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Abstract. Medial axis transform (MAT) is very sensitive to the noise,
in the sense that, even if a shape is perturbed only slightly, the Hausdorff
distance between the MATS of the original shape and the perturbed one
may be large. But it turns out that MAT is stable, if we view this phe-
nomenon with the one-sided Hausdorff distance, rather than with the
two-sided Hausdorff distance. In this paper, we show that, if the original
domain is weakly injective, which means that the MAT of the domain
has no end point which is the center of an inscribed circle osculating the
boundary at only one point, the one-sided Hausdorff distance of the orig-
inal domain’s MAT with respect to that of the perturbed one is bounded
linearly with the Hausdorff distance of the perturbation. We also show
by example that the linearity of this bound cannot be achieved for the
domains which are not weakly injective. In particular, these results apply
to the domains with the sharp corners, which were excluded in the past.
One consequence of these results is that we can clarify theoretically the
notion of extracting “the essential part of the MAT”, which is the heart
of the existing pruning methods.

1 Introduction

The medial axis (MA) of a plane domain is defined as the set of the centers of
the maximal inscribed circles contained in the given domain. The medial azis
transform (MAT) is defined as the set of all the pairs of the medial axis point
and the radius of the corresponding inscribed circle. Because of the additional
radius information, MAT can be used to reconstruct the original domain. More
explicitly, the medial axis transform MAT({2) and the medial axis MA(f2) of
a plane domain (2 is defined by MAT(2) = { (p,r) € R? x [0,00) | B.(p) :
maximal ball in 2 }, MA(2) = {p€ R? |Ir >0, s.t. (p,r) € MAT(£2)}.

Medial axis (transform) is one of the most widely-used tools in shape analysis.
It has a natural definition, and has a graph structure which preserves the original
shape homotopically [2], [3]. But the medial axis transform has one weak point;
It is not stable under the perturbation of the domain [12], [5], [1]. See Figure 6.
Even when the domain in (b) is slightly perturbed to the domain in (a) (that
is, the Hausdorff distance between the domains in (a) and (b) is small), the
MAT (MA) changes drastically, which results in a large value of the Hausdorff
distance between the MATs (MAs) of the domains in (a) and (b).



This seemingly unplausible phenomenon can produce a lot of problems, es-
pecially in the recognition fields, since the data representing the domains have
inevitable noises. So there has been many attempts to reduce the complexity of
the MAT by “pruning” out what is considered less important, or considered to
be caused by the noise [11], [13], [9].

One important observation that can be made from Figure 6 is that the MAT
(MA) in (b) is contained approximately in the MAT (MA) in (a). In other
words, although the two-sided Hausdorff distance of the MATs in (a) and (b) is
large, the one-sided Hausdorff distance of the MAAT in (b) with respect to that
in (a) is still small.

In this paper, we analyze this phenomenon, and show that M A and MAT
are indeed stable, if we measure the change by the one-sided Hausdorff dis-
tance instead of the two-sided Hausdorff distance. We will show that, when a
plane domain (2 satisfies a certain smoothness condition which we call the weak-
injectivity, then the one-sided Hausdorff distance of MA({2) (resp., MAT((2))
with respect to MA(£2') (resp., MAT({2')) has an upper bound which is linear
with the Hausdorff distances between (2, 2 and between 82, 82' for arbi-
trary domain {2'. In particular, the weak-injectivity is shown to be essential for
having the linear bound. This result extends the previous one for the injective
domains [5]; We now can allow the sharp corners in the domains for which the
linear one-sided stability is valid.

It turns out that the coefficient of the linear bound grows as the angle 6,
(See Section 2) characteristic to a weakly injective domain {2 decreases. An
important consequence of this is that we can approximately measure the degree
of the “detailed-ness” of a domain {2 by the value 8. Along with this, we will
discuss about the relation between our result and the pruning of MAT.

2 Preliminaries

2.1 Normal Domains

Contrary to the common belief, MAT ({2) and MA(f2) may not be graphs with
finite structure, unless the original domain (2 satisfies the following rather strong
condition [3]: {2 is compact, or equivalently, {2 is closed and bounded, and the
boundary 912 of {2 is a (disjoint) union of finite number of simple closed curves,
each of which in turn consists of finite number of real-analytic curve pieces. So
we will consider only the domains satisfying this condition, which we call normal.

Let {2 be a normal domain. Then, except for some finite number of the special
points, the maximal ball B,.(p) for every P = (p,r) € MAT({2) has exactly two
contact points with the boundary 2. It is well known that MA(£2) is a C"* curve
around such p in R?. See Figure 1. We will denote the set of all such generic
points in MA(£2) by G(f2), and, for every p € G(£2), define 0 < 8(p) < T to be
the angle between pgy (or equivalently pgz) and MA({2) at p, where ¢, ¢ are
the two contact points.



MA(£2)

Fig. 1. Local geometry of MA around a generic point

Now, for every normal domain 2, we define 8¢, = inf {§(p) : p € G(£2)}. Note
that 0 < 6 < §. We also define pp = min {r : (p,r) € MAT({2)}, that is, po
is the smallest radius of the maximal balls contained in (2.

We call an end point of M A a 1-prong point. There are exactly three kinds of
the 1-prong points in MIA, which are depicted in Figure 2; Type (a) is the center
of a maximal circle with only one contact point at which the circle osculates the
boundary. Type (b) is a sharp corner. Type (c) is a 1-prong point with a contact
arc. It is easy to see that 6, = 0, if and only if MA({2) has a 1-prong point of
the type (a), and pp = 0, if and only if ML A({2) has a 1-prong point of the type

Fig. 2. Three types of 1-prong points

We call a normal domain (2 injective, if 8, > 0 and pp > 0, and weakly
injective, if 8 > 0. Thus, (2 is injective, if and only if every end point of
MA(1?) is of the type (c), and it is weakly injective, if and only if MA(2) does
not have the end points of the type (a). Note that a weakly injective domain
may have a sharp corner (i.e., the type (b)), while an injective domain may not.

For more details on the properties of the medial axis transform, see [2], [3],
[10].

2.2 Hausdorff Distance : Euclidean vs. Hyperbolic

Although sometimes it might be misleading [6], the Hausdorff distance is a nat-
ural device to measure the difference between two shapes. Let A and B be two



(compact) sets in R?. The one-sided Hausdorff distance of A with respect to B,
H(A|B), is defined by H(A|B) = maxpeca d(p, B), where d(-,-) is the usual Eu-
clidean distance. The (two-sided) Hausdorff distance between A and B, H(A, B),
is defined by H(A, B) = max {H(A|B),H(B|A)}. Note that, whereas the two-
sided Hausdorff distance measures the difference between two sets, the one-sided
Hausdorff distance measures how approximately one set is contained in another
set.

Though the Hausdorff distance is intuitively appealing, it cannot capture well
the seemingly unstable behaviour of MAT under the perturbation. Recently,
there has been the introduction of a new measure called the hyperbolic Hausdorff
distance, so that MAT (and MA) becomes stable, if the difference between two
MATS is measured by this measure [6] (See Proposition 1 below).

Let Py = (p1,71), P> = (p2,72) be in R? x R>q, where we denote R>o = {z €
R|z > 0}. Then the hyperbolic distance dn(Py|Ps) from Py to P is defined by
dp(P1|P2) = max{0,d(p1,p2) — (r2 — r1)}. Let My, M> be compact sets in R? x
R>o. Then the one-sided hyperbolic Hausdorff distance Hp(M1|Mz) of My with
respect to My is defined by Hy, (M1 |Ma) = maxp, ey, {minp,enr, dn(Pi|P2)}, and
the (two-sided) hyperbolic Hausdorff distance between M; and M> is defined by
Hh(Ml, Mg) = max {Hh(MllMQ), Hh(leMl)}

Now we have the following result which plays an important role in showing
the main result (Theorem 1) of this paper.

Proposition 1. ([6]) For any normal domains 21 and (2>, we have

Hpn(MAT(21), MAT((2:)),

max {H({, 22), H(021,002)} <
) S 3 - max {H(Ql, 92),7{(801,892)}

H,(MAT(2,), MAT ((2,)

3 Perturbation of Weakly Injective Domain

We first review the previous result for the injective domains.

Proposition 2. (Infinitesimal Perturbation of Injective Domain, [5],
[7]) Let £2 be an injective domain. Then we have

H(MA(Q)|MA(2)) < — 2 e+ ofe),

~ 1—cosbp
_ 2
#(MAT(2)]MAT((')) < VA+ @ - cosbo) €+ o(e),
1——cosfp

for every € > 0 and normal domain ' with max {H (2, 2"),H(002,002")} <.

We show that, infinitesimally, the one-sided Hausdorff distance of MAT (and
MA) of a weakly injective domain is bounded linearly by the magnitude of the

perturbation. Define a function g : (0,7/2] — R by g(6) =3 (1 + 27“1“0329)

1—cos 6



Theorem 1. (Infinitesimal Perturbation of Weakly Injective Domain)
Let 2 be a weakly injective domain. Then we have

H(MAT(2)|MAT((2')), H(MA(2)|MA(£2)) < g(0) - € + o(e),
for every € > 0 and normal domain 2" with max {H (2, 2"),H(02,002")} <.
Proof. See [7].

Ezample 1. Let (2 be a weakly injective domain with a sharp corner P; de-
picted as in Figure 3. Let 2’ be the domain obtained by smoothing (2 near
Py so that MAT(2) = PyP;. Let P; = (p;,r;) for i = 1,2,3. Note that
H(12,0') = H(902,002) = €, and H(MA(2)MA(2')) = d(p1,p2) =

H(MAT(2)[MAT((2')) = d(P,, Py) = YIHeo?0a . ¢

1—cosfp

1
1—cosfgp 6

Fig. 3. One-sided stability for weakly injective domain

This example shows that the factor ﬁ in g(fp), which blows up as
8o — 0, is indeed unavoidable. One important consequence is that the class
of the weakly injective domains is the largest possible class for which we have
a linear bound for the one-sided Hausdorff distance of MAT (and MA) with
respect to the perturbation.

4 Illustrating Examples

Now we will consider a few examples, and calculate explicitly the constants 8¢
and g(8g,) for each of them.

Example 2. Consider an equilateral triangle and a star-shaped domain depicted
respectively as in Figure 4 (a) and (b). Note that 8 = % for (a), and §o = £ for
(b). So g(fa) = 3(1 + 2¢/5) = 16.416408.. .. for (a), and g(f) = 43.410203. ..
for (b).

Example 3. Consider the rectangular domains with the constant widths depicted
as in Figure 5. Note that 6 = Z, and hence g(f) = 3 (1 +2v3(1 +Vv2)) =
28.089243. .. for all cases.



(a) (b)

Fig. 4. (a) Equilateral triangle; o = % and g(fe) = 16.416408 .. ., (b) five-sided star;
0o = % and g(fn) = 43.410203 .. . ..
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Fig. 5. Rectangular domains with the constant widths; For all cases, we have o =
and g(6n) = 28.089243 . . ..

5 The Essential Part of the M AT : Relation to Pruning

Theorem 1 together with Example 1 says that the angle 6, is an important quan-
tity reflecting the degree of the “detailed-ness” of a domain (2. The smaller 8, be-
comes, the finer approximation, that is, the smaller max {H (12, 2'), H(012,0")}
is needed for MAT(2') and MA(£2') of another domain 2’ to contain (approx-
imately) MAT(f2) and MA({2) respectively.

Suppose we perturb a weakly injective domain with domains which are also
weakly injective. In this case, MAT and MA become stable under the “two-
sided” Hausdorff distance. In particular, we have the following corollary:

Corollary 1. (Approximation by Weakly Injective Domains) Let 2 be
a normal domain, and let {21 and (25 be two weakly injective domains such that
max {H((2;,2),H(092;,002)} < € for i =1,2. Let § = min{fq,,00,}. Then we
have H (MAT (1), MAT(£2,)) ,H (MA(21), MA(12,)) < 2g(8) - € + o(e).



Thus, the effects on M AT and M A which arise from the choice of the weakly
injective domains to approximate a normal domain is relatively small. So the
MAT and the MA of an approximating weakly injective domain may be con-
sidered as a common part among all the other approximations with the same
00, and hence, an essential part of the original MAT and MA with the fine
details determined by the value of 6. This suggests that, by approximating a
given normal domain with the weakly injective domains, it is possible to extract
approximately the most essential part of the original MAT and MA, which is
the main objective of the existing pruning methods.

For example, Let {2’ be the original domain as shown in Figure 6 (a), whose
MA has much unilluminating parts due to its noisy boundary. We approximate
2" by a weakly injective domain {2 shown in Figure 6 (b), which has relatively
simpler MA.

0o

(a) (b)

Fig. 6. Pruning MAT: (a) The original normal domain 2’ with its MA; (b)
The approximating weakly injective domain (2 with its MA. Note that the sharp
corners are allowed; (c) The Hausdorff distance between (2 and ', Here, ¢ =
max {H($2, 2'),H(02,0")}; (d) Comparison of MA(f2) and MA(£2'). Note that
MA () captures an essential part of MLA(£2'), while simplifying MA (£2').

By Theorem 1, we can get a bound on how approximately MA({?2) is con-
tained in MA(£2"), or how faithfully MA(f2) approximates parts of MLA(£2'),
from the constant €. Moreover, from Corollary 1, we see that MA((2) is the



essential part of MLA (£2') up to the bound in Corollary 1. In overall, by comput-
ing the much simpler M A ({2), we can get the essential part (within the bounds)
of MA (£2') without ever computing MA(£2') at all. See [4] for the computation
of MAT for domains with the free-form boundaries.

Of course, there still remains the problem of how to approximate/smooth
the original noisy boundary. But we claim that, whatever method is used, our
bounds can serve as a theoretical guarantee of the correctness of the approxima-
tion/pruning, which is absent in most of the existing pruning schemes.

One notable advance from [5] is that we can now allow the sharp corners
for the approximating domain. For the discussion of using the general normal
domains for the approximation, See [8].
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