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1 Introduction

1.1 A note on my writing style

This paper is my undergraduate thesis in mathematics. I think this paper should be demon-
strative, rather than expository, of what I have learned and how I think of mathematics.
Besides, there are tons of expository papers out there written by first-rate mathematicians,
anyway. For this reason, I did not write anything that I did not really understand or was not
convinced by; for instance, when I failed to understand a certain lemma, I proved something
else that achieves the same effect. But more importantly, I did write what I thought upon
seeing an interesting mathematical object or phenomenon.

I have observed repeatedly that mathematicians, despite their richness of thoughts and
imaginations, are somehow very terse in writing. This is no less true of expository papers
or textbooks, which I think are supposed to expose the ideas that are behind the definitions
they propose and the theorems they prove. I know there are good reasons to be objective —
to be careful so as not to mislead the readers, for example — but anyway, in my own paper,
I decided to be explicit about it. So the readers will face two full pages of my attempt at
motivating the definition of the Gowers U2 norm (which is done in a single phrase in [17]),
reports of my unsuccessful ideas, and declarations of lessons learned. These are really what
I wanted to write about; a mere reproduction of well-known proofs is not only boring but
useless as well. This paper might be applicable to both adjectives, too (I seriously hope
not!), but that is precisely why I attempt to find its meaning in being demonstrative.

1.2 The topic

Our ultimate interest lies in the following surprising fact, once a conjecture of Erdös and
Turán [2] in 1936, first proved by Szemerédi [16] in 1975:

Theorem 1 (Szemerédi [16]). Let A ⊂ Z be a set of positive upper density.1 Then A contains
an arithmetic progression of any finite length.

Szemerédi’s theorem has inspired many brilliant works in mathematics, including Sze-
merédi’s own proof, several different proofs ([3], [5]) all with immense contribution to mathe-
matics, and the famous Green-Tao theorem ([9]), which asserts that the the set of the prime
numbers contains an arithmetic progression of any finite length. But in this paper, we focus
on something less ambitious (nevertheless not easy at all):

1The positive upper density of a set is defined as d∗(A) = lim supN→∞ |A ∩ [−N, N ]|/|[−N, N ].
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Theorem 2 (Roth [15]). A subset of Z with positive upper density contains an arithmetic
progression of length three.

This special case of the Szemerédi’s theorem is named after Klaus Roth, who proved it
in 1953. The general case is substantially more difficult and longer (all the known proofs
consume fifty pages or more), and I will not explain it here. However, understanding Roth’s
theorem is a good first step to understanding Szemerédi’s theorem. The outlines of their
proofs are basically identical; the only problem is that a tool used in a certain part of the
proof of Roth’s theorem needs to be sharpened in order to be useful in the general case. The
natural questions at this point are:

1. What is exactly that “tool,” and what is exactly that “certain part?”

2. How does the “sharpening” go about?

If one knows the answers to these two questions, then one understands Szemerédi’s the-
orem. In the present exposition we are mainly concerned with the first question. For this
end, we examine two different proofs of Roth’s theorem: Gowers’s proof [5] that utilizes the
Gowers U2-norm, and Furstenberg’s work [3], [4] using ergodic theory. They give slightly
different answers to the above questions, but there are also many parallels and similarities
in important respects. I will start by explaining each approach, and give a third proof that
combine their ideas and highlight the interesting points of comparison and contrast.2

2 Gowers’s proof

Our goal is to show

Proposition 1. For any positive integer N and a nonempty subset A ⊂ Z/NZ, let δ :=
|A|/N . Then

Ex,d∈Z/NZ1A(x)1A(x+ d)1A(x+ 2d) ≥ c(δ).

for some c(δ) > 0 depending only on δ.

2I worked out the third proof myself, but I am pretty sure that I am not the only person who had the
same idea. And it is not really my original idea, although I have never seen it done in exactly the same
way. The combinations of Gowers’s and Furstenberg’s insights are seen all over in this part of mathematical
literature, such as [7], [9], [11], [17].
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The summation on the left is intended to count the number of 3-term arithmetic pro-
gressions in A. But it also counts the trivial progressions of the form (x, x, x), and the
pathological ones like (x, x+ d, x) with 2d = N ; fortunately, their contribution to the sum is
no greater than 2δN−1, which vanishes as N →∞. A more serious problem is that, in this
cyclic group environment, a 3-progression can “wrap around”; i.e. things like (N − 1, N, 1)
and (N − 7, N − 2, 3) count as 3-progressions in Z/NZ.

But it is not so difficult to lift this result to Z>0. If A ⊂ Z>0 with positive upper density
δ, fix 0 < ε << δ, and pick a sufficiently large N such that |A ∩ [1, N ]|/N ≥ δ − ε. Then
at least for one i ∈ 0, 1, 2, A ∩ [iN/3 + 1, (i + 1)N/3] has density δ′ ≥ (δ − ε)/3 in [1, N ].
Applying the above proposition with A ∩ [iN/3 + 1, (i + 1)N/3] ⊂ Z/NZ and δ′, one only
gets to count the progressions that do not wrap around. Therefore it really suffices to prove
this proposition, which we now do.

2.1 Pseudorandom sets and the Gowers U 2-norm

In his proof of Szemerédi’s theorem, Gowers [5] starts by remarking that “random sets” have
many arithmetic progressions. Although he does not mention it explicitly, a random set here
means a set A of density δ > 0 with the following property: for any positive integer d, if
x ∈ A, then x + d ∈ A with probability δ. For example, if A ⊂ Z/NZ and δ = |A|/N , then
the number of 3-term arithmetic progressions in A is approximately δN · δN · δ = δ3N2.

At this point, one may take a flight of imagination, and consider randomness as a property
that we can investigate and manipulate. Then it is natural to come to the following thoughts:

1. If a set is sufficiently random, then it must have around δ3N2 3-term progressions.

2. If a set is not sufficiently random, it must be structured, whatever that means (it will
be discussed later in the paper).

This is the core idea behind this proof of Szemerédi’s theorem. In fact, this way of
thinking in terms of random sets and non-random (or structured) sets is present in any proof
of Szemerédi’s theorem, and also in the Green-Tao theorem. Terence Tao said during his
lecture in ICM 2006 [18]:

Firstly, for a given class of objects, one quantifies what it means for an object to
be “(pseudo-)random” and an object to be “structured”. Then, one establishes
a dichotomy between randomness and structure, which typically looks something
like this:

6



If an object is not (pseudo-)random, then it (or some non-trivial
component of it) correlates with a structured object.

(Also, see [6])

Tao, who has an extraordinary naming sense,3 calls this “the dichotomy of randomness
and structure.”

In this section, we make rigorous the first thought, and the second thought will be ex-
plained in the next part. Instead of the term “sufficiently random,” the word pseudorandom
is often used in the literature of Szemerédi’s theorem and related works. Now our task is to
devise an appropriate mathematical expression of pseudorandomness, or, in other words, a
way to measure the degree of randomness of a set.

Recall what is meant by “random” here: for a set A of density δ > 0, we say A is random
if for any nonzero integer d, if x ∈ A, then x+ d ∈ A with probability δ. It is not so clear if
any subset of Z>0 or Z/NZ has this property, but that is not what is claimed here anyway.
This notion of randomness is there just as some kind of yardstick.

For a set A ⊂ Z/NZ and an integer 0 ≤ d ≤ N , the probability that x ∈ A⇒ x+ d ∈ A
is Ex∈A1A(x)1A(x + d), but we can also measure it (although on a different scale) by the
more convenient Ex∈Z/NZ1A(x)1A(x + d). But then summing this again over all d ∈ Z/NZ,
we only get the constant δN · δN ·N−2. In order to salvage the lost information, we sum up
the square of each individual term:4

Ed∈Z/NZ|Ex∈Z/NZ1A(x)1A(x+ d)|2.

This is the fourth power of the Gowers U2-norm of 1A, written ‖1A‖U2 . It is indeed a
norm over the space of functions on Z/NZ.

Note that when A is random, the term inside Ex1A(x)1A(x + d) equals δ2 (except when
d = 0). Ignoring the pesky case d = 0 (in which case the sum vanishes as N →∞ anyway),
we may heuristically call A pseudorandom if

3We will soon see another instance of his naming sense.
4This is not an unnatural thing to do. In statistics, when one tries to measure the average distance

between each variable x and the mean M by Ex(x −M), one obtains nothing more than zero. Hence we
instead measure Ex|x−M |2, i.e. the variance.
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Ed∈Z/NZ|Ex∈Z/NZ1A(x)1A(x+ d)− δ2|2

is close to zero. Indeed, fixing the density δ, a set A of density δ is random if and only if the
above value is the smallest possible.

We may further refine this expression into

Ed∈Z/NZ|Ex∈Z/NZf(x)f(x+ d)|2

where f(x) = 1A(x)− δ is the balanced function of A. Evidently, this is the fourth power of
the Gowers norm of f , or, we could also say, the Gowers norm of the set A.

A little discussion about the motivation of the Gowers norm: there are many ways to
understand how it comes about — see [5], [7], and [17]. The one above is what I personally
am most comfortable with. Gowers himself introduced it 5 in [5] while trying to use Fourier
analysis to prove Roth’s theorem. In the language of Fourier analysis, where ω = e2πi/N ,

Ex,d∈Z/NZ1A(x)1A(x+ d)1A(x+ 2d) = Ea,b,c∈AEr∈Z/NZω
r(a−2b+c)

=
∑

r∈Z/NZ

1̂A(r)1̂A(−2r)1̂A(r)

and

Ed∈Z/NZ|Ex∈Z/NZf(x)f(x+ d)|2 = Er∈Z/NZ|f̂(r)|4,

(note that f here is the balanced function of the set A) which, when sufficiently small,
somehow6 gives a nonzero upper bound to the earlier sum that counts the 3-progressions,
thereby giving sense to our motto pseudorandom sets contain 3-progressions. Also note the
complex conjugation sign on the left-hand side; Gowers apparently cared about how his
norm would apply to complex-valued functions, which I didn’t, as it was not immediately
necessary, and will not be until the end of this proof. But for the sake of delivering the
correct information, I will declare the definition as he did anyway, in the complex version:

5In fact, Wiener [22] is the first person to invent it under the name of the autocorrelation function,
although his purpose then had nothing to do with Szemerédi’s theorem, then a conjecture of Erdös and
Turán [2].

6The details are very simple, but kind of messy — see Gowers’s original proof [5].
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Definition (Gowers U2-norm). The Gowers U2-norm of a function f : Z/NZ→ C is

‖f‖U2 = [Ed∈Z/NZ|Ex∈Z/NZf(x)f(x+ d)|2]1/4 = [Ex,n,m∈Z/NZf(x)f(x+ n)f(x+m)f(x+m+n)]1/4.
(1)

Indeed,

Proposition 2. The Gowers U2-norm is a norm on the space of functions Z/NZ→ C.

Checking this amounts to a few straightforward computations, and so is omitted (for a
proof, see [5] or [9]).

2.2 Roth’s theorem for pseudorandom functions

Much of the power of the Gowers norm comes from the following statement.

Lemma 1 (Generalized von Neumann Theorem7 [8]). If f1, f2, f3 : Z/NZ −→ D2 ∈ C, we
have

Ex,df1(x)f2(x+ d)f3(x+ 2d) ≤ ‖fi‖U2

for any i ∈ {1, 2, 3}.

Proof. Here we provide the proof for the case i = 1; the other cases are very similar. Rewrite

Ex,df1(x)f2(x+ d)f3(x+ 2d) = Es,tf1(2s− t)f2(s)f3(t).

By the Cauchy-Schwarz inequality and the fact that |f2(x)| ≤ 1,

|Ex,df1(x)f2(x+ d)f3(x+ 2d)|2 ≤ EsEt,t′f1(2s− t)f1(2s− t′)f3(t)f3(t′).

Again by the Cauchy-Schwarz inequality and the fact that f3(t)f3(t′) ≤ 1,

7This is how Tao named it. The apparent lack of similarity between this lemma and anything that is called
von Neumann(-Koopman) theorem in ergodic theory nonplussed everyone that works on Szemerédi-related
problems.
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|Ex,df1(x)f2(x+ d)f3(x+ 2d)|4 ≤ Es,s′Et,t′f1(2s− t)f1(2s− t′)f1(2s′ − t)f1(2s
′ − t′).

But then, the right-hand side here coincides with ‖f1‖4U2 , as desired.

Corollary. If f : Z/NZ −→ D2, then Ex,d∈Z/NZf(x)f(x+ d)f(x+ 2d) ≤ ‖f‖U2.

Below is the main result of this tiny section. It is basically Proposition 1 with the
restriction that A is pseudorandom.

Proposition 3 (Sets with sufficiently small Gowers norms have 3-progressions). Let A ⊂
Z/NZ with |A| = δ, and f be the balanced function of A. If

‖f‖U2 ≤ δ3/8,

then
Ex,d∈Z/NZ1A(x)1A(x+ d)1A(x+ 2d) ≥ δ3/8.

Proof. Write f1(x) = δ and f2(x) = f(x). Then

Ex,d1A(x)1A(x+ d)1A(x+ 2d)

= Ex,d(f1(x) + f2(x))(f1(x+ d) + f2(x+ d))(f1(x+ 2d) + f2(x+ 2d))

= Ex,df1(x)f1(x+ d)f1(x+ 2d) +
∑

i,j,k∈1,2,not all 1

Ex,dfi(x)fj(x+ d)fk(x+ 2d)

≥ δ3 − 7‖f2‖U2

≥ δ3/8,

by the Generalized von Neumann theorem.

Remark. In the above argument, the smaller we assume ‖f‖U2 is, the higher the lower
bound becomes, closer to δ3, which is the expected value for random sets. In addition, the
supremum of ‖f‖U2 we may assume is δ3/7 not inclusive. So there is nothing special about
the denominator 8 in our estimate above.

2.3 Roth’s theorem for non-pseudorandom functions

To complete the proof of Roth’s theorem, we need to know what we can say about sets with
Gowers norms > δ3/8. Indeed, we have the following result.
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Lemma 2 (Gowers inverse theorem [7]). Let α ∈ [0, 1]. Then ‖f‖U2 ≥ α =⇒ ‖f̂‖∞ ≥ α2.

Proof. Note that

‖f‖4U2 = Er|f̂(r)|4,

which in fact gives a better estimate ‖f̂‖∞ ≥ α.

To see why this information is helpful, consider the explicit expression of the Fourier
transform f̂(r):

f̂(r) = Exf(x)ω−rx

This is a weighted sum of certain unit vectors. Visualizing how the sum accumulates on
the complex plane as x runs through Z/NZ (to facilitate thinking here assume r|N), one
can actually prove a statement of kind ‘if |1̂A(r)| > M for some M = M(δ), then A contains
a 3-progression,’ although such M is far much larger than δ3/8 and thus not so useful in our
situation. On the other hand, if A does have a 3-progression, then for some r a partial sum of
f̂(r) must accumulate large enough so as to imply the existence of a 3-progression, although
the whole sum does not have to. We could detect this partial accumulation by, for example,
convolving f̂(r) with something, and we could prove Roth’s theorem this way. In fact, Bryna
Kra [13] told me that B. Host and she took on this approach and proved a stronger claim
than Szemerédi’s theorem (namely, that A contains a positive density of k-progressions with
the same common difference) for cases k = 3 and 4; however, the claim is false for k ≥ 5, for
the reason provided by I. Ruzsa: it somehow has to do with the terrible non-abelianness of
the alternating group Ak for k ≥ 5. It must be very interesting and deep, but since one of
our goals for studying Roth’s theorem is to eventually understand Szemerédi’s theorem, in
this paper I am not stepping onto this track.

I mentioned these abortive Fourier-analytic approaches to make a point that Fourier
coefficients do contain some information about 3-progressions. Now we look at the approach
that actually works:

Proposition 4 (Density increment [8]). For 0 < δ < 1 and a sufficiently large N depending
on δ, if A ∈ Z/NZ with density δ, and if the Gowers norm of A is greater than δ3/8, then
there exists an arithmetic progression P ⊂ [1, N ] = 1, . . . , N whose length diverges to infinity
as N →∞ and ε = ε(δ), such that |A ∩ P |/|P | ≥ (δ + ε).
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(Here we shift to the context of [1, N ] to avoid the wraparound issues.)

If in addition ε(δ) may be defined as a nondecreasing function of δ, then finitely many
applications of this statement imply Szemerédi’s theorem.

Let f be the balanced function of A. By the Gowers inverse theorem, we already know
that there exists r ∈ Z/NZ such that |f̂(r)| = Exf(x)ω−rx ≥ δ6/64. A couple of lemmas are
in order.

Lemma 3 (Dirichlet’s pigeonhole principle/Weyl equidistribution theorem [8]). Take r as
in the above discussion, and suppose 0 < c < 1. Then there exists a positive integer d ≤ 1/c
such that ‖dr‖R/Z ≤ c.

Proof. Consider 0, r, 2r, . . . ,mr where m = b1/cc. By the pigeonhole principle, there exist
j, j′ such that ‖jr − j′r‖R/Z ≤ c. Take d = |j − j′|.

Lemma 4. Take the earlier r, and let 0 < η < 1. Suppose that N > Cη−6 for some
appropriate constant C. Then there exists a partition of [1, N ] into arithmetic progressions
Pi, i = 1, . . . , n each of length at least N1/3, such that supx,x′∈Pi

|ωrx − ωrx′| ≤ η for each i.

Proof. Applying the previous lemma with c = ηN−1/3/4π, we can find a d ≤ 4πN1/3/η such
that ‖dr‖R/Z ≤ ηN−1/3/4π. If P is any progression with common difference d and length at
most 2N1/3, then, by 2N1/3 applications of the triangle inequality

supx,x′∈P |ωrx − ωrx
′| ≤ 2N1/3|ωdr − 1|.

Since |ωt − 1| = 2|sinπt| ≤ 2π‖t‖R/Z,

supx,x′∈P |ωrx − ωrx
′ | ≤ 4πN1/3‖dr‖R/Z ≤ η.

If N > Cη−6, then d is at most
√
N (note: C can be whatever that makes this estimate

correct; a simple computation shows that we can fix C = (4π)6), and now it is tedious but
not so hard to see that [1, N ] may be partitioned into progressions Pi of difference d and
length between N1/3 and N2/3.
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Proof of density increment. Let η = δ6/128, and make N sufficiently large to satisfy N >
Cη−6. Then apply the above lemma to obtain the progressions Pi.

Recall we had |
∑

x f(x)ω−rx| > δ6N/64. By the triangle inequality,

n∑
i=1

∣∣∣∑
x∈Pi

f(x)ω−rx
∣∣∣ > δ6N/64.

Therefore, fixing some xi ∈ Pi for each i = 1, . . . , k, we obtain

n∑
i=1

∣∣∣∑
x∈Pi

f(x)
∣∣∣ =

n∑
i=1

∣∣∣∑
x∈Pi

f(x)ω−rxi

∣∣∣
≥

n∑
i=1

∣∣∣∑
x∈Pi

f(x)ω−rx
∣∣∣− n∑

i=1

∣∣∣∑
x∈Pi

f(x)(ω−rxi − ω−rx)
∣∣∣

≥ δ6N/64−
n∑
i=1

∣∣∣∑
x∈Pi

f(x)
∣∣∣η

≥ δ6/128 ·
n∑
i=1

|Pi|.

Note that we used N =
∑n

i=1 |Pi| above. To remove the modulus sign on the left side,
we use the fact that

∑n
i=1

∑
x∈Pi

f(x) = 0, which implies

n∑
i=1

(
∣∣∣∑
x∈Pi

f(x)
∣∣∣+

∑
x∈Pi

f(x)) ≥ δ6/128 ·
n∑
i=1

|Pi|.

By the pigeonhole principle, there exists i so that

∣∣∣∑
x∈Pi

f(x)
∣∣∣+

∑
x∈Pi

f(x) ≥ δ6|Pi|/128

⇒
∑
x∈Pi

f(x) ≥ δ6|Pi|/256
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⇒
∑
x∈Pi

(1A(x)− δ) ≥ δ6|Pi|/256

⇒ |A ∩ Pi| ≥ (δ + δ6/256)|Pi|,

as desired. This completes the proof of Density increment and of Roth’s theorem.

3 Furstenberg’s proof

3.1 Some background knowledge

I will start by providing some basic facts in ergodic theory. For details, see [20].

Definition. A probability measure space is a triple (X,B, µ) where X is a set, B is a σ-
algebra over X, and µ is a probability measure on (X,B), i.e. µ(X) = 1. A probability
measure preserving system (X,B, µ, T ) is a probability measure space equipped with a mea-
sure preserving transformation T ; that is, T : X → X is measurable and µ(A) = µ(T−1A)
for all A ∈ B.

A set A ∈ B is called T -invariant if T−1A = A almost everywhere. T , or (X,B, µ, T ) is
called ergodic if the only T -invariant sets are ∅ and X up to null sets.

The following result, the von Neumann ergodic theorem, suggests one among many cool
properties of an ergodic transformation.

Theorem 3 (von Neumann [19]). Let U be a unitary operator on the Hilbert space H,
M = {x | Ux = x}, P the orthogonal projection onto M. Let SN = 1

N

∑N−1
i=0 U i. Then for

every x ∈ H, SNx→ Px in the norm topology.

One may check that if (X,B, µ, T ) is a probability measure preserving space, then the
operator UT : L2(X,B, µ) → L2(X,B, µ) by UTf = f ◦ T is unitary.8 So we can apply the
above theorem with H = L2 and U = UT . If T is ergodic, then M is the subspace spanned
by constant functions, which implies

1

N

N−1∑
i=0

U i
Tf →

∫
fdµ

8Often we abuse the notation and write T for UT .
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in L2, which is very useful in many situations — we will see one soon.

On a side note, it is a theorem of Birkhoff [1] that if T is ergodic, then 1
N

∑N−1
i=0 f(T ix)

converges to
∫
fdµ for almost every x. In this paper, we only need the von Neumann ergodic

theorem.

3.2 Multiple recurrence and correspondence principle

Our discussion of an ergodic proof of Roth’s theorem starts with a basic result in ergodic
theory, proved by Poincaré.

Theorem 4 (Poincaré recurrence [14]). If (X,B, µ, T ) is a probability measure preserving
system and A ∈ B with µ(A) > 0, then there exist n ∈ N such that µ(A ∩ T−nA) > 0.

In other words, there are many elements of A that comes back to A after n iterations of
T (hence the name “recurrence”).

Example 1. Let T = R/Z with 0 and 1 identified be the unit circle, and let L and λ be the
Lebesgue σ-algebra and the Lebesgue measure on T, respectively. Define a transformation T
on T by Tx = x+ α (mod 1), where α ∈ [0, 1]. We now have a system (T,L, λ, T ).

Pick x ∈ T and ε > 0. Define A = [x − ε, x + ε]. By Poincaré recurrence, there exists
n such that µ(A ∩ T−nA) > 0, i.e. T nx comes back arbitrarily close to x. This is not
unrelated to the Dirichlet lemma we used in the earlier proof of Roth’s theorem: T can also
be parametrized as the unit circle {eiθ|θ ∈ [0, 2π]} on C, and this result is independent of
parametrizations.

Example 2. The above example can be generalized as follows. Take the system (T × . . . ×
T,L× . . .×L, λ× . . .×λ, T ), where the direct sums are of m <∞ terms and T (x1, . . . , xm) =
T (x1 + α1, . . . , xm + αm), αi ∈ [0, 1].

Fix (x1, . . . , xm) ∈ T× . . .× T and ε > 0, and define A = [x1 − ε, x1 + ε]× . . .× [xm −
ε, xm + ε]. Again by Poincaré recurrence, there exists n such that µ(A ∩ T−nA) > 0, i.e.
T n(x1, . . . , xm) comes back arbitrarily close to (x1, . . . , xm), in the sense that ‖(xi + nαi) −
xi‖R/Z < 2ε for every i.

A similar result can be proved using Fourier analysis; that is the Weyl equidistribution
theorem [21].

Looking at Poincaré recurrence, one may wonder what is going to happen to µ(A∩T−nA∩
T−2nA), µ(A ∩ T−nA ∩ T−2nA ∩ T−3n), etc. In fact, the same thing is going to happen:
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Theorem 5 (Furstenberg; multiple recurrence [3]). If (X,B, µ, T ) is a probability measure
preserving system and A ∈ B with µ(A) > 0, then for any k ≥ 1 there exists n ∈ N such that
µ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0.

This statement looks very analogous to Szemerédi’s theorem. In fact, it is implies to
Szemerédi’s theorem,9 via the following theorem:

Theorem 6 (Furstenberg; correspondence principle [4]). Suppose E ⊂ Z has positive upper
density d∗(E) > 0. Then there exists an ergodic system10 (X,B, µ, T ) and a set A ∈ B with
µ(A) = d∗(E) such that

µ(T−m1A ∩ . . . ∩ T−mkA) ≤ d∗((E +m1) ∩ . . . ∩ (E +mk))

for all k ∈ N and all m1, . . . ,mk ∈ Z.

For a proof, see [12].

We only care about the case k = 2 in this paper. Also, since the correspondence principle
gives an ergodic system (in fact it is a Bernoulli shift), to prove Szemerédi it suffices to worry
about Theorem 5 for ergodic systems only. Therefore, for our goals here, it suffices to prove
the following statement.

Theorem 7 (Furstenberg [4]). Let (X,B, µ, T ) be an ergodic system. If f ∈ L∞(X,B, µ) is
nonnegative and not a.e. 0, then

lim
N→∞

1

N

N−1∑
n=0

∫
f(x)f(T nx)f(T 2nx)dµ(x) > 0.

If A ⊂ X with µ(A) > 0, letting f(x) = 1A(x) and applying the above theorem yields
the desired result.

3.3 Outline of the proof

As in Gowers’s proof of Roth’s theorem, Furstenberg’s proof is in two parts. However, the
ideas are different. Gowers uses the fact that random sets have arithmetic progressions, and

9Actually a little work shows that it is equivalent to Szemerédi’s theorem; see [12].
10In the original proof of Furstenberg [3], the system was not ergodic.
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then shows that nonrandom sets have linear bias i.e. it is distributed more densely on a
certain portion of N than on the rest. Furstenberg first proves that “structured” sets have 3-
term arithmetic progressions, and in the case of general sets, he finds arithmetic progressions
in their “structured component.” Let me explain this more carefully. First, the notion of
“structure” used here is as follows:

Definition (Kronecker factor [4], [12]). Let (X,B, µ, T ) be a probability measure preserving
system. The Kronecker factor E(X,B, µ, T ) of (X,B, µ, T ) is the subspace of L2(X,B, µ)
spanned by the eigenvectors of T .

The Kronecker factor is also called the rotation factor. The name probably comes from
the fact that T acts like a rotation on each eigenvector; Tf = λf ⇒ |λ| = 1, so T works
like rotating the image of f on the complex plane. In effect, T acts on E(X,B, µ, T ) like a
rotation on a direct sum of T.

A rotation is a fairly well-understood object in ergodic theory; Example 2 already suggests
that for any f ∈ E(X,B, µ, T ), there exists some n such that T nf and T 2nf comes arbitrarily
close to f . In fact, the first part of Furstenberg’s proof is a rigorous expression of this
intuition.

Proposition 5 (Furstenberg [3]). If ψ ∈ L∞(X) ∩ E(X,B, µ, T ), then for every ε > 0 there
exists a syndetic set of n11 such that

∫
ψ(x)ψ(T nx)ψ(T 2nx)dµ >

∫
ψ(x)3dµ− ε.

For any f ∈ L2(X,B, µ), denote by f̃ the orthogonal projection of f onto E(X,B, µ, T ).
(This makes sense because E(X,B, µ, T ) is a closed subspace of L2.) f̃ may be interpreted
as the “structured component” of f . The second part of Furstenberg’s proof consists of the
following deep theorem:

Proposition 6 (Furstenberg [3]). If f, g, h ∈ L∞(X,B, µ) ∩ L2(X,B, µ), then

lim
N→∞

1

N

N−1∑
n=0

∫
f(x)g(T nx)h(T 2nx)dµ = lim

N→∞

1

N

N−1∑
n=0

∫
f̃(x)g̃(T nx)h̃(T 2nx)dµ.

Proof of Theorem 7. By Proposition 6, it suffices to show that if f ∈ L∞ is nonnegative and
not a. e. 0, then

11A subset of Z is syndetic if the gap between any of its two adjacent element is bounded by a constant.
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lim
N→∞

1

N

N−1∑
n=0

∫
f̃(x)f̃(T nx)f̃(T 2nx)dµ(x) > 0.

By Proposition 5, for syndetic n,

∫
f̃(x)f̃(T nx)f̃(T 2nx)dµ >

∫
f̃(x)3dµ− ε.

So all we need to show is
∫
f̃(x)3dµ > 0.

Lemma 5. If f ≥ 0, then f̃ ≥ 0.

Proof. The claim follows from these two points: (i) f̃ = max(f̃ , 0) because they both min-
imize the distance from E(X,B, µ, T ) to f (ii) max(f̃ , 0) ∈ E(X,B, µ, T ) as max(f̃ , 0) =
(f + |f |)/2.

Lemma 6. f̃ is not a.e. 0.

Proof. This is true because
∫
f̃dµ =

∫
fdµ 6= 0.

Corollary.
∫
f̃(x)3dµ > 0.

This completes the proof of Roth’s theorem.

3.4 The “structured” case

Lemma 7. If ψ ∈ E(X,B, µ, T ), then for any ε > 0 there exists a syndetic set of n such
that ‖T nψ − ψ‖2 < ε.

Proof. It suffices to prove this for a dense set of E(X,B, µ, T ), in particular, the algebraic
span (i.e. linear combination of finitely many terms) of the eigenvectors of T . Suppose
ψ =

∑m
j=1 ciei, ‖ψ‖2 = 1 without loss of generality, where ci ∈ C and ei are eigenvectors

with eigenvalue λi.
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By the Weyl equidistribution theorem (or see Example 2 above), there exists a syndetic
set of n such that |λni −1| < ε for all i = 1, . . . ,m. This implies ‖T nψ−ψ‖2 = ‖

∑m
j=1 ci(λ

n
i −

1)ei‖2 < ε, as desired.

Proof of Proposition 5.∣∣∣∫ ψ(x)ψ(T nx)ψ(T 2nx)dµ−
∫
ψ(x)3dµ

∣∣∣
≤

∫
|ψ(x)||ψ(T nx)||ψ(T 2nx)− ψ(x)|dµ+

∫
|ψ(x)|2|ψ(T nx)− ψ(x)|dµ

≤ ‖ψT nψ‖2‖T 2nψ − ψ‖2 + ‖ψ‖2‖T nψ − ψ‖2
≤ ‖ψ‖2∞(‖T 2nψ − T nψ‖2 + ‖T nψ − ψ‖2) + ‖ψ‖∞‖T nψ − ψ‖2
≤ 3‖ψ‖2∞‖T nψ − ψ‖2.

The proposition now follows by the previous lemma.

3.5 The “random” case

We are now up to the second and last part of the proof. There are (at least) two ways to
do this, one as in [4], and another as in [12]. They are basically the same proofs, but I will
follow the latter one because it is shorter.

Lemma 8 (van der Corput; special case). Let {un} be a seqence in a Hilbert space with
‖un‖ ≤ 1 for all n ∈ N. For m ∈ N, set

γm = lim sup
N→∞

∣∣∣ 1

N

N−1∑
n=0

〈un+m, un〉
∣∣∣.

If limM→∞
1
M

∑M−1
m=0 γm = 0 for all m, then

lim sup
N→∞

∥∥∥ 1

N

N−1∑
n=0

un

∥∥∥2

= 0.

Proof. Given ε > 0 and a fixed M ∈ N, for N sufficiently large we have that
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∣∣∣ 1

N

N−1∑
n=0

un −
1

N

1

M

N−1∑
n=0

M−1∑
m=0

un+m

∣∣∣ < ε.

By convexity,

∥∥∥ 1

N

N−1∑
n=0

1

M

M−1∑
m=0

un+m

∥∥∥2

≤ 1

N

N−1∑
n=0

∥∥∥ 1

M

M−1∑
m=0

un+m

∥∥∥2

=
1

N

1

M2

N−1∑
n=0

M−1∑
m1,m2=0

〈un+m1 , un+m2〉

≤ 1

M2

M−1∑
m1,m2=0

1

N

N−1∑
n=0

〈un+m1 , un+m2〉

≤ 1

M2

M−1∑
m1,m2=0

γ|m1−m2|

≤ 2

M

M∑
m=1

1

M

m−1∑
l=0

γl,

which approaches 0 as M →∞, by assumption.

Proposition 7 (Furstenberg; double convergence [3]). Suppose (X,B, µ, T ) is ergodic and
g, h ∈ L∞(X,B, µ) ∩ L2(X,B, µ). Then

lim
N→∞

1

N

N−1∑
n=0

T ng · T 2nh = lim
N→∞

1

N

N−1∑
n=0

T ng̃T 2nh̃

in L2.

Proof. Without loss of generality, we may assume that g̃ = 0.

Let un = T ng ·T 2nh. By the van der Corput lemma and the above assumption, it suffices
to show that limM→∞

1
M

∑
m γm = 0 for all m.

〈un, un+m〉 =

∫
T ng · T 2nh · T n+mg · T 2n+2mhdµ
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=

∫
(g · Tmg) · T n(h · T 2mh)dµ.

Therefore,

1

N

N−1∑
n=0

〈un, un+m〉 =

∫
(g · Tmg)

1

N

N−1∑
n=0

T n(h · T 2mh)dµ.

By the von Neumann ergodic theorem applied to the second term, the limit

γm = lim
N→∞

1

N

N−1∑
n=0

〈un, un+m〉

exists, and is equal to

∫
g · Tmgdµ ·

∫
h · T 2mhdµ

because T is ergodic. Now, since
∫
h · T 2mhdµ is bounded, say by B,

∣∣∣ 1

M

M−1∑
m=0

γm

∣∣∣ ≤ |B|
∣∣∣ 1

M

M−1∑
m=0

∫
g · Tmgdµ

∣∣∣
= |B|

∣∣∣∫ g · 1

M

M−1∑
m=0

Tmgdµ
∣∣∣

which vanishes asM →∞, by the von Neumann ergodic theorem and the fact that g̃ = 0.

Corollary. If f, g, h ∈ L∞(X,B, µ) ∩ L2(X,B, µ), then

lim
N→∞

1

N

N−1∑
n=0

∫
f(x)g(T nx)h(T 2nx)dµ = lim

N→∞

1

N

N−1∑
n=0

∫
f̃(x)g̃(T nx)h̃(T 2nx)dµ.

Proof. Take the weak limit of 1
N

∑N−1
n=0 T

ng · T 2nh.

This is precisely Proposition 6.
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4 Synthesis of the two arguments

It is very interesting to compare Gowers’s and Furstenberg’s proofs of Roth’s theorem. Both
of these proofs are split into two parts, the case for random (loosely speaking) sets, and
the case for structured (again loosely speaking) sets. However, the difficulty of each proof
lies in different parts. In Gowers’s proof, it is relatively easy to prove the theorem for
pseudorandom functions, and the main difficulty lies in proposing and proving the density
increment argument. In contrast, the structured case in Furstenberg’s proof is rather an
easy consequence of Poincaré recurrence, whereas Proposition 6 requires lots of insight.

This observation tempts one to take the easy part of each proof and fuse them together,
in the hope of creating the “easiest proof.” Such a proof will be conceptually nice as well.
Gowers’s proof gives a good idea of pseudorandomness in terms of Gowers U2-norm. But
it expresses the idea of structure in a very indirect way, i.e. if the balanced function of a
set A ⊂ Z/NZ has a large Fourier coefficient, then A has a “linear bias.” Furstenberg has
a rigorous definition of what it means to be structured: a set E ⊂ Z is structured if its
corresponding set A via the correspondence principle is in the rotation factor. However,
his notion of randomness is defined covertly, as whatever that is not in the rotation factor.
A combination of these two arguments will be the one that tells us explicitly about both
randomness and structure, and how the two notions are related.

Let me state the goal here clear: we want a proof of Roth’s theorem that utilizes both the
Gowers U2 norm and the Kronecker factor, in the way they were used in the above proofs.

One immediate difficulty is that Gowers’s and Furstenberg’s arguments are made in very
different environments. Roth’s theorem is a statement about a subset of Z. Gowers reduces
it to a statement about a subset of Z/NZ; Furstenberg uses the correspondence principle
to turn it into a problem about some ergodic system (X,B, µ, T ). Although Z/NZ can be
made into an ergodic system equipped with the σ-algebra 2Z/NZ (the power set of Z/NZ), the
normalized counting measure, and the transformation Sx = x + 1, Furstenberg’s argument
is not very applicable to this system, since it does not satisfy the correspondence principle.
It is futile to ignore this and apply Propositions 6 and 5 anyways. Proposition 6 do not
give any new information, as the Kronecker factor of Z/NZ is simply the entire L2-space.
Proposition 5 does not help either; the syndetic set of n could very well be {0, N, 2N, . . .},
so all it tells us is that

∫
1A(x)3dµ >

∫
1A(x)3dµ− ε, which is useless.

So we can only hope that the Gowers U2-norm is applicable to the space L∞(X,B, µ)
induced by the ergodic system (X,B, µ, T ). The bad news is that the Gowers norm as defined
here is only applicable to functions supported on finite sets. The good news is that there
exists a generalization of the Gowers norm that is defined on L∞(X,B, µ). It is called the
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Host-Kra norm,12 named after its inventors [10], [11]. It is a very difficult object to define and
understand, but the one that corresponds to the Gowers U2-norm has a simple expression,
which is a natural extension of the Gowers norm:

‖f‖4HK2 = lim
N→∞

1

N

N−1∑
n=0

(∫
f · T nfdµ

)2

.

Moreover, there is a Host-Kra version of the Generalized von Neumann theorem.

Lemma 9. Suppose (X,B, µ, T ) is ergodic. If f1, f2 ∈ L∞(X,B, µ) with ‖f1‖∞, ‖f2‖∞ ≤ 1,
then, for i = 1, 2,

lim sup
N→∞

∥∥∥ 1

N

N−1∑
n=0

T nf1T
2nf2

∥∥∥
L2(µ)

≤ i‖fi‖HK2 .

If in addition ‖f‖∞ ≤ 1, then

lim sup
N→∞

∣∣∣ 1

N

N−1∑
n=0

∫
fT nf1T

2nf2dµ
∣∣∣ ≤ i‖fi‖HK2 .

Proof. For the first inequality, see [12]. The second inequality follows from the first and
Hölder’s inequality.

With this, we can do the same thing as in Proposition 3 to show that pseudorandom sets
have 3-progressions.

For the general case, given a set A with µ(A) = δ > 0, let f1 = 1̃A be the orthogonal
projection of 1A into the Kronecker factor, and let f2 = 1A − f1. Then

1

N

N−1∑
n=0

∫
1AT

n1AT
2n1Adµ

=
1

N

N−1∑
n=0

∫
f1T

nf1T
2nf1dµ+

∑
i,j,k∈{1,2},not all 1

1

N

N−1∑
n=0

∫
fiT

nfjT
2nfkdµ.

12It is in fact just a seminorm; below we will see an instance of a nonzero function with zero Host-Kra
norm.
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By Proposition 5, the first term on the right-hand side is arbitrarily close to
∫
f 3

1dµ > 0
(because

∫
f1dµ =

∫
1Adµ = δ) for syndetic n; for other values of n, it is at least nonnegative.

All that remains to show is that ‖f2‖HK2 is small. To do this, we could rely on the Host-Kra
version of the Gowers inverse theorem. There does exist such a theorem, and indeed the
Host-Kra U2 norm is as deeply related to the l4-norm of the Fourier transform as is the
Gowers U2-norm (see [10], [11]). But it will take a lot of space to introduce, so instead we do
something much simpler: just note that, by the same argument at the end of Proposition 7,
‖f2‖HK2 = 0. The proof is complete.

In fact, what we just proved is precisely Proposition 6, except that here we have f = g =
h. Note the extreme similarity between the way we proved it then and the way we proved it
here using the Host-Kra norm. In particular, the Host-Kra norm is an instance of γm in the
statement of the van der Corput lemma (which is said to have inspired the Gowers norms,
according to [17]), and the work we have done there is done here in the Host-Kra version of
the Generalized von Neumann theorem.

Perhaps the greatest lesson from this proof is that the Host-Kra norm measures the
amount of the rotation factor of a given function. If f has zero rotation factor, then f has
zero Host-Kra norm. And if f has any rotation factor, then we have ‖f‖HK2 = ‖f̃‖HK2 by
the triangle inequality, and ‖f̃‖HK2 > 0 by Proposition 5 and the Generalized von Neumann
theorem. Examining Proposition 5 more carefully, we see that the “larger” the rotation
factor is, the greater ‖f̃‖HK2 becomes. This unifies Gowers’s notion of pseudorandomness
and Furstenberg’s idea of structure.
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[7] B. Green, Montréal notes on quadratic Fourier analysis, CRM Proc. Lecture Notes 43
(2007) Amer. Math. Soc., Providence, RI, 69-102.

[8] B. Green, Roth’s theorem on progressions of length 3, Lecture notes for additive combi-
natorics course (2009), http://www.dpmms.cam.ac.uk/ bjg23/add-combinatorics.html.

[9] B. Green and T. C. Tao, The primes contain arbitrarily long arithmetic progressions”,
Ann. of Math. 167 (2008), 481-547.

[10] B. Host and B. Kra. Averaging along cubes, Modern dynamical systems and applications,
Cambridge Univ. Press, Cambridge, 2004, 123-144.

[11] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math.
(2) 161 (2005), No. 1, 397-488.

[12] B. Kra, Ergodic Methods in Additive Combinatorics, CRM Proc. Lecture Notes 43
(2007) Amer. Math. Soc., Providence, RI, 103-143.

[13] B. Kra, personal communication.
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