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Abstract

In this thesis, we propose a novel choice of gauge for the Yang-Mills equations on the Minkowski space
R4, A crucial ingredient is the associated Yang-Mills heat flow. Unlike the previous approaches
(as in [15] and [33]), the new gauge is applicable for large data, while the special analytic structure
of the Yang-Mills equations is still manifest.

As the first application of the new approach, we shall give new proofs of H! local well-posedness
and finite energy global well-posedness of the Yang-Mills equations on R'*™3. These are classical
results first proved by S. Klainerman and M. Machedon [15] using the method of local Coulomb
gauges, which had been difficult to extend to other settings. As our approach does not possess its
drawbacks (in particular the use of Uhlenbeck’s lemma [37] is avoided), it is expected to be more

robust and easily applicable to other problems
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Chapter 1

Introduction

In this thesis, we present a novel approach to the problem of gauge choice for the Yang-Mills
equations

D*F,, =0

on the Minkowski space R'*¢ with a non-abelian structural group ®. An essential ingredient of our

approach is the celebrated Yang-Mills heat flow
9sA; = D'Fy,

which, first proposed by Donaldson [8], is a well-studied equation in the field of geometric analysis.
(See [27], [4] etc.) The idea of using the associated heat flow to deal with the problem of gauge
choice had been first put forth by Tao [34], [35] in the context of energy critical wave maps on R1*2
and has been also adapted to the related energy critical Schrédinger maps by [2], [29], [30].

The novel approach using the Yang-Mills heat flow does not possess the drawbacks of the previous
choices of gauge; as such, it is expected to be more robust and easily applicable to other problems.
As a first application, we shall give in this thesis new proofs of H) local well-posedness and finite
energy global well-posedness of the Yang-Mills equations on R!'*3, which have been proved by S.

Klainerman and M. Machedon [15] using a different method.

1.1 Background: The Yang-Mills equations on R'*¢

Consider the Minkowski space R4 with d > 1, equipped with the Minkowski metric of signature

(= 4+ +---+). All tensorial indices will be raised and lowered by using the Minkowski metric.



Moreover, we shall adopt the Einstein summation convention of summing up repeated upper and

lower indices. Greek indices, such as ju, v, A, will run over 20, 2%, 22, ... 2%, whereas latin indices,

such as i, j, k, £, will run only over the spatial indices x', 22, ..., 2% We shall often use t for z°.

Let & be a Lie group with the Lie algebra g, which is equipped with a bi-invariant inner product’
(,-) : g x g — [0,00). The bi-invariant inner produt will be used to define the absolute value of
elements in g, and moreover will be used in turn to define the L?-norm of g-valued functions.

For simplicity, we shall assume that & is a matrix group. An explicit example which is useful to
keep in mind is the group of special unitary matrices & = SU(n), in which case g = su(n) is the set of
complex traceless anti-hermitian matrices and the bi-invariant metric is given by (A, B) := tr(AB*).

Consider a g-valued 1-form A, on R'*4 which we shall call a connection I1-form, or connection
coefficients®. For any g-valued tensor field B on R'™?, we define the associated covariant derivative
D = WD by

D,B:=0,B+[A,,B], p=0,12,...,d

where 0, is the ordinary directional derivative on R+,

The commutator of two covariant derivatives gives rise to a g-valued 2-form F),,, called the

curvature 2-form associated to A, in the following fashion.

D,D,B—-D,D,B = [F,,,Bl.

Using the definition, it is not difficult to verify that F},, is expressed directly in terms of A, by
the formula

F,, =0,A, —0,A,+[A, A

From the way F),, arises from A, it follows that the following Bianchi identity holds.

D/,LFV/\ +D,Fy, + D)\F,u,u =0. (BlanChl)

A connection 1-form A, is said to be a solution to the Yang-Mills equations (YM) on R if

LA bi-invariant inner product is an inner product on g invariant under the adjoint map. A sufficient condition for
the existence of such an inner product is that & is a product of an abelian and a semi-simple Lie groups.

2We take a fairly pragmatic point of view towards the definitions of geometric concepts (such as connection and
curvature), for the sake of simplicity. For more information on the geometric background of the concepts introduced
here (involving principal bundles, associated vector bundles etc.), we recommend the reader the standard references
[3], [21], [22] etc.



the following equation holds for v = 0,1,2,...,d.
D"F,, = 0. (YM)

Note the similarity of (Bianchi) and (YM) with the Maxwell equations dF' = 0 and 0*F,, = 0.
In fact, the Maxwell equations are a special case of (YM) in the case & = SU(1).

An essential feature of (YM) is the gauge structure, to which we turn now. Let U be a (smooth)
®-valued function on R'*?. This U may act on A, D, F as a gauge transform according to the

following rules:
A,=UAU -9, U, D,=UD, U,  F,=UF,U™"

If a g-valued tensor transforms in the fashion B=UB U~!, then we say that it is gauge covariant,
or covariant under gauge transforms. Note that the curvature 2-form is gauge covariant. Given a
gauge covariant B, its covariant derivative D, B is also gauge covariant, as the following formula
shows:

D,B=UD,BU..

Due to bi-invariance, we furthermore have (B, B) = (B, B).
Note that (YM) is evidently covariant under gauge transforms. It has the implication that a
solution to (YM) makes sense only as a class of gauge equivalent connection 1-forms. Accordingly,

we make the following definition.

Definition 1.1.1. A classical solution to (YM) is a class of gauge equivalent smooth connection 1-
forms A satisfying (YM). A generalized solution to (YM) is defined to be a class of gauge equivalent
connection 1-forms A for which there exists a sufficiently smooth representative A which satisfies

(YM) in the sense of distributions.

A choice of a particular representative will be referred to as a gauge choice. A gauge is usually
chosen by imposing a condition, called a gauge condition, on the representative. Some classical
examples of gauge conditions are the temporal gauge Ay = 0, or the Coulomb gauge 0°A, = 0, where
£, being a latin index, is summed only over the spatial indices 1,2,...,d.

In this thesis, we shall study the Cauchy problem associated to (YM). As in the case of Maxwell
equations, the initial data set consists of (Al, El) fori=1,2,...,d, where A; = A;(t =0) (magnetic

potential) and E; = Fy;(t = 0) (electric field). Note that one component of (YM), namely v = 0,



imposes a nontrivial constraint on the possible initial data set (/L-, Ei):
OBy + [AY B = 0. (1.1.1)

This is called the (Yang-Mills) constraint equation.
The system (YM) possesses a positive definite conserved quantity E[F},,](t), called the conserved

energy of F,, at time ¢, defined by

E[F,, (1) = + / S (Foult, x), Folt, @) + (Fre(t: 2), Fe(t, @) dw - (1.1.2)
2 Jra ({57 kt=1,2,....d

Note that (YM) remain invariant under the scaling

T = A%, A=A F = 2\ ?F (1.1.3)

The scaling critical L2 Sobolev regularity is ~.(d) = %7 ie. the H@=2)/2.pnorm is invariant
under the above scaling. Comparing this with the energy regularity 7. = 1, we see that (YM) is

energy sub-critical for d > 3, critical for d = 4 and super-critical for d > 5.

1.2 The problem of gauge choice and previous approaches

We shall begin with a discussion on the importance and difficulty of the problem of choosing an
appropriate gauge in the study of the Yang-Mills equations. Our discussion will revolve around the
following concrete example, which is a classical result of Klainerman-Machedon [15] in d = 3, stated

in a simplified form.

Theorem 1.2.1 (Klainerman-Machedon [15]). Consider the Yang-Mills equations (YM) on R**3.
Let (A,,EZ) be a smooth initial data set satisfying the constraint equation (1.1.1). Consider the

Cauchy problem for these data.

1. (H! local well-posedness) There exists a classical solution A,, to the Cauchy problem for (YM)
on a time interval (=T*,T*), where T* > 0 depends only on ||AZ||H1, ||EZ||L§ The solution is

unique in an appropriate gauge, e.g. in the temporal gauge Ay = 0.

2. (Finite energy global well-posedness) Furthermore, if the initial data set possesses finite con-

served energy E(0) < oo, then the solution A, extends globally.



After explaining the importance of gauge choice for proving Theorem 1.2.1, we shall briefly
summarize the previous approaches to the problem of gauge choice, namely the (local) Coulomb
gauge [15] and the temporal gauge [28], [9], [33]. It will be seen that each has its own set of
drawbacks, which in fact makes Theorem 1.2.1 the best result so far in terms of the regularity
condition on the initial data, concerning local and global well-posedness of (YM) for possibly large?

initial data. This will motivate us to propose a novel approach to the problem of gauge choice in

§1.3

Importance of gauge choice

There are at least three reasons why a judicious choice of gauge is needed in order to prove Theorem

1.2.1:
A. To reveal the hyperbolicity* of (YM);
B. To exhibit the ‘special structure’ (namely, the null structure) of (YM);
C. To utilize the conserved energy E(t) to control ||, A;(t)]| L2

In the future, we shall refer to these as Issues A, B and C. Let us discuss each of them further.

Concerning Issue A, observe that the top order terms of (YM) at the level of A, have the form

0A4, — 0"0, A, = (lower order terms).

In an arbitrary gauge, due to the presence of the undesirable second order term —0*9,A4,, it is
even unclear whether the equation for A, is hyperbolic (i.e. a wave equation). Therefore, in order
to study (YM) as a hyperbolic system of equations, the gauge should be chosen, at the very least,
in a way to reveal the hyperbolicity of (YM). We remark that this is analogous to the issue that
the Yang-Mills heat flow is only weakly-parabolic, to be discussed in §1.4.

Resolution of Issue A suffices to prove local well-posedness of (YM) for sufficiently regular initial
data (see [28], [9]). However, it is still insufficient for Theorem 1.2.1, because of Issue B. After

an appropriate choice of gauge, which does not have to be precise for the purpose of this heuristic

3We remark that there are better results in the case of small initial data, for the reasons to be explained below.
See [33].

4In this work, we shall interpret the notion of hyperbolicity in a practical fashion and say that a PDE is hyperbolic
if its principal part is the wave equation. By ‘revealing the hyperbolicity of (YM)’, we mean reducing the dynamics of
the Yang-Mills system to that of a system of wave equations. As we shall see below, this may involve solving elliptic,
parabolic and/or transport equations for some variables.



discussion, the wave equation for the connection 1-form A satisfying (YM) becomes of the form
OA = O(A,0A) + (cubic and higher) (1.2.1)

where O(A, 0A) refers to a linear combination of bilinear terms in A and 0 ,A.

At this point, we encounter an important difficulty of proving Theorem 1.2.1: Strichartz estimates
(barely, but in an essential way) fall short of proving H} local well-posedness of (1.2.1), due to the
well-known failure of the endpoint L?L2° estimate on R!*3. In fact, a counterexample, given by
Lindblad [23], demonstrates that even local existence may fail at this regularity for a general equation
of the form (1.2.1). Such considerations indicate that a proof of Theorem 1.2.1 necessarily has to
exploit the ‘special structure’ of (YM), which distinguishes (YM) from a general system of semi-
linear equations of the similar form. As we shall see in sequel, this ‘special structure’ will go under
the name null form. Since the precise form of the wave equation for the connection 1-form A is
highly dependent on the gauge, it is crucial to make a suitable choice of gauge so as to reveal the
structure needed to establish Theorem 1.2.1.

Once Issues A and B are addressed, low regularity local well-posedness of (YM) (in particular,
Statement 1 of Theorem 1.2.1) can, in principle, be established. However, yet another difficulty
remains in proving Statement 2 of Theorem 1.2.1, namely Issue C. Had the conserved energy E(t)
directly controlled ||0, A;(t)| 1z, finite energy global well-posedness would have followed immediately

from H! local well-posedness. However, recalling the expression for the conserved energy
1
E(t) =3 D o l0uAy = 8, Ay + [Au, A7z
8%

we see that in an arbitrary gauge, E(t) can only control a part of the full gradient of A;: Namely,
the curl of A;, or [|0;A; — 9jA;|z2. Therefore, in order to prove Statement 2 of Theorem 1.2.1 as
well, the chosen gauge must have a structure which allows for utilizing E(t) to control the L2 norm

of the full gradient 0, A;(t).

Approach using the (local) Coulomb gauge

We shall now discuss the approach of Klainerman-Machedon [15] using the local Coulomb gauge. As
we shall see, this approach addresses all of the issues A—C, but possesses the drawback of requiring
localization in space-time, causing technical difficulties on the boundaries.

A key observation of Klainerman-Machedon [15] (which in fact goes back to the previous work



[14] of Klainerman-Machedon on the related Maxwell-Klein-Gordon equations) was that under the
(global) Coulomb gauge 0°A; = 0 imposed everywhere on R'*3, Issues A and B are simultaneously

resolved. That is:

e After solving elliptic equations for Ag and dyAg, (YM) reduces to a system of wave equations

for A;, and

e The most dangerous quadratic nonlinearities of the wave equations can be shown to be com-

posed of null forms.

More precisely, the wave equation for A; takes the form

OA4; = Q(|0,] 7" A, A) +10.| *Q(A, A) + (Less dangerous terms),

where each Q is a linear combination of bilinear forms

Qjr(P1,2) = 001002 — Opp10j2, 1< j <k <3,

which are particular examples of a null form, introduced by Klainerman [12] and Christodoulou [5]
in the context of small data global existence problem for nonlinear wave equations, and first used
by Klainerman-Machedon [13] in the context of low regularity well-posedness. Improved estimates
are available for such class of bilinear interactions (see [13], [16] etc.), and therefore the desired local
well-posedness can be proved.

The Coulomb gauge has an additional benefit that ||0,A;(t)|[z2 may be estimated by E(t) (pro-
vided that A; is sufficiently regular to start with), as the the Coulomb gauge condition 9*A, = 0 sets
the part of 9, A; which is not controlled by E(t) (namely the divergence of A, or 9*Ay, according
to Hodge decomposition) to be exactly zero. In other words, the Coulomb gauge settles Issue C as
well.

Unfortunately, when the structural group & is non-abelian, there is a fundamental difficulty in
imposing the Coulomb gauge globally in space (i.e. on R? for each fixed t). Roughly speaking, it
is because when & is non-abelian, a gauge transform into the Coulomb gauge is given as a solution
to a nonlinear elliptic system of PDEs, for which no good regularity theory is available in the

large®. A closely related phenomenon is the Gribov ambiguity [11], which asserts non-uniqueness

5In fact, it is possible to show, by a variational argument, that any A; € L2 may be gauge transformed to a weak
solution A € L2 to the Coulomb gauge equation 8¢A, = 0; see [6]. The problem is that no further regularity of the
gauge transform and A may be inferred, due to the lack of an appropriate regularity theory.



of representative satisfying the Coulomb gauge equation 9*A;, = 0 in some equivalence class of
connection 1-forms on R? when & is non-abelian.

At a more technical level, this difficulty manifests in the fact that Uhlenbeck’s lemma [37], which
is a standard result asserting the existence of a gauge transform (possessing sufficient regularity)
into the Coulomb gauge, requires the the curvature F' to be small in L¥?. Note that this norm is
invariant under the scaling (1.1.3), and therefore cannot be assumed to be small by scaling, unlike the
energy E[F]. To get around this problem, the authors of [15] work in what they call local Coulomb
gauges in small domains of dependence (in which the required norm of F can be assumed small),
and glue the local solutions together by exploiting the finite speed of propagation. The execution of
this strategy is quite involved due to the presence of the constraint equations (1.1.1). In particular,

it requires a delicate boundary condition for [JA; in order to mesh the analyses of the elliptic and

hyperbolic equations arising from (YM) in the local Coulomb gauge.

Approach using the temporal gauge

A different route to the problem of gauge choice in the context of low regularity well-posedness
has been suggested by Tao in his paper [33], where he proved H: local well-posedness for s > 3/4
(thus going even below the energy regularity) by working in the temporal gauge Ag = 0, under the
restriction that the H? x H2~! norm of (AZ, Ez) is small. This gauge has the advantage of being easy
to impose globally (as gauge transforms into the temporal gauge can be found by solving an ODE),
and thus does not have the problem that the Coulomb gauge possesses. Indeed, it had been used by
other authors, including Segal [28] and Eardley-Moncrief [9], to prove local and global well-posedness
of (YM) for (large) initial data with higher regularity (namely, s > 2). To reiterate this discussion
in our framework, the temporal gauge ‘essentially’ resolves Issues A and B raised above®.

However, as indicated earlier, this gauge possesses the drawback that it fails to cope with initial
data sets with a large H? norm, when 3/4 < s < 17. Moreover, another drawback is that it is
unclear how to deal with Issue C, namely how [|0,A;(t)|[zz may be controlled for every ¢ using the

conserved energy E.

6Note that Issue B is not addressed fully in the sense that smallness of the initial data is needed.

7One reason is that it still relies on a Uhlenbeck-type lemma to set 34, = 0 at t = 0, which requires some sort
of smallness of the initial data. There is also a technical difficulty in the Picard iteration argument which does not
allow one to use the smallness of the length of the time-interval; ultimately, this originates from the presence of a
time derivative on the right-hand side of the equation 8;(8¢A4y) = —[A’, 81 Ay] (which is equivalent to the equation
D?Fyy = 0). See [33] for more details.



1.3 Main idea of the novel approach

The purpose of this thesis is to present a novel approach to the problem of gauge choice which
does not possess the drawbacks of the previous methods. As such, this approach does not involve
localization in space-time and works well for large initial data. Nevertheless, it is (at the very least)
as effective as the previous choices of gauge, as we shall see that it addresses all of the issues A—C
discussed above. As the first demonstration of the power of the novel approach, we shall provide a
new proof of Theorem 1.2.1. (See the Main Local and Global Well-Posedness Theorems in §1.7.)

Heuristically speaking, the key idea of the novel approach is to ‘smooth out’ the problem at hand
in a ‘geometric fashion’. The expectation is that the problem of gauge choice for the ‘smoothed out
problem’ would be much easier thanks to the additional regularity. All the difficulties, then, are
shifted to the problem of controlling the error generated by the smoothing procedure. That this is
possible for a certain choice of smoothing procedure, based on a geometric (weakly-)parabolic PDE
called the Yang-Mills heat flow, is the main assertion of this thesis.

In the following three sections (§1.4 — §1.6), we shall discuss how the novel approach deals with
Issues A—C listed above. After a discussion on the Yang-Mills heat flow in §1.4, we shall summarize
the main ideas in the proof of the local well-posedness theorem in §1.5, in which we shall explain
how Issues A and B are resolved. Then an overview of the main ideas of behind our proof of the

global well-posedness theorem will be given in §1.6, addressing Issue C.

Remark 1.3.1. The present work advances a relatively new idea in the field of hyperbolic PDEs,
which is to use a geometric parabolic equation to better understand a hyperbolic equation. To the
author’s knowledge, the first instance of this idea occurred in the work of Klainerman-Rodnianski
[18], in which the linear heat equation on a compact 2-manifold was used to develop an invariant
form of Littlewood-Paley theory. This was applied in [17] and [19] to study the causal geometry of
solutions to the Einstein’s equations under very weak hypotheses.

This idea was carried further by Tao [34], who proposed to use a nonlinear geometric heat flow to
deal with the problem of gauge choice in the context of the energy critical wave map problem. This
was put into use in a series of preprints [35] to develop a large energy theory of wave maps into a
hyperbolic space H". In this setting, one begins by solving the associated heat flow, in this case the
harmonic map flow, starting from a wave map restricted to a fixed t-slice. Then the key idea is that
the harmonic map flow converges (under appropriate conditions) to a single point, same for every t,

in the target as the heat parameter goes to co. For this trivial map at infinity, the canonical choice



of gauge is clear®; this choice is then parallel-transported back along the harmonic map flow. The
resulting gauge is dubbed the caloric gauge. This gauge proved to be quite useful, and the use of
such gauge has also been successfully extended to the related problem of energy critical Schrodinger

maps as well, through the works [2], [29] and [30].

1.4 The Yang-Mills heat flow

Before delving into a more detailed exposition of our approach, let us first introduce the Yang-Mills
Heat Flow (or (YMHF) in short), which will play an important role in this thesis.

Let us revert to the general setting of R1*¢. Consider a spatial connection 1-form A;(s) (i =
1,2,...,d) on R? parametrized by s € [0,s0] (s9 > 0). We say that A;(s) is a Yang-Mills heat flow
if it satisfies the equation

9;A; =DFy, i=1,2,....d. (YMHF)

First introduced by Donaldson [8], the Yang-Mills heat flow is the gradient flow for the Yang-Mills

energy on R (also referred to as the magnetic energy)

1
B[F]:= 3 > IFZa, (1.4.1)

1<i<j<d

and plays an important role in differential geometry. It has been a subject of an extensive research
by itself; see, for example, [8], [27], [4] etc.

Our intention is to use (YMHF) as a geometric smoothing device for (YM). One must be careful,
however, since (YMHF) is not strictly parabolic as it stands at the level of A;. Indeed, expanding

(YMHF) in terms of A;, the top order terms look like
DsA; = NA; — 8°9; Ay + (lower order terms),

where AA; — 9;0° Ay possesses a non-trivial kernel (any A; = 0;¢, for ¢ a g-valued function). Due
to this fact, the Yang-Mills heat flow is said to be only weakly-parabolic.

The culprit of the non-parabolicity of (YMHF) turns out to be the gauge covariance of the term
D‘F,;, which suggests that it can be remedied by studying the gauge structure of the Yang-Mills
heat flow in detail. Upon inspection, we see that the gauge structure of the equations (YMHF) is

somewhat restrained, as it is covariant only under gauge transforms that are independent of s. To

8Namely, one chooses the same orthonormal frame at each point on the domain.
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deal with the problem of non-parabolicity, we shall begin by fixing this issue, i.e. reformulating the
Yang-Mills heat flow in a way that is covariant under gauge transforms which may as well depend
on the s-variable.

Along with A;, let us also add a component A, and consider A, (a = 2!, 22,... 2% s), which is

a connection 1-form on the product manifold R? x [0, so]. Corresponding to A, we also introduce

the covariant derivative along the 0y-direction

D; :=0s + [4s, .

A covariant Yang-Mills Heat Flow is a solution A, to the system of equations

F, =D'F,, i=1,2,...,d, (cYMHF)

where Fy; is the commutator between Dy and D, given by the formula

Fu = 0,A; — 9; A, + [As, Ay, (1.4.2)

The system (cYMHF) is underdetermined for A,, and therefore requires an additional gauge
condition (typically on Ag) in order to be solved. Note that the original Yang-Mills heat flow (YMHF)
is a special case of (cYMHF), namely when A, = 0. On the other hand, choosing A, = 9°Ay, the

top order terms of (cYMHF) becomes

DsA; — 0;0°Ag = NA; — 9°0; Ay + (lower order terms).

The term 9°0; A; on each side are cancelled, and we are consequently left with a strictly parabolic
system of equations for 4;. In other words, the weakly-parabolic system (YMHF) is equivalent to a
strictly parabolic system of equations, connected via gauge transforms for (¢cYMHF') back and forth
A, =0and A, = 0%A,.

Henceforth, the gauge condition A; = 0 will be referred to as the caloric gauge, in deference to
the term introduced by Tao in his work [34]. The condition A, = 9*A, will be dubbed the DeTurck
gauge, as the procedure outlined above may be viewed as a geometric reformulation of the standard
DeTurck’s trick, introduced first by DeTurck [7] in the context of the Ricci flow and adapted to the
Yang-Mills heat flow by Donaldson [8].

We remark that the scaling critical L2 Sobolev regularity is again v.(d) = d%Q. Moreover, being

11



the gradient flow, the magnetic energy B[F;;(s)] is monotonically non-increasing along the flow,

provided that the solution is sufficiently smooth.

1.5 Overview of the proof of local-wellposedness

Acquainted with the covariant formulation of the Yang-Mills heat flow, we are ready to return to
the task of describing our approach in more detail. In what follows, we shall restrict ourselves to
the case d = 3.

We shall begin by providing a short overview of the proof of local well-posedness for initial data
sets with H}: regularity. In particular, we shall explain how Issues A, B raised in §1.2 are resolved
in the novel approach.

To avoid too much technical details, we shall treat here the simpler problem of proving an a priori
bound of a solution to (YM) in the temporal gauge. That is, for some interval I := (=Tp,Tp) C R,
we shall presuppose the existence of a solution AL to (YM) in the temporal gauge on I x R3 and

alm to establish an estimate of the form

1042 AL Nl ¢, (1.02) < C Z [[(Ais E)ll 1 5 1.2
i=1,2,3

where AZT-(t =0) = jli,atA;r(t =0)= E;.

Step 1: Geometric smoothing of AL by the (dynamic) Yang-Mills heat flow

The first step of the proof is to smooth out the solution AL, essentially using the covariant Yang-Mills
heat flow. Let us introduce a new variable s € [0, so], and extend Af, = Af (t,2) to Aa = Aa(t, z,5)

(where a = 20, 21, 2% 23, 5) on I x R? x (0, s0] by solving the equations
F,, =D'F,,, p=0,1,2,3 (dYMHF)

with an appropriate choice of A, starting with A,(s = 0) = AL. Note that that this system is
(cYMHF) appended with the equation Fyy = D’Fyy for Ag; it will be referred to as the dynamic
Yang-Mills heat flow or, in short, ({AYMHF). Using Picard iteration, these equations can be solved
provided that sy > 0 is small enough.

1

As a result, we arrive at a connection 1-form A, (where a = 2%, 21, 2% 23, 5) on I x R? x [0, 5]
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which solves the following system of equations.

F,,=D‘F,  on IxR3x]0,s,
(HPYM)
D*F,, =0 along I x R? x {0}.

We shall refer to this as the Hyperbolic Parabolic Yang-Mills system or, in short, (HPYM). This
will be the system of equations that we shall mainly work with in place of (YM). Accordingly,
instead of AL, we shall estimate A, := A, (s = sp), which may be viewed as a smoothed-out version

of AL, and the error d;A,(s) (for s € (0, s0)) in between.

Step 2: Gauge choices for (HPYM): DeTurck and caloric-temporal gauges

The next step consists of estimating d;A4,, and A4, by using the equations arising from (HPYM).
Basically, the strategy is to first use the parabolic (in the s-direction) equations to estimate the
new variables JsA4,, 4, at t = 0, and then to use the hyperbolic (in the t-directions) equations to
estimate their evolution in ¢. As (HPYM) is manifestly gauge covariant (under gauge transforms

17.T27.T3, s), we need to fix a gauge in order to carry out

fully dependent on all the variables z°, x
such analyses.

As it turns out, a different gauge choice is needed to achieve each goal. For the purpose of
deriving estimates at ¢t = 0, it is essential to exploit the smoothing property of ({YMHF). As such,
the gauge of choice here is the DeTurck gauge Ay = 9°Ay. On the other hand, completely different
considerations are required for estimating the t-evolution, and here the gauge condition we impose
is
s=0 onIxR?x(0,s0),

>

0=0 onlxR3x{s}.

which will be referred to as the caloric-temporal gauge. In practice, the DeTurck gauge will be
first used to obtain estimates at t = 0, and then we shall perform a gauge transformation into the
caloric-temporal gauge to carry out the analysis of the evolution in ¢. We remark that finding such
gauge transform is always possible, as it amounts to simply solving a hierarchy of ODEs.

A brief discussion on the motivation behind our choice of the caloric-temporal gauge is in order.
For 054, on I x R® x (0, s9), let us begin by considering the following rearrangement of the formula
(1.4.2) for Fy;:

0s;A; = Fyi + D;As. (1.5.1)
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A simple computation® shows that Fi; is covariant-divergence-free, i.e. D*Fy, = 0. This suggests
that (1.5.1) may be viewed (heuristically) as a covariant Hodge decomposition of dsA;, where Fy; is
the covariant-divergence-free part and D; A, being a pure covariant-gradient term, may be regarded
as the ‘covariant-curl-free part’ (although, strictly speaking, the covariant-curl does not vanish but
is only of lower order for this term). Recall that the Coulomb gauge condition, which had a plenty
of good properties as discussed earlier, is equivalent to having zero curl-free part. Therefore, to
imitate the Coulomb gauge as closely as possible, we are motivated to set A5 = 0 on I x R3 x (0, s);
incidentally, this turns out to be the caloric gauge condition discussed earlier.

On the other hand, at s = s¢, the idea is that A, possesses smooth initial data (4;, Fy,)(t = 0),
thanks to the smoothing property of (AYMHF). Therefore, we expect that the problem of gauge
choice for A, is not as delicate as the original problem; as such, we choose the temporal gauge
condition A, = 0, which is easy to impose yet sufficient for the analogous problem with smoother

initial data, as the previous works [28], [9] had shown.

Remark 1.5.1. Performing a gauge transformation U = U(t,z, s) from the DeTurck gauge to the
caloric gauge with U(t = 0,s = 0) = Id corresponds exactly to carrying out the standard DeTurck
trick [8]. However, this will be inappropriate for our purposes, as we shall see that the resulting gauge
transform U does not retain the smoothing estimates proved in the DeTurck gauge. Instead, we shall
use the gauge transform for which U(t = 0,s = s9) = Id. Under such gauge transform, A,(t = 0)
remains the same, and thus smooth, at the cost of introducing a non-trivial gauge transform for the
initial data at t = 0, s = 0. In some sense, this procedure is an analogue of the Uhlenbeck’s lemma

[37] in our approach. See §3.5 for further discussion.

Step 3: Analysis of the time evolution - Resolution of Issues A and B

With the caloric-temporal gauge, we are finally ready to describe how Issues A and B are resolved
in the novel approach. Let us begin by introducing the Yang-Mills tension field w, (s) :== D*F,,(s),
which measures the extent of failure of A, (s) to satisfy (YM). Then we may derive the following

system of equations (See Chapter 2):

D,w, =D‘Dyw, + 2[F, *,w] + 2[F**, D, F,; + D,F,,], (1.5.2)
D"D,,Fy; =2[F,", Fi,] — 2[F", D, Fy + D,F;,] — D'Dyw; + D;D w, — 2[F,*, wy), (1.5.3)
D'F,, =w,. (1.5.4)

9The identity D¢F,, = 0 follows from (cYMHF) and D*D* Fy;, = 0, which is proved simply by anti-symmetrizing
the indices ¢, k.
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The underlines of (1.5.4) signify that each variable is restricted to {s = s¢}. Furthermore, w, =0
at s =0, for all v =0,1,2, 3.

The parabolic equation (1.5.2) can be used to derive estimates for the Yang-Mills tension field
wy,. It is important to note that its data at s = 0 is zero, thanks to the fact that A,(s = 0)
satisfies (YM). Moreover, note that wy = —Fsp, which is equal to —0s;A4y thanks to the caloric
gauge condition A; = 0. In conclusion, after solving the parabolic equation (1.5.2), the dynamics of
(HPYM) is reduced to that of the variables Fy; = 0;A; (again due to A; = 0) and A,. These are,
in turn, estimated by (1.5.3), which is a wave equation for Fj;, and (1.5.4), which is the Yang-Mills
equation with a source w, for A, under the temporal gauge A, = 0. This shows the hyperbolicity
of (YM), which takes care of Issue A.

Next, let us address the issue of exhibiting null forms (i.e. Issue B). Let us begin by observing
that for the system (1.5.4) for A,, no null form is needed to close the estimates; this is because
(4;, Fy;)(t = 0) has been smoothed out by ({YMHF) as mentioned earlier. For the wave equation
(1.5.3) for F;, on the other hand, we need to reveal the null structure of the quadratic terms in
order to prove low regularity local well-posedness. Indeed, despite the superficial complexity, (1.5.3)
in the caloric-temporal gauge has the miraculous structure that all quadratic terms can be written in
terms of null forms, modulo essentially cubic and higher order terms. We shall sketch this procedure
in §2.2. This settles Issue B.

In the case of d = 3 and H! regularity, however, it turns out that the full null structure of the
Yang-Mills equations is not necessary'®. More precisely, there turns out to be only a single term

which cannot be dealt with simply by Strichartz estimates, which is
2[4, — A, 0°Fy).

If A, — A, were divergence-free, i.e. 9°(A,—A,) = 0, then an argument of Klainerman-Machedon
[14], [15] would show that this nonlinearity may be rewritten in as a linear combination of null forms

Qjx (10|71 (A — A), Fy;). Although this is not strictly true, we have
so
A A, = —/ Fu(s)ds
0

thanks to the condition Ay = 0, where Fyy is covariant-divergence-free, i.e. D!F,; = 0. This suffices

for a variant of the argument of Klainerman-Machedon to work, revealing the null structure of the

107t is amusing to compare this with the analysis in the Coulomb gauge, in which null structure is needed for every
quadratic term involving only A;.
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above term.
Provided that sg, |I| are sufficiently small*!, an analysis of (HPYM) using the gauge conditions
indicated above leads to estimates for 0sA4;, 4, in the caloric-temporal gauge, such as

sup s~ D29 D9, (@A) v < O S 1Ay Bl gse

0<s<sgo

j=123
0 _m m— ds\1/2 .
([ 10000040 M rany 2) " 0o 3 M Bz (155)
j=12,3

—(k—1)/2 _ ° o
5o SV 210% 00, Allewnis < Ce S 1AL Bl s
j=1,2,3

up to some integers mg, ko > 1, i.e. 1 <m < mgp, 1 <k < ky. We remark that the weights of s are

dictated by scaling.

Step 4: Returning to AL

The only remaining step is to translate (1.5.5) to the desired estimate for |8, Afllc,(1,r2). The
first issue arising in this step is that the naive approach of integrating the estimates (1.5.5) in
s fails to bound ||3t,zAL||Ct( 1,12), albeit only by a logarithm. To resolve this issue, we take the

weakly-parabolic equations
O A; = NA; — 9°0; Ay + (lower order terms).

differentiate by 0; 5, multiply by 0;A; and then integrate the highest order terms by parts over
R3 x [0,50]. This procedure, combined with the Lﬁs/s—type estimates of (1.5.5), overcomes the
logarithmic divergence.

Another issue is that (1.5.5), being in the caloric-temporal gauge, is in a different gauge from the
temporal gauge along s = 0. Therefore, we are required to control the gauge transform back to the
temporal gauge along s = 0, for which appropriate estimates for Ag(s = 0) in the caloric-temporal
gauge are needed. These are obtained ultimately as a consequence of the analysis of the hyperbolic

equations of (HPYM) (Strichartz estimates, in particular, are used).

Remark 1.5.2. Although we have assumed d = 3 and H_} regularity throughout this section, most

part of the scheme described above can be easily applied to the Yang-Mills equations in other

1n the Coulomb gauge, the equation for Ag is elliptic and therefore smallness of the time interval I cannot be
utilized to solve for Ag using perturbation; in [15], the authors exploits the spatial localization to overcome this
issue. For (HPYM) in the caloric-temporal gauge, Ag estimated by integrating Fso = 0sAg, where the latter variable
satisfies a parabolic equation. For this, smallness of s can be used, and thus the estimates are still global on R3.
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dimensions d > 2 and/or for different scaling sub-critical regularity H, v > %. Indeed, note that
the results in Chapter 3 are valid in all such cases. The bottleneck is the wave equation (1.5.3) for
F;, and whether certain H” local well-posedness can be established will generally depend crucially
on whether (1.5.3) can be analyzed at the corresponding regularity. See the remark at the end of

§2.2 for more discussion.

1.6 Overview of the proof of global well-posedness

In the work of Klainerman-Machedon [15], as pointed out earlier, finite energy global well-posedness
was a rather easy corollary of the H} local well-posedness proof thanks to the fact that in the (local)
Coulomb gauge, the conserved energy E(t) essentially controls ||(A;, Fo;)(t)|| 1 xz2. However, in the
temporal gauge, making use of the conserved energy E(t) is not as straightforward since E(t) only
controls certain components (namely, the curl) of the full gradient of A;(¢). We remind the reader
that this was referred to as Issue C in §1.2.

Nevertheless, it is another remarkable property of the novel approach that Issue C can also
be resolved, and therefore finite energy global well-posedness of (YM) can be proved. Our proof

proceeds roughly in three steps, each of which uses the conserved energy E(t) in a crucial way.

Step 1: Transformation to caloric-temporal gauge, improved version

Let us start with a solution AL to (YM) in the temporal gauge on (—Tp, Tp) x R®. As in the proof of
local well-posedness, the first step is to solve ({YMHF) to extend AL to a solution A4, to (HPYM).
A priori, however, it is not clear whether this is possible when T} is large.

To illustrate, suppose that AL does not extend past the time Ty. Then from the local well-

posedness statement, it is necessary that
||8t,$AL(t)HLE — 0 as t — Tp.

Because of this, the size of the s-interval on which (dYMHF) can be solved by perturbative
methods shrinks as ¢ — Tp. As a consequence, there might not exist a non-trivial interval [0, sg] on
which (dYMHF) can be solved for every t € (—Tp,Tp).

However, such a scenario is ruled out, thanks to the conserved energy E(t), and ({YMHF) can be

solved in a uniform manner globally in time'2. More precisely, it is possible to show that there exists

121n fact, along our proof we shall discover that this is essentially the (dYMHF)-analogue of finite energy global
well-posedness of (YMHF) (Corollary 5.4.3), which was first established by Rade [27].
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s0 > 0 depending only on E(t) such that ({YMHF) on a fixed ¢-slice can be solved on an interval
[0, 50]. As E(t) is conserved, this shows that Al, can be extended to a solution A, to (HPYM) on
(=To,Tp) x R3 x [0,1]. As before, with a solution A, of (HPYM) in hand, we shall impose the

caloric-temporal gauge condition via an appropriate gauge transform.

Step 2: Fixed-time control by E(¢) in the caloric-temporal gauge

We wish to demonstrate that the conserved energy!® E(t) controls the appropriate fixed-time norms
of the dynamic variables in the caloric-temporal gauge, i.e. A, and Fy; = 054,;.

The key observation is that HDgfc

)F,W(t, s)||z2 is estimated (with an appropriate weight of s) by
E(t), thanks to covariant parabolic estimates. In particular, ||D3(L-k) Ey;(t)||z2 is under control, where
F,, is the connection 2-form restricted to {s = so}. As the temporal gauge condition A, = 0 is
enforced, we have F\; = 0;A,; therefore, the preceding norm may be integrated in ¢ to control the
size of ||8g(5k)Ai(t)||Li for t € (—Tp,Tp). On the other hand, as Fy; = D’F}; is already of the form
D, F,,, we can use the conserved energy E(t) to control the appropriate (fixed-time) norms of Fi; (t)

as well, for each t € (—=Tp, Tp).

Step 3: Short time estimates for (HPYM) in the caloric-temporal gauge

Finally, we must unwind all the gauge transformations which have been done and return to AL.
As in the last step of the proof of local well-posedness, this requires estimating Ay along s = 0 in
the caloric-temporal gauge, where an important ingredient for the latter is the estimates obtained
from the hyperbolic equations of (HPYM). Iterating the techniques developed for proving local
well-posedness on a short time interval, coupled with some new estimates arising from the conserved

energy E, we shall arrive at the desired estimates.

1.7 Statement of the Main Theorems

We shall now give the precise statements of our main theorems. Let us begin by defining the class

of initial data sets of interest.
Definition 1.7.1 (Admissible H? initial data set). We say that a pair (A;, ;) of 1-forms on R3 is
an admissible H! initial data set for the Yang-Mills equations if the following conditions hold:

1. A;e H N L3 and E; € L2,

I3For a solution Aa to (HPYM), E(t) is defined to be the conserved energy of A, at (t,s = 0). We remark that
this is a gauge-invariant quantity.
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2. The constraint equation
aeég + [/Ole, E@] =0,
holds in the distributional sense.
Let us also define the notion of admissible solutions.

Definition 1.7.2 (Admissible solutions). Let I C R. We say that a generalized solution A, to the

Yang-Mills equations (YM) in the temporal gauge Ay = 0 defined on I x R3 is admissible if
Ap € G Hy N LY), 94, € Co(I, L)

and A, can be approximated by classical solutions in the temporal gauge in the above topology.

We begin with a H! local well-posedness theorem, which will be called the Main Local Well-
posedness (LWP) Theorem.

Main LWP Theorem. Let (4;, E;) be an admissible H! initial data set, and define T = ||A||H1 +
HEHLg Consider the initial value problem (IVP) for (YM) with (A;, E;) as the initial data. Then

the following statements hold.

1. There exists T* = T*(i) > 0, which is non-increasing in i such that a unique admissible
solution A, = A,(t,x) to the IVP in the temporal gauge Ay = 0 exists on the t-interval

I:=(=T*,T*). Furthermore, the following estimates hold.

100 All 1,22y < CL, IAllc,rsy < IAllgs +TYV2C; 1. (1.7.1)

2. Let (A}, E!) be another admissible H} initial data set such that ||A’||H1 + ||El||Li < 7, and
let Aj, be the corresponding solution to the IVP in the temporal gauge, given by Statement 1.

Then the following estimates for the difference hold.

10426 Al (r,22) <C (1Al 771 + I6El2), (1.7.2)

16Alle, 1,28y <C3 15 s + TV2C3 (5 A s + B 22). (1.7.3)

3. Finally, the following version of persistence of regularity holds: if (‘3wfii,éi € H' for an

integer m > 0, then the corresponding solution given by Statement 1 satisfies

Oy 2 Ai € CPL((=T*,T*), HF?)
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for every pair (k1,ks) of nonnegative integers such that ki + ko < m.

Our second main theorem is a global well-posedness statement, which (in essence) says that the
solution given by the Main LWP Theorem can be extended globally in time. It uses crucially the fact
that an admissible initial data set always possesses finite conserved energy, whose precise definition

is as follows: Given a space-time 2-form F = F),,, we define its conserved energy to be

1
BIF) = 5 > 1Bl

H<v
We are ready to state the Main Global Well-posedness (GWP) Theorem.

Main GWP Theorem. Let (Az, EZ) be an admissible H' initial data set, and consider the initial
value problem (IVP) for (YM) with (A, ;) as the initial data. (Note that by admissibility, (A;, E;)

always possesses finite conserved energy, i.e. E[F] < 0o.) Then the following statements hold.

1. The admissible solution given by the Main LWP Theorem extends globally in time, uniquely as

an admissible solution in the temporal gauge Ag = 0.

2. Moreover, if &C/L,Eoi € H* for an integer m > 0, then the corresponding solution given by

Statement 1 satisfies

OrnAi € CF (R, HE2)
for every pair (ki, k) of nonnegative integers such that ki + ko < m.

Remark 1.7.3. We remark that quantitative estimates (as in Statements 1, 2 of the Main LWP
Theorem) can be obtained by applying the Main LWP Theorem repeatedly. We have omitted these

statements for the sake of brevity.

Remark 1.7.4. The temporal gauge condition in both theorems above will plays rather an auxiliary
role, and most of the analysis will take place in the caloric-temporal gauge, as discussed earlier.
Indeed, our very method of proof of the above theorems is essentially to first establish their analogues
in the caloric-temporal gauge, and then pass to the temporal gauge. It is mainly due to the difficulty
of stating the precise gauge condition in a concise algebraic fashion that we have omitted these
statements here. On the other hand, it may be of interest that sufficient control on the gauge

transform can be achieved so as to allow for such a transition.
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1.8 Outline of the thesis

In addition to the present introductory chapter, this thesis consists of 4 chapters and 1 appendix.
Below, a brief description of their contents will be given. For an outline of each section, we refer the

reader to the beginning of each chapter.

e In Chapter 2, we shall present the basic structural properties of the hyperbolic parabolic Yang-
Mills system (HPYM) which will play a central role in this thesis. In §2.1, we shall derive the
covariant equations of motion for the curvature components, as well as the Yang-Mills tension
field, of solutions to (HPYM). In §2.2, we shall exhibit the null structure of the wave equation

for Fy; = 0sA; in the caloric-temporal gauge.

e In Chapter 3, the covariant and dynamic Yang-Mills heat flows (cYMHF) and (dYMHF) will
be studied under the DeTurck and caloric gauge conditions. Our analysis will culminate in the
last two sections, namely §3.6 and 3.7. In the former, local well-posedness for both (cYMHF)
and (AYMHF) will be established in the caloric gauge. In the latter, we shall make precise the

ideas outlined in Steps 1 and 2 of §1.5.

Our basic strategy for studying both (cYMHF) and(dYMHF) will be to first establish parabolic
smoothing estimates for the connection 1-form in the DeTurck gauge A, = A, (in which the
flows are genuinely parabolic), then pass to the caloric gauge A; = 0 by an appropriate gauge

transform. We shall consider general dimension d > 2 and any sub-critical regularity v > %.
In Chapters 4 and 5, we shall restrict to d = 3 and v = 1.

e In Chapter 4, the Main LWP Theorem will be proved, following the ideas outlined in §1.5.
The Main LWP Theorem will be reduced to Theorems A (Transformation to caloric-temporal
gauge) and B (Time dynamics of (HPYM) in the caloric-temporal gauge), which correspond
to Steps 1 & 2 and 3 & 4 in §1.5, respectively. Theorem A will follow from the results in
63.7, and the remainder of Chapter 4 will be concerned with a proof of Theorem B. The main
idea will be to use the parabolic equations of (HPYM) to reduce the time dynamics of the full
solution to (HPYM) to that of Fy; = 9sA; and A, in the caloric-temporal gauge, and then to

analyze the wave equations satisfied by Fy; and A,.

e In Chapter 5, the Main GWP Theorem will be proved, following the ideas outlined in §1.6.
As in Chapter 4, we shall begin by reducing the Main GWP Theorem to Theorems E (Trans-

formation to the caloric-temporal gauge, improved version), F (Fixed-time control by E in
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the caloric-temporal gauge) and G (Short time estimates for (HPYM) in the caloric-temporal
gauge), which correspond to Steps 1, 2 and 3 in §1.6. The key common ingredient of the
proofs of the latter three theorems will be a covariant parabolic estimates for F),,, which will

be proved in §5.3.

e Finally, in Appendix A, we shall give proofs of the results concerning gauge transforms, namely

Propositions 3.5.1, 3.5.2 and Lemma 4.3.6, which were deferred in the main body of the thesis.

Guide for the reader

To assist the reader’s navigation through this thesis, we shall give a list of dependencies of each

chapter on the earlier materials.

e Basic to the rest of the thesis are §1.9 (Notations and conventions) and §2.1 (Equations of

motion), in which many conventions and notations will be set.

e We remark that §2.2 (Null structure of (HPYM) in the caloric-temporal gauge) is not used in

any major way in the rest of the thesis, and thus may be skipped by the hurried reader.
e For Chapter 3: There are no prerequisites (other than §1.9 and §2.1).

e For Chapter 4: The reader will need §3.1.1 (Basic estimates) — §3.1.4 (Correspondence Principle
for p-normalized norms) for basic estimates, notations concerning p-normalized norms, abstract
parabolic theory and the Correspondence Principle. Moreover, Theorems 3.7.1, 3.7.2 proved

in §3.7 (Transformation to the caloric-temporal gauge) will also be needed.

e For Chapter 5: The reader should consult §3.1.1, §3.1.2 and §3.1.4 for basic estimates, p-
normalized norms and the Correspondence Principle; on the other hand, the abstract parabolic
theory developed in §3.1.3 (Abstract parabolic theory) will note be needed. Further prerequi-
sites for this chapter are: Propositions 3.6.1, 3.6.4 and Lemmas 3.6.3, 3.6.6 in §3.6 (Yang-Mills
heat flows in the caloric gauge); Theorem A in §4.3 (Reduction of the Main LWP Theorem
to Theorems A and B); and Propositions 4.4.1 - 4.4.4, Theorems C, D in §4.4 (Definition of

norms and reduction of Theorem B).
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1.9 Notations and conventions

1.9.1 Indices

0

Throughout the thesis, greek indices (e.g. p, v, ...) will run over 2°, 2!, .., 2%, whereas plain latin

L...,z% In addition, we shall utilize

indices (e.g. i, j, ...) will run only over the spatial indices x
bold latin indices, such as a,b, to refer to all possible indices z°,2!,...,2% s on R4 x [0, 00).
Indices will be raised and lowered using the Minkowski metric, and we shall assume the Einstein
convention of summing up repeated upper and lower indices.

We shall use bold kernel letters to refer to all space-time components; more precisely, F denotes
any component of F,,,, and A, F, denote any component of A,, Fj,, respectively. On the other
hand, plain kernel letters will refer to only spatial components, i.e. F' = F;;, A= A;, and Fy = F;
for i, =1,2,...,d. A norm of such an expression, such as ||A| or ||4]|, is to be understood as the
maximum over the respective range of indices, i.e. [|A| =sup,_o1 4 Aull; |All =sup;—y 4 [ Al

etc.

1.9.2 Schematic notations

We shall use the notation O(¢q, ..., ¢x) to denote a k-linear expression in the values of ¢1, ..., ¢,
or equivalently, translation-invariant k-linear map. For example, when ¢; and the expression itself
are scalar-valued, then O(¢1,...,¢r) = Coi1¢a - - ¢i for some constant C. In many cases, however,
each ¢; and the expression O(¢1, ..., ¢;) will actually be matrix-valued. In such case, O(¢1, ..., dr)
will be a matrix, whose each entry is a k-linear functional of the matrices ¢;. Note that the Leibniz
rule holds for O.

Similarly, for B-covariant tensors o;, we shall use the notation Q(o1, ..., o) to denote covariant,
translation-invariant k-linear map. By covariance, it follows that the covariant Leibniz rule holds
for Q, e.g. D;0(01,02) = O(Djo1,02) + O(o1,D;09).

In addition to estimating a single solution to various equations, we shall also be estimating the
difference between two nearby solution. We shall often distinguish the second solution from the first

by putting a prime, e.g. AL, F.,, w; etc. The corresponding differences will be denoted by a ¢, i.e.

H7
0Aa = Aa — AL, 0F;, = F,, — FS’# and dw; = w; — w; ete.
We shall also use equations for differences, which are derived by taking the difference of the

equations for the original variables. In writing such equations schematically using the O-notation, the

primed and unprimed variable will not be distinguished. For example, the expression O(A, 9, (dA4))
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refers to a sum of bilinear expressions, of which the first factor could be any of 4;, A}, and the second
is one of 0;(0A4,).

The following rule, which we call the formal Leibniz’s rule for §, is quite useful:
§O(¢17 ¢2a ceey ¢k) = O(6¢17 ¢27 DR st) + O(¢1a 6¢27 ey ¢k> +--- 4+ O(¢1; ¢27 ey 6¢k>

1.9.3 Convention for implicit constants

In stating various estimates, we shall adopt the standard convention of denoting finite positive
constants which are different, possibly line to line, by the same letter C. Dependence of C' on
other parameters will be made explicit by subscripts. Furthermore, we shall adopt the convention
that C' always depends in a non-decreasing manner with respect to each of its parameters, in its
respective range, unless otherwise specified. For example, Cg (4)7, where E, (AT range over positive

real numbers, is a positive, non-decreasing function of both E and ().

1.9.4 Small parameters

The following global small parameters will be used in this thesis.
0< g K0g,0c K0p Ky <1

Often, we shall need an auxiliary small parameter which is used only within a certain part. For

such parameters, we reserve the letter ¢, and the variants thereof.

1.9.5 Miscellaneous notations

For v € R, we shall define |8,|” := (—A)/2. The H)-(semi-)norm will defined by 11027 () |l Lz -
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Chapter 2

Hyperbolic-Parabolic Yang-Mills

system

In this short chapter, we shall collect some important properties of the system (HPYM).

In §2.1, we shall give a systematic exposition of the basic properties of the system (HPYM). The
central result will be the derivation of the covariant equations of motions for (HPYM). The key
heuristic point is that this system is parabolic in the s-direction and hyperbolic in the t-direction.
We remark that much of the computation of this section will apply to (cYMHF) and (dYMHF) as
well; see Remark 2.1.2

In §2.2, a discussion on the null structure of the wave equations in the caloric-temporal gauge
will be given. We shall reveal (at least heuristically) the null structure of all the main quadratic

terms in the wave equation for Fj;.

2.1 Equations of motion

Let I C R be an open interval, s; > 0, and A, a connection 1-form on I x R% x [0, so] with

coordinates (20 = t, 2!, 22, ... Lz, s). Recall that a bold-faced latin index a runs over all the indices

2

corresponding to 2%, z', 22, ..., 2% s. As in the Introduction, we may define the covariant derivative

D, associated to A,. The commutator of the covariant derivatives in turn defines the curvature

2-form Fgap. Note that the Bianchi identity holds automatically:

Danc+Dcha+DcFab =0. (211)
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In this section, we shall consider a solution A, to the hyperbolic parabolic Yang-Mills system,
which have been introduced in the special case d = 3 in the Introduction. The general hyperbolic

parabolic Yang-Mills system for any d > 2 is similarly defined as follows:

F,, =D'F,, on I x R x [0, s0],
(HPYM)

D"F,, =0 along I xR%x {0}.

The Yang-Mills tension field w, is defined as before by the formula
w, = D"F,,.

We shall use the convention of using an over- or underline to signify the variable being evaluated
at s = 0 and s = s, respectively. For example, A, = 4,,(s = 0), W, = w,(s = 0), A, = Au(s = s0),

D, B =0,B+[A.(s = s0), B], w, = w,(s = s0) etc. We remark that so will usually set to be equal

/

to 1 by scaling.

Theorem 2.1.1 (Covariant equations of the hyperbolic-parabolic Yang-Mills system). Let A, be a
smooth solution to the hyperbolic parabolic Yang-Mills system (HPYM). Then the following covariant

equations hold.

D*F,, =0, (2.1.2)
Dy Fy = — Dowy = —Dwy, (2.1.3)
D, Fap =DD,Fap, — 2[F, ", Fo, (2.1.4)
D,w, =D‘Dyw, + 2[F, *,w] + 2[F**, D, F,; + D/F,,], (2.1.5)

D'D,F,, =2[F," F,,] — 2[F",D,F,; + D(F,,] —- D'Dyw, + D,Dw, — 2[F,“,wg]. (2.1.6)

D'F,, =w

v T v

(2.1.7)

Moreover, we have w,, = 0.

Remark 2.1.2. An inspection of the proof shows that (2.1.2)—(2.1.7) hold under the weaker hy-
pothesis that A, satisfies only (d{YMHF). Moreover, these statements for non-temporal indices
a,b=2z! ... 2% s hold for a solution (4;, A,) to (cYMHF) as well. However, the last statement of

the theorem is equivalent to (YM) along {s = 0}.
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Proof. Let us begin with (2.1.2). This is a consequence of the following simple computation:

1 1 1
D‘Fy = D'D"Fiy = DD Fiy + S DMD Fiy + S[F, Fire]

1
=5 (DD" + D*D) Fry =0,

where we have used anti-symmetry of Fy, for the last equality.

Next, in order to derive (2.1.3), we first compute
D*w, = D"D"F,, =0,

by a computation similar to the preceding one. This give the second equality of (2.1.3). In order to

prove the first equality, we compute
D!F,, = D"D*F;, = D'D"F,, + [F*, Fy,] = D*w, (2.1.8)

and note that D*Fy, = D°Fyy = —DgFyo by (2.1.2).
Next, let us derive (2.1.4). We begin by noting that the equation Fy, = DFy, holds fora = t,z, s;

for the last case, we use (2.1.2). Using this and the Bianchi identity (2.1.1), we compute

D Fap =DaFip — DpFya = DD Fyp, — DD Fia
=D!(DaFs, — DpFra) + [Fo’, Fin) — [F % Fra)

=D‘DFLp — 2[F,", Ful.
In order to prove (2.1.5), we shall use (2.1.4). We compute as follows.

D,w, =D,D"F,,
Y (DEDZFW —9[F,", FM]) +[F,,F,)
=D'Dy (D" Fy,) + [F*, DFy) + D' [Fy  F,) = 2DM(E,  Fil + [F,", B

=D'Dw, +2[F,*, w] + 2[F*, D, F,0 + D,F,,].

Note that (2.1.7) is exactly the definition of w, at s = sg. We are therefore only left to prove
(2.1.6).

Here, the idea is to start with the Bianchi identity 0 = D, F;, + D,F,, + D, F,, and to take
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D# of both sides. The first term on the right-hand side gives the desired term D*D,F,,. For the

second term, we compute
D'D,F,, = D,D"F,, + [F",,F,,] = Dyw, — [F,*, F,,.],
and for the third term, we compute, using (2.1.8),
D"D, Fy; = D,D"Fy + [F¥,, ] = -D,Dw; — [E,*, F,,]

Combining these with (2.1.5), we obtain (2.1.6). O

2.2 Null structure of (HPYM) in the caloric-temporal gauge

The purpose of this section is to reveal the null structure of the system (HPYM) in the caloric-
temporal gauge
As =0, everywhere,

A, =0, along s = so.

As discussed in §1.5, for the purpose of proving the Main LWP Theorem, we do not need to
reveal the null structure of every quadratic term in the wave equations of (HPYM). Recall that

there is only one place where the null structure is needed, which is the term
2[A" — A%, OpF ).

arising from expanding DD, F;. We refer the reader to §4.7.2 for the precise derivation of the null
structure of this term, as well as its rigorous analysis.

Despite the apparent complexity, miraculously, it turns out that the remaining quadratic terms
in the wave equation for Fj; in the caloric-temporal gauge may also be expressed in terms of null
forms, modulo less dangerous terms. The structure is very close to that of the wave equation for A;
in the Coulomb gauge!. Below, we shall give a brief account of the full null structure of the wave
equation for Fy;. To simplify the presentation, let us make a few heuristic assumptions which are

easily justifiable in application.

e Any variable at s = sg, e.g. A,, will be ignored, as they cannot contribute to dangerous

IRecall, in fact, that this analogy had been our motivation for the choice of the caloric(-temporal) gauge condition
in §1.5.
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interaction for Fy; at 0 < s < sp nor A; at so.

e The variables Fyo, w;, doAg, Ao, 0°Ay — 0°A, and (A°F — ACf)i = —(=A)"10;(0° Ay — 0'A)

will be considered (at least) quadratic. The justifications are as follows:
— For Fyp = —wp and w;, this is because they satisfy a semi-linear parabolic equation (2.1.5)
with zero data at s = 0.

— For 0y Ao, we use the equation D#w,, = 0, which, by the caloric-temporal gauge condition,
implies

D5(00Ag) = [Ag, Fso] + D awy.

— For Ay, we use 0,49 = Fy and A, which hold thanks to the caloric-temporal gauge

condition.

— For 0°A, — 9°A,, note that 0,0°A, = —[A*, F,;] since D*F,, = 0 by the caloric-temporal

gauge condition.

— Finally, for A — A" we use the preceding point regarding 8%A4, — A,

e We shall decompose everything in terms of A;, for which we have A; = — fsl Fsi(s')ds'+ A, by
the caloric-temporal gauge condition. In terms of scaling, F; ~ 89(52)/1. As the wave equation
would gain F; one derivative, up to three derivatives (one may be a time derivative) are

allowed to fall on A.

¢ Finally, we shall assume that all variables are in S; ;, and furthermore that all Riesz and Hodge
projections (such as P4, defined below) can be ignored, in view of requiring that the norm of

our function space depends only on the size of the Fourier transform.

For the reader’s convenience, let us recall the wave equation (2.1.6) for Fy;:
D“D,F,, = 2[F,*,F,,] — 2[F*,D,F,; + D,F,,] — D'Dyw, + D, D w, — 2[F,“ w,]. (2.1.6)
Let us first deal with the bilinear terms arising form D*D, F;.

Lemma 2.2.1. We have

DD, Fy; =0F; + 2[AY, 0, Fyi] — 2[Ao, 0o Fsi]
+ [0 A, Fyi] — [80Ao, Fui] + [A,[A,,, Fyil] (2.2.1)

=0F,; + O(A*, 0,F4;) + (Cubic and higher).
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Moreover, the following (schematic) identity holds for any function ¢ and constant coefficient

bilinear form O:

O(A%,0p9) = Q. (|0:] A, @) + (Cubic and higher). (2.2.2)

where Qg is a linear combination (modulo Riesz projections) of null forms of the type
Qij(d1,P2) = 0i910;¢2 — 0;$10;p2.

Proof. The first identity (2.2.1) is a simple computation using the above heuristics. To prove (2.2.2),
we shall use some simple facts regarding the Hodge decomposition. Given a sufficiently nice (say

Schwartz) 1-form B; on R, its Hodge decomposition is defined by
Bz‘ = (Pde)Z + (IPCfB)Z‘,

where
(PYB); := (—=A) 100 By — 9, B;), (PB); := —(—A)"19;0'B,.
We shall often use the shorthand B := P¥B and B°f := P“*B. Applying this to A* and

discarding A°f according to the heuristic above, we may compute

O(A*,0p0) =O((AY)*, 9y¢p) 4 (Cubic and higher)
=0 ((—A)flﬁk(aeAk —okAY, 8@(1)) + (Cubic and higher)
:O((*A)ilakaéflk, 3e¢) - O((*A)flagaeAk,ﬁkgb) + (Cubic and higher)

=Qi;(|0:| ' A, ¢) + (Cubic and higher). ]

Next, we shall consider the quadratic terms on the right-hand side of (2.1.6).

Lemma 2.2.2. The following (schematic) identity holds:

2[E€H7 Filt] - 2[F“Za D;LFM + DZFi/L]
=0,Q4 (A, A) + 0,Q0(A, A) + Qo (A, 0, A) + Q. (A, 0, A) (2.2.3)

+ (Cubic or higher),

where Q 1s as before and Qg is a linear combination (up to Riesz projections) of null forms of the
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type
Qo(91,¢2) = 0" P10, 02.

Proof. Substitute F,* = DyF‘ and rewrite the above expression as follows.
72[E9H7 Elt] =+ 2[FHZ7 D/Lﬂ@ + DZFi/L]

=—2[D,F*, F;,) — 2[F* D, F;,] — 2[F* D, Fy]

=—2D'[F," F,,] — 2[F*" D, Fl.

For the first term, it suffices to show that the bilinear terms in [F,", F;,| can be expressed as a

null form. We proceed as follows:
[F,", Fy) =[00A",0;A,] — (0" A, 0;A,] — [00A*, 0, A;] + [0% Ay, 0,,A;] + (Cubic and higher).

To begin with, discard all terms involving Ag, following the heuristic above. The fourth term
on the right hand side is a Qo-type null form, whereas the second and third terms are of the type
0(0, A%, 8, A), to which we apply (2.2.2). Finally, for the first term, we may use the anti-symmetry

of the Lie bracket to write
¢ 1 ¢ ¢
(004", 0,40 = 5 (04,040 — (A", 0,A))

which is a Qg;-type null form.

On the other hand, we may also compute
[F D, Fy) = [0°A*, 8, Fy) — [0" A*, 8, F;] + (Cubic and higher).

Discard also the terms involving Ag. The second term on the right-hand side is a Qg-type null
form, whereas the first term is of the type O(9, A%, 8,F). Expanding Fj, in terms of A and applying
(2.2.2), we obtain (2.2.3). O

Finally, we also need to address the linear term in w;, which is heuristically also quadratic. Note
that the only such term in (2.1.6) is
82(@11)2’ — Ojwy),

which is exactly A(P%w);. After an application of P to the parabolic equation (2.1.5) and inversion,
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we are left to reveal the null structure of the main term, namely
AP ~ PY([FH D, Fy+ DyF,)).
Let us consider the expression under P4, We have already taken care of the term
[FH, D, Fyl.

in the proof of Lemma 2.2.2. Therefore, we are left to consider [F*¢, D,F;,]. Expanding F,D in

terms of A, d, we see that all bilinear terms are acceptable, except
P9 A" 0.0,A,,).
A simple computation using the definition of P gives

(PYH[ A*, 0.00A )i =(—L) LR (9;[0° AF, 0k 0p A,] — Ok[0°AF, 0,00 A,))
=(=A)TL0"([0,0° A", 0100 AL) — (010" A*, ;00 AL))

=071 Q. (9°A*, 8, Ay,) + (Cubic and higher),

as desired.

Remark 2.2.3. The null structure uncovered above is a key ingredient for dealing with low regularity
problems in the caloric-temporal gauge. Thanks to the close analogy, it seems to be often the case
that the Fourier analytic methods for (YM) in the Coulomb gauge can be applied to (HPYM) in
the caloric-temporal gauge. Note that, as remarked at the end of §1.5, other parts of the proof of
LWP are often easily adaptable to any scaling sub-critical regularity for d > 2.

Following such ideas, in a forthcoming work [26] we shall establish almost optimal local well-
posedness of the (1 + 4)-dimensional (YM) for arbitrarily large initial data. The necessary Fourier

analytic tools are provided by [20].
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Chapter 3

Analysis of the Yang-Mills heat

flows

In this chapter, we shall analyze the covariant Yang-Mills heat flow on R? x [0,00) (d > 2)
Fy=DFy, (i=1,...,d) (cYMHF)
and dynamic Yang-Mills heat flow on I x R? x [0,00) (I C R is an interval)
F.,, =D'F,, (v=0,1,...,d) (dYMHF)

under two gauge conditions, namely the DeTurck gauge A, = 0°*A, and caloric gauge Ay = 0. The
goal of this chapter is two-fold: First to establish local well-posedness of (cYMHF) and (dYMHF)
in the caloric gauge, and second to rigorously carry out the ideas outlined in Steps 1 and 2 in
§1.5 concerning transformation of a solution to (YM) to solution to (HPYM) in the caloric-temporal
gauge, with appropriate estimates at t = 0. These goals will be achieved in §3.6 and §3.7, respectively.

In §3.1, we shall carry out some preliminary work which will be useful throughout the rest of the
thesis. In particular, a simple machinery called abstract parabolic theory will be developed, which
would allow us to handle various parabolic equations arising in this thesis in a consistent, unified
manner. The material of this section will be used throughout the rest of this thesis.

From §3.2, we shall begin our analysis of the Yang-Mills heat flows. The first key idea for
our study is that both (¢cYMHF) and (dYMHF) are genuinely parabolic at the level of A in the

DeTurck gauge A, = 9°A;. As such, in §3.2 — §3.4, we shall establish basic properties (e.g. local
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well-posedness, infinite instantaneous smoothing) of both flows in the DeTurck gauge, using the
standard theory of semi-linear parabolic equations. More precisely, in §3.2, we shall first derive local
well-posedness and smoothing of (¢YMHF) in the DeTurck gauge. Then, in §3.3, we shall establish
smoothing estimates for a general linear parabolic equation, with assumptions on the coefficients
compatible with the estimates proved for A; in §3.2. These will be applied in §3.4 to establish local
well-posedness and smoothing of ({AYMHF) in the DeTurck gauge.

In the rest of this chapter, we shall analyze (cYMHF) and ({YMHF) in the caloric gauge A5 = 0.
In §3.5, we shall establish estimates for the gauge transform U from the DeTurck to caloric gauge.
As an application of these results, in §3.6 we shall prove local well-posedness of (cYMHF) and
(AYMHF) in the caloric gauge. We remark that the former system is in fact the original Yang-Mills
heat flow, and our strategy for proving its local well-posedness is essentially the classical DeTurck
trick [7], [8]. The theory that we develop here will be useful in our proof of the global well-posedness
theorem in Chapter 5.

The classical DeTurck trick, however, leads to a loss of smoothing estimates for A;. In §3.5,
we shall see that this is due to requiring that the initial gauge transform U(s = 0) is equal to the
identity, and if we instead require U(s = s1) = Id, then the smoothing estimates for A; are preserved
(at the expense of introducing a non-trivial gauge transform at s = 0). This is the other key idea
of this chapter; this will be put into use in §3.7 to prove (morally) the following statements: Given
a connection 1-form? AL on I xR%in L&H)(I) (v > 9=2) | there exists a gauge transform V on
I x R% and solution A, to (HPYM) on I x RY x [0, so] for sq sufficiently small? such that A4, (s = 0)

is the gauge transformation of AL by V, i.e.
Ay i=Au(s=0)=V(AHV T —9,VV

and A, is in the caloric-temporal gauge, i.e. As; = 0 and A, := Ap(s = sg) = 0. Moreover,
Fy; = 0;A; and A, will obey smoothing estimates at ¢t = 0. Finally, estimates for V= V(t=0) wil
be obtained as well. We refer the reader to Theorems 3.7.1 and 3.7.2 for more details. These results
will be useful in our proof of local well-posedness in Chapter 4.

The results in this chapter hold for any dimension d > 2 and sub-critical regularity v > %.
These are generalization of those in [25, §3 — §6] and [24, §6], in which only the case d =3 and v =1

had been considered.

1In practice, this will be a solution to (YM) in the temporal gauge; see Theorem A in §4.3. In this case, the
resulting solution Aa will be a solution to (HPYM).
2In practice, sp will be set to 1 by scaling.
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3.1 Preliminaries

After stating some basic estimates in §3.1.1, we shall develop in the rest of this section what we call
an abstract parabolic theory, which is essentially a book-keeping scheme which allows for a unified
treatment of a diverse array of parabolic equations. In §3.1.2, we shall introduce the notion of
p-normalization of norms, which is a formalization of the simple heuristics 8, ~ s~ /2, dz ~ s!/2,
etc. for solutions to the heat equation (95 — A)y = 0. Then in §3.1.3, we shall prove the main
theorem of abstract parabolic theory (Theorem 3.1.10), which is simply the theory of energy integrals
for the linear heat equation recast in the language of p-normalized norms. Finally in §3.1.4, we shall
formulate the Correspondence Principle, which will allow to easily transfer estimates concerning

homogeneous norms to their counterparts for p-normalized norms.

3.1.1 Basic estimates

We collect here some basic estimates that will be frequently used throughout the thesis. Let us
begin with some inequalities involving Sobolev norms for ¢ € S, (R?), where S,(R%) refers to the

space of Schwartz functions on R?.

Lemma 3.1.1 (Inequalities for Sobolev norms). Let d > 1. Then for ¢ € S,(R?), the following

statements hold.

e (Sobolev inequality) For 1 <r <gq, k > 0 such that g = % — k, we have

16llLe < Cllollyrr (3.1.1)

where Wfr is the L"-based homogeneous Sobolev norm of order k.

e (Interpolation inequality) For 1 < q < oo, k1 < ko < ka, 0 < 61,02 < 1 such that

01+ 02 =1 and kg = 01k1 + 02k2, we have
H¢||W:0q S OHQS”(?/‘I/zkthqﬁ”?;/Ikzq (312)

e (Gagliardo-Nirenberg inequality) For 1 < ¢1,q2,7 < 00 and 0 < 01,02 < 1 such that

0,4+0,=1 and%:91~%+6’2(q%71), we have

I9llz; < CllSII T 110:] e - (3.1.3)
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Remark 3.1.2. This lemma is applicable for ¢, 92 € HS°, by a simple approximation argument.
Proof. These inequalities are standard; we refer the reader to [1]. O

The following two lemmas are standard results concerning product estimates with respect to

homogeneous Sobolev norms.

Lemma 3.1.3 (Homogeneous Sobolev product estimates, non-endpoint case). Let d > 1, and 7o,

Y1, Y2 real numbers satisfying

Yo+ +2=4d/2, v+ 492 > max(v,71,72)- (3.1.4)

Then for any ¢1, d2 € Sp(R?), we have

I9102[l g0 < Camn s D1l iz |02l 12 (3.1.5)

Lemma 3.1.4 (Homogeneous Sobolev product estimate, an endpoint case). Let d > 1 and —% <

v < %, Then for any ¢1, s € Sz(RY), we have

19102l 7y < Canldnll garenpolldall gy (3.1.6)

In the ‘double-endpoint’ case v = d/2, the following variant of the preceding estimate holds.

||¢1¢2||H;1/2QL;O < Cd||¢1 ||H;1/2QL;O ||¢2||Hg/2mL;o . (317)

Remark 3.1.5. Again, by a simple approximation argument, both lemmas are applicable for ¢1, ¢o €
He.
Finally, we state Gronwall’s inequality, which will be useful in several places below.

Lemma 3.1.6 (Gronwall’s inequality). Let (so,s1) C R be an interval, D > 0, and f(s), r(s)
non-negative measurable functions on J. Suppose that for all s € (sg, s1), the following inequality

holds:
sup f(5) < / r(35)f(5)ds + D.

5€(s0,9] so

Then for all s € (sg,s1), we have

sup f(3) < Dexp (/:r(s) dg).

5€(s0,9]
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Proof. See [31, Lemma 3.3]. O

3.1.2 P-normalized norms

Given a function ¢ on R, we consider the operation of scaling by A > 0, defined by

¢ = oa(x) == p(z/N).

We say that a norm || - || x is homogeneous if it is covariant with respect to scaling, i.e. there

exists a real number ¢ such that

loallx = Allgllx-

The number ¢ is called the degree of homogeneity of the norm || - || x.

Let ¢ be a solution to the heat equation ds¢ — A¢ = 0 on R? x [0, 00). Note that this equation
‘respects’ the scaling ¢y (, ) := ¢(x/), s/22), in the sense that any scaled solution to the linear heat
equation remains a solution. Moreover, one has smoothing estimates of the form ||8§k)d>(s)|| e <
sT2 (55 |#(0)|| L2 (for ¢ < p, k > 0) which are invariant under this scaling. The norms ||, - || .2

and || - [|La are homogeneous, and the above estimate can be rewritten as

SE20,(5) 0z < s [9(0) 1

where (1, {3 are the degrees of homogeneity of the norms [|0, - ||,» and || - ||, respectively.
Motivated by this example, we shall define the notion of parabolic-normalized, or p-normalized,
norms and derivatives. These are designed to facilitate the analysis of parabolic equations by cap-
turing their scaling properties.
Consider a homogeneous norm || - || x of degree 2¢, which is well-defined for smooth functions ¢
on R?. (i.e. for every smooth ¢, ||¢|x is defined uniquely as either a non-negative real number or

oc.) We shall define its p-normalized analogue || - || x(s) for each s > 0 by

Il = sl llx.

We shall also define the p-normalization of space-time norms. As we shall be concerned with
functions restricted to a time interval, we shall adjust the notion of homogeneity of norms as follows.

For I C R, consider a family of norms X (I) defined for functions ¢ defined on I x R?. For A > 0,
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consider the scaling ¢ (¢,x) := ¢(t/ A, z/X\). We shall say that X (I) is homogeneous of degree ¢ if

leallx ) = Allellx -

As before, we define its p-normalized analogue || - ||x(1,5) as || - lax.s) == s~ - | x(1)-
Let us furthermore define the parabolic-normalized derivative V,(s) by st/ 29,,. Accordingly, for

k > 0 we define the homogeneous k-th derivative norm || - || 4«5y by

I ey = 195 () - llaegs)-

We shall also define the parabolic-normalized covariant derivative D,,(s) := s'/2D,,.
We shall adopt the convention X° := X. For m > 0 an integer, we define inhomogeneous m-th

derivative norm || - || xx(s) by
m

k=0
We shall often omit the s-dependence of X (s), X (s) and V,(s) by simply writing X', X and V,,,

where the value of s should be clear from the context.

Example 3.1.7. A few examples of homogeneous norms and their p-normalized versions are in
order. We shall also take this opportunity to fix the notations for the p-normalized norms which

will be used in the rest of the thesis.

1. X = L2, in which case the degree of homogeneity is 2¢ = d/p. We shall define X = £ and

X7 := WP as follows.

YD) — sk=d/D)2| |

- ez = leze I e, who.

The norm X™ := WP will be defined as the sum of Wf’p norms for £k =0,...,m.

2. The case p = 2 is the most frequently used in this thesis, and merits a special mention. For

m > 0 an integer, we shall use the notation X™ = 7—[;" and A™ = H'. That is,

m
k—d
- g o= s 2 g 0l = DMl
k=0
By interpolation, the summands for £ = 1,...,m — 1 may be omitted in the definition of H}".
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Using this observation, we shall extend k to real numbers as follows: For v € R we define

= s(0=d/2)/2)| .

I Nz s Mz =11 Dy 11 ez

Finally, throughout this chapter, for v € R, the notation

will also be used, which is simply the degree of homogeneity of the space H;Y .

3. Consider a time interval I C R. For X = L{L2(I x R%), note that 2¢ = 1/q + d/p. We shall

write

g1/ (20)=d/(2p) |

I llzacer,s) Nzare,

I:Sk/2_1/(2q)_d/(2p) || N ||Lquc,p.

gz

The norms LIWEP(Is), LIHY(I,s) and LIH)(I,s) are defined accordingly.

For f = f(s) a measurable function defined on an s-interval J C (0, o), we define its p-normalized

Lebesgue norm || f||ze(sy by [/ f]

y =15 |f(s)[P4s for 1 < p < oo, and || f]| ooy = [If[| Lo (-

P
LE(J

Given £ > 0, we shall define the weighted norm || f|| .e.» (J) by

10l 2= 18 5(5)]

L)

Let us consider the case J = (0, sg) or J = (0, so] for some so > 0. For £ > 0 and 1 < p < o0,

note the obvious computation HseHﬁg(st = Cy psh. Combining this with the Holder inequality

cr < Illgor lgllgrs for 2= L 4 L,

1

1f9l

we obtain the following simple lemma.

Lemma 3.1.8 (Holder for £5P). Let £,41,05 >0, 1 < p,p1,p2 < 00 and f, g functions on J = (0, so)

(or J = (0, s0]) such that ||f| zex.p1; |g]l pe2pe < 00. Then we have

L—01—4
||f9H/;§»P(J) <Csy 2||f||£§1’1’1(J)"g|‘£§2’p2(J)
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provided that either £ = {1 + {5 and 117 = p% + p%, orf >0 +0sand Lt >L + L Inthe former

case, C' =1, while in the latter case, C depends on £ — {1 — {3 and % — p% — p%'

We shall often used the mixed norm ||¢||£ﬁ,pX(J) = |lv(s)]lxs) Hﬁﬁ,p(J) for ¢ = ¢(x, s) such that

s = ||¥(s)]| x(s) is measurable. The norms LEPXE(T) and L5PX%(J) are defined analogously.

3.1.3 Abstract parabolic theory

Let J C (0,00) be an s-interval. Given a homogeneous norm X and k > 1 an integer, let us define

the (semi-)norm P!X*(.J) for a smooth function 1 by

[ lpen sy = I

L8 Xk=1(]) + ||w||L§‘2?€k(~])'

For my < my, we shall also define the (semi-)norm P*X71(.J) by

my

[Wlpeamsn = Y Nllpeinc:

k=mo+1

We shall omit mg when mg =0, i.e. X := AJ".
We remark that despite the notation PLX* | this norms controls both the X*~1 as well as the X%

norm of 1. Note furthermore that ||9)|| 5. xm controls the derivatives of ¢ of order from mg to m;.

Definition 3.1.9. Let X be a homogeneous norm of degree 2¢y. We shall say that X satisfies the
parabolic energy estimate if there exists Cx > 0 such that for all £ € R, [s1, s3] C (0, 00) and smooth

1) satisfying ||¢||P4X1(51752} < 00, the following estimate holds.

1l pe e 501 SCx TIN50y + O (€= L) [0l] 22 s, 0

+ Ox [0 — D)8l v

(3.1.8)

51,82]"

We shall say that the norm X satisfies the parabolic smoothing estimate if there exists Cx > 0
such that for all £ € R, [s1,s2] C (0,00) and smooth ¢ satisfying ||| pex2(s, s,] < 00 , the following

estimate holds:

[l pe e sy 51 SCx SO s,y + Ox (4 1/2 = Lo) [l 22 14,

+ Cx ||(3S — A)¢||E£+l'2?{(51,82]'

(3.1.9)

For the purpose of application, we shall consider vector-valued solutions 1 to an inhomogeneous

heat equation. The norms X, X, P'X, etc. of a vector-valued function v are defined in the obvious
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manner.

Theorem 3.1.10 (Main theorem of abstract parabolic theory). Let d > 1, X a homogeneous norm
of degree 24y, and v a vector-valued smooth solution to Ostp — Ap =N on [0, s0]. (The function
is defined on R x [0, 0] or I x RY x [0, s0] depending on whether X is for functions on the space or

the space-time, respectively.)

1. Let X satisfy the parabolic energy and smoothing estimates (3.1.8), (3.1.9), and ¢ satisfy

1]l peo x20,50) < 00 Let 1 < p < oo, € >0, D >0 and C(s) a function defined on (0, so]

/ s < oo
0

S

which satisfies

for some 1 < p < oo, and
IVl o410 20,9 F IVl 22041220, S IO 200 419 T ElPllprox2(0,50) + D5 (3:1.10)

for every s € (0, so].

Then there exists a constant 64 = d4(Cx, 030 C(s)P 92 p) > 0 such that if 0 < € < 64, then

the following a priori estimate holds.
s p ds
[¥llpt0 a2 0,001 < Ce“ 0" CO" (s = 0)l|x + D), (3.1.11)

where C' depends only on Cx and p.

2. Suppose that X satisfies the the parabolic smoothing estimate (3.1.9), and that for some £ >

< 0.

by —1/2 and 0 < mg < my (where mg, my are integers) we have ||1/)H7,/_;Xm1+2(05
mg ’ 0]

Suppose furthermore that for mg < m < mgy, there exists € > 0 and a non-negative non-

decreasing function By, (-) such that
||N||£f;+1=2)'(m(0,so] < E||w||7ﬂ+1)'(m+2(0730] + Bm(||wHP‘X$J'1(O,SO})' (3.1.12)

Then for 0 < e < 1/(2Cx), the following smoothing estimate holds:

191 pe a2 (0,00 < € (3.1.13)

where C is determined from Cx, By, .-, By and ||| pegmo+1(0,5,-
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More precisely, consider the non-decreasing function By,(r) == (2Cx (£ — £y + 1/2) + 1)r +

2Cx By (r). Then C in (3.1.13) is given by the composition

C = By, 0 By 10+ 0 Bong (6Lt somoss (0.0, (3.1.14)

Proof. Step 1: Proof of Statement 1. Without loss of generality, assume that Cx > 2. Thanks to

the hypothesis on ¢ and (3.1.10), we can apply the parabolic energy estimate (3.1.8) to obtain

[Pl peo 10,5 SCxN¥(0)llx + Cx ([C()Pl 02 10,5 + NPl Pe0 22(0,50) + D)- (3.1.15)

where we have used the fact that liminfy, o s5||4(s;) lx(s;) = I¥(0)||x. Using again the hypothesis

on 9 and (3.1.10), we can apply the parabolic smoothing estimate (3.1.9) and get

Cx
||¢H7ﬂo)€2(0,§] 57“1#”4';0,2;31(0&] + CX(”C(S)?/JHcio,le(Oé] + 6||'@[JH7320X?(0,50] + D), (3'1'16)

where we used liminfg, o s§°||1p(sl)\|)-(1(51) = 0, which holds as [|{)|| ;.2 5, < c0. Using (3.1.15) to

bound the first term on the right-hand of (3.1.16), we arrive at

[l pt0 220,51 < Cx NP (O)lx + Cx (14 Cx)UIC()% ] 00 31 0.4 + €l llpro 20,50 + D),

for every 0 < s < sp.
We shall apply Gronwall’s inequality to deal with the term involving C(s)y. For convenience,

let us make the definition
D' = C%|9(0)]x + Cx(1+ Cx)(ell¥llpeox2(0,50) + D)-

Recalling the definition of [[¢]|pey2(o and unravelling the definition of LLPX!, we see in

particular that

2 /
sup 5% |9(s)|lxr < Cx (1 + CX)(/ C’(s)p(s%Hw(S)Hxl)pﬁy P LD,
0 s

0<s<

for every 0 < s < sg. Taking the p-th power, using Gronwall’s inequality and then taking the p-th
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root back, we arrive at

2 14 1 p S
sup séOHw(s)Hxl < 2P D’ exp (M/ C(s)pﬁ).
0<s<s p 0 S

Iterating this bound into [[C(s)Y| st0.p 1 and expanding D’ out, we obtain

(0,50]
llpio 220,001 < Co(CEIU(O0)1x + Cx (1 + Cx) (el llpro 20,50 + D) )

where Cy = exp (w IS C’(s)p%).
Let us define 64 := (2CoCx (1 + Cx))~!. Then from the hypothesis 0 < € < §4, we can absorb

the term CoCx (14 Cx )el|[Y)|| pro x2(0,s,) into the left-hand side. The desired estimate (3.1.11) follows.

Step 2: Proof of Statement 2. In this step, we shall always work on the whole s-interval (0, so].

We claim that under the assumptions of (2), the following inequality holds for mg < m < my:

1ellpegess < Banllelpr ). (3.0.17)
Assuming the claim, we can start from [ 50 pmo+1 = [[9[lpeyme+1 and iterate (3.1.17) for
mQ
m =mg, mg+ 1,...,my (using the fact that each gm is non-decreasing) to conclude the proof.

To prove the claim, we use the hypothesis on 1 and (3.1.12) to apply the parabolic smoothing

estimate (3.1.9), which gives

[Pl pesemsa < Cx (€= Lo+ 1/2)[[9[| 22 gmir + Cx (€ell®llpermsa + B9l pe yr))

where we have used liminfy, o 3{||w<51)||2‘("l+1(51) = 0, which holds as [|¢)]| z¢.2 pmi1 < 00.
Using the smallness of € > 0, we can absorb Cx€l[9)|| pe ym+2 into the left-hand side. Then adding

||’(/JHE£,2X$J-1 to both sides, we easily obtain

”wHPU(]],?J'? < (ZCX(Z — by + 1/2) + 1)||¢||7ﬂx,’,7(j'1 + 20XBm(||¢H7D£X$J'1)‘

Recalling the definition of Em, this is exactly (3.1.17). O
The following proposition allows us to use Theorem 3.1.10 in the situations of interest for us.
Proposition 3.1.11. Let d > 1. Then the following statements hold.

1. Let ¢ a function in C5°(J, H*®(R?)) (resp. in CP3I x J,H*(R?) with I C R an interval),
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where J is a finite interval. Then for X = L2 (resp. X = L7, ), we have

101l gon sy < 00 (3.1.18)

if either 1 <p<oo and £ —Ly+k/2>0, orp=o00 and { — by + k/2=0.

2. Furthermore, the norms L2 and Ltzym satisfy the parabolic energy and smoothing estimates

(3.1.8), (3.1.9).

Proof. By definition, we have

Atk pfb) ()

[Pl e = lIs Lz

Since sup,¢ ; Ha;(vk)’t/}(s)”)( < oo for each X under consideration when ¢ € C3°(J, HS®), the first
statement follows.

To prove the second statement, let us begin by proving that the norm L2 satisfies the parabolic
energy estimate (3.1.8). In this case, £y = d/4. Let £ € R, [s1, s2] C (0, 00) and 1 a smooth (complex-
valued) function such that ||1/)||7>g7_~Lé < 00. We may assume that [|(9s — A)1/)||£§+1,1L.3 < 00, as the
other case is trivial. Multiplying the equation (9s — A)y by 52(t=*o)4) and integrating by parts over

[s1,s] (where s1 < s < s3), we obtain

2(0— &ﬂ/'w |2dl‘+/ / 2(0— Zo)+1|8 w'dei

2(5 ) /Iw (s1)|* dz + (€ — &) / / 2e=t0) 4|2 da (3.1.19)

// AR CRRPN

Taking the supremum over s; < s < s9 and rewriting in terms of p-normalized norms, we obtain

||¢H£’f L2 (51,85] ”d}”LZ 27_[1 (s1,52] —2 ZHw(Sl)”,C?(el) + (E - 50)”1/’”[;5 2[;2 (s1,52]

+ H(as - A)w ' J”L?‘*’UL;(SI,SQ]'

By Holder and Lemma 3.1.8, we can estimate the last term by [|(0s — A)w”i“l’%?

1(51752]
2
A/ DD zeoe 2

root of both sides, we obtain (3.1.8) for L2.

, where the latter can be absorbed into the left-hand side. Taking the square

31782]

Next, let us prove that the norm L2 satisfies the parabolic smoothing estimate (3.1.9). Let £ € R,

[s1,52] C (0,00) and ¢ a smooth (complex-valued) function such that [[1)||peg2 < 00. As before, we
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assume that [|(9s — A)[| pe+1.2 < 0o, Multiplying the equation (95 — A)y by s2(t=t) 1 A\)y and

integrating by parts over [s1, s] (where s1 < s < s3), we obtain

2(6— Zo)/‘a |2dx—|—/ / 2(0— fo)+2|Aw|2

=55 2(@ eo>+1/|3 (s1)>dz + (£ — Lo + = / / (t=to)+g, 1/)|2d — (3.1.20)
//2(2 ©)+2(y ds
D) D de —.

By a further integration by parts, the second term on the left-hand side is equal to ||¢) ||2£g,24rl2 (o100
s z\51,52

Taking the supremum over s; < s < s9 and rewriting in terms of p-normalized norms, we obtain

1
S s oy s s S5 I s ) + (€ o+ )

81,82] (s1,82]

+1(0s — D) - Vkvkmbﬁ’f“vm;(sl,sﬂ'

By Cauchy-Schwarz and Lemma 3.1.8, we can estimate the last term by

(1/2)11(0s = 2)l[%s11.2 + (/2117024
ez <2

51,52] (51752],

where the latter can be absorbed into the left-hand side. Taking the square root of both sides, we
obtain (3.1.9) for L2.

For the norm L? _, in which case £y = (1 +d)/4, it simply suffices to repeat the above proof with

t,x

the new value of ¢y, and integrate further in time. O

Remark 3.1.12. A point that the reader should keep in mind is that, despite the heavy notations and
abstract concepts developed in this subsection, the analytic heart of the abstract parabolic theory is
simply the standard L?-energy integral estimates for the linear heat equation, as we have seen in

Proposition 3.1.11.

3.1.4 Correspondence Principle for p-normalized norms

In this subsection, we shall develop a systematic method of obtaining linear and multi-linear esti-
mates in terms of p-normalized norms, which will be very useful to us later. The idea is to start
with an estimate involving the norms of functions independent of the s-variable, and arrive at the
corresponding estimate for s-dependent functions in terms of the corresponding p-normalized norms

by putting appropriate weights of s.

45



Throughout this subsection, we shall denote by J C (0,00) an s-interval, ¢; = ¢;(x) a smooth
function independent of s, and v¥; = v¥;(s,x) a smooth function of both s € J and x. All norms
below will be assumed a priori to be finite. In application, ¢; may be usually taken to be H2° and v
would be in C°(J, HS®). The discussion to follow holds also for functions which depend additionally
on t.

It is rather cumbersome to give a precise formulation of the Correspondence Principle. We shall
instead adopt a more pragmatic approach and be satisfied with the following ‘cookbook-recipe’ type

statement.

Correspondence Principle. Suppose that we are given an estimate (i.e. an inequality) in terms
of the norms X; of functions ¢; = ¢;(x), all of which are homogeneous. Suppose furthermore that
the estimate is scale-invariant, in the sense that both sides transform the same under scaling.

Starting from the usual estimate, make the following substitutions on both sides:

Then the resulting estimate still holds, with the same constant, for every s € J.

In other words, given an s-independent, scale-invariant estimate which involve only homogeneous
norms, we obtain its p-normalized analogue by replacing the norms and the derivatives by their
respective p-normalizations. The ‘proof’ of this principle is very simple: For each fixed s, the
substitution procedure above amounts to applying the usual estimate to 1;(s) and multiplying each
side by an appropriate weight of s. The point is that the same weight works for both sides, thanks

to scale-invariance of the estimate that we started with.

Example 3.1.13. Some examples are in order to clarify the use of the principle. We remark that

all the estimates below will be used freely in what follows.

1. (Sobolev) We begin with the Sobolev inequality (3.1.1) from Lemma 3.1.1. Applying the

Correspondence Principle, for every 1 < ¢ < r, k > 0 such that Pl k, we obtain

[0(8) s () < CUBE) pemppon sy

for every s € J.

2. (Interpolation) Recall the interpolation inequality (3.1.2) from Lemma 3.1.1. Applying the

Correspondence Principle, for 1 < ¢ < oo, k1 < kg < ko, 0 < 01,605 < 1 such that 6, + 6, =1
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and kg = 01k + 62ko, we obtain

1) isoragey < CIREN s, IO

for every s € J.

. (Gagliardo-Nirenberg) Let us apply the Correspondence Principle to the Gagliardo-Nirenberg
inequality (3.1.3) from Lemma 3.1.1. Then for ¢ < ¢1,¢2,7 < 00, 0 < 61,05 < 1 such that
% =6 - (;il + 92((;12 — 1), we obtain

(g ey < Cllb() % o) I t65)1 2

for every s € J.

. (Holder) Let us start with [[¢1¢2]lz; < [[61]l0: (|62l 122, where 1 < g1,g2,7 < 00 and ; =

qil + q%. Applying the Correspondence Principle, for every s € J, we obtain
12 ()l sy < 91 ()]l 2o o) l1¥2(8) ] 222 () -

All the estimates above extend to functions on I x R? with 7 C R in the obvious way. In this

case, we have the following analogue of the Hélder inequality:

(L), a1
Hd’(S)Hc;{lcg(s) <s (2‘“ 2“2)|I|"1 2 Hw(s)Hﬁgzﬁg(s) for ¢ < ¢o.

The following consequence of the Gagliardo-Nirenberg and Sobolev inequalities is useful enough

to be separated as a lemma on its own. It provides a substitute for the incorrect Hﬁ/ > c L

Sobolev embedding, and has the benefit of being scale-invariant. We shall refer to this simply as

Gagliardo-Nirenberg for p-normalized norms.

Lemma 3.1.14 (Gagliardo-Nirenberg). For every s € J, the following estimate holds.

1/2 1/2
V98 g2, e o SOl (e

c. (3.1.21)
<=5
=2

()l + 1)1 ())-

Proof. Without loss of generality, assume £ = 0. To prove the first inequality, by Gagliardo-

Nirenberg, interpolation and the Correspondence Principle, it suffices to prove |¢||zs < Cl¢l
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and [|0;¢[zs < C||@||z2; the latter two are simple consequences of Sobolev. Next, the second

inequality follows from the first by Cauchy-Schwarz. O

We remark that in practice, the Correspondence Principle, after multiplying by an appropriate
weight of s and integrating over J, will often be used in conjunction with Holder’s inequality for the
spaces L£5P (Lemma 3.1.8).

Finally, recall that the notation O(t1, s, ...,1y) refers to a linear combination of expressions
in the values of the arguments 1,9, ...,¥, where they could in general be vector-valued. It
therefore follows immediately that any multi-linear estimate for the usual product ||ty - ¥g - - - V|
for scalar-valued functions v, 12, . . ., ¥y, implies the corresponding estimate for ||O(¢1, ¥a, ..., ¥r)|,
where 11,2, ..., %, may now be vector-valued, at the cost of some absolute constant depending on

O. This remark will be used repeatedly in the sequel.

3.2 Covariant Yang-Mills heat flow in the DeTurck gauge

The subject of this section is the covariant Yang-Mills heat flow (cYMHF) on R? x [0,00) (d >
2) under the DeTurck gauge condition A, = 9°A,. Such a choice of gauge, as discussed in the
Introduction, gives rise to a strictly parabolic system of equations for A; which may be analyzed
using the standard theory of semi-linear parabolic equations. Among the important consequences are
the (sub-critical) local well-posedness and infinite instantaneous smoothing property of (cYMHF),
which we shall describe below in more detail.

We begin by deriving the equations satisfied by a solution A; to (¢YMHF) in the DeTurck gauge.
Writing out (cYMHF) in terms of A;, As, we obtain

D Ai =NA; + 2[AY, 0, A5 — [AY, 0;Aq] + [AY, [Ag, Aj]]
(3.2.1)
+ 0;(As — 0°Ay) + [As, A, — 0P AY).

Using the DeTurck gauge condition A, = 9°A,, we obtain the semi-linear parabolic system
(05 — N A; = 2[A%, 0, A) — [AY, 0, Af] + [AY, [Ag, AJ]). (3.2.2)

Conversely, any distributional solution A; to (3.2.2) with enough regularity (say A; € C’SH;Y with
422 < v < 4), along with A, = 9°Ay, is also a distributional solution to (cYMHF). Henceforth, we

shall concentrate on the reduced system (3.2.2).
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We are ready to formulate a local well-posedness statement for the system (3.2.2). It is sub-

critical with respect to scaling, in the sense that the initial data is assumed to have a regularity

f4-2/2

higher than the scaling critical one ( in the present case).

Proposition 3.2.1. Let d > 2, % <7y < % and define ¢ > 2 by g = % — . Then the following

statements hold.

1. There exists a number 6p = 6p(d,y) > 0 such that for any initial data A; € HY 0 LY with
Al g < 6, (3.2.3)

there exists a unique solution A; = A;(z,s) € C([0,1], H} N LL) N L2((0,1], HYtY) to the

system (3.2.2) on s € [0,1] which satisfies

Al

oo, iznzt) T IAl L2 o,y < CanllAll - (3.24)

2. Consider an additional initial data Z; € H) N LY satisfying (3.2.3), and let A} be the cor-
responding solution to (3.2.2) given by Statement 1. Then the difference §A between the two

solutions obeys the estimate

[6A]

c.(o.),f2nLy) T ||5A||L§((o,1]7gg+1) < Cdv%l\zl\gg»llzll\gg ||5Z||H;~ (3.2.5)

3. We have persistence of regularity; in particular, the following statement holds:
Suppose that A;(t) € HY N L2 is an initial data set satisfying (3.2.3) and also A; € H®. Then
the corresponding solution A; satisfies A; € C°(]0,1], HS®).

4. We have smooth dependence on the initial data; in particular, the following statement holds:

Suppose that A;(t) € Hg NLY is a family of initial data satisfying (3.2.3), which is parametrized
byt el (I CR isan interval) and A; € C5°(1, HS®). Then the corresponding solution A;(t)

satisfies A; € CPS(1 x [0,1], HY®).
Remark 3.2.2. The space H) N L4 is the closure of S, or H® with respect to the H-norm

Remark 3.2.3. The above proposition is applicable to an arbitrary (possibly large) data A; € H 7

by scaling. More precisely, note first that the system (3.2.2) is invariant under the scaling

T = Ar®, s — A%s, A= ATMA (A>0).
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Then for v > %2 (note that the H=2/2

5 -norm is scaling critical), the H;V norm of any

A; € H;Y may be made arbitrarily small by taking A — 0, after which Proposition 3.2.1 may be
applied. Undoing the scaling, we finally obtain local well-posedness on an interval [0, sg], where

s0 = so(dp, HZHH:) > 0. In particular, sg depends on ||Z||H3 in a non-increasing manner.

Remark 3.2.4. Recall the notations for p-normalized norms and

from §3.1.2. Then the estimates (3.2.4) and (3.2.5) may be rewritten respectively as follows:

1Al gt e o + 140 gtz gy <Cotol Al (3.2.4')

16Al o S e O .| PP R CX X

(HINLL)(0,1] (0,1] =

In fact, we shall mostly use this notation for stating parabolic estimates in the remainder of this

chapter.

Sketch of proof. The idea is to set up a Picard iteration scheme in a bounded subset of
Co((0,1), Hy N LE) N L3((0, 1], HYH),

using the energy inequality for the heat equation. As this is standard, we shall only sketch the main
ideas by showing how to prove the a priori estimate (3.2.4), given a solution A; € C$°([0, 1], HZ®)
0 (3.2.2), which satisfies (3.2.3) for sufficiently small jp > 0.

Instead of A;, let us work with ¥; :=|9,|7A;. Applying |0,|" to (3.2.2), we obtain
(05 — AW, = (TN (3.2.6)

where

WIN = s~ HN2|7, P O(A, V,A) + 52|V, TO(A, A, A).

Consider a subinterval (0, s] C (0, 1], assuming the bootstrap assumption

||\I’||£d/4oc —‘r IV \I/||Ed/42 < B”A”HW (3.2.7)

£2(0,5]

for some B > 0 to be fixed later.
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Let 6 € (0,1) be defined by 4 = (1—60)y +6(y+ 1). By Lemma 3.1.4, Gagliardo-Nirenberg and

the Correspondence Principle, along with the fact that ¥; = s~7/2|V,|7 4;, we have

sV O(4, Vel ez <Cs™ 2 Al sz o IV VoAl 2

<Cs™ 021w 50| v, || 50
Thus multiplying by s%/4*! and integrating over (0, s] with respect to ds/s, we obtain

ls™ D2V, PO(A, Vo A)l| parasra gy SCINIEN G IV PN G paraerensan

—(d— —0 0
<Cs0—@=2)/2)/2) | Zg/mcgnvmqf\ Zt/ﬁ
<CB*|[ A,

where on the last line, we have used v > %, 0 < s <1 and the bootstrap assumption.

Similarly, by Lemma 3.1.4, Gagliardo-Nirenberg and the Correspondence Principle, we have

sV O(A, A, A)l| 2 <Cs™V 2| Allg | AN, a2

ncee

SCSA’H\I/H%g%HVI\I/H%%.
Multiplying by s%4*! and integrating over (0, s] with respect to ds/s, we obtain

s~ 21V 2 OA, A, Al arisrn gz <CIITIE2 IV | pearasasan o

—(d—2)/2 3—26 260
<Cs” ( )/ H\IlHﬁélM,ooﬁi”vz\II”L(Si/‘l,?Li

<A,
In sum, we have proved
||<k“>/\/||ﬁg/4+1,1£2 < CB?||A|l}, + CB?|A|l%,. (3.2.8)
Applying the parabolic energy estimate (3.1.8), we arrive at the inequality

121 parne s 0. + IV Wl g7 23 0. <O ANy + OB, + OB A

Taking B > 2C, say, and dp > 0 sufficiently small, we retrieve the bootstrap assumption. As
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U; = |0, |" A, the desired a priori estimate for A; is now evident. O
Next, we shall establish the (infinite, instantaneous) smoothing property of the system (3.2.2).

Proposition 3.2.5. Let d > 2 and % <y < %. Consider Hg initial data sets A;, X/Z- satis-
fying (3.2.3). Denote by A;, A} the corresponding solutions to (3.2.2) given by Proposition 3.2.1,

respectively. Then the following statements hold.

1. For every integer m > 1, the following estimates for A; holds.

k k A
S (V9 Al 0y + 199V Al s 2 011) S Cogom Az (3:29)
k=1

2. For every integer m > 1, the following estimates for 0 A; holds.

(k) (k+1)
S (IVSGAN gy oy + I GA 25500 ) S Cotm 171, 1 1

k=1
(3.2.10)

Sketch of proof. The idea is to differentiate the system (3.2.6) and apply the second part of Theorem
3.1.10 with £ = d/4. Below, we shall give a proof of the non-difference estimate (3.2.9), as the
difference analogue (3.2.10) may be proved in a similar manner.

In what follows, unless stated otherwise, all norms with respect to s will be taken over (0,1]. By
approximation, it suffices to consider A; € C°([0,1], HZ°). Recall the definition ¥; := 9,7 A;. We
claim that for integers m > 3, we have

IVE D (ON) | arsnrz pz SConll | gasse gy IV pasacz

m—1
= (3.2.11)

+ CmH\IlHig/4,OOH;n—1 “quj||£5/4,27{£z—17

whereas for the exceptional cases m = 1,2, we shall use the following statement: For all 5 € (0,1),

we have

||(‘1’)./\/‘||£gl/4+1,1£3(0,§] + ||(‘I’),/\/||£§/4+1,2£2 (0,3] + Hvz((‘l’)_/\f)||£§/4+1,2£g(07g] (3 ) 12)

< O as.0 gy g + O 20,0

H2(0,5 H2(0,3]

Proceeding as in the proof of Proposition 3.2.1, using the parabolic energy and smoothing es-
timates (3.1.8), (3.1.9), we first obtain (3.2.9) for m = 1,2. Applying the second part of Theorem

3.1.10, the smoothing estimate (3.2.9) would follow.
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We shall begin with (3.2.11). As before, let 6 € (0,1) be defined by % = (1 —60)y + 6(y +1). By

the Leibniz rule, Lemma 3.1.4, Gagliardo-Nirenberg and the Correspondence Principle, we have

s~V IDIV, [T O(A, Vo A)| 2
< Csm U2 > V8| VW s [V W 2
k1+ka=m; 0<ky <k» )
For m > 3, note that 2 < [%] < k;. Therefore, we have 0 < ky < kj+1<m—1land 1< ky <m.

Multiplying by s%/4*1 and taking the square integral over (0, 1] with respect to ds/s, we obtain

Hs_(l"""}’)/QV:(vm—l)‘VwI’YO(A, vx’A)||Ld/4+1’2E2 S Cm”\II”Ed/‘l»OC ||VI\I/H[:4/4,2

r—1 —1-.
Ha' Hz'

Next, consider the cubic term in (YJ V. By the Leibniz rule, Lemma 3.1.4, Gagliardo-Nirenberg

and the Correspondence Principle, we have

sT2VImTIIVLTO(A, A, A)| 22

< Cs™ W2 VI 2|V 35 2 VD0 2 [| VW 1 0D W

where the summation is over {(ki,ko,k3) € N3 : ky + ko + k3 =m — 1,0 < ky < ko < k3}. For
m > 2, observe that we have k3 > 1 and 0 < k; < ky < m — 2. Thus, multiplying by s#**! and

taking the square integral over (0, 1] with respect to ds/s, we may estimate
||5*”//2V§Cm71)|V37|AV(9(A7 A, A)||L;l/4+1,2[:i < Cm”\I]”i‘,‘j/‘L’ooH;’“l ||V_T\IIH£Z/4,2H;”,1,

which proves (3.2.11) for m > 3. On the other hand, the proof of the exceptional cases, namely
(3.2.12), is routine after unravelling the definitions of p-normalized norms, and thus is left to the
reader. (We remark that the term ||(Y) N £9/4%1 22 (0 5] has already been estimated in the proof of

Proposition 3.2.1.) O

Our final proposition in this section concerns estimates for Ay, which would be used to derive

estimates for the gauge transform from the DeTurck to caloric gauge.

Proposition 3.2.6. Let d > 2 and % <7< %. Consider H) initial data sets A;, Z; satis-
fying (3.2.3). Denote by A;, A} the corresponding solutions to (3.2.2) given by Proposition 3.2.1,

respectively, and Ay = 0° Ay, AL = 0*A}. Then:
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1. For every integer m > 0, the following estimates for A hold.

> (||v§vk> Al g gy + IV ALl a2 w) < Coym iy Al (3213)
k=0

1
sup || [ Au(s) 5"l zs < Coy o 1 ANy (3.2.14)

0<s<1 s

2. Furthermore, for every integer m > 0, the following estimates for § Ag hold.

> (IVEGAN o072y + 1B GA /270
k=0 (3.2.15)
<, 167015

= Y dym Al gy Ay

1

sup || [ 0As(s")ds'|| g £ Cy

167|417 (3.2.16)
0<s<1 s

by -/
A NAN g 1A N gy

Proof. The estimates (3.2.13) and (3.2.15) are direct consequences of Proposition 3.2.5 and the
DeTurck gauge condition A, = 9°A,. Below, we shall give a proof of (3.2.14); the proof of (3.2.16)
is similar. Again, it suffices to consider A; € C°([0, 1], HS®).

Taking 0,710 of (3.2.2), we get a parabolic equation for |9,|Y~* A, of the form

d

(05 = £)]0:" M A = Y107 0 (1IN,

(=1

where (49 N refers to the right-hand side of (3.2.2). Integrating this equation from s to 1, we obtain

1 d 1
/A\@xﬁ‘lAs(s’)ds’:|8w\7‘1A3(1)—\6w|’*‘1As(s)+Z/ 10,7720 (AN (") ds’
s =175

Take the L2-norm of both sides, and take furthermore the supremum over s € (0,1]. Then we

see that
1

1
sup | [ 4 0 = Ol s +© [ ION) g 8
s€(0,1] s s 0

The first term on the right-hand side is bounded by C|| Al iy by (3.2.4). The second term, on

the other hand, is equivalent to ||(‘I’)N||£d/4+1,1 Then by (3.2.8) with s = 1 (from the proof

L3201

of Proposition 3.2.1), where we use (3.2.4) instead of (3.2.7), we have

||(\II)N||[;§Z/4“1 < C||A|| +C||Z||§{z

£2(0,1]
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This proves (3.2.14). O

3.3 Linear parabolic estimates

As we have seen in §2.1, curvature components Fj,,, of (¢cYMHF) or ({YMHF) satisfy the covariant
parabolic equations

D,F,, — D'DF,, = —2[F,", F,/.

Once the estimates for A; have been established, as we have done in §3.2 in the DeTurck gauge,
by expanding out the covariant derivatives and spatial curvature components, such an equation may
be viewed as a system of linear parabolic equation for F,,. Below, we shall present a general lemma
(Lemma 3.3.1) for deriving estimates for such linear parabolic equations. As we shall see in §3.4, this
lemma may be used to solve the dynamic Yang-Mills heat flow ({AYMHF), building on the theory of
(cYMHF) we have developed in §3.2.

For simplicity, we shall restrict to initial data and coefficients in H2° in the statement of the

following lemma.

Lemma 3.3.1 (Linear parabolic estimates). Let d > 2, X a finite-dimensional normed space and

422 <y <4 Foranyy €R, letl, = 3(4—+'). Let U be an X -valued function in HZ®(RY); Qf an

L(X)-valued vector, Q% , Qo an L(X)-valued function and N an X -valued function in C2°([0,1], HS®).

Consider the following initial value problem for the linear parabolic equation

DU — AU =Q1(9,%) + Qo(¥) + N
(3.3.1)
U(s=0)=VU.

Then there exists a unique solution U to (3.3.1) in C°([0,1], H®). Moreover, the solution

satisfies the following properties.

1. Let Cy > 0 be a constant such that

”mHai”'“mi/%z:ﬂ(o,u 90l a1z a2 e 0,0y = Cor
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Then for every —g << %, the unique solution W obeys

1
S (198 m o HITEDW e )
P £y (0.1] £ %Y (0,1 (3.32)

< Caoyor o (W + N ey + NI ey ).

2. Let m > 1 be an integer, and C,, > 0 a constant such that

(k) (yi (k)
kZ_O(IIVz Dl v arzncey o T 1V= QO”cfﬁ““""’mi/%,c;o)(o,u) < Cm-

Then for every —g << %, the unique solution ¥ obeys the following smoothing estimates:

m—+1

(k) . (k+1) )
> (”v“’ Ul ooy o IV 2
k=0 . (3.3.3)
< Campevien (Wl gy + NI o1 + D IVONI e ).

k=0

3. We have smooth dependence on parameters; in particular, the following statement holds:

Let I C R be an interval, and suppose that Q% (t), Qo(t) and N(t) are parametrized by t € I
so that Qf,Qo, N € CP3(I x [0,1], H®). For each t, consider the IVP (3.3.1) with initial data
W(t) parametrized by t € I such that ¥ € C°(I, HX®). Then the corresponding solution W(t)

satisfies W € CPG(1 < [0,1], H®).

Remark 3.3.2. In addition to application to covariant parabolic equations for F},,, we shall also
apply this lemma to the parabolic equation for Ay arising from (dYMHF) in the DeTurck gauge in
§3.4.

Proof. The existence of a unique solution ¥ € C°([0, 1], HS°) to (3.3.1) is an easy exercise using the
energy estimate for the heat equation, as the coefficients Q¢, Qg and the forcing term N all belong

to C2°(]0,1], H2®). To prove Statements 1 and 2, we shall work with a new variable ¥ := |9, ¥,

where —% <9 < %. Taking |8,|" of the equation (3.3.1), we see that ¥ obeys the parabolic
equation

(0 — L) =N,
where

WIN = s~ 2|7, [V QY 0) + 577 2|V, |7 Qo (W) + 577 /2| V| N.

56



We shall first prove an a priori estimate for (3.3.1), i.e. Statement 1. Take 0 < ¢ < 1(y/—42) =

+ — . We claim that for every (0,s] C (0, 1], we have

’
1IN aasas <CCos|Is"* =7 Vo U || para pa g

L£3(0,5]
+ CCos° |8 >~ = WY || paraa o (3.3.4)
FOIN et oo
and
||(qﬂ’),/\[||£g/4+1,2£i(0’§] SCCOHSUQ—ZWVQE\I/’YI||£g/4,2££(0’§]
+ CColls" =W || para2 gz g (3.3.5)

FOINI ez

Note that for any 1 < r < oo and k > 0, we have

’
Hvz(ck)\llfy ||Lg/4,r£’i = ”vgc)\PHLZ’Y“T;_'[’Y'

x

and thus, (3.3.2) is a consequence of Theorem 3.1.10 once we establish (3.3.4) and (3.3.5).
We shall prove both estimates simultaneously. Consider first the term Qf(9,¥). By Lemma 3.1.4

and the Correspondence Principle,

s~V Q4 (Vel) 22 <Cs~ 210 |z poe IV Vel 2

<O o IV s
Multiplying by s%/4*! and integrating over s € (0, s] with respect to ds/s, we get

’ ! ’
HS—(I-‘rW )/2|Vw|7 Q{(V@W)Hcg/prl,lci(oél SCHHQ{H’Hi/chgO HVZ‘I]’Y ”Ei ||Lgd/2+l)/2’l(07§]

SCCO§6 H51/2iz’yievmqjv, ”Ld/‘ly?Lz (0,]
whereas taking the square integral over s € (0, s], we obtain

||S—(1+w)/2 Vs WQ’{ (Vo) ||£‘;/4+1’2£§(0,§] <CC, H81/2—é7 VI\IW’ ||z:§/4~2cg(o,§] _

Next, consider the term Q0(¥). Again by Lemma 3.1.4 and the Correspondence Principle, we
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have

SV (D)2 <O /20 Vel Wil

||7.'[g/20£go ||

<1120 197 ] 2.

d/2+1

Multiplying by s and integrating or square-integrating over (0, s] with respect to ds/s, we

obtain, respectively,

_ ’ ’ ’
||S Y /2|V$|’Y QO(LIJ)H‘C;UAL#»I,IE?E(O’é] SCHHQ(JHHg/szgCH\II’Y ||£323H[1§d/2+2)/2'1(0,§]

_ _ /
<OCos |55 U | pasnz g

and

™" /2V4| "' Qo(W) <CCo|[sM />~ WY | pasae

”zzi““ﬂzg(o,g] £2(0,s]°

Finally, for any 1 < r < oo, note that
||877 /2|Vz|'Y NHﬁg/M'LT[,% < C”NHC?,JFLTT{;{,.

Combining these estimates, (3.3.4) and (3.3.5) follow.
To prove the smoothing estimates in Statement 2, by the second part of Theorem 3.1.10, it
suffices to prove the following statement: For every integer m > 1, we claim

m) (Y ! m
IV N ggrs01: 30 SCCnIY L ggraggpon oy + CIVEDNI a0 (8:36)

This is easily proved by analyzing V;m)((qﬂ IN ) as before, using the Leibniz rule.
Finally, Statement 3 is a easy consequence of the Picard iteration argument used to prove the

local well-posedness of (3.3.1); we omit the details. O

3.4 Dynamic Yang-Mills heat flow in the DeTurck gauge

In this section, we shall establish basic properties (e.g. local well-posedness and smoothing) of the
dynamic Yang-Mills heat flow (AYMHF) on I x R? x [0, 00) in the DeTurck gauge A, = 9°A,, where

I C Ris an interval and d > 2. The starting point is the observation that the theory for (cYMHF)
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developed in §3.2 already takes care of the spatial components of (dYMHF). It only remains to add
in the temporal component Fyy = D’Fyq, which is easy using Lemma 3.3.1 proved in the previous
section.

To keep the lengths of the statements reasonable, the main result of this section will be divided
into the following two propositions. In the first proposition, we shall establish local existence and
uniqueness of ({YMHF) in the DeTurck gauge for initial data in C£°(I, H®). Then, in the second

proposition, we shall establish Lipschitz dependence on the initial data.

Proposition 3.4.1 (Local well-posedness of (AYMHF) in the DeTurck gauge, Part I). Let d > 2,
% <y < % and I C R an interval. Consider the dynamic Yang-Mills heat flow (IYMHF) on
I x R4 % [0,1] in the DeTurck gauge As = 9*Ay. Let A,, be a g-valued 1-form on I x R% x {0} such
that A,, € C°(I,HX) and

Al g < 0, (3.4.1)

where 6p = dp(d, ) is the constant in Proposition 3.2.1.
Then there exists a unique solution A, to (AYMHF) under the DeTurck gauge condition As =
9'Ag on I x R x [0,1] such that A, € C{3(I x [0,1], H®). Moreover, the solution satisfies the

following estimates.
1. The spatial components A; obey (3.2.4) and (3.2.9);
2. The s-component Ay = 0°Ay obeys (3.2.13) and (3.2.14);

3. For each integer m > 0 and —g <4 < %, the curvature components Fo = (Fo;)i=1,....a obey

k) (k+1)
kZ_O(M Boll e oy +IVE VBl o

“#2' (o, 1]) = Cd,’y,fy’,m,HZHH;( ”FO”H;’ ;o (34.2)

4. Finally, for each integer m >0 and —% —l— 1< < , the temporal component Ay obeys

m

(k) . (k+1) )
Z(Hv”” Aoll o ooy o HIVa Aol a2
k=0 (3.4.3)

SCd,%’Y'»mvHZ”H"{ (”ZOHH;’ + ||F0HH;’71)-

Remark 3.4.2. We remark that the ranges of 4/ for (3.4.2) and (3.4.3) are not the largest possible,

but will be sufficient for our use.

Proof. Fix t € I; we shall often suppress t for the simplicity of notation. Let B; = B;(t) be the
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solution to the initial value problem

D,B; — D'D,B; =2[F,%, B,

(3.4.4)
Bi(S = 0) :FOZW
on {t} x R% x [0,1], and Ay = Ay(t) the solution to the problem
95 Ao — DAy =[A",0,A0] — [AY, By,
(3.4.5)

on {t} x R% x [0, 1].

Expanding out the covariant derivatives and F,*, we see that (3.4.4) is of the form
(0s — N)B; = O(A,0,B) + O(0; A, B) + O(A, A, B).

By Proposition 3.2.1 (which is applicable thanks to (3.4.1)), we may appeal to Lemma 3.3.1 to
obtain a unique (g-valued) solution B; € CP%(I x [0,1], H®) to (3.4.4). Fix —% <+’ < £. Thanks to
the smoothing estimates (3.2.9) for A;, the hypotheses of Statements 1 and 2 of Lemma 3.3.1hold.

Therefore, for each m > 0, B obeys

(k) (k+1) — o /
kzo (va BH,C?YMOO']-.[}/(OJ] + ”Vm B”Liv/a?{ll(o,l]) < Cd,'y,'y’,m,HAHH;y ||FOHH2 . (346)

Next, using the fact that B; is a g-valued (spatial) 1-form in CPS(I x [0, 1], Hp®), appealing
to Lemma 3.3.1 gives a unique g-valued solution Ay € CPS(I x [0,1], H®) to (3.4.5). Let -4+
1 < 4" < 4. By the smoothing estimates (3.2.9) and (3.4.6) (with 7/ = v” — 1) for 4; and B;,
respectively, the hypotheses of Statement 1 and 2 of Lemma 3.3.1 hold. (Note that for B;, we need

—4 <4 =4"—1< %) Thus, for each integer m > 0, Ay satisfies

m

(k) (k+1)
> (HVI AO”L?”’mﬂl”(o,lﬁnvr AOHﬁﬁ”"’%'ﬁ”(o,l})
2 (3.4.7)

Scd,w,w,w,m,HZ”Hg(||ZOHHg“ + [1Foll gyr1)-
In conclusion, we have achieved the following so far: There exist unique g-valued solutions B; and
Ag in CPS(I x [0,1], HY®) to (3.4.4) and (3.4.5), respectively. Moreover, they satisfy the estimates
(3.4.6) and (3.4.7) for —g << % and —% +1<v" < g, respectively.

Note that if (A, As) were a smooth solution to ({YMHF'), then by uniqueness, the solution to
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(3.4.4) would be exactly Fy; and Ag would indeed satisfy (3.4.5) with By = Fyy. Conversely, if B;
and Ap defined as above satisfies B; = Fp;, where Fy; := 0;Ag — 0o A; + [4;, Ap], then it is not
difficult to verify that (Ag, A;, As) with A, = A, would be a solution to ({AYMHF). This would
prove the first two statements of the proposition. Moreover, from the estimates (3.4.6) and (3.4.7),
the remaining two statements would follow as well.

Therefore, our goal in the remainder of this proof is to show that Fy; = B; on I x R? x [0, 1].

We shall begin by rewriting the equation (3.4.5) as follows:
Fyo = D'Fyo + [A*, For — Be].
Using the Bianchi identity (as in §2.1), we see that Fp, satisfies the following parabolic equation.
D, Fo; — DDy Fo; = 2[F;*, For] — Di[ A, For — By].
Let 0 Fy; := Fo; — B;. Subtracting (3.4.4) from the preceding equation, we arrive at
D, (6Fy;) — D*Dy(6Fy;) = —2[F;*, 6 Fye] — D;[A*, 6 Fyy].

where 0Fp;(s = 0) = 0. Recall, furthermore, that A;, B;, Ag € C°(]0, 1], HZ®); then it follows that
Foi € C°([0,1], H®) as well. Appealing to the uniqueness statement of Lemma 3.3.1, we conclude

that FOi = Bl O

The following proposition regarding the Lipschitz dependence on the initial data can be proved

in a similar manner; we leave the details to the reader.

Proposition 3.4.3 (Local well-posedness of ({YMHF) in the DeTurck gauge, Part II). Let d > 2,
922 <y <4 and I CR an interval. Let A, Al, € Ci(I x [0,1], H®) be the solutions to ({YMHF)
under the DeTurck condition Ay = 0°A, with initial data ZH,ZL € C°(I x HY®) satisfying (3.4.1),
respectively, given by Proposition 3.4.1. Then the difference of the two solutions obey the following

estimates.
1. The difference between the spatial components 0A; obeys (3.2.5) and (3.2.10);
2. The difference between s-components §A, = 0°(5A;) obeys (3.2.15) and (3.2.16);

3. For each integer m > 0 and —g <9 < g, the difference between curvature components
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0Fy = (6F0i)i=1,....a obey

(k) (k+1)
) (IIVm Boll vy 0.y TV F(’Hciw”zm’m,n)
e (3.4.8)
<C  (10A] gy + H(stHH;’)?

S S A g I g N Foll e I Fo

4. Finally, for each integer m > 0 and —g +1<9 < %, the difference between the temporal

components 0 Ay obeys

NE

(V89 55) +[VED G 40) | ey

o ,27.{;,(0’1]) (3.4.9)

[
0 L Ha (0,1]

IN T

Coty s A WA i oy I Wl T, (19 A iz 110 A0 gy 110 F ol ).

3.5 Estimates for gauge transform to the caloric gauge

In the previous sections, we analyzed (cYMHF) and (dYMHF) under the DeTurck gauge condition
A, = 0'Ay. However, as discussed in the Introduction, for the purpose of analyzing the time-
evolution of the system (HPYM), we need to convert to the caloric gauge As = 0. In this section,
we shall present estimates for the gauge transform from the DeTurck gauge to the caloric gauge.
As in the previous section, we shall divide the main result of this section into two propositions.
The first one will be about a single gauge transform to the caloric gauge, whereas in the second one,
we shall be concerned with the difference between gauge transforms corresponding to two nearby
solutions. For simplicity, we shall only consider H2° initial data. The results will be stated only
for (cYMHF), but we remark that these apply equally well to ({YMHF) on each fixed t¢-slice as

(cYMHF) is a part of the latter system. We shall defer their proofs to §A.5.

Proposition 3.5.1 (Gauge transformation from the DeTurck to caloric gauge, Part I). Let d > 2,
=2 <y < 4. Fiz s, €[0,1]. Let A; be a g-valued 1-form in HX(R?) satisfying (3.2.3), and A; €
C>([0,1], HS®) the corresponding unique solution to (¢YMHF) in the DeTurck gauge A, = 9°A,.

Consider the ODE

0,U = UA,
(3.5.1)

on R x [0,1].

Then there exists a unique solution U to (3.5.1), which is a ®-valued function on R% x [0, 1] such
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that U —Id € C$°([0, 1], HS®). Moreover, the solution satisfies the following properties.

1. The unique solution U obeys the estimate
||U — Id||L?0H;(+1[O,1] + HU — Id||L§°(Hz/2ﬂL;C)[O,1] < Cd;')’;HZHH’IY ||A||H;y (352)

2. We have smooth dependence on parameter; in particular, the following statement holds:

Suppose that A;(t) € H is a family of initial data satisfying (3.2.3), which is parametrized by
t €I (I CR isan interval) and A; € C° (I, H®). Then the corresponding gauge transform

U(t) satisfies U —1d € CPS(1 x [0, 1], H®).

3. Furthermore, if s1 > 0, then for every integer k > 1, U obeys the following estimate on (0, s1]:

157208 (U =T e s+ (0,0) < Coty b7 1AL 1 (3.5.3)

On (s1,1], we have
k/2 u
51/ Haék)(U - Id)||L§°H;+l(sl,1} < Cd,’y,k,HKHH;( HAHH;’ (354)

4. Finally, all of the above properties remain true with U replaced by U~1.

Next, we state some estimates regarding the difference between two gauge transforms correspond-

ing to two nearby solution of (cYMHF).

Proposition 3.5.2 (Gauge transformation from the DeTurck to caloric gauge, Part II). Let d > 2,
% << % and fir s; € [0,1]. Let A;, Z; be g-valued 1-forms in HX°(RY) satisfying (3.2.3), and
A;, AL € C(]0,1], HS®) the corresponding unique solutions to (cYMHF) in the DeTurck gauge As =
0'Ay. Moreover, let U,U’ be the unique solutions to (3.5.1) corresponding to A;, A%, respectively,
giwen by Proposition 3.5.1. Then the difference between two gauge transforms satisfies the following

properties.

1. The difference U obeys the estimate

160 e 2+ j0,1) + 10U N e sz 10,1 S Cotn 1Al gy A 1y 16 AN 17 (3.5.5)

2. Furthermore, if s1 > 0, then for every integer k > 1, U obeys the following estimate holds on
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(0,31].‘
k k A
||8 /285 )(6U)||L§°H;+l(0,sl] S Cd,’y,k,HZHH;,HZ/HH;y||5A||H;V (356)

On (s1,1], we have instead

. N
12108 OU) | e 21 (ay 1) < C 167 2 (3.5.7)

- -/
Akl Al A

3. Finally, all of the above properties remain true with SU replaced by SU L.

Remark 3.5.3. We remark that Proposition 3.5.1 (along with the difference estimates provided by
Proposition 3.5.2) will be for us an analogue of Uhlenbeck’s lemma [37], on which the work [15]
crucially rely. Given a connection 1-form A;, Uhlenbeck’s lemma asserts, roughly speaking, the
existence of a gauge transform with good regularity properties to the Coulomb gauge, provided that
cither the L%? norm of F;; or LY norm of A; is small. Note that the Coulomb gauge condition
is synonymous with setting the curl-free part of A; zero. On the other hand, heuristically, an
application of this proposition with s; > 0, combined with the smoothing estimates for (cYMHF)
and (dYMHF) in the DeTurck gauge in §3.2 — §3.4, amounts to transforming a given initial data
set to another whose curl-free part is ‘smoother’. The advantage of Propositon 3.5.1 is that it
only requires smallness of a (scaling-) sub-critical quantity || Al| 4, compared to the scaling-invariant
norms in the case of Uhlenbeck’s lemma.

In the simpler case of an abelian gauge gauge theory, e.g. Maxwell’s equations, this heuristic
can be demonstrated in a more concrete manner as follows: In this case, the connection component
A, will exist all the way to s — oo, and will converge to zero in a suitable sense. Note furthermore
that 9°Fyp = 85(65/1[) — AAg; = 0. Therefore, this proposition, if applied with ‘s; = oo’, transforms
the initial data to one such that the curl-free part is zero, i.e. one satisfying the Coulomb gauge

condition.

We shall end this section with useful lemmas that relate the estimates for U, U™, §U, U}
obtained in the previous proposition to those for the corresponding gauge transformation of A, and

covariant g-valued tensors.

Lemma 3.5.4 (Estimates for gauge transformation, Part I). Let U be a &-valued function in
C=([0,1), H®), B a g-valued function in C([0,1], HX) and —% < v < 4. Then the following

statements hold
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1. Suppose that there exists Uy > 0 such that

||U — IdH €y —1/2,00 )yt 1 + ||U — Id||£0O F42 A poo <Uy,
L, HITH(0,1] & (Ha'"NL)(0,1] (3.5.8)
||U*1 — Id||£ﬁ7—l/2,oo7_'t;{+1 0,1] + ||U 1 Id”ﬁ;"’(’)’-'liﬂﬁﬁgo)(o,l] <Up.
Then for e R, 1 <r < o0 and77<’y <7, we have
”UBU_lHEsT (Q 1] — Cdf)’,"/ =Uo ||B||£2 T’H"’ (0 1] (359)
Furthermore, O;UU 1 obeys
H&UU*l Hﬁiﬂ”m?’ll(o,l] < CamyuUo- (3.5.10)
2. Let m > 0 be an integer. Suppose that there exists Uy, > 0 such that Uy < Uy, and
3 ( IV =T 1720 g1 gy + IV @ = 1d)||£§7,1/2,mw1(071]) < Up,. (3.5.11)
k=0
Then for any L € R, 1 <r < oo and — <’y <f,wehave
m
||v§cm)(UBU71)||£g‘rﬂ;’(071] < Ca ' mthn Z ||V;k)B||£§,rﬂ;'(O,1]- (3.5.12)
k=0
Furthermore, for any integer 0 < k < m, V(zk)(aiUU_l) obeys
||V§Ck)(@UU‘UHdWmH;(OJ] < Coy 11, Unm- (3.5.13)

Remark 3.5.5. Let A; be a g-valued 1-form in HZ® satisfying the hypotheses of Proposition 3.5.1.

Then the hypothesis (3.5.8) is satisfied with Uy = C,, HZHH; by (3.5.2) of Proposition 3.5.1.

77”2”1{;
Moreover, if s; = 1, then the hypothesis (3.5.11) is satisfied for every integer m > 0 with U,

Carym, 1Al [ All g, by (3.5.3) of the same proposition.

Proof. This is an easy consequence of Lemma A.3.1. The following observation may be useful:

Suppose that (3.5.8) and (3.5.11) hold. By Gagliardo-Nirenberg and the fact that £, < %, we have

m
Z ( |v(k - Id)”[:oo d/zﬂﬁoo (0,1] + ||V(k)( Id)”ﬁé’o(')".limﬁﬁio)(o,l]) < um~ 0
k=0
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The following is a difference analogue of the preceding lemma, whose proof we omit

Lemma 3.5.6 (Estimates for gauge transformation, Part II)

. Let U, U be G-valued functions
in C([0,1], HZ®), B, B’ be g-valued functions in C°([0,1], H®) and —% < v < 4. Recall the
notations S(UBU ) and §(0;UU 1

) from Lemma A.3.1.Then the following statements hold

1. Suppose that there exist Uy, Uy > 0 such that U and U1 obey (3.5.8) and

||5UH£?—1/2>007_'[;+1

|6U "

(H2/2nL22)(0,1] < 0Uo,

(3.5.14)
”Eﬁw*l/?vm;_'[;ﬁl 0,1] + ||6U

1
22 2722500, < OUo-

Then for e R, 1 <r < oo and — <’y< ,wehave

||6(UBU71)||£§W’;.'L;/(071] S Cd,'y,'y’,uo ||5BH£/ T 0 1] + Cd Y Z/{052/{0”‘3”‘65 T’H’T/(O,l] . (3515)

Furthermore, §(0;UU 1) obeys

Hd(&‘iUU’l)||L§7,m%;(071] < Cmy 11y 0Uo. (3.5.16)
2. Let m > 0 be an integer. Suppose that there exist Uy, Uy, > 0 such that
Z/lO S Z/lma 51/{0 S 5um7
U and U’ obey (3.5.11) and
Z ( IV @), -1z IV GU ) per 172,00 400 o 1]) < o, (3.5.17)
Then for any £ € R, 1 <r < o0 and—7<’y < 7, we have
m
||Va(vm)5(UBU_1)”gﬁ”ﬂl'(o,l] <Canyymitn Y | V5" M ezrazy 0.1
= (3.5.18)
+ Cd’V’Vlvm)um 6um Z ||V£ck)B||L‘,§""’H71(() 1]
k=0
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Furthermore, for any 0 < k <m, Vggk)é(@iUUfl) obeys

||V§Uk)6(6iUU‘1)||E§7,w Clay 1, Uy (3.5.19)

#2001 =

Remark 3.5.7. Let 4;, A, be g-valued 1-form in H2 satisfying the hypotheses of Proposition 3.5.2.

Then as before, the hypothesis (3.5.14) is satisfied with dy = C, [6A]l ;1 by (3.5.5)

- —
A NAN g FA N gy

of Proposition 3.5.2. Moreover, if s; = 1, then the hypothesis (3.5.17) is satisfied for every integer

m > 0 with 0, :=C, H(SZHH;,, by (3.5.6) of the same proposition.

by —/
LAl g 1A N gy

3.6 Yang-Mills heat flows in the caloric gauge

In this section, we shall establish local well-posedness of (cYMHF) and (dYMHF) in the caloric

gauge A; = 0. In fact, the former system is exactly the original Yang-Mills heat flow
DsA; = D'Fy;, (YMHF)

so our approach give an alternative proof of the classical local well-posedness result for (YMHF),
established in [27] in dimensions 2 and 3.
Proposition 3.6.1 (Local well-posedness of (YMHF)). Let d > 2, % <7< g and define ¢ > 2
by g = g — . Consider the Yang-Mills heat flow
DsA; = D'Fy;. (eq:YMHF)
Let A; be a g-valued 1-form on R x {0} such that A; € H® and

Al gy < 0, (3.6.1)

where dp = 0p(d,y) is the constant in Proposition 3.2.1.
Then there exists a unique solution A; to (YMHF) such that A; € C°([0,1], H®). Moreover,

the solution satisfies the following properties.

1. The solution A; obeys the estimate

1Al e s201) < Ci 1] 45 (3.6.2)

AN gy
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2. Consider an additional initial data Z; € HX® satisfying (3.6.1), and let A} € C°([0, 1], HS®)
be the corresponding unique solution to (YMHF). Then the difference 0A between the two

solutions obeys the estimate

||5A||LgoH;[o,1] < Cd |5Z||Hg (3-6-3)

_ —_—
AN g Ay

3. We have smooth dependence on the initial data; in particular, the following statement holds:

Suppose that A;(t) € HX is a family of initial data satisfying (3.6.1), which is parametrized
byt eI (I CR isan interval) and A; € CP°(I, HS®). Then the corresponding solution A;(t)

to (YMHF) satisfies A; € CPS(1 < [0,1], HZ®).

Remark 3.6.2. Note that no smoothing estimate for A; is claimed. Although we do have such
estimates in the DeTurck gauge (see Proposition 3.2.5), the gauge transform U to the caloric gauge
with U(s = 0) = Id is not bounded in Hg*k for k£ > 0. This is consistent with the hypothesis s; > 0

in Statement 3 of Proposition 3.5.1.

Proof. Let (A;, Ay) be the solution in C2°([0,1], H2°) to (3.2.2) with initial data A;(s = 0) = 4,
given by Proposition 3.2.1. Moreover, let U € C2([0,1], H2°) be the gauge transform of (4;, A,)
from the DeTurck to caloric gauge with U(s = 0) = Id, which is given by Proposition 3.5.1 with

s1 = 0. Then, by construction, the gauge transform (A;, As) of (Zl, gs) by U, i.e.
A= UAU Y —,UUY, A, =UAU —0o,UU ",

is a solution to (cCYMHF) in the caloric gauge, or equivalently, to (YMHF). Moreover, A; belongs
to the class C°([0,1], H2°). Then, thanks to the estimates and properties of A; and U as in
Propositions 3.2.1, 3.5.1 and 3.5.2, along with Lemmas 3.5.4 and 3.5.6, Statements 1 — 3 of the
proposition follow. (For an additional initial data Z; we construct the corresponding solution A
in the identical manner.) It is therefore only left to establish the uniqueness of A;, which is a

consequence of the following lemma. O

Lemma 3.6.3. Letd > 2. Consider solutions A;, A, to (YMHF) on a common s-interval J = [0, so]
belonging to C°([0, so], HS®). If their initial data coincide, i.e. A; = Z; on R? x {0}, then so do

the solutions, i.e. A; = A’ on R% x [0, sq].

Proof. By a simple continuous induction argument, it suffices to prove that the solutions coincide

on an arbitrarily short interval [0, s1], where s; > 0. Let (4;, A,) € C([0,s1], H°) be the unique
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solution to (cCYMHF) in the DeTurck gauge A, = ‘A, with A4; as the initial data, which is given

by Proposition 3.2.1. Furthermore, let U € C$°([0, so], HS®) be the unique solution to the ODE

o.U =UA,
(3.6.4)
U(s = 0) =Id.

given by Proposition 3.5.1. Without loss of generality, we may assume that one of the solutions, say

A;, is equal to A, gauge-transformed by U, i.e.
A =UAU —9,uU .

The goal is to show that A, = A; using the uniqueness of A; and U in the DeTurck gauge. The
key is to note that the equation for a (smooth) gauge transform W' from the caloric to DeTurck
gauge, namely

—OWW =" (WAW ! —9WWw1), (3.6.5)

is a parabolic equation for a ®-valued function W on R? x [0,00) (thanks to the fact that A’ €
C([0, so], HY®) is g-valued). By the standard theory of semi-linear parabolic equation, for suffi-
ciently small s; > 0, there exists a unique &-valued function W which solves (3.6.5) with initial data
W (s =0) =1d and satisfies W — Id € C2°(][0, s1], HZ°).

Consider now the g-valued 1-form ,Z;7 which is the gauge transform of A, by W defined by
A =wWAWT —aww L

Obviously, A/ is a solution to (¢cYMHF). Moreover, we see also that A; belongs to C2°([0, s1], H2®)
and satisfies the DeTurck gauge condition by (3.6.5). Taking s; > 0 smaller if necessary, we may
apply the uniqueness statement of (rescaled) Proposition 3.2.1 and conclude that g; = gz on R4 x
[0,51]. Finally, note that W~1! belongs to C2°([0, s1], H>®) and solves the ODE (3.6.4), thanks to
A’ = 0. We therefore conclude W~! = U on R? x [0, s1], by uniqueness for ODEs. Thus A, = A;

on [0, s1], as desired. O

Next, we shall formulate and prove a local well-posedness statement for ({YMHF') in the caloric

gauge.

Proposition 3.6.4 (Local well-posedness of ({YMHF) in the caloric gauge). Let d > 2, 2 < v <

% and I C R an interval. Consider the dynamic Yang-Mills heat flow (AYMHF) on I x R? x [0, 1] in
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the caloric gauge A = 0. Let A, be a g-valued 1-form on I x R? x {0} such that A, € C°(I, H)
and

Al g2 < 6p, (3.6.6)

where 6p = dp(d,~y) is the constant in Proposition 3.2.1.
Then there ezists a unique solution A, to (AYMHF) in the caloric gauge As =0 on I xR%x [0, 1]

such that A, € CPS(1 x [0,1], HY®). Moreover, the solution satisfies the following estimates.

1. The spatial components A; obey (3.6.2), whereas the curvature components Fo; obey

100 e 177 (0,1) S Clayyr 13y 10l - (3.6.7)

for each f% << %.

2. Consider an additional initial data Z; € Cp°(I, HL®) satisfying (3.6.6), and let A} € CPS(1 x
[0,1], H®) be the corresponding unique solution to (AYMHF) in the caloric gauge. Then the
difference 5 A between the spatial components of the two solutions obeys (3.6.3), whereas the

difference 6 Fy; between the curvature components Fy;, Fj; obeys

1R e 10, < Clacyor 0 @ Pl 7y (1042 1O F O ) (3.6:8)

for each —% << %,

Remark 3.6.5. In the above proposition, we have omitted the statements of estimates for Ay and

0 Ay, for they will not be of use later.

Proof. Let (,Zl“ A,) be the solution in Ces(I x [0,1], Hy?) to (AYMHF) in the DeTurck gauge with
initial data gﬂ(s = 0) = A, given by Proposition 3.4.1. Let U € Cp3(I x [0,1], H®) be the gauge
transform of (/ngs) to the caloric gauge with U(s = 0) = Id, given by Proposition 3.5.1 with

s1 = 0. Then, by construction, the gauge transform (A,,, As) of (/TM, /L) by U, i.e.
A, =UAU T —9,UU", A :=UAU ' —0,UU Y,

is a solution to ({YMHF') in the caloric gauge, which furthermore satisfies A, € C75,(1 x [0, 1], H®).

By Proposition 3.6.1, we see that A; and §A; obey (3.6.2) and (3.6.3), respectively. (Here, A], is
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constructed from Z; in the identical manner.) On the other hand, since
Foi = UFyU™,

the estimates (3.6.7) and (3.6.8) follow from Propositions 3.4.1, 3.4.3, 3.5.1 and 3.5.2, as well as
Lemmas 3.5.4 and 3.5.6. Thus, as before, we are only left to establish uniqueness of the solution

A,,, which is achieved by the following lemma. O

Lemma 3.6.6. Let d > 2 and I C R be an interval. Consider solutions A,, A}, to (AIYMHF) in
the caloric gauge on I x R x [0,s0] for some so > 0 belonging to C%(I x [0, so], H®). If their
initial data coincide, i.e. A, = Z; on I x R x {0}, then so do the solutions, i.e. A, = A, on

I xR x [0, s0].

Proof. For each fixed ¢, note that the spatial components A;(t) satisfy (YMHF). Therefore, by
Lemma 3.6.3, it follows that A; = A’. Thus we are only left to show Ay = Aj.

Observe that dFy; = Fy; — Fjj; now obeys the linear parabolic equation
(0s — D*Dy)(6Fy;) = —2[0F, ", Fy).

Note furthermore that dFp;(s = 0) = 0. Applying the uniqueness statement of Lemma 3.3.1
(scaling [0,1] to [0, s0]), we see that Fy; = F}; on I x R% x [0, s¢]. Then, by the dynamic Yang-
Mills heat flow, 9,49 = DFyy = 054} everywhere. Since Ay = Zg, it follows that Ap = A on

I x R4 x [0, s0], which concludes the proof. O

3.7 Transformation to the caloric-temporal gauge

As discussed in the Introduction, after solving ({YMHF) on [0, so] from a solution Af, to (YM) at

{s = 0}, we need to impose the caloric-temporal gauge condition

A, =0, everywhere,

A, =0, along s = s.

in order to proceed to the analysis of the time evolution. The purpose of this section is to formulate
and prove theorems to achieve this gauge transformation, along with appropriate estimates. The

general idea is very similar to that of §3.6, but the key difference is that we shall choose s; =1 # 0
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in the application of Proposition 3.5.1. This will allow us to keep the smoothing estimates from the
analysis in §3.2 — §3.4, which is central to the our entire approach.

We shall make the statements of the following theorems slightly general by not requiring AL
to be a solution to (YM). We remind the reader the convention that a,b,... run over all indices

(2% 2%, ... 2% 5) on I x R4 x [0, 1].

Theorem 3.7.1 (Transformation to the caloric-temporal gauge, Part I). Letd > 2 and % <y < %
Let Al be a g-valued 1-form on I x R® x {s = 0} (I C R is an interval) such that Af, € C7°(I, HZ®)
and satisfies

sup HAT(t)HHg < 0p (3.7.1)
tel

where §p = dp(d,y) > 0 is the constant in Proposition 3.2.1.
Then there exists a gauge transform 'V € C°(I, HZ®) and a solution Aa € CPS(I < [0,1], H®) to
(AYMHF) such that
A=A (s=0)=VAV ' -9,VV (3.7.2)

and satisfies the caloric-temporal gauge conditions, i.e. A, = 0 everywhere and Ay :== Ao(s =1) =0
along s = 1.
Assume 0 € I and define A; := A;r(t =0), E; := ng(t = 0). Define furthermore A, = A, (s =

1). Then the gauge transform V and solution A, satisfy the following statements:

1. For every integer m > 0, A, and Fy; obey the following estimates at t = 0.

Z ||ag(sk)AiHH; < Cdv'va’”A”H; ||A||Hga (3.7.3)
k=0
Z (”v;k)Fsz‘HLﬁmeH; + Hv;(ck)Fsi|‘£§W+1v2q.‘[;v) < Cdmm,HAHH;T HAHH;’ (3.7.4)

k=0

2. Define V:=V(t=0). Then V —1d, V' —1d € HZ® and obey

1V =Wl 1V = Wl ey 0 <oy i Mtz (3.7.5)

nLge =

[V —1d]| gy + [V = Wl gar2nr0e <Cosy g IA] 177 (3.7.6)
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3. Finally, for every integer m > 0, 0, A; and 0,Fy; obey the following estimates at t = 0.

Z ||5g(ck)8téi||g;f*1 < Cdyy,m,H/iHH; HEHH;;*% (3.7.7)

> (||v§6k>vthi||Lﬁw+l,mm_l + ||v;k>vthi|\£§w+l,2Hg_l) < Coym Al 1Bl - (378)
k=0

The following is an analogue of Theorem 3.7.1 for differences.

Theorem 3.7.2 (Transformation to the caloric-temporal gauge, Part II). Let d > 2, 452 < v <

and Af (A’) g-valued 1-forms in C°(I x HZ®) (I C R is an interval) satisfying (3.7. 1) and 0 € I.

I

Denote by (Aa, V), (AL, V') the solution to (AYMHF) in the caloric-temporal gauge and the gauge

transform, respectively, obtained from AL, (A’)L as in Theorem 3.7.1, in that order.

1. For every integer m > 0, 0A, and 6Fy; obey the following estimates at t = 0.

D 10 SA) 2 < Catrrm, | Al DA 104N £z (3.7.9)
k=0

> (IVEP Ol o1 gy + ITVD OFi) | 41,2,
k=0 (3.7.10)

<C 0A]| 177

drm Al A |

2. Define §V :=V — V' and V-1 :=V~-1 — (‘0/’)_1. Then the following estimates hold.

Iy

16V = gz + 16V | a2 16A] o (3.7.12)

NLg SC«L%IMZ\I\,LQ,Ilz‘i’l\yg|
3. Finally, for every integer m > 0, 0:A; and 0.Fs; obey the following estimates at t = 0.

D 108,54 [l 771
k=0 (3.7.13)

< Ctym Al A7 Ny 104N+ 0B =),

73



Z (”v(k Vi( 5F52)H by+lioogyy—1 + ||v(k)vt(5F31)|| f«/+1’27_‘£;y—1)
k=0 (3.7.14)

< CoaymllAll g2 A sy BN 1 1B s (10 AN OB jg-1)-
x xT x x

Remark 3.7.3. By scaling, Theorems 3.7.1 and 3.7.2 may be applied to AL, (A’)L with large LfoH;Y—
norm. Indeed, suppose that AL satisfies all of the hypotheses of Theorem 3.7.1 except (3.7.1).
Then the conclusion of Theorem 3.7.1 would hold with [0, 1] replaced by [0, s¢], where so is a
positive constant depending on || Af|| Lge 77 in & non-increasing manner. Accordingly, we shall define
Au = A, (s = s9). Then the estimates stated in Theorems 3.7.1 and 3.7.2 for Fy;, V and their
differences would continue to hold, with only [0, 1] replaced by [0, so]. For A ,, however, we must
put an appropriate weight of sg. More precisely, instead of (3.7.3), (3.7.7), (3.7.9) and (3.7.13), we

would have, respectively, the following estimates for every integer m > 0:

2
D56 108 Aill iy < Copy i ANz (3.7.3)
k=0
k/2 o
Y56 210D A i < Coy i 1N i1 (3.7.7)
k=0 “

k
s 2188 (6A) | 41 < C,
k=0

16A] 7. (3.7.9)

A All gy Ay

m

>0 21080 (54 g2
k=0 (3.7.13/)

< Gy Al A g N g 0y 1OA Tz + 0B =)

In the remainder of this section, we shall prove Theorems 3.7.1 and 3.7.2.

Proof of Theorem 8.7.1. In this proof, we shall adopt the following convention: A solution to
(AYMHF) in the DeTurck gauge will be denoted A,, whereas that in the caloric-temporal gauge
will be denoted by Za, Although this is contrary to the notations in the statement of the above
theorems (in which A, had been used for the latter), it will be far more efficient as most of the work

will be done in the DeTurck gauge.

Step 1. Construction of gauge transform to caloric-temporal gauge. Let us begin by applying
Proposition 3.4.1 to the initial data AL, from which we obtain a solution A, € CPS(I x [0,1], HZ®)

of (dAYMHF) in the DeTurck gauge A5 = §°A4, such that A,(s =0) = AL. Our goal is to exhibit a
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gauge transform U which would transform A, to a solution
Aa =UAU ™ —9,U0U ! (3.7.15)

to (AYMHF) in the caloric-temporal gauge A, =0, AO =
Observe that the ‘temporal’ gauge condition, namely AO = 0, is equivalent to the following ODE
for U:=U(s=1) along {s =1}:

U =U A,. (3.7.16)

Similarly, the caloric gauge condition A = 0 is equivalent to the following ODE for every ¢ € I:

a,U = UA,. (3.7.17)
Let us solve (3.7.16) with
U(t = 0) = 1d, (3.7.18)
and in turn (3.7.17) for every t € I with
U(s=1)=U(t). (3.7.19)

As Ay € C°(I, Hy?) and A, € CPS(1 x [0,1], H®

), we then obtain a unique solution U — Id €

Cps (I x[0,1], HZ?) satisfying (3.7.16) — (3.7.19). By construction, the gauge transformed connection
1-form A, defined by (3.7.15) belongs to Cpe(Ix [0,1], HE®) and satisfies the caloric-temporal gauge
conditions A, = 0 and A, = 0. Defining V (t,z) := U(t,z,0), we have V — Id € C°(I, H®) (3.7.2)

as desired.

Step 2. Proof of (3.7.3) — (3.7.6) at t = 0. Next, assuming 0 € I, we shall focus on obtaining
quantitative estimates (3.7.3) — (3.7.8) at ¢t = 0. Recall the notations A; := Aj(t =0), B =
ng(t =0)and V:=V(t=0) = U(t = 0,s = 0). In this step, we work exclusively on t = 0, i.e.
{0} x R¢ x [0,1], and derive the estimates (3.7.3) — (3.7.6) concerning only spatial derivatives.

To begin with, by the smoothing estimates (3.2.9), note that the following statement holds: For
every integer m > 0, we have

k k A
Z (HV& )AHEQ/»%;‘[;(OJ] + ”V:(z )AHE’;%%_'L;H(OJ]) < Cd’&ma\l;\\lgg ||A||H; (3.7.20)
k=0
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This immediately proves (3.7.3), as A; = A;. To proceed, recall the formula

By (3.7.20), Lemma 3.1.14, Lemma 3.1.4 and Lemma 3.1.8 (along with the fact that 1 —¢, > 0),

we have

190 AlL 24172 301 < Casmidlg 1Al MO A o2y 1 < Cos i Ml

for » = 2,00. As a consequence, the following statement for F' := (Fj;)1<i<j<q holds: For every

integer m > 0, we have

Z (||V§:k)F||E§7+1/2’°°?:[;(0’1] + ||ngk)FHLﬁwH/MH;(O’I]) < Cd,&m’l\/lllyg HAHH; (3-721)
k=0

(Note that £2-type estimate holds for H in this case, unlike (3.7.20).)
By F,; = D‘Fy;, using (3.7.20), (3.7.21), Lemma 3.1.14, Lemma 3.1.4 and Lemma 3.1.8, we

furthermore derive the following statement: For every integer m > 0, we have

Z (vack)FsHﬂﬁw“«mq_z;{(o’l] + vack)Fs||g§w+1v27_'l;f(0’1]> S Cd757m)“,§\|ﬁ;, ||A||H;’ (3'7'22)
k=0

Appealing to (3.5.2) and (3.5.3) of Proposition 3.5.1 with s; = 1, we have

U — Id”LgoH;{‘Fl[O’l] +|U - Id”Lgo(Hg/QﬂLgo)[OJ] < Cd,'y,HAHH; ”A”H; (3.7.23)
and for each integer m > 1,
DM 2OP WU = 1) e v+ 01) € Cotmy Al 1Al (3.7.24)
k=1

and identical estimates hold also for U~!. Recalling that V = U(s = 0), (3.7.5) and (3.7.6) imme-
diately follow. Moreover, by (3.7.22), (3.7.23), (3.7.24) and Lemma 3.5.4, for every integer m > 0,

the following estimates for Fi; = UF,;U~! holds:

m

Z (Hv(mk)Fs‘|£§7+1’°°’}_'t;f(071] + ||V($k)Fs||[1i7+1'27~ll(071]) S Cdvév"”aHAHI-'[; ||A||H;’ (3725)
k=0
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This proves (3.7.4).

Step 3. Proof of (3.7.7) — (3.7.8) at t = 0. Finally, let us prove the estimates (3.7.7), (3.7.8)
involving a time derivative. The key additional ingredient is the estimate (3.4.2) for Fy; with

~" =~ — 1. In the present setting, it may be restated as follows: For each integer m > 0, we have

Z (||V:(Ek)F0||£ﬁv+1/2’°°7_'t;(*1(0’1]+||v§ck)F0H[:ﬁﬁ*l/zv?q_'g(o’l]) < Cd/y,m,HAHH; HFOHH;”I' (3726)
k=0

Since U(t = 0,s = 1) = Id and A, = 0, we have Fy;, = Fy; = &A;. Therefore, (3.7.7)
immediately follows.

To proceed to the proof of (3.7.8), we shall begin with the following statement: For every integer
m > 0, we have

> (”Vik)FsOHz:ﬁw“’mmfl(o,u+||V5ck)F50||z:ﬁv“~2n;(o,1]) < Coym Al 1Foll g2 (3.7.27)
k=0

This is an obvious consequence of applying Lemma 3.5.4 to the corresponding estimate for
F.0 = D*Fy, which in turn follows from (3.7.20), (3.7.26).

Next, we claim that for every integer m > 0,

Z (”V(fk)DthHLﬁ'YJrl’oo?-'[;’,_l(0,1]+||V(zk)DtF5Hgﬁ'YJrl’Q?-'LZ_l(O,l])
k=0 (3.7.28)

SCd,’y,m,HAHH;Y HF‘OHH:Z_1 :

(Note that £2-type estimate holds for H~1.)
Again this follows from Lemma 3.5.4 applied to the corresponding estimate for Do Fy;. To derive

the latter, we begin with the identity
D, Fy; = D'D¢Foi — DD For — 2[Fy", Fifl,
which is a consequence of the Bianchi identity
DoFsi = DsFoi — D; Fos,

the covariant parabolic equation for Fy;, and the equation Fyo = D’Fjg. The desired estimate then

follows from the estimates (3.7.20), (3.7.21) and (3.7.26).

7



In view of the formula 8, Fy; = ﬁtf’si - [ﬁo, fsi], we are only left to estimate [ZO, ﬁm] We claim

that the following statement for Ay holds: For every integer m > 0 and any v < v’ < %, we have

m

) 1 A o
D195 Aoll gy 0.1 = Cotmy i All gy 1Ly | E iz
k=0

Indeed, taking the H -norm of the formula

Aols) = — / Fuo(s) ds’

(which holds thanks to the caloric-temporal gauge condition) and using the estimate (3.7.9), the

desired estimate follows. By Lemma 3.1.14, for each integer m > 0, we then have

m

" i o ey
DIV Aol oo vz ey 0,1y < Cavtim Al Ly 1Bz
k=0 *

Combining the preceding estimate and (3.7.25), we finally arrive at

m

I;J (HV;’Q (o, Ell gro+1/2.00 511 6,3y FIVE [0, ﬁs]”aﬁv“”%z*%o,l])

<Cyml Al 170l i1

for every integer m > 0. Then from (3.7.28), the desired estimate (3.7.8) follows.

O

The proof of Theorem 3.7.2 is entirely analogous to Steps 2-3 of the previous proof, and thus

will be omitted.
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Chapter 4

Proof of the Main LWP Theorem

The goal of this chapter is to establish the Main LWP Theorem for (YM). Accordingly, we shall
restrict to the case d = 3.

To help the reader quickly grasp the main ideas, we shall begin with an outline of our proof of
the Main LWP Theorem in §4.1. Then after some preliminary materials in §4.2, we shall reduce the
Main LWP Theorem to Theorems A and B in §4.3.

Theorem A, essentially concerning the gauge transformation procedure from the temporal to
caloric-temporal gauge, will follow from more general results already proved in §3.7.

In the remainder of this chapter, we shall prove Theorem B, concerning the time dynamics of the
Yang-Mills equations in the caloric-temporal gauge. We shall begin in §4.4 by reducing Theorem
B to smaller statements, namely Propositions 4.4.1 - 4.4.4 and Theorems C (Hyperbolic estimates
for A;) and D (Hyperbolic estimates for Fy;). In §4.5, we shall analyze the parabolic equations
satisfied by F;, Fso = —wg and w;; this part will depend heavily on the abstract parabolic theory
developed in §3.1.2 — §3.1.4. As a consequence, we shall quickly prove Propositions 4.4.1 - 4.4.4 in
§4.6. Finally, in §4.7, we shall prove Theorems C and D by analyzing the wave equations for A, and
F;, respectively, in the caloric-temporal gauge.

The materials in this chapter had been previously published in [25, §7 — §10].

4.1 QOutline of the argument

Due to the fact that we deal simultaneously with two nonlinear PDEs, namely (YM) and (YMHF),
the argument of this chapter is rather lengthy. To help the reader grasp the main ideas, we shall

to present an overview of the arguments of this chapter, with the ambition to indicate each of the
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major difficulties, as well as their resolutions, without being overly technical. We shall respect the
numbering of steps in §1.5.

As in §1.5, instead of the full local well-posedness statement, we shall focus on the simpler
problem of deriving a local-in-time a priori bound of a solution to (YM) in the temporal gauge. In
other words, under the assumption that a (suitably smooth and decaying) solution AL to (YM) in

the temporal gauge exists on I x R3, where I := (—=Tp,Tp) C R, we aim to prove
”at’l’ALHCt(I,Li) < CoI, (4.1.1)

where 7 := Y193 (A, EZ-)HH;X];? measures the size of the initial data, for Tj sufficiently small

compared to 7.

Step 0: Scaling and set-up of the bootstrap

Observe that, thanks to the scaling property of (YM) and the sub-criticality of 7 , it suffices to prove
(4.1.1) for Ty = 1, assuming Z is small. We shall use a bootstrap argument to establish (4.1.1).

More precisely, under the bootstrap assumption that
10,0 AL ll ey ((—r).12) < 2C0T (4.1.2)

holds for 0 < T < 1, we shall retrieve (4.1.1) for I = (—T,T) provided that Z is sufficiently small

(independent of T'). Then, by a standard continuity argument, (4.1.1) will follow for I = (—1,1).

Steps 1 & 2: Transformation to the caloric-temporal gauge

As discussed earlier, the starting point of our analysis is to smooth out AL by solving the dynamic
Yang-Mills heat flow (dAYMHF) along s € [0,00) (a newly added variable), and impose the caloric-
temporal gauge condition A, = 0 and A, = 0 on the resulting solution to (HPYM)!. Taking Z
sufficiently small, the bootstrap assumption (4.1.2) allows us to apply Theorem 3.7.1 (Transformation
to the caloric-temporal gauge). As a consequence, we shall obtain a gauge transform V on (—T,T) x
R? and solution A, on (—=7,7T) x R% x [0,1] to (HPYM) (as we begin with a solution to (YM)) such
that
A=A (s=0)=V(AHV ! —9,VV

1We remind the reader that (HPYM) is nothing but (dYMHF) with (YM) at s = 0.
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and A, is in the caloric-temporal gauge A; =0 and 4, := Ag(s =1) =0. On t =0, for Fy; = 054;
and A, := Ao(s = 1), we shall have

vavm_l)Vt,wFs(t = O>||£2/4.oo£§ + ||V;M—1)Vt’a;FS(t = 0)||£§/4,2££ < Cmf, (413)
1080y w At = 0)] 2 < CiZ, (4.1.4)

up to some integers mg, kg > 1, i.e. 1 < m < mg, 1 <k < ky. Moreover, we shall have estimates
for the initial gauge transform V= V(t = 0) as well. These estimates shall be referred to as initial
data estimates.

The result described in this step will be made precise in Theorem A (Transformation to the

caloric-temporal gauge), stated in §4.3.

Step 3: Analysis of the time evolution

The next step is to propagate the bounds (4.1.3) and (4.1.4) to all t € (—T,T) by analyzing a system
of coupled hyperbolic and parabolic equations derived from (HPYM) in the caloric-temporal gauge.
We shall begin our explanation with a brief overview of the equations of motion for (HPYM).

From §2.1, recall the definition of the Yang-Mills tension field w, (s) at s € [0,1] by
wy(s) := D"F,,(s).
and the equations of motion of (HPYM), which are central to the analysis of the ¢-evolution of A,:

D'F,, =w,, (4.1.5)
D"D,F,, =2[F,", F,,] — 2[F** D, ,F,; + DF,,] —- D'Dyw, + D,D‘w, — 2[F,*,w], (4.1.6)
D, Fap =DDFop, — 2[F,*, Fi. (4.1.7)

D,w, =D‘Dyw, + 2[F,*, w] + 2[F** D, F,; + D/F,,]. (4.1.8)

Furthermore, w, = 0.
The equations (4.1.5) and (4.1.6) are the main hyperbolic equations of the system, used to
estimate Fy; and A, respectively. These equations, however, involve additional variables (e.g. Fo,

w,,) which do not satisfy wave equations. Instead, they may be rewritten in terms of Fy; and A,
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by inverting the parabolic equations (4.1.7) and (4.1.8). Below, we shall first present the analysis of
the parabolic equations (4.1.7) — (4.1.8), and then proceed to the analysis of hyperbolic equations
(4.1.5) — (4.1.6).

Analysis of the parabolic equations

The equation (4.1.7) says that each curvature component satisfies a covariant parabolic equation.

In view of proving the Main LWP Theorem, of particular interest are the equations

D,F,; — D'D,F,; = — 2[F,", Fy), (4.1.7')

D,Fy — DD, F,y = — 2[F,%, Fy,. (4.1.7)

These equations are estimated by first expanding D, F in terms of A, and then using F,, = 0,4,
Ay = 0 (which hold by the caloric-temporal gauge condition) to reduce all variables to F;, A, and
Fy.

Thanks to the smoothing property of (4.1.7"), we may (at least heuristically) always exchange
derivatives of Fy; for an appropriate power of s; see §4.5.2 and §4.5.3. These will be useful in the
analysis of the wave equation for Fy;. The second equation (4.1.7"”) will be used to derive estimates
for Fyp, which, combined with the caloric-temporal gauge condition, leads to the corresponding
estimates for Ag. As Fyop = —wp, note that the data for (4.1.7") at s = 0 is zero, i.e. Wy = 02. This
has the implication that Ay is, in general, is nonlinear in Fy; and A;; see §4.5.4. As a consequence,
in the present perturbative setting, it obeys more favorable estimates than A;.

Next, the Yang-Mills tension field w; will be estimated using the equation (4.1.8). As in the case
of Fyo, the data for w; at s = 0 is zero, thanks to w; = 0. Proceeding as before, w; will be seen to

be nonlinear in Fy; and A; as well. We refer the reader to §4.5.5.

Analysis of the hyperbolic equations

The key point regarding (4.1.5), which is nothing but the Yang-Mills equations in the temporal

gauge with the source w,,, is that its data at ¢ = 0 is smooth. Therefore, we shall basically imitate

L

the classical analysis of (YM) in the temporal gauge for smooth initial data, and using the estimate

for w, (in terms of Fy, A) proved by the above parabolic analysis. See Theorem C (Hyperbolic

m £

estimates for A4;) in §4.4 for the precise statement and §4.7.1 for more details.

On the other hand, in order to treat (4.1.6), we need to make use of the null structure present at

2Tt is an exercise for the reader to show that (4.1.7") is equivalent to (4.1.8) for p = 0.
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the most dangerous quadratic nonlinearity. It turns out that, for the problem under consideration,
all quadratic nonlinearities can be treated just by Strichartz and Sobolev inequalities, except for the
single term

2[A* — AY O, Fy).

Applying (2.2.2) from §2.2, we see that this possesses a null structure, modulo a term involving
Acf — ACf which is essentially cubic. This will allow us to close the estimates for Fy;; see Theorem
D (Hyperbolic estimates for Fy;) in §4.4 for the precise statement and §4.7.2 for details.

Provided that Z is sufficiently small, the analysis sketched above will lead (in particular) to the

following estimates for F;(s) and A;:

Hv(mm_l)Fs||£§/4’oo$1 4 ||V§:m_1)vt7szH£2/4,2sl < ij-7 (419)

108D Allgs < CiI, (4.1.10)

for 1 < m < mg, 1 <k < ko, where all norms are taken over I x R? x [0,1]. The function space Sl

for the wave equation, defined in §4.2, in particular satisfies St CtH%.

Step 4: Returning to A},

The last step is to translate estimates for 9sA4; and 4,, such as (4.1.9), (4.1.10), to those for AL SO
that (4.1.1) is retrieved. One immediate issue is that the naive approach of integrating the estimates
(4.1.1) in s fails to bound ||0; + A, |, (1,2) by a logarithm. In order to remedy this issue, let us take

the (weakly-parabolic) equation
DsA; = ANA; — 0°0; Ay + (lower order terms).

differentiate by 0; 5, multiply by 0;A; and then integrate the highest order terms by parts over
R3 x [0,1]. This trick, combined with the £2-type estimates of (4.1.9), overcomes the logarithmic
divergence?; see Proposition 4.4.2 and its proof in §4.6.

Another issue is that the estimates derived so far, being in the caloric-temporal gauge, are not
in the temporal gauge along s = 0. Therefore, we are required to control the gauge transform back

to the temporal gauge along s = 0. For this purpose, we need appropriate estimates for Ay in the

31t turns out that such a trick is already needed at the stage of deriving estimates such as (4.1.9).
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caloric-temporal gauge are needed; see Lemma 4.3.6. These are obtained ultimately as a consequence
of the analysis of the hyperbolic equations of (HPYM); see Proposition 4.4.1 and its proof in §4.6.
The precise statement of the end result of Steps 3 and 4 is Theorem B (Time dynamics of

(HPYM) in the caloric-temporal gauge), stated in §4.3.

4.2 Preliminaries

In the first subsection, we shall briefly recap the estimates for the linear wave equation which will
be needed in this chapter. These estimates will be encapsulated by a function space called St
Then, in §4.2.2, we shall put the function space S! in the framework of abstract parabolic theory,
as developed in §3.1.2 — §3.1.4. In the end, a short discussion will be given on the notion of the
associated s-weights, which is a useful heuristic for figuring out the appropriate weight of s in various

instances in this chapter and the next.

4.2.1 Estimates for the linear wave equation and the space S*

We summarize the estimates for solutions to an inhomogeneous wave equation that will be used in

the following proposition.

Proposition 4.2.1 (Wave estimates). Let 1, ¢ be smooth solutions with a suitable decay towards

the spatial infinity (say ¥, p € C°S,.) to the inhomogeneous wave equations

on (=T, T) x R3. The following estimates hold.

e (L°L? estimate)
10,0l Lo L2 ((~17) xR3) < C (||(1/J,301/J)(t = 0)ll g1 2 rey + ”N”L},Lﬁ((fT,T)x]R?’)) (4.2.1)
e (L}, -Strichartz estimate)

106,013 ((~1,1)xR3)

(4.2.2)
<C (H(wa 501/})@ = 0)||Hg/2XH;/2(R3) + ”NHL}H;/Z((—T,T)XR%) .
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e (Null form estimate) For Q;;(v¥, ¢) := 0;90;¢ — 0;10;¢, we have

1Qi; (Wb, D)l 2, ((—17 77y xr3
< C (I, 800)( = 0) 2 ) + IV 11 77y ) ) (4.2.3)
% C (11(6, D09)(t = Ol gy 2> + MLy 2 (v 1)k )
Proof. This is a standard material. For the L{° L2 and the Strichartz estimates, we refer the reader
to [31, Chapter III]. For the null form estimate, see the original article [13]. O

Motivated by Proposition 4.2.1, let us define the norms* S*% which will be used as a convenient
device for controlling the wave-like behavior of certain dynamic variables. Let 1 be a smooth function
on I x R? (I C R) which decays sufficiently towards the spatial infinity. We start with the norm S L

which we define by

[9llg1(ry = 10eatllLgerz + V20| 2 - (4.2.4)

The norms S* for k = 2,3,4 are then defined by taking spatial derivatives, i.e.

19 g0y = 108D llgarys (4.2.5)

and we furthermore define S* for k& > 1 a real number by using fractional derivatives. Note the

interpolation property

1ol gurory < Collblhel [90%er sy 0<O<1. (4.2.6)

The following estimates concerning the S¥-norms are an immediate consequence of Proposition
4.2.1 and the fact that CP°H2° functions can be approximated by functions in C{°S, with respect

to each of the norms involved.

Proposition 4.2.2. Let k > 1 be an integer and ,¢ € C*((=T,T),H). Then the following

estimates hold.

o (L{°L? estimate)

108D 8s e ll e 12 (1 1y x5y < WMl g (- (4.2.7)

4We remark that || - [| g is a norm after restricted to HS® functions, by Sobolev.
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e (L} ,-Strichartz estimate)
||3£k_1)8t7z1/)\\L§w (—r1)xr3) < Clll grsrse—p ry- (4.2.8)
e (Null form estimate)
Qi (W, D)z, ((—1)xre) < CllYllge @l gr —rmy- (4.2.9)

On the other hand, in order to control the S* norm of 1, all one has to do is to estimate the
d’Alembertian of ¢ along with the initial data. This is the content of the following proposition,

which is sometimes referred to as the energy estimate in the literature.

Proposition 4.2.3 (Energy estimate). Let k > 1 be an integer and ¢ € C°((-=T,T), H®). Then

the following estimate holds.

191l gk () < C(H@/’ﬁo@(t = 0)ll i i1 3y + T1/2||D¢||L§I((—T,T)xR3))~

Proof. After a standard approximation procedure, this is an immediate consequence of (4.2.1). [

4.2.2 Abstract parabolic theory for S

The purpose of this subsection is to put the S1-norm in the framework of abstract parabolic theory,
as developed in §3.1.2 — §3.1.4.

To begin with, consider the p-normalization of the norm S*. Note that the S*-norm is homoge-
neous of degree 2¢ = 1/2, which is the same as L{°H} (i.e. the energy). For p-normalized version of
St we shall use a set of notations slightly deviating from the rest in order to keep consistency with
the intuition that [|¢|¢: is at the level of L°HY. Indeed, for m,k > 1 and m an integer, we shall

write

pllgn == S(k_l)/2_1/4Ha;k—l)(bns.;’ 6]l gm = Z 6] g -
k=1
Next, we shall prove the following analogue of Proposition 3.1.11 for the S*-norm.

Proposition 4.2.4. Let d > 1. Then following statements hold.

1. Let v a function in C5 (I x J, H®)(RY)), where I, J C R are finite intervals. Then for k > 1,

we have

||’ll)||[:§*1’$k'(]) <00
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if either 1 <p<ooandl—3/4+k/2>0, orp=o00 and { —3/4+k/2 =0.
2. Furthermore, the norm SL. satisfy the parabolic energy and smoothing estimates (3.1.8), (3.1.9).

Proof. The proof of the first statement is identical to that for Proposition 3.1.11. For the second

one, we begin by observing that

Hd’”/;?l’s'l = Hvt,zw”/;ﬁmgtoogi + |I|1/2||53/4D7/}H/;§4’/;§J

~ ||8120; L (t = 0)“5?7%3 + |I|1/2||33/4Dw|‘5§"’£f,w

for every £ > 0 and 1 < p < oo, where A ~ B means that A, B are comparable, i.e. there exist
C > 0 such that A < CB,B < CA. One direction is trivial, whereas the other follows from the
energy estimate. Using furthermore the fact that 9, ,,0 commute with (9; — A), this statement

follows from Statement 2 of Proposition 3.1.11. O

4.2.3 Associated s-weights for variables of (HPYM)

Let us consider the system (HPYM), introduced in §1.5. Associated to each variable of (HPYM) is
a power of s, which represents the expected size of the variable in a dimensionless norm (say Ly% ,.);
we call this the associated s-weight of the variable. The notion of associated s-weights provides a
useful heuristic which will make keeping track of these weights easier in the rest of the thesis.

The associated s-weights for the ‘spatial variables’ A = A;, F' = Fy;, Fy, = Fy; are derived directly
from scaling considerations, and as such easy to determine. Indeed, as we expect that [|0;A;| 12
should stay bounded for every ¢, s, using the scaling heuristics 9, ~ s~/2 and L2 ~ s3/4 it follows
that A; ~ s~ /4. The worst term in Fj; is at the level of 0,4, so Fj; ~ s73/4 and similarly
Fy; ~ s70/4,

The associated s-weights for w, is s~!, which is actually better than that which comes from
scaling considerations (which is 55/ 4). To see why, observe that w, satisfies a parabolic equation
(0s — Dw, = (W) N/ with zero data at s = 0.° Duhamel’s principle then tells us that w, ~ s N
Looking at the equation (4.1.8), we see that ()N ~ 572 from which we conclude w, ~ 1. Note
that as wy = —F0, this shows that the ‘temporal variables’ Ag, Fso behave better than their ‘spatial’
counterparts.

We summarize the associated s-weights for important variables as follows.

5We remind the reader, that this is a consequence of the original Yang-Mills equations D#F,,, =0 at s = 0.
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A; ~ s 1/4 Ay ~ sY F, ~ g—3/4
Fyr~s™®*% Fyor~s™t w, ~s7h

Accordingly, when we control the sizes of these variables, they will be weighted by the inverse of
their respective associated weights.

As we always work on a finite s-interval J such that J C [0, 1], extra powers of s compared to the
inverse of the associated s-weight should be considered favorable when estimating. For example, it is
easier to estimate ||Ai||Li/4+g,xﬂi when ¢ > 0 than ¢ = 0. (Compare Lemma 4.5.2 with Proposition
4.4.2.) Informally, when it suffices to control a variable with more power of s, say s’, compared to
the associated s-weight, we shall say that there is an extra s-weight of s*. Thanks to the sub-critical
nature of the problem, such extra weights will be abundant, and this will simplify the analysis in

many places.

It is also useful to keep in mind the following heuristics.

at,:z:y Dt,a: ~ 8_1/2) 887 DS ~ 8_1; LgL; ~ 51/(QQ)+3/(27')

4.3 Reduction of the Main LWP Theorem to Theorems A

and B

In the first subsection, we shall state and prove some preliminary results that we shall need in this
section. These will include a H? local well-posedness statement for the Yang-Mills equations in
the temporal gauge (Theorem 4.3.4), an approximation lemma for the initial data (Lemma 4.3.5)
and a gauge transform lemma (Lemma 4.3.6). Next, we shall state Theorems A (Transformation
to caloric-temporal gauge) and B (Analysis of time dynamics in the caloric-temporal gauge), and
show that the proof of the Main LWP Theorem is reduced to that of Theorems A and B by a
simple bootstrap argument involving a gauge transformation. Theorem A will be an immediate
consequence of Theorems 3.7.1 and 3.7.2 proved in the previous chapter. The remainder of this

chapter will therefore be devoted to the proof of Theorem B.

4.3.1 Preliminary results

We shall begin this subsection by making a number of important definitions. Let us define the notion

of regular solutions, which are smooth solutions with appropriate decay towards the spatial infinity.
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Definition 4.3.1 (Regular solutions). We say that a representative A, : I x R? — g of a classical
solution to (YM) is regular if A, € C{°(I, HY®). Furthermore, we say that a smooth solution A, on

I xR x J to (HPYM) is regular if Ay € CP3(I x J, HY).

In relation to regular solutions, we also define the notion of a regular gauge transform, which is

basically that which keeps the ‘regularity’ of the connection 1-form.

Definition 4.3.2 (Regular gauge transform). We say that a gauge transform U on I x R? x J is
a regular gauge transform if U —1d, U1 —1Id € C, (I x J, HZ®). The notion of a reqular gauge

transform on I x R? is defined similarly.

We remark that a regular solution (whether to (YM) or (HPYM)) remains regular under a regular
gauge transform.

Let us also give the definition of regular initial data sets for (YM).

Definition 4.3.3 (Regular initial data sets). We say that an initial data set (A;, ;) to (YM) is

regular if, in addition to satisfying the constraint equation (1.1.1), foli, Eoi € HXX.

We shall now present some results which are needed to prove the Main LWP Theorem. The
first result we present is a local well-posedness result for initial data with higher regularity. For this
purpose, we have an H? local well-posedness theorem, which is essentially due to Eardley-Moncrief
[9]. However, as we do not assume anything on the L2 norm of the initial data A; (in particular, it
does not need to belong to L2), we need a minor variant of the theorem proved in [9].

In order to state the theorem, let us define the space H 2 to be the closure of S, (R?) with respect
to the partially homogeneous Sobolev norm ||gi>||ﬁ,2 := [|0x¢[| 1. The point, of course, is that this

norm® does not contain the L2 norm.

Theorem 4.3.4 (H? local well-posedness of Yang-Mills). Let (A;, E;) be an initial data set satisfying
(1.1.1) such that 8,4;, E; € H}.

1. There exists T = T(||(A, E)Hfl?,xH,l) > 0, which is non-increasing in ||(A, E)”E{? such that

1
xXH}’

a unique solution A, to (YM) in the temporal gauge with the prescribed initial data satisfying
A € C((-T,T),H?), 8,A; € C,(~T,T), H}) (4.3.1)

exists on (=T, T) x R3.

SThat || - || g2 is indeed a norm when restricted to ﬁ% follows from Sobolev.
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2. Furthermore, persistence of higher regularity holds, in the following sense: If &c/i,l%] e H”
(for an integer m > 1), then the solution A; obtained in Statement 1 satisfies Oy, A; €

Cfl((—T, T), H*?) for non-negative integers ky, ko such that ky + ky < m.

In particular, if (Al, El) is a regular initial data set, then the corresponding solution A, is a

regular solution to (YM) in the temporal gauge.

3. Finally, we have the following continuation criterion: If sup,e_q 1) |0r2 Al < oo, then
the solution given by Statement 1 can be extended past (—T',T"), while retaining the properties

stated in Statements 1 and 2.

Proof. Tt is not difficult to see that the iteration scheme introduced in Klainerman-Machedon [15,
Proposition 3.1] goes through with the above norm, from which Statements 1 — 3 follow. A cheaper
way of proving Theorem 4.3.4 is to note that ||/LHH%(B) < C||fii||ﬁg(R3), ||EO’iHH%(B) < H.Eo‘i”H;(RS)
uniformly for all unit balls in R?. This allows us to apply the localized local well-posedness statement
Proposition 3.1 of [15] to each ball, and glue these local solutions to form a global solution via a

domain of dependence argument. O

Next, we shall prove a technical lemma, which shows that an arbitrary admissible H! initial data

set can be approximated by a sequence of regular initial data sets.

Lemma 4.3.5 (Approximation lemma). Any admissible H? initial data set (A;, E;) € (H:NL3)x L2
can be approzimated by a sequence of reqular initial data sets (zﬁi(n)i,E(n)i) satisfying the constraint
equation (1.1.1). More precisely, the initial data sets (A(n)i,é(n)i) may be taken to satisfy the

following properties.
1. fol(n) 18 smooth, compactly supported, and
2. B,y € H.

Proof. This proof can essentially be read off from [15, Proposition 1.2]. We reproduce it below for
the convenience of the reader.

Choose compactly supported, smooth sequences /ol(n)i, }?'(n)i such that A(n)i — A;in H:NL? and
F(n)i — E; in L2. Let us denote the covariant derivative associated to /Ol(n) by D). Using the fact

that (A;, E;) satisfies the constraint equation (1.1.1) in the distributional sense and the H! c LS
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Sobolev, we see that for any test function ¢,

:| / 7(F(n)€ - Efaaécp) + ([A(n) Ae,F(n)d + [Aev F(n)l - EZ]7 50) diL’|

S(HF(n) = Ellez + 1 Ag) — Allrz 1Fmyllrz + [[All2 [ Fny — E||Lg) Il g -
In view of the L3, L2 convergence of /Ol(n), ﬁ’(n) to /01, EO’, respectively, it follows that
Dfn)ﬁ’(n)g € H;l for each n, HDfn) ﬁ‘(n)gHH;l —0 asn— oo,

where ! is the dual space of H! (defined to be the closure of Schwartz functions on R? under the
H!-norm).
Let us now define E(n)i = ﬁ’(n)i + D(n)i®(n), where the g-valued function ¢, is constructed by

solving the elliptic equation

4 Y 2
Dy Dnyedn) = =Dy Flnyes (4.3.2)

imposing a suitable decay condition at infinity; we want, in particular, to have ¢, € H; N LS.
This ensures that (fi(n)i, Eo(n)i) satisfies the constraint equation. Furthermore, in view of the fact
that fi(n),ﬁ'(n) are smooth and compactly supported, it is clear that D,)¢(,) belongs to any HF
for £ > 0, and hence so does Eo(n). Therefore, in order to prove the lemma, it is only left to prove
D¢y — 0in L2

Multiplying (4.3.2) by ¢(,) and integrating by parts, we obtain

[ D0 d < 1Dy Fpal i ot - (133)
On the other hand, expanding out Dy, we have

166l iz < 1Dy @y 122 + A Iz |yl g - (4.3.4)

Recall Kato’s inequality (for a proof, see Lemma 5.2.1), which shows that |0;[¢(n)|| < [D )i m)l

in the distributional sense. Combining this with the H! ¢ LS Sobolev inequality for [D(nyl, we get

omyllze < ClIDydmllzz- (4.3.5)
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Combining (4.3.3) - (4.3.5) and canceling a factor of ||D,)¢)llz2, We arrive at

ID )by 122 < DGy (Fenye)ll 2 (1 + Cll Ay lla) = 0,

as desired. O

Given a time interval I C R, we claim the existence of norms Ag(I) and §.4y(I) for Ay and 64
on I, respectively, for which the following lemma holds. The significance of these norms will be that

they can be used to estimate the gauge transform back to the original temporal gauge.
Lemma 4.3.6 (Estimates for gauge transform to temporal gauge). For a g-valued function Ay €

C((=T,T), HS), consider the following ODE on (=T, T) x R3:

0,V =V A (43.6)

1. Suppose that V is a ®-valued function such that V-Ide H2°. Then there exists a unique
solution V' to the ODE (4.3.6) such that V —1d € C°((=T,T), H®). Moreover, the solution

V' obeys the following estimates:

”V - Id”LtOOHg(—T,T) + HV - IdHLf(Hﬁ”mL;@)(—T,T)

(4.3.7)
< Oy (IV = Wl + 1V = 1 372y + Ao =T.7) ),
|0:(V — Id)”L;X’Hll,(—T,T) + |0 (V — Id)||L;’°H7€d_2)/2(—T7T) (438)
< Cayoriy - AT ) (IV = 1] o 1),

2. Let Ay € C°((=T,T), H®) be a g-valued function and V' a S-valued smooth function such
that V! —1d € He. Let V' be the solution to the ODE (4.3.6) with Ay and V replaced by A,
v/, respectively. Without loss of generality, assume that jg(—T, T) < Ag(~T,T). Then the

difference 6V :=V — V' obeys the following estimates:

”(SVHLQX’HJ%(—T,T) + H(SV”L?O(H;WQQL?)(_T’T)

S Oﬁo(fT,T)(HMD/”Hg + ||5‘0/||Hg/2mgc (4.3.9)

+ Cy 1y - 0 A0(~T, T) (Hv — Tl + IV = 1] sz + 1),
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100V iy + 10OV | e a2z iy (4.3.10)

< O,y Ao (=T DOV | sz, + Oy 0A0(—T, T)(||V — Tl oz + 1).

3. Finally, all of the above statement remain true with V, 6V, f/, 5V replaced by V=1, 6V 1,

V=1 and 5‘0/_1, respectively.

The precise definition of Ay, Ay will be given in §4.4.1, whereas we defer the proof of Lemma
4.3.6 until Appendix A.

Next, we shall prove a simple lemma which will be used to estimate the L3 norm of our solution.

Lemma 4.3.7. Let ¢ = 9(t,x) be a function defined on (—T,T) x R® such that ¥(0) € L3 and
Oz € CyL2. Then v € C,L3 and the following estimate holds.

sup |9 (8)llzg < [4(0)] g + CT"?(|00 9l Lo L2 (4.3.11)
te(—=T,T)
Proof. By a standard approximation procedure, it suffices to consider @ = ¢ (t,z) defined on

(=T,T) x R? which is smooth in time and Schwartz in space. For ¢t € (=T, T), we estimate via

Holder, Sobolev and the fundamental theorem of calculus as follows:

l(t) = 0 (0) s <llw(®) = O 1) = Ol
<0 / 106t 12 A) /2100 (0) | 22 + 10235(0) | 22)*/2

<OTY20 2 13 N0u 2 1 < CT 1000l ooz

By the triangle inequality, (4.3.11) follows. O

4.3.2 Reduction of the Main LWP Theorem

Let Aa, AL be regular solutions to (HPYM) (defined in §1.5) on I x R3 x [0, 1]. For ¢ € I, define the

norms Z(t) and 6Z(t) which measure the sizes of A, and §A,, respectively, at t as follows:

10 31

I(t) =3 [||vt’mFs(t)||L§/4,w%1 + ||vt,IFS(t)||£§/4,2%1} + 3 110 AW | s
k=1 k=1
10 31
OL(t) i= 3 [IVewGE) O rsomgss + [ Vea@E) Ol ggrazgs | + 2 1002 GA O 51
k=1 k=1
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For ¢t = 0, which will be the most frequently used case in this chapter, we shall often omit writing
t. That is, Z := Z(0) and §Z := 6Z(0).
Now the following theorem is an immediate consequence of Theorems 3.7.1 and 3.7.2 proved in

Chapter 3.

Theorem A (Transformation to caloric-temporal gauge). Let 0 < T < 1, and AL a regular solution
to the Yang-Mills equation in the temporal gauge A}; =0 on (=T,T) x R® with the initial data
(Ai, E;) at t = 0. Define I := ||AHH1 + ||E||L3 Suppose that

sup  sup | Al ()] g < dp, (4.3.12)
te(—-T,T) 1 ®

where dp is the small constant in Proposition 3.2.1. Then the following statements hold.
1. There exists a reqular gauge transform V =V (t,x) on (=T, T) x R® and a reqular solution A,
to (HPYM) on (=T,T) x R? x [0,1] such that

A, =V(ANV =0, vV, (4.3.13)

where A,, ;= A, (s = 0).

2. Furthermore, the solution A, satisfies the caloric-temporal gauge condition, i.e. Ay = 0 every-

where and A, = 0.

3. Let (A')L be another regular solution to the Yang-Mills equation in the temporal gauge with
the initial data (A}, E!) satisfying H(A,Em)HHlez <7 and (4.3.12). Let A, be the solution to
(HPYM) in the caloric-temporal gauge obtained from (A')l, as in Statements 1 and 2. Then

the following initial data estimates hold:
I<C;-I, 0I<C;-0I, (4.3.14)

where 0T := ||0A|| g1 + ||0E]| 2.

4. Let V' be the gauge transform obtained from (A')! as in Statement 1, and let us write V :=

K2

V(t=0), V' .= V'(t = 0). For the latter two gauge transforms, the following estimates hold:

102 (V =1d)[|2 + |V = 1d|| a2, < C - T, (4.3.15)

NLS —
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103 (8V) 22 + [1(5V) < C;- 01 (4.3.16)

HI&(ﬁ/QﬁL;;C

The same estimates with V and §V replaced by V-1 and 510/_1, respectively, also hold.
Our next theorem will concern the time dynamics of (HPYM).

Theorem B (Time dynamics of (HPYM) in the caloric-temporal gauge). Let 0 < T < 1, and A,
a regular solution to the hyperbolic-parabolic Yang-Mills system (HPYM) on (=T,T) x R3 x [0, 1]
in the caloric-temporal gauge. Recall the notation A,, := A, (s = 0). Then there ezists 5p > 0 such
that if

T < b, (4.3.17)

then the following estimate holds.
||3t,:cZi||Ct((—T,T),L§) + Ao(-T,T) < CT. (4.3.18)

Also, if AL is an additional solution to (HPYM) on (=T,T) x R3 x [0, 1] in the caloric-temporal

gauge which also satisfies (4.3.17), then the following estimate for the difference holds as well:
0.2 A; — at,IZ;Hct((_T,T)_,Lg) +0A0(=T,T) < Cz - 6T. (4.3.19)

The goal of the remainder of this section is to prove the Main LWP Theorem, assuming Theorems

A and B.

Proof of the Main LWP Theorem. In view of Lemma 4.3.5 (approximation lemma) and the fact that
we are aiming to prove the difference estimates (1.7.2) and (1.7.3), we shall first consider initial data
sets (Az,El) which are regular in the sense of Definition 4.3.3. Also, for the purpose of stating
the estimates for differences, we shall consider an additional regular initial data set (A, E/). The
corresponding solution will be also marked by a prime. The statements in this proof concerning a
solution A should be understood as being applicable to both A and A’.

Observe that Z does not contain the L3 norm of /i, and has the scaling property.
I A\?1

under the scaling of the Yang-Mills equations. This allows us to treat the ‘local-in-time, large-data’

case on an equal footing as the ‘unit-time, small-data’ case. More precisely, we shall assume by

95



scaling that 7 is sufficiently small, and prove that the solution to the Yang-Mills equation exists on

the time interval (—1,1). Unravelling the scaling at the end, the Main LWP Theorem will follow.

We remark that the length of the time interval of existence obtained by this method will be of size

~ A B, s

Using Theorem 4.3.4, we obtain a unique solution AL to the hyperbolic Yang-Mills equation

(YM) under the temporal gauge condition AE; = 0. We remark that this solution is regular by

persistence of regularity. Denote by T, the largest number 7" > 0 such that the solution AL exists

smoothly on (=T,T) x R3, and furthermore satisfies the following estimates for some B > 0 and
Cip>0:

184 Al |y ((—7.7),22) <BZ,
1002 AT = 0 (AN e, -1y 22) <C s - 0T, (4.3.20)
IAT = (Al ((—1r).28) <Ci g 0L + Cp gl A — A s

The goal is to show that T, > 1, provided that 7 > 0 is small enough.
We shall proceed by a bootstrap argument. In view of the continuity of the norms involved, the
inequalities (4.3.20) are satisfied for T > 0 sufficiently small if B > 2 and C; 5 > 2, say. Next, we

claim that if we assume

||5t,mA;r||ct((—T,T),Lg) <2BT. (4.3.21)

then we can recover (4.3.20) by assuming 7 to be small enough and 7" < 1.

Assuming the claim holds, let us first complete the proof of the Main LWP Theorem. Indeed,
suppose that (4.3.20) holds for some 0 < T < 1. Applying the difference estimate in (4.3.20) to
infinitesimal translations of /i, E and using the translation invariance of the Yang-Mills equation,
we obtain

102012 Alll ey ((—7.7),22) < 00

This, in turn, allows us to apply Theorem 4.3.4 (H? local well-posedness) to ensure that the
solution AI extends uniquely as a regular solution to a larger time interval (=T —€,T + ¢€) for some
€ > 0. Taking e > 0 smaller if necessary, we can also ensure that the bootstrap assumption (4.3.21)
holds and T+ ¢ < 1. This, along with the claim, allows us to set up a continuity argument to
show that a regular solution AI exists uniquely on the time interval (—1,1) and furthermore satisfies
(4.3.20) with T' = 1. From (4.3.20), the estimates (1.7.1) - (1.7.3) follow immediately for regular
initial data sets. Then by Lemma 4.3.5 and the difference estimates (1.7.2) and (1.7.3), these results

are extended to admissible initial data sets and solutions, which completes the proof of the Main
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LWP Theorem”.
Let us now prove the claim. Assuming 2BL < § p, we can apply Theorem A. This provides us with
a regular gauge transform V and a regular solution A, to (HPYM) satisfying the caloric-temporal

gauge condition, along with the following estimates at ¢t = 0:

10& (V= 1d) 2z + |V = 1d]| go2 e < C - T,

NLg°

I<Cp I, || At=0)z: <Cp-T+]AlLs.

The same estimate as the first holds with V replaced by V1. We remark that all the constants
stated above are independent of B > 0. Applying Theorem B with 7 small enough (so that Z < C’ff

is also small), we have
10,0 Aill oy ((—1.m),02) + Ao (—T,T) < CT < C; - L.

Note that V is a solution to the ODE (4.3.6), which is unique by the standard ODE theory.
Furthermore, in view of the estimates we have for Ay(—7,T) and V in terms of f, we may invoke
Lemma 4.3.6 to estimate the gauge transform V and V! in terms of Z. Then using the previous

estimate and the gauge transform formula

and Lemma A.3.1, we obtain

10t0 AL\l ey (). 12) < Cg - 1.
Applying Lemma 4.3.7 and the initial data estimate for the L2 norm of A,, we also get
|4l lc. -y < C T+ Cpll Al s
Furthermore, applying a similar procedure to the difference, we arrive at

10,0 AT — 840 (A ey (o)1) < C - 01,

AT — (ANl evrmyiz) < Cp 6T+ | A — A| 5.

TWe remark that Statements 1 and 2 of the Main LWP Theorem follows from the persistence of regularity statement
in Theorem 4.3.4.
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Therefore, taking B > 0 sufficiently large (while keeping 2BZ < ép), we recover (4.3.20). O

The rest of this chapter will be devoted to a proof of Theorem B.

4.4 Definition of norms and reduction of Theorem B

In this section, we shall first introduce the various norms which will be used in the sequel. Then
we shall reduce Theorem B to six smaller statements: Propositions 4.4.1, 4.4.2, 4.4.3 and 4.4.4, and

Theorems C (Hyperbolic estimates for A;) and D (Hyperbolic estimates for Fy;).

4.4.1 Definition of norms

In this subsection, we shall define the norms Ay, A, F and &, along with their difference analogous.
Let I C R be a time interval. The norms Ag(I) and §.A4y(I), which are used to estimate the

gauge transform back to the temporal gauge Ag = 0 at s = 0, are defined by

Ao(I) = HZO||L§OH;/2 + Aol oo g2 + HZOHL%(H;%/?QL?;) + [ Aol 11 472

5o (D) = 17| e 172 + 160 | e gy + 1670ll 1y 3720y + 160l 1

where Ay := Ag(s = 0),04¢ := Ag(s = 0).

The norms A(I) and J.A(I), which control the sizes of A; and 0A;, respectively, are defined by

30
A(D) =] All s + 1900 x Al e o + > Al
k=1
30
SAD) =164l o g + 1100(0 X GA e g0 + D 1A 1.
k=1

Here, (0, x B); = eijkﬁjBk, where €5, is the Levi-Civita symbol, i.e. the completely anti-
symmetric 3-tensor on R3 with €93 = 1.

Next, let us define the norms F(I) and 6 F(I), which control the sizes of Fy; and § F;, respectively.

1

o

FI) =3 (1Bl o gigoy + 1Fsll a2 g0y )

k

H
o |
-

SF(I) = (\|5FS||£2/4,N srioy + 10Fsl]ovaa Sk(o’”).
k

Il
—

We remark that F(I) (also 6F(I)) controls far less derivatives compared to A(TI). Nevertheless,
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it is still possible to close a bootstrap argument on F + A, thanks to the fact that Fj; satisfies a
parabolic equation, which gives smoothing effects. The difference between the numbers of controlled
derivatives, in turn, allows us to be lenient about the number of derivatives of A4, we use when
studying the wave equation for Fy;. We refer the reader to Remark 4.5.9 for a more detailed
discussion.

For t € I, we define £(t) and 6&(t), which control the sizes of low derivatives of Fyo(t) and

dFs0(t), respectively, by

3
) =3 (IFso(®)llcroesizs o, + 1Fso ()l 222 o))
m=1
3
08(t) == 3 (I0Fs0 ) sz 0.1y + 1Fs0(®)l 22 250 0.1 )
m=1

We furthermore define £(I) := sup,c; £(t) and 6E(I) := sup,c; 6E(1).

4.4.2 Statement of Propositions 4.4.1 - 4.4.4 and Theorems C, D

For the economy of notation, we shall omit the dependence of the quantities and norms on the time
interval (=T, T); in other words, all quantities and space-time norms below should be understood

as being defined over the time interval (—=7,T) with 0 < T < 1.

Proposition 4.4.1 (Improved estimates for Ag). Let Aa, AL be regular solutions to (HPYM) in

the caloric-temporal gauge and 0 <T < 1. Then the following estimates hold.

Ao SC];A'(C:—FC]:)A'(]:-FA)Q, (4.4.1)

6 Ay <Cr 406+ Cra-(E+F+A)(OF +A). (4.4.2)

Proposition 4.4.2 (Improved estimates for A;). Let Aa, A, be regular solutions to (HPYM) in the

caloric-temporal gauge and 0 < T < 1. Then the following estimates hold.

sup sup [[Ai(s)llg1 <Cra-(F+A),

i 0<s<1
sup sup [[04;(s)[|gr <Cra-(0F +5A).

i 0<s<1

Proposition 4.4.3 (Estimates for £). Let A,, Al be regular solutions to (HPYM) in the caloric-
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temporal gauge and 0 <T < 1. Suppose furthermore that the smallness assumption
F+ A< g,
holds for sufficiently small §g > 0. Then the following estimates hold.

£ <Cra-(F+A? (4.4.3)

0E <Cra- (F+ A)SF + 5 A). (4.4.4)

Proposition 4.4.4 (Continuity properties of F, A). Let A, AL be regular solutions to (HPYM) in
the caloric-temporal gauge on some interval Iy := (=T, Tp). For F = F(I),A=A(I) (I C Iy) and

their difference analogues, the following continuity properties hold.
e The norms F(=T,T) and A(—T,T) are continuous as a function of T (where 0 < T < Tp).
e Similarly, the norms dF (=T, T) and SA(—T,T) are continuous as a function of T.

o We furthermore have

lim sup (}"(—T, T)+ A(-T, T)) <CI,
T—0+

lim sup ((5}_(7T, T)+0A(-T, T)) < CdT.
T—0+

Theorem C (Hyperbolic estimates for A;). Let A,, AL be regular solutions to (HPYM) in the

caloric-temporal gauge and O < T < 1. Then the following estimates hold.

AgCI+T<Cf,A'E+C&;7A-(5+]~"+A)2>, (4.4.5)

SA<COT + T(CRA 6E+ Cera-(E+F+A)GE+6F + 54)). (4.4.6)

Theorem D (Hyperbolic estimates for Fy;). Let Aa, AL be regular solutions to (HPYM) in the

caloric-temporal gauge and 0 < T < 1. Then the following estimates hold.

F<CI+TY?Cera-(E+F+A7, (4.4.7)

OF <OST+TY?*Ce 5 p- (E+F+ A6 +0F +0.A). (4.4.8)
A few remarks are in order concerning the above statements.
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The significance of Propositions 4.4.1 and 4.4.2 is that they allow us to pass from the quantities F
and A to the norms of A; and Ay on the left-hand side of (4.3.18). Unfortunately, a naive approach
to any of these will fail, leading to a logarithmic divergence. The structure of (HPYM), therefore,
has to be used in a crucial way in order to overcome this.

Proposition 4.4.3, which will be proved in §4.5.4, deserves some special remarks. This is a
perturbative result for the parabolic equation for Fyy, meaning that we need some smallness to
estimate the nonlinearity. However, the latter fact has the implication that the required smallness
cannot come from the size of the time interval, but rather only from the size of the data (F + A)
or the size of the s-interval. It turns out that this feature causes a little complication in the proof
of global well-posedness. Therefore, in Chapter 5, we shall prove a modified version of Proposition
4.4.3, using more covariant techniques to analyze the (covariant) parabolic equation for Fy;, which
allows one to get around this issue.

In this work, to opt for simplicity, we have chosen to fix the s-interval to be [0,1] and make
Z (therefore F + A) small by scaling, exploiting the fact that Z is sub-critical with respect to the
scaling of the equation. We remark, however, that it would have been just as fine to keep Z large
and obtain smallness by shrinking the size of the s-interval.

The proof of Theorem B will be via a bootstrap argument for F + A, and Proposition 4.4.4
provides the necessary continuity properties. In fact, Proposition 4.4.4 is a triviality in view of the
simplicity of our function spaces and the fact that A,, A are regular solutions. On the other hand,
Theorems C and D, obtained by analyzing the hyperbolic equations for A, and Fj;, respectively,
give the main driving force of the bootstrap argument. Observe that these estimates themselves do
not require any smallness. This will prove to be quite useful in the proof of global well-posedness in
Chapter 5.

As we need to use some results derived from the parabolic equations of (HPYM), we shall defer
the proofs of Propositions 4.4.1 - 4.4.4, along with further discussion, until §4.6. The proofs of

Theorems C and D will be the subject of §4.7.

4.4.3 Proof of Theorem B

Assuming the above statements, we are ready to prove Theorem B.

Proof of Theorem B. Let Aa, Al be regular solutions to (HPYM) in the caloric-temporal gauge,
defined on (—=T,T) x R? x [0,1]. As usual, Z will control the sizes of both A, and A, at t = 0, in

the manner described in Theorem A.
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Let us prove (4.3.18). We claim that

F(-T,T)+ A(-T,T) < B (4.4.9)

for a large constant B to be determined later, and Z < g with g > 0 sufficiently small. By taking
B large enough, we obviously have F(—=T",T") + A(-T",T') < BT for T’ > 0 sufficiently small by
Proposition 4.4.4. This provides the starting point of the bootstrap argument.

Next, for 0 < T < T, let us assume the following bootstrap assumption:

F(-T',T") + A(-T',T") < 2BT. (4.4.10)

The goal is to improve this to F(—1",T") + A(-T',T") < BT.

Taking 2B7 to be sufficiently small, we can apply Proposition 4.4.3 and estimate £ < Cr 4(F +
A)2. (We remark that in order to close the bootstrap, it is important that £ is at least quadratic
in (F + A).) Combining this with Theorems C and D, and removing the powers of T by using the

fact that 7" < T < 1, we obtain

F(=T', T+ A(-T',T") < CT + Cr—pr 7y a1 7y (F(=T", T") + A(-T",T"))*.

Using the bootstrap assumption (4.4.10) and taking 2BZ to be sufficiently small, we can absorb

the last term into the left-hand side and obtain

F(=T', T+ A(-T'",T") < CT.

Therefore, taking B sufficiently large, we beat the bootstrap assumption, i.e. F(=T",T") +
A(=T",T") < BZ. Using this, a standard continuity argument gives (4.4.9) as desired.

From (4.4.9), estimate (4.3.18) follows immediately by Propositions 4.4.1, 4.4.2 and 4.4.3.

Next, let us turn to (4.3.19). By essentially repeating the above proof for éF + 6.4, and using

the estimate (4.4.10) as well, we obtain the following difference analogue of (4.4.9):

SF(=T,T) + SA(-T,T) < Cy - 6T. (4.4.11)

From (4.4.9) and (4.4.11), estimate (4.3.19) follows by Propositions 4.4.1, 4.4.2 and 4.4.3. O
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4.5 Parabolic equations of (HPYM)

In this section, we shall analyze the parabolic equations of (HPYM) for the variables Fj;, Fio and
w;. The results of this analysis will provide one of the ‘analytic pillars’ of the proof of Theorem B
that had been outlined in §4.4, the other ‘pillar’ being the hyperbolic estimates in §4.7. Moreover,
the hyperbolic estimates in §4.7 will depend heavily on the results of this section as well.

As this section is a bit long, let us start with a brief outline. Beginning in §4.5.1 with some
preliminaries, we shall prove in §4.5.2 smoothing estimates for Fy; (Proposition 4.5.8), which will
allow us to control higher derivatives of 0 . F; in terms of F, provided that we control high enough
derivatives of 0y »A4,. In §4.5.3, we shall also prove that Fy; itself (i.e. without any derivative) can be
controlled in L{°L2 and L, by F + A as well (Proposition 4.5.11). Next, in §4.5.4, we shall study
the parabolic equation for Fsy. Two main results of this subsection are Propositions 4.5.13 and
4.5.14. The former states that low derivatives of Fso (i.e. £) can be controlled under the assumption
that F + A is small, whereas the latter says that once £ is under control, higher derivatives of Fy
can be controlled (with out any smallness assumption) as long as high enough derivatives of A4, are
under control. Finally, in §4.5.5, we shall derive parabolic estimates for w; (Proposition 4.5.17).
Although these are similar to those proved for Fyp, it will be important (especially in view of the
proof of finite energy global well-posedness in Chapter 5) to note that no smallness of F + A is
required in this part.

Throughout the section, we shall always work with regular solutions A,, AL to (HPYM) on
I x R3 x [0,1], where [ = (=T, T).

4.5.1 Preliminary estimates
Let us begin with a simple integral inequality.

Lemma 4.5.1. For d >0 and 1 < g < p < oo, the following estimate holds.

I sy

Proof. This is rather a standard fact about integral operators. By interpolation, it suffices to consider

:(0,1]-

the three cases (p,q) = (1,1), (00, 1) and (oo, 00). The first case follows by Fubini, using the fact
that supg.s <4 fol 10,00 (8" — 5)(s/s')°ds/s < Cs, as § > 0. On the other hand, the second and

the third cases (i.e. p = oo and ¢ = 1,00) follow by Holder, using furthermore the fact that

SUDPp< s 5<1 1[0,00)(5’ — s)(s/s’)5 <1 and supg.4<; fol 1[0,00)(5’ - s)(s/s’)‘s ds’/s" < Cy, respectively.
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O

By the caloric-temporal gauge condition, we have 0,4, = F,,. Therefore, we can control A,

with estimates for F;;, and A,. The following two lemmas make this idea precise.

Lemma 4.5.2. Let X be a homogeneous norm of degree 2¢y. Suppose furthermore that the caloric
gauge condition Ag = 0 holds. Then for k,£>0 and1 < q <p < oo such that 1/4+k/2+0—Ly > 0,

the following estimate holds.

1Aill 2450 e 0 < CUFaill a1y + 1Al )

where C depends on p,q and r(£,k, o) :=1/4+k/2+ 1 — L.

Proof. By the caloric gauge condition A; = 0, it follows that dsA4; = Fs;. By the fundamental

theorem of calculus, we have

1 /
Ai(s) = —/ s'Fy(s) i—f + A,

Let us take the E;/épre’p/'\',”“(O7 1]-norm of both sides. Defining r(¢, k,£y) = 1/4+k/2+ € — £y, we

easily compute

1 / 1 /

ds , ds
||/ $'Fui(s') —7 Nl grrween o, =||/ (5/8)" RN ) ()P Fai () e ) - lezonn
s S

1 /
- ds
SH/ (S/s/) (Z,k,(o)(s/)5/4”Fsi(s/)||Xuk(s/) ?Hﬁg(o,l]'

where on the second line we used ¢ > 0. Since r > 0, we can use Lemma 4.5.1 to estimate the last

line by Cp,q,r |Fsngg/4:Wk(0,1]'

On the other hand, A, is independent of s, and therefore

£
||Ai||£i/4+‘5@;g'k(0’1] = ||3r(€’k’eg)Hﬁi?(o,l]HAiHXk < CpgrllAgll x5

where the last inequality holds as r > 0. O
The following analogous lemma, for Ay, whose proof we omit, can be proved by a similar argument.

Lemma 4.5.3. Let X be a homogeneous norm of degree 20y. Suppose furthermore that the caloric-

temporal gauge condition As = 0, Ay = 0 holds. Then for k,£ > 0 and 1 < g < p < oo such that
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k/2+€— 1ty >0, the following estimate holds.

HAOH[:g’p/’\'{"“(O)l] < C‘|F80||L§"’X’c(0,1]v

where C' depends on p,q and 7' (£, k,€y) :=k/2+ L — L.

Some of the most frequently used choices of X are X = S* for Lemma 4.5.2, X = L%HiC for
Lemma 4.5.3, and X = Hf, Wf"o for both. Moreover, these lemmas will frequently applied to
norms which can be written as a sum of such norms, e.g. L5PH™, which is the sum of £L5PH* norms
for k=0,...,m.

As an application of the previous lemmas, we end this subsection with estimates for some com-

ponents of the curvature 2-form and its covariant derivative.

Lemma 4.5.4 (Bounds for Fy;). Suppose that the caloric-temporal gauge condition As =0, A; =0
holds. Then:

1. The following estimate holds for 2 < p < oco:

| Eos O sy <Co(IV0Fal®)ll ragyire + 904l arz + 1 Fao(8)] gy

(4.5.1)

Ve Fao®)ll 1222 (Ve Fai ()] 742 22 + 110245 (1) 122))- o
2. For any 2 <p<oo and k > 1 an integer, we have

IOl <CorlIV0PuOlgzy +1OAON g+ IPaOone

HIVaFao Ol g230 (IVa Foi 0l 522508 + 110243 (8) 1 172)) -

8. For any 2 <p < oo and k > 0 an integer, we have

||F0i||L§/4’PE%W§’4 SCp,k(HFsngg/‘leSkH/z + ||AiHS’°+3/2 + 74 ?ﬁlelll) HFsO(t)H/;yq.‘L’;”/‘* e

5.3

+T1/4 sup IV Eso()ll 12901 (1 Fsill p5/a.2 gier + 1Al gnsn))-
Proof. Let us begin with the identity
Foi = 00A;i — ;Ao + [Ao, As] = 572V A; + 5712V, Ag + Ao, Ail,
Applying Lemma 4.5.2 to s~ '/2VyA; and Lemma 4.5.3 to s~ /2V, Ay, the estimates (4.5.1) and
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(4.5.2) are reduced to the product estimates

IA0, Al (D) z2/4.05272 < CpllVaFso ()l 21222 (Ve Fsi ()] 322 o + 10245 (8)] 22), (4.5.4)
A0, Al 27405 < CpllVaFso(O)l] 129 (Ve Fsi ()| a2 + 10245 (0) | 12 ), (4.5.5)
respectively.

Let us start with the product estimate

162l 172 < Clléll g 6l s (4.5.6)

which follows from the product rule for homogeneous Sobolev norms (Lemma 3.1.3). Applying the

Correspondence Principle and Lemma 3.1.8, we obtain

A0, Al 27405172 < Cpll Ao ()| porars.co gy A g1/asr1/8 5

Note the extra weights of s3/8 and s'/® for Ay and A;, respectively. Applying Lemma 4.5.3 to
Ap and Lemma 4.5.2 to A;, the desired estimate (4.5.4) follows.

The other product estimate (4.5.5) can be proved by a similar argument, this time starting with
@102l g < C”¢1”H2/4”¢2”H2/4’ (which follows again from Lemma 3.1.3) instead of (4.5.6), and
using Leibniz’s rule to deal with the cases k > 2.

Finally, let us turn to (4.5.3). We use Lemma 4.5.2 and Strichartz to control s~'/2VA4;, and

Lemma 4.5.3, Holder in time and Sobolev for s~1/2V, Ay. Then we are left to establish

1[40, A ra < Cp T SUP [VaFso(t )||L§*27-Lﬁ*1(HFSiH£5/4’2§k+1 + 1|4l gosr)- (4.5.7)

]||£3/4 P LAk

To prove (4.5.7), one starts with ||¢1¢a|p1pa < C|I|1/4||¢1||LooH5./4||¢2||L?°Hlv (which follows
via Holder and Sobolev) instead of (4.5.6). Using Leibniz’s rule, the Correspondence Principle and

Lemma 3.1.8, we obtain for £ > 0

k
||[AQ7 Az] HE?“”’L?W’;A < CT1/4 Z ||AO||£2+5/16,OC£?Q,H;+5/4 ||AiHﬁi/4+1/16,pﬁtoo,]_'[§+l—j
=0

Now we are in position to apply Lemmas 4.5.2 and 4.5.3 to A; and Ay, respectively. Using

furthermore ||V, Fy; | ;5/4, 2psoqn S < 1 Fsill psrazgiins 10a Al ms < Al gesa, (4.5.7) follows. O

By the same proof applied to 6 Fy;, we obtain the following difference analogue of Lemma 4.5.4.
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Lemma 4.5.5 (Bounds for 6 Fy;). Suppose that the caloric-temporal gauge condition A; =0, Ay =0
holds (for both A and A’). Then:

1. The following estimate holds for 2 < p < oco:

10F0i (8|l p3ramgrrz SCp(|[Vo(6Fsi) ()] go/a24y1/2 + |00 (0A;) (Bl y1r2 + 16 F 50 ()| p1,253/2)
OV sl 50,2 1 104,13 IV (0F50) (B 222

+OIVe R0l 1.2~ Ve (0Fs) (O] gra2 0o +1102(04:) ()] 22)
) (4.5.8)

2. For any 2 <p<oo and k > 1, we have

16F0i (D)l 2740 <Cpk(IVo(OFsi) (Bl paraagy + 100(6A4:) @)l grx) + 10 Fs0(E)[] 12951

F OUe i)l /a2, 100 A, ()L~ 1V (OF50) ()] 21234

k>
Hz

F ONVa a0l 1,2, IV (OFs0) O] g375.25 + 1102(04;) () -
(4.5.9)

3. For any 2 <p<oo and k > 0, we have

||5F‘[)i||£3‘;/4,pﬁgw/k,4 écpvk(”(SFSi||£5/4’2S’“+3/2 + ||5Ai||5'vk+3/2 + T1/4 SUI? ”(SFSO(t)”LlﬂH{ﬁ”‘l)
s x s te s x

+ T1/4CHF

il 3742 g Ak *SUP IVaFoo(t)ll 1290601

+ T Coup, 192 Fao )l 12evs * (19Fsill g2z gicin + 1641l e )-
(4.5.10)

Next, we derive estimates for Do Fj; 4+ D, Fop;.

Lemma 4.5.6 (Bounds for DoF;; and D;Fy;). Suppose that the caloric-temporal gauge condition
As =0, Ay =0 holds.

1. For any 2 < p < oo and k > 0, we have

ID0Es (t)l] o/, + IDiF0; ()] /.05
< ot (IVoFui (Bl g3rs2gess + 1040 s + | Fuo (O] gy g oo
(4.5.11)
+ (Hvt,mFsi(t)H[,g/4’2’}-[f,+l + Hat,zéi(t)”Hf“ + ”szSO(t)Hﬁi’Qﬂﬁﬂf

 (IVea POl oraaggses + 1000 Al s + V2 Fro(t) 2 2ggee)*)-
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2. For any 2 <p<oo and k > 0, we have

”L‘i“’pﬁfo ||£§/4xPL%W§,4

< cp,k(nFsinEm,z urare + 1Al greso + TV SUp || (1) 114007
: u 12gk

(4.5.12)
+ (||Fsi||52/4‘2§k+2 + ||AiH§k+2 + SuII) ”vszO(t)H[;gv?Hfgﬂ)Q
: te

+ (||Esi||52/4‘2§k+2 + ||AiH§k+2 + SuII) ||vxE€0(t)H£§2H";+1)3>-
te

Proof. The proof proceeds in a similar manner as Lemma 4.5.4. We shall give a treatment of the
contribution of the term ||DF;;||, and leave the similar case of |D;Fp;|| to the reader.

Our starting point is the schematic identity
DoFij = s 1 O(VV,A) + 5 20(Ag, V. A) + s 20(A, Vo A) + O(4, A, Ay), (4.5.13)

which can be checked easily by expanding Do Fj; in terms of A,,.

The first term on the right-hand side of (4.5.13) is acceptable for both (4.5.11) and (4.5.12),
thanks to Lemma 4.5.2. Therefore, it remains to treat only the bilinear and trilinear terms in
(4.5.13).

Let us begin with the proof of (4.5.11). For the bilinear terms (i.e. the second and the third
terms), we start with the inequality [|p1¢2lz2 < Cl[¢1]l g1 ll¢2]l ;1/2, which follows from Lemma
3.1.3. Applying Leibniz’s rule, the Correspondence Principle and Lemma 3.1.8, we obtain for £ > 0

|s~Y20(Ag, VL A)(t)

g3ramgy + ls™1/20(4, Vo A)(1)

||£§‘/41PH‘1;

< CHVIAOHCQH/&WH;;||VxAH£§/4+1/8,pH§+1 + HVZA||£;/4+1/8,°°HI;||V0A||L;/4+1/8,PH§+1~

Applying Lemma 4.5.2 to A and Lemma 4.5.3 to Ay, we see that the bilinear terms on the
right-hand side of (4.5.13) are also okay.

Finally, for the trilinear term, we start with the inequality ||¢1¢23|r2 < Cf|¢1 ”H}: ”¢2”Hi ||¢3HH;'
By Leibniz’s rule, the Correspondence Principle and Lemma 3.1.8, we obtain for £ > 0

1O(A, A, A0) | vy < IV Al p/s176.00 [ VoAl p1/541/60500 1V Aol 1045712051

x

Applying Lemma 4.5.2 to A and Lemma 4.5.3 to Ay, we see that the last term on the right-hand
side of (4.5.13) is acceptable. This proves (4.5.11).
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Next, let us prove (4.5.12), which proceeds in an analogous way. For the bilinear terms, we
begin with the obvious inequality [[¢1¢2l[zs < Clld1l[rgs, [[¢2llps - Applying Leibniz’s rule, the

Correspondence Principle, Lemma 3.1.8 and Lemma 3.1.14, we obtain for £ > 0

||S—1/20(A0, V(EA>||£2/4,})£§W£,4 + ||S_1/20(A, VOA)||£§/4,[)£%W£,4

< C'sup HVon(t)HLow/s,oonH vaA||Ll/4+1/8,pL;1Wk,4
el s z s 4

+ C||VxA||L;/4+1/8,oo£th§+1 HVOA”LiMH/S’poWfA'

Using Strichartz and the Correspondence Principle, we can estimate ||V, All p1/at1/8.0 papppa <
: Wk
C||All j1/4+1/8.0 5112~ Then applying Lemma 4.5.2 to A and Lemma 4.5.3 to Ay, it easily follows that
the bilinear terms on the right-hand side of (4.5.13) are acceptable.

For the trilinear term, we start with the inequality

1010203l s . < CllorllLarszlldzllige izl dsll g Liz-
By Leibniz’s rule, the Correspondence Principle and Lemma 3.1.8, we obtain

||O(A, A7 AO)”ﬁi/‘L’pC‘t‘WQA SC"A||£i/4+1/G'pE§W£’12 ||A||£l/4+1/6.oo£?owg,12

- sup ||AO(t)||L0+5/12,ka,l2.
tel : *

Using Strichartz and the Correspondence Principle, the first factor

||A||£i/4+1/6’00£4w,§'12

t

is estimated by C||Al|  1/a+1/6p5.1,. Next, using interpolation and the Correspondence Principle,
we estimate the second factor ||A||£i/4+1/e,oo£?owﬁ,1z by ||VIAH£2/4+1/6,OCL?QH$+1. Finally, for the
last factor, let us estimate [|Ao(t)]| so+s/12.00 pea2 < Cl|VaAo(t)| ors/12.005 k41 At this point, we can
simply apply Lemma 4.5.2 to A and Lemma 4.5.3 to Ag, and conclude that the trilinear term is

acceptable as well. This proves (4.5.12). O

Finally, by essentially the same proof, we can prove an analogue of Lemma 4.5.6 for 0D Fj; :=

DoFij — {)F{j and 0D; Fy; := D;Fy; — D;Féj, whose statement we give below.

Lemma 4.5.7 (Bounds for 0D F;; and 6D, Fy;). Suppose that the caloric-temporal gauge condition
As =0, Ay =0 holds (for both A and A’).
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1. For any 2 <p < oo and k > 0, we have

16D0 Eij (W) z/4.95 + 10D ()] g5
< C(IVia(0Fsi) ()] porszggers + 10,0 (0A) ()| gaer + Va6 Fs0) (B) ]| g1.2905+1),

(4.5.14)
where C' = Cp (Ve Fsi(t)|| pora2qm41, [10t,2A4; O gy Vo Fso ()| pr2gg041) s positive and

non-decreasing in its arguments.

2. For any 2 <p < oo and k > 0, we have

16D Fijll paran payiprs + 10D Fo; | 2740 payipna

< Cp,k(HaniHLS/4=2$1¢+5/2 + ||6AiHSk+5/2 + T1/4 iu? H(SFSO(t)HLi*%-'L’;JrHM) (4515)
€

+ Cl0Fsill z5ra2g0se + 10Aillgera +5UD [V (0F50) (8] g229080),
€

where C' = Cp (| Fsill p5/4.2 50125 [ Al gesa, supser [VaFao(t)| fr24g5+1) on the last line is posi-

tive and non-decreasing in its arguments.

4.5.2 Parabolic estimates for F,;

Recall that F; satisfies the covariant parabolic equation
D,F,; — D'D,F,; = —2[F.", Fy).

Under the caloric gauge condition As = 0, expanding covariant derivatives and Fj,;, we obtain a

semi-linear heat equation for F§;, which looks schematically as follows:
FON = (0 = D) Fo = s PO(A, VL F,) + 57 2OV A Fy) + O(A, A F).

Note that F already controls some derivatives of Fy;. Starting from this, the goal is to prove

estimates for higher derivative of Fj;.
Proposition 4.5.8. Suppose 0 < T < 1, and that the caloric-temporal gauge condition holds.

1. For any k > 0, we have

Ve Esi(ll g3raoe gy 0.0y + Ve Fsill g3ra2gger 0 1) < Crronea) g - F- (4:5:16)
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2. For 1 <k <25, we have

||F5i||£§/4’°°5k(0’1] + ||F5i||£2/4,2$k(0’1] <Cra-F. (4'5'17)

Statement 1 of the proposition states, heuristically, that in order to control k + 2 derivatives of
Fy; in the £2 sense, we need F and a control of k+ 1 derivatives of A;. This numerology is important
for closing the bootstrap for the quantity ,A. On the other hand, in Statement 2, we obtain a uniform
estimate in terms only of F and A, thanks to the restriction of the range of k. We refer the reader

to Remark 4.5.9 for more discussion.

Proof. Step 1: Proof of (1). Fix t € (=T,T). Let us start with the obvious inequalities

1000(610:02) 122 < Clloradnlgr/2 9l + Clldall s 100l

(4.5.18)
1002 (@16203) 122 < C D b0l /31602l 371100 2 bo3) ll g1/,

where the sum )  is over all permutations o of {1,2,3}. These can be proved by using Leibniz’s
rule, Holder and Sobolev.
Using Leibniz’s rule, the Correspondence Principle, Lemma 3.1.8, Gagliardo-Nirenberg (Lemma

3.1.14) and interpolation, the previous inequalities lead to the following inequalities for k > 1.

||8_1/2vt7w0(1/)1’ vw¢2)||£2/4+1,2#§_1 + ||S_1/2Vt,m0(vm’(/)law2)||£§/4+1.27_'£1;—1
< C”vt@d)l ||[,i/4+1/41007_1k ||Vt’z¢2”»ci/4'27i,k’
||Vt,mo(¢l7¢2,¢3)||£§/4+1,2¢[§_1

S C||vt7mw1||£1/4+1/4,oo?_[k ||vt,x¢2”£5/4,27{k |‘vt7x¢3||ﬁl/4+l/4,mHk.
s x s x s

Note the extra weight of s'/* for 1, 1)5. Put ¢y = A, 1o = Fy,1p3 = A, and apply Lemma 4.5.2
(with £ > 0,p = 00,q =2 and X = L2) for ||A||. Then for k > 1, we have

Sl:p ||Vt,m((F5i)N)||L§/4+1=27.'L!;fl SC(”vt,mFSH£§/4=2H5 + ”at,xAHH;“)”Vt,zFSHL‘Z/%?Hr; (4 : 19)

+ C(||vt»””FS”L§/4'27-U; + ||3t,xA||H§)2||Vt,stH£§/4,2H;;-

Combining this with the obvious bound ||Vt Fyl| ps/a,0051 + [|VeaFsll p5/a20,. < F, we obtain

HE
(4.5.16) from the second part of Theorem 3.1.10.

Step 2: Proof of (2). We proceed in a similar fashion. The multilinear estimates are more
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complicated. On the other hand, as we are aiming to control derivatives of Fy; only up to order 25
whereas A controls derivatives of A, up to order 30, we can be relaxed on the number of derivatives
falling on A,.

For € > 0, we claim that the following estimate for (Fsi) A holds for 1 < k < 24.
sup H(Fsi)/\/'||£2/4+1,2$k < EHFSHQ/‘*»?SHZ + Bﬁ,hA(HFSHcg/‘lvzngrl)||FS||£§/4’2,§k+1 (4.5.20)

where Be  a(r) > 0 is non-decreasing in r > 0. Then for ¢ > 0 sufficiently small, the second part
of Theorem 3.1.10 can be applied. Combined with the obvious bound || Fi|[ps/ag. < F, we obtain a
bound for ||Fs||ps/ag21 which can be computed by (3.1.14). This leads to (4.5.17), as desired.

Let us now prove the claim. We shall begin by establishing the following multilinear estimates
for S*:
1610:02l| 51 < T2 (161|502 11020 3572 + 191|072 £, 192 52,

¢162¢sllsr < T bollis, 16o)lgs2 | 6ol go/2 (4.5.21)

+) bo@ gt 16o@) g1 160l g

where the sum ) _ is over all permutations o of {1,2,3}.

For the first inequality of (4.5.21), it suffices to prove that || ¢10,¢2 ||Lgo fr and TY2||0(¢102) HL?,x
can be controlled by the right-hand side. Using Holder and Sobolev, we can easily bound the former
by < C||¢1||L$OH2/2||¢2||L?QH£, which is acceptable. For the latter, using Leibniz’s rule for O, let us

further decompose
TY2(|0(610:02) 12, < 2T"2(10,618:0" 2|13, + T*/* (D182 12, +T?(1610: 00213 -

Using Holder and the Lf ,-Strichartz, we bound the first term by < CTY2||p1| gasz || p2ll gs /2
which is good. For the second term, let us use Holder to put O¢; in L?L3 and the other in
L°LS. Then by Sobolev and the definition of S¥, this is bounded by |¢1]|gs/2||¢2] ¢=. Finally, for
the third term, we use Holder to estimate ¢1 in L5, and 0;0¢s in Lix, which leads to a bound
< |91l |§2]lgo- This prove the first inequality of (4.5.21).

The second inequality of (4.5.21) follows by a similar consideration, first dividing || - [|¢: into
I| - ||L$QH; and HD()HL%L, and then using Leibniz’s rule for O to further split the latter. We leave

the details to the reader.

Let us prove (4.5.20) by splitting F*$) \ into its quadratic part s~ /20O(A, V,F,)+s~/20(V, A, F,)
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and its cubic part O(A, A, Fy). For the quadratic terms, we use the first inequality of (4.5.21), Leib-
niz’s rule, the Correspondence Principle, Lemma 3.1.8 and Lemma 3.1.14. Then for £ > 1 we obtain

k—1

“8—1/20(¢17 vz¢2) H£§/4+1,2$k S CT1/2 Z le ||L§11P15'-3/2+p H¢2||££2’p233/2+k7p
p=0 (4.5.22)

+ C”wl H££1+1/8»P1§k+1 ||1/}2||L£2+1/8=P2§k+1

where ¢1 + 3 = 3/2 and p% + p% = 1. Note that we have obtained an extra weight of s1/8 for each
factor in the last term.

Let 1 < k <24, and apply (4.5.22) with (¢1,41,p1) = (A,1/4,0), (2, l2,p2) = (Fs,2,5/4) for
s7120(A, V,F,) and vice versa for s~1/20(V,4A, F,). We then apply Lemma 4.5.2 with X = S?,
p = 0o and ¢ = 2 to control ||A|| in terms of ||F,|| and ||A|| (here we use the extra weight of s/8).
Next, we estimate ||A|| that arises by A, which is possible since we only consider 1 < k < 24. As a

result, we obtain the following inequality:

||S*10<A, VEFS) -+ 5*10(v1A7 FS)||L§/4+172$’€
k

SCTUQ Z(”F8||L§/4v2$3/2+p + A)”angg/‘*v?gsmww + C(||FS||£§/4~2§I¢+1 + A)HFS||£§/4’2§H1'
p=0

The last term is acceptable. All summands of the first term on the right-hand side are also
acceptable, except for the cases p = 0,k. Let us first treat the case p = 0. For ¢ > 0, we apply

Cauchy-Schwarz to estimate

TV oo + ANEM g3rasgusasa

< (6/2)HFS||L§/4«25k+2 + CET(HFSH£§/4’2§k+1 +A)2HFSHCE/4’2§%+17

The case p = k is similar. This proves (4.5.20) for the quadratic terms s~ '/20(A,V,Fy) +
s~Y20(V, A, Fy).

Next, let us estimate the contribution of the cubic terms O(A, A, F). Starting from the second
inequality of (4.5.21) and applying Leibniz’s rule, the Correspondence Principle, Lemma 3.1.8 and

Lemma 3.1.14, we obtain the following inequality:

HO(?/H,7/’271/13)”55/4%29 SCTl/g H ij||£§j+l/12=pj§k+1+c H ij||cij+1/6’7’j§k+1v

j=1,2,3 j=1,2,3

for ¢1 + €y + ¢35 = 7/4 and p% + p% + p% = % Note the extra weight of s'/12 and s'/6 for each factor
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in the first and second terms on the right-hand side, respectively.

For 1 <k <24, let us put (¢1,41,p1) = (A4,1/4,00), (¢2,2,p2) = (A,1/4,00) and (¢3, 3, p3) =
(F,,5/4,2) in the last inequality, and furthermore apply Lemma 4.5.2 with X = S, p = oo and
g = 2 (which again uses the extra weights of powers of s) to control ||A]| by ||Fs|| and || A||. Then

estimating ||A|| by A (which again is possible since 1 < k < 24), we finally arrive at

10(4, A, Fs)|‘£§/4+1,2$k <C(1+ T1/2)(||FS||£§/4’2§1¢+1 + A)2||FSH£§/4’2§7«+1

which is acceptable. This proves (4.5.20). O

Remark 4.5.9. The fixed time parabolic estimate (4.5.16) will let us estimate A in §4.7.1 in terms
of F, A, despite the fact that F controls a smaller number of derivatives (of Fy;) than does A (of
A,;). This is essentially due to the smoothing property of the parabolic equation satisfied by Fy;. It
will come in handy in §4.7.2 as well, since controlling only a small number of derivatives of Fy; will
suffice to control F.

Accordingly, the space-time estimate (4.5.17) (to be used in §4.7.2) needs to be proved only for
a finite range of k, which is taken to be smaller than the number of derivatives of A, controlled
by A. This allows us to estimate whatever || A,|| that arises by A; practically, we do not have to
worry about the number of derivatives falling on A;. Moreover, we are also allowed to control (the
appropriate space-time norm of) less and less derivatives for Fys9 and w; (indeed, see (4.5.36) and
(4.5.47), respectively), as long as we control enough derivatives to carry out the analysis in §4.7.2 in
the end. Again, this lets us forget about the number of derivatives falling on A, and Fy; (resp. A4,,

F,; and Fyp) while estimating the space-time norms of Fyo and w;.

By essentially the same proof, the following difference analogue of Proposition 4.5.8 follows.
Proposition 4.5.10. Suppose 0 < T < 1, and that the caloric-temporal gauge condition holds.

1. Lett € (=T,T). Then for any k > 0, we have

”Vt,z((SFsi)(t)Hgg/‘*qu{g(g,” + Hvt,m(‘SFsi)(t)||£§/4127.'[§+1(0’1}

(4.5.23)
S Ok Flone AWy~ (0F + 11002 (0A) (@) ),
2. For 1 <k <25, we have
||6F57;||£§/4,oos'k(0’1] + ||6Fsi‘|£g/4.2sk(0’1] < C]:7A . ((5.7: + (5A) (4524)
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4.5.3 Estimates for F,; via integration

We also need some estimates for Fy; without any derivatives, which we state below. The idea of the

proof is to simply integrate the parabolic equation 9, Fy; = AF,; + (F=) N backwards from s = 1.
Proposition 4.5.11. Suppose 0 < T < 1, and that the caloric-temporal gauge condition holds.

1. Lett € (=T,T). Then we have
||Fsi(t)||£§/4,oo£§(071] + ||Fsi(t)||[j/4,2£u2r(071] < C]-"A . (.F-l-A) (4525)

2. We have
||Fsi||£§/4,oo£ﬁx(071] + ||FSZ-H£2/4,2£?1I(071] <Cra-(F+A). (4.5.26)

Proof. In the proof, all norms will be taken on the interval s € (0,1]. Let us start with the equation
asEsi = AE@'L’ + (F“)N

Using the fundamental theorem of calculus, we obtain for 0 < s < 1 the identity

1 / 1 /
Fuls) = By = [ $8Fu() T = [ 5N T (45.27)

s S

To prove (4.5.25) and (4.5.26), let us either fix t € (=7,T") and take the E?M’pﬁi norm of both

sides or just take the £§/4’pﬁf

» norm, respectively. We shall estimate the contribution of each term
on the right-hand side of (4.5.27) separately.

For the first term on the right-hand side of (4.5.27), note the obvious estimates || £, (t) <

||[/2/4J’£i
CollEi(®)lez and |Eillomnps < CpllEgllzs,. Writing out F; = 0957 4) + O(4,0,4) +

O(A, A, A), we see that

sup ||Fy(t)lz2 + [ Eyillos, < CA+CA* + CA,
te(—=T,T) ’

which is acceptable.

For the second term on the right-hand side of (4.5.27), let us apply Lemma 4.5.1 with p = 2, 00
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and g = 2 to estimate

ds’

1 / 1
ds
| s BEates) lgriogs <1 [ (6150 VI Bt ez -l

SCpllFsi()l pora2g2 < CpF.

o 1
Similarly, for p = 2, 00, we can prove | [ S’AFsi(s')dS—S,/||£i/4,p£iz < C,,||Fsi||£§/4,2£§w5,4 < CpF.

Therefore, the contribution of the second term is okay.
Finally, for the third term on the right-hand side of (4.5.27), let us first proceed as in the previous
case to reduce

1 !
: ds .
[ / s/((Fsz)N(t’ S/))?Hﬁi/“*f’ﬁi < CpH(F“)N(t)H[:i/“l’zﬁg'

Recall that (Fs)N = s71/20(A,V,F,) + s~ Y20(V,A, F,) + O(A, A, F,). Starting from the

obvious inequalities

610002]lL2 < Clidill g lldall ey Ndrdadslia <C [T Nesllgs

j=1,2,3

and applying the Correspondence Principle, Lemma 3.1.8 and interpolation, we obtain

“5_1/20<Aa V:EFS) + 8_1/2(/)(Vw14, F5)||£§/4+1,2£2 < C||VIA\\51/4+1/4,MH1 HVJEF8||L§/4»2H1

HO(Aa Aa FS)”L‘E/“‘*’LQL% < C||A||2£{/4+1/4,°°7{1 ||FSH,CS/4=27{;'
s x

Note the extra weight of s*/4 on each factor of A. This allows us to apply Lemma 4.5.2 (with
q = 2) to estimate ||A]| in terms of || Fs|| and ||A||. From the definition of F and A, it then follows
that H(Fsi)J\/'(t)||£i/4+1,2£2 < C(F 4+ A)? + C(F + A)? uniformly in t € (=T, T), which finishes the
proof of (4.5.25).

Finally, as in the previous case, we have

s

1 /
v ds v
H/ Sl((FM)N(S/)) 2 HLS/“”’C%m < CpH(FS?')N(S/)”/;2/4“’253;
S ’ ’

Using the inequalities

I6:1000llss . < Cllénllie lfllgoes ll91620slls, < T T Nslliprs,

j=1,2,3

and proceeding as before using the Correspondence Principle, Lemmas 3.1.8, 3.1.14 and 4.5.2, it
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follows that |("*) N .s/4412 ., < C(F+A)2+C(F+.A)>. This concludes the proof of (4.5.26). O

4
L:

Again with essentially the same proof, the following difference analogue of Proposition 4.5.11

follows.
Proposition 4.5.12. Suppose 0 < T < 1, and that the caloric-temporal gauge condition holds.

1. Lett € (=T,T). Then we have

1B ()l 575, g 0.y + I0F (] a2 2 g1y < O+ (6F +0.4). (4.5.28)

2. We have

||6ng||£2/4,oo + ||5ng‘|£§/4,2 ] < 0_7:7A . (5.7:—|- 5A) (4529)

£{.(0,1] £{.(0,1

4.5.4 Parabolic estimates for Fj

In this subsection, we shall study the parabolic equation
D,F, — D'DF,o = —2[F,*, Fy).
satisfied by Fyg = —wg. Let us define
(Fo) V2= (8, — A)Fao = T Mioreing + 5 Minear
where

(F20) Minear = 25 Y/2[AY WV Fiyo) + s~ Y2 [V Ay, Fyo) + [AY, [As, Fioll,

(FSD)A/forcing = 25_1/2[F()é; Fs£]~

Our first proposition for Fyg is an a priori parabolic estimate for £(t), which requires a smallness

assumption of some sort®.

Proposition 4.5.13 (Estimate for £). Suppose that the caloric-temporal gauge condition holds, and

8In our case, as we normalized the s-interval to be [0, 1], we shall require directly that F + A is sufficiently small.
On the other hand, we remark that this proposition can be proved just as well by taking the length of the s-interval
to be sufficiently small.
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furthermore that F + A < 0g where dg > 0 is a sufficiently small constant. Then

sup E(t) < Cra- (F+ A3 (4.5.30)
te(=T,T)

where Cr 4 = C(F,A) can be chosen to be continuous and non-decreasing with respect to both

arguments.

Proof. Let us fix t € (=T, T). Define E := |0,|~'/?F,. From the parabolic equation for F,y, we

can derive the following parabolic equation for E:
(85 — N)E = sY4|V,|~1/2((Fo) Ay,

where |V,|® := §%/2|0,|* is the p-normalization of |9,|%. The idea is to work with the new variable
E, and then translate to the corresponding estimates for Fso to obtain (4.5.30).
We begin by making two claims. First, for every small €, ¢ > 0, by taking g > 0 sufficiently

small, the following estimate holds for p=1,2 and 0 < s < 1:
||(F“°)N||Egm;_'[;1/2(07§] < 6||E||1>3/417{;i(0,1] +Cra- (H81/476/E”LZ/4’2?—'L;(O,Q + (]:+A)2)' (4.5.31)
Second, for k = 1,2, the following estimate holds.
||(F'§°)N||g§*2"rl.’i*”2(o,1} < Bl poagprrao 1) + CFa - 1Bl psjagpioqy + Cra- (F +A)%. (4.5.32)

Assuming these claims, we can quickly finish the proof. Note that E =0 at s =0, as F5o =0

there, and that the left-hand side of (4.5.31) is equal to ||sl/4|Vm|_1/2(F3°)N||£3/4+1,p£2 . Ap-

(0,5]
plying the first part of Theorem 3.1.10, we derive ||E|[ps/ap20,1) < Croa - (F + A)2. Using the
preceding estimate and (4.5.31), an application of the second part of Theorem 3.1.10 then shows
that [|E|ps/apa01) < Croa- (F + A)%. Finally, as E = s'/4|V,|71/2F, it is easy to see that
E(t) < ||E|lps/apa(o,1), from which (4.5.30) follows.

To establish (4.5.31) and (4.5.32), we split F=0) A/ into (FSO)./\/forcing and =0 Minoar-

- Case 1: The contribution of (FSO)Moerng, In this case, we shall work on the whole interval

(0,1]. Let us start with the product inequality

||¢1¢2”H;1/2 < OH¢1HH;/2 H¢2HH;/27
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which follows from Lemma 3.1.3. Using Leibniz’s rule, the Correspondence Principle and Lemma
3.1.8, we obtain for 0 < k < 2

k
101 o) ge-1r < O Wbill garamggsssalbell o/aaggsmsve.

Jj=0

where % = % — % Let us put ¥1 = Fyy, 12 = Fyy.

In order to estimate ||F0g||ﬁg/4,rﬂi/2 or ||Fog||£§/4,rﬂi+1/2 with j > 0, we apply (4.5.1) or (an
interpolation of) (4.5.2) of Lemma 4.5.4, respectively. We then estimate || Fs|, || Ay|| which arise by
F, A, respectively. (We remark that this is possible as 0 < k < 2.)

Next, to estimate ||Fsel| £3/2g1/2, We first note, by interpolation, that it suffices to control
HFS@HE.‘:’/‘I’%i and HFS@”LE/“’%'Q’ to which we then apply Propositions 4.5.11 and 4.5.8, respectively.
On the other hand, for ||Fsg||£§/4,27_'t§—j+1/2 with j < k, we simply apply (after an interpolation)
Proposition 4.5.8. Observe that all of ||A|| which arise can be estimated by A. As a result, for

1 <p<2and0 <k <2, we obtain

k
10 Neoreingl| g2.n =172 ) SCroa - (F +A) D
=0

(1Esoll z2254 0,1y + 1Fsoll pragras o)
J

+Cra- (F+A?

As E = |0,|~Y/?Fy, note that
[Esoll 22140 0,y + 150l 2.2gg3245 (g 1) = NN arazgarass 0.4y F 1B g3ra2gyzs o -

Note furthermore that the right-hand side is bounded by ||E\|7,3/4Hi+j(0 - Given € > 0, by

taking dg > 0 sufficiently small (so that F + A is sufficiently small), we obtain for k =0, p = 1,2
150 Nioning g2 51212011 < €l Ellposangs o) + Corot - (F + A2,
and for k = 1,2 (taking p = 2)
15 Nioreing | z2.25-1/20,11 < €l Bllpaagsao ) + el Bl posaggts o) + Croa- (F +.4)%,

both of which are acceptable.

- Case 2: The contribution of F=0) Mjipear. Let s € (0, 1]; we shall work on (0, s] in this case. We
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shall see that for this term, no smallness assumption is needed.

Let us start with the inequalities

@102l 172 < C||¢1||H§/20L§o||¢2||H;1/2,
6161172 < Cllgnl e Iall o

010293l -1/2 < Clldrll ol G2l y2r2 b3l -

The first inequality follows from Lemma 3.1.4, the second from Lemma 3.1.3, and the third
inequality is an easy consequences of the Hardy-Littlewood-Sobolev fractional integration Li/ 2 c
H, Y 2, Holder and Sobolev.

Let ¢ > 0. Using the preceding inequalities, along with the Correspondence Principle and Lemma

3.1.8, we obtain the following inequalities for p = 1,2 on (0, s:

ls 7201, Vatpa)ll g2y 12 + 52OV athr, o) | g2y 172
S C§e/ ||w1 “Ei/4‘w(7{i/2mﬁgo)H81/4_€/ wQHﬁiv??{;/?a (4533)

’ _ ’
||O(¢17¢271/J3)||£3p9_'[;1/2 < Cs° ||1/11H£i/4+1/8,oo7_'[;\\81/4 ‘ ?/12\\4,27'{;/2||1/13||£i/4+1/s,x7_~%.

We remark that the factors of s¢, which can be estimated by < 1, arise due to an application
of Holder for £%?P (Lemma 3.1.8) in the case p = 1. Taking ¢, = A, 13 = Fy, 93 = A and using

Lemmas 3.1.14, 4.5.2 and the fact that Hsl/‘l_‘/FsoHﬁl,zHl/g = ||31/4_E/EH£3/4,2 we see that

71
Hy

||(Fso)~/\[]inear o < C]:,A . H51/4—€/ E||£§/4,2

”.csz;”%o, HL(0,5]"

for p = 1,2. Combining this with Case 1, (4.5.31) follows.
Proceeding similarly, but this time applying Leibniz’s rule to (4.5.33), choosing p = 2 and s = 1,

we obtain for k = 1,2

||(FSO)Minear‘lgg»Qﬂ’;_l/Q(o,l] <Cra- HE||733/4H,’§+1(0,1]’

(we estimated s < 1) from which, along with the previous case, (4.5.32) follows. O

Our next proposition for Fy, states that once we have a control of £(t), we can control higher

derivatives of Fyso without any smallness assumption.

Proposition 4.5.14 (Parabolic estimates for Fyp). Suppose 0 < T < 1, and that the caloric-temporal

120



gauge condition holds.

1. Lett € (=T,T). Then for m > 4, we have

[ Fso(t)] et T HFsO(t)szi*Q?-lgl(o,l] (4.5.34)
< Cr Al ypes * (EO) + (F + 1000 AW®) | sp-2)?).
In particular, for 1 < m < 31, we have
a0l ooz oy + 1Fso Ol rogimon; < Croa- (E@) + (F+ A%, (45.35)
2. For 1 <m <21, we have
”Fsngi"’oﬁf’;{;”*l((),l] + ”FSOHLifz/ggH;@(oJ] < C]:,A' (5 =+ (]:JFA)2) (4'5'36)

Statement 1 of the preceding proposition tells us that in order to control m derivatives of Fyq
uniformly in s (rather than in the £2 sense), we need to control m derivatives of A,. This fact
will be used in an important way to close the estimates for 4 in §4.7.1. On the other hand, as
in Proposition 4.5.8, the range of k£ in Statement 2 was chosen so that we can estimate whatever

derivative of A which arises by A.

Proof. Step 1: Proof of (1). Fix t € (=T,T). We shall be working on the whole interval (0, 1].
Note that (4.5.35) follows immediately from (4.5.34) and the definition of £(%), as [|0; » 4; || L 20 <

A. In order to prove (4.5.34), we begin by claiming that the following estimate holds for k& > 2:
10N g2 < Cr v,y - Ve Fooll g + Cr o,y - (F + 100 AW®llmy)*. (4537)

Assuming the claim, we may apply the second part of Theorem 3.1.10, along with the bound
[ Fsollprags < E(t), to conclude (4.5.34).

To prove (4.5.37), we estimate the contributions of (FSO)./\/forcjng and F=) Ainoar separately.

- Case 1.1: The contribution of (Fso)./\/'forcing, We start with the simple inequality [|¢1¢al| 72 <

C||¢’1||Hg H¢2”H2/2OL§° + ”¢1”H2/2m:;c H%”Hg' Applying Leibniz’s rule, the Correspondence Princi-
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ple, Lemma 3.1.8 and Lemma 3.1.14, we get

1OW1,¥2)ll g+1.2550 < ClIVathll garaioogn-1llVatball sa2gyn1,

for k > 2.

Let us put ¥ = Fyp, 102 = F, and apply Lemma 4.5.4 to control HVIEMHL‘E/“*“?—L’;* in terms
of ||Fs|l, ||All and ||Fsol|- Then we apply Proposition 4.5.8 to estimate || Fs|| in terms of F and || AJ|.
At this point, one may check that all ||A|, | Fsol| that have arisen may be estimated by [|0; 5 Al| &

and ||Vszo||£é,sz, respectively. As a result, for & > 2, we obtain

||(FSO)~/\/'forcingH£é+1’2’;.'U; SC}-vuatvaHHf . ”V:L’FSOHL‘,i’zH’; + C]:,Hat‘z;A”H]; : (]:+ ||at’xA||H’7§)]:7

which is good enough for (4.5.37).

- Case 1.2: The contribution of(Fso)/\/]inear. We shall begin with the following inequalities, which

follow from Holder and Sobolev:

91020212 + [|Oxd102]lL2 < C||¢1||Hg/2m;c @21l 71

lér62llzz < Clidillgzlidallzs,  I61020sllzz < Cllnlgoldall g lldall -

(4.5.38)

Applying Leibniz’s rule, the Correspondence Principle, Lemma 3.1.8 and Lemma 3.1.14, we

obtain
s~ 201, Vatbo)l| g2 + 15 2O(Vathr, $a)l| p1+1.25
< C”V:E"/Jlllgi/““/‘l,wq.[k HV:D'(/}QHL;@H?
1O, 2, 3) grassa s < IVl rasssnepu I Vatball s g I Vatsll parasn ey
for k > 1.

Note the extra weight of s*/4 on 1)1,13. Let us put 1), = A,y = Fy, 13 = A, and apply Lemma
4.5.2 to control | A in terms of ||Fs|| and ||A]|. Then using Proposition 4.5.8, we can control ||F||
by F and [|A[|. Observe that all of ||A|| which have arisen can be estimated by [|0; Al gx. As a

result, we obtain the estimate

H(FSO)MinearuﬁiJrlv?q.'[‘li S Cfi‘lat,IA”H;? : ||VwFSO||L‘,§‘2H{;7
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for k > 1. Combining this with the previous case, (4.5.37) follows.

Step 2: Proof of (2). Let 0 < k < 19, where the number k corresponds to the number of times
the equation (95 — A)Fyo = (F0) N is differentiated. We remark that its range has been chosen to be
small enough so that every norm of F,; and A, that arises in the argument below can be controlled
by Cr 4 - (F + A) (by Propositions 4.5.8 and 4.5.11) and A, respectively.

We claim that for ¢ > 0 small enough, 0 < k£ < 19 an integer, 1 < p <2 and 0 < s < 1, the

following estimate holds:
IFON | 110 227 0.9 < O 1877 Vi Faoll g2 2301 0,9 +Cra - (E+F + A)(F +A). (45.39)

Assuming (4.5.39), and taking k = 0, p = 1,2, we can apply the first part of Theorem 3.1.10 to
obtain (4.5.36) in the cases m = 1,2. Then taking 1 < k < 19 and p = 2, we can apply the second
part of Theorem 3.1.10, along with the bound (4.5.36) in the case m = 2 that was just established,
to conclude the rest of (4.5.36).

As before, in order to prove (4.5.39), we treat the contributions of (Fso)N}orCing and =) Miear

separately.

- Case 2.1: The contribution of (F, SO)Morcing. We claim that the following estimate holds for

0<k<I19and 1<p<2:
H(FSO)Morcing||£;+1vpct?7{];(011] <Cra- (E+F+AF+A. (4.5.40)

Note in particular that the right-hand side does not involve ||VIFSOH5§21:§7{§' This is because
we can use (4.5.35) to estimate whatever factor of ||Fsol|| that arises in this case.

In what follows, we work on the whole s-interval (0,1]. Starting from Holder’s inequality
H€Z51¢>2||Lgm < lpallzs, Hd)g”l/f’m and using Leibniz’s rule, the Correspondence Principle and Lemma

3.1.8, we obtain

||O(¢17 1/}2) ||Li+1’p£f’;{§ S C||¢1 Hﬁg/‘l:rﬁfwa’jw‘l H’l/)2||£g/4'2ﬁfwg}§’4'

1_1_
T p

I Esoll, || Fsell and ||A;||. Then thanks to the assumption 0 < k < 19, we can use (4.5.35), the second

where % Let us put ¢ = Fye, P2 = Fs and use Lemma 4.5.4 to control || Fos|| in terms of

part of Proposition 4.5.8 and the definition of A to control || Fsol|, ||Fs¢|| and || 4,|| have arisen by
Cra (E+(F+A?), Cr 4-F and A, respectively.
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On the other hand, to control || Fs we first use Strichartz to estimate

€‘|£§/4’2£§W5’4’
||Fs€||1;§/4v2[;;}wf)4 < C||Fs€||£§/4,2£§m + C||Fse||gg/412§k+1/z
and then use Propositions 4.5.11 and 4.5.8 to estimate the first and the second terms by Cr 4-(F+.A)

and Cr 4 - F, respectively. As a result, we obtain (4.5.40) for 1 < p < 2.

- Case 2.2: The contribution of (F0) Mjinear. Let 0 < s < 1; we shall work on the interval (0, s]
in this case. Let us begin with the following estimates, which follow immediately from (4.5.38) by

square integrating in ¢t and using Holder:

110allLz , + 1021 02llz , < ClDLl oo 272 oy 192l L2 1

010203z, < Cllorll oo gl P2l 212 (|03l oo 1 -

Using Leibniz’s rule, the Correspondence Principle and Lemma 3.1.8, we obtain the following

inequalities for € > 0 small, 0 <k <19 and 1 <p < g < oo
571201, Vario)ll oo cape + s 20(Vatbr, )l gy zny
k
< Cs (Z ||V§§)¢1||L;/“’°°z:?°(7ii/2mz:g°))”51/4_6 Vatelleracp:
3=0

101, w2, 63) | po/a1.2

’ 7
< Cs ||wa1||£i/4+1/8,oo£?o%§ H51/4—e v$w2|

cracany I Vaths ||g§/4+1/8’°°z:§°w '

The factors s¢ have arisen from applications of Hélder for £57 (Lemma 3.1.8); we estimate them
by < 1. Let us put ¥ = A, ¥y = F5 and 13 = A, and apply Lemma 4.5.2 to control ||A]| in terms
of ||Fs|| and A (the latter thanks to the range of k). Then we apply Proposition 4.5.8 to control

|| Fs|| in terms of F and A (again using the restriction of the range of k). As a result, we arrive at
||(FSO)MinearHgﬁlvpggq'{};(oé] < C'}_7A||51/476 VmEgoHﬁbqﬁgH’;;(Oé],

for ¢ > 0small, 0 <k <19and 1 < p < g < oo. Taking ¢ = 2 and combining with the previous

case, we obtain (4.5.39) O

The difference analogues of Propositions 4.5.13 and 4.5.14 can be proved in a similar manner,
using the non-difference versions which have been just established. We give their statements below,

omitting the proof.
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Proposition 4.5.15 (Estimate for 6£). Suppose that the caloric-temporal gauge condition holds,

and furthermore that F + A < dg where dg > 0 is sufficiently small. Then

sup 0E(1) <Cra-(F+AOF+A).
te(—=T,T)

(4.5.41)

Proposition 4.5.16 (Parabolic estimates for 0Fyp). Suppose 0 < T < 1, and that the caloric-

temporal gauge condition holds. Then the following statements hold.

1. Lett € (=T,T). Then for m > 4, we have

”‘stO(t)”c;’“H;’l*l(o,u + H‘SFsO(t)Hcgﬂq-lT(oJ]
< CF o0 AW 2 - 9E(2)
+OF 0 AW 2+ (E@) +F + 1000 A p-2)

X (6F + [0, (BA) ()|l rm—2)-
In particular, for 1 < m < 31, we have

||5F80(t)||c§’°°7{;?‘1(0,1] + H(SFSO(t)HLi’z’;'-IL;n(O,l]

<Cra-0EH)+Cra-(Et)+F+A)(F +0A).
2. For 1 <m <21, we have

H6FSO|

cre gz T 10Fsoll 22 £29im0y

<Crp-0E+Crpo- (E+F+ABF+4A).

4.5.5 Parabolic estimates for w;

Here, we shall study the parabolic equation (4.1.8) satisfied by w;, i.e.
D,w; — D'Dyw; = 2[F,,wy] + 2[F**, D, Fir + Dy Fy,).

Let us define

(wq)./\/‘ = (85 - A)wz = (wi)j\/forcing + (wi)/\/‘linear
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(4.5.43)

(4.5.44)



where

) Minear = 257 Y2[AY, Vow;] + 572 [V Ag, wi] + [AY [Ag, wi]] + 2[F, %, wi],

(wi)-/\[forcing = 2[F027 DOFif + DeFiOL

The following proposition proves parabolic estimates for w; that we shall need in the sequel.

Proposition 4.5.17 (Parabolic estimates for w;). Suppose 0 < T < 1, and that the caloric-temporal

gauge condition holds.

1. Lett € (=T,T). For 1 <m < 30 we have
lwi®) | groes oy + 10:® | 1m0y < Coroa - (E@) + F+ A% (45.45)
In the case m = 31, on the other hand, we have the following estimate.

||wi(t)||gi=°°ﬂg°(o,1} + ||wi(t)||5;27.‘¢gl(o,1]

(4.5.46)
< Ce(). 7 A 00 A0l g0 * (E() +F + A+ \|304(t)|\ﬁgf))2~
2. For 1 <m < 16, we have
llwill 300 2gm=1 0,1 + lwill 222 L290m 0,1) £ Cera- (E+F + A)2. (4.5.47)
Furthermore, for 0 < k < 14, we have the following estimate for (WA
DN g2 g o,y + 1N g2 gagin o,y < Cera- (€ +F + A% (4.5.48)

Remark 4.5.18. Note that Statement 1 of Proposition 4.5.17 does not require a smallness assumption,
as opposed to Proposition 4.5.13. Moreover, in comparison with Proposition 4.5.14, we need m

derivatives of A (i.e. one more derivative) to estimate m derivatives of w uniformly in s.

Proof. Step 1: Proof of (1), for 1 < m < 3. Fix t € (=T, T). Let us define v; := |9,|~'/?w;. From

the parabolic equation for w;, we derive the following parabolic equation for v;:

(85 — Nv; = sM4V,|~V2((WI N,

126



where the right-hand side is evaluated at t. Note that [[wil| ;1055 = [[vill s/apyrt1/2. The idea,
as in the proof of Proposition 4.5.13, is to derive estimates for v; and then to translate to the
corresponding estimates for w; using the preceding observation.

We shall make two claims: First, for 0 < s <1 and 1 < p < 2, the following estimate holds.

sup ||(wi)N||£gm;'{;l/2(07§] SOE(t),f,A ’ “51/476 v“£2/4’27{i(0,§]
i (4.5.49)
+ CS(t),]—',A . (5(t) + .7:+A)2.
Second, for k = 1,2, the following estimate holds.
Sup ‘|(wi)N||L§*2H£*1/2(o,1] <Ce(),7.a " [0llpssagtion)
i (4.5.50)

+ Ceryra- (EX) +F+ A2

Note that |\(wi)./\/'H£§,p7'{,;(0’§] = ||51/4|Vm|71/2((wi)./\/)||L§/4+1,pﬂz+1/2(0,§]. Assuming (4.5.49) and
using the preceding observation, we can apply the first part of Theorem 3.1.10 to v; (note furthermore
that v; = 0 at s = 0), from which we obtain a bound on [|v[|ps/ap2. Next, assuming (4.5.50) and
applying the second part of Theorem 3.1.10 to v;, we can also control [|v[|ps/aps. Using the fact
that v; = s'/4|V,|~"/?w;, (4.5.45) now follows.

We are therefore left with the task of establishing (4.5.49) and (4.5.50). For this purpose, we

divide (WIN = (1”7")./\/}(”@ng + (W) Miinear, and treat each of them separately.

- Case 1.1: Contribution of “"”/\fforcing. In this case, we work on the whole interval (0,1]. We

start with the inequality

10102l g-1/2 < D1l gl d2l 22,

which follows from Lemma 3.1.3. Using Leibniz’s rule, the Correspondence Principle and Lemma

. . . 1_1_ 1.
3.1.8, we arrive at the following inequality for k¥ > 0 and = = 55

101, ¥2)l| g2ggs-172 < ClIVathl aramgs Ib2ll o2y

Let us restrict to 0 < k < 2 and put ¢, = Fop, 102 = DFy; + DoFei. In order to estimate

Vo Foell 37475, and D Foi + Do F5 || 157,24, we apply Lemmas 4.5.4 (with p = r) and 4.5.6 (with

HE?
p = 2), respectively, from which we obtain an estimate of |\(wi)N\\£g,p7-{@71/z in terms of || Fsol|, || Fs||
and ||A||. The latter two types of terms can be estimated by F and A, respectively. Moreover, using

Propositions 4.5.14, || Fso(t)| can be estimated by £(t), F and A. As a result, for 0 < k£ < 2 and
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1 < p <2, we obtain
sup H(wi)-/v(t)||£§,p7_‘l(;fl/2(0’1] < Cey,ra- (E(T) + F+ A2

which is good enough for (4.5.49) and (4.5.50).

- Case 1.2: Contribution of ) Ninear. Note that (*i) Mijcar has the same schematic form as
(F0) Miinear- Therefore, the same proof as in Case 2 of the proof of Proposition 4.5.13 gives us the
estimates

sgp H(wi)N(t)||£§'1’7-Z;1/2(07§] < Cra- s/t U”L‘Z/“’Q?-'Li(o,ﬂ’

for p=1,2, 0 < s <1 and arbitrarily small ¢ > 0, and
sup H(wi),/\/’(t)||L§,27_~£1;71/2(071] < C;’A||v||733/47_[§+1(071],
1

for k =1,2. Combined with the previous case, we obtain (4.5.49) and (4.5.50).

Step 2: Proof of (1), for m > 4. By working with v; instead of w;, we were able to prove the
a priori estimate (4.5.45) for low m by an application of Theorem 3.1.10. The drawback of this
approach, as in the case of Fyq, is that the estimate that we derive is not good enough in terms of
the necessary number of derivatives of A. In order to prove (4.5.45) for higher m, and (4.5.46) as
well, we revert back to the parabolic equation for w;.

We claim that the following estimate holds for k£ > 2:

sup | “ON (B[] p1+1.258 0.1 SCOF oAl gy I Vawll 22301y
i (4.5.51)

+ Cew), 7 00 e A yin EE) + F + [0 AWD) i)

Assuming the claim, let us first finish the proof of (1). Note that for 0 < k < 29, we have
0. Allgx < A. Therefore, every norm |[|0; . A|| arising in (4.5.51) for 2 < k < 28 can be estimated
by A. Using this, along with the estimate (4.5.45) for 1 < m < 3 which has been established in Step
1, we can apply the second part of Theorem 3.1.10 to conclude (4.5.45) for all 4 < m < 30.

Note, on the other hand, that for & = 30 we only have [|0; Al gse < A+ [|00Al fs0- From

128



(4.5.51), we therefore obtain the estimate

sup H(wi)N(t)”gi“v?}'{ie(&l] SC}',A : ”vanﬁiﬂygﬁ(o,u
+ Ce(t) 7. A0 A0 30 (E(E) + F + A+ [00A(1) | r30)*.
Combining this with the case k = 30 of (4.5.45), an application of the second part of Theorem
3.1.10 gives (4.5.46).

We are therefore only left to prove (4.5.51). As usual, we shall treat (wi)./\/forcing and ) Minear

separately, and work on the whole interval (0, 1] in both cases.

- Case 2.1: Contribution of (“’i)./\/forcing. As in Case 1.1 in the proof of Proposition 4.5.14, we

begin with the inequality [|¢162 /42 < Cllénl a9l sr2poe + Clléall gosay o llbell g and apply
Leibniz’s rule, the Correspondence Principle, Lemma 3.1.8 and Lemma 3.1.14. As a result, for

k > 2, we obtain

100 )l 1o < ClIVatbtl] ooy [Vt s gscs

As in Case 1.1, we put ¢; = Fyy, 2 = DFy; + DoFY, and apply Lemmas 4.5.4 (with p = 00)
and 4.5.6 (with p = 2), by which we obtain an estimate of H(wi)-/\[forcingnﬁgpq_p; in terms of ||Fs|,
| Fsi|| and ||0; 4 Al|l. Using Proposition 4.5.14 and Proposition 4.5.8 in order, we can estimate || Fyol|
and ||Fs;| in terms of £(t), F and ||0; ,A||. At this point, one may check that all ||0; , Al that have

arisen can be estimated by |0y, A(t)|| yr+1. As a result, we obtain the following estimate for k& > 2:

sup ||(wi)N(t)“,/;§’27iLf;(0,1] < Of(t)f,\lat,zé(t)HH/;H E)+F+ Hat,xA(t)||H§+1)27

which is good.

- Case 2.2: Contribution of I Ninear. As U Ninear looks schematically the same as (F20) Miipear,

Step 1.2 of the proof of Proposition 4.5.14 immediately gives

sup ||(wi)j\/linearH£é+1=27{§(071] S Crionealy, - Vel zr2qm 0.1y,
p 5

for k > 1. Combined with the previous case, this proves (4.5.51), as desired.

Step 3: Proof of (2). Let 0 < k < 14, where k corresponds to the number of times the equation

(0s — DNw; = (wi) N is differentiated. The range has been chosen so that Proposition 4.5.14 can be
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applied to estimate every norm of Fyo which arises in terms of &, ||Fs|| and |lA||, and furthermore
so that all ||F,|| and ||A|| that arise can be estimated by Cr 4 - F (by Proposition 4.5.8) and A,
respectively.

We claim that for € > 0 small enough, 0 < k < 14 an integer, 1 <p < g <oocand 0 < s <1, the

following estimate holds:
Sllp ||(wi)N”£§+1,p£$7_‘L§(0,ﬂ < C}',A . ||31/4_E/Vmw||£1,q£%7{§(0’§] + C“,’,}',A ! (5 + F+ A)Q (4552)

Assuming the claim, let us prove (2). Taking kK = 0, p = 1,2 and ¢ = 2, we may apply the first
part of Theorem 3.1.10 (along with the fact that w = 0 at s = 0) to obtain (4.5.47) in the cases
m = 1,2. Combining this with (4.5.52) in the cases 1 < k < 14, p=¢ =2 and s = 1, we can apply
the second part of Theorem 3.1.10 to obtain the rest of (4.5.47). Finally, considering (4.5.52) with
0 <k <14 with p=2,00, ¢ = 0o and s = 1, and estimating ||Vmw||5§~oow;(0)l] in the first term on
the right-hand side by (4.5.47), we obtain (4.5.48), which finishes the proof of Statement 2.

It therefore only remain to prove (4.5.52), for which we split (W) A/ = (wi)./\/forcing + @) Minear a8

usual.

- Case 3.1: Contribution of (wi)/\/}orcing. In this case, we work on the whole interval (0, 1].
Let us begin with the inequality ||p1¢2|[z2 < l[¢1llzs [|#2zs - Applying Leibniz’s rule, the

Correspondence Principle, Lemma 3.1.8, we obtain, for £ > 0 and 1 < p < o0,

106, o)l g1 o < Cllbnll garams oy 2] o7 s

where % = % + % Since p > 1, we may choose r1,79 so that r1,7o > 2. As before, let us take

Y = Fy, and 1 = DYFy; + DOFKZ» and apply Lemma 4.5.4 (with p = 1) and Lemma 4.5.6 (with
p = r2), respectively. Then we apply Proposition 4.5.14 and Proposition 4.5.8 in sequence, where
we remark that both can be applied thanks to the restriction 0 < k& < 14. As a result, we obtain an
estimate of ||(wi)/\/forcing||£§,p£§7'{;:2 in terms of £, F and ||0; ;Al|. One may then check that all terms
that arise are at least quadratic in the latter three quantities, and furthermore that each ||0;,A||
which has arisen can be estimated by A, thanks again to the restriction 0 < k < 14. In the end, we

obtain, for 0 < k < 14 and 1 < p < o0, the following estimate:

Sup ”(wi)Morcirlg||Li+1,p[:§7_l;;(0’1] S CgJ-jA . (8 + .7: + A)2
3
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- Case 3.2: Contribution of ) Minear- As before, we utilize the fact that (“s) Mjpear looks
schematically the same as (F 0) Minoar- Consequently, Step 2.2 of the proof of Proposition 4.5.14
implies

(w1)N . < C . 1/4—€/V
SUPH hnearHEl*LPﬁ?HI;(Oé] = UrAa l|s szL;WLfHI;(Q,é]a
; FHE
for ¢ >0small, 0 <k <14,1<p<r<ooand0< s <1. Combined with the previous case, we

obtain (4.5.52). O

Again, by essentially the same proof, the following difference analogue of Proposition 4.5.17

follows.

Proposition 4.5.19 (Parabolic estimates for dw;). Suppose 0 < T < 1, and that the caloric-temporal

gauge condition holds.

1. Lett € (=T,T). For 1 <m < 30 we have

18wl 21 g1 0.1y + 1903 ()| 125 011 < Cooy. 7o - (E(8) + F + A)BE(E) + 6F + 6A4).

(4.5.53)
In the case m = 31, on the other hand, we have the following estimate.
18w (E) 210 0.1y + 1903 ()| 21251 0
<Ce().F A N00AW® | o * (E(E) + T + A+ |00 A®)] rz0) (4.5.54)

x (0E(t) + 0F + 0A+ ||80(5A)(t)”Hgo)

2. For 1 <m < 16, we have

16wl

£h 231 (0,1) + ||5wi\|[:;,2£%7-{?(0’1] <Cera- (E+F+ A)((Sg +0F +0A). (4.5.55)
Furthermore, for 0 < k < 14, we have the following estimate for CUIN := (9y — N)(sw;).

I ON g2 25 0,1 + 1IN | 22 200,y < Coron s (E+F + A)(OE +0F +0.A). (4.5.56)

4.6 Proofs of Propositions 4.4.1 - 4.4.4

In this section, we shall sketch the proofs of Propositions 4.4.1 - 4.4.4.
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Proof of Proposition 4.4.1. We shall give a proof of the non-difference estimate (4.4.1), leaving the
similar case of the difference estimate (4.4.2) to the reader.

In what follows, we work on the time interval I = (=T, T). Recalling the definition of Ay, we
need to estimate HZO”L?H;/% ||ZOHL§QH;, ”ZOHLHH;?/%L;@) and |‘ZO||L,%H3 by the right-hand side
of (4.4.1).

Fix t € I. Using 0,49 = Fy, the first two terms can be estimated simply by CE& as follows.

1 /
— — ds
1o (t)l ar2 + I Aol g < / ()2 | Faolts s

Ny ds’
! !
+ [ty

<CE¢.

For the next term, using Holder in time, it suffices to estimate || Ag I 2 (#r3/20100)- Using (4.5.36) of
Proposition 4.5.14, along with Gagliardo-Nirenberg, interpolation and Sobolev, these are estimated

as follows.

1 ’
_ ds
||AO||L$(H3/2F1L§°) S/O (S/)1/4(S/)||E‘;O(S/)HL?(H2/2QL;O)(S/) S

SC]—',A-(C/’-I-C;’A-(I"-FA)?

Unfortunately, the same argument applied to the term || Ao]| r2r2 fails by a logarithm. In this
case, we make use of the equations 9;Ag = Fo and the parabolic equation for Fyy. Indeed, let us

begin by writing

1 1 1
ANAy = — / AFy(s')ds = —/ 0sFso(s') ds’ +/ (Fso) Af () ds’
0 0

S

1 ’
=E50+/ Sl((Fso)N)(S/)di

)
S/

where on the last line, we used the fact that Fyo(s = 0) = —wp(s = 0) = 0. Taking the L? , norm

t,x

of the above identity and applying triangle and Minkowski, we obtain

1 /
_ ds
1870lz, < IEwlluz, + [ SNz,

/
s S

The first term can be estimated using (4.5.36), whereas the last term can be estimated by putting
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together (4.5.39) (in the proof of Proposition 4.5.14) and (4.5.36). As a consequence, we obtain
[AAo]lLz, < Cra-E+Cra-(F+ A7
By ”ZOHL§H2 < C||AAoll 2 (which holds since Ag(t) € Hy® for every t) and Holder in time,

the desired L} L2-estimate follows. This completes the proof of (4.4.1). O

Proof of Proposition 4.4.2. Again, we shall only treat the non-difference case, as the difference case
follows by essentially the same arguments.
The goal is to estimate sup; supg<s<; [|A4i(s) g1 in terms of F+A. Note that, proceeding naively,

one can easily prove the bound
! ! / ds’ 1/2
14l < [ IR S + Milge < lopsf /2 + A (16.1)

The essential reason for having a logarithm is that we have an absolute integral of || Fy;(s')|| ¢ in
the inequality, whereas F only controls its square integral. The idea then is to somehow replace this
absolute integral with a square integral, using the structure of the Yang-Mills system.

We start with the equation satisfied by A; under the condition A5 = 0.
8. A; = NA; — 0'0; A + AIN, (4.6.2)

where

AN = O(A,0,A) + O(A, A, A).

Fix t € (=T,T). Let us take 9, of (4.6.2), take the bi-invariant inner product® with 9; . A; and
integrate over R? x [s, 1], for 0 < s < 1. Summing up in i and performing integration by parts, we

obtain the following identity.

,Z/I%, |2dx—f /|8txA|dsz// (AN, B, AR (s )dz%s
+Z// 0001 Ai( ——Z/ /|y 00 Ag(s )|2dx?/

Take the supremum over 0 < s < 1, and apply Cauchy-Schwarz and Hoélder to deal with the

second term on the right-hand side. Then taking the supremum over ¢t € (—7,T) and applying

9n fact, for the purpose of this argument, it is possible to use any inner product on g for which Leibniz’s rule
holds, so that integration by parts works.
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Minkowski, we easily arrive at the following inequality.

1 ) dsy 1/2
sup 00:A(S) 22 <CouaAlzzer + O [ s10.00A0) sz )
0<s<1 0 ® 8

1
d
+Csup [ 50 (WONY ) sz S
% 0 §
Similarly, taking [ of (4.6.2), multiplying by [JA;, integrating over (=T, T) x R? x [s,1] etc, we

can also prove

! , ds\1/2
sup [0AG)uz, <CIOAL, +C( [ s1.046)1;, )
0<s<1 ) ) 0 t,x  §

1
d
s [ SBAIN) Gy,

Combining the last two inequalities and recalling the definition of the norm S*, we get

1 1
ds\1/2 v ds
sup [4()] < CllAllg+C( [ slawIg. T) o [N @)l T

0<s<1

Applying Lemma 4.5.2 (with p = ¢ = 2) to the second term on the right-hand side, we finally
arrive at the following inequality.

1
. ds
s [[A(3) 51 < ClAllg: + CUR 250 + Al 2) + Csup / SN ()l o (463)

All terms on the right-hand side except the last term can be controlled by C(F 4 .A). Therefore,
all that is left to show is that the last term on the right-hand side of (4.6.3) is okay. To this end,

we claim

! . ds
sup [ SN @)l T < Crea- (F+ A2

Recalling the definition of the S* norm, we must bound the contribution of ||, . ((AIN”)(s) lLoer2

and T1/2||D((Ai)N’)(s)||L§I. We shall only treat the latter (which is slightly more complicated),

leaving the former to the reader.

Using the product rule for O, we compute the schematic form of O((4) ) as follows.
OMUIN = O(9" A, 0,0, A) + O(A, 0" A, 9, A) + O(0A, 0, A) + O(A,8,0A4) + O(A, A,0A).

Let us treat each type in order. Terms of the first type are the most dangerous, in the sense

that there is absolutely no extra s-weight to spare. Using Holder, Cauchy-Schwarz and Strichartz,
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we have

1
s 10 4(5),8:0,A(5)) 1 Y
0

1 1
ds 1/2 dsy 1/
1/2 1/2 2 3/2 2
<cr (/0 A B ) (/0 SAG R T)

Using Lemma 4.5.2, the last line can be estimated by C(F + A)?, which is acceptable.
Terms of the second type can be treated similarly using Holder, Strichartz and Lemma 4.5.2,

being easier due to the presence of extra s-weights. We estimate these terms as follows.

1
[ siom.0m A, 0,46,
! ds
<T1/2/ 1/4( .1/4 A - 1/4 “ A 4 1/4 A 4 =2
<12 [ (AW, ) (510" A s, ) (5171004 g, )

<CTY*(F + A)3.

The remaining terms all involve the d’Alembertian . For these terms, using Holder, we always
put the factor with 0 in Lf@ and estimate by the S* norm, whereas the other terms are put in Lg7,.

We shall always have some extra s-weight, and thus it is not difficult to show that

/ T2 O(0A(S), 0, A(s)) + O(A(s), B, TAM) 2. % < OF + 42,
0 —

1
/0 ST2O(A(s), A(s), DAGD Iz, < < OF + )"

As desired, we have therefore proved

1
d
sup / STVIO(IN ) 3)lg, 5 < Cra- (F+A) O

Proof of Proposition 4.4.3. This is an immediate consequence of Propositions 4.5.13 and 4.5.15. [

Proof of Proposition 4.4.4. In fact, this proposition is a triviality in view of the simple definitions

of the quantities F, A, dF,0A and the fact that A,, AL are regular solutions to (HPYM). O

4.7 Hyperbolic estimates : Proofs of Theorems C and D

The purpose of this section is to prove Theorems C and D, which are based on analyzing the wave-

type equations (4.1.5) and (4.1.6) for A, and Fj;, respectively. Note that the system of equations
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for A, is nothing but the Yang-Mills equations with source in the temporal gauge. The standard
way of solving this system (see [9]) is by deriving a wave equation for F),,; due to a technical point,
however, we shall take a slightly different route, which will be explained further in §4.7.1. The wave
equation (2.1.6) for Fj;, on the other hand, shares many similarities with that for A; in the Coulomb
gauge, as discussed in the Introduction. In particular, one can recover the null structure for the most
dangerous bilinear interaction [A*, 9, Fy;], which is perhaps the most essential analytic structure of
(HPYM) in the caloric-temporal gauge which makes the whole proof work.

Throughout this section, we shall work with regular solutions A, A, to (HPYM) on (=T,T) x
R? x [0, 1].

4.7.1 Proof of Theorem C

Recall that at s = 1, the connection coefficients A, = A, (s = 1) satisfy the hyperbolic Yang-Mills
equation with source, i.e.

D'F,, =w, forv=0,1,2,3. (4.7.1)

Furthermore, we have the temporal gauge condition 4, = 0.
Recall that (0 x B); := Z%k €ijk0j Bi, where €5, was the Levi-Civita symbol. In the proposition
below, we record the equation of motion of A;, which are obtained simply by expanding (4.7.1) in

terms of A,.

Proposition 4.7.1 (Equations for A;). The Yang-Mills equation with source (4.7.1) is equivalent

to the following system of equations.

0(0°4,) = — [A", oA + wy, (4.7.2)

DA; — 8:i(0°Ay) = = 2[A", 0 A)) + [A;, 0° A + [A%, 0iA,) — [A", [Ag, A)]] — w;. (4.7.3)

Taking the curl (i.e. O x -) of (4.7.3), we obtain the following wave equation for J x A.

0(0 x A); = — 0 x (2[4, 004, + [4;,0°A,) + [A°,0;A,)) (47.4)
4.7.4
— 9 x ([A% Ay, A]]) — (0 x w);.

Remark 4.7.2. The usual procedure of solving (4.7.1) in temporal gauge consists of first deriving

the hyperbolic equation for F,,, using the Bianchi identity and (4.7.1). Then one couples these

v
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equations with the transport equation

Fy, = ‘%Ai,

(which follows just from the definition of F',; and the temporal gauge condition A, = 0) and solves the
system altogether. This is indeed the approach of Eardley-Moncrief [9] and Klainerman-Machedon
[15]. A drawback to this approach, however, is that it requires taking a t-derivative when deriving
hyperbolic equations for F;. In particular, one has to estimate Jyw;, which complicates matters in
our setting.

The equations that we stated in Proposition 4.7.1 is the basis for a slightly different approach,
which avoids taking Jy at the expense of using a little bit of Hodge theory. We remark that such
an approach had been taken by Tao [33], but with greater complexity than here as the paper was

concerned with lower regularity (but small data) solutions to (YM).

We are now ready to prove Theorem C.

Proof of Theorem C. In the proof, we shall work on the time interval (=7,T), where 0 < T < 1.
We shall give a rather detailed proof of (4.4.5). The difference analogue (4.4.6) can be proved in an
analogous manner, whose details we leave to the reader.

Let us begin with a few product estimates.

1O(A, B0 A)|| o gy < CA?, for 0 < m < 29, (4.7.5)
IO(A, 8z A)| e gy < CA®, for 0 < m < 30, (4.7.6)
1O(A, A, A)|| poe o < CA®, for 0 < m < 31. (4.7.7)

Each of these can be proved by Leibniz’s rule, Holder and Sobolev, as well as the fact that
02 All g rz0 + [[O0AllLse 2o < A. Using the same techniques, we can also prove the following

weaker version of (4.7.5) in the case m = 30:
104, aOA)”LthEO < CA2 + C”A”L‘;fz ||5£30)5'OA||L;>°L3~ (4.7.8)

Next, observe that HQOHL?OHm < supye 1) [[Fso(t)| £1.004m» Where the latter can be controlled
by (4.5.35) for 0 < m < 30. Combining this with (4.7.2), (4.7.5), we obtain the following estimate
for 0 < m < 29:

106(0" Al s < Coroa - €+ Cir - (F + A (4.7.9)
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In the case m = 30, replacing the use of (4.7.5) by (4.7.8), we have
1000 A e z0 < CANOLO QA e 12 + Crop - € + Corp - (F + A

Recall the simple div-curl identity 3, ;[0 B;|* = 3110 x B2, 4 1|0 B||* with B = A(t). Using
furthermore (4.7.9) with m = 29 and the fact that A controls ||89(329)80(8 x A)||Lso L2, we obtain the

following useful control on ||8§;30)80A||L50L3:
188D 80Al| o2 < CA+Cra-E+Cra- (F+ A2 (4.7.10)
Therefore, (4.7.9) holds in the case m = 30 as well, i.e.
100(0°Ap)l| oo 0 < Croa- €+ Croa- (F + A
Integrating (4.7.9) with respect to ¢ from ¢ = 0, we obtain for 0 < m < 30
10" Ayl ST+T(Cra- €+ Cra (F+AP). (4.7.11)

Next, observe that ||wz-||L$oHm < supye(—r7) [[wi(t)|| f1.004ym - Combining this observation with
(4.5.45) and (4.5.46) from Proposition 4.5.17, as well as (4.7.10) to control ||0gA|| zs0, we have the

following estimates for 0 < m < 30:
will e frm < Ce 74+ (€ + F + A (4.7.12)

We are now ready to finish the proof. Let ¢ = 1,2,3 and 1 < m < 30. By the energy inequality

and Holder, we have
|4l < Cll0r2 A = 0)l s + OTIDA | e g

The first term is controlled by CZ. To control the second term, apply (4.7.3), (4.7.6), (4.7.7),

(4.7.12). Furthermore, use (4.7.11) to control the contribution of 9;0°4,. As a result, we obtain

1A,

gm < CT + T(C;,A E+Cera-(E+ f+A)2), (4.7.13)
fori=1,2,3 and 1 < m < 30.
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Similarly, by the energy inequality and Holder, we have
10 x A)ill gso < C[10r,2(8 x A)(t = 0)| 20 + CTND(I X A)ill oo prao-

The first term is again controlled by CZ. To control the second term, we apply (4.7.4), (4.7.6),

(4.7.7), (4.7.12); note that this time we do not need an estimate for 9*A,. We conclude
(0 x A)illgso <CT+T Cera-(E+F+A> (4.7.14)
Finally, using the div-curl identity, (4.7.11) and (4.7.14), we have
|l < CT+T(Croa- €+ Cra- (F+ AP).
This concludes the proof. O

4.7.2 Proof of Theorem D

Let us recall the hyperbolic equation (2.1.6) satisfied by F;:
DMDqui = 2[_[7‘5M7 F’L,u,] _ DZDEU/Z' + DiDZ’LUg _ (wb)N

Note that we have rewritten 2[F/, wy] + 2[FH, D,Fy +D,F;,] = (wi) \/ for convenience.

Let us begin by rewriting the wave equation for Fy; in a form more suitable for our analysis.
Writing out the covariant derivatives in (2.1.6), we obtain the following semi-linear wave equation
for F;.

OFy = T Myuadratic + 59 Meupic + T My,

where
(FSi)Mquadratic = 2[A€7 alFsi} + 2[1407 aO-Fsi]
+ [00 Ao, Fsi] — [0°A¢, Fii) — 2[F,", Fyp] + 2[Fyo, Fio),

(FSi)Mcubic ::[AO, [AO; Fm]] - [Aey [AZa Fm“

(F‘”)Mw =— DzDg’wi + DiDzwg — (W) A7,
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The semi-linear equation for the difference §Fy; := Fs; — F., is then given by

O6F,; = wFSi)Mquadratic + (BFSi)Mcubic + wFSi)Mwy

Where wFSi)MQuadratic = (FSi)Mquadratic - (F‘:'i)Mquadraticv (6F8i)Mcubic = (FSi)Mcubic - (F“'/'i)Mcubic
and (5F‘“)Mw = (F‘“)Mw — (F;I)Mw
It is here that we shall use the null structure of (HPYM). As discussed earlier, for the purpose

of proving Theorem D, we shall not need the full null structure uncovered in §2.2, but only for the

term [A?, 9, F;], or more precisely, [(AY)¢, 9,Fy;].

Estimates for quadratic terms

We shall begin the proof of Theorem D by estimating the contribution of quadratic terms.
Lemma 4.7.3 (Estimates for quadratic terms). Assume 0 <T < 1. For 1 <m <10 and p = 2,00,

the following estimates hold.

sup |\(Fsi)MquadmmHﬁg,pﬁgwq(oju <Cera (E+F+A? (4.7.15)

sup ||“Fw)MquadramHﬁg,pﬁgw_l(o,l] <Cera- (E+FH+AE+IF+A). (4.7.16)

Proof. We shall give a rather detailed proof of (4.7.15). The other estimate (4.7.16) may be proved
by first using Leibniz’s rule for § to compute (OF, Si)MquadratiC, and then proceeding in an analogous
fashion. We shall omit the proof of the latter.

Let 1 <m <10 and p = 2 or oo. We shall work on the whole s-interval (0, 1]. Let us begin with
an observation that in order to prove (4.7.15), it suffices to prove that each of the following can be

bounded by Cg x4 - (€ +F + A)%:

s~ 21(A)E, VeV e D Filll gz ga o lls™21(AY) ", VoV Y Ell s

m—1
Z s~ /2w ) AL, Wv;mfkj)psi]||L§’p£ix7
j=1

Hs—l/Q[AO, V()Fsi} HEE,pL%H;n—l, ||s—1/2[V0A0, Fsi] ||££,P£?H;ﬂ—l7

1Ei0, Faolll 2 an s NE Futlll gz a1

Here, At and A, called the curi-free and the divergence-free parts of A, respectively, constitute
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the Hodge decomposition of A, i.e. A; = At + A, They are defined by the formulae
AT = —(=A)T10,0° 40, A = (=A)THO x (0 x A));.

Let us treat each of them in order.
- Case 1 : Proof of ||s~1/2[(A°h), V@V;m_l)Fsi]HLE,pE? <Cera (E+F+ A2
We claim that the following estimate for A°f holds.

| A% (s) <SCA+Cra- (F+ A2 (4.7.17)

Hﬁi/‘l’mﬁfﬁgo

Note, on the other hand, that |V, V" Y F, < Ffor 1 < m < 10. Assuming the

lesrarcecs
claim, the desired estimate then follows immediately by Holder.

The key to our proof of (4.7.17) is the covariant Coulomb condition satisfied by Fy;
D‘F, =0,

which was proved in Chapter 2. Writing out the covariant derivative D = 9¢ + A’ and using the

relation Fiy = 0,A,, we arrive at the following improved transport equation for 9*A,.
05(0" Au(s)) = —[A"(s), Fae(s)]- (4.7.18)

Observe furthermore that ||A2f(s)||£l/4,oo£?£gc = SUPp <1 ||A°f(s)||L§Lgo. Our goal, therefore, is
to estimate the latter by using (4.7.18).

Using the fundamental theorem of calculus and Minkowski, we obtain, for 1 < r < oo, the
inequality

1
sup [0°4u(s)cza < 10 Aalza + [ N4 6) Pz ds (47.19)

0<s<1

Let us recall that (A°f); = (=A)719;0°A, by Hodge theory. It then follows that 0;(Af); =
RiR;(9'Ay), where R;, R; are Riesz transforms. By elementary harmonic analysis [32], for 1 < r <

00, we have the inequality

10:A% N 1215 < Cr10 Al 215

On the other hand, using Sobolev and Gagliardo-Nirenberg, we have

f f11/3 £112/3
14 N e < ClNOATIL 1105 A7 1750,
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As a result of these two inequalities, it suffices to bound the L7, and L7L; norms of 9°A(s)

using (4.7.19). For the first term on the right-hand side of (4.7.19), we obviously have
10 Az, + 10" Adluzzs < CT2 (10 Ayl gz + 10 Aull 1) < CA

by Hoélder in time. Next, note that the second term on the right-hand side of (4.7.19) is equal to
I[A*, FSZ]”L‘;T’IL%L;’ where £, = 2 4+ 2. In the case r = 2, we estimate this, using Lemma 4.5.2 and

Proposition 4.5.11, as follows.

NAC Fulll 2z < OTY2 84 22l All prscm o 1l gy g g < Coa - (F 4+ A

£eL2
In the other case r = 4, we proceed similarly, again using Lemma 4.5.2 and Proposition 4.5.11.

I[A°, Fue] < Ol

L2

s

HE?/S‘Iﬁ?ﬁi A||£§/4,oo£%£? |‘FS‘|[32/4~2£%$ < C]:,A . (.7:—|— A)Q

Combining these estimates, we obtain (4.7.17).

- Case 2 : Proof of ||s~'/2[(Ad), VZV;(Em_l)FSZ-]HEg,pE%m <Cera (E+F+ A=~

In this case, we cannot estimate A in L?L2°. Here, we need to look more closely into the
exact form of the nonlinearity, and recover a null form, a la Klainerman [12], Christodoulou [5] and
Klainerman-Machedon [13]. We remark that this is the only place where we utilize the null form
estimate in our proof.

For B = B; (i = 1,2,3), ¢ smooth and B;,$ € S', we claim that the following estimate holds

for0<s<1:

11(BY)", 0|l 2, < C(Sl;p 1Bl )l g - (4.7.20)

Assuming the claim, by the Correspondence Principle, we then obtain the estimate
- df\e
s~ 2T Vel gz < C(St;p||77cHﬁw,wgl)lelﬁgwsu

for smooth T = T;(s) (i=1,2,3) v such that the right-hand side is finite. Let us take 7 = A,
P = v YE,. By Proposition 4.4.2, we have [|A| ;1/4.00 g, < Cr - (F +.A), whereas by definition

||V;m_1)Fsi s/ g < OF for 1 <m < 10. The desired estimate therefore follows.

e
Now, it is only left to prove (4.7.20). The procedure that we are about to describe is standard, due

to Klainerman-Machedon [14], [15]. We reproduce the argument here for the sake of completeness.
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Let us first assume that B; is Schwartz in x for every ¢,s. Then simple Hodge theory tells us

that BY = (0 x V);, where

Vo) i= (-0) @ x Bi(o) = - [ (B) x =10 o

47 y|3 [

where we suppressed the variables ¢,s. Substituting (BY)¢ = (9 x V)¢ on the left-hand side of
(4.7.20), we have

1
1D cejuldVals), devo(s)]ll .z, <3 Z 1Qe(Vie(s), ) (s)llz

gkt gk, e

<Csup [[Vi()lls2) I (5) 151

where we remind the reader that Q;;(¢,v) = 0;¢0;¢ — 0;60;%, and on the last line we used (4.2.9)
of Proposition 4.2.2 (null form estimate). Since 9;V}, = (—=A)719;(9 x B);, and || - || is an L2-type
norm, we see that

sup [V (s)ll g2 = sup[|0;Vie(s)llg: < Csup | Bi(s)ll 1,
3

from which (4.7.20) follows, under the additional assumption that B; are Schwartz in z. Then,
using the quantitative estimate (4.7.20), it is not difficult to drop the Schwartz assumption by

approximation.

- Case 3 : Proof of X215 |52V AL VU T D Bl props < Cera- (E4F+ A2
By the Holder inequality Lf}x . L4 C Lfl,, the Correspondence Principle and Holder for £4P

(Lemma 3.1.8), we immediately obtain the estimate

m—1 m—1
”571/2 v(] AZ \ v m—1-j) 31]”/;2 wez <C Z ||A||£1/4 0 LAy 4“qu|‘£5/4 P payymoiid-
j=1 j=1

Let us apply Lemma 4.5.2 to HA|\£1/4,0o as 1 < j <m—1<9, this can be estimated by

e
LIAP

C(F+.A). On the other hand, as 1 <m—j <m—1<9, | Fy m—j,4 can be controlled by

”ci‘/‘**”z:;*v'vw
CF via Strichartz. The desired estimate follows.

- Case 4 : Proof of ||s~/?[Ay, VOFSi]||£2,PL2er71 <Cera- (E+F+ A2

By Leibniz’s rule, the Holder inequality LZ2LS° - L L2 C L? ., the Correspondence Principle and

t,x
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Holder for £4P (Lemma 3.1.8), we have

m—1

||8_1/2[A0, V()Fsi} ||£§,p£§7_l;ﬁ—1 <C Z ||vg(rj)A0||£2+1/4=°°£§£go ”VoFSHLi/‘k’pL;"’?-L;nflfj'
§=0
Thanks to the extra weight of s'/% and the fact that 0 < j < m — 1 < 9, we can easily prove

||V§;j)z40||£§/4voo < Cera (E+F+.A)? via Lemma 4.5.3, Gagliardo-Nirenberg (Lemma 3.1.14)

L7L

and Proposition 4.5.14. On the other hand, as 0 < m—1—7j < 9, we have ||V0Fs|\£5/4,pﬁmq_~[m_1_j <
s t T

CF. The desired estimate then follows.

- Case 5 : Proof of ||s~1/%[V A, Fsi]||£§,p£%7-{:q,f1 <Cera (E+F+ A2

We claim that the following estimate for VyAg holds for 0 < j < 9.
IV VoAoll o p2poe < Cera - (€ +F + A, (4.7.21)

Assuming the claim, let us prove the desired estimate. As in the previous case, we have

m—1
1572 (Vo Ao, Fuilll 22 gagp—r < C D IVE Vool gy o poe 1 Foll go/am e g1+
j=0

The factor ||V§Ej)V0A0 can be controlled by (4.7.21). For the other factor, we divide

”Li/“"cfagc

into two cases: For 1 < j <m —1 <9, we have | F| ;5/4p pooyym-1-5 < CF, whereas for j = 0 we
: PHy

use Proposition 4.5.11. The desired estimate then follows.

To prove the claim, we begin with the formula dy4y = — fsl 0o Fso(s")ds’. Proceeding as in the

proofs of the Lemmas 4.5.2 and 4.5.3, we obtain the estimate
IV VoAol| o p2pe < ClIIVY VoFuoll 1202 o

In order to estimate the right-hand side, recall the identity doFso = 0“w, + [A%, we] + [Ao, Fso]

from Chapter 2. It therefore suffices to prove
||vgcj)vfw£”£§'2£t2’£;c + ||V§J)[AZ’ wZ]||£§/2’2Lf£;° + ||V5ﬂj) [AO; FSO]HLE/Q’ZLE[,;" < 057‘7:7A~ (5+.7'-+A)2’

for0<j<9.
By Gagliardo-Nirenberg (Lemma 3.1.14) and Proposition 4.5.17, we have ||v§j)v‘fwg||£§,2£%w <

Cera- (E+F+ A2 for0<j<o.
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Next, by Leibniz’s rule, Holder, the Correspondence Principle and Lemma 3.1.8, we obtain

IV A welll g2 g < C > IV All grrasarame oo 1V 0]l 2123 e
§’=0 ’

Note the extra weight of s'/% on the first factor. As 0 < j/ < 9, by Lemma 4.5.2, Gagliardo-
Nirenberg (Lemma 3.1.14) and Proposition 4.5.8, we have ”Vgcj/)AHz:;/Z""’[:ng < Cra-(F+A).
On the other hand, \|V§cj7j/)w||ﬁg,zﬁfﬁgo < Cera-(E+F+ A)? by Gagliardo-Nirenberg (Lemma
3.1.14) and Proposition 4.5.17.

Finally, we can show ||ng) [Ao, F50]||L§,/2,2£%£:o < Cer A (E+F+.A)? by proceeding similarly,
with applications of Propositions 4.5.8 and 4.5.17 replaced by Proposition 4.5.14. We leave the

details to the reader.

- Case 6 : Proof of ||[Fio, Folll g2 poggm—1 < Cera- (€ + F+ A%

By Leibniz’s rule, Holder, the Correspondence Principle and Lemma 3.1.8, we have

m—1
”[FiO’EeO]”[ﬁvP,ct??{;n*1 <C Z ||V.§cj)Fi0||L§/4%;oxHE€0||c§/4=°°L§¢t;”‘l‘j'
3=0 ’

Using Gagliardo-Nirenberg (Lemma 3.1.14) and Lemma 4.5.4, combined with Propositions 4.5.14,

4.5.8, we can prove the following estimate for the first factor (for 0 < j < 9):
vacj)FiOHllgM'zﬁfc <Cerpa (E+F+A).

<

For the second factor, we simply apply Proposition 4.5.14 to conclude ||F50H£5/4,ocﬁ2ﬁm_1_j <
. FH

Cra-E+Cra- (F+A?for 0<m—1-j<09, which is good.

- Case 7 : Proof of ||[F,*, Fsﬁ]”gi?a%q-l;”*l <Cera (E+F+ A2

In this case, we simply expands out Fyy; = 0; Ay — 0pA; + [A;, Ae]. Note that the first two terms
give additional terms of the form already handled in Step 3, whereas the last term will give us cubic
terms which can simply be estimated by using Holder and Sobolev. For more details, we refer to

the proof of Lemma 4.7.4 below. O

Estimates for cubic terms

The contribution of cubic terms are much easier to handle compared to quadratic terms. Indeed,

we have the following lemma.
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Lemma 4.7.4 (Estimates for cubic terms). Assume 0 <T < 1. For 1 <m <10 and p = 2,00, the

following estimates hold.

SU.p ||(FSi)McubiC||£§’pﬁf7{;”71(0,1] < 057]'_;A . (5 + F + A>3, (4722)

sup ||<“Fsi>McubiC||Lg,pﬁgmn_l(m] <Cera (E+F+A?OE+6F+0A). (4.7.23)

Proof. As before, we give a proof of (4.7.22), leaving the similar proof of the difference version
(4.7.23) to the reader.
Let 1 <m <10 and p = 2 or co. As before, we work on the whole interval (0,1]. We begin with

the obvious inequality

||¢1¢2¢3HL3@§CT1/2 H 1930l e 12

i=1,2,3
which follows from Hélder and Sobolev. By Leibniz’s rule, the Correspondence Principle and Hélder

for £4P (Lemma 3.1.8), we obtain

Sljp ||(Fsi)Mcubic||L‘,§”’£%7_'l;n—l SCTl/Q HVIA”ii/‘LOQE?OH;nil ||VIFS ||L§/4,p£?o,;_£;n,1
+ CT1/2||VIA0||3:(S]+1/4,OOL?OHT,1 ||VIFS H£§/4,p£?oﬂg;,—1 .
Note the obvious bound ||V, Fyl[ 5/4.p pocqym—1 < CF. Applying Lemma 4.5.3 to || Ao|| (using the
S L
extra weight of s'/4) and Proposition 4.5.14, we also obtain [Vadoll pot1/0.00 pocgym—1 < Cra-E+
s £ x —

O 4 (F+A)%. Finally, we split | Vo Al /0,00 pooyymr 00 Al 110,00 poe gy and [V Al 15100 oy
s t x s t x L t x

(where the latter term does not exist in the case mm = 1). For the former we apply Proposition

4.4.2, whereas for the latter we apply Lemma 4.5.2. We then conclude ||V A 1/4.00 pogym—1 <

Cr - (F+ A). Combining all these estimates, (4.7.22) follows. O

Estimates for terms involving w;

Finally, the contribution of (¥+1) M, is estimated by the following lemma.

Lemma 4.7.5 (Estimates for terms involving w;). Assume 0 < T < 1. For 1 < m < 10 and

p = 2,00, the following estimates hold.

sup ||<F3i)Mw||£51PL§7{;”—1(0,1] <Cera-(E+F +A)?, (4.7.24)
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sup H<5F-<i>MwIILg,pLMH(OJ] <Cera (E+F+ASE+F+5A). (4.7.25)

Proof. As before, we shall only give a proof of (4.7.24), leaving the similar proof of (4.7.25) to the

reader.

Let 1 <m < 10 and p = 2 or co. We work on the whole interval (0,1]. Note that, schematically,
Fei) My =0 0pw; — 0;0°we + WIN + O(A, ,w) + O(0, A, w) + O(A, A, w).

By Leibniz’s rule, the Correspondence Principle (from the Hélder inequality Ly - L?)x C Liw)
and Lemma 3.1.8, we obtain the following estimate.
H(Fsi)Mw||L§,p£%,}w71

m
< Cllwll gro gazp + CIN“IN | g2 pagymer +C Y ||v;J>A||L;/4,m% 0]l g1.2 g2y
j=0

. -/
+C Z ||V:§’J)A||£;/4’w£to?mllvzgcj )A”L‘é/‘l’wcicm||wH£év2E%;ﬁ[;’L*1*j*j/
J,3'20,j+j ' <m—1
(4.7.26)

By Lemma 4.5.2, combined with Proposition 4.5.8, the following estimate holds for 0 < j < 10.
VD Al p1/1.00 poe < Cr a(F + A). (4.7.27)
s t,x

Now (4.7.24) follows from (4.7.26), (4.7.27) and (4.5.47), (4.5.48) of Proposition 4.5.17, thanks

to the restriction 1 < m < 10. O

Completion of the proof

We are now prepared to give a proof of Theorem D.

Proof of Theorem D. Let us begin with (4.4.7). Recalling the definition of F, it suffices to show
||Fsi||[:§/4ms'm(0,1] < cT + Tl/QCE,F,A ) (E +F+ A)Qa

for i = 1,2,3, p = 2,00 and 1 < m < 10. Starting with the energy inequality and applying the

Correspondence Principle, we obtain

1Fsill 5/a.0 g < ClIViaFai(t = 0)l| zs/a.pgm—1 + CT1/2\|DFSZ-||£§,MMH.
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The first term on the right-hand side is estimated by CZ. For the second term, as OFy; =
(E“)Mquadratic + Foi) Meupic + Fo9)M,,, we may apply Lemmas 4.7.3 — 4.7.5 (estimates (4.7.15),

(4.7.22) and (4.7.24), in particular) to conclude
|||:|Fsi“cg/4+1,p£%7_-l?,f1 < T1/2C‘9,}"A(5 + F +A)2’

which is good.
The proof of (4.4.8) is basically identical, this time controlling the initial data term by C0Z and
using (4.7.16), (4.7.23), (4.7.25) in place of (4.7.15), (4.7.22), (4.7.24). O

Remark 4.7.6. Recall that in [15], one has to recover two types of null forms, namely Q;;(]0,| 1A, A)
and [0,]7'Qi;(A, A), in order to prove H} local well-posedness in the Coulomb gauge. An amusing
observation is that we did not need to uncover the second type of null forms in our proof. Note,

however, that we do see this null form in the caloric-temporal as well; see §2.2.
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Chapter 5

Proof of the Main GWP Theorem

In this chapter, we shall prove the Main GWP Theorem for (YM). Again, we restrict to the case
d=3.

To begin with, in §5.1, we shall reduce the proof of Main GWP Theorem to that for Theorems
E, F and G, which correspond to Steps 1, 2 and 3 in §1.6. We hope that by reading this section
first, the reader will get a better idea about the overall argument in this chapter.

Next, in §5.2, we shall develop covariant techniques to deal with covariant parabolic equations.
As an application, we shall derive in §5.3 covariant parabolic estimates for curvature components of
solutions to (AYMHF) and (cYMHF); the key results are Propositions 5.3.2 and 5.3.4, respectively.

The rest of this chapter will be devoted to proofs of Theorems E, F and G. In §5.4, we shall
apply the covariant parabolic estimates established in §5.3 to study the Yang-Mills heat flows in
the caloric gauge. In particular, an improved local well-posedness for (cYMHF) and (dYMHF) in
the caloric gauge (using only the smallness of the B[F] or E[F], respectively) will be established;
see Theorems 5.4.1 and 5.4.4. The former immediately gives an alternative proof of finite energy
global well-posedness of (YMHF) (Corollary 5.4.3), first proved by Rade [27]. The latter will be an
essential ingredient for the proof of Theorem E in §5.5. In §5.6, we shall prove Theorem F using
the covariant parabolic estimates in §5.3. Finally, in §5.7, we shall prove Theorem G. The proof
will be similar to that of Theorem B (Time dynamics of (HPYM) in the caloric-temporal gauge;
stated in §4.3.2 and proved in §4.4), except that we shall substitute the use of Proposition 4.4.3
(not applicable in the present setting) by Proposition 5.7.1 using the covariant parabolic estimates
in §5.3.

The materials in this chapter had been previously published in [24].
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5.1 Reduction of the Main GWP Theorem to Theorems E,

F and G

In this section, we shall reduce the Main GWP Theorem to Theorems E, F and G. As discussed
earlier, these theorems correspond to Steps 1, 2 and 3 introduced in §1.6, respectively.

Our first theorem, Theorem E, may be viewed as a strengthening of Theorem A (Transformation
to caloric-temporal gauge; see §4.3.2). Morally, the statement of the latter theorem was as follows:
Given a regular solution AL to the Yang-Mills equations in the temporal gauge on I x R? with
|| AT ooy Sufficiently small, there exists a regular gauge transform V' on I x R3 and regular
solution A, to (HPYM) on I x R3 x [0, 1] such that A,,(s = 0) is the gauge transformation of AL by
V,ie.

A(s=0)=V(AHV -9, VvV

and A, is in the caloric-temporal gauge A; =0, A, := Ao(s = 1) = 0. Moreover, V, Fy; := 0;A; and
A; = Ai(s = 1) at t = 0 obey estimates in terms of the initial data Z := ||A||H1 + ||EHL§ The key
improvement in Theorem E is that only the smallness of the conserved energy, instead of || Af|| LoD

is needed to draw the same conclusions.

Theorem E (Transformation to the caloric-temporal gauge, improved version). Consider a regular

initial data set (A, ;) to (YM) which satisfies
1Al 1 < 6p,  E[F] < do. (5.1.1)

where dp, ¢ > 0 are small absolute constants in Propositions 3.2.1 and 5.3.2, respectively. Let A}L be
the corresponding regular solution to (YM) in the temporal gauge given by the Main LWP Theorem,

which we assume to exist on (—Tp,Tp) x R3 for some Ty > 0. Then the following statements hold:

1. There exists a reqular gauge transform V = V(t,x) on (=Tp,Tp) x R3 and a regular solution
Aa = Au(t,x,8) to (HPYM) in the caloric-temporal gauge on (—Tp, Ty) x R? x [0, 1] such that
F,, is reqular and

Au(s=0)=VAV ' -9,VvV L (5.1.2)
2. With the notations I := ||A||H1 + ||E||L3 and V := V(t = 0), the following estimates hold.

20) < C; I, |Vlee <Cqr IV =1d] g + IV =1d] o2, <C; L. (5.1.3)

NLge
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The identical estimate as the last holds for 1% replaced by V=1 as well.

We remind the reader that Z(¢) had been defined in §4.3.2.
The next theorem basically says that the conserved energy E[F] := E[F(¢)] can be used to control
Z(t) for every t € (=T, Tp). ; we refer the reader to Step 2 in §1.6 for the basic idea behind the

theorem.

Theorem F (Fixed-time control by E in the caloric-temporal gauge). Let Ty > 0, and consider a
regqular solution A, to (HPYM) in the caloric-temporal gauge on (—To, To) x R® x [0, 1] satisfying

Z(0) < oo and E[F] < co.

Then for t € (=T, Tp), Z(t) can be bounded in terms of the initial data and Ty, i.e.

sup  I(t) < Cz) mm),m, < O°- (5.1.4)
t€(—To,To)

From Theorems E and F, we obtain a priori estimates for A, in the caloric-temporal gauge on
each fixed-time slice {t} x R3 x [0, 1]. In order to estimate the gauge transform back to the temporal
gauge, however, one needs to control the Ag-norm of Ag(s = 0) (recall Lemma 4.3.6), and for this
purpose it turns out that these fixed-time estimates are insufficient. In order to estimate Ay we
need to take advantage of the fact that the dynamic variables Fj;, A, satisfy wave equations, which

is exactly what the next theorem achieves.

Theorem G (Short time estimates for (HPYM) in the caloric-temporal gauge). Let Ty > 0, and
consider a reqular solution Ax to (HPYM) in the caloric-temporal gauge on (—Ty, Tp) x R3 x [0, 1].
Suppose furthermore that

E[F] < ic, sup Z(t) <D, (5.1.5)
te(=To,To)

where D > 0 is an arbitrarily large finite number and dc > 0 is an absolute small constant indepen-

dent of D.

Then there exists a number d = d(D,E[F]), which depends on D,E[F] in a non-increasing

fashion, such that on every subinterval Iy C I of length d, the following estimate holds:
10t2Allcy(10,22) + Ao(lo) < Cp, gimy- (5.1.6)

Remark 5.1.1. Theorem G is very similar to Theorem B (Time dynamics of (HPYM) in the caloric-

temporal gauge; see §4.3.2). However, there is a little twist which necessitates the extra hypotheses

E[F] < 6¢ in (5.1.5).
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If we had only hyperbolic equations to analyze, then although Z(t) may be large, we could
have used the smallness of the time interval to close the estimates. In reality, however, among the
equations of (HPYM) is an equation for Fyo which, unlike the other components F;, is parabolic.
As such, smallness of the time interval cannot be utilized to solve this equation in a perturbative
manner. We remark that in the proof of Theorem B in §4.4, we did not have this problem as Z(t)
were assumed to be small while the length of the ¢- and s-intervals were ~ 1'; see Proposition 4.4.3.

What will save us in the present case is the fact that the parabolic equation for Fyqg is covariant,
and therefore can be analyzed using the covariant techniques presented in §5.2. The condition
E[F] < 6c therefore provides the necessary smallness for this analysis; see Proposition 5.7.1. A

rigorous proof will be given in §5.7.

We are now prepared to give a proof of the Main GWP Theorem, under the assumption that

Theorems E, F and G are true.
Proof of the Main GWP Theorem, assuming Theorems E, F and G. To begin with, let us consider
a regular initial data set; note that it has finite conserved energy, i.e. E(F) < oo. Applying the
Main LWP Theorem to (foli,E'i), there exists a unique regular solution to (YM) in the temporal
gauge on some time interval centered at 0, which we shall denote by AL. We shall first show this
solution exists globally in time.

For the purpose of contradiction, suppose that the solution AL cannot be extended globally as a
unique regular solution to (YM) in the temporal gauge. Then there exists a positive finite number
0 < Tp < oo, which is the largest positive number for which the solution AL can be extend as a
regular solution on (—7p,7p). We claim that there exists a finite positive constant C' = CiE[f“],To’

which depends only on the initial data and Tg, such that the following inequality holds.

sup (ALl < O g 7, < 00 (5.1.7)
te(—To,To)

Let us complete the proof of the Main GWP Theorem first, under the assumption that the claim
is true. If the claim were true, then the solution may be extended as a unique regular solution to
(=To — €, Ty + €) for some € > 0 by the Main LWP Theorem, which is a contradiction. It follows
that Ty = oo, and thus AL can be extended globally in time as a unique regular solution to (YM)
in the temporal gauge. Observe that the estimate (5.1.7) still holds for the global solution AL for

every Tp > 0.

1By scaling, this is equivalent to having Z(t) large and the lengths of both the s- and t-intervals small.
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Next, Lemma 4.3.5 implies that an admissible initial data can be approximated by a sequence
of regular initial data sets (jl(n)i,l%](n)i). Let us denote the corresponding unique global regular
solutions by A,),. Using the Main LWP Theorem repeatedly (with the help of (5.1.7)), the following
statement may be proved: For every Ty > 0, the sequence of regular solutions A(,), restricted to
the time interval (—Tp,Tp) is a Cauchy sequence in the topology C’t((—TO,TO),H; N L3). Hence
a limit A, exists on (—Tp,Tp). Moreover, it is also possible to show that 0;A(,), — 0:A4, in
Ci((—Tv,Tp), L2). Thus it follows that A, is an admissible solution to (YM) in the temporal gauge
on (—=Tp,Tp). Uniqueness among the class of admissible solutions follows from the corresponding
statement for regular solutions. As Ty > 0 is arbitrary, A, is global, and the Main GWP Theorem
follows.

We are only left to establish the claim, which is a rather straightforward application of Theorems
E, F and G. First, by scaling, we may assume that ||A||H; < 6p and E[F] < 4, i.e. (5.1.1) holds.
This allows us to apply Theorem E, from which we obtain a regular gauge transform V and a regular
solution A, to (HPYM) in the caloric-temporal gauge on (—Tp, Tp) x R? x [0, 1] such that (5.1.2)
holds. Note that as A4, is a regular solution to the (YM), E[F(¢)] = E[F] for all t € (=T, Tp). By

Theorem F, along with the estimate for Z(0) in (5.1.3), we see that

sup  Z(t) < C g1, < 0
te(—To,To)

To use Theorem G, let us cover (—Tp, Ty) by subintervals of length d; the number of subintervals
required can be bounded from above by, say, 10(Ty/d). Applying Theorem G on each subinterval,

we are led to the estimate

||at,mz||ct(IO’L§) + Sl[tpl] Ao(Ip) < Ci,E[f?‘],TO < 00.
s€|0,

The only remaining step is to transfer the above estimate to AL; for this purpose, observe from
(5.1.2) that V satisfies 9;V = V Ap(s = 0). Using Lemma 4.3.6, along with the previous estimates

for Ay and ‘77 we are led to the following estimates for the gauge transform V:

||V — Id”LtooH;{-Fl + |V - Id”th(H;i/sz;o) SciE[f’],To’

[10:(V — Id)”LgOH; + 10:(V — Id)”LgoH;d”’/Q SC’iE[I*D‘],To'

Here, all norms have been taken over (—Tp,Tp) x R3. Moreover, identical estimates for V=1 also

153



hold. These estimates, applied to the formula (5.1.2) (with the help of Lemma A.3.1), implies (5.1.7)

as desired. 0

5.2 Preliminaries

Here, we shall collect some techniques which are applicable to the study of covariant parabolic
equations. The use of such techniques, instead of those for handling the usual scalar heat equation,
is the key analytic difference between this chapter and the last.

We shall begin with a well-known inequality which relates a covariant derivative with an ordinary

derivative of the modulus.

Lemma 5.2.1 (Kato’s inequality). Let o be a g-valued function. Then
|0x|e|| < Dyo| (5.2.1)

in the distributional sense.

Proof. Let € > 0. We compute

_ (0,D,0) (0,0) . ” ”
9z\/(0,0) + €= (07U)+6S| (aja)+€| |D;o| < [Dyo|.

Testing against a non-negative test function and taking e — 0, we see that 9,|0| < |D,o| in the

distributional sense. Repeating the same argument to —9,+/(0, o) + €, we obtain (5.2.1). O

The following Sobolev inequalities for covariant derivatives are easy consequences of Kato’s in-

equality.

Corollary 5.2.2 (Sobolev and Gagliardo-Nirenberg inequalities for covariant derivatives). For a

g-valued function o € H2°, the following estimates hold.

lollzs < Cllol%" ID2o%, (5.2.2)
lollze < ClDgol 2, (5.2.3)
lollzs < CIDaoll 5Pl (5.2.4)

Next, consider an inhomogeneous covariant heat equation

(D, — DDy)o = N. (5.2.5)
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Adapting the usual proof of the energy integral inequality (integration by parts) for the ordinary
heat equation to (5.2.5), we obtain the following gauge-invariant version of the energy integral

inequality.

Lemma 5.2.3 (Energy integral inequality). Let £ € R, (s1, 2] C (0,00) and suppose that o and A;

2

are ‘sufficiently nice*’. Then the following estimate holds.

HU”gﬁv‘”Li(sth] + HDxaHﬁﬁ'ZLi(sl,sQ] (5.2.6)

< Cstllo(s)e3 o) + O = 3/4) 0]l g2 3 ey g + CIN | g2

51,82 (s1,82]"

Proof. We shall carry out a formal computation, discarding all boundary terms at the spatial infinity
which arise; it is easy to verify that for ‘sufficiently nice’ o and A;, this can be made into a rigorous
proof. See also the proof of Proposition 3.1.11.

Let 5 € (sy, so]. Taking the bi-invariant inner product of the equation (D — D*Dy)o = N with

52=3/25 and integrating by parts over (s,3], we arrive at

552473/2 /(0,0)(3) dz + /8/32471/2(D£a, Dyo)(s)dx %
= %53573/2 /(070)(31)dm + (£ —3/4) /91 /524‘3/2(0,0)(5)&3%
+/S 525*1/2(/\/(3),0(5))@%

Taking the supremum over s; < 5 < s9 and rewriting in terms of p-normalized norms, we obtain

1
si'lo(s)llZz ) + (€= 3/4) o]

1
§||U||2L§°° ] + HUHZQ%.'LEU(&’SQ] §§

2
£2(51,52 L5202 (s1,82]

NNV o)l gzerraga g, 00

By Holder, Lemma 3.1.8 and Cauchy-Schwarz, the last term can be estimated by

2
L5 L2 (s1,82)

1
IM 1 + el
s T( 4

51,82]

where the latter can be absorbed into the left-hand side. Then taking the square root of both sides,
we obtain (5.2.6). O

Proceeding as in the proof of Kato’s inequality, we can derive the following parabolic inequality

2A sufficient condition for (5.2.6) to hold, which will be verifiable in applications below, is that o is smooth and
the left-hand side of (5.2.6) is finite.
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for |o|.

Lemma 5.2.4 (Bochner-Weitzenbock-type inequality). The following inequality holds in the distri-

butional sense.

(0s — DN)|o| < NV (5.2.7)
Proof. Let € > 0. We compute
UG L (5,D,0)
S 0-70- €= —FF— 07 SO- )
(0,0)+€
1 (o0,D%)(0,Dyo)
Ay (o,0) +e= —((0,D'Dyo) + (Do, Dyo) — ~= ’ .
(0,0)+¢ R ((0 ¢0) + (D0, Dyo) (0.0) +e )
Therefore,
1 (0, D%)(0,Dy0)
s — A o0)+e=——-—|((o,N) = (Dc,Dyo) + ’
(0.~ 2)V/(0.0) o (0 A) = (D', Dio) + 222
1
S————=(0,N) < |N|.
V(o,o)+e€
Testing against a non-negative test function and taking e — 0, we obtain (5.2.7). O

The virtue of (5.2.7) is that it allows us to use estimates arising from the (standard) heat kernel.
Before we continue, let us briefly recap the definition and basic properties of the heat kernel.
Let e*2 denote the solution operator for the free heat equation. It is an integral operator, defined

by.
1

2V 471'83

The kernel on the right hand side is called the heat kernel on R3. Using Young’s inequality, it is

eSAwO(x) _

[ e sty ay

easy to derive the following basic inequality for the heat kernel:
le*® oLy < Cp 5™ CPTED g s, (5-2.8)

where 1 <p <r.
Now consider the initial value problem for the inhomogeneous heat equation (9s — A)yp = N.
Duhamel’s principle tells us that this problem can be equivalently formulated in an integral form as

follows:

U(s) = e*Pip(s = 0) + /S eCTIAN(3) ds.

0
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With these prerequisites, we are ready to derive a simple comparison principle for |o|, along with
a simple weak maximum principle; both statements are easily proved using basic properties of the

heat kernel.

Corollary 5.2.5. Let 7 := o(s = 0). Then the following point-wise inequality holds.

|lo|(z, 5) < e*2[F|(x) + / ) eCTIAIN(F)|(2) d5, (5.2.9)
0

Proof. This is an immediate consequence of (5.2.7), Duhamel’s principle, and the fact that the heat

kernel K (z,y) = (47751)3/2 e~le—yl?/4s jg everywhere positive. O

For later use, we need the following lemma for the Duhamel integral, whose proof utilizes the

basic inequality (5.2.8) for the heat kernel.

Lemma 5.2.6. The following estimate holds.
l /05 TN (F) dsll 21220, < C”N”Li“v%;(o,so]‘ (5.2.10)
Proof. Unwinding the definitions of p-normalized norms, (5.2.10) is equivalent to
(/O )| /0 =95 N/ (5) a2, %)m < c(/ososw(s)nié %)1/2. (5.2.11)

Let us put f(s) = s'/2|N(s)[|r1; then it suffices to estimate the left-hand side of (5.2.11) by
Cllfl

£2(0,50]- By Minkowski and (5.2.8), we have

@
5

) (s—=3)A 3) dsll 2 C ° =\ =3/4(%\1/2 p(=
H / BN (5) ds]| 12 < / (s —3)~%/ ()12 (5)

Therefore the left-hand side of (5.2.11) is bounded from above by

S S

o[ ([ - ) ) oo

Observe that
1/ ——3/4/=1/2 45 % 1 —\—3/4/=\1/2 48
sup s7%(s—3) (5= <, sup s7/%(s—=3) (57— <C.

5€(0,50] J0 s 5€(0,s0] s

Therefore, by Schur’s test, (5.2.12) is estimated by || f(s)|[2(0,s,) as desired. O
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Finally, we end this section with a simple lemma which is useful for substituting covariant

derivatives by usual derivatives and vice versa.

Lemma 5.2.7. Fork > 1, and a be a multi-index of order k. Then the following schematic algebraic

identities hold.

Do =0{o+ Y 0,0 A0 A, 0 A 00 0), (5.2.13)
*
00 =D{Ma + Y " 0 (0 A,V A, 9 A, DVq). (5.2.14)

In both cases, the summation is over all 1 < j <k and 0 < {q,...,¢;,f <k —1 such that
jHb+-- b +l=k.
Proof. In the case k = 1, both (5.2.13) and (5.2.14) follow from the simple identity
Dio = 9,0 + [A;,0].

The cases of higher k follow from a simple induction argument, using Leibniz’s rule. We leave

the easy detail to the reader. O

5.3 Analysis of covariant parabolic equations

The goal of this section is to analyze the covariant parabolic equations of ({YMHF) and (cYMHF)
using the covariant techniques developed in §5.2. The key result for ({YMHF) is Proposition 5.3.2,
which morally states that covariant parabolic estimates hold, i.e. any ||D§Ek)F(s) |2 for s > 0 can be
controlled by the Yang-Mills energy E with an appropriate weight of s. A parallel development for
(cYMHF) using the magnetic energy B[F(t)] := 3 3, [ |Fi;|*da will also be given; see Proposition
5.3.4.

5.3.1 Covariant parabolic equations of ({YMHF)

Let I C R be an interval, and consider a smooth solution A, to the dynamic Yang-Mills heat flow

Fy, = DEFELH (dYMHF)
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on I x R? x [0,1].

Recall, from Chapter 2, the following parabolic equation satisfied by F},,:
D,F,, — D'DF,, = =2[F,", F,/.

We shall derive covariant parabolic equations satisfied by higher covariant derivatives of F. Given

a g-valued tensor B, we compute
D;,D,B - D,D‘D,B =D,D;B — D‘D,D,B — 2[F,*,D,B].
Concisely, [D;, Dy — D‘Dy]B = O(F, D, B). Using this, it is not difficult to prove the following

proposition.

Proposition 5.3.1 (Covariant parabolic equations of ({AYMHF)). Let A, be a solution to (AYMHF).

Then the curvature 2-form F),, satisfies the following parabolic equation.
(D, = D'Dy)F,, = —2[F,", F4. (5.3.1)

The covariant derivatives of F,, satisfy the following schematic equation.
k
(D, - D'D,)(DFF) = > ODY'F, DI IF). (5.3.2)

=0

Proceeding in the same manner for a solution 4, (a = 2!, 22,23, s) to (cYMHF), we may derive

the following equation for Dgck)Fij:
k . .
(D, - DD)(DWF) =Y ODY F,DFEIF). (5.3.3)

5.3.2 Estimates for the covariant parabolic equations

Let us fix a time ¢ € I. Let us denote the Yang-Mills energy of F(t) at s = 0 by E(¢), i.e.

B(t) = B[F(t,s = 0)] = 3 1| Fu(t, 5 = 0)[3.

p<v

Recall the notation D; := s'/2D;. The following proposition, which is proved by applying

covariant techniques to (5.3.2), is the analytic heart of this chapter.
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Proposition 5.3.2 (Covariant parabolic estimates for F). Let I C R be an interval, and t € I.
Suppose that Aa is a solution to (AYMHF) on I x R* x [0,1] in CP3(I x [0,1], H®). Then there
exists ¢ > 0 such that the following statement holds: If E(t) < ¢, then for every integer k > 1,
we have

||D§Ck_1)F(t)||L§/4,oo£§(0’1] + ||D§f)F(t)||C§/4.2£2(0’1] < Crrw - VE®). (5.3.4)

Proof. Fix t € I, and let us start with the cases k = 1,2. Let s € (0, 1]. Applying the energy integral
estimate (5.2.6) with £ = 3/4 to (5.3.1) and and ¢ = 3/4 + 1/2 to (5.3.2) for D, F, we have

||F||£§/4v°°£i(07§] + ||ID:8F||£§/4‘2EQ2E(O)§] < C\/E'i' CH@(F, F)||£§/4+1>15§(07§]-

||DIF||L§/4,OQ£%(07§] + ||’D£2)FH£§ ] < CHDmF||£§/4,2£%(07§] + CYH(D)('D:DF7 F)Hﬁi/4+1,1£§(07§].

4,2
/*2r2(0,8

No term at s = 0 arises for the second estimate, as we have liminf,_,o 53/4||DEF(5)||L3(S) = 0 for
aF e Cr([0,1], HY).

Combining the two inequalities, we obtain
Ba(s) < OVE + C(IOW.F) | s/svnis o oy + (OB ssasnn o )

where

B2(§) = Z (||Da(vk_1)F||£g’/4v°°£.2r(07§] + ||D§:k)F||£‘:’/4=2£i(07§])'
k=1,2

Using Hoélder and Corollary 5.2.2; we see that
1001, 02)l|2 < Cllo [[}5 [ Do |17 Daoall 2 -
By the Correspondence Principle, Lemma 3.1.8 and the fact that s < 1, we have

OB, F)[| po/a11 1 o <C™/ ()2 1D, || | < OBy(s)”

£2(0,3] £3/%%° 02 (0,6] £¥*2r2(0,s

Similarly, we also have

|O(D,F,F) | SCBy(s).

”Li/““’lai(o,g

Therefore, we obtain a bound of the form Bs(s) < CVE +CBsy (5)?, for every s € (0,1]. Then by

a simple bootstrap argument, the bound By(1) < CVE follows, which implies the desired estimate.
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Let us turn to the case k > 3, which is proved by induction. Fix k > 3, and suppose, for the

purpose of induction, that (5.3.4) holds for up to & — 1. That is, defining

k—1
Bk—l = Z |:||,D:(EJ71)F||£§/4vw£§(0’1] + ||D3(L‘J)F||L"§'/4v2£z(0’l]:|7
j=1

we shall assume that By_; < Cy g - VE.

Applying the energy integral estimate (5.2.6) with ¢ = %Jr k=1 to (5.3.2) for ng_l)F, we obtain

2
k—1
1D R o o H DT a0y < CIDEVF oy 5 +C 3 IODPF, DEF) | i -
7=0
where we used the fact that liminfs_q 83/4\|D§Ck71)F(s)||£2(5) =0.
The first term is bounded by By_1; therefore, (5.3.4) for k will follow once we establish
ZH@ DE, DS 1IE)| wajavna . < CBE. (5.3.5)
By Leibniz’s rule, we see that (5.3.5) follows once we establish the estimates
|O(D.G1, Dy G2)|| 374511 -, < CB3
LT (5.3.6)

||@(G1’D§¢2)G2)HL§/4+1’1[€ + ||(O)(’D£2)(;17 C1'2)||[,§/4+1,1£32C S CB%,

for any g-valued 2-forms G; = G;(z,s). Note that these roughly correspond to the case k = 3 of
(5.3.5).
Using the Correspondence Principle, Lemma 3.1.8, and recalling the definition of By_1, it suffices

to prove the estimates

I0(De01,Ds05) |22 <C[Dyon |15 [DP o |5 D o] 12,

10(01, D )| 12 <C[Daon|’[DP o [[}57DP0ra | 1.

The former is an easy consequence of Holder, (5.2.2) and (5.2.3), whereas the latter is proved
similarly by applying Hélder, (5.2.3) and (5.2.4). O

Recalling Fy, = DYF},, we obtain the following estimates for Fi,.

Corollary 5.3.3. Under the same hypotheses as Proposition 5.3.2, the following estimates hold for
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every integer k > 0.

IDSVF ) p/ae 2 0.1 + 1P Fsll g5/52 22 g1 <Ch - VE, (5.3.7)
||D§3k)Fs||£§/4,mL;o T ha ||D;’€>FS||L§/4,2£? (0.1] <CrE - VE. (5.3.8)

Proof. The L2-type estimate (5.3.7) follows immediately from Proposition 5.3.2 by the relation
F,, = D'F,,. The L>®-type estimate (5.3.8) then follows from (5.3.7) by (5.2.4) of Corollary 5.2.2

(covariant Gagliardo-Nirenberg) and the Correspondence Principle. O

The above discussion may be easily restricted to spatial connection 1-form A; satisfying (cYMHF).

Given a spatial 2-form F' = Fj; (i,j = 1,2,3), let us define the magnetic energy B[F] by

B[F] =Y %”Fij(s = 0)][Z:-

i<j
Repeating the proof of Proposition 5.3.2, the following proposition easily follows.

Proposition 5.3.4 (Covariant parabolic estimates for F'). Let d¢ > 0 be as in Proposition 5.3.2, and
consider a solution (A;, Ay) to the covariant Yang-Mills heat flow Fy; = D'Fy; in C°(]0,1], H).
Suppose furthermore that B := B[F(s = 0)] < dc. Then the following estimate holds for every
integer k > 1:

IDFD Pl

+ [|DPVF|| pasae | <Cip- VB. (5.3.9)

£2(0,1] £2(0,1

5.4 Yang-Mills heat flows in the caloric gauge

The main focus of §5.4.1 will be to apply the covariant smoothing estimates proved in §5.3 to
(cYMHF) in the caloric gauge, continuing the study in §3.6. Note that (¢cYMHF) in the caloric
gauge is nothing but the original Yang-Mills heat flow (YMHF).

As a byproducts of the analysis, we shall obtain an alternative proof of global existence of a
solution to the IVP for (YMHF) when the initial data is regular and possesses finite (magnetic)
energy (Corollary 5.4.3). This result was first proved® by Réde in his paper [27], but employing a
different method than here. For more discussion, we refer the reader to the remark after Theorem
C below.

In §5.4.2, we shall develop a parallel study of dynamic Yang-Mills heat flow (dYMHF) under the

3The paper [27] deals with the Yang-Mills heat flow on compact 2- and 3-dimensional Riemannian manifolds, but
the proof also applies to the case of R3.
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caloric gauge condition A, = 0. This will be the main ingredient for the proof of Theorem E in the
next section.

Finally, in §5.4.3, we shall present some results which are useful for transferring estimates in-
volving covariant derivatives (such as those obtained in §5.3) to the corresponding ones with usual
derivatives. The key ingredient is (5.4.4), which is an LS°-estimate for the connection coefficients

A=A,

5.4.1 Analysis of (YMHF)

Here, we consider (cYMHF) in the caloric gauge A; = 0. As this system is simply the original
Yang-Mills heat flow, we shall refer to it simply as (YMHF).

Theorem 5.4.1 (Improved local well-posedness for (YMHF)). Consider an initial data set A; €
H2°. Suppose furthermore that Fij = aiZj—ajZiﬂZi,Zj] belongs to L2 and the norm is sufficiently
small, i.e.

. 1 _
B[r] = 52 IFil72 < dc,

i<j
where d¢ > 0 is the the positive number as in Proposition 5.3.2.
Then there exists a unique solution A; to (YMHF) with initial data A;(s = 0) = A; on [0,1],

which belongs to C$°([0,1], H>).

Remark 5.4.2. Other constituents of a local well-posedness statement, such as continuous dependence
on the data, can be proved by a minor modification of the proof below. Also, the statement can be
extended to a rougher class of initial data and solutions by an approximation argument. We shall
not provide proofs for these as they are not needed in the sequel; we welcome the interested reader

to fill in the details.

Proof. By Proposition 3.6.1 (with rescaling), there exists s* > 0 such that a unique solution 4; to

the IVP for (YMHF) exists in C2°([0, s*], H®) and obeys

swp [[A(s)lg SC_sup [ A(s)] g < CAlLgy. (5.4.1)

0<s<s* <s<s*

We remark that the first inequality holds by Sobolev embedding.
Let us denote by spax the largest s-parameter for which A; extends as a unique solution in

C([0, Smax), H2®). We claim that under the hypothesis that B[F] < ¢, the following statement
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holds:

If smax < 1 then  sup  [[A]| gz < o0. (5.4.2)

S€[0,5max
If this claim were true, then we may apply Proposition 3.6.1 to extend A; past Smax if Smax < 1.
Therefore, it would follow that sp.c > 1.
Let us establish (5.4.2). The first step is to show that ||A(s)[[zs does not blow up on [0, smax)-
By (5.4.1), it suffices to restrict our attention to s > s*; therefore, s € (s*, Smax). Since Smax < 1,

by Proposition 5.3.4 and Corollary 5.2.2, we see that
10.45(5)l| s = D Fu(s) g < 5~'Cr - VB,
Integrating from s = s* and using (5.4.1), we arrive at?

sup  [JA(s)]|zs < ||ZHH; + Cg - |log s*|VB < . (5.4.3)

§* <8<Smax

Next, let us show that [|A;(s)|| ;1 does not blow up on [0, smax). Again, it suffices to consider

5 € (5%, 8max)- Recall that D,D!F); = 0,D*F,; + [A, D*F};]; thus by triangle and Holder,
105 A4i(3) g1 < DD Fri(s)ll 2z + | A(s)l| g D Fri(s)]| s -
Using Proposition 5.3.4 and Corollary 5.2.2, we obtain

||85Ai(s)||H%gs_lOB-\/1§+s_3/4C’B-\/]§< sup ||A(s)||Lg).

s*<s<Smax
Recalling (5.4.2) and integrating from s*, we see that sup,. ., [|Ai| g1 < oo, as desired. [

For any initial data (in HS°) with finite magnetic energy, we can use scaling to make B(s = 0) <
d¢; thus, Theorem 5.4.1 applies also to initial data with large magnetic energy. Furthermore, using
the fact that the magnetic energy B(s) is non-increasing in s under the Yang-Mills heat flow (which
is formally obvious, as the Yang-Mills heat flow is the gradient flow of B; see [27]), we can in fact
iterate Theorem 5.4.1 to obtain a unique global solution to the IVP, leading to an independent proof

of the following classical result of [27].

Corollary 5.4.3 (Rade [27]). Consider the IVP for (YMHF) with an initial data set A; € H®

which possesses finite magnetic energy, i.e. B[F] := (1/2) doicy |Fijll2 < oo. Then there exists a

4Note that integrating from s* allows us to bypass the issue of logarithmic divergence at s = 0.
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unique global solution A; to the IVP in C°([0,00), HS®).

5.4.2 Analysis of (IZYMHF) in the caloric gauge
Here, we shall present an analogue of Theorem 5.4.1 for (AYMHF).

Theorem 5.4.4 (Local well-posedness for ({YMHF) in the caloric gauge). Let I C R be an interval
and consider an initial data set A,, € C{°(I, HZ®). Suppose furthermore that the energy is uniformly

small on I, i.e.

— 1 —
sup B[F ()] =sup o > [ F,u ()72 < dc,
tel tel 2 = :

where d¢ > 0 is the the small constant in Proposition 5.3.2.
Then there exists a unique solution A,, to (AYMHF) in the caloric gauge with initial data A, (s =
0) = A4, on [0,1], which belongs to Cy (I x [0,1], HZ®).

The proof is analogous to that for Theorem 5.4.1, replacing the use of Proposition 3.6.1 by3.6.4.

We shall omit the details.

5.4.3 Substitution of covariant derivatives by usual derivatives

At several points below, we shall need to transfer estimates for covariant derivatives to the corre-
sponding estimates for usual derivatives. The purpose of this part is to develop a general technique
for carrying out such procedures. Our starting point is the following proposition, which concerns
estimates for the L° norm of A.

To state the following proposition, we need the following definition.
31
WI(t) = 0aAD)] jp-
k=1

In fact, this is a part of a larger norm Z(t), whose definition had been given in §4.3.2.

Proposition 5.4.5. Let I C R be an interval, t € I, and consider a solution A,, € C3(Ix[0, 1], HZ®)
to (AYMHF) in the caloric gauge Ay = 0 on I x R® x [0,1]. Suppose that E(t) := E[F(t)] < éc,
where 0c > 0 is the small constant in Proposition 5.3.2. Then the following estimate holds for all
0<k<29.

||v§c’€>A(t)||¢/4,ooL:o o < WI(t) + Crp) @z - VE). (5.4.4)

Proof. Henceforth, we shall fix ¢ € I and omit writing ¢. By the caloric gauge condition A; = 0,

we have the relation 0,4, = Fj,, where the latter can be controlled by Corollary 5.3.3. Observe
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furthermore that

10 A e < CHT

for 0 < k < 29, by Sobolev (or Gagliardo-Nirenberg). Now, the idea is to use the fundamental
theorem of calculus of control Bék)A(s) for 0 < s < 1.
We shall proceed by induction on k. Let us start with the case £ = 0. By the fundamental

theorem of calculus and Minkowski’s inequality, we have

1 /
ds
sYYA(s) | < s A Lo +/ (s/8) /(") P (') oo R

As remarked earlier, the first term on the right-hand side may be estimated by (47 uniformly in

s € (0,1]. For the second term, we apply (5.3.8) of Corollary 5.3.3 and estimate (s")/4||F(s’)|| o
by C & - VE. The case k = 0 of (5.4.4) follows, since

1 !
d
sup / (s/s")/* S—f <C < oo

0<s<1

Next, for the purpose of induction, assume that (5.4.4) holds for 0,1, ..., k—1, where 1 < k < 29.
Taking &fck) of 0;A, = Fy,, using the fundamental theorem of calculus, Minkowski’s inequality and

multiplying both sides by s'/4t%/2 we arrive at

1 /
51/4||ng)A(3)HLg° < 51/4+k/2||ag(ck)AHLg° +/ (S/S/)1/4+k/2(3/)5/4||ng)Fs(S/)||L;o %
Once we establish
sup HS5/4v§:k)FS||Eg° S Ck,E,(A)I . \/E, (545)

0<s<1
then proceeding as in the previous case, (5.4.4) for k will follow, which completes the induction.
Fix 0 < s < 1. Applying (5.2.14) of Lemma 5.2.7 and multiplying both sides by s°/4¥/2 we see

that
SSMVIEIR,(s) = SS/ADFER(s) + Z OV A sV A SSIADOF),
*

where the range of the summation is as specified in Lemma 5.2.7. Let us take the L3°-norm of both

sides; by the triangle inequality and (5.3.8) of Corollary 5.3.3, it suffices to control

SO VA, sV A DR 1
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for each summand of 3. Let us throw away the extra power s/4 (which is okay as 0 < s < 1) .

Observe that 0 < ¢4,...,¢; <k — 1; therefore, by the induction hypothesis, we have
sV EDV A g, -+ 18 AVED A®s) [ pee < Crpnz
Note furthermore that ||s5/4Dg(f)Fs(s)||Lgo < Cpr - VE by Corollary 5.3.3. Hence, by Holder,

each summand may be estimated by C} g ()7, and thus (5.4.5) follows. O

As a consequence, we obtain the following corollary which allows us to easily switch estimates

for covariant derivatives to those for usual derivatives.

Corollary 5.4.6 (Substitution of covariant derivatives by usual derivatives). Assume that the hy-
potheses of Proposition 5.4.5 hold. Let o be a g-valued function on {t} x R3 x (0,1], m > 0 an

integer, b > 0,1 < p,r < co. Suppose that there exists D > 0 such that the estimate
IDP0l| oo, < D (5.4.6)
holds for 0 < k <m. Then we have
||V§ck)0||gg,pﬁg < Cwzwew D (5.4.7)

for 0 < k < min(m, 30).

Proof. We shall again omit ¢ in this proof. The case k = 0 is obvious; we thus fix 1 < k < min(m, 30).

Using (5.2.14) of Lemma 5.2.7 to ¢ and multiplying by s®+#/2

, we get

VP (s) = " DFa(s) + Y /4O(s/ VIV A(s), -, s1/4V D A(s), "D o (s)),

where the range of summation ), is as specified in Lemma 5.2.7. Taking the £2L£7 norm of both

sides, applying triangle and using (5.4.6) to estimate Hszg(Ek)cr(sﬂ cror = ||D§k)o-|\ﬁ,p£,. < D, we

are left to establish
Sj/4||0(51/4vgél)14(3), . 781/4V§Cej)14(8)7 Sng(f)U(S))HLz.c; <Cwr-D (5.4.8)

for each summand in ) . Note that we have an extra power of s7/*, which we can just throw away

5We gain an extra power of s1/4 for each factor of A; replacing 0;, thanks to the subcriticality of the problem at
hand.
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(as 0 < s < 1). Let us use Holder to put each 51/4V§;&)A(5) in £L°LYX and szg)a(s) in L2LT.
Then using Proposition 5.4.5 (This is possible since k& < 30) and (5.4.6) to control the respective

norms, we obtain (5.4.8). O

5.5 Transformation to the caloric-temporal gauge: Proof of

Theorem E

The purpose of this section is to prove Theorem E. The key idea is to complement Theorem A with

the improved local well-posedness of ({YMHF) in the caloric gauge (Theorem 5.4.4).

Proof of Theorem E. We begin with a regular solution AL to (YM) in the temporal gauge, defined

on (=Tp, Ty) x R3. Thanks to the regularity assumption, note that A, € C7°((=To, To), Hy®).

Step 1. Construction of regular solution to (HPYM) in caloric-temporal gauge. Recall the

hypothesis (5.1.1). By smoothness in ¢ and conservation of energy, respectively, it follows that

sup AT ;0 < Sp, sup  E[FT(1)] < dc, (5.5.1)
t€(—€o,€0) te(=To,To)

for some small ¢y > 0. The second smallness condition allows us to apply Theorem 5.4.4, from which
we obtain a unique solution A, to (AYMHF) in the caloric gauge on (—Tp, Tp) x R3 x [0,1], which
belongs to Cy s((—To, To) x [0,1], HL®).

We shall apply a gauge transform V = V(¢ z,s) to ga to enforce the caloric-temporal gauge

condition. Let us denote the resulting connection coeffients A,, i.e.
Ap = VAV —0,VV 1,

In order for A, to be in the caloric-temporal gauge, we need a gauge transform V which is A)
independent of s (to keep A; = 0) and B) makes A, = 0. These two requirements are in fact

equivalent (once one assumes enough regularity of V') to V solving the ODE

OV =V A,

V(it=0)=V,

where Ao = Zo(s =1) and Vis a gauge transform on R3, to be specified in Step 2 in accordance

to Theorem A.
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Step 2. Application of Theorem A.

The next step of the proof is to apply Theorem A to choose V and furthermore obtain a quan-
titative estimate for (A)Z(0). Thanks to the first inequality of (5.5.1), we may apply Theorem A on
the time interval (—ep,€p). Let us mark the objects obtained from Theorem A with a prime, i.e.
A, V' and V'. Consider A), = A} (t,z,s) defined by

A= (VH)TTAY -8,V TV,
where we remind the reader that V' = V'(¢, ), (V')~! = (V’)~1(¢,x) are independent of s.

Note that ZliL is a solution to (AYMHF) in the caloric gauge in Cy s((—¢€o, €0) X [0,1], H®), as is

/Nlu. Moreover, their initial data sets coincide (both being AL) By the uniqueness lemma (Lemma

3.6.6), we conclude that Zﬂ = AL on (—eg,€0) x R3 x [0,1], i.e.

A, =WVHTTAV —a, V)TV
on (—ep, e9) x R? x [0,1]. As Ay = 0, we also see that

V' =V'A,,

Vit=0)=V"

on (—eg, €g) X R3.

At this point, let us make the choice V = V’. Then the previous ODE is exactly that satisfied
by V. Therefore, by uniqueness for ODE with smooth coefficients, V = V' on (—¢g, ¢p) x R3, and
hence we conclude that

A=A

on (—€g, €9) x R3 x [0,1]. From Theorem A, the quantitative estimates in (5.1.3) follow. Moreover,
it is not difficult to show that V is a regular gauge transform on (—7Tp,Tp) x R3. It also follows that
A,, is a regular solution on (—Tp, Tp) x R3 x [0, 1], since ,ZI# were regular. This completes the proof

of Theorem E. O
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5.6 Fixed-time estimates by E : Proof of Theorem F

Our aim in this section is to prove Theorem F. To begin with, we shall split Z(t) = QZ(t)4 F)Z(t),

where

10
L) i= 3 [IV0a FoOll g gms + [ V0w Fa®)l gy |
k=1

31
DI(t) =" (0w A i1
k=1

Theorem F will be reduced to establishing two inequalities, namely (5.6.1) and (5.6.6) of Propo-
sitions 5.6.1 and 5.6.2, respectively.

Throughout this section, we shall be concerned with a regular solution A, to (HPYM) in the
caloric-temporal gauge on (—Tp, Tp) x R? x [0, 1] (T, > 0), which satisfies Z(0) = (A Z(0)+ ) Z(0) <

oo and E[F] < co. By conservation of energy for (YM) along s = 0, we see that
E[F(t,s = 0)] = E[F] Vt <€ (~Tp,Tp).

We shall denote the common value of E[F(¢,s = 0)] by E.

Proposition 5.6.1. There exists® N > 0 such that for any t € (=Ty,Tp), we have
WI(t) < Cnrzioye (1+[E)Y, (5.6.1)
Proof. By symmetry, it suffices to consider ¢ > 0. The main idea is to use the relation
Fo, = 0l4,;, (5.6.2)

which holds thanks to the fact that we are in the temporal gauge 4, = 0 along s = 1, and proceed
as in the proof of Proposition 5.4.5.

We first estimate the L2° norms. We claim that
1O AD1 < Crarzoym (1+8)H (5.6.3)

for 0 < k < 29.

6In the course of the proof, it will be clear that N may be chosen to depend only on the number of derivatives of
A, controlled. In our case, in which we control up to 31 derivatives of A;, we may choose N = 32.
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Let us begin with the case k = 0 and proceed by induction. Note the inequality
t
1A; (Bl < [ As(t = 0)[|ee +/ 19, ()| e dt'.
0

Using Proposition 5.3.2, we may estimate the last term by Cg¢; from this, the k = 0 case of

(5.6.3) follows.
Next, to carry out the induction, let us assume that (5.6.3) holds for 0,1,...,k — 1, where

1 <k <29. Taking O;k) of both sides of (5.6.2) and using the fundamental theorem of calculus, we

obtain

t
108 A; (0)llzs= < 108 A;(t = 0)|| 25 +/ 108 E i (¢) | 3= at'.
0

The first term is estimated by (D Z(t = 0), as 1 < k < 29. For the second term, we apply (5.2.14)

of Lemma 5.2.7. Then it suffices to estimate
t
/ (IR Egi(#) 12 + D OGOV A, ... 01 A, DY o) (¢ - )
0 *

(where D, := 0, + [A,,].) The range of the summation ), is as in Lemma 5.2.7; in particular,
ly,...,4;,£ <k —1. Let us use Holder to estimate each factor in LZ°, and estimate the derivatives
of A and F;; by the induction hypothesis and Propostion 5.3.2, respectively. Then it is not difficult

to see that the worst term (in terms of growth in ¢) is of the size

t
Ck,<A>I(O),E/ (L+t)rdt = Cr,rz0),E (1 + )L
0

Therefore, (5.6.3) for k follows. By induction, this establishes the claim.

With (5.6.3) in hand, we now proceed to prove
10 A2z < Crarzoym (1+6)H (5.6.4)

for 1 <k < 31.

Arguing as in the proof of (5.6.3), we arrive at the inequality

108 A;(8)]]2 <)108 A;(t = 0|2

t
- / (IDS o, (¢)llzz + - 1004, ..., 0 A, DY Fy) (¢l ) at'
0 *
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It suffices to estimate the ¢’-integral. For 1 < k < 30, let us use Holder to estimate each agi)A
in LY® and Dg)Em in L2. Then we estimate these by (5.6.3) and Proposition 5.3.2, respectively,
from which (5.6.4) follows immediately for 1 < k < 30.

Next, proceeding similarly in the case k = 31, all terms are easily seen to be okay except
1OOFY A, Fo,)(t')| 2

for which we cannot use (5.6.3). In this case, however, we may put a8 A in L2 and F,; in L.
Then the former can be estimated by using the case k = 30 of (5.6.4) that we have just established,
whereas the estimate for the latter follows from Proposition 5.3.2. It follows that this term is of size
Crzo)E (1 + )31, Integrating over [0,t] gives the growth Crz(oye (1+ t)32.

Finally, we are left to prove estimates for 0;A4;. For this purpose, we claim
188 VoA 12 < Crwzoye (1+8)* (5.6.5)

for 1 < k < 30.

To prove (5.6.5), recall that 0, A, = F,,;; therefore, the case k = 1 follows immediately from
Proposition 5.3.2. For k > 1, we take 6§3k71) and use Lemma 5.2.7 to substitute the usual derivatives
by covariant derivatives. Then by (5.6.3), (5.6.4) and Proposition 5.3.2, (5.6.5) follows.

Combining (5.6.4) and (5.6.5), we obtain (5.6.1) with N = 32. O

Proposition 5.6.2. For any t € (—Ty,Tp), we have
FIL(t) < Ciarzy g - VE- (5.6.6)

Proof. Throughout the proof, the time ¢ € (—Tp, Tp) will be fixed and thus be omitted.

Recalling the definition of (¥+)Z, establishing (5.6.6) reduces to proving

”V$FS||£§/4”’7{’;—1 Scky(@I,E : \/E, (5.6.7)

IVoFull g/a.n g1 <Cr iz s VE (5.6.8)

for 1 <k <10 and p = 2, c0.

The estimate (5.6.7) is an easy consequence of (5.3.7) of Corollary 5.3.3 and Corollary 5.4.6. On
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the other hand, to prove (5.6.8), we use the formula
DoFy; = D'DyFy; + DiFo — 2[F, ", Fiel — [Ao, Ful,

which is an easy consequence of the Bianchi identity and the parabolic equation for D4 Fy;. Taking
Di’“‘l) of both sides and using Proposition 5.3.2, Corollary 5.3.3 and Proposition 5.4.5, we obtain

+[IDS IV Fy <Crg-VE (5.6.9)

”'D;k*l)VOFsi ”55/4'253(071] <

||L§/4'°°£i(0,1]

for k > 1. At this point, applying Corollary 5.4.6, we obtain (5.6.8). O

Combining Propositions 5.6.1 and 5.6.2, Theorem F follows.

5.7 Short time estimates for (HPYM) in the caloric-temporal
gauge: Proof of Theorem G

The goal of this section is to prove Theorem G. As discussed in §5.1, this theorem follows from a
local-in-time analysis of the wave equations of (HPYM). As such, its proof will follow closely that
of Theorem B, which is essentially a ‘H_! local well-posedness (in time)’ statement for (HPYM) in
the caloric-temporal gauge.

To begin with, let us recall the following definition from §4.4.1:

3
E(t) = Z (Hv;m—l)pso(t)||£i.ooﬁi(0’1] + HVS")FSO(LL)Hz:i%z(o,l]>'

m=1

Given a time interval I C R, we define £(I) to be sup,c; E(t).

The main reason why the analysis in Chapter 4 is insufficient to prove Theorem G is because of
Proposition 4.4.3, which gives an estimate for £(t) only under the hypothesis that either the size of
the initial data or the s-interval is small. The following proposition is a replacement of Proposition
4.4.3, which utilizes the smallness of the conserved energy E(t) instead. It is based on the covariant

parabolic estimates derived in §5.3.

Proposition 5.7.1. Let I C R be an open interval and t € I. Consider a regular solution A, to

(HPYM) in the caloric-temporal gauge on I x R3 x [0,1] such that

E(t) := EF(t)] <dc, WI(t)<D,
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where D > 0 is an arbitrarily large number and dc > 0 is the small constant in Proposition 5.3.2.
Then the following estimate holds:
E(t) < Cprw)- (5.7.1)

In §5.7.1, we shall give a proof of Proposition 5.7.1. Assuming Proposition 5.7.1, the proof of
Theorem G is a straightforward adaptation of that for Theorem B. We shall present a sketch in
§5.7.2.

5.7.1 Improvement of estimates for Fj,

The goal of this subsection is to prove Proposition 5.7.1. Consider a regular solution A, to (HPYM)
on (—Tp, Tp) x R? x [0,1] (Tp > 0). Recall from Chapter 2 that Fy, satisfies the covariant parabolic
equation

(D, — D'Dy)Fy = 2[F,", Fy]. (5.7.2)

Recall furthermore that [D;, (D — D‘D;)]B = O(F,D,B). This implies that D;k)Fso fork>1

satisfies the following schematic parabolic equation.

k
(D, — DD (DY Fy) = > O(DYF, DI IF,). (5.7.3)
j=0
Now recall that the hyperbolic Yang-Mills equation holds along s = 0. In particular, the con-
straint equation DFyy(s = 0) = 0 holds, which is equivalent to Fyo(s = 0) = 0. Taking this extra

ingredient into account, it follows that Fyy obeys an improved bound compared to the one proved in

§5.3, as stated below.

Proposition 5.7.2 (Improved estimate for Fyo, with covariant derivatives). Let Top > 0 and t €
(=To,Tp). Consider a regular solution A, to (HPYM) on (—Tp, Tp) x R3 x [0, 1] such that E(t) < éc,
where d¢c > 0 is the small constant in Proposition 5.3.2. Then the following estimate holds for each

integer k > 0:
HDa(ck_l)Fso(t)Hz:;"”z:g(o,u + ”’Da(ck)FSO(t)H[jé’Qﬁz(O,l] < Crrw -E(), (5.7.4)

When k = 0, we omit the first term on the left-hand side.

Proof. We shall fix t € (—Tp,Tp) and therefore omit writing ¢. Let us begin with the case k = 0.

Applying Lemma 5.2.6 to the covariant parabolic equation for Fyg, along with the fact that Fyg = 0
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at s = 0 thanks to (YM), it follows that

IPalzzacs <20 [ e PR Full () a5y

Using Lemma 5.2.6, Holder, (5.3.4) (Proposition 5.3.2) and (5.3.7) (Corollary 5.3.3), we have

S
||/ eCTIAF Y, Ful|(3) ds| z1.2 2 §||[FO€’F5A||L;+1,2%
0 :
<IIFo Nl gorae g | Fsell g/4.2 2 < C - B
Therefore, we have proved ||Fyol| 12, < Cg - E.
For k > 1, we proceed by induction. Suppose, for the purpose of induction, that the cases

0,---,k—1 has already been established. Using the energy integral estimate (5.2.6) with £ = 1+ %
to (5.7.3) for DYV E,, we see that

||Da(¢k71)EeO||/;§v°°/;g + ||D§:k)FsO||L§’2Lg

k—1
< CIDYF D Fyoll 122 +C D |ODYF, DEIF )| p11 2
AR

The first term on the right-hand side is acceptable by the induction hypothesis; we therefore
focus on the second term. Let us use Holder to estimate D;(Ej)F in £§/4’2[,§ and Dg(ck_l_j)Fs in
£§/4’2£i. Next, we apply Corollary 5.2.2 to each. Then using Proposition 5.3.2 and Corollary 5.3.3,

the sum is estimated by

k—1

1 —1—3 1/2 —j 1/2
E HDQ(EJ—H)FHLg/‘lﬂﬁi HD;k ! J)Fsuﬁ/sMaLQ ||Da(ck ])Fs‘lﬁ/s/4,2£2 < Ck,E . E,
jZO s x s x

Therefore, (5.7.4) holds for the case k, which completes the induction. O

Suppose furthermore that A, is in the caloric-temporal gauge, so that A, = 0 in particular.
Combining Proposition 5.7.2 and Corollary 5.4.6, the covariant derivative estimate (5.7.4) leads to
the corresponding estimate for usual derivatives. This is the content of the following corollary, whose

easy proof we omit.

Corollary 5.7.3 (Improved estimate for Fyo, with usual derivatives). Assume that the hypotheses of

Proposition 5.7.1 hold. Furthermore, assume that A, satisfies the caloric-temporal gauge condition.
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Then the following estimate holds for 0 < k < 29:
||v§ck)Fso(t)Hgi»""ﬁg(o,l] + ||V;k)FSO(t)||£§v21:g(0,1] < Ck,(A)I(t),E(t) E(t) (5-7-5)
The estimate (5.7.5) is more than sufficient to prove Proposition 5.7.1.

5.7.2 Proof of Theorem G

With Proposition 5.7.1, we are ready to give a proof of Theorem G. We shall basically follow the
proof of Theorem B, replacing Proposition 4.4.3 by Proposition 5.7.1. We recommend the reader to
take a look at §4.4 for the statements of Propositions 4.4.1 — 4.4.4, Theorems C, D, and the proof
of Theorem B.

Proof of Theorem G. Let A, be a regular solution to the hyperbolic-parabolic Yang-Mills equation
in the caloric-temporal gauge on (—Tp, Tp) x R3 x [0, 1] such that (5.1.5) is satisfied. For simplicity,
we shall consider the case in which I is centered at ¢ = 0, i.e. Iy = (—d/2,d/2) for d > 0 to be
determined. As we shall see, the proof only utilizes the hypotheses (5.1.5) on Iy; therefore, the same
proof applies to other Iy C (—Tp,Tp) as well.

We claim that

F(Io) + A(lo) < BD, (5.7.6)

for a large enough absolute constant B, to be determined later, provided that |Iy] = d is small
enough. Note that Theorem G then follows immediately from the claim, thanks to Propositions
4.4.1 and 4.4.2.

We shall use a bootstrap argument. The starting point is provided by Proposition 4.4.4, which
implies

F(Ip) + A(Ip) < 2Z(0),

for some subinterval 1) C I containing 0 such that |Ij| > 0 is sufficiently small (by upper semi-
continuity of F, A at 0). Note that the right-hand side is estimated by BD, provided we choose
B >2.

Next, let us assume the following bootstrap assumption:
F(I}) + AI) < 2BD

for I} :== (—=T",T") C I. Applying Theorems C, D, and using Proposition 5.7.1 to control £(I}), we
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obtain

F(Ip) + Aly) <CT + (T')?Co, o 7g).aiy) (Cp wp + F (1) + A(Ip))?

+(1") (CH%),A(I(;)CDE@ +Ccyy w7 1).A0) (Cp g + F (1) + A(Ié)z)-

Here, we used the hypotheses (5.1.5) on I}y C Iy. Using the bootstrap assumption and choosing

d small enough depending on D, E[F] and B (note that T’ < d), we can make the second and third

terms on the right-hand < gD. Then choosing B > 2C, we see that
F(Iy) + A(Iy) < BD,

which ‘beats’ the bootstrap assumption. By a standard continuity argument, (5.7.6) then follows. [
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Appendix A

Estimates for gauge transforms

The goal of this appendix is to establish some estimates for gauge transforms (namely Lemma 4.3.6
and Propositions 3.5.1, 3.5.2) that had been deferred in the main body of the thesis. These estimates
will be derived from a lemma concerning an abstract ODE (Lemma A.2.1), which models the ODEs
satisfied by various gauge transforms occurring in this thesis.

A brief outline of this appendix is in order. After a brief review of Littlewood-Paley theory in
§A.1, we shall formulate and prove the abstract ODE lemma (Lemma A.2.1) in §A.2 that we referred
to. Then in §A.3, we shall discuss how the estimates given by Lemma A.2.1 can be used to estimate
gauge transformations of connection 1-forms and covariant tensors. Then the rest of the appendix
will be concerned with application of Lemma A.2.1: In §A.4, estimates for gauge transforms for
(YM) to the temporal gauge will be proved in a quite general setting (Proposition A.4.2). As a
special case, we shall obtain Lemma 4.3.6. Finally, in §A.5, we shall give proofs of Propositions,
concerning gauge transforms for (cYMHF') to the caloric gauge.

The results in this section generalize the materials in [25, Appendix B|, which were confined to

d=3,v=1.

A.1 Review of Littlewood-Paley theory

To prove the abstract ODE lemma (Lemma A.2.1), we shall need a more direct characterization of
homogeneous fractional Sobolev spaces. For this purpose, we shall use the Littlewood-Paley theory,
whose brief recap we shall give below.

For d > 1, let x be a smooth radial function on R? such that x = 1 on {|z| < 1} and x = 0 in

{|z| > 2}. Define xo by xo(z) = x(x) — x(2z). Then yo(x) is a smooth compactly supported radial
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function such that suppxo C {3 < |z] <2} and Y, o, xo(z/2F) =1 for every x # 0. For k € Z and

¢ € S, we define the Littlewood-Paley projections Py¢ and P<p¢ by the formulae

Ped(€) = x0(£/25)8(€),  P<rdl€) = x(£/2%)6(6).

Note that ), Pr¢ = ¢ and Zk’gk Py¢ = P<p¢ in an appropriate sense (the only ambiguity
being at £ = 0). For general ¢ € S.,, Py¢ is defined by duality. The following definition of W;’ ‘P-norm

using the Littlewood-Paley projections is standard.

Definition A.1.1 (Littlewood-Paley characterization of the Wg’p—norm). Letd > 1,1 < p < o0,

v € R and ¢ € S,(R?%) a tempered distribution on R%. The WP-norm! of ¢ is defined to be
1/2
Il = 1( D02 Peof?) e,
k

and we shall define W) to be the space of all tempered distributions ¢ with 9l yirr < 00.

As usual, we shall use the notation H) in the case p = 2, i.e. H) = W2

Remark A.1.2. Recall that in the main body of the thesis, the H;Y—norm for a function ¢, when

v > 0 is an integer, had been defined using ordinary weak derivatives as

16l 7 = 105¢]| 2,

whereas for non-integral values of v, it had been defined by using the operator |8m|7/. It is a
consequence of the standard Littlewood-Paley theory that this definition of Hg is equivalent to the

one given in Definition A.1.1.

In many instances, instead of dealing with a general element of W; P we shall work with Schwartz
or HZ®° functions and use an approximation argument to pass to the general case. The following den-
sity lemma, which is an easy consequence of the Littlewood-Paley theory and tempered distributions,

can be used to neatly characterize the closure of these spaces with respect to certain Wg "P-norms.
Lemma A.1.3 (Deunsity of S;). Letd>1, 1 <p< oo and 0 <~ < %.

1. Consider the non-endpoint case 0 < v < % and define ¢ > p by g = % — . Then the space

S.(R%) of Schwartz functions is a dense subspace of WP N LL(R?).

1To be pedantic, the W2'P-‘norm’ defined above is only a semi-norm, which is equal to zero for any tempered
distribution whose Fourier support lies in {0} (i.e. a polynomial). As such, some authors mod out these tempered
distributions to define the space W,’F; see [10, Chapter 6].
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2. Corresponding to the endpoint case v = %, the space S, is dense in Wﬁ/”’p N Cﬂ’gc(Rd), where

Co(RY) := {¢ € C(RY) : p(x) = 0 as |z| — oo}

Remark A.1.4. When 0 < v < %, | - lyi7» is in fact a norm on S.(R%) by Sobolev; more precisely,
we have [|¢[|rz < Cay pllollyi2e for ¢ € Sp(RY). By the first statement of Lemma A.1.3, we see that
the closure of S,(R?%) with respect to the W)P-norm is exactly W7» N L?. Similarly, the second

statement implies that the closure of S,(R?) with respect to the norm || - is exactly

||Wg/p,mego
WaPr .

Remark A.1.5. The above statements remain true with S, replaced by HZ°.

In the next section, we shall analyze the product of two functions ¢1, ¢o by the Littlewood-Paley

trichotomy, which simply refers to the following decomposition:
Pry(¢162) = (HL) + (LH) + (HH),

where

(HL) = Z Py, $1 P<iy+0(1) P2,
k}llklik)oJrO(l)

(LH) = Z Pciyro(1)01Pry 02,
ka:ka=ko+O(1)

(HH) = > P (PudiPrda),

k1 katks —ka=0(1)

for appropriate constants O(1), up to a negligible overlap.

We refer to [36] for more on the Littlewood-Paley theory.

A.2 An ODE estimate

In this section, we shall prove an abstract lemma concerning an ODE which models those satisfied by
gauge transforms to the temporal or caloric gauge. The principal tool would be the Littlewood-Paley

theory, as briefly reviewed in the previous section.

Lemma A.2.1 (ODE estimates). Let d > 1, X a finite-dimensional normed space, J C R an

interval, and wy € J. Consider an X -valued functions Zg € C(R?), F € C, (J x RY) and an
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L(X)-valued® function A € Cy, »(J x RY). Let Z: J x R? — X be the unique solution to the ODE

OE=AE)+F (welJ),

(A.2.1)
E(wo) =20,
Then the following statements hold.
1. Suppose that for some 1 < p < 0o, we have
Hoe L?, / F(w)dw' € Cy(J,LE), ||AllLy Lo () < 00 (A.2.2)
wo
Let Ko := ||Al|11 o (). Then 2 € Cy(J, L) and the following estimate holds.
15125 220y < " (120l + sup | | P awi). (A.2.3)
w wo
2. Suppose, in addition to (A.2.2) for p = oo, that for some v > g, we have
2o € HY, / F(w')dw' € C,(J,H}), sup ||/ AW dw'|| g < o0 (A.24)
wo weJ wo ’

Let K1 :=sup,,¢; || f::] A(w') dw'|| - Then E € Cy(J, HY) and the following estimate holds.

Il 300) <Ce ([0l gz + sup | [ Pl )
we Jwo (A.2.5)

+ Ce“Ro K (2ol + IFllzy nse )

Remark A.2.2 (Remarks concerning regularity). If A and F' possess further regularity in w, by
a standard argument, so does Z. For example, if A, F € CF(J,L2) for some k > 0, then = €

Cat (7, LY).

Proof. By dividing J into two pieces and changing the orientation if necessary, we may assume that
wp is the left endpoint of J. For the arguments below, it will be useful to reformulate the ODE

(A.2.1) in the integral form as follows:

Ew) =20+ /W A(E) (W) dw’ + /w F(w')dw'. (A.2.6)

wo

2L(X) is the space of linear maps X — X equipped with the operator norm.
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Proof of Statement 1. This is an immediate consequence of the inequality

w

I2) = Zollez < [ 1AG) 2|2l 4o’ +sup ]| | F) Aoz

wo wo

and Gronwall. Letting w — wp, the continuity of = with respect to the L2-norm at wg also follows;

similar argument then applies to all w € J.

Proof of Statement 2.

Beginning from the integral formulation (A.2.6), we shall analyze the expression

I/ " AE)W) A,

0

by using Definition A.1.1 and decomposing A and = into Littlewood-Paley pieces according to the
Littlewood-Paley trichotomy®. For simplicity, we shall abbreviate A := P, A and Zj, := P,Z. Note

that the Littlewood-Paley projections commute with w-integrals.
- Case 1. (HL) interaction. This is when ko = k1 + O(1) and k2 < k1 + O(1). We claim

w
| > Pko/ Ak E<iy+om) (@) dw'| gy

ko,k1;ko=k1+0O(1) “o

<CKi(1+ Ko)||Zllpeeree + CK1 || Fl| 1y poo

<CeS Ky (1ol + 1Pz ns )-
The second inequality follows from (1) and the fact that

w
sup | / F(w') do'||pe < |Fllosee,
weJ wo

so it suffices to prove the first one. Using the orthogonality of Littlewood-Paley projections and a

simple convolution estimate, we can remove kg from the left-hand side and arrive at

2vk1 “ ) / 112 1/2
<o(3 20 | AnEsrron)@)dwlls)

k1 wo

To utilize the hypothesis (A.2.4), we shall use a frequency-localized variant of a trick, which

seems to be due to Klainerman-Machedon [15]. The idea is to plug in (A.2.6) for Zx, 1o(1). Then

3As X is a finite-dimensional normed space, = and A may be viewed as a collection of scalar functions and A(Z)(w’)
simply a linear combination thereof. For such objects, the standard Littlewood-Paley theory is easily applicable.
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the summand of the square sum is estimated by

<o [ ) 0l P o)z

wo

+275 ) [ Ak (@) (Peryroqy [ ABEW") + FW") dw”) do'| 2.

wo wo
The first term is further estimated by

w
A(W') dw'l| 7110l Lee
0

e

using Holder, whose square sum is < CK;||Zg||p < CK||E]|pc o as desired. On the other hand,

using Fubini, the second term may be rewritten as follows:

28 [ ([ 060 0) (Petusor (AGW") + W) do' .

0 "

This, in turn, is easily estimated by
<0 [ 1P [ A a0y (Ao I s + 1P i) d”
using Minkowski and Hélder. Its square sum may then be estimated by
< CKi(|A]lzy e lIE Lo noe + [ F |l Ly £oo)

where ||Al|L1 o < Ko by hypothesis. This proves our claim.

- Case 2. (LH) interaction. This is when ko = ko + O(1) and k; < ks + O(1). We claim

| > Pko/ Ackrro0) (Er) (W) dw'| g SC/ AW g I1EW)l gy de”.
ko,k1;ko=k2+O(1) o e

Proceeding as in Case 1, the left-hand side is bounded by

w _ 1/2
<C( X0 [ Aguron (En)w) aIs)
ko

wo
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which, by Minkowski and Holder, is estimated by

w 1/2
<C [ (Elstron @z 1Eu)IE,)  d.
k2

wo

Note that |[A<g,+0(1)(@)|lzee < C[|A(w')|| Lo uniformly in ko; then the remaining square sum
is equal to [|E(w’)[| 7. Thus, the claim follows.
- Case 3. (HH) interaction. This is when k; = ko + O(1) and ko < ks + O(1). We claim that
w w
I X Pauson | An(E)@)d iy <0 [ 1AG) 1 265 o'
k1,ko;k1=ka+O(1) wo wo
By orthogonality, the left-hand side is bounded by
27k © - N4 2 V12
<o(X 2w 3 P | Ak Er)@)d3:)
ko k1,k2;k1=ko40(1), ko<ka+0(1) “o
Using Minkowski and Holder, and furthermore the fact that
Z | Ak, (W) e < C|A(w')||Lee  umiformly in ko,
k1;k1=k2+0(1)
the preceding expression is estimated by

< C/w ||A(w’)||Lg° (Z ( Z 2"/(k0—k2)”5k2 (w/)HH;f)2> 1/2 A

0 ko ka;ko<k24+0(1)
By Cauchy-Schwarz (or Schur’s test), the claim then follows.

- Conclusion. As a result of the above analysis, we have the inequality

w

I2) ~ Sl <supll [ Pl
wedJ w

0

+ CRS (Bl + IFllpas ) + [ IA@) e 1557 '

wo

The desired conclusion (A.2.5) follows by applying the triangle and Gronwall inequalities. The
continuity of Z(w) € H;’ in w is also an easy consequence of the arguments so far, as in Statement

1. O
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A.3 General lemma concerning gauge transformation

In application, Lemma A.2.1 will be used to derive estimates for a ®-valued function U, which is a
gauge transform of some connection 1-form A; to certain gauge (caloric or temporal, in our context).
In this short section, we shall formulate a simple lemma which relates the estimates we have for U to
that for the corresponding gauge transformation of connection 1-forms and covariant tensors. The

proof is an obvious application of the Leibniz rule and Lemma 3.1.4, and thus shall be omitted.

Lemma A.3.1. Let U be a G-valued function in HX(R?), B a g-valued function in HX and

d d ;
—5 <7 < 5. Then the following statements hold.

1. For every integer m > 0, we have

10 (UBU ) Il

) (A.3.1)
<Cinm X 10U g 10 Bl 18T e,
k1+ka+kz=m;k; >0
and
m
104 (OUU 45 < Cayon S NODOT N O DU e (A3

k=0

2. Let U’ be another G-valued function in HX and B’ a g-valued function in HS°. In addition

to the usual notations 6U = U — U’ and 6B = B — B’, we shall also use

S(UBU Y :=UuBU ' —U'B(U)™Y, §(0,UU Y :=0,UU " —o,U' (U .

Then for every integer m > 0, we have

1058 (UBU )|l 17 (A.3.3)
S C(d,'y,m Z ||8ékl)(6U)||Hj/20Lgc ||6£ICQ)BHHJ}y ‘|8£k3)U_1||Hg/2ngo
ki1+ko+ks=m;k; >0
+Canm D, 0V s o N8B i 089U sz o
Ky +ka+ka=mik; >0 Co o
+Cd,'y,7n Z ”aékl)U/HHg/QmL;c||6£‘k2)B/||H;’||6J(;k3)(5U71)”Hg/2ﬂLgc7

ki+ko+ks=m;k;>0
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and

1058 (DUU ) 1z <Caayom Y N0V 08U | 108U~ s

NL
k=0
- (A.3.4)
+ Carym Y0P 0T gy |08 (SU ) /2 poc
k=0

Remark A.3.2. Let A; be a connection 1-form on R?. Recall the following (partial list of) gauge

transformation formulae:

Ai *—)2[1 = UAiUil - aiUUilv
Fij P—)ﬁ” = UFijU_l,

Diij *—)Bzﬁlj = U(Diij)Uil.

By (A.3.1), gauge transformation of covariant tensors such as Ej, Dif'jk etc. may be estimated
in terms of the original object Fj;, D;Fjy, respectively, and appropriate bounds for U — Id and

U~! —1d. On the other hand, to estimate A;, we need to use both (A.3.1) and (A.3.2).

Remark A.3.3. For U, U’ G-valued functions on C;(I, HS°), we also have

105 (90UU )l g2 < Caym y 1087 00U |z 05 H U /2 e (A.3.2')
k=0
and
m
1858 (B0UU ™M gz <Claym Y \\ag(ck)ao(éU)HH;||8£m*k)U*1|\Hg/sz;o
= (A3.4)
+ Carm Y 1080607 | 417 ||ag(cm_k)(5U_1>||Hg/zﬁL;o-

k=0 '

for every integer m > 0.

A.4 Estimates for gauge transform to the temporal gauge

In this section, we shall formulate and prove a general proposition concerning gauge transforms to
the temporal gauge. As a consequence of our general result, Lemma 4.3.6 would follow.

Let I C R be an interval, d > 2 and v > d%. For a g-valued function Ay € C; (I x R%), we
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define the norm AJ(I)[Ao] to be
A (DNAo] == Aol o gra-20/2 + [ Aoll e sz + Aol 1y 72720 poey + 1ol 1 g+
For g-valued functions Ag, Aj € Cy 5 (I X R?), we shall use the abbreviations
AG(I) = Ag(D)[Ao],  0AG(I) == AJ(I)[Ao — Ay).

Remark A.4.1. In the main body of the thesis, d = 3, v = 1 and we had considered a solution A,
to (HPYM), which depends additionally on s € [0, sg]. In this case, the goal had been to apply a
gauge transform to set Ag(s = 0) = 0. Therefore, we used the norms Ay(I) and 8.4y defined with

respect to Ag := Ag(s = 0) and Ay := §Ag(s = 0), respectively.

We are now ready to state the main proposition concerning estimates for gauge transforms to

the temporal gauge.

Proposition A.4.2 (Gauge transform to temporal gauge). Let d > 2 and % <~ < %. Consider

the ODE

oV =V A (AdD)

on I x R%, where I C R is an interval containing 0 and Aqy is a g-valued function in Cra(I X R%)

such that A} (I)[Ao] < .

1. Suppose that V is a G-valued function on {t = 0} x R such that V € H)™' N " ne,.
Then there exists a unique solution V' to the ODE (A.4.1), which is a &-valued function in

Cy(I,Hyt' n 7% n Cy). Furthermore, the solution obeys the estimate

WV =1l e gz oy + IV = 1A e v ey

(A4.2)
< Cupyny(IIV =1l gyer + [V = 1d[| grasa o + Ao(1)-
The following estimate for 0;(V —1d) also holds:
10:(V —=Id) || 1o vy + 10:(V = IA) || ; oo sr(a—2)/2
Lt, Hz (I) Lt Hrb (I) (A43)

< Cagry - Ao(D)(IV = 1d]| garz, o + 1),

AL

2. Let A} be a g-valued function in Cy (I x R?) such that AJ(I)[A}] < oo, and V' a &-valued
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function on {t = 0} x R® such that V' e H;’Jrl mH;Z/Q NCy. Without loss of generality, assume
furthermore that

Ag (D[AG] < Ag(D)[Ao] =: Ag(I).

Denote by V' the solution to the ODE (A.4.1) with Ay and V replaced by Ay, V', respectively.

Then the difference 6V .=V — V' obeys the following estimate.

10V e ooy + N0V e e

< Cuy(y (18V || s + ||5‘°/||Hg/2mgo) (A.4.4)
+ CoagnS AoV = Tdl s + IV~ Tl + 1)
Moreover, the following estimate for 8;(6V) also holds.
Hat((SV)H oo [T + Hat((sv)” oo Fr(d—2)/2
Ly Hy (I) Lo HY (I) (A45)

< Cagry - Ao (DO (| sy e + Cao(ry - AV =Tl gasa ;oo +1).

NL nLge

3. We have smooth dependence on parameters; in particular, the following statement holds: If

Ag € C(I,H®) and V —1d € H®, then the solution V satisfies V —1d € C°(I, H®).

4. Finally, Statements 1, 2 and 3 remain true with V, §V, ‘0/, sV replaced by V=1, §V 1, V-1

and 5V—1 , respectively.

Proof. By the standard theory of ODE, the existence of a unique solution V to (A.4.1) follows. To

derive estimates, we shall rewrite the ODE (A.4.1) as follows:

OV —1d) = (V — Id)Ag + Ap

o

(V-1d)(t=0)=V —1d,
Note that the unique solution V solves the preceding ODE on I x R?. Then since
t t
ollzszcn +sup | [ Ao(e)at s +sup | [ Ao(e)at 501 < AT,
tel  Jo @ tel  Jo

the estimate (A.4.2) is an immediate consequence of Lemma A.2.1. For the other estimate, namely

(A.4.3), we begin with

10:(V = 1d)(O)| 7o < Cll A g IV = 1) (O] grar2 e +1)
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for v/ = 952, ~, which follows from Lemma 3.1.4. Using (A.4.2), along with the observation that
|V — Id|| j5+1 is not needed to estimate [|[(V —Id)(¢)| ya/2} . We obtain (A.4.3).

For estimates concerning 6V, namely (A.4.4) — (A.4.5), we consider the ODE
0 (V) = (V)AL + VA
satisfied by 0V, and proceed as before. Similarly, observe that V=1, §V ! satisfy

(V7 =1d) = —Ag(V™' —1d) — Ay and  3;(0V ') = =64,V — A6V 1,

-1

respectively. By the same argument as before, the corresponding estimates for V=1 and §V ! also

follow. ]

A.5 Estimates for gauge transform to the caloric gauge

In this section, we shall establish Propositions 3.5.1 and 3.5.2, whose proofs had been deferred in

§3.5.

Proof of Proposition 3.5.1. Let us begin by rewriting (3.5.1) in terms of U — Id as follows:

0s(U —1d) =(U — Id) A + As,
(3.5.1)
(U —-1d)(s = s1) =0.

Then Statements 1 and 2 are easy consequence of Lemma A.2.1 applied to (3.5.1’), along with
the estimates (3.2.13), (3.2.14) for As. In order to prove (3.5.3) of Statement 3, we shall proceed by

induction. That is, let m > 1 and assume

,_.

m—

1572084 = 10) | 10,01 = Ctrym gy 1A 17 (A5.1)

k=0
which holds for m =1 by (3.5.2). We shall then prove

5™ 205 U = 1)l e iz 0,001 < Cotpm 1y 14 13- (A-5.2)

For the simplicity of notation, let us use the shorthand uy := sk/28§k+1)(U —1Id). Let s € (0, 51].
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m/Qaa(cm""l)

Integrating (3.5.1") and applying s , we obtain

w6 == [ 6/ P (4.01)

S

i/:l(s/s’)mmum_k(s’)((5/)(k+2)/289(ck)A8(5,)) ds’

k=

_ /81 (s/s")™2U (") ((5/)(m+2)/283(cm+1)A5(5’)) ey

Taking the H; -norm and applying Lemma 3.1.4, we obtain

51 m ds’
)z < [ (/5™ 2t (1A ) o

T ds’
30 [ s () 2100 A )
k=1v"%

o nm/2 / n(m+2)/2 a(m+1)A / ds’
IO g (21080 A ) -

By the induction hypothesis (A.5.1) and (3.5.2), for 1 < k < m, we have

ltem—#ll e 12 0601 < Caryama gy Allizzs N0 =140 v oy S Co gy 1Al

From Proposition 3.2.6, we also have

m
Z Hs(k+1)/2+£vag(ck)As||L?(Hg/z
k=0

L) + ||S(m+2)/28£m+1)As||LgoH; < Cd,'y,m,HKHH;{ ||ZHHZ

As £, < 1/2, observe that

|\5(k+2)/28§;k)A$”Lgo(H;W < ||5(k+1)/2+z”3§ck)As||Lgo

nLg) (Hi2nLg)

which allows us to use the first term on the left-hand side of the preceding estimate. As a consequence,

we arrive at
Sl

— o ds’ o ds’
My < oy i ([ /5™ 2 5+ [ (o572 ).
z s s

Using the obvious bound

S1 d A
/ (5752 Y < o,
s S

along with Gronwall’s inequality, the desired estimate (A.5.2) follows. The remaining estimate
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(3.5.4) of Statement 3 can be proved similarly.
Finally, as U ! satisfies the ODE

o Ut =— AU,

Ul(s =s) =Id,

repeating the above arguments easily establishes Statements 1 — 3 for U~!. O

The proof of the difference analogue (Proposition 3.5.2) proceeds similarly; we omit the details.

191



Bibliography

[1]

2]

[10]

[11]

R. A. Adams and J. J. F. Fournier, Sobolev spaces, second ed., Pure and Applied Mathematics

(Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.

I. Bejenaru, A. D Ionescu, C. E. Kenig, and D. Tataru, Global Schrédinger maps in dimensions

d > 2: Small data in the critical Sobolev spaces, Ann. of Math. 173 (2011) 1443-1506.
D. Bleeker, Gauge Theory and Variational Principles, (Dover Publications, 2005).

N. Charalambous and L. Gross, The Yang-Mills heat semigroup on three-manifolds with bound-
ary, arXiv:1004.1639 [math.AP].

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data,

Comm. Pure Appl. Math. 39 (1986) 267—282.

G. Dell’Antonio and D. Zwanziger, Every gauge orbit passes inside the Gribov horizon, Comm.

Math. Phys. 138 (1991) 291-299.

D. M DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom. 18

(1983) 157-162.

S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and

stable vector bundles, P. Lond. Math. Soc. 50 (1985) 1-26.

D. M Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional
Minkowski space I-1I, Comm. Math. Phys. 83 (1982) 171-191, 193-212.

L. Grafakos, Modern Fourier analysis, second ed., Graduate Texts in Mathematics, vol. 250,

Springer, New York, 2009.

V. N. Gribov, Quantization of non-Abelian gauge theories, Nuclear Physics B 139 (1978) 1-19.

192



[12]

S. Klainerman, The Null Condition and Global Existence to Nonlinear Wave Equations, in
Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Santa Fe,
NM, 1984 (Amer. Math. Soc, Providence, 1986), pp. 293326.

S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence

theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268.

, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J. 74 (1994)

19-44.

, Finite Energy Solutions of the Yang-Mills Equations in R3*1, Ann. of Math. 142 (1995)
39-119.

, Smoothing estimates for null forms and applications, Duke. Math. J. 81 (1995) 99-133.

S. Klainerman and I. Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite

curvature flux, Invent. Math. 159 (2005) 437-529.

, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006)

126-163.

, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature

flux, Geom. Funct. Anal. 16 (2006) 164-229.

S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in R4+1,

J. Amer. Math. Soc. 12 (1999), 93-116

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry: Vol 1 (Wiley Interscience,
1963).

, Foundations of Differential Geometry: Vol 2 (Wiley Interscience, 1969).

H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math.

118 (1996) 1-16.

S.-J. Oh, Finite energy global well-posedness of the yang-mills equations on R'*3: An approach
using the yang-mills heat flow, arXiv:1210.1557 [math.AP].

, Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local

well-posedness in H', arXiv:1209.1558 [math.AP)].

193



, Almost optimal local well-posedness of the (14+4)-dimensional Yang-Mills equations,

mn preparation.

[27] J. Rade, On the Yang-Mills heat equation in two and three dimensions, J. Reine Angew. Math.
431 (1992) 123-164.

[28] 1. Segal, The Cauchy Problem for the Yang-Mills Equations, J. Funct. Anal. 33 (1979) 175-194.

[29] P. Smith, Geometric Renormalization Below the Ground State, Int. Math. Res. Notices 2012
(2012) 3800-3844.

, Global regularity of critical Schrodinger maps: subthreshold dispersed energy,
arXiv:1112.0251 [math.AP]

[31] C. D. Sogge, Lectures on non-linear wave equations, second ed., International Press, Boston,

MA, 2008.

[32] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Math-

ematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[33] T. Tao, Local well-posedness of the Yang-Mills equation in the Temporal Gauge below the
energy norm, J. Differential Equations. 189 (2003) 366-382.

[34] , Geometric renormalization of large energy wave maps, Journées équations aux dérivées

partielles, 11 (2004) 1-32.

[35] , Global regularity of wave maps IIT — VII, arXiv:0805.4666 [math.AP], arXiv:0806.3592

[math.AP], arXiv:0808.0368 [math.AP], arXiv:0906.2833 [math.AP], arXiv:0908.0776
[math.AP]

[36] M. E. Taylor, Tools for PDE, Mathematical Surveys and Monographs, vol. 81, American Math-

ematical Society, Providence, RI, 2000.

[37] K. K. Uhlenbeck, Connections with L? bounds on curvature, Comm. Math. Phys. 83 (1982)
31-42.

194



	Abstract
	Acknowledgements
	Prior Presentation and Publication
	Introduction
	Background: The Yang-Mills equations on R1+d
	The problem of gauge choice and previous approaches
	Main idea of the novel approach
	The Yang-Mills heat flow
	Overview of the proof of local-wellposedness
	Overview of the proof of global well-posedness
	Statement of the Main Theorems
	Outline of the thesis
	Notations and conventions

	Hyperbolic-Parabolic Yang-Mills system
	Equations of motion
	Null structure of (??) in the caloric-temporal gauge

	Analysis of the Yang-Mills heat flows
	Preliminaries
	Covariant Yang-Mills heat flow in the DeTurck gauge
	Linear parabolic estimates
	Dynamic Yang-Mills heat flow in the DeTurck gauge
	Estimates for gauge transform to the caloric gauge
	Yang-Mills heat flows in the caloric gauge
	Transformation to the caloric-temporal gauge

	Proof of the Main LWP Theorem
	Outline of the argument
	Preliminaries
	Reduction of the [thm:lwp4YM]Main LWP Theorem to Theorems ?? and ??
	Definition of norms and reduction of Theorem ??
	Parabolic equations of (??)
	Proofs of Propositions ?? - ??
	Hyperbolic estimates : Proofs of Theorems ?? and ??

	Proof of the Main GWP Theorem
	Reduction of the [thm:gwp4YM]Main GWP Theorem to Theorems ??, ?? and ??
	Preliminaries
	Analysis of covariant parabolic equations
	Yang-Mills heat flows in the caloric gauge
	Transformation to the caloric-temporal gauge: Proof of Theorem ??
	Fixed-time estimates by E : Proof of Theorem ??
	Short time estimates for (HPYM) in the caloric-temporal gauge: Proof of Theorem ??

	Estimates for gauge transforms
	Review of Littlewood-Paley theory
	An ODE estimate
	General lemma concerning gauge transformation
	Estimates for gauge transform to the temporal gauge
	Estimates for gauge transform to the caloric gauge


