that B,(0) NS is an M-sector with center 0 and radius
p, since we assumed that B,(0) NS # B,(0). Since 0 € 57,55, we have B,(0) N S7,B,(0) NS, C B,(0)NS.
So we conclude that B,(0) NS is a non-degenerate M-sector with center 0 and radius p, since S and S} are
non-degenerate. Thus we showed 1.

Suppose the image of « (resp., B) is contained in one of the images of the curves ay, f1, @z, B2, a1 * as,
B1 % B2, ay x B2, B1 * az. We assume with no loss of generality that the curves ay, 81, as, B2, a1 * a2, f1 * B2,
aq % B2, B1 * ay and a, B are parametrized as follows: v(0) = 0 for any v among the above curves, and,
for any *-admissible 71, 72 among the above curves, v[y:](¢) J v[y2](t) for every feasible t. Now, depending
on in which the image of a (resp., §) is contained among the images of the curves ax, 81, asz, B2, a1 * as,
B1 % B2, aq * B2, B1 * as, we construct ¢ : [0,€] — 9VS] (resp., qﬁf :[0,€] = 0¥S)) for i = 1,2 as follows:

a (resp., B) || $¢(t) (resp., ¢7 (1)) | ¢5(t) (resp., ¢5 (1))
a1 (a1 (t),ng, (a1 (1)) (0,n§ (au (1))
B (B1(t),ng (B1(¢))) (0,ng (B1(1)))
Qs (0,0 (a2(1))) (az(t), nd (2(1)))
B2 (0,ng, (Ba2(1))) (B2(t),ng, (B2(t)))
Qi * ap (a1(t),n§ (aa(t))) | (e2(t), ng, (aa(t)))
1 * fa (B1(t),;ng (B1(t) | (Ba(t),ng, (B2(t)))
o1 * B (a1(t),nf (u (1)) | (B2(t),ng, (Ba(1)))
B1 * @z (B1(t),n5, (B1(1)) | (a2(t),nd (e2(1)))

From the above table, it is easy to check that ¢¢ and ¢$ (resp., ¢? and ¢5) satisfy (1) and (2) of 2.
It is also clear that ¢ and ~ (resp., ¢f and 71.5 ) are either one-to-one or constant for i+ = 1,2. Note
that B,(0) NS, Si, S5 are non-degenerate M-sectors, and B,(0) N S} C B,(0) NS for i = 1,2. Suppose
the image of a is contained in the image of 3;. Since B,(0) NS} C B,(0) N S, it follows that a; and
B1 have the same image. But this is impossible, since S] is non-degenerate. So the image of a cannot
be contained in the image of 8;. In the same way, we can see that the image of a cannot be contained
in the image of (B3, and the image of 8 cannot be contained in the images of a3 or as. Suppose the
image of « is contained in the image of §; * f2. By Lemma 2.3, v[f; * 82] = v[B1] or v[B2]. With no
loss of generality, suppose v[8; * B3] = v[81] = (1,0). Clearly, v[a] = (1,0). Take non-zero points g,
g2, q in the images of 81, B2, (B respectively such that ¢ = ¢; + g2. Note that these points can be taken
arbitrarily close to 0. So there exists a small § > 0 such that {¢g; + v - (0,—-1)|0 < v < 6} C 5] and
@+{gp+u-0,-1)|0<u<d}={g+uv-(0,-1)|0 <u < d§} C B,(0)NS. But this contradicts the
assumption that « is the end curve of B,(0) N'S. So the image of o cannot be contained in the image of
B1 * B2. In the same way, we can see that the image of f cannot be contained in the image of a; * as. Now,
from the above table, we can see that if one of Og, (¥¢) and Os,(7§) (resp., Os,(2) and Og,(5)) is —
(resp., +), then the other is + (resp., —). This shows (4) of 2.
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Suppose the image of « is contained in a; *a;. Then, for every ¢, we have either n{ (e (t)) = n{ (a2 (t)) or
nfgrl (a1(t)) = —n§2 (a2 (t)), since a; and aw are *-admissible to each other. Suppose the latter is true. Since Sy

and S, are non-degenerate, we can take to such that, for every sufficiently small § > 0, a; (tg)—9 -nfgl (a1 (1)) €
S1 and as(te) —6-nf, (a2 (t)) € So. This implies a(to)+£d6-n} (a(t)) € S, which is a contradiction that a C 8S.
So we should have n} (aq(t)) = nf, (ay(t)) for every ¢, and hence, nf (a(t)) = nf (a1 (t)) = n} (ax(t)) for
every t. We can show that (3) of 2 is true for the remaining cases in a similar way.

Now we show 3. Suppose the image of « (resp., 8) is not contained in one of the images of the curves
a1, B, oo, B2, a1 * @z, 1 * B2, a1 x B2, B1 * @s. Then by Lemma 6.7, the image of a (resp., B) is
contained in one of the images of ag, as, B}, B; We first show that the image of « cannot lgg contained
in the images of a; or @, and the image of B cannot be contained in the images of 31 or B2. Suppose
the image of « is contained in the image of a7. By Lemma 6.7, this means that a;, —f3, have the same
image. With no loss of generality, we assume that v[ay] = (—1,0). Since r is small, there exists a function
f:[=7",0] = R whose graph is the image of a;. Note that |(—r', f(—r')| = 7. The graph of the function
g : [0,7"] — R defined by g(z) = f(z —r') — f(—r') is the image of @;. Since Si is non-degenerate,
there exist € > 0, § > 0 such that {(—e€,y)|f(—e) —d < y < f(—e)} C Si. Since ay, —f2 have the
same image, we have (r',—f(—r')) € S;. Note that we can take |r' — €| and ¢ as small as desired. So
{(—e+r,y) [g(—e+1") =6 <y < g(—e+r)} = (', —f (=) +{(—€,y) | f(—e) =0 <y < f(—€)} C B,(0)NS.
This means that a3 NB,(0) cannot be the end curve of B,(0)N.S, which is a contradiction to the assumption.
Thus the image of a cannot be contained in the image of 1. In the same way, we can also show that the
image of o cannot be contained in the image of a3, and the image of 8 cannot be contained in the images
of ,81 or ,82.

Suppose the image of « is contained in the image of ,73’; By Lemma 6.7, $1, —as have the same image.
Suppose o(81) = 0. Then it is easy to see that (81, as have the same image. So the image of « is contained in
the image of a2, which contradicts the assumption. Suppose o(81) = +. Then it is easy to see that the image
of Z?: intersects intS, since S5 is non-degenerate, as = —f1, and r is assumed small. So B,(0) OE cannot be
the end curve of B,(0)N S, which is a contradiction. Thus we must have ¢(81) = — and O'(,BI) = 4. With no
loss of generality, we can assume that there exists 7 > r such that T = B,(0) N {(B#(0) N S1) + (B#(0) N S2)}

is a non-degenerate M-sector with center 0 and radius p, and &, (51) have the same image, where & is the

end curve of T and B, is the start curve of (Bz(0) N S). Since a(,g’;) =+, B1 = B,(0)N B1, and 7 is small,
it is easy to see that o \ {0} C intT. Thus a \ {0} is in the interior of S; + S2. In the same way, we can
show that a'\ {0} C int(S1 + 52) if a, B, have the same image, and 3 \ {0} C int(Sy + S2) if B, a1 have the
same image or 3, az have the same image. This shows 3. O

6.4. Closedness of Minkowski Sum. Using the results in Section 6.2, we now analyze the Minkowski
sum from a more global point of view, i.e., the Minkowski sum of general domains. It turns out that, for
any Minkowski class M, the Minkowski sum of M-domains is also an M-domain, and thus the set of all
M-domains is closed under the Minkowski sum. Note that this is not true for an arbitrary curve class C
which is closed under restriction. See Figure 3 for an example.

First, we prove a lemma which will also be used later in Section 7:

Lemma 6.9. Let M be a Minkowski class, and let Q1 and Qs be two M-domains. Let Q = Q; +Qy. Then,
for every point p € OQ and for every r > 0, there exist a finite number of pairs (pi,pl),---, (P}, p}) in
M(;ll’% (p), 0 < 11, -+ ,rn <7, such that, for every sufficiently small p > 0, the following are satisfied:

(1) SF = B, (p¥) N Q; is a finite union of mutually non-overlapping M-sectors with center p¥ and radius
ry for everyi=1,2 and k=1,--- ,n.

(2) B,(p) N (S + S§) is a finite union of mutually non-overlapping M-sectors with center p and radius
pfork=1,--- n.

(3) The set B,(p) N Y is a finite union of mutually non-overlapping M-sectors with center p and radius
p, and

n

B,(p)nQ = |J {B,(p) N (Sf+55)}.

k=1

Proof. Suppose p € 9 and r > 0. By Lemma 6.6, there exist finite pairs (p},p), -, (p?,p}) in M§11’92 (p)
and 0 < ry,--- ,7, < r such that S¥ = B,, (p¥) N Q; is a finite union of mutually non-overlapping M-sectors
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with center p¥ and radius ry, fori = 1,2,k = 1,--- ,n,and Mg (p) C U, where U = Up_, (Bg, (p}) N Q) x
(B2, (p%) N Q). Thus (1) is satisfied.

Fori=1,2and k=1,--- ,n, let S¥ = U?; Sf’j, where Sf’j’s are mutually non-overlapping M-sectors
with center p} and radius r;. Note that 74’s can be taken to be arbitrarily small. So by Lemma 6.4, we can
assume that Sf’j and Sg’jl are admissible to each other for every k = 1,--- ,nand 1 < j < n¥ 1< j <nk.
By Theorem 6.1, the set B,(p)N (Sf I Sg oJ I) is either B,(p), or a finite union of mutually non-overlapping
M-sectors with center p and radius p for sufficiently small p > 0. So by Lemma 6.1 and Lemma 4.1 (2),
the set B,(p) N (S¥ + S¥) is either B,(p), or a finite union of mutually non-overlapping M-sectors with
center p and radius p for sufficiently small p > 0. It follows that B,(p) N (SF + S%) is a finite union of
mutually non-overlapping M-sectors with center p and radius p, since p € Q and (S¥ + S§) C Q. Thus (2)
is satisfied.

By applying Lemma 4.1 (2), we see that the set [J;_; {B,(p) N (St + S5)} is a finite union of mutually
non-overlapping M-sectors with center p and radius p for sufficiently small p > 0, since p € 9 and
Ur—y (SF + S%) C Q. Note that the set Mg, o, (% x Q) \ U) in Q is compact, and does not contain p,
since M§11,Q2 (p) C U. So, for sufficiently small p > 0, we have B,(p) N Mg, a,((1 x Q2) \ U) = 0. This
implies that B,(p) N = B,(p) N Mg, o, (U), Thus (3) is satisfied, since Mg, 0, (U) = Uy, (S¥ +5%). O

It is now easy to prove the following result:

Theorem 6.3. (Closedness under the Minkowski Sum)
Let M be a Minkowski class, and let Q1 and Qo be two M-domains. Then their Minkowski sum Q =
Q1 + Qs is an M-domain.

Proof. First, note that (2 is compact and connected, since it is the image of the compact and connected set
Q1 x Q9 under the continuous Minkowski map Mg, o,. By Lemma 6.9, there exist » > 0 such that B,(p)NQ
is a finite union of mutually non-overlapping M-sectors with center p and radius r for every p € 9Q. Thus
Q is an M-domain by Lemma, 4.2. O

7. MINKOWSKI SUM OF SEMI-CONVEX DOMAINS
Let us first define the semi-convezity:

Definition 7.1. (Semi-Convex Domain)
A regular C'*!-domain ( is called semi-convez, if O(Q) > —.

Remark 7.1. In fact, if ©(2) > —2r for a regular C1''-domain 2, then 2 must be simply-connected. So a
semi-convex domain is automatically simply-connected. It is also easy to see that a regular C'*'-domain
is convez, if and only if ©(Q) = 0.

The domains in Figures 11 and 12 are examples of the regular C*''-domains which are semi-convex and
not semi-convex respectively.

FicUure 11. Examples of Semi-convex Domains

In this section, we will show that the Minkowski sum of two semi-convex M-domains is homeomorphic
to the unit disk in R? for any Minkowski class M. This answers Problem 1 posed in Section 1 within the
category of the M-domains. Let M be a Minkowski class, and let 2; and 23 be two semi-convex M-domains.
Let Q = Q5 + Q2 be their Minkowski sum. The proof is divided in two major steps: First, we show that (2
is regular in Section 7.1, and then we show that (2 is simply-connected in Section 7.2. The result will finally
follow, since a domain is homeomorphic to the unit disk if and only if it is regular and simply-connected.
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FI1GURE 12. Examples of Regular Domains which are not Semi-convex

7.1. Regularity.

Lemma 7.1. Let M be a Minkowsk: class, and let 1, Qo be regular M-domains. Let Q = Q1 + Qs, and
let p € 0. Suppose B.(p) N Q= U:Zl Sk where S*’s are mutually non-overlapping M-sectors with center
p and radius v. Then there exist p > 0 and (pi,p}),--- , (P}, p%) in MS;ll,Qg (p) such that SF = B,(p¥) N Q;
is a non-degenerate M-sector with center p¥ and radius p, and SF — p* C (SF + S¥) —p C S* —p for each
i=1,2andk=1,---,n.

Proof. By Lemma 6.9, there exist ry,---,r, > 0, (q},43),---,(¢",¢) in Mgll’Qz(p), and 0 < p <
min {r/2,r1,--- ,rm}, such that T} = B, (¢]) N Q; is a finite union of mutually non-overlapping M-
sectors with center q{ and radius r; for ¢ = 1,2 and j = 1,--- ,m, Ba,(p) N (le + T2’) is a finite union
of mutually non-overlapping M-sectors with center p and radius 2p for j = 1,---,m, and By,(p) N Q =
U;"zl Bs,(p) N (Tf +sz ) Since 23 and (2, are regular, each T? should be a non-degenerate M-sector.

k3
Since r;’s can be taken arbitrarily small, we can assume that T/ and T} are admissible to each other
for j = 1,---,m. So by Theorem 6.2, B,,(p) N (T} + Tj) is a non-degenerate M-sector with center
p and radius 2p for j = 1,---,m. Note that Bs,(p) N S*’s are mutually non-overlapping M-sectors
with center p and radius 2p, and Bs,(p) N Q = J;_, B2,(p) N S*. So it is easy to see that there ex-
ists 1 < ji < m such that Bs,(p) N (T{* + Ty*) C Ba,(p) N S* for each k = 1,--- ,n. Let p¥ = ¢/,
and let S¥ = B,(p¥) N Q; = B,(g*) NT/* for i = 1,2 and k = 1,--- ,n. Then we have S} + S} =
(B,,(q{k) ank) + (B,,(qg'k) N Tgk) C Bs,(p) N (le’“ +Tgk) C By,(p) N S* C S* fori=1,---,n. Clearly,
Sk—pbc(SF+S5)—pfori=1,2,k=1,--- ,n. Thus the proof is complete. O

Lemma 7.2. Let M be a Minkowski class. Let y; : [0,a;] — R?, i = 1,2 be two M-curves such that
71(0) = 12(0) = 0, and their images S; = 71 ([0,a1]), S2 = 12([0, az]) are degenerate M-sectors with center
0 and radius r > 0. Suppose S1, Sa are admissible to each other, and S; # —Ss>. Take 0 < v’ <1 such that
either B (0)NS; = B, (0)N Sa, or B (0) NSy, By (0)N Sy do not meet except at 0. Let S be the M-sector
with center 0 and radius ', which is uniquely determined by the following conditions:

(1) S is bounded by B (0) NSy, B (0)NS2 and an arc in 9B, (0).

(2) S is a sharp sector, if v[y1] # —v[y2].

(8) When v[y1] = —v[y2], the start curve of S is B, (0) NSy (resp., By (0) N S2), and the end curve of S
is By (0) NSz (resp., B (0) N Sy), if v < ya (resp., 1 > 72).

Then B,(0) NS C S1 + 5> for every sufficiently small p > 0.

Proof. With no loss of generality, assume v[y;] = (cosé,sinf), v[y:] = (cos(m —6),sin (7 — 8)) for some
0 <6< 7/2. In case § = 0, we can also assume with no loss of generality that o(y1) = +, o(y2) =0 or +,
and 71 > v2. Then we can see easily that (0, p) € S; + S for every sufficiently small p > 0, when 0 # 7/2.
Note that (0, p) € intS for sufficiently small p > 0, when 6 # 7/2. In case 8 = 7/2, it is also easy to see
that there exists a point in B,(0) NintS (in B,(0) N S if S has no interior) which is contained in S; + Sa,
for every sufficiently small p > 0. By Lemma 6.7 and Theorem 6.2 (3), there exists 0 < r" < 7' and p > 0
such that the set B,(0) N9 ((By~(0) N S1) + (B (0) NS2)) is contained in the union of the images of 71, y2
and v * ¥ (if defined). From these, it is easy to see that B,(0) NS C Si1 + S» for every sufficiently small
p>0. O
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Theorem 7.1. (Regularity of Minkowski Sum of Semi-Convex Domains)
Let M be a Minkowski class, and let Q1 and Q5 be semi-conver M-domains. Then their Minkowski sum
Q=0 + Qs is a regular M-domain.

Proof. By Theorem 6.3, we know that € is an M-domain. Suppose Q is not regular. Then there exists
a point p € 9Q and r > 0 such that B,.(p) N Q is a union of at least two mutually non-overlapping M-
sectors with center p and radius 7. Let B,(p) N Q = J;_, S¥, where S*’s are mutually non-overlapping
M-sectors with center p and radius r. By the assumption, we have n > 2. By Lemma 7.1, there exist
(p1,p3), (03,p3) in Mg o (p) and p > 0 such that, for each k = 1,2 and i=1,2, S¥ = B,(pF)nQ is
a non-degenerate M-sector with center pf and radius p, and SF —pF C (SF+S5) —p C S* —p. Let
Qy = —Qo+ p. Then by Lemma 6.3 (3), Q1 and ), are in contact pos1t1on to each other, and meet at p} and
p?. Since S and S? are non-overlapping, it is easy to see that p} # p?. For i = 1,2 let @i : [0, 1] — 0¥,
#i(t) = (7i(t),n;(t)) be a one-to-one continuous map such that ¢;(0) = (pi,ng1 (p})) ¢1(1) = (p1,ng, (p})),
$2(0) = (03,0, (13)), $2(1) = (p3,ng, (p3)). By interchanging (pi,p;) and (pf,p3) if necessary, we can
assume that Oq,(¢1) = Ogq,(¢2) = +, and (11 ([0,1]) \ {p1,p?}) N U = 0, where U is the unbounded
component of R? \(Ql UQQ). Define ¢- : [0, 1] — 0"Qa, ¢ (t) = (ﬁQ (t), no (t)) by ¢ (t) = L—’Yg (t) +p, —1no (t))
for t € [0,1]. Then it is easy to see that (72([0,1]) \ {p},p?}) N U = 0. Since Q; and Q, are semi-convex,
we have —m < O(¢1),0(¢2) < 7 by Lemma 5.4 (2). So we have —w < O(¢;) < = for i = 1,2, since
O(¢2) = O(¢2) by Lemma 5.3.

We will show that, in fact, —7 < O(¢;) < m for i = 1,2. Suppose O(¢1) = —w. With no loss of
generality, we assume n; (0) = (—1,0). Let af and % be the end curve and the start curve of the M-sector
S¥ respectively for i = 1,2 and k¥ = 1,2. Then we have v[ai] = v[8?] = (0,—1). Suppose o(a}) = +.
Then it is easy to see that there exists to € (0,1) such that ©(¢1lj,)) > 0. So by Lemma 5.1, we have
O(9111t5,11) = O(h1) —O(91j0,40]) < —, which is impossible since (2; is semi-convex. Thus we have a(o&) =0
or —. In the same way, we can show that o(3?) = 0 or +. Since S} —p} C S* —p, S? —p? C S? — p, and
St —pand S% — p are non—overlapping, it follows that v[8}] = v[a?] = v[B] = v[a?] = (0,—1), and either

o(B') = — or o(a?) = +, where o and ¥ are the end curve and the start curve of S* for k=1,2. Let a; be
the non-negative angle of the counter-clockwise rotation from —vz (pl) —v[B3] to v (p}) = v[al] and let
a2 be the non-negative angle of the counter-clockwise rotation from —vg, (p]) = v[B7] to vE (p2) —v[a3].

Suppose a1 < 7. Then by Lemma 7.2, the Minkowski sum of 8} and 33, which is contalned in S, must
intersect S2. But this is impossible, since S' and S? are non-overlapping. So a1 > 7. In the same
way, we can also show as > m. By Lemma 5.4 (1), we have ©(¢1) + O(¢2) + a1 + as = 0, and hence
O(h1) + O(¢2) + a1 + az = 0. Since —7 < O(¢s) < 7 and a1 + @z > 27, we must have a1 = as = 7

and O(¢s) = —m. So v[B3] = v[a?] = (0,—1). Remember that either o(8') = — or o(a?) = +. Suppose

o(B') = —. Then o(B3) should also be —. So there exists to € (0,1) such that ©(¢aly,,1;)) > 0. By
Lemma 5.1, we have ©(¢2[0,4,]) = O(¢2) — O(d2l1,,1]) < —m, which is impossible since {25 is semi-convex.
In the same way, we get a contradiction if o(a?) = —. Thus we conclude that ©(¢;) # —n. By using the

symmetric argument, we also have O(¢2) # —n. It follows from Lemma 5.4 (1) that ©(¢;) # 7 for i = 1, 2.
Thus we have —m < O(¢;) < 7 for i =1, 2.

v, (p3)

—vg, (P})

FIGURE 13. C(S;) and C(S2)
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Now let 6; (< 0) be the angle of the clockwise rotation from v, (pj) to —vg (p7), and 6, (< 0) be the
angle of the clockwise rotation from v;gz (p3) to —vg, (p}). Note that 8; = ©(¢;) — m + 27n; for some n; € Z
for i = 1,2. Since S' and S? are non-overlapping, we have —27 < 6; < 0 (See Figure 13). So it follows
that n; = 0 for i = 1,2, since —7 < O(¢;) < 7. Thus we have 6; = ©(¢;) — w for i = 1,2. Let o be the
angle of the rotation in C(S') from —vg_ (p3) to vy (p}), and o) be the angle of the rotation in C(S?) from
—vg, (1) to v, (p3). We understand o to be positive if the rotation is counter-clockwise, and negative if
the rotation is clockwise. Note that —vz (p1) = vg,(p3), and v (pz) = v (p3). So we can easily see
that o} = a; — 7 for i = 1,2 by using Lemma 7.2.

From the definitions, it is obvious that 6; + 62 + of + a4 = —27 (See Figure 13). So from the above
relations between 6;’s and O(¢;)’s, and a}’s and a;’s, it follows that ©(¢1) + O(¢2) + a1 + a2 = 27, which
is a contradiction to Lemma 5.4 (1). Thus we conclude that Q is regular. (]

7.2. Simple-connectedness. In this section, we show that the Minkowski sum of two semi-convex M-
domains is simply-connected for any Minkowski class M.

Let M be a Minkowski class, and let Q be a simply-connected regular M-domain. For each ¢ € Q, we
fix a homotopy Hg,q : 2 x [0,1] = © such that Ho,.(p,0) = p and Hq,4(p,1) = g for every p € Q. For each
q € R?, we define I, : R2 — R? by I,(p) = —p + ¢ for p € R®. Note that I, o I, is the identity map.

Lemma 7.3. Let M be a Minkowski class, and let Q; and Qs be two semi-convexr M-domains with 0 €
1,0, Let Q = Q1+ Qs, and let p € ON. Then there exist one-to-one continuous maps ¢+, ¢~ : [0,1] = 9
¢t (t) = (YE(t),n* (), and continuous maps ¢ ,¢; : [0,1] = 8, ¢ (t) = (vE(t),niE(t)) fori = 1,2,
which satisfy the following conditions:

(1) ¢=(0) = (p,n5(p)), Oa(¢*) = £, and v*(t) is a flat point for every t € (0,1].

(2) Each of ¢’s and v ’s is either one-to-one or constant, and, if one of Oq, (vi5) and Oq, (vy) is F,
then the other is £.

(3) vE(8) = 71 (t) + 7 (), and nE(t) = 0y (t) = 03 > (t) for t € [0,1].

(4) ©(¢%) = O(¢F) = O(¢7), and, for i = 1,2, v= is homotopic to v* in R \ intQ; via the homotopy
HF :[0,1] x [0,1] = R? \ intQ;, defined by

Hif(t,s) = Lxw (Haso (15 (t):5))
Hg:(tas) = I’yi(t) (HQﬁO (’Yit(t)ﬂg)) )
for (t,s) €0,1] x [0,1].

Proof. By Theorem 7.1, we know that €2 is a regular M-domain. Let p € 9f2. By Lemma 4.3, there exists
r > 0 such that B-(p) N is a non-degenerate M-sector with center p and radius r. By Lemma 6.9, there
exist 0 < ry,-++ ,7p <7,0< p<rand (pl,pl), -, (PT,p%) in Mgll’gz(p), such that S¥ = B,, (p¥)NQ; is a
finite union of mutually non-overlapping M-sectors with center pf andradiusry fori = 1,2and k=1, --- ,n,
and S* = B,(p) N (S + S%) is a finite union of mutually non-overlapping sectors with center p and radius
p, and S = B,(p) N Q = [J;_, S*. Since r can be taken arbitrarily small and Qi, 2, are regular, we can
assume that B, (pF) N ; is a non-degenerate M-sector with center p¥ and radius ry, for every i = 1,2
and k= 1,--- ,n. By Theorem 6.2, we can also assume S* is a non-degenerate M-sector with center p and
radius p for k =1,--- ,n, since r’s can be taken arbitrarily small. Note that S is a non-degenerate M-sector
with center p and radius p. Let y*,v~ : [0,1] = S be the end curve and the start curve of S respectively.
Since S = |J S*, there exist 1 < k*,k~ < n such that v+ and v~ are the end curve of Sk and the start
curve of S¥~ respectively. Since v+ and v~ are in the boundary of Q, they should be in the boundary of
SK" 4+ ShT and SF” + S5 respectively. So by Theorem 6.2, there exist 0 < € < 1, and continuous maps
67 £ 10,6 = 0°SE, 71 = (1), (1) and 65 2 0. > 98K, 65 () = (; (0, m; () for i = 1,2
such that ¢ (0) = pt* for i = 1,2, vE(t) = i () + 7& () and n?ki (v£(t)) = nf(t) = nF(t) for t € [0,¢],
each ¢F and 7 are either one-to-one or constant, and, if one of Osfd: (vif) and Osgj: (vi) is F, then the
other is . Define ¢+, ¢~ : [0,€] = 8YS, ¢*(t) = (vE(t),n*(t)) by ¢*(t) = (yi(t),nﬁ(yi(t))) for t € [0, ¢€].
Note that ¢f, ¢2i and ¢F are in 9Y0)y, 8Yy and YN respectively. Thus, by reparametrizing them on the
interval [0,1], (1), (2) and (3) are checked easily.

Now we show (4). First, it is easy to see that ©(¢*) = O(¢) = O(¢7), since n*(t) = n(t) = ni(¢)
for every t € [0,1]. Note that, for i = 1,2, H(t,0) = v (t), and H(t,1) = 4= (t) for every t € [0,1]. By
the definition of Ho,.o’s, we have Ha,o (75 (t),s) € Qo and Ho,o (iE(t),s) € Qi for every t € [0,1] and
s €[0,1]. So HE(t,s) € —Qa +v=(t) and Hi(t,s) € —Qy + v=(t) for every t € [0,1] and s € [0,1]. By
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Lemma 6.3 (3), Q; and —Qs + v*(¢) are in contact position to each other, and Qy and —Q; + y*(t) are in
contact position to each other for every ¢ € [0,1]. So —Qy+7%(¢) C R2\intQ; and —Q; +~v%(t) C R? \intQy
for every t € [0,1]. Thus Hi-(t,s) € R? \ intQ; and Hi(t,s) € R? \ intQ, for every ¢ € [0,1] and s € [0, 1].
This shows (4), and the proof is complete. O

Let us introduce the following useful notations: Let Fj : [a1,b1] x [¢,d] = R? and F; : [az, ba] X [c,d] — R?
be two homotopies such that Fj (b1, s) = Fy(az,s) for every s € [¢,d]. Then we define Fy - F : [a1,b1 + by —
az] X [e,d] - R by

_ | Alts), if (¢,s) € [a1,b1] x [c, d],
(E‘F”“”)—{_éujbr+@ﬁx ﬁu;)eﬁi£+w;—@]xk@y

G,

F F

G

- F

G
FIGURE 14. The Homotopies F; - F> and G‘j

Let Gy : [a,b] x [c1,d1] — R? and G5 : [a,b] X [ca,d2] — R? be two homotopies such that Gy (t,d;) =
Go .
G (t,c2) for every t € [a,b]. Then we define ¢, :[a,b] x [c1,d1 + d2 — c2] = R? by

G2 [ Gi(t,9), if (¢, 5) € [a,b] x [c1, du],
G1 (t,S) B { GQ(t,S —di + CQ), if (t,S) € [a,b] X [dl,dl +dy — CQ].

G
It is clear that Fj - F5 and Gj are well-defined and continuous. See Figure 14.

Let Fj; : [ai, bi] x[cj,d;] = R? be a homotopy for i = 1,2 and j = 1, 2. Suppose that Fy; (b1, s) = Fy;(as, s)
for every s € [¢;,d;] and j = 1,2, and Fj1(¢,d1) = Fa(t,¢2) for every t € [a;,b;] and ¢ = 1,2. Then we define

Fyip . F

22 N
C ey tlan, b+ —ag] X [er,dy +dp — 2] = R by

Fia . Fag Fya Fag (F12-Fa2)
Fii © For — F1q “\ P = (Fr1-Fo1) °
See Figure 15.

For any m,n > 1, we define in an obvious way the appropriate homotopy, when given the homotopies Fj;,
i=1,---,m,j=1,--- ,n with the continuity conditions on their adjacent boundaries.

F11

Now, let M be a Minkowski class, and let ; and Q5 be semi-convex M-domains with 0 € Q, Q5. Let
0 = 0, + 5. Suppose ¢ : [0,1] - 870, $h(1) = (*(1), n*(1)) and ¢ : [0,1] — "%, (1) = (4 (1), mE (1)
are continuous maps for k = 1,2 and ¢ = 1,2, which satisfy the following conditions:

(1) 7* is one-to-one and Oq (y¥) = + for k = 1,2, and 7*(1) = 72(0).

(2) Each of ¢¥’s and /’s is either one-to-one or constant, and, if one of Og, (vF) and Og, (74) is —, then
the other is + for £k =1,2.

(3) For k = 1,2, v*(t) = vF(t) + v5(t), and nF(t) = n¥(t) = nk(¢) for every t € [0, 1].
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Fl2 F22

F1a - Fa2

FIGURE 15. The Homotopy &, .

Fa1

(4) O(¢F) = O(¢%) = O(¢k) for k = 1,2, and ¥ is homotopic to v* in R? \ int(); via the homotopy
HF :[0,1] x [0,1] = R2 \ intQ; for i = 1,2 and k = 1,2, where
H{c(tas) =1 vk (t) (HQ2, ( (t),S)),
Hg(ta S) = I'y’“(t) (HQ1;0 ( " (t):s)) 5
for (t,s) € [0,1] x [0,1] and k =1, 2.

Let p = 4'(1) = 4%(0). From the assumptions on ¢*’s it is obvious that ¢'(1) = (p,ng(p)) and
$%(0) = (p,n(p)). Let ¢ : [0,1] — p x NCq(p) C 0°Q, ¢( ) = (n(t), m(¢)) be a continuous map, which is
either one-to-one or constant and m(0) = ng (p), m(1) = nd (p). Note that 1(0) = ¢' (1), ¥(1) = ¢>(0), and
n(t) = p for t € [0,1]. Note also that 1), m are one-to-one if p is a corner point, and constant if p is a flat
point.

Let p} = ~}(1) and p} = 77(0) for i = 1,2. Note that p = p{ + p5 = p +p3, i.e., (p},p3) and (p},p3) are
in M§1192 (p). Fori=1,2,let v; : [0,1] = 3, ;(t) = (m;(t), m;(t)) be a continuous map which is either
one-to-one or constant, and ¢;(0) = (p},nl(1)) = ¢7 (1), ¥i(1) = (p?,02(0 )) $2(0). Let €; = -0 +p for
i = 1,2. Note that Q; and Qz are in contact posmon to each other, and p},p? € Q1 N Qg Also, Q25 and Ql
are in contact position to each other and pk, p2 € Q5 N ;. We assume that (m: ([0, 1)\ {p}L,p2}) NT; =0
for i = 1,2, where U; is the unbounded component of the set R2 \ (; U ﬁg), and U, is the unbounded
component of the set K2 \ (Qy U Q).

Note that p} = p? if and only if p} = p3. Suppose first p} = p?. Then, clearly n;, 7, are constant,
and )y, 1, are either one-to-one or constant. Let p; = pi = p? and ps = p} = p3. Take r > 0 such that
S; = Br(p;) N is a non-degenerate M-sector with center p; and radius r for ¢ = 1,2, and S = By, (p) N is
a non-degenerate M-sector with center p and radius 2r. We can assume that S;, S, are admissible to each
other by Lemma 6.4. Note that S; — p; C (S1 + S2) —p C S —p for i = 1,2. Since m(0) = m; (0) = m4(0)
and m(1) = m;(1) = my(1), we have O(¢;) = O(¢)) + 2n;7 for some n; € Z, for i = 1,2. Note that
-7 < O(),0(1)1),0(1h2) <, since m, my, my rotate in NCq(p), NCgq, (p1), NCq, (p2) respectively. So, if
-7 < O(Y) <, we get O(¥) =O(¢1) = O(¥2).

Suppose ©(y)) = 7. Then S becomes a sharp sector, and C(S) contains only one element. With no loss of
generality, we assume that C(S) = {(0,—1)}. Since S; —p; C S—pfori=1,2, 51, Ss are also sharp sectors,
and C(S1) = C(S2) = {(0,-1)}. So we must have ©(1)1) = O(¢p2) = m. Thus O(¢p) = O(¢1) = O(¢2).
Suppose ©(¢)) = —w. Let a and S be the end curve and the start curve of S respectively, and let a; and S;
be the end curve and the start curve of S; respectively for ¢ = 1,2. In this case, S becomes a dull sector,
and v[a] = v[8]. With no loss of generality, assume v[a] = v[3] = (0,1). Note that ©(¢1), ©(1)2) are 7 or
—7. Since O(1)1),0(12) # 0, S1 and S cannot be flat sectors. Since Sy, S» are admissible to each other,
they cannot be dull sectors simultaneously. Suppose both S; and S, are sharp sectors. Then it is easy to
see that C(S;) = {(0,1)} or {(0,—1)} for ¢ = 1,2. So, from Lemma 7.2, we can see that at least one of «
and B is not contained in Sy + 52, which contradicts the assumption that v = v} + 43 and v = v + +2.
So S1, S2 cannot be sharp sectors simultaneously. It follows that one of S; and S» is a sharp sector and
the other is a dull sector. Assume that S; is a sharp sector and Ss is a dull sector. Then it is easy to see
that v[aq] = v[f1] = (0,-1), v[az] = v[B2] = (0,1), and so O(¢p1) = O(x)2) = —w. Thus we conclude that
O(¥) = O(¢1) = O(¢2), if pi = p7 (or equivalently, p; = p3).
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Suppose now pl # p?. Then it is easy to see that one of Ogq,(n1) and Og,(n2) is + and the other
is —. Moreover, Oq;(1il[q,p)) cannot be —Ogq, (n;) for any [a,b] C [0,1], for i = 1,2. We will also show
that ©(x)) = O(2)1) = O(1hs) in this case. First, it is easy to see that O(z);) = O(¢hy) from the fact that
m; (0) = m5(0), my (1) = my(1), and that Q;, Q, are in contact position to each other. Since m(0) = my (0)
and m(1) = m; (1), we have O(¢);) = O(¢)) + 2nx for some n € Z. We have seen that one of Og, (1) and
Oq, (n2) is + and the other is —. So, one of Ogq, (11) and Ogq, (¥2) is + and the other is —. With no loss of
generality, assume that Ogq, (¢1) = + and Ogq, (¢2) = —. Since 1, Qs are semi-convex, we have O(y;) > —7
and O(¢2) < m. So we have —m < O()1) = O(¢p2) < w. Thus, it follows that O(y) = O(¢1) = O(¢a), if
-1 < O(¢Y) <.

It remains to consider the cases when ©(x)) = m or —m. Take r > 0 such that S¥ = B,(pf) N Q; is a
non-degenerate M-sector with center p¥ and radius r for i = 1,2 and k = 1,2, and S = Ba,(p) N Q is a non-
degenerate M-sector with center p and radius 2r. We can assume S¥ and S§ are admissible to each other for
k =1,2. Note that S¥ —pF c (S¥+S%)—pC S—pfori=1,2,k=1,2. Let @ and 3 be the end curve and
the start curve of S respectively, and let o and 8F be the end curve and the start curve of S¥ respectively
fori =1,2 and k = 1,2. Suppose O(¢)) = w. Then S is a sharp sector, and C(S) contains only one element,
which we assume to be (0,—1) with no loss of generality. Since S¥ —pf C S—pfori=1,2, k= 1,2, we
have C(S¥) = {(0,-1)} for i = 1,2, k = 1,2. So v[a¥] = v[8F] = (0,-1) for i = 1,2, k = 1,2. We can
assume with no loss of generality that Ogq, (¢1) = + and Ogq,(¢2) = —. Suppose O(11) = O(1h2) = —m.
Note that m(0) = (1,0) and m(1) = (—1,0). So it is easy to see that —7 = O(¢1) = 7 + O(¢¥]) + m, where
¢} : [0,1] = 9Qy is a one-to-one continuous map such that ¢1(0) = (pt,nd, (p1)), ¥1(1) = (1, ng, (),
and Oq, (¢]) = +. Now we have O(¢)]) = —3m, which is a contradiction since €y is semi-convex. So we
must have ©(¢1) = O(y2) = 7, and hence O(v)) = O(¢h1) = O(1)9), if O(¢) =

Suppose O(v)) = —w. Then S is a dull sector, and v[a] = v[f], which is assumed to be (0,1) with no loss
of generality. Let S’ = Bs,.(p) \ S. Suppose ®(¢1) = O(1)2) = w. With no loss of generahty, assume that
Oq, (1) = + and Ogq, (¥2) = —. Note that m(0) = (—1,0), m(1) = (1,0), and S¥ —pF c SF+Sk—pcC S—p
fori=1,2,k=1,2. Let v[8}] = (cosf,sinf). If T < 8 < 3, then m;(0) = (—1,0) cannot be in NCq, (p})-
If-2 < 0 <z then there exists to € (0, 1) such that ©(¢2][0,4,]) < 0. S0 O(¥2](¢,,1]) = O(102) —O(Y2]0,40]) >
T which is impossible since 2 is semi-convex and Ogq, (1)2) = —. Thus we must have v[3i] = (0,1). Note
also that o(B3) # — for the same reason. In the same way, we can see that v[a3] = (0,1) and o(a3) # +.
Let vlal] = (cosy,sinf;) and v[8?] = (cosbs,sinf,). Suppose I < 6; < 3m. Then, we should have
v[81] = (0,1) in order for m(0) = (—1,0) to be in NCgq, (p}). Since v[83] = (0,1), it follows from Lemma 7.2
that B,(p) C S{ + S5 C S for sufficiently small p > 0, which is impossible. Suppose 6; = Z. Then, in
order for m(0) to be in NCq, (p}), we must have v[3i] = (0,1) again, and C(S}) = {(0,1)} or 8B;(0). If
C(S}) = 0B1(0), then we would also have the same contradiction B,(p) C Si + Si by Lemma 7.2. So
C(Sl) = {(0,1)}. Let W; be the sharp sector with center 0 and radius 2r, whose start curve and end curve
are —p and {(z,0) |0 < z < 2r} respectively. Let Wa be the sharp sector with center 0 and radius 2r, whose
start curve and end curve are {(z,0) | —2r < x < 0} and a — p respectively. Note that af —pi, 81 —pl C W;
and 83 — py C W; for some i,j = 1,2. If i # j, then B,(p)NS' C S} +S3 C S by Lemma 7.2, which is
a contradiction. So i = j. Suppose i = j = 2. Since S} — p} C S — p, we also have ol — pl C W2 and
v[ad] = (0,1). Now from Lemma 2.3, we can see that 8 — p cannot be any of a} — pi, 81 — pl, ad — pl,
B3 — pl, or their convolutions. From Lemma 6.7 and Theorem 6.2 (3), we can see that this contradicts the
assumption that 4! = v{ +~4. Suppose i = j = 1. Since 0(83) # —, we must have o(8) # — and o(a) = +.
So, a% — p2, 8% — p2 C Wy and v[B3] = (0,1), since v[a3] = (0,1), o(a3) # + and S3 — p3 C S — p. Since
7% = 4% +~2, a—p should be one of a2 —p?, 2 —p?, a2 —p2, 42 —p2, or their convolutions by Lemma 6.7 and
Theorem 6.2 (3). There are only two cases to make this possible: Either a — p is one of a? — p? and 57 — p?,
or 0(82) = + and a = 2 * vy for some v = a? or $7. But it is easy to see from Lemma 7.2 that, for both
cases, S? + S3 would have intersection with B,(p) NS’ for sufficiently small p > 0, which is a contradiction.
Thus v[aj] # (0,1). So we have —% <, < Z. Similarly, we can show that I < 65 < 3.

Suppose 6, = —%, i.e., v[a}] = (0,—1). Let a; be the non-negative angle of the counter-clockwise
rotation from —v[B1] to v[ai] in V, where V is the region bounded by 7; and —ns + p. Let az be the
non-negative angle of the counter-clockwise rotation from v[3?] to —v[a3] in V. Suppose either o(af) = —
or a} <1 B3. Then we have ay = 2m, since S}, Si are admissible to each other. For i = 1,2, we can
choose [a’iab’i] C [07 1] such that ¢y (al) = (p%angl (p%)a (1 (bl) = (P%:nﬁl (p%))a and wQ(CL?) = (P%;Ilg_b (p%)a
P2 (b2) = (93,108, (p3)). Note that a; = a = 0, since v[a}] = —v[83] = (0,—1). By Lemma 5.4 (1), we have
O(¥1[0,6]) — O(W2lj0,5,]) + 27 + @z = 0. Since 4, Q, are semi-convex, we must have O(¢1|p,]) = —,
O(t2]j0,5,)) = ™ and ay = 0. Since ay = 0 and m(1) = m; (1) = my(1) = (1,0), it follows that ©(¢1) = —,
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which contradicts the assumption. Thus we must have o(al) # — and either ol > 8] or o ~ 1, when
v[ai] = (0,—1). Similarly, we can show that o(87) # + and either 37 > a3 or 87 ~ a3, if v[3?] = (0, —1).
Now it is easy to see from Lemma 7.2 that (S + S3) U (S} + S3) contains B,(p) N S’ for sufficiently small
p > 0. This is a contradiction, since S} + S3, 5?7 + S7 C S. Thus we must have ©(¢);) = O(1)2) = —

Summarizing the above arguments, we conclude that ©(¢) = O(¢;) = O(¢2) in any case.

For i = 1,2, define 7; : [0,1] — R? by 7:(t) = —n:(t) + p. It is easy to see that 7; is in a9; for i = 1,2, and
71(0) = pi, 71(1) = p3, 712(0) = pi, M2(1) = p?. Let V; be the region enclosed by n; and 75, and V5 be the
region enclosed by 72 and 7j;. By Lemma 5.4 (3), there exists a homotopy A; : [0,1] x [0,1] = V; for i = 1,2,
such that Al(ta 0) = nl(t)a Al(ta 1) = ﬁQ(t)J A1(0,8) = p%: Al(las) = p%a and AQ(ta 0) = 772(t)7 AQ(ta 1) =
m(t), A2(0,s) = p3, A2(1,8) = p3 for every (t,s) € [0,1] x [0,1]. For i = 1,2, let B; : [0,1] x [0,1] = R? be
the homotopy defined by

Bi(t,s) = Ip(Hayp (12(1), 5))

By(t,s) = Ip(Hayo (m(t),s)),
for (t,s) € [0,1] x [0,1]. Then it is easy to check that Bi(t,0) = 72(¢), B2(t,0) = %1(t), and Bi(t,1) =
By(t,1) = p for ¢t € [0,1]. It is also easy to see that B;([0,1] x [0, 1]) C R? \ intQ; for i = 1,2. For i = 1,2
and k = 1,2, we define EF : [0,1] x [0,1] = R? by

B (t,5) = (1)
for (t,s) € [0,1] x [0,1].

1 2
H; . B; . Hj

Now we can see that the homotopy G; = 1 . 4, . E'; is well-defined, where H;’s are defined as in

Lemma 7.3, and G;([0, 3] x [0,2]) C R? \ intQ; for i = 1,2. See Figure 16. Note that v} -m; - ? is homotopic
to vt -m-+2 in R? \ int(); via G; for i = 1,2.

! n=p v’
H} B; H?
'711 N3—i 'sz
E pl1 A; P Ef
o i "
H} . B, . H?

FIGURE 16. The Homotopy G; = 5l -

i

Let ¢ : [0,1] — 8vQ, ¢(t) = (3(t), A(t)) be a locally one-to-one, continuous map such that Og(¢) = + and
7(0), ¥(1) are flat points. Since [0, 1] is compact and ¥(0), (1) are flat points, it is easy to see from Lemma 7.3
that there exist 7(0) = p°,--- ,p" = §(1) € 99 and continuous maps ¢* : [0,1] — 0¥, ¢* () = (v*(t), n*(2))
and ¢¥ : [0,1] = 8YQ;, ¢¥(t) = (vF(t),nk(t)) for i = 1,2 and k = 1,--- ,n, such that:

(1) v*(0) = p*~1, vk (1) = p*, 4* is one-to-one, and Oq(y*) = + for each k.

(2) Each of ¢¥’s and ~}’s is either one-to-one or constant, and, if one of Ogq, (v¥) and Ogq, (7%) is —, then
the other is + for each k.

(3) For each k, v*(t) = v (t) + 4 ()andn ()—n’f(t)_nz()fortE[O 1].

(4) For each k, O(¢F) = ( ) O(¢%), and ~vF is homotopic to v* in R? \ intQ; via the homotopy

HF :[0,1] x [0,1] = R2 \ intQ; =1, 2, where
H{c (ta S) = I’yk(t) (HQ2;0 (’yg(t): S)) )
Hg (t7 8) = I’y""(t) (HQ1;0 ('Yf(t)a 5)) )

for (t,s) € [0,1] x [0,1].
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(5) There exists a continuous, onto, non-decreasing function % : [0, 1] — [0, n] such that F(t) = (' - --- -

~™)(h(t)) for t € [0,1].
From the above arguments, there exist continuous maps ¢* : [0,1] = 8*Q, ¥*(t) = (n*(t), m*(t)) and
YF [0,1] = 0¥, YE(t) = (nF(t),m%(t)), and a homotopy A : [0,1] x [0,1] — V¥ for i = 1,2 and

k=1,---,n—=1(k=1,---,n,if (0) = ¢(1)), where V¥ C R \ (Q; U (-Q3_; +pk)) is the region bounded
by n¥ and 7%_, = —nk_, + p*, such that O(*) = O(YF) = O(¥%), and vf - n¥ - v¥*! is homotopic to

uk gk P! - -~
y*nk .kt in R? \ intQ; via gk - ab - peet fori=1,2andk=1,---,n—1 (k=1,---,n,if ¢(0) = ¢(1)).
Here, we let ¢"t! = ¢!, 4"t = 41 and ¢Pt! = ¢}, fyZ”“ =4}, H'' = H}, EM!' = E! for i = 1,2. For
i=1,2and k=1,--- ,n—1 (or n), define EF(t,s) = vk (¢t) for (t,s) € [0,1] x [0, 1], and
Bi(t,s) = I (Ham (5(),5)),
Bi(t,s) = Ik (Hauo (nf(t),5))
for (t,s) € [0,1] x [0,1].
Fori=1,2, let
¢ = pt-pt-p? oo YTl g",
¢ = 11/,11% e eapT L. n

1 1 2 n—1

Yoo = WemicRc o -n?’l-v?,

=~ _ 1 ~1 2

Yi = % cMa—it Vit ot i i
P, = E}-A}-Ef-----A?l-Eg’,
Q; = HZIBZIHE -B?_I-Hi”.

When ¢(0) = ¢(1), we let
¢ = ¢1.¢1.¢2.....¢"71.¢n.¢",
i = G -0l-ge o gFT gl

»7 f— 71‘771"72‘ .n"fl.ry".n"’
Vi = WMo
Vi = WMt W W T
P, = E! A}-E?. ... A" EP. AT
Qi = H;-Bj-H}-----B}'-H! B,

fori=1,2.

Note that Qi(t,s) = Ly (Has_s0 (v (Fi(t)) ,8)) for (¢,s) € [0,2n—1] x [0,1] (for (¢, s) € [0,2n] x [0,1]
if ¢~S(O) = 5(1)), for i = 1,2. For i = 1,2, let H; = i . See Figure 17. Now it is easy to see that -y; is
homotopic to 7; in R? \ int(Y; via P;, and 7; is homotopic to v in R? \ intQ; via Q; for i = 1,2. So 7; is
homotopic to v in R? \ intQ; via H; for i = 1,2. Furthermore, if ¢(0) = ¢(1), then H;(0,s) = H;(2n, s) for

s € [0,2]. It is also easy to see that O(d) = O(¢) = O(¢1) = O(¢h2).
Finally, we obtain the following theorem by using the above arguments:

Theorem 7.2. (Simple-connectedness of Minkowski Sum of Semi-convex Domains)
Let M be a Minkowski class, and let Q1 and Qs be semi-convexr M-domains. Then their Minkowski sum
Q=0 + Qs is a simply-connected regular M-domain.

Proof. From Theorem 7.1, we know that Q is a regular M-domain. With no loss of generality, we assume
0 € intQy,intQ,y. Clearly, this implies 0 € int). Suppose 2 is not simply-connected. Then there exists an
inner boundary C of Q. Let C be the connected component of 8*€} corresponding to €, and let ¢ [0,1] — C,
o(t) = (3(),n ( )) be a continuous map such that ¢(0) = $(1), 7(0) = F(1) is a flat point, ¢| 0,1) is one-to-
one, and Oq(¢) = +. (That is, ¢ traverses C exactly once in the standard orientation.) Then ©(¢) = —2r
by Lemma 5.2 (1).

Now take ¢, ¢;, and H; for i = 1,2 as in the above arguments. We have @(5) = 0(¢) = O(¢1) = O(¢2),
and ~; is homotopic to v in R? \ int(QQ; via H; for i = 1,2. Also, v and ¥ are homotopic in Q. So we have
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p° p' p P’ P’
A1 nt = p! A2 n? = p
H} B} H? B}
v M3—i VZ M3
E! Al E? A2
! n V2 n?
pn—2 pn—l pn—l pn _____ pO
,ynfl nnfl — pnfl ’Yn nn — pn ;
|
H ! B! Hy B :
|
|
1 1 ™ S _:
Yi 3 Yi M3—i |
Bt Ap—? Ep A
|
|
e —
7t ! i "

Q
FIGURE 17. The Homotopy H; = 5,

Ind5(0) = Ind,(0) = Ind,, (0) = Ind,,(0), since 0 € int(), intfd;,intfds. Since C' is an inner boundary of
and 0 € intQ, we have Ind, (0) = 0 by Lemma 5.2 (2). So we have Ind,,(0) = 0 for i = 1,2. It follows that
O(#1) = O(¢2) = 0 again by Lemma 5.2 (2), since ; and 22 are simply-connected and hence have no inner
boundaries. So we have G)(q;) = 0, which is a contradiction. Thus we conclude that Q is simply-connected,
completing the proof. O

8. MAXIMALITY OF SEMI-CONVEXITY

Let C be a subclass of C!*! which is closed under restriction. In this section, we show that for any regular
C-domain which is not semi-convex, there exists a semi-convex C-domain so that their Minkowski sum is
not simply-connected. Combined with Theorem 7.2, this answers Problem 2 posed in Section 1 within the
category of M-domains for any Minkowski class M. In fact, it is shown that we can choose this domain
among a special kind of semi-convex C-domains, which we call flag domains. Note that C need not be a
Minkowski class.

First, we observe the following easy fact:

Lemma 8.1. Let Q be a regular Cr'-domain which is not semi-convex. Then there exists a one-to-one
continuous map ¢ : [—€,1 4+ €] = 9'Q, #(t) = (y(t),n(t)) for some € > 0, which satisfies the following
conditions:

(1) Oa(9) = + and O(d|j,1)) = —.

(2) —m < O(@|[s,17) < m for every proper subinterval [s,t] of [0,1].

(8) Let 0 : [—€,14+€] — R be an angle function of ¢. Then 8 is strictly decreasing on [—¢, €] and [1—e, 1+€].

Proof. Since (2 is not semi-convex, there exists a one-to-one continuous map 5 : [a,b] = 0YQ such that
Oq(¢) = + and ©(¢) < —m. Let 0 : [a,b] = R be an angle function of ¢. Since Q is a C}*!-domain, we can
divide [a, ] into a finite number of subintervals on which 6 is either strictly increasing or strictly decreasing
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or constant. It follows that the number of the critical values of 6 is finite. So we can take a < a <b<b
such that ®(¢| o)) = —m and g is strictly monotone near every ¢ € [a,b] such that 6(t) = 6(a’) or 8(b').

Now it is easy to see that there exist a’ < a” < b" < b’ such that 6(a") = 6(a’), 9(b") = 8(b'), § is strictly
decreasing near a” and b", and 6(b"") < 6(t) < 6(a") for every t € (a",b"). So we can take a strictly increasing
continuous function h : [—€,1 + €] — [a,b] for some € > 0, such that h(0) = a”, h(1) = b" and g is strictly
decreasing on h([—¢, €]) and h([1 — €,1 + €]). Taking ¢(t) = ¢(h(t)) for t € [—¢,1 + €], we can check easily
that ¢ satisfies conditions (1), (2) and (3). O

For any p € R?, we will denote the z-coordinate of p by p,., and the y-coordinate of p by p,,.

Theorem 8.1. (Maximality of Semi-convexity)
Let C C CY! be closed under restriction, and let Q; be a regular C-domain which is not semi-convex. Then
there exists a semi-conver C-domain Qo such that Q = Qq + Qs is not simply-connected.

Proof. By Lemma 8.1, we can take a one-to-one continuous map ¢ : [—€', 1+ €'] = 0YQy, ¢(t) = (v(t),n(t))
for some €' > 0, such that Oq, (¢) = +, O(d|j0,1]) = —7, =7 < O(¢|[5,)) < 7 for every proper subinterval
[s,t] of [0,1], and € is strictly decreasing on [—¢€',€'] and [1 — €/,1 + €], where 6 is an angle function of ¢.
With no loss of generality, assume n(0) = (—1,0). Let a = (1), and b = v(0),. Let v(t) be the unit
vector obtained from rotating n(t) counter-clockwise by 90° for ¢t € [—€',1 + €']. Suppose (t9); > b for
some ty € (0,1) such that v(ty) # 7(0). Then it is easy to see that there exists t; € (0,%9) such that
v(t1)z > 0. So we have n(t;), < 0, and hence O(¢|j9+,]) > 0, since —7 < O(¢|j0,¢,)) < 7. It follows that
O(9liz,,11) = ©(9lj0,1]) — ©(Bljo,t,)) £ —, which is impossible. Thus we conclude that (), < b for every

€ (0,1) such that v(t) # v(0). In an analogous way, we can show that (), > a for every ¢ € (0,1) such
that v(t) # v(1). Thus a < v(t), < bfor every t € (0,1) such that () # v(0),v(1). Suppose y(t1)z = Y(t2)z
for some 0 < t; < t2 < 1 such that y(t1) # v(t2). Then it is easy to see that there exists t3 € (¢1,t2) such
that v(t3), = 0. So n(t3), = 0, which implies n(t3) = (1,0) or (~1,0). It follows that either [@(¢|jo,¢,))| > 7
or |©(¢lit,,1])] > 7. But this contradicts the assumption that —m < ©(¢ljo,t,]), O(¢lt5,1]) < 7. Thus we
conclude that y(t1), # v(t2), for every t1,t2 € (0,1) such that y(¢1) # v(t2). Now from these observations,
it is clear that there exists a continuous function f : [a,b] — R, whose graph is ([0, 1]).

Let vt : [0,1] — 09 be a one-to-one continuous curve such that y*(0) = (1), and Oq, (y*) = +. Note
that, if Y7 ((0,€")) ¢ {(z,y) € R? |a < & < b,y > f(x)} for every small ¢’ > 0, then 6 cannot be strictly
decreasing on [1 — €/,1 + €']. So we can take a continuous function g : [a,a + €] = R for some small € > 0,
such that the graph of g is contained in 904, g(a) = f(a), and f(z) < g(z) for every z € (a,a + €]. In the
same way, we can take a continuous function h : [b—¢€,b] — R, such that the graph of h is contained in 99y,
h(b) = f(b), and f(z) < h(z) for every = € [b— €,b). See Figure 18.

FIGURE 18. Q)

With no loss of generality, assume a + e < 0 < b— e and f(0) = 0. Let F, G and H be the graphs of the
functions f, g and h respectively. Let A =9Q; \ (FUG U H). Since F and A are compact and F N A =,
we can take d > 0 such that

26 < min{d(F,A),g(a+¢€)— fla+e),h(b—€)— f(b—¢)}.
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Let Fj, Fy5 be the graphs of f + 4, f + 26 respectively. Since 26 < g(a +€) — f(a+¢€),h(b—¢€) — f(b—¢),
F»5 must meet both G and H. Let a; = max{p, : p € F5s NG}, and let by = min{p, : p € Fos N H}. Then
the set

Q= {(z,y) €ER |a1 <z < by, f(z) +6 <y < f(x) + 26}

is a simply-connected regular C-domain, and ; and ), are in contact position to each other. It is also easy
to see that Q) is semi-convex.

Let Qy = —Qf + (0,4), and let Q = Q; + Q. Clearly, 2, is also semi-convex. Define 8_ : [a,a;] — R?
and By : [b1,b] = R? by

B-(t) = (t9(t) — (a1,9(a1)) +(0,9), t € [a,a1],

Br(t) = (& h(t) = (b1, h(b1)) + (0,6), t € [b1,b].
If B_ does not meet F', then let [_ be the line segment that starts from S_(a) and goes in the direction
of (0,—1) until it meets F. Also, if B, does not meet F', then let [, be the line segment that starts from
B+(b) and goes in the direction of (0,—1) until it meets F. Note that a+¢€ < 0 < b—e. Let D be the
simply-connected regular C-domain which is enclosed by the curves F, 8_, 8, (and [_, I if needed), and let
B :[0,1] = 0D be a closed curve which traverses 0D once in the standard orientation of D. Now note that
(=2 +p)NQy # 0 for every p € 8D. So B(t) € Q for every ¢ € [0,1] by Lemma 6.3 (1). On the other hand,
note that — Qs + (0, £6) = Q) — (0, 16) has no intersections with €. So (0,46) ¢ Q again by Lemma 6.3 (1).
Since (0, 38) € intD, we have Indg((0, 36)) = 1. Now suppose €2 is simply-connected. Then Indz(p) = 0 for

every p ¢ Q and every closed curve § in Q. So we have Indg((0, 36)) = 0. This is a contradiction, and we
conclude that  is not simply-connected, which completes the proof. O

Remark 8.1. Theorem 8.1 does not guarantee that there exists a conver domain for every regular non-semi-
convex domain, such that their Minkowski sum is not simply-connected. In fact, this is false; Let Q be the
domain depicted in Figure 12 (left). The Minkowski sum of 2 and any convex domain is simply-connected.
This can be easily seen from the fact that there should be a ‘trapping region’ in order for a Minkowski sum
to be non-simply-connected.

Note that the domain €25 in the proof of Theorem 9.2 is of a special shape, which is not always shared
by every semi-convex domain. Since these domains play an important role in Section 9, we give a name to
them:

Definition 8.1. (Flag Domain)

A simply-connected regular C'*'-domain (2 is called a flag domain, if there exists a piecewise C! function
f :[a,b] = R such that:

(1) —oo < f'(z+), f'(z—) < oo for every z € [a,]].

(2) For some rigid motion in R?,

QO={(z,y) eR’ |a<z<b,f(z) <y < flz) +d}
for some d > 0.

See Figure 20 for an example of flag domains. It is easy to see that a flag domain is semi-convex, but not
vice versa. Note that the domain 9 in Theorem 9.2 is a flag domain. Thus we have the following statement
which is stronger than Theorem 9.2:

Theorem 8.2. Let C C CL! be closed under restriction, and let Qi be a regular C-domain which is not
semi-convex. Then there exists a flag C-domain Qs such that the Minkowski sum Q = Q; + Qs is not
simply-connected.

9. CLOSEDNESS OF SEMI-CONVEXITY

In this section, we show that the Minkowski sum of two semi-convex M-domains is again a semi-convex
M-domain for any Minkowski class M. Thus the set of all semi-convex M-domains is closed under the
Minkowski sum.

We start with some basic observations:

Lemma 9.1. Let O and Qy be two simply-connected regular C'''-domains such that Q1 C Qa, and let
p € 00 NINg, q; € O fori=1,2 with g2 # p. Fori=1,2, letvy; : [0,1] = 0%; be continuous maps such
that v;(0) = p, vi(1) = qi, and let B : [0,1] = Q3 \ intQy be a continuous map such that 5(0) = g1, B(1) = ¢z,
and either (3 is constant or 3((0,1]) C Q2\ Q1. Suppose there exists a homotopy H : [0,1]x[0,1] — R? \inty
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such that H(t,0) = v1(t), H(t,1) = y(t) for t € [0,1], and H(0,s) = p, H(1,s) = B(s) for s € [0,1]. Then
Oq, (1) - Oq, (72) # —-

Proof. Let ¥» : [0,1] = 895 be a one-to-one continuous map such that 75(0) = p, 32(1) = g2, and Ogq, (32) =
+. Let 7 : [0,1] = 09y be a continuous map such that 71 (0) = p, Y1(1) = q1, Oa, (V1) # —, Viljo,1) is
either one-to-one or constant. Clearly, we can find a homotopy H : [0,1] x [0,1] — R2 \ intQy, such that
H(t,0) = 71 (t), H(t,1) = Fa(t) for every t € [0,1], and H(0,s) = p, H(1,s) = f(s) for every s € [0,1]. For
i =1,2,let v; : [0,2] - R be the continuous function such that v;(0) = 0, and p;(v;(t)) = (3 - 7)(¢) for
t € [0,2], where u; : R — 9€;, i = 1,2 be covering maps in the standard orientation of 9€; with the period
1, such that u;(0) = p. See Section 5 for the definition of 7 for a curve +.

Clearly, we have 0 < v1(1) < 1 and 0 < v»(1) < 1. Note also that the two closed curves 7 - 77 and 72 - 72
are homotopic in R? \ intQ;. So we have Inds, #7(0) = Indy,.53(0), where we assumed 0 € intQ; with no loss
of generality. Note that Inds, 57(0) = v;(2) for ¢ = 1,2. So v1(2) = v»2(2) € Z. Thus the assertion follows,
since Og; (7;) is the sign of v;(1) — v;(2) for i = 1,2. O
Lemma 9.2. Let Q be a simply-connected regular C*'-domain. Let (p1,n;) and (p2,n2) be two points in
9vQ such that ny = —ns. Suppose

QN{p1+t-n |t >0}U{ps+t-ny|t>0}) =0.
Then ©(¢) = m for any one-to-one continuous map ¢ : [0,1] — 9°Q, &(t) = (v(¢),n(t)) such that $(0) =
(p17n1)7 ¢(1) = (p27n2) and OQ(¢) =+.

Proof. With no loss of generality, we assume that n; = (1,0). Since Q is bounded, there exist a1 < a2 and
b1 < by such that Q C {(z,y) € R? |a; < z < az,b1 <y < ba}. See Figure 19.
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Fi1GUure 19. Figure for Lemma 9.2

Let ll = {('Z.)y) € R2 |‘T = ala(p2)y S Y S b2}: and let l2 = {(Z’,y) € R2 |.Z' = a27(p1)y S Y S bZ} Let
my = {(2,4) € B a1 <2 < (p2)ay = (p2)y}, and let my = {(z,) € B | (p1)e < & < az,y = (p1)y}. Let
I ={(z,y) € R? |a; <z < a2,y = bz}. By the assumptions, it is easy to see that the curve v and the line
segments ma, la, I, l1, m; constitute the boundary of a simply-connected regular C'*'-domain, which we call
Q. Let ¢ : [0,1] = 0" be a one-to-one continuous map such that ¥ (0) = (p1, (0, 1)), ¥(1) = (p2, (0,-1))
and Oq: () = +. It is easy to see that ©(¢)) = 2r. By Lemma 5.2 (1), we have () + T — O(¢) + § = 2.

Thus O(¢) = . ’ 0

Lemma 9.3. Let Q; be o flag Ct*'-domain, and let Qy be a semi-conver C'*'-domain. Suppose that Qy and
Qs are in contact position to each other, and that V is a bounded connected component of R2l(ﬂl U Q).
Then for any p1 € OV \ 002, there exist ps € OV \ 0 and a continuous curve B : [0,1] = V, such that
B(0) = p1, B(1) = p2, B((0,1)) CV, and (1 + B(u) — B(0)) N Q2 # @ for every u € [0,1].

Proof. With no loss of generality, we assume that

O ={(z,9) | f(z) <y < f(2) +d,[z] <1},
for some piecewise C! function f : [-1,1] — R. Let F and F; be the graphs of the functions f and
f + d respectively, and let [, I; be the line segments (without end points) joining (-1, f(—1)) and
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FiGure 20. Flag Domain

(-1, f(-1) + d), (1,f(1)) and (1, f(1) + d) respectively. See Figure 20. Note that 90y = F U Fz U
I_-Uly. If py € F (resp., p1 € Fy), then take p» € 0V \ 0Q such that (p2), = (p1). and (p2), =
max {py : p € OV \ 0, ps = (p1)z,py < (P1)y} (resp., (p2)y = min{p, : p € OV \ 001, pz = (p1)z,Py > (P1)y})-
Ifpy € I_ (resp., p1 € l4), we take po € OV\0Q4 such that (p2)y = (p1)y and (p2), = max{p; : p € OV \ 001, py = (P1)y, Pz <
(resp., (p2)g = min{p, : p € OV \ 0Q1,py = (P1)y, Pz > (P1)s})- For any case, we define S(u) = (1 — u)p1 +
ups for u € [0,1]. Tt is clear that 3(0) = py1, B(1) = p2, B([0,1]) C V, and B((0,1)) C V.

Now we only have to show that (Q; + B(u) — 3(0)) N Qs # @ for every u € [0,1]. For i = 1,2, let
¢i 2 [0,1] = 8°Q;, ¢i(t) = (7i(t),n;(t)) be a one-to-one continuous map such that Og,(¢;) = +, 7 ([0,1]) =
AV N 9%y, $i(0) = (7:(0), ng (:(0))), ¢i(1) = (7i(1),ng, (7:(1))). Note that €y is semi-convex, since a flag
domain is semi-convex. So by Lemma 5.4 (2), we have —7 < O(¢;) < « for ¢ = 1,2. From this, it is easy to
see that at least one of F, Fy, I_, I has no intersections with v, ([0, 1]), and if 71 ([0, 1]) has an intersection
with one of [ or [_, then it does not have intersections with the other. Thus, by symmetry, it is sufficient
to consider the following four cases when 4 ([0, 1]) intersects only (1) F, (2) I_, (3) F and I_, (4) F, l_ and

Fy. See Figure 21.
Fa Y2 Fa
I Iy I+
Y2
1)

@)
r, z £
” 3) (4)

Fi1GURE 21. Four Cases of Contact Positions

First consider case (1). Let U = {(z,y) € R? | 11(0), <z < v1(1)z,y < f(z)}. Suppose there does not
exist ¢] nor ¢ in [0,1] such that y2([0,¢]]) C U, 2(t1)z = 71(0)s, and ¥2([t5,1]) C U, y2(th)e = 71 (1)
Then it is easy to see that there exist 0 < t; < t2 < 1 and € > 0 such that na(t;) = —n2(t2) = (—1,0),
O (d1lity—eta]) »© (D1lta,ta+¢) <0, and VN{y2(t;)—u-nsz(t;) |u > 0} = @ fori = 1,2. By applying Lemma 9.2
to V, we have © (¢>2|[t1,t2]) = —m. S0 ® (¢2|[t1,€’t2+€]) < —m, which is impossible since 25 is semi-convex.
Thus at least one of ¢ and #, above should exist. Then we can see easily that (Q; + B(u) — 8(0)) N Qy # §
for every u € [0,1].
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Case (2) can be treated with the same argument as in (1). Consider case (3). Note that the case when
71(1) = (-1, f(—1)) can be treated by the same method as for case (2). So we assume ~;(1) # (-1, f(—1)).
Suppose p1 € F. Let U = {(z,y) e R? | =1 < 2 <71(1)4,y < f(z)}. Suppose there does not exist ¢ € [0, 1]
such that v,([0,t1]) C U, v2(t]). = —1. Then it is easy to see that there exist 0 < t; <t < 1 and € > 0 such
that ny(t1) = —na(ta) = (=1,0), © (dali,—e,ta1) » © (B2lta t0e) < 0- and VN {v2(t;) —u-na(t;) |u > 0} =0
for i = 1,2. By Lemma 9.2, we have O (¢2|j,,4,)) = —7. So we have © (¢ait;—e,to4¢) < —, which is
impossible since 0, is semi-convex. Thus there should exist t{ € [0, 1] as above, and it follows easily that
(Q1 + B(u) — B8(0)) N Q # B for every u € [0,1].

Suppose p; € I_. Let U; be the (closed) region bounded by {v1(0) + w - (=1,0)|u > 0}, {71 (1) + w -
(0,—1) |u > 0} and ~;, which does not contain ;. Let Uy = {(z,y) € R? |z < -1, f(—-1) <y < 1(0),}.
Suppose there does not exist ¢{ nor ¢ in [0,1] such that v2([0,t]]) C Ui, 12(t)y > 7 (1), for every t €
[0,t1], 72(t1)y = 71(0)y, and ¥ ([th,1]) C Usa, v2(th)y = f(—1). Then it is easy to see that there exist
0 <t <t <1ande>0such that ny(t1) = —na(t2) = (0,1), O (dality—e,t]) » © (D2ljta to4¢) < 0, and
VN {vy2(t:;) —w-na(t;) |u > 0} = 0 for i = 1,2. By Lemma 9.2, we have © (¢2]jz, 4,)) = —. It follows that
O (h2lty—e,to1¢)) < —m, which is impossible since Q, is semi-convex. So at least one of the above #] and t}
should exist. Now it is easy to see that (Q; + B(u) — B(0)) N Qs # @ for every u € [0, 1].

Finally, consider case (4). Note that the cases when v, (0) = (-1, f(—1) +d) or 11(1) = (-1, f(—1)) can
be treated with the same methods as for cases (2) and (3). So assume 7;(0) # (—1, f(—1) + d) and 1, (1) #
(=1, f(-=1)). By using the same argument for case (3) when p; € F, we can see that (Q; + 8(u) — 3(0)) N
Qo # O for every u € [0,1], if p € F U F;. Suppose p € [_. Let Us be the (closed) region bounded by
{7 (1)+u-(0,-1) |u > 0}, {(-1, f(=1)+d)+u-(—1,0) |u > 0} and ([0, 1])N(FUIl_), which does not contain
Q1. Let Uy be the (closed) region bounded by {v1(0) +w - (0,1) |u > 0}, {(-1, f(—1)) +u-(-1,0) |u > 0}
and 71 ([0, 1])N(FyUl_), which does not contain ;. Suppose there does not exist ¢} nor ¢4 in [0, 1], such that
72([0,81]) C Us, 12(t)y = (1), for every ¢ € [0,%1], 72(t1)y = f(—1)+d, and 72([t, 1]) C Us, 72(t)y < 11(0)y
for every t € [t5,1], ¥2(t5)y = f(—1). Then it is easy to see that there exist 0 < ¢; < t» < 1 and € > 0 such
that ny(t1) = —n2(t2) = (0,1), © (d2t, —c,a]) » © (P2]ft21044) < 0, and VN {32(t;) —u-n2(t;) [u > 0} = @ for
i =1,2. By Lemma 9.2, we have O (¢2|j4, 1,)) = —, and s0 O (2|, _c,t2+¢) < —7 But this is impossible
since () is semi-convex. So at least one of the above t] and ¢}, should exist. Now it is easy to see that
(Q1 + B(u) — B(0)) N Q2 # B for every u € [0,1]. O

Theorem 9.1. (Semi-convex + Flag = Semi-convex)
For any Minkowski class M, the Minkowski sum of a semi-convex M-domain and o flag M-domain is a
semi-convexr M-domain.

Proof. Let M be a Minkowski class. Let ; be a flag M-domain, and let {22 be a semi-convex M-domain.
With no loss of generality, we can assume that 0 € 1, 2,. Since a flag domain is semi-convex, the Minkowski
sum = ; + (25 is a simply-connected regular M-domain by Theorem 7.2. Suppose (2 is not semi-convex.
Then we can take a one-to-one continuous map ¢ : [0,1] — 0%, d(t) = (3(t),0(t)) such that Og(d) = +
and ©(¢) < —m. We can assume with no loss of generality that 5(0) and (1) are flat points. Now we can
take the maps ¢, ¢;, ¢F, ¢F, ¥, ¥ associated to ¢ as in Section 7.2. We also use all the related notations
therein.

Let p: R — 0Q and p; : R = 99Q; for i = 1,2 be covering maps in the standard orientations of 992 and
09; respectively with the period 1, such that p(0) = v(0) and p;(0) = v;(0) for ¢ = 1,2. Then there exist
continuous functions v, vy, vs : [0, 2n —1] = R such that »(0) = v1(0) = v2(0) =0 and y = pov, v; = p; oy;
for i = 1,2. Note that such v and v;’s are unique, and Ogq (7Y|[q,5)) and Og; (7i|[a,p7) are the signs of v(b) —v(a)
and v;(b) — v;(a) respectively for i = 1,2, for any [a,b] C [0,2n — 1].

Note that ©(¢) = ©(¢) = O(¢1) = O(¢s). Since € is semi-convex and O(¢y) < —, we should have

Oq, (¢1) = —. It follows that Og, (1) = —, since O(¢1) < —7w. So v1(2n — 1) < 0. Note that v; is either
non-decreasing or non-increasing on the interval [k — 1,k] for k = 1,--- ,2n — 1. So it is easy to see that
there exist 0 = ag < by < a1 < -+ < byp—1 < @ < by, = 2n — 1 such that v; is non-increasing on
[aj,b;] for j =0,---,m, and vi(a;jq1) —v1(b;) =0 for j =0,---,m — 1. Note that, from the constructions
in Section 7, we can assume that Oq(7v|j;,0;,,]) = +, and at least one of v(b;) = v1(b;) + 72(b;) and
v(aj4+1) = 71(aj41) + 12(ajq1) is true for j = 0,--- ,m — 1. We can also assume that v» is non-decreasing
on [aj,b;] for j =0,--- ,m.

Suppose v(c) # 1 (¢) + ¥2(c) for some ¢ = ag, bg,* - , @m, bm- Note that Qs and —Q; + y(c) are in contact
position to each other by Lemma 6.3 (3). Since v(c) # vi(c) + v2(c), it follows that, for some k, v;(c)
is on nf for i = 1,2. Let V be the connected component of the set R2 \ (Q2 U (= + v(c))) such that
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—71(c) +7(c) € V. Note that V is bounded by 55 and 7¥. By applying Lemma 9.3 to —Q; + v(c) and Qs,
we have a continuous curve 8. : [0,1] — V such that 8.(0) = —y1(c) + v(c), Be(1) € OV \ 8 (=1 +v(c)),
B:((0,1)) C V, and (—Q1 4+ y(c) + Bc(u) — B:(0)) N Q2 # O for every u € [0,1]. Now from the constructions
in Section 7, it is easy to see that we can take 75 (more exactly, n5’s) and A%’s such that:

(1) if v(c) = 11(¢) +72(c), then Py(c,s) = y2(c) for s € [0,1],

(2) if y(c) # v1(c) +y2(c), then Py(c,s) = B.(s) for s € [0,1],

for each ¢ = ag,bg, - , A, -

Now we will show v(aj41) — v2(bj) > 0 for j =0,---,m —1. Fix j =0,---,m — 1, and let b = b;,
ajy1 = a. Note that b < a, Oq(7|j,q]) = +, and at least one of y(b) = v1(b) +72(b) and y(a) = v1(a) +2(a)
is true. Suppose ¥(b) = 71 (b) + 72(b). Let €y = Q; — 71 (b), and let @ = Q — 4, (b). Then Q = Oy + Qy,
and Qy C € since 0 € ;. Define % (t) = 71 (t) — 71 (b) and %(t) = v(t) — 1 (b) for t € [0,2n — 1]. Then,
clearly we have Og(Y]jp,0]) = O2(Ylip,a)) = +, Oy, (Mlp.a) = Oy (1)) = 0, and y2(b) = 7(b). Define

o . Q

Qa(t, 5) = Iy (HQO (Iy (Pa(t,1)) ,s)) for (t,s) € [0,2n — 1] x [0,1], and let H, = ;. . Then it is easy
to see that H, is well-defined and continuous, Y2|[p,q] is homotopic t0 ¥|pq in R? \ intQy via IUI2|[b,a]X[072],
and Hy(b,s) = ~2(b) for s € [0,2]. Suppose v(a) = 71 (a) + 72(a). Then we also have Hy(a,s) = 2(a)
for s € [0,2]. So by Lemma 9.1, we have Oq,(72|j5,a) # —, which implies v2(a) — v2(b) > 0. Suppose
v(a) # 71 (a) + 12(a). Then we can check that Py(a,s) = B.(s) and Q2(a,s) = Ba(1) = —y(a) + ~(a) for
s € [0,1]. So Hz(a,(0,2]) C R? \ Q5. Since v1(b) = v1(a) (hence v1(b) = y1(a)) and B,(0) = —71(a) + v(a),
we have —Q; +7(a) + Ba(w) — Ba(0) = =S + Ba(u) for u € [0,1]. So (—(21 + ﬂa(u)) NQy # 0 for u € [0,1],
and hence we have 5,([0,1]) C Q) by Lemma 6.3 (1). So Hs(a, (0, 2])) C 0 \ Q2. Thus by applying Lemma 9.1
again, we have Oq, (v2|[5,a]) # —, which implies that v»(a) — v2(b) > 0. In the same way, we can show
that va(a) — v2(b) > 0, when v(b) # 71(b) + 12(b) and v(a) = v1(a) + 72(a). Thus we conclude that
va(ajp1) — v2(b;) >0for j=0,--- ,m—1.

Now since v, is non-decreasing on [a;,b;] for j = 0,--- ,m, we should have v»(2n — 1) > 0, and hence
Oq, (72) # —. Note that Oq, (2) # 0, since O(¢2) < —m. So Ogq, (y2) = +. But this is impossible, since
is semi-convex and ©(¢2) < —w. Thus we conclude that € is semi-convex. O

Finally, we prove the main theorem of this section:

Theorem 9.2. (Semi-convex + Semi-convex = Semi-convex)
For any Minkowski class M, the Minkowski sum of two semi-convexr M-domains is also a semi-convex
M-domain.

Proof. Let ; and Q3 be two semi-convex M-domains, and let 2 = Q; + Q5 be their Minkowski sum. We
know from Theorem 7.2 that  is a simply-connected regular M-domain. Suppose (2 is not semi-convex.
Then, by Theorem 8.2, there exists a flag M-domain 23 such that Q + Q3 is not simply-connected. By
Theorem 9.1, Q5 + 23 is a semi-convex M-domain. So Q + Q3 = Q; + (Q2 + Q3) is simply-connected by
Theorem 7.2. This is a contradiction, and we conclude that 2 is a semi-convex M-domain. O

10. CONCLUSION

Here we briefly summarize the important results in this paper, and mention some further research direc-
tions. Let M be a Minkowski class. We denote the major classes of domains in this paper as follows:

M = The set of all M-domains.

D = The set of all M-domains homemorphic to the unit disk.

S = The set of all semi-convex M-domains.

F = The set of all flag M-domains.

C = The set of all convex M-domains homemorphic to the unit disk.

The inclusion relations between them are shown in Figure 22.

The inclusions C C S C D C M and F C S are all proper. By Theorem 6.3, M is closed under the
Minkowski sum. Let D be the class of all subsets X of D such that A+ B € D for every A,B € X. By
Theorem 7.2, S is in D, and is maximal in D with respect to the inclusion by Theorem 8.1. In fact, S is the
unique maximal element in Dy by Theorem 8.2, where Dr = {X € D|F C X}. Finally, S is closed under
the Minkowski sum by Theorem 9.2.

Now let us mention some further directions on the subject of semi-convexity. First, note that the semi-
convexity is amenable to the algorithmic setting in that only the rotation of normal vectors needs to be
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FIGURE 22. Relations between Classes of Domains

checked. Also, it is a natural generalization of the usual convexity. Usually, the computation of the Minkowski
sum of general shapes can essentially be divided into a few steps:

1. Decompose the shapes into unions of simpler shapes, which are usually convex.

2. Select the simple parts which can contribute to the boundary of the Minkowski sum.

3. Do Minkowski sum operations on these selected parts.

4. Integrate the results to form the Minkowski sum boundary, and hence the Minkowski sum itself.

The most important reason for using convex shapes in Step 1 is that they are closed under the Minkowski
sum. But in general, the number of the decomposed parts will be large since the convexity is very restrictive,
and this results in the slow-down of the algorithms. So if we can use semi-convex shapes instead of convex
ones, it would be possible to compute the Minkowski sum in a significantly more efficient way.

An immediate further research direction for the semi-convexity is the generalization of the semi-convexity
to 3 or higher dimensions, which would be most needed in various applications. Also, note that the current
definition of semi-convexity requires some differentiability of the boundary, i.e., C':'. Compared to the fact
that the convexity has no such a priori requirements, this may be considered as a severe restriction. So
an important next step would be the removal of the regularity requirements from the definition of semi-
convexity, which will be dealt with in [4] along with relationships of the semi-convexity with other notions
such as visibility.
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