
LECTURES ON WAVE EQUATION

SUNG-JIN OH

Abstract. This is a note for the lectures given on Oct. 21st and 23rd, 2014 in lieu of D.
Tataru, for the course MAT222 at UC Berkeley.

1. Wave equation

The purpose of these lectures is to give a basic introduction to the study of linear wave
equation. Let d ≥ 1. The wave operator, or the d’Alembertian, is a second order partial
differential operator on R1+d defined as

(1.1) � := −∂2
t + ∂2

x1 + · · ·+ ∂2
xd = −∂2

t +4,

where t = x0 is interpreted as the time coordinate, and x1, · · · , xd are the coordinates for
space. The corresponding PDE is given by

(1.2) �φ = F,

where φ and F are, in general, real-valued distributions on an open subset of R1+d. As usual,
when the forcing term F is absent, we call (1.2) the homogenous wave equation. In general,
(1.2) is referred to as the inhomogeneous wave equation.

As suggested by our terminology, the wave equation (1.2) is a evolutionary PDE, and a
natural problem to ask is whether one can solve the initial value (or Cauchy) problem:

(1.3)

{
�φ =F,

(φ, ∂tφ)�{t=0}=(φ0, φ1).

We will use the notation Σt for the constant t-hypersurface in R1+d; hence Σ0 = {t = 0}.
We are being deliberately vague about the function spaces that φ, φ0 and φ1 live in; we will
give a more concrete description as we go on.

Remark 1.1. Note that we prescribe not only φ(0) but also its time derivative ∂tφ(0). This
is necessary because (1.2) is second order in time. Observe that prescription of φ(0) and
∂tφ(0) is enough to determine all derivatives of φ at Σ0, and we can write down the formal
power series of φ at each point on Σ. If φ0, φ1 and F are analytic, then these formal power
series would converge and give a local solution to (1.3) by the Cauchy-Kowalevski theorem.

The wave equation models a variety of different physical phenomena, including:

• Vibrating string. It was for this example that (1.2) (with F = 0 and d = 1) was
first derived by Jean-Baptiste le Rond d’Alembert.
• Light in vacuum. From Maxwell’s equation in electromagnetism, it can be seen

that each component of electric and magnetic fields satisfies (1.2) with F = 0 and
d = 3.
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• Propagation of sound. The wave equation (1.2) arises as the linear approximation
of the compressible Euler equations, which describe the behavior of compressible
fluids (e.g., air).
• Gravitational wave. A suitable geometric generalization of the wave equation (1.2)

turns out to be the linear approximation of the Einstein equations, which is the basic
equation of the theory of general relativity for gravity.

Needless to say, a good understanding of the linear operator (1.1) is fundamental for the
study of any of the above topics in depth.

Our goal is to present basics of analysis of the d’Alembertian �. We will introduce three
approaches:

(1) Fourier analytic method,
(2) Energy integral method,
(3) Approach using fundamental solution.

Each has its own strength and weakness, but nevertheless they all turn out to be useful in
further studies.

For a systematic introduction to wave equations, it will be natural to have a discussion of
the symmetries of (1.1) at this point. However, as this is a lecture with time constraint, we
will be in favor of a quicker introduction and simply jump right into the analysis, deriving
the symmetries of (1.1) that we need as we go on. By taking this route, it is hoped that the
central role of the symmetries in the study of (1.1) would appear naturally.

2. Fourier analytic method

Note that (1.1) is a constant coefficient partial differential operator; therefore, translations
in time and space commute with �, i.e.,

(2.1)
�
(
φ(t+ ∆t, x1, . . . , xd)

)
= (�φ)(t+ ∆t, x1, . . . , xd),

�
(
φ(t, x1, . . . , xj + ∆xj, . . . , xd)

)
= (�φ)(t, x1, . . . , xj + ∆xj, . . . , xd),

This property suggests that Fourier analysis will be effective for studying �, since Fourier
analysis exploits the global translation symmetries of R1+d. Indeed, the Fourier analytic
method turns out to be the quickest of the three for solving (1.3), and it will be the subject
of our discussion below.

Applying Fourier transform1 in x to (1.2), we obtain the equation

(2.2) ∂2
t φ̂(t, ξ) + |ξ|2φ̂(t, ξ) = F̂ (t, ξ).

Fix ξ ∈ Rd such that ξ 6= 0; then the preceding equation is a second order ODE in t. We
easily checked that

{eit|ξ|, e−it|ξ|}
forms a fundamental system for this ODE. Using the variation of constants formula, we see
that a solution to (2.2) for each ξ is given by

(2.3) φ̂(t, ξ) = c+e
it|ξ| + c−e

−it|ξ| +

∫ t

0

(
ei(t−s)|ξ|F̂+(s, ξ) + e−i(t−s))|ξ|F̂−(s, ξ)

)
ds,

1We are using the convention f̂(ξ) =
∫
f(x)e−ix·ξ dx and f(x) =

∫
f̂(ξ)eix·ξ dξ

(2π)d
for the Fourier transform.
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where c± are to be determined from the initial data (φ̂0, φ̂1), and F̂± can be computed from

F̂ . Carrying out the algebra using Euler’s identity

e±it|ξ| = cos(t|ξ|)± i sin(t|ξ|),
we can rewrite the preceding formula as follows:

(2.4) φ̂(t, ξ) = cos(t|ξ|)φ̂0(ξ) +
sin(t|ξ|)
|ξ|

φ̂1(ξ) +

∫ t

0

sin((t− s)|ξ|)
|ξ|

F̂ (s, ξ) ds.

The formula (2.4) describes the evolution of a single Fourier mode f̂(ξ) under the wave
equation (1.2) for every ξ 6= 0. Combining this result for different ξ’s under the assumption
that2 (φ0, φ1) ∈ Hk × Hk−1 and F ∈ L1

t ([0, T ];Hk−1
x ) (which is natural in view of the

Plancherel theorem), we obtain the following solvability result for the wave equation:

Theorem 2.1 (Solvability of wave equation). Let k ∈ Z+ := {1, 2, . . .} and T > 0. The
initial value problem (1.3) is solvable on [0, T ] × Rd for (φ0, φ1) ∈ Hk × Hk−1 and F ∈
L1
t ([0, T ];Hk−1

x ) with a unique solution φ(t, x) ∈ Ct([0, T ];Hk
x)∩C1

t ([0, T ];Hk−1
x ). The spatial

Fourier transform φ̂(t, ξ) of φ(t, x) is described by the formula (2.4).

Proof. The existence of a solution follows from simply verifying that φ given by (2.4) solves
the equation (1.2). The fact that the solution φ belongs to Ct([0, T ];Hk

x) ∩ C1
t ([0, T ];Hk−1

x )
is a consequence of the following energy inequality :

(2.5) ‖(φ, ∂tφ)(t)‖Hk
x×H

k−1
x
≤ C‖(φ0, φ1)‖Hk

x×H
k−1
x

+ C

∫ t

0

‖F (s)‖Hk−1
x

ds.

This inequality easily follows from (2.4), triangle inequality, Minkowski’s inequality and
Plancherel. Uniqueness is then a consequence of the uniqueness of solutions to the ODE
(2.2), applied to almost every ξ ∈ Rd. �

Given any function a : Rd → C, define the multiplier operator a(D) by the formula

̂(a(D)f)(ξ) = a(ξ)f̂(ξ).

We refer to the function a(ξ) as the symbol of the operator a(D). Then (2.4) can be also
written in the following form:

(2.6) φ(t, x) = cos(t|D|)φ0(x) +
sin(t|D|)
|D|

φ1(x) +

∫ t

0

sin((t− s)|D|)
|D|

F (s, x) ds.

We would like to record a consequence of (2.4), which is one of the fundamental properties
of (1.2). Consider a solution φ ∈ Ct(R;H1

x) ∩ Ct(R;L2
x) to the homogeneous wave equation

�φ = 0 with (φ, ∂tφ)�{t=0}= (φ0, φ1). Then we have

|ξ|φ̂(t, ξ) = cos(t|ξ|)|ξ|φ̂0(t, ξ) + sin(t|ξ|)φ̂1(t, ξ)

∂tφ̂(t, ξ) =− sin(t|ξ|)|ξ|φ̂0(t, ξ) + cos(t|ξ|)φ̂1(t, ξ)

Hence, an easy computation shows that

(2.7) |ξ|2|φ̂(t, ξ)|2 + |∂tφ̂(t, ξ)|2 = |ξ|2|φ̂0(ξ)|2 + |φ̂1(ξ)|2

2The Sobolev norm ‖ · ‖Hk is defined as ‖φ‖2Hk :=
∑k
`=1 ‖∇(`)φ‖2L2 , and the space Hk = Hk(Rd) is the

completion of C∞0 (Rd) with respect to this norm. See [2, Chapter 5] for more about Sobolev spaces.
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for each t ∈ R. Integrating this identity in ξ and using Plancherel, we arrive at the following
result.

Proposition 2.2 (Conservation of energy). Let φ ∈ Ct(R;H1
x) ∩ Ct(R;L2

x) be a solution to
the homogeneous wave equation �φ = 0. Then for any t ∈ R, we have

(2.8)

1

2

∫
Rd

|∂tφ(t, x)|2 + |∂1φ(t, x)|2 + · · · |∂dφ(t, x)|2 dx

=
1

2

∫
Rd

|∂tφ(0, x)|2 + |∂1φ(t, x)|2 + · · · |∂dφ(0, x)|2 dx.

The time-independent or conserved quantity

E[φ](t) :=
1

2

∫
Rd

|∂tφ(t, x)|2 + |∇xφ(t, x)|2 dx,

is called the energy of the solution φ at time t. It corresponds to the notion of energy in
physical interpretations of the wave equation. Here |∇xφ(t, x)|2 is a shorthand for

|∇xφ(t, x)|2 := |∂1φ(t, x)|2 + · · · |∂dφ(t, x)|2.

3. Energy integral method

Next, we present another technique for studying the wave equation, namely, the energy
integral method. In the nutshell, this method consists of two parts:

(1) Method of multipliers: Multiply the equation �φ = F by Xφ, where X is an
appropriate vector field on R1+d, and integrate by parts to derive bounds.

(2) Method of commutators: Commute � with the infinitesimal symmetries (or near
symmetries) to derive higher order bounds.

In this lecture, due to time constraint, we only give the simplest application of these methods,
namely, an alternative proof of conservation of energy (2.8) and the energy inequality (2.5).
The strength of the energy integral method lies in its robustness; hence it has proved to be
effective for dealing with highly nonlinear equations. We refer the reader to the book [1] for
a systematic introduction to this method.

Alternative proof of Proposition 2.2. It suffices to prove (2.8) for t = T > 0. We multiply
�φ = 0 by ∂tφ, and integrate over the set (0, T )× Rd. We compute

0 =

∫ T

0

∫
Rd

�φ∂tφ dtdx

=

∫ T

0

∫
Rd

∂2
t φ∂tφ−4φ∂tφ dtdx

=

∫ T

0

∫
Rd

∂2
t φ∂tφ+∇xφ · ∇x∂tφ dtdx

=

∫ T

0

∫
Rd

1

2
∂t(∂tφ)2 +

1

2
∂t|∇φ|2 dtdx,

where ∇x denotes the spatial gradient operator (with d components). Note that the inte-
gration by parts in x is justified thanks to the assumption φ ∈ Ct(R;H1

x). Applying the
fundamental theorem of calculus to the t-integral, (2.8) follows. �
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Next, we give an alternative proof of (2.5). Here, we use the method of commutators.

Alternative proof of of (2.5). Applying a similar argument as above to �φ = F , we obtain

(3.1)
1

2

∫
Σt

(∂tφ)2 + |∇xφ|2 dx =
1

2

∫
Σ0

(∂tφ)2 + |∇xφ|2 dx+

∫ t

0

∫
Rd

F (s, x)∂tφ(s, x) dsdx.

for any t ∈ R. Applying the Cauchy-Schwarz inequality, it is not difficult to prove the energy
inequality

(3.2) sup
t∈R

(∫
Σt

(∂tφ)2 + |∇xφ|2 dx
) 1

2 ≤ C
(∫

Σ0

(∂tφ)2 + |∇xφ|2 dx
) 1

2
+ C

∫ t

0

‖F (s, x)‖L2
x

ds

for some C > 0. (Exercise: Prove it!) Finally, as ∂t, ∂xj commute with � (by translation
invariance of �), we can apply the preceding method to the commuted equation

�(∂α0
t ∂

α1

x1 · · · ∂
αd

xd
φ) = ∂α0

t ∂
α1

x1 · · · ∂
αd

xd
F.

Combining the last observation with (3.2), we obtain an alternative proof of (2.5). �

4. Fundamental solution for d’Alembertian

Finally, we present yet another approach for studying the wave equation, namely that of
the fundamental solution to the d’Alembertian.

4.1. The case of R1+1. As a warm-up, we first consider the (1 + 1)-dimensional case. This
case is simple to analyze, but nevertheless gives us intuition about what to expect in the
more difficult case of R1+d for d ≥ 2.

In R1+1, the d’Alembertian takes the form

(4.1) � = ∂2
t − ∂2

x.

We can formally factor ∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x). It will be convenient if we find a
different coordinate system in which ∂t − ∂x and ∂t + ∂x are coordinate derivatives. To this
end, we consider the null coordinates

(4.2) u = t− x, v = t+ x.

Then we have

∂u =
1

2
(∂t − ∂x), ∂v =

1

2
(∂t + ∂x).

Hence the d’Alembertian (4.1) becomes

(4.3) � = 4∂u∂v.

Moreover, the δ0 distribution transforms as

δ(t,x)=(0,0) = 2δ(u,v)=(0,0);

we refer to Lemma A.1 and Corollary A.2 for a proof.
We seek a fundamental solution to �, i.e., a solution E to the equation

(4.4) ∂u∂vE =
1

2
δ0.

By the factorization � = ∂u∂v, we can impose the ansatz that E(u, v) is the tensor product
1
2
E1(u)E2(v) as distributions, where

∂uE1 = δu=0, ∂vE2 = δv=0.
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We know solutions to ∂uE1 = δu=0 are of the form

E1(u) = H(u) + c1

where H is the Heaviside function and a constant cu ∈ R. Similar statement applies to
E2(v). Hence

E(u, v) =
1

2
(H(u) + c1)(H(v) + c2).

How do we choose the constants c1, c2 ∈ R? We look for the forward fundamental solution,
i.e., a solution E+ to (4.4) which is supported in the half-space {t ≥ 0}. Then we see that
we are forced to choose c1 = c2 = 0, and we arrive at E+(u, v) = 1

2
H(u)H(v), or

(4.5) E+(t, x) =
1

2
H(t− x)H(t+ x).

Next we proceed to show how to use E+ to solve the initial value problem (1.3). We do
not gain much by restricting to R1+1 for this procedure; hence, in the following section, we
will simply give a general discussion on the uses of E+, and return to R1+1 to give a concrete
example.

4.2. Uses of the forward fundamental solution. Recall from Section 4.1 that a forward
fundamental solution E+ on R1+1 satisfied the following properties (with d = 1):

�E+ =δ0(4.6)

suppE+ ⊆{(t, x) ∈ R1+d : 0 ≤ |x| ≤ t}.(4.7)

Assume, for the moment, that we have constructed E+ exists on R1+d for d ≥ 1. In what
follows, we explain how to use E+ to study the wave equation.

One consequence of the fact that E+ exists is, amusingly, that it must be the unique
forward fundamental solution. In fact, we have the following statement.

Proposition 4.1. Suppose that a forward fundamental solution E+ with the properties (4.6),
(4.7) exists. Then it is the unique forward fundamental solution, i.e., any fundamental
solution E with suppE ⊆ {t ≥ 0} equals E+.

Proof. Let E be a forward fundamental solution, i.e., �E = δ0 and suppE ⊆ {t ≥ 0}. Then
we compute

E = δ0 ∗ E = �E+ ∗ E = E+ ∗�E = E+.

The crucial fact here is (4.7), which allows us to define the convolution of E+ and E (or
more generally, some derivatives of E+ and E). We leave the justification of the above chain
of identities as an exercise. �

Next, we show how to derive a representation formula for a solution φ to the inhomo-
geneous wave equation (1.2) using E+. The procedure we are about to describe is quite
general, and hence useful in other situations when we know the existence of a fundamental
solution. Before we begin, we present a similar analysis in a simpler model to motivate our
computation.

Example 4.2 (Fundamental theorem of calculus via forward fundamental solution). Con-
sider the operator d

dx
on R, whose forward fundamental solution is H(x) = 1{x≥0}(x). Given
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f, g ∈ C∞(R) that satisfy d
dx
f = g, we may derive a representation formula for f(x) on

{x > 0} as follows:

f(x) =δ0 ∗ (f1{x≥0})(x)

=(
d

dx
1{x≥0}) ∗ (f1{x≥0})(x)

=1{x≥0} ∗ (fδ0)(x) + 1{x≥0} ∗ (g1{x≥0})(x)

=f(0) +

∫ x

0

g(y) dy.

As we see, the trick is to stick in H(x) with f to access the information at the endpoint
0. Note that replacing f by f1{x≥0} also allows us to justify the convolution for any f ∈
C∞(R). (Exercise: Justify the computation H ∗ (fδ0)(x) = f(0)!) Of course, the resulting
representation formula is nothing but the fundamental theorem of calculus.

Now we return to the wave equation on R1+d. Let φ, F ∈ C∞(R1+d) solve the equation

�φ = ∂2
t φ−4φ = F.

Let (t, x) ∈ R1+d with t > 0. We compute

φ(t, x) =δ0 ∗ φ1{t≥0}

=�E+ ∗ φ1{t≥0}

=∂2
tE+ ∗ φ1{t≥0}(t)− E+ ∗ 4φ1{t≥0}

=∂2
tE+ ∗ φ1{t≥0} − E+ ∗ (∂2

t φ)1{t≥0} + E+ ∗ F1{t≥0}

where 1X is denotes the characteristic function of a set X. We then formally compute

∂2
tE+ ∗ φ1{t≥0} − E+ ∗ (∂2

t φ)1{t≥0}

=∂tE+ ∗ (∂tφ)1{t≥0} + ∂tE+ ∗ φδt=0 − E+ ∗ (∂2
t φ)1{t≥0}

=E+ ∗ (∂2
t φ)1{t≥0} + E+ ∗ (∂tφ)δt=0 + ∂tE+ ∗ φδt=0 − E+ ∗ (∂2

t φ)1{t≥0}

=E+ ∗ (∂tφ)δt=0 + ∂tE+ ∗ φδt=0.

In fact, the expressions (E+ ∗ φδt=0)(t, x) and (∂tE+ ∗ φδt=0)(t, x) always make sense in
{t > 0}, and hence the above computation is justified. It suffices to show that for every
t0 > 0 and ψ ∈ C∞(Rd), we can make sense of the following expressions:

〈E+ | δt=t0ψ〉, 〈∂tE+ | δt=t0ψ〉.

The preceding statement is a consequence of the fact that ∂2
tE+(t, x) = 4E+(t, x) on {t > 0},

which implies that E+ is C2 in t with values in D′(Rd); see Lemma A.3.
For φ ∈ C∞(R1+d), note that

φ(t, x)δt=0 = φ�{t=0} (x)δt=0, ∂tφ(t, x)δt=0 = ∂tφ�{t=0} (x)δt=0.

Let us write (φ0, φ1) = (φ, ∂tφ)�{t=0}. Putting everything together, we arrive at the following
proposition.
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Proposition 4.3 (Representation formula). Suppose that a forward fundamental solution
E+ with the properties (4.6), (4.7) exists. Then given any solution φ to the equation �φ = F
with φ, F ∈ C∞(R1+d), we have the formula

(4.8) φ = E+ ∗ φ1δt=0 + ∂tE+ ∗ φ0δt=0 + E+ ∗ F1{t≥0}.

where (φ0, φ1) := (φ, ∂tφ)�{t=0}.

Thanks to the support property (4.7), we have the following corollary.

Corollary 4.4 (Finite speed of propagation). Suppose that a forward fundamental solution
E+ with the properties (4.6), (4.7) exists. Let φ ∈ C∞(R1+d) solve the inhomogeneous wave
equation �φ = F with initial data (φ, ∂tφ)�{t=0}= (φ0, φ1), and consider a point (t, x) ∈ R1+d

such that t > 0. If

F (s, y) =0 in {(s, y) : 0 < s < t, |y − x| ≤ t− s},
(φ0, φ1)(y) =(0, 0) in {y : |y − x| ≤ t}

then φ(t, x) = 0.

The regularity hypothesis for φ and F in both Proposition 4.3 and Corollary 4.4 can be
weakened considerably, we leave this task as an exercise to the reader. We also remark that
analogous statements can be proved in the negative time direction, simply by reversing the
time coordinate t 7→ −t.

Finally, we show that the representation formula (4.8) can be used to solve the initial
value problem (1.3). The idea, of course, is to simply take (4.8) as a definition of a solution
φ, noting that the right-hand side only involves the data of (1.3). It is easy to see that φ
solves �φ = F ; we are left to verify that φ obeys the initial condition, i.e.,

lim
t→0

(φ, ∂tφ)(t, x) = (φ0, φ1).

For this purpose, it is convenient to define the time-dependent distribution E+(t) in the
space C2((0,∞);D′(Rd)) by the formula

(4.9) 〈E+(t0) | ψ〉 := 〈E+ | δt=t0ψ〉 for every ψ ∈ C∞0 (Rd).

Then for every φ ∈ C∞0 (R1+d), we have the identity

(4.10) 〈E+ | φ〉 =

∫ ∞
0

〈E+(t) | φ(t)〉 dt.

This identity clearly holds for φ supported in the half-space {t > 0}. Next, by the support
properties of E+ and E+(t), it is easy to see that it holds for φ supported in R1+d \{(0, 0)} as
well. The full identity then follows by noting that both sides are homogeneous of the same
degree.

We may now rewrite the representation formula (4.8) as

(4.8′)

φ(t) =(∂tE+)(t) ∗ φ0 + E+(t) ∗ φ1 +

∫ t

0

E+(t− s) ∗ F (s) ds

=∂t(E+(t) ∗ φ0) + E+(t) ∗ φ1 +

∫ t

0

E+(t− s) ∗ F (s) ds,

where all convolutions are only with respect to the spatial coordinates x.
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We claim that

(4.11) E+(+0) = 0, ∂tE+(+0) = δ0, ∂2
tE+(+0) = 0.

as distributions in D′(Rd).
That E ′′+(+0) = 0 follow from E+(+0) = 0 and ∂2

tE+(t) = 4E+(t) for t > 0 (Exercise:
Verify!). Hence, it suffices to prove E+(+0) = 0 and ∂tE+(+0) = δ0. Indeed, for φ ∈
C∞0 (R1+d), we have

φ(0, 0) =〈E+ | �φ〉

=

∫ ∞
0

〈E+(t) | �φ(t)〉 dt

=

∫ ∞
0

〈E+(t) | ∂2
t φ(t)〉 dt+

∫ ∞
0

〈−4E+(t) | φ(t)〉 dt

=

∫ ∞
0

〈E+(t) | ∂2
t φ(t)〉 dt−

∫ ∞
0

〈∂2
tE+(t) | φ(t)〉 dt

=〈∂tE+(+0) | φ(0)〉 − 〈E+(+0) | ∂tφ(0)〉.

Given ψ ∈ C∞0 (Rd), choosing φ so that (φ, ∂tφ)�{t=0}= (ψ, 0) and (φ, ∂tφ)�{t=0}= (0, ψ), the
desired conclusion follows for E ′+(+0) and E+(+0), respectively.

We have proved the following proposition.

Proposition 4.5 (Solvability of the wave equation). Suppose that a forward fundamental so-
lution E+ with the properties (4.6), (4.7) exists. Given φ0, φ1 ∈ C∞(Rd) and F ∈ C∞(R1+d),
there exists a unique solution φ to the initial value problem (1.3) defined by the formula (4.8).

We end this section by applying the general theory we developed to the case R1+1, where
we already know the form of the forward fundamental solution. Recall that E+(t, x) =
1
2
H(t− x)H(t+ x). We compute

E+ ∗ φ1δt=0 =
1

2
〈H(t− s− (x− y))H(t− s+ x− y) | φ1(y)δ0(s)〉y,s

=
1

2
〈H(t− (x− y))H(t+ x− y) | φ1(y)〉y

=
1

2

∫ x+t

x−t
φ1(y) dy,

and

E+ ∗ F1{t≥0} =
1

2
〈H(t− s− (x− y))H(t− s+ x− y) | F (s, y)H(s)〉y,s

=
1

2

∫ t

0

∫ x+t−s

x−t+s
F (s, y) dy ds.

9



Furthermore,

∂tE+ ∗ φ0δt=0 =∂t(E+ ∗ φ0δt=0)

=∂t

(1

2

∫ x+t

x−t
φ0(y) dy

)
=

1

2
(φ0(x+ t) + φ0(x− t)).

Hence we arrive at d’Alembert’s formula in R1+1:

Theorem 4.6 (d’Alembert’s formula). Let φ be a solution to the equation �φ = F with
φ, F ∈ C∞(R1+1). Then we have the formula

(4.12) φ(t, x) =
1

2
(φ0(x− t) + φ0(x+ t)) +

1

2

∫ x+t

x−t
φ1(y) dy +

1

2

∫ t

0

∫ x+t−s

x−t+s
F (s, y) dyds.

where (φ0, φ1) = (φ, ∂tφ)�{t=0}.
Conversely, given any initial data (φ1, φ2) ∈ C∞(R) and F ∈ C∞(R1+1), there exists a

unique solution φ to the initial value problem (1.3) defined by the formula (4.12).

4.3. General dimension. Our goal now is to construct the forward fundamental solution
E+ to the d’Alembertian on R1+d for every d ≥ 1. Although the existence of the forward
fundamental solution can be deduced by more abstract means (see, e.g., Remark ??), there
is no systematic way to explicitly construct E+. To find an explicit formula, we will make
an ansatz (i.e., an educated guess) of the form of E+, based on the symmetries of the
d’Alembertian �.

Symmetries: Rotation, Lorentz boosts, scaling. We have already seen that � is invariant
under translations; however, these symmetries will not be useful for the purpose of finding
a solution to �E+ = δ0, since δ0 is not invariant under translations. We need to determine
the symmetries of � which fix the origin.

Such symmetries turn out to be precisely the linear transformations L : R1+d → R1+d

which leave invariant the scalar quantity3

(4.13) s2(t, x) := t2 − |x|2.
These transformations are called Lorentz transformations. (Exercise: From the defining
property s2(t, x) = s2(L(t, x)), show that �(φ◦L) = (�φ)◦L.) The Lorentz transformations
form a group (by composition), which we will denote by O(1, d). The group O(1, d) is
generated by the following elements:

(1) Rotations. Linear transformation R : R1+d → R1+d represented by the matrix

(4.14) R =


1 0 · · · 0
0
... R̃
0


where R̃ ∈ O(d) is a d× d orthonormal matrix.

3This quantity, of course, has a geometric meaning. It is precisely the ‘space-time distance’ from the
origin to the event (t, x) in special relativity.
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(2) Reflection. Linear transformation ρk : R1+d → R1+d (k = 0, . . . , d) defined by

(4.15) (x0, · · · , xd) 7→ (x0, · · · ,−xk, · · · , xd).
(3) Lorentz boosts. These symmetries correspond to choosing another frame of ref-

erence, which travels at a constant velocity compared to the original frame. If the
frame moves at speed γ ∈ (0, 1) in the x1 direction, then its matrix representation is

(4.16) Λ01(γ) =



1√
1−γ2

− γ√
1−γ2

0 · · · 0

−γ√
1−γ2

1√
1−γ2

0 · · · 0

0 0
...

... Idd−1×d−1

0 0


All Lorentz boosts then take the form Λ(γ) = cRΛ01(γ)R−1 for some constant c 6= 0
and rotation R.

For more on Lorentz transformations, we refer to [4, Chapter 9].
Although it is not exactly a symmetry of �, we also point out that � transforms in a

simple way under scaling, i.e.,

�(φ(t/λ, x/λ)) = λ−2(�φ)(t/λ, x/λ) for λ > 0.

In particular, if φ is homogeneous of degree a, then �φ is homogeneous of degree a− 2.

Fundamental solution using distribution theory. Now we construct the forward fundamental
solution to the d’Alembertian, which we refer to as E+. From the scaling symmetry of �, it
is natural to look for E+ which is homogeneous. From the equation

�E+ = δ0,

observe that the right-hand side, being a delta distribution on R1+d, is homogeneous of
degree −d− 1. Since � lowers the degree of homogeneity by 2, we see that

(4.17) If E+ is homogeneous, then it must be of degree −d+ 1.

A nice feature of assuming E+ to be homogeneous is that we can focus on E+ on R1+d \
{(0, 0)}, as homogeneity then allows us to extend E+ uniquely to R1+d; see Lemma A.5.

Next, recall that � is invariant under rotations and Lorentz transformations. Furthermore,
as they are linear maps with determinant ±1 (Exercise: Prove this statement!), δ0 is
also invariant under these symmetries. Hence it is natural to look for a solution that is
invariant under rotations and Lorentz transforms (recall, e.g., the fundamental solution for
the Laplacian). Recall that Lorentz transformations are precisely the linear transformations
which leave the scalar quantity s2(t, x) := t2 − |x|2 invariant. Note, moreover, that t2 − |x|2
is homogeneous of degree 2. Combined with the earlier observation (4.17), we see that a
reasonable first try would be

(4.18) G(t, x) = χ(t2 − |x|2),

where χ is a homogeneous distribution of degree −d−1
2

on R.
To pin down the homogeneous distribution χ, we now bring up the requirement that E+

must be supported in the upper half-space {t ≥ 0}. Unfortunately, G(t, x) is symmetric
under t 7→ −t so the the naive guess (4.18) fails to work as it is. However, we may multiply
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by the Heaviside function H(t) without disturbing homogeneity and Lorentz invariance (i.e.,
invariance under rotations and Lorentz transforms), as H(t) is also homogeneous of degree
0 and Lorentz invariant. In order to make sense of the distribution 1{t≥0}G(t, x) in R1+d \
{(0, 0)}, we are motivated to find G(t, x) that vanishes in a neighborhood of Σ0 \ {(0, 0)}.
This consideration dictates χ to be a homogeneous distribution on R (of degree −d−1

2
) that

is supported on [0,∞), i.e.,

χ = cχ
− d−1

2
+ for some constant c 6= 0.

(We refer to Appendix A.4 for a quick recap of the theory of homogeneous distributions.)
Motivated by the preceding considerations, we define E+(t, x) on Rd \ {(0, 0)} by the

formula

(4.19) E+(t, x) = cd 1{t≥0}χ
− d−1

2
+ (t2 − |x|2),

and extend it to R1+d by homogeneity (see Lemma A.5). Here, the composition of the

distribution χ
d−1
2

+ with t2 − |x|2 on R1+d \ {(0, 0)} is to be interpreted as the following limit
in the sense of distributions:

(4.20) hj(t
2 − |x|2) ⇀ χ

− d−1
2

+ (t2 − |x|2) as j →∞,

where hj ∈ C∞0 is a sequence such that hj ⇀ χ
− d−1

2
+ . That this procedures is well-defined is

justified in Lemma A.4.
We claim that E+(t, x) is the forward fundamental solution for the d’Alembertian, for an

appropriate choice of the constant cd. We begin with the computation

�E+(t, x) = cd(∂
2
t −4)(1{t≥0}χ

− d−1
2

+ (t2 − |x|2)) = cd1{t≥0}(∂
2
t −4)χ

− d−1
2

+ (t2 − |x|2).

Indeed, −4 easily commutes with 1{t≥0}, and whenever ∂t falls on 1{t≥0} the result is zero
thanks to the support properties. Using the chain rule, which is easily justified by approxi-
mation by C∞0 functions, on R1+d \ (0, 0) we have

(∂2
t −4)χ

− d−1
2

+ (t2 − |x|2) =∂t(2tχ
− d+1

2
+ (t2 − |x|2)) +∇x · (2xχ

− d+1
2

+ (t2 − |x|2))

=4(t2 − |x|2)χ
− d+3

2
+ (t2 − |x|2) + 2(d+ 1)χ

− d+1
2

+ (t2 − |x|2).

By the identity xχa+(x) = (a+ 1)χa+1
+ (x), the last line equals

4(−d+ 1

2
)χ
− d+1

2
)

+ (t2 − |x|2) + 2(d+ 1)χ
− d+1

2
+ (t2 − |x|2) = 0.

Therefore, we see that �E+ is a distribution which is supported only on {0}; moreover, by
construction, �E+ is homogeneous of degree −d−1. It then follows that (Exercise: Verify!)

(4.21) �E+ = cδ0

for some c ∈ R.
Checking that E+ is a fundamental solution now boils down to showing that c = 1 for an

appropriate constant cd. We claim that the choice

(4.22) cd =
π(1−d)/2

2
leads to �E+ = δ0; we defer the proof of this claim until Appendix B.
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Remark 4.7. Computing the exact constants c and cd requires explicit computation, but the
fact that c 6= 0 (and hence some appropriate cd exists) can be seen by much softer methods.
For example, it is sufficient to establish the following uniqueness statement: If E ∈ D′(R1+d)
is a solution to �E = 0 with suppE ⊆ {t ≥ 0}, then E = 0. This statement can be proved
by, say, Theorem 2.1 (solvability of the initial value problem by Fourier analysis) and duality;
we leave this as an exercise for the interested reader.

We now discuss applications of the explicit formula (4.19) for E+. First, note that for
d ≥ 3 an odd integer, we have

E+(t, x) = cd1t≥0χ
− d−1

2
+ (t2 − |x|2) = cd1t≥0δ

( d−3
2

)

0 (t2 − |x|2)

which is supported only on the boundary {(t, x) : |x| = t} of the cone {(t, x) : |x| ≤ t}.
Hence a sharper version of Corollary 4.4 holds in this case. It turns out that this property
does not hold when d ≥ 2 is even (see, e.g., the computation of the case d = 2 below). This
phenomenon is called the sharp Huygens principle; we record the precise statement in the
following proposition.

Proposition 4.8 (Sharp Huygens principle). Let d ≥ 3 be an odd integer. Let φ ∈ C∞(R1+d)
solve the inhomogeneous wave equation �φ = F with initial data (φ, ∂tφ) �{t=0}= (φ0, φ1),
and consider a point (t, x) ∈ R1+d such that t > 0. If

F (s, y) =0 in {(s, y) : 0 < s < t, |y − x| = t− s},
(φ0, φ1)(y) =(0, 0) in {y : |y − x| = t}

then φ(t, x) = 0.

Next, we specialize to the cases d = 1, 2, 3 and derive classical representation formulae for
the wave equation.

Explicit computation for d = 1. We now compute the form of the forward fundamental
solution E+ explicitly in dimension d = 1. When d = 1, we have

E+(t, x) = c11{t≥0} χ
0
+(t2 − |x|2) = c11{t≥0}H(t2 − |x|2) = c11{(t,x):0≤|x|≤t}.

As c1 = 1
2
, we recover the previous computation.

Explicit computation for d = 2. Next, we compute the form of the forward fundamental
solution E+ explicitly in dimension d = 2. We have

E+(t, x) =c21{t≥0} χ
− 1

2
+ (t2 − |x|2) = c′21{t≥0}

1

(t2 − |x|2)
1
2
+

= c′21{(t,x):0≤|x|≤t}
1

(t2 − |x|2)
1
2

,

outside the origin, and at the origin E+ is determined by homogeneity. By (4.22) and the

definition of χ
− 1

2
+ (see (A.12) in the appendix), we have c′2 = c2

Γ( 1
2

)
= c2√

π
= 1

2π
. Hence we

arrive at the formula

(4.23) E+(t, x) =
1

2π
1{(t,x):0≤|x|≤t}

1

(t2 − |x|2)
1
2

.
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We may easily compute

E+ ∗ (φ1δt=0)(t, x) =〈E+(t− s, x− y) | φ1(y)δ0(s)〉y,s

=
1

2π

∫
{|x|≤t}

φ1(y)

(t2 − |x− y|2)
1
2

dy

E+ ∗ (F 1{t≥0})(t, x) =〈E+(t− s, x− y) | F (s, y)H(s)〉y,s

=
1

2π

∫ t

0

∫
{|x|≤s}

F (s, y)

((t− s)2 − |x− y|2)
1
2

dy ds.

Combined with Propositions 4.3 and 4.5, we recover Poisson’s formula:

Theorem 4.9 (Poisson’s formula). Let φ be a solution to the equation �φ = F with φ, F ∈
C∞(R1+2). Then we have the formula

(4.24)

φ(t, x) =∂t

( 1

2π

∫
{|x|≤t}

φ0(y)

(t2 − |x− y|2)
1
2

dy
)

+
1

2π

∫
{|x|≤t}

φ1(y)

(t2 − |x− y|2)
1
2

dy

= +
1

2π

∫ t

0

∫
{|x|≤s}

F (s, y)

((t− s)2 − |x− y|2)
1
2

dy ds.

where (φ0, φ1) = (φ, ∂tφ)�{t=0} and B0,t(x) is the ball {(0, y) : |x| ≤ t}.
Conversely, given any initial data (φ1, φ2) ∈ C∞(R2) and F ∈ C∞(R1+2), there exists a

unique solution φ to the initial value problem (1.3) defined by the formula (4.24).

Explicit computation for d = 3. Finally, we compute the form of the forward fundamental
solution E+ explicitly in dimension d = 3. Recall that χ−1

+ = δ0; hence

E+(t, x) = c31{t≥0} δ0(t2 − |x|2),

outside the origin, and at the origin E+ is determined by homogeneity. By (4.22), we have
c3 = 1

2π
.

Lemma 4.10. On R1+3 \ {0}, we have the identity

(4.25) δ0(t2 − |x|2) =
1

2
√

2t
dσC+

0
(t, x)

where C+
0 := {(t, x) : t = |x|, t ≥ 0} is a forward cone and dσC+

0
is the induced measure on

C+
0 . Moreover, for t0 > 0 we have

(4.26) δt0(t)dσC+
0

(t, x) =
√

2dσSt0
(t, x)

where St0 is the sphere {(t, x) : t = t0, |x| = t0} and dσSt0
is the induced measure on St0.

Proof. Let (r, ω) be the standard polar coordinates on R3 \ {0}, i.e.,

(r, ω) = (|x|, x
|x|

) ∈ (0,∞)× S2.

We employ the null coordinates (u, v, ω) on R1+3, which is defined by

(u, v) = (t− r, t+ r).
14



Then we have t2 − |x|2 = uv and v = 2t = 2r on C+
0 . Recalling the formula for the induced

measure on C+
0 , we see that dσC+

0
(u, v, ω) takes the form4

(4.27)

∫
φ(u, v, ω)dσC+

0
(u, v, ω) =

∫∫
φ(0, v, ω)

v2

4
√

2
dvdσS2(ω)

for every φ ∈ C∞0 . Hence we wish to show

〈δ0(uv) | φ〉 =

∫∫
φ(0, v, ω)

v

8
dvdσS2(ω).

Let hj ∈ C∞0 (R) be a sequence such that hj ⇀ δ0 as j → ∞. Writing out the 〈hj(uv) | φ〉
and making a change of variables u = uv, we obtain

〈hj(uv) | φ(u, v, ω)〉u,v,ω =

∫∫∫
hj(uv)φ(u, v, ω)

v2

8
dudvdσS2(ω)

=

∫
hj(u)

(∫∫
φ(
u

v
, v, ω)

v

8
dvdσS2(ω)

)
du

→
∫∫

φ(0, v, ω)
v

8
dvdσS2(ω) as j →∞,

where we used the fact that φ is supported away from {v = 0}, which is simply the origin
in R1+3. The proof of (4.25) is complete.

Now we turn to (4.26). Using (4.27), we compute

〈δ0(
1

2
(v + u)− t0)dσC+

0
(u, v) | φ(u, v, ω)〉u,v,ω

=〈hj(
1

2
(v + u)− t0)dσC+

0
(u, v) | φ(u, v, ω)〉u,v,ω

=

∫∫
hj(

1

2
v − t0)φ(0, v, ω)

v2

4
√

2
dvdσS2(ω)

=

∫∫
hj(v)φ(0, 2(t0 + v), ω)

√
2(t0 + v)2dvdσS2(ω)

→
∫
φ(0, 2t0, ω)

√
2t20dσS2(ω) =

√
2

∫
φ dσSt0

,

which proves (4.26). �

Using Propositions 4.3, 4.5 and Lemma 4.10, now it is not difficult to prove Kirchhoff’s
formula:

Theorem 4.11 (Kirchhoff’s formula). Let φ be a solution to the equation �φ = F with
φ, F ∈ C∞(R1+3). Then we have the formula

(4.28)

φ(t, x) =∂t

( 1

2πt

∫
S0,t(x)

φ0(y) dσ(y)
)

+
1

2πt

∫
S0,t(x)

φ1(y) dσ(y)

+
1

2πt

∫ t

0

∫
S0,t−s(x)

F (s, y) dσ(y)

4Strictly speaking, dσC+
0

(u, v, ω) is the composition of dσC+
0

(t, x) with the coordinate map (u, v, ω) 7→
(t, x), which is well-defined by Lemma A.1.
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where (φ0, φ1) = (φ, ∂tφ)�{t=0} and S0,t(x) is the sphere {(0, y) : |y − x| = t}.
Conversely, given any initial data (φ1, φ2) ∈ C∞(R3) and F ∈ C∞(R1+3), there exists a

unique solution φ to the initial value problem (1.3) defined by the formula (4.28).

Remark 4.12. For an alternative approach to derivation of the classical representation for-
mulae, which does not use the theory of distributions, we refer the reader to [2, Chapter
2].

Appendix A. Recap of distribution theory

The purpose of this appendix is to gather some results from distribution theory which are
necessary in the lectures.

A.1. Change of variables for distributions. In the notes, we often changed coordinates
to better suit our needs. The following lemma justifies the procedure of change of coordinates
for distributions.

Lemma A.1. Let Φ : X1 → X2 be a diffeomorphism, where X1, X2 are open subsets of
Rd. To every distribution h ∈ D′(X2) on X2, there exists a way to associate a unique
distribution h ◦ Φ ∈ D′(X1) on X1 so that u ◦ Φ agrees with the usual composition for
h ∈ C∞0 (X2) ⊆ D′(X2) and the following holds:

The mapping D′(X2)→ D′(X1), h 7→ h ◦ Φ is linear and continuous in h.

In fact, for φ ∈ C∞0 (X1), u ◦ Φ is defined by the formula

(A.1) 〈u ◦ Φ | φ〉 = 〈u | 1

| det Φ|
φ ◦ Φ−1〉.

Proof. Uniqueness is clear by density of C∞0 (X2) in D′(X2). Let hj ⇀ h be a sequence of
hj in C∞0 (X2) converging to h in the sense of distributions. Write Φ(x) = (y1(x), · · · , yd(x))
and

∂(y1, · · · , yd)
∂(x1, · · · , xd)

= det Φ, and
∂(x1, · · · , xd)
∂(y1, · · · , yd)

= det Φ−1.

For any φ ∈ C∞0 (X1), we have

〈hj ◦ Φ | φ〉 =

∫
un(Φ(x))φ(x) dx

=

∫
un(y)φ(Φ−1(y))

∂(x1, · · · , xd)
∂(y1, · · · , yd)

dy.

Since φ(Φ−1(y))∂(x1,··· ,xd)
∂(y1,··· ,yd)

is a test function on X2 (Exercise: Verify!), it follows that the

last line goes to

→ 〈u(y) | φ(Φ−1(y))
∂(x1, · · · , xd)
∂(y1, · · · , yd)

〉y = 〈u | 1

| det Φ|
φ ◦ Φ−1〉,

as desired. �

As an immediate corollary, we have the following linear change of variables for formula for
the delta distribution.
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Corollary A.2. Let Φ : Rd → Rd be a invertible linear transformation. Then we have

δ0 ◦ Φ =
1

| det Φ|
δ0.

A.2. Time-dependent distributions. We recall the following lemma from [3] concerning
time regularity of solutions to evolutionary PDEs. We use the coordinates (t, x) on R1+d.

Lemma A.3. Let I ×X ⊆ R1+d, where I is an open interval in R and X is an open set in
Rd. Suppose that h ∈ D′(I ×X) satisfies a PDE of the form

∂mt h+ am−1∂
m−1
t h+ · · ·+ a0h = F

where ak is a differential operator in x with coefficients in C∞(I×X) and F ∈ C(I;D′(X)).
Then it follows that h ∈ Cm(I;D′(X)).

Moreover, if h extends to a distribution in D′(J × X), where J is an open interval con-
taining I, and F ∈ C(I;D′(X)), then h ∈ Cm(I;D′(X)).

For a proof, see [3, Theorem 4.4.8].

A.3. Composition of a distribution with a map. In our notes, we considered composi-
tion of a distribution h on R (e.g., χa+) with a function A : Rd → R (e.g., f = t2 − |x|2). To
compute this, we used a smooth approximation hj ⇀ h, performed computation for hj and
then passed to the limit. For completeness, we state a lemma which says that this procedure
is well-defined.

Lemma A.4 (Composition of a distribution with a map). Let A : X1 → X2 be a submersion
(i.e., a map whose differential dA is surjective everywhere), where Xk ⊆ Rdk (for k = 1, 2)
is an open subset. To every distribution h ∈ D′(X2) on X2, there exists a way to associate
a unique distribution h ◦ A ∈ D′(X1) on X1 so that h ◦ Φ agrees with the usual composition
for u ∈ C∞0 (X2) ⊆ D′(X2) and the mapping D′(X2) → D′(X1), h 7→ h ◦ Φ is linear and
continuous.

This lemma can be proved similarly as Lemma A.1, using the implicit function theorem.
See [3, Theorem 6.1.2] for a proof.

A.4. Homogeneous distributions. Next, we recap the theory of homogeneous distribu-
tions. A distribution h ∈ D′(Rd \ {0}) is said to be homogeneous of degree a if for all λ > 0
and φ ∈ C∞0 (Rd \ {0}), we have

(A.2) 〈h | φ〉 = λa〈h | φλ〉 where φλ(x) := λdφ(λx).

We begin by reviewing the theory on R. Consider the function

xa+ := 1{x≥0} x
a,

which is locally integrable (and hence a distribution) when Re a > −1. To analytically
extend xa+, note the functional equation

(A.3)
d

dx
xa+ = axa−1

+ ,
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which holds for Re a > 0. This identity can be used to analytically continue xa+ (that is,
a 7→ 〈xa+ | φ〉 for any φ ∈ C∞0 (R)) to a ∈ C \ {−1,−2, . . .}; the problem is that we cannot
determine x−1

+ from the identity. To cancel the problematic factor of a, we define

(A.4) χa+ :=
xa+

Γ(a+ 1)
.

where Γ is the Gamma function, defined by the formula

Γ(a) =

∫ ∞
0

ta−1e−t dt.

for Re a > 0 and analytically continued to C \ {0,−1, · · · } by the identity

(A.5) Γ(a+ 1) = aΓ(a).

By (A.3) and (A.5), we have the identity

(A.6)
d

dx
χa+(x) = χa−1

+

for Re a > 0, as
axa−1

+

aΓ(a)
= χa−1

+ . Now we may analytically continue χa+ for a ∈ C, i.e.,

(A.7) a 7→ 〈χa+ | φ〉 can be analytically continued to a ∈ C for any φ ∈ C∞0 (R).

Note that χ−1
+ (x) = d

dx
χ0

+(x) = d
dx
H(x) = δ0(x). Then by the preceding identity, we see that

(A.8) χ−k+ (x) = δ
(k−1)
0 (x).

We recall some well-known functional equations for the Gamma function Γ(a):

Γ(a)Γ(1− a) =
π

sin(πa)
(A.9)

Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

sa−1(1− s)b−1 ds.(A.10)

Γ(a)Γ(a+
1

2
) =21−2a

√
πΓ(2a).(A.11)

The first formula is called Euler’s reflection formula; for a proof, see [5, Chapter 6]. The
function defined by the second formula is called the Beta function B(a, b); it can be easily
proved by writing out Γ(a)Γ(b) =

∫∞
0

∫∞
0
e−(s+t)sa−1tb−1 dsdt and making the change of

variables s = uv, t = u(1 − v). The third formula, called Legendre’s duplication formula,
can be derived by using the second formula twice, with an appropriate change of variables
(Exercise: Prove these formulae!).

We also record the following formulae concerning the homogeneous distribution χa+ for
convenience:

χ
− 1

2
−k

+ (x) =
dk

dxk
χ
− 1

2
+ =

1√
π

dk

dxk

( 1

x
1/2
+

)
(A.12)

χa+ ∗ χb+ =χa+b+1
+(A.13)

For the first identity, we used Γ(1
2
) =
√
π, which follows from (A.9). The second identity is

in fact equivalent to (A.10).
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Another example of a homogeneous distribution is the limit

(x± i0)a = lim
ε→0+

(x± iε)a,

where the limit is taken in the sense of distributions. Using the logarithm log z = log |z| +
iArg(z), where Arg measures the angle from the x-axis, we see that

(x± i0)a = xa+ + e±iaπxa− ,

at least for Re a > 0.
Now we turn to the theory on Rd.

Lemma A.5 (Homogeneous extension to the origin). If h ∈ D′(Rd \ {0}) is homogeneous
of degree a, and a is not an integer less than or equal to −d, then h has a unique extension
to a homogeneous distribution ḣ ∈ D′(Rd) of degree a, so that the map u 7→ u̇ is continuous.

See [3, Theorem 3.2.3] for a proof.
Finally, by the scaling properties of the Fourier transform, it follows that the Fourier

transform of a homogeneous distribution is also a homogeneous distribution. More precisely,
we have the following lemma.

Lemma A.6 (Fourier transform of homogeneous distributions). Let u ∈ S ′(Rd) be a homo-
geneous distribution of degree a. Then û is homogeneous of degree −a− n.

Appendix B. Computation of precise constant for E+: Proof of (4.22)

Here we give a proof of the formula (4.22) for the constant in the forward fundamental
solution for the d’Alembertian. We recall the formula here for the convenience of the reader:

(4.22) cd =
π(1−d)/2

2
.

This formula can be read off from [3, Theorem 6.2.1], which in fact applies to more general
constant coefficient second order differential operators. We present another argument5 here,
which is based on the use of the null coordinates (u, v, ω).

Proof of (4.22). First, given g, h ∈ C∞0 , note that we have the simple formula (by integration
by parts)

〈�g | h〉 =

∫
∂tg∂th dtdx−

∫
∇xg · ∇xh dtdx

Suppose that g, h is rotationally invariant. Then in the polar coordinates (t, r, ω), we see
that

〈�g | h〉 = ωd−1

∫∫
(∂tg∂th−

∫
∂rg · ∂rh)rd−1 dtdr

where ωd−1 =
∫
Sd−1 dσ is the d − 1-dimensional volume of the unit sphere Sd−1. Making

another change of variables to the null coordinates (u, v, ω) = (t− r, t+ r, ω), we then have
the formula

(B.1) 〈�g | h〉 = ωd−1

∫∫
(∂vf∂ug + ∂uf∂vg)

(v − u
2

)d−1

+
dudv.

5We thank P. Isett for communicating this proof.
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Now recall that E+ is a function of t2−|x|2, which equals uv in the null coordinates. Using
g = �E+ = δ0 and h = H(v) = 1{t+|x|≤1}, the identity (B.1) can then be used to deduce

(B.2) 1 = 〈�E+ | 1{|x|+t≤1}〉 = ωd−1

∫∫
∂uE+(uv)∂v1{v≤1}

(v − u
2

)d−1

+
dudv

where the integral is interpreted suitably. (Exercise: Using the support properties of E+

and 1{v≤1}, show that (B.2) makes sense. Indeed, show that the right-hand side is the limit

ωd

∫∫
1v+u≥0∂ugj(uv)∂vhj(1− v)(

v − u
2

)d−1
+ dudv as j →∞,

where gj, hj ∈ C∞0 (R), gj(x) ⇀ cdχ
− d−1

2
+ (x) and hj(x) ⇀ 1{x≥0}.)

Now note that

∂uE+ =1{v+u≥0}cdvχ
− d+1

2
+ (uv),(v − u

2

)d−1

+
=2−d+1(d− 1)!χd−1

+ (v − u),

∂v1v≤1 =− δ(1− v).

Substituting these identities into (B.2), it follows that

c−1
d =2−d+1(d− 1)!ωd−1

∫∫
χ
− d+1

2
+ (u)χd−1

+ (v − u) du

=2−d+1(d− 1)!ωd−1χ
− d+1

2
+ ∗ χd−1

+ (1).

Using the identities (see Appendix A.4)

χa+ ∗ χb+ =χa+b+1
+

χa+(1) =
1

Γ(a+ 1)

and the formula ωd−1 = 2πd/2

Γ( d
2

)
, we see that

(B.3) c−1
d = 2−d+1(d− 1)!

2πd/2

Γ(d
2
)

1

Γ(d+1
2

)
.

By Legendre’s duplication formula (A.11) with a = d
2
, we have

Γ(
d

2
)Γ(

d+ 1

2
) = 2−d+1

√
π(d− 1)!

Substituting the preceding computation into (B.3), we obtain (4.22). �
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3. Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-
Verlag, Berlin, 2003, Distribution theory and Fourier analysis, Reprint of the second (1990) edition
[Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773

20



4. Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983, With applications to relativity. MR 719023
(85f:53002)

5. Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in Analysis, II, Princeton
University Press, Princeton, NJ, 2003. MR 1976398 (2004d:30002)

Department of Mathematics, UC Berkeley, Berkeley, CA, 94720
E-mail address: sjoh@math.berkeley.edu

21


