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Abstract

Medial axis transform (MAT) is a basic tool for shape
analysis. But, in spite of its usefulness, it has some draw-
backs, one of which is its instability under the boundary
perturbation. To handle this problem in practical situations,
various “pruning” methods have been proposed, which are
usually heuristic in their nature and without sufficient er-
ror analyses. In this paper, we show that, although medial
axis transform is unstable with respect to standard mea-
sures such as the Hausdorff distance, it is stable in a mea-
sure called relative Hausdorff distance for some “smoothed
out” domains called injective domains. In fact, we obtain
an upper bound of the relative Hausdorff distance of the
MAT of an injective domain with respect to the MAT of an
arbitrary domain which is in small Hausdorff distance from
the original injective domain.

One consequence of the above result is that, by approx-
imating a given domain with injective domains, we can ex-
tract the most “essential part” of the MAT within the pre-
scribed error bound in Hausdorff distance. This introduces
a new pruning strategy with precise error estimation. We
illustrate our results with an example.

1. INTRODUCTION

Medial axis transform ( ����� for short) is one of the ba-
sic tools widely used in shape analysis. Being natural con-
ceptually, it extracts thinned features of a shape, which is
homotopically equivalent to the original shape [1],[2],[3].
It has a graph structure, which is simple to store and pro-
cess in a computer. For these advantages, medial axis trans-
form has a wide range of applications, such as biological
shape recognition [4], character recognition and representa-
tion [5], fingerprint classification [6], and visual analysis of	
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circuit boards [7], to name a few.
The medial axis ( ��� ) of a plane domain is the set of

the centers of the maximal inscribed circles contained in
the given domain. The set of all the pairs of the medial axis
point and the radius of the corresponding inscribed circle,
is called the medial axis transform, which can be used to
reconstruct the original domain. More explicitly, the medial
axis transform ��������
�� and the medial axis ������
�� of a
plane domain 
 is defined by

��������
���������������� �"!$#�%'& ()�+*,�.-
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One nuisance when dealing with medial axis (transform)

is that it is not stable under the perturbation of the do-
main [8],[9].

In many practical situations, the domains in question are
often given with small noises. This would produce unde-
sirable results, since ��� (and ����� ) are not stable. A
traditional alleviation of such phenomenon is the “pruning”
methods which “cut off” the less important part of ���
(and ����� ) according to some measures [8],[10]. But in
general, these methods are heuristic in determining what is
the important part of ��� (and ����� ), and they often pro-
vide no underlying error estimations.

In this paper, we show that ��� and ����� are indeed
stable, if we concentrate on relative Hausdorff distance in-
stead of Hausdorff distance. We will prove that, when a
plane domain 
 satisfies a certain smoothness condition
called the injectivity, then the relative Hausdorff distance of���7��
�� (resp., ��������
�� ) with respect to ���7��
�HI� (resp.,��������
 H � ) goes to zero, if the Hausdorff distances be-
tween JK
 , JK
 H and between JK
 , JK
 H go to zero for arbi-
trary domain 
 H . This is achieved by first deriving an upper
bound formula for ��� and �6�C� errors, which depends
on the given injective domain.

We show how this result can be utilized in a new pruning
strategy; by approximating a given domain with injective



domains, we can guarantee that the ��� (and the ����� )
of the approximating domain are the most “essential parts”
of the ��� (and the �6�C� ) of the original domain within a
prescribed error bound in Hausdorff distance.

In principle, this amounts to a pruning by bound-
ary smoothing. But we stress here that, unlike the pre-
vious known methods such as Curvature Flow Smooth-
ing [11],[12], our method is equipped with precise error
analysis.

2. PRELIMINARIES

2.1 NORMAL DOMAINS AND THEIR MAT

For reasonable behavior of MAT, we restrict the kind of
the domains we deal with to what we call the normal do-
mains. Although it is often neglected in literature, this re-
striction is necessary for reasonable behaviours of ��� and����� . We will call a subset 
 of ! # a normal domain, if
it satisfies the following two conditions:

� 
 is compact, or equivalently, 
 is closed and
bounded.

� The boundary JK
 of 
 is a (disjoint) union of finite
number of simple closed curves, each of which in turn
consists of finite number of real analytic curve pieces.

With normal domains, the following expected behaviour
of �6� and ����� turns out to be true.

Proposition 1 ([3]) Let 
 be a normal domain in ! # . Then
both ��� ��
�� and ����� ��
�� have finite graph structures.

2.2 RELATIVE HAUSDORFF DISTANCE

Hausdorff distance is one of the most popular and intu-
itively appealing measures of the difference between two
sets [13]. We also introduce the concept relative Hausdorff
distance, with which we later show the stability of ��� and����� .

Let
�

and
/

be two (closed) subsets in !�� for some� >�� . The relative Hausdorff distance of
�

with respect to/
, � � � - / � , is defined by

� � � - / � �
	���
����� � �2� � / � �
where

� ��� ��� � is the usual Euclidean distance in !�� .
The Hausdorff distance between

�
and

/
, � � � � / � , is

defined by

� � � � / � �
	���
1��� � � - / � ��� � / - � �+4=F

3. STABILITY OF MAT

In this section, we show that ��� and �6�C� are sta-
ble under relative Hausdorff distance, for some special kind
of plane domains which we will call injective. In a sense,
injective domains are some kinds of “smoothed out” or
“rounded off” ones of ordinary normal domains.

Let 
 be a normal domain, and let ���������?�@��������
�� .
We will introduce two domain-dependent constants ��� and� � as follows [14] :

����� � �"!# ��$ 0&% ��')(+* # � % �B� � �:�
� �"!.� � ��� �-,K�:�/. ��
�� 4 F
Definition 1 (Injective Domain)

A normal domain 
 in ! # is called injective, if � �10 (
and

� � 0 ( .
Let 
 be a normal domain. It is easy to see that there

are exactly three kinds of � -prong points [3] in ���7��
�� .
See Figure 1: Type (a) is the center of a maximal circle
with only one contact point at which the circle osculates the
boundary. Type (b) is a sharp corner. Type (c) is a 1-prong
point with a contact arc.

(a) (b) (c)
Figure 1. Three types of � -prong points

Suppose 
 is an injective domain. Then every � -prong
point of ���7��
�� cannot be of Type (a) or Type (b) in Fig-
ure 1: If ���7��
�� has a � -prong point of Type (a) or Type
(b), then we would have either

� � � ( or ����� ( . Con-
versely, it obvious that 
 is injective if every � -prong point
of ��� ��
�� is of Type (c) in Figure 1. Thus 
 is injective,
if and only if every � -prong point of ���7��
�� is of Type (c)
in Figure 1.

For every injective domain 
 , we define 2 � ,�& ( �+*,�43& ()�+*,� by

2�� �653��� ���/��5
� �87 �9� # � � �;:�< �>=?5A@CB 7 # � � �;:D< � F

Note that 2�� �65 � 0 ( when (-EF5GEH�I�KJL���)# � � :D< , andM � 	�NPO8QR2�� �S5 � � ( .
Now we present the main theorem of this section. See

[14] for a proof.

Theorem 1 Let 
 be an injective domain, and let 
 H be a
normal domain with � ��J3
C� JK
 H �TEVU and � ��
C� 
 H �TEVU ,
where UAEW	T� �����I�XJY�D�)# � � :�< ���I� :�< 4 . Then we have

� � ��� ��
��9- ��� ��
 H ���ZE[2����SU � �



and

� � �6�C�D��
�� - �����D��
 H ���ZE
�

2����SU � #�� ��U � 2 � �SU � 4 # F
The above theorem tells us that ��� and �6�C� of in-

jective domains are indeed stable under relative Hausdorff
distance. Thus, when we deform an injective domain con-
tinuously (with respect to Hausdorff distance), the ��� and
the ����� of the original injective domain deviates continu-
ously (with respect to relative Hausdorff distance) from the��� s and the ����� s of the deformed domains.

Theorem 1 also says that ��� (resp., ����� ) of an in-
jective domain is approximately a maximal common part of
the ��� (resp., the �6�C� ) of any domain sufficiently close
to the original injective domain in Hausdorff distance.

4. APPLICATION TO PRUNING : EX-
TRACTING THE MOST ESSENTIAL
PART

We have seen that ��� and ����� of injective domains
are stable under relative Hausdorff distance. But still, it is
true that they are unstable under Hausdorff distance. How-
ever, their stability under relative Hausdorff distance can be
utilized to extract the “most essential” part of a normal do-
main approximately.

Suppose we perturb an injective domain with domains
which are also injective. In this case, �6� and ����� be-
come stable under “Hausdorff distance”, not only under rel-
ative Hausdorff distance.

Theorem 2 Let 
�� and 
 # be two injective domains, and
let � � 	T� �����I��� �&����� 4 , � � 	T�9� � � ��� � � ���B4 . Suppose
� � JK
 � � JK
 # � E U and � ��
 � �+
 # �/E U , where (1E U E
	 � ����� JL��� # � :D< ��� :D< 4 . Then we have

� � �6�7��
	� � � ���7��
 # �A�ZEW2
and

� � �����D��
 � � �A�����D��
 # �A� E�
 2 #�� � U � 2 � # �
where

2�� �IU
� 7 � � # � = U @�B 7 # � F

Proof. This follows by applying Theorem 1 symmetrically
to 
 � and 
 # . 

Corollary 1 Let 
 be a normal domain, and let 
 � and
 # be two injective domains. Let � � 	 � � �P�"��� �&�����B4
and

� � 	 � ��� � ��� � � ���B4 . Suppose � � JK
�� �AJK
�� E U
and � ��
��A� 
�� E U for � � � � < , where ( E < U E
	 � ����� JL��� # � :D< ��� :D< 4 . Then we have

�6�����7��
 � � �A��� ��
 # ���ZE[2

and

� � ��������
 � � �A��������
 # �A�ZE
�

2 #�� � < U � 2 � # �
where

2 � < �IU
� 7 �9� # � :D< = < U @CB 7 # � :�< F

In short, with respect to Hausdorff distance, ��� and����� change continuously, when we change the approxi-
mating injective domain continuously. Thus the choice of
the injective domain to approximate a normal domain does
not affect the resulting ��� and ����� much. An impor-
tant point of Corollary 1 is that it sets an error bound of ���
and �6�C� in Hausdorff distance, which may arise from the
choice of the approximating injective domain.

¿From these considerations, we can propose a new prun-
ing strategy which approximates the original domain with
appropriate injective domains. This makes it possible to ex-
tract the maximal common, or the most essential part of��� and �6�C� within an error bound that depend on the
constants such as � ,

�
, U . Of course, as we vary these con-

stants (that is, as we vary the approximating injective do-
mains), we can obtain the essential part of ��� and �����
with varying degrees of fine details.

For example, let 
 be the domain depicted in Figure 2.
The ��� shown has many hairy parts due to the zigzag na-
ture of the boundary, which is a common characteristic of
the bitmap figures. We approximated 
 with an injective
domain 
 H with �I���7� � < ( ( and

� ��� �����)F ����� < ���������
shown in Figure 3. The Hausdorff distances � � JK
C� J3
 H �
and � ��
C� 
 H � are less than U � ���=F!� . Now by Theorem 1,
it follows that � � �6�7��
 H �9- �6� ��
���� E < ("� F < ��#��$� (��
and � �������D��
 H �9- ����� ��
���� E%���&� F #������$'�'$# . Further-
more, if we approximate 
 with another injective do-
main 
 H H with �I��� �:> �I��� , � ��� �7> � ��� , � � JK
C�AJK
 H H � E
U and � ��
C� 
 H H � E U , then Corollary 1 guaran-
tees that � � ��� ��
 H � �A��� ��
 H H ��� E ���&� F #$����� < '$# and
� � �6�C�D��
 H � � ��������
 H H ���KE(� < ' F �$�$' (��$'�' . Thus we can
say that ��� ��
 H � (resp., ��������
 H � ) is the most essential
part of ������
�� (resp., ��������
�� ) within the upper bound
of Hausdorff distance ���)�)F #��$�"� < '�# (resp., � < ' F �$��' (��$'�' )
with the fine details specified by the constants U , ����� and� � � .

5. CONCLUSION

We showed that the instability of medial axis transform
can be resolved, by measuring the differences with respect
to the relative Hausdorff distance. It turned out that ���
and ����� of injective domains are stable under relative
Hausdorff distance. Furthermore, we derived a quantita-
tive relation between the Hausdorff distance between the



Figure 2. The Letter A (a): 
 with its �6�

�I���

� � �� � �

Figure 3. The Letter A (b): 
 H with its ���

domains and the relative Hausdorff distance of one ���
(resp., �6�C� ) with respect to the other ��� (resp., �6�C� ).

By approximating a domain with an injective domain,
this result makes it possible to extract the most essential
part of ��� and ����� of the domain within a prescribed
error bound. In consequence, we can use this technique to
devise a new pruning method with a precise upper bound
for the errors, while there have been few significant error
analyses in the previously known pruning methods.
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