
LLL via the Lenstra graph

Jinsu Kim, Miran Kim, Seungki Kim

Abstract. 1 In this paper, we interpret the LLL algorithm as one of
the “random” walks on a certain graph introduced by H. K. Lenstra
[Len01], and present a few experiments aimed at understanding LLL
in such context. Thereby we answer several folklore questions on the
behavior of LLL, and make some progress towards explaining the well-
known gap between the worst-case and average-case output qualities of
LLL. Moreover, we point out a related security issue that is imminent
yet neglected, and explain how our careful study of the Lenstra graph
can lead to its resolution.

Keywords. Lattices, basis reduction, the LLL algorithm, security esti-
mates.

1 Introduction

Motivating question. Since its advent in 1982, the practitioners of the LLL
algorithm [LLL82] have been well aware that it often — in fact, most of the time
— outputs a much shorter vector in a much shorter time than it guarantees.
This continues to pique the curiosity of many to this day, yet surprisingly it has
hardly ever been investigated before. To our best knowledge, the first written
work on this phenomenon is that of Nguyen and Stehlé [NS06], where its authors
experimented on the performance of LLL in practice; for example, they find
that the average root Hermite factor (RHF) of the (0.999,0.501)-LLL reduction
is approximately 1.02, as opposed to the theoretical bound ≈ 1.074. [GN08]
confirms this finding, but not much else has been written on this topic ever
since.

In [Ste10], Stehlé raises the question of whether this gap reflects the property
of the LLL bases, or that of the algorithm:

One may wonder if the geometry of “average” LLL-reduced bases is due
to the fact that most LLL-reduced bases are indeed of this shape, or if
the LLL algorithm biases the distribution.

This question has recently been answered, to some extent. Kim and Venkatesh
[KV16] provides theoretical evidence that the answer is the latter, provided one
is willing to accept that the LLL reduction and the Siegel reduction — in which
the Lovász condition is replaced by a simpler inequality — should not behave

1 Part of this work overlaps with the thesis of S. K.; it has not been submitted to a
peer-reviewed journal or conference.

2

too differently. It proves that, in all sufficiently high dimensions, almost every
Siegel basis of almost any lattice has the length of its shortest vector extremely
close to the theoretical worst bound. Thus, if LLL consistently yields much
shorter vectors, the algorithm must be doing something extraordinary to make
it happen.

A security issue. This over-performance of LLL is more than a subject of idle
curiosity. It points to a serious and difficult problem concerning the security
of lattice-based cryptosystems. Recall that Lenstra [Len01] has interpreted the
LLL algorithm as a direction for walking on a certain oriented graph. There is no
reason to assume that one could not attain an arbitrarily better RHF by giving
some other contrived direction, especially if one already has 1.02 by chance. If
1.005 is attainable, say, it would obviously be a disaster to the field. Of course,
this would sound absurd to many well-experienced cryptologists, but the point
is that we need to develop a scientific argument, rather than some collective
intuition, that there exists a uniform lower bound on the RHF of any LLL-like
algorithm.

The same discussion could be extended to any other reduction algorithm
which operates iteratively on blocks of the basis matrix e.g. BKZ (reference), of
which LLL serves as the simplest case. We must remove the possibility of a vast
improvement in either output quality or time complexity simply by tweaking
the algorithm a little bit, i.e. we must establish that the strength of the local
operation on blocks imposes an inevitable lower bound on the quality and cost.
However, to the best of the authors’ knowledge, all that has been done under
the name of “security estimates” so far is the analyses of the popular variants
of BKZ under certain contexts. The problem with this approach is that there
could always be possibilities for new variants and contexts.

It would been much less of concern if the schemes were based on the shortest
or closest vector problem, whose hardness is relatively well-established (refer-
ences). However, for practical reasons — e.g. key sizes — most of the recently
proposed schemes are based on substantially easier problems. Hence a relevant
statement in defense of lattice-based cryptography should be of the form, “Any
algorithm that achieves RHF < x must have time complexity of at least y.” Yet
there has been so far no work in the literature recognizing, much less addressing,
this critical point — our close-to-zero understanding of the properties of even
the most fundamental device such as LLL is an indication of this.

This paper. We present the first in-depth study of the behavior of LLL, and
its variants. As suggested above, we have two motivations in mind:

(i) explain the average RHF ≈ 1.02 of LLL,
(ii) establish that no LLL-like algorithm — an algorithm that operates by

walking on Lenstra’s graph — can achieve an RHF that is better than
≈ 1.02.

Our approach goes by establishing the following

3

Conjecture 1. Various statistical properties of LLL-like algorithms — e.g. RHF,
complexity — are more or less determined by the structure of the underlying
Lenstra’s graph. They vary only marginally across the family of LLL-like algo-
rithms.

Of course, this is an extremely ambitious goal that cannot be expected to be
achieved in a single paper, even numerically. This paper presents some of our
early experiments that inspires us to conceive of Conjecture 1, and gives evidence
toward it. We focus on two variants of LLL which we call random and potential
(see Section 3), and on the case of low dimensions, in which the size of the data
is small enough to manage with limited computing resources. We demonstrate
that the original, random, and potential LLL have about the same output quality
and complexity (Section 3), and furthermore, various aspects of their behavior
on the Lenstra graph are strikingly similar (Section 4). Experiments under more
general conditions will be carried out in a series of forthcoming works.

Let us explain how Conjecture 1 relates to the problems mentioned above. It
reduces (i) to the study of the distribution of LLL bases on the Lenstra graph,
which makes it much more approachable. Indeed, we construct a plausible hy-
pothesis (reference) in Section 5 that will explain why LLL yields better outputs
than theoretically expected, which we will verify in a sequel to this paper.

As for (ii), it is resolved immediately by Conjecture 1, since a fortiori the
number 1.02 comes from the graph, not from the particularities of the algorithm.
In another future work, we plan to address the above-mentioned security issue
by associating the average RHF of a reduction algorithm to the cost of its “local
operation,” e.g. the local operation of BKZ-β would be the enumeration tech-
nique in dimension β. The case of LLL serves as the simplest case for building
and testing this framework.

Implications on security. Researchers often quote the numerical estimate 1.02
of [NS06] for estimating the security of their schemes against polynomial-time
attacks. However, as we pointed out earlier, this only serves as an upper bound
on the performance of LLL-like algorithms. Our work in this paper provides
evidence that 1.02 is also a lower bound, which not only makes it more useful
but is also important to establish, as stressed above.

It has been conjectured (references) that the output quality of a reduction
algorithm is independent of the choice of the input basis (unless it has a highly
unusual distribution). Its implication to cryptography is that the choice of the
public key requires hardly any deliberation. In the case of LLL, our proposed
explanation for the 1.02 RHF of LLL explains this conjecture as well — see the
discussion in Section 5.

Other contributions. We also make a number of perhaps of lesser scale, but
more solid, contributions to the understanding of LLL. The first and foremost
is the exact formula for the average number of LLL bases of a random lattice
(Theorem 1). This is a vast improvement from the previous folklore estimate

O(2n
3

). Theorem 1 ensures the statistical credibility of our experiments, and
also enables us to make several interesting findings.

4

We also provide in Appendix satisfactory explanations for the two special
cases noted by Stehlé [Ste10] in which LLL works particularly well: i) when
dimension is ≤ 6, ii) when two successive minima λi and λi+1 differ greatly.
The former is immediately explained by Theorem 1, the formula for the number
of LLL bases. For the latter, the idea is that, if λi � λi+1, the lattice under
question is almost a direct sum of two lattices of dimensions i and n− i, so that
the bound for the i-dimensional LLL applies.

Our work also presents the first investigation of the variants of LLL in the
spirit of [NS06] — especially, see Section 3. The random and potential variants
are well-known and much discussed in informal contexts, but they have never
been given a serious treatment before. We also make our source codes for them
available on our Github site.2

Kim and Venkatesh [KV16] suggests that LLL is “biased,” in sufficiently
high dimensions. Their work does not make it clear at which dimension this
phenomenon starts to occur. In this paper, Section 4, we present conspicuous
numerical evidence that LLL is biased, even in dimensions as low as 10. Theorem
1, combined with our empirical observations, indicate that the bias is quite
severe: in tens of thousands of trials, the majority of the LLL bases never show
up.

Furthermore, the frequency that a given LLL basis appears as an output of
LLL is correlated to a quantity associated to the basis that we call energy — see
Figures 2 and 4, for example. The slope of the correlation appears to be more
or less independent of the underlying lattice.

Organization. In Section 2, we recall all the basic facts used here about lattices
and the LLL algorithm. In particular, we present an exposition on the bias of
LLL. In Sections 3 and 4, we describe our experiments, and analyze their results.
All our source codes for the experiments and the raw data will be made available
at our Github page. In Section 5, we return to the questions presented here and
give more detailed discussions, drawing from the numerical results obtained in
the previous sections. In Appendix, we provide mathematical explanations for
the two special cases in which LLL is especially effective.

2 Background

A primer on lattices. A lattice in Rn is a Z-span of a set of linearly independent
vectors in Rn. Throughout this paper, we assume that all lattices have full rank,
that is, we only consider lattices in Rn spanned by n linearly independent vectors.
Any set of independent vectors that span a lattice is called a basis of that lattice.
For technical reasons that have to do with the LLL algorithm, we take a basis to
be an ordered set, so that, for example, {b1,b2,b3} and {b2,b1,b3} are different
bases.

2 We do not link it in this draft as we are submitting anonymously.

5

Let {b1, . . . ,bn} be a basis of some lattice in Rn. It is sometimes convenient
to write this basis into a matrix form:− b1 −

...
− bn −

 . (1)

Multiplying this matrix from the left by any element of GL(n,Z), we get
another basis of the same lattice; conversely, any two bases of the same lattice
differ by a left multiplication by some element of GL(n,Z).

The covolume or determinant of a lattice is the determinant of any basis put
into the matrix form (1); it is the same as the volume of the fundamental par-
allelepiped formed by the basis vectors. Multiplying by a suitable scalar matrix,
we can normalize (1) to be an element of SL±(n,R), the set of all matrices with
determinant ±1.

Random lattice. From the above discussion, we see that GL(n,Z)\SL±(n,R)
is the set of all (normalized) lattices. It is convenient to identify this space
with SL(n,Z)\SL(n,R), which is what we obtain if we ignore the issue of the
orientation (which has to do with the sign of the determinant).

Denote this space by Xn. The celebrated theorem of Siegel [Sie45] asserts that
Xn has a probability measure µn that is invariant under the right multiplication
by SL(n,R). This µn provides the standard notion of random lattice.

The well-known Hecke equidistribution by Goldstein and Meyer [GM03] is
a statement that, for p a large prime, and x1, . . . , xn−1 ∈ [0, p − 1] uniformly
chosen integers, the distribution of the lattices of form

p
x1 1
x2 1
...

. . .

xn−1 1

 , (2)

(after a suitable normalization) approaches the distribution dictated by µn as
p → ∞. This is frequently used in computer experiments to sample lattices
at random. Theoretically, p must be of size about 2n

2

to guarantee that the
distribution is really alike that of µn.

“Random” bases. In order to carry out experiments on LLL, often it becomes
necessary to generate multiple bases of a given lattice. The problem is that there
is no satisfactory mathematical notion of a “random basis”; in other words, there
exists no canonical probability measure that can be defined on the space of the
bases. We refer the readers to [NS06] for an excellent discussion on this point,
and several attempts that have been tried to get around this difficulty. Here,
we will satisfy ourselves with describing their method for generating bases of a
lattice given by the form (2), which is what we adopted for our experiments.

6

Start with a lattice L, given by a basis of form (2), which we denote by
B. Sample uniformly n vectors from L ∩ [−p/2, p/2]n, and denote by M the
matrix whose rows consist of these sampled vectors. (To sample a vector from
L ∩ [−p/2, p/2]n, multiply B from the left by a row vector (y1, . . . , yn), where
y2, . . . , yn are chosen uniformly from [−p/2, p/2], and then determine y1 so that
the first entry falls into [−p/2, p/2]. This works thanks to the special shape of
(2).) It turns out that, with overwhelming probability, detM 6= 0. Assuming this,
we can write M = QB for some integral matrix Q of nonzero determinant. Write
Q = HU , where H is the upper Hermite normal form of Q, and U ∈ GL(n,Z).
Finally, B′ := UB is the resulting “random basis.” In experiments, one observes
that all entries of B′ have about the same number of digits.

LLL bases. Let {b1, . . . ,bn} be any basis of Rn. Define b∗i to be the com-
ponent of bi that is orthogonal to span(b1, . . . ,bi−1), and for i > j define
µi,j = 〈bi,b∗j 〉/‖b∗j‖2. These are related by the equality

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j .

Let us call the ‖b∗i ‖’s and µi,j ’s the Gram-Schmidt coefficients of the ba-
sis. The well-known Gram-Schmidt process is the algorithm that computes the
Gram-Schmidt coefficients of a given basis.

Choose 1/4 < δ ≤ 1 and 1/2 ≤ η <
√
δ. We say {b1, . . . ,bn} is a (δ, η)-LLL

reduced basis if it satisfies

(i) |µi,j | ≤ η for all i > j (i.e. {b1, . . . ,bn} is size-reduced), and

(ii) δ‖b∗i ‖2 ≤ ‖b∗i+1 + µi+1,ib
∗
i ‖2 for all i = 1, . . . , n− 1 (Lovász condition).

This definition does not a priori refer to any lattice. In case an LLL basis
spans a lattice L, we call it an LLL basis of L. Any lattice has a finite number
of LLL bases; see [LLL82] for a proof.

(0,
√
δ)

η−η
µ2,1

‖b∗
2‖

‖b∗
1‖

Fig. 1. The set of LLL bases in dimension 2.

7

Figure 1 shows a way of visualizing the set of LLL bases in dimension 2.
The entire coordinate plane is essentially the set of all normalized bases of R2

(modulo rotation and determinant, to be precise), and the shaded region is the
set of (δ, η)-reduced LLL bases.

Writing x = µ2,1 and y = ‖b∗2‖/‖b∗1‖, we have the formula µ2 = 3
π
dxdy
y2 —

for a proof, see Chapter 7 of Serre [Ser73]. An important point to note is that,
from this expression of µ2, we can tell that its density gets more concentrated
as the vertical coordinate in Figure 1, or the y-coordinate, approaches zero.

In dimension n, one can visualize the set of LLL bases by drawing n − 1
copies of Figure 1, each copy with coordinates µi,i−1 and ‖b∗i ‖/‖b∗i−1‖. Some
coordinates will be missing, but nothing interesting seems to occur along those
directions anyway. There also exists a general explicit formula for µn — see,
e.g., [KV16] — from which one observes that the greater n is, the more is µn
concentrated towards the bottom. In particular, the vast majority of the mass
of the shaded region is located near the cusps. With a simple computation, one
finds that the LLL bases located at the cusps are also those with the longest
‖b1‖, whose length coincides with the well-known worst-case bound for ‖b1‖ of
an LLL basis. Thus, at least heuristically, almost all LLL bases have ‖b1‖ ≈
(worst bound).

LLL algorithm. The LLL algorithm is, in some sense, the most straightforward
procedure of translating a given basis into the set of LLL bases. Below is a very
rough pseudocode of the algorithm, assuming η = 0.5. The notation dxc in Line
3 means the closest integer to x.

Algorithm 1 The LLL algorithm

0. Input: a basis {b1, . . . ,bn} of Rn, often integer-valued
1. k := 1
2. while k < n, do:
3. (size reduction) for i = k down to 1: bk+1 := bk+1 − dµk+1,icbi
4. (Lovász test) if δ‖b∗k‖2 ≤ ‖b∗k+1 + µk+1,kb

∗
k‖2 then k := k + 1

5. else swap bk and bk+1, and k := max(k − 1, 2)
6. Output {b1, . . . ,bn}, a δ-reduced LLL basis.

This description is meant to depict only the skeleton of the code, and ignores
practical issues that arise while actually implementing it. For a discussion on
such issues, we direct readers to [NS05]. But let us point out just one thing that
is relevant for our experiments, which does not seem to have been mentioned
elsewhere. Upon following the (floating-point) LLL algorithm step by step, one
finds that the Gram-Schmidt process often computes ‖b∗n‖ wrong (not infre-
quently, even negative) but somehow the algorithm successfully yields an LLL
basis anyway. This happens probably because if ‖b∗n‖ is very small it has very lit-
tle impact on the Lovász condition — if it has to be swapped it will be swapped.

8

Still, it may cause the algorithm, especially our variants, to walk on the Lenstra
graph differently than intended; as we prioritize accurately observing LLL over
efficiently implementing it, in our experiments we use a higher precision than
needed for a valid output.

Statistics of LLL bases, and the bias of LLL. The simplicity of the shape
of the set of LLL bases, as shown in Figure 1, and the known explicit formula
for µn allow us to derive some statistical results about LLL bases. For example,

Theorem 1. Recall that each lattice has a finite number of LLL bases. The
average number of (δ, η)-LLL bases of a random lattice in dimension n equals

2 ·
n∏
j=2

Sj
ζ(j)

· 1

n

n−1∏
i=1

1

i(n− i)

∫ η

−η

√
δ − x2

−i(n−i)
dx,

where Sj denotes the volume of the unit sphere in Rj. When δ ≈ 1 and η ≈ 1/2,

this is asymptotically of size o((4/3)
1
12 (n

3−n)).3

Proof (sketch). Write αk = ‖b∗k+1‖/‖b∗k‖ There exists a standard formula for
integrating Siegel sets, i.e. subsets of SL(n,R) satisfying µi,j ∈ [ci,j , c

′
i,j], αk > ai,

for some ci,j , c
′
i,j ∈ R, ak ∈ R>0, 1 ≤ j < i ≤ n, 1 ≤ k < n— see e.g. [KV16]. The

set of LLL bases is not a Siegel set, but can be approximated by arbitrarily many
Siegel sets. The formula now follows from a standard Riemann sum argument.

By the same technique, we can also estimate the rate of concentration of
LLL bases at the “cusps,” which proves rigorously that ‖b1‖ ≈ (worst bound)
for almost all LLL bases. For example, in dimension 180, at least 99 percent of
LLL bases are contained in the region αi < 0.89 and |µi+1,i| > 0.45.

From now on, let us call an LLL basis bad if ‖b1‖ ≈ (worst bound), and good
if ‖b1‖ is much shorter. Thus the previous statement translates to: almost all
LLL bases are bad.

Still, there may be a spectrum of possibilities regarding the distribution of the
bad bases among lattices. Two extreme possibilities are: i) a miniscule percentage
of lattices have a huge number of LLL bases most of which are bad, and the
majority of lattices have much fewer LLL bases but mostly of good quality ii)
almost all lattices have about the same number of LLL bases, most of which are
bad. If the former were the case, the algorithm need not be biased in order to
demonstrate the folklore observation of over-performance. But if the latter were
true, we are forced to conclude in the opposite.

It is possible to determine between the two possibilities, if we relax the Lovász
condition to δ‖b∗i ‖2 < ‖b∗i+1‖2, and fix η = 0.5. The resulting counterpart of
the LLL bases is called the Siegel bases. On Figure 1, this has the effect of
replacing the arcs with horizontal lines connecting the cusps. The reduction to a
Siegel basis, using the same LLL algorithm with only the obvious modification,
consistently yields a better outcome than the theoretical bound as well, although

3 It is interesting to compare this with Proposition 8.3 of [Len01].

9

the output quality is somewhat worse than the original LLL. The main theorem
of Kim and Venkatesh [KV16] states that almost all lattices have about the same
number of Siegel bases, for all sufficiently large n:

Theorem 2 (Kim and Venkatesh [KV16]). 4 There exists absolute con-
stants A, d > 0 such that the standard deviation of the number of Siegel bases of
an n-dimensional random lattice is at most Ae−dn

2

times its mean.

As discussed earlier, Theorem 2 provides compelling evidence that the Siegel
version of the LLL algorithm is biased i.e. given a lattice, it outputs some of its
LLL bases more often than others. We expect the same statement to hold for
the actual LLL bases, although proving it would be a much more involved task.

Lenstra graph. Let L ⊆ Rn be a lattice. Lenstra [Len01] defines an oriented
graph attached to L, which we will call the Lenstra graph of L, as follows: the
vertices consist of the set of all size-reduced bases (i.e. |µi,j | ≤ 1/2) of L, and
an edge of color i is formed from B = {b1, . . . ,bn} to B′ = {b′1, . . . ,b′n} if and
only if i) bi and bi+1 fail the Lovász condition and ii) swapping bi and bi+1

and then size-reducing B, one obtains B′. It is clear from this definition that B
is an LLL basis if and only if there exists no edge starting at B, and that the
LLL algorithm is the random walk on the graph that always walks on the edge
of the lowest color. Of course, all this depends on the implicit parameter δ, and
as for η we simply fix it to 1/2.

There are two important invariants attached to the vertices and the edges of
the Lenstra graph, respectively. One is the energy of a basis B, defined by

energy(B) =

n∏
i=1

‖b1 ∧ . . . ∧ bi‖ =

n∏
i=1

‖b∗i ‖n−i+1,

where ‖b1∧. . .∧bi‖ refers to the volume of the fundamental parallelogram made
of b1, . . . ,bi. Another is the potential of the edge B → B′, defined by

potential(B → B′) = energy(B′)/energy(B).

If B → B′ is of color i, we have

potential(B → B′) =
‖b∗i+1 + µi+1,ib

∗
i ‖

‖b∗i ‖
<
√
δ.

Therefore, if δ < 1, each time one passes through a path the energy decreases
by at least a factor of

√
δ. On the other hand, the energy of a basis of L is bound

from below by a quantity depending on L e.g. if L is given by integral vectors,
one can tell from the definition above that energy(B) ≥ 1 for any basis B of L.
This implies immediately that it takes O(n2 log max1≤i≤n ‖bi‖) swaps to reduce
a basis B, and thus LLL has polynomial-time complexity.

4 The proof of the theorem as it appears in [KV16] assumes the Riemann hypothesis.
But the authors claim that it could be removed with extra work.

10

Theorem 2 shows that almost all Lenstra graphs have about the same number
of LLL bases, and of size-reduced bases whose ‖b∗i ‖’s fall inside a given (small)
interval. This leads us to suspect that almost all Lenstra graphs have very similar
shapes, as dimension goes to infinity. (Mention the widespread conjecture that
reduction is independent of lattices.)

A comment on terminology: In [Len01], the terms energy and potential were
called size and length, respectively. In the literature of cryptography, energy is
often referred to as potential. Our motivation for calling it energy comes from
a work of Cohn et al. [BBC+09] where they experiment on energy-minimizing
point configurations on n-spheres — especially, see Section 3.9 of [BBC+09]. And
“potential” is admittedly an inelegant naming by us intended to simply mean
change in energy.

3 Experiment 1: the random and the potential variants

We begin this section by formally introducing the random and the potential
variants of LLL. We do not claim that they are our original inventions; neither
are hard to come up with after all, and they are in fact frequently brought up in
informal discussions. There has been much curiosity as to how their performances
compare to that of the original LLL, but to our best knowledge, no written work
on either of them exists as of yet. We take up on this task in the present section,
in the spirit of Nguyen and Stehlé [NS06].

The notion of the Lenstra graph adds to the significance of considering the
random and potential variants. First, as will be explained below, they are in
certain senses better suited for exploring the Lenstra graph than the original
LLL. Second, comparing the behavior of different random walks on the Lenstra
graph is essential for determining whether the graph’s inherent structure or the
particularities of the random-walking procedure plays a major role in shaping
the bias of LLL.

We did not intend to write time-efficient codes for the variants. In addition,
as discussed in the LLL algorithm subsection of Section 2, we had to set the
precision higher than needed for the correct output, in order to ensure that po-
tentials are computed accurately so that the algorithms move along the Lenstra
graph in the intended manner. Still, our implementations are noticeably faster
than LLL-RR of NTL [Sho]. At any rate, for our purposes in this paper, the
number of swaps, or equivalently the length of the path taken by the algorithm
on the Lenstra graph, is a much more important measure of complexity than the
running time, being independent of a specific implementation of that algorithm.

Random variant. Recall that the original version of the LLL algorithm walks
on the Lenstra graph by always choosing the path of the lowest color. The random
variant of the LLL algorithm, as its name suggests, proceeds by choosing the
next path randomly and uniformly among the available edges. We provide its
pseudocode below.

What is special about the random variant is that it transparently reflects the
shape of the Lenstra graph. So if the random variant and something else exhibit

11

Algorithm 2 The random variant of the LLL algorithm

0. Input: a basis B = {b1, . . . ,bn} of Rn
1. size-reduce B
2. while true, do:
3. let S be the set of all 1 ≤ k ≤ n−1 for which δ‖b∗k‖2 > ‖b∗k+1+µk+1,kb

∗
k‖2

4. if S is empty, break
5. else
6. choose i randomly and uniformly from S
7. swap bi and bi+1

8. size-reduce B
9. Output {b1, . . . ,bn}, a δ-reduced LLL basis.

the same phenomenon, it would serve as evidence that the property comes from
the Lenstra graph itself, rather than some idiosyncrasy of the other random
walk.

Potential variant. The potential variant walks on the edge of the least poten-
tial, seeking to decrease the energy as quickly as possible. In this sense it is a
direct analogue of gradient descent. One could reasonably guess that it might
run faster than the original LLL, and that is one of the reasons we consider it.
Below is a pseudocode for the potential variant:

Algorithm 3 The potential variant of the LLL algorithm

0. Input: a basis B = {b1, . . . ,bn} of Rn
1. size-reduce B
2. while true, do:
3. p := δ, i := n
4. for 1 ≤ k ≤ n− 1:

5. p′ :=
‖b∗

k+1+µk+1,kb
∗
k‖

2

‖b∗
k
‖2

6. if p′ ≤ p, p := p′ and i := k
7. if i = n, break
8. else swap bi and bi+1, and size-reduce B
9. Output {b1, . . . ,bn}, a δ-reduced LLL basis.

A useful property of the potential variant is that it can be used to relate
Lenstra graphs for different values of δ’s:

Lemma 1. Let 1/4 < δ1 < δ2 ≤ 1, and choose an input (size-reduced) basis B.
The path of the potential variant on the δ2-Lenstra graph starting at B is the
concatenation of the path on the δ1-Lenstra graph which starts at B and ends at
a δ1-LLL basis, and the path from that basis to a δ2-LLL basis.

12

Proof. Suppose that at some point of the algorithm we are at some basis B′. If
there exists at least one edge of potential ≤

√
δ1, δ1-LLL and δ2-LLL make the

same decision as to the next step to take. If there exists no such edge, δ1-LLL
terminates at B′. This completes the proof.

Several recent works have proposed versions of LLL that are also based on the
idea of energy minimization, but they differ from our version in significant ways.
For instance, PotLLL by Fontein, Schneider, and Wagner [FSW14], a variant
of deep-LLL, allows an insertion of bi farther than just in front of bi−1, so it
does not respect the structure of the Lenstra graph. The algorithms by Schnorr
[Sch11] and Neumaier [Neu16] happen to respect the structure of the Lenstra
graph, but once they detect an edge of the minimal potential, they perform
the Gauss reduction on the pair of the basis vectors; in other words, they keep
walking on the edge of the same color until it cannot.

Design of Experiment 1. For the inputs, we generated lattices and bases in
dimensions n = 10, 20, 30, . . . , 100 in the manner described in Section 2, with
p = det ≈ 23n. In dimensions 10 through 50, we generated 10 lattices per
dimension, and 3 bases for each lattice; we did this to see if there exists any
difference in performance across lattices. Due to computational limitations, in
dimensions 60 through 100, we generated 4 lattices per dimension, and 3 bases
per lattice.

On these bases, we ran each of our own implementations of the original,
random, and potential versions of LLL, and recorded the root Hermite factor

(‖b1‖/ det
1
n)

1
n , running time, and number of swaps.

Result and discussions. The average performances of the three variants are
presented in Table 1. RHF stands for root Hermite factor, and time is measured
in seconds. One interesting point to note is that all the statistics in Table 1 have
very small standard deviations — less than one percent of the mean most of the
time. In other words, the numbers in Table 1 represent not only averages but
what happens in each individual trial.

From Table 1, one observes that all three variants yield more or less the same
output quality. This may appear anticlimactic at first, but in view of the security
question posed in the introduction, it is in fact really fortunate to see that no
improvement is made by varying the method of the random walk. Recall that
we wish to develop the security framework that roughly sounds like: “If we want
RHF < 1.02, we must use an algorithm substantially costlier than LLL.” Had
it happened otherwise, we would have to go through a far more difficult course
to argue that LLL-like algorithms have a lower bound on RHF, as we can no
longer reduce it to a property of the Lenstra graph. And if we fail to make this
point, it would jeopardize the security of lattice-based cryptosystems.

In the number of swaps and running time, there is a more noticeable dif-
ference. Table 2 gives comparisons of both complexity measures for the three
variants. It appears that the ratio of the number of swaps stabilizes to 9 for
the original versus random variants of LLL, and to 15 for the original versus
potential. This is an interesting and mysterious phenomenon whose cause we do

13

original random potential
dim RHF #swaps time RHF #swaps time RHF #swaps time
10 0.9875 2276 0.071 0.9875 735 0.032 0.9875 482 0.025
20 1.0134 42793 2.442 1.0141 7028 0.889 1.0132 4352 0.652
30 1.0157 192286 16.1 1.0148 26462 6.481 1.0146 16663 4.829
40 1.0160 521,637 63.4 1.0167 65619 28.1 1.0165 40,546 20.6
50 1.0174 1,092,704 189 1.0178 124,396 88.6 1.0176 74,721 63.1
60 1.0182 1,969,105 423 1.0176 226,054 225 1.0184 137,023 168
70 1.0194 3,216,819 843 1.0176 372,479 497 1.0188 226,534 359
80 1.0183 4,901,971 1544 1.0188 575,599 998 1.0185 351,166 723
90 1.0199 7,087,008 2759 1.0190 805,417 1851 1.0192 488,205 1339
100 1.0198 9,841,849 4733 1.0198 1,091,607 3261 1.0190 659,915 2360

Table 1. Performances of the three versions of LLL.

not understand; there is no apparent reason for them not to be some randomly
fluctuating quantities. The ratios of the running times also stabilize to 1.5 and 2
for the random and potential variants, respectively. The numbers are (perhaps
disappointingly) smaller than their swapping number counterparts probably be-
cause those variants take a longer time to decide on which pair of the vectors to
exchange.

It may be interesting to try to improve on the implementation of, say, the
potential variant, so that it will become (nearly) 15 times as fast as the original
LLL. For the original LLL, we adopted the sophisticated methods of NTL [Sho]
and Nguyen and Stehlé [NS05], which accelerated its running time by a factor
of 4. These methods rely heavily upon the sequential nature of the original LLL,
and we are yet to make an exploitation of such kind for the other variants.

We are also rather lucky, from the security perspective, that the ratios of
the number of swaps is constant in n. On the other hand, our results suggest
a possibility that some practical improvements can still be made in complexity
aspect.

4 Experiment 2: distribution of output LLL bases

The basic idea of the present experiment is: fix a lattice, run LLL on it many
times, and see what happens. We carefully analyze the patterns that appear in
our data, and observe that all three variants are quite similar with respect to
those patterns, thereby supporting Conjecture 1. We even find that, on a close
enough neighborhood of LLL bases, they act in almost the same manner.

Furthermore, we find compelling evidence that LLL severely distorts the
natural distribution of LLL bases. In other words, LLL prefers to output certain
bases more than others. In fact, the majority of LLL bases are almost never
chosen by the algorithm. We also find that the degree of the preference by the
algorithm for a given LLL basis is correlated to its energy. Again, our three
variants differ marginally at best in all quantitative aspects of the bias.

14

#swaps time

dim
(original)
(random)

(original)
(potential)

(original)
(random)

(original)
(potential)

10 3.1 4.7 2.2 2.8
20 6.1 9.8 2.7 3.7
30 7.3 11.5 2.5 3.3
40 7.9 12.9 2.3 3.1
50 8.8 14.6 2.1 3.0
60 8.7 14.4 1.9 2.5
70 8.6 14.2 1.7 2.3
80 8.5 14.0 1.5 2.1
90 8.8 14.5 1.5 2.1
100 9.0 14.9 1.5 2.0

Table 2. Ratios of complexity measures

It is regrettable that we carried out this experiment only in dimension 10; but
that is about the highest feasible dimension in which it can be conducted with
a reasonable amount of resource. Here we are interested in much finer patterns
than RHF or complexity, which requires that we run LLL at least several hundred
times the expected number of LLL bases per lattice. Yet Theorem 1 tells us that,
already in dimension 14, there are around one hundred million LLL bases per
lattice on average.

Design. For a lattice L of dimension 10 and det ≈ 230 generated in the form of
(2), we generated 70,000 bases in the manner described in Section 2. For each of
the three variants of LLL, we do the following: (δ, 0.5)-reduce all 70,000 bases,
where δ = 0.999, 0.994, 0.99, 0.98, 0.97, and for each value of δ record which LLL
bases are “hit” how many times. In counting this number of hits, we identify
bases up to the sign of each vector e.g. {±b1,±b2,±b3} is regarded as one basis,
not eight.5 We repeated this procedure on 29 different lattices.

The reason for the number 70,000 is to at least informally guarantee sta-
tistical credibility; according to Theorem 1, there are on average about 35
(0.999, 0.5)-LLL bases per lattice, and 646 (0.97, 0.5)-LLL bases per lattice.

Result and discussions. A sample data for a lattice, with respect to the
potential variant, is shown in Table 3, sorted in ascending order of energy, and
numbered for convenient reference. Let us call such a data table the frequency
table of the lattice, and each number in an entry the frequency or the number of
hits e.g. the frequency of Basis 9 for δ = 0.97 is 1937. An empty entry indicates
that the corresponding basis is not an LLL basis for that value of δ.

One may wonder whether the ratios of the frequencies in a frequency table,
e.g. Table 3, stabilizes as we increase the number of trials. It does, and it does
pretty fast; if we reduce the number of input bases to 700 instead of 70,000, the

5 That LLL treats equally the bases that differ only by signs can be justified both
rigorously and experimentally.

15

figures on the resulting frequency table would be 100 times as small as those in
Table 3. Hence, one may think of the frequency table as representing some sort
of a distribution, which we refer to as the frequency distribution or sometimes
the output distribution.

Bases δ = 0.999 δ = 0.994 δ = 0.99 δ = 0.98 δ = 0.97 ‖b1‖ log(energy)
1 22422 9760 9760 9760 9760 7.348 163.340
2 12662 12662 12662 12662 7.348 163.342
3 10915 10915 10915 10915 10277 7.348 163.369
4 6832 6832 6832 6832 6832 7.348 163.413
5 7836 7836 7836 7836 7836 7.348 163.452
6 4534 4111 4111 4111 2892 7.348 163.493
7 3710 3710 3710 3710 3710 7.348 163.500
8 1219 7.348 163.511
9 9681 5483 5483 5483 1937 7.348 163.521
10 4070 2872 2872 2872 2872 7.348 163.534
11 1198 1198 1198 1198 7.348 163.536
12 1817 7.348 163.537
13 1146 7.348 163.539
14 3253 3253 3253 2192 7.348 163.541
15 583 7.348 163.555
16 1061 7.348 163.557
17 638 8.426 163.827
18 423 423 423 423 8.426 164.068
19 945 945 580 220 8.367 164.196
20 188 8.367 164.212
21 116 8.367 164.216
22 365 253 8.426 164.226
23 56 8.367 164.232
24 112 8.426 164.242

Table 3. Frequency table for a lattice generated with seed = 36365, potential variant.

Some more general comments are in order before we extract patterns from
Table 3. First, the example we present here is representative of the typical situa-
tion, regardless of the lattices or the variants. In other words, even if we displayed
a frequency table for a different lattice and/or variant, we would have made the
same observations as we have below — skeptical readers may examine the raw
data at our github page. However, those observations are meant to point out
tendencies, not absolute facts. For example, it is true that bases with smaller
energies normally have smaller ‖b1‖’s, but one already finds some exceptions
in Table 3. The lattice we chose to present here actually exhibits more idiosyn-
crasies than most others, but the patterns we are about to point out are so
pervasive and conspicuous that we can still make our points with it.

16

Now onto the analysis. What is immediately noticeable from Table 3 is that
the distribution of the frequencies of the output LLL bases is anything but
uniform — this is what we meant by the phrase “LLL is biased.” Considering
that a 10-dimensional random lattice has on average 41 (0.999, 0.501)-reduced
bases, and that we have tested on 70,000 input bases, it is unlikely that this is
a coincidence. Furthermore, observe that we have found only 8 0.999-reduced
bases, which is much less than the average 35. This suggests that there may
exist many more 0.999-bases that the algorithm missed. Indeed, see Table 4,
where we recorded the average of the number of LLL bases over all lattices we
experimented on, and compared it with the true average computed with Theorem
1. It is apparent that a sizable portion of the LLL bases have never been visited
by the algorithm, despite the relatively huge number of iterations. The presence
of these dark LLL bases could also be inferred from Theorem 2 and the observed
size of the average root Hermite factor; they also predict that the ratio of the
dark bases will tend to 1 as dimension goes to infinity.

Also readily visible from Table 3 is that the number of “hits” of an LLL basis
is correlated to its energy. Figure 2 clarifies this correlation by plotting the 0.97-
LLL bases from Table 3; each point represents an LLL basis, whose x-coordinate
is its log(energy) and y-coordinate is log(frequency). Figure 2 and our data for
other lattices — see also Figure 4, which shows a clearer picture — suggest that
log(frequency) is a decreasing affine linear function of log(energy). To be more
precise, the plots often form a triangular shape as in Figure 4: popular bases
tend to have low energy, but not necessarily the other way around — but in any
case, the pattern is clear and consistent.

The slope of the correlation depends on the choice of a lattice, but some
relevant statistics are heavily concentrated: for most lattices, the maximum of
log(frequency) lies in 13± 1, and log(energy) of all its LLL bases are contained
in [160, 165]. In higher dimensions, we expect the slope to be overwhelmingly de-
pendent on dimension only, as various geometric properties of high-dimensional
lattices tend to have small variances — cf. [Ajt02]. Unfortunately, it is infeasible
to check this numerically, due to the overwhelmingly huge number of LLL bases
in those dimensions.

Table 3 suggests that energy of an output basis is also correlated with its
‖b1‖ as well. In particular, LLL is biased in terms of energy too — in fact we can
directly compute the average energy and observe that it differs from practice,
exactly as we have worked with ‖b1‖. In dimensions as low as 10, one may
complain that there are not enough variations of ‖b1‖ to decide on the existence
of a correlation. However, it can be quickly verified numerically in any higher
dimension. Moreover, it seems to us that the proportionality constant may be
explained theoretically; this will be done in a forthcoming paper.

There is still another interesting phenomenon we can find in Table 3: observe
that the frequencies of Basis 1 and Basis 2 for δ = 0.994 add up exactly to the
frequency of Basis 1 for δ = 0.999 (9760+12662 = 22422). It happens everywhere
on the table e.g. Bases 9, 14, 19 — the reader may enjoy finding other relations
of this form. Indeed, that the numbers must add up like this is a simple corollary

17

δ 0.999 0.994 0.99 0.98 0.97
theory 35 58 86 234 646

experiment 22 30 37 74 133
Table 4. A comparison of the theoretical and experimental averages of the number of
LLL bases. The experimental averages here are found with the potential variant, but
they are almost the same for other variants.

Fig. 2. A plot of the 0.97-LLL bases in Table 3. The horizontal and vertical axes
represent log (energy) and log(frequency), respectively.

18

of Lemma 1; also note that the basis with the lowest energy must be the one
that is “absorbing.” This allows us to take a peek at some of the dynamics that
is happening on the Lenstra graph this way: for example, we can see that 12662
of the paths that eventually reached Basis 1 passed by Basis 2.

Fig. 3. Part of the boundary structure for seed = 36365 involving Basis 9.

Collecting all these summation relations, we can draw some portion of the
Lenstra graph, which is partially done in Figure 3. One may think of Figure 3 as
showing (a part of) the boundary structure of the Lenstra graph. The motivation
for this terminology is that it shows how the bases at the “boundary” of Table
3 are connected together. Figure 3 reveals all the paths that the algorithm have
taken in our experiment. For instance, a particular run could pass by Basis 24,
then 22, 19, and finally arrive at 9; but a run from Basis 24 directly to Basis 9 has
never occurred, and is impossible (because the potential variant is deterministic).

So far, we have discussed what we can find from a single table. In summary:

– Fixing a lattice L, LLL outputs different LLL bases of L with different
frequencies. log(frequency) is a decreasing linear function of log(energy),
where its slope may depend on L but not too much.

– Energy is also correlated to ‖b1‖.
– (For the potential variant, for now) Through the boundary structure, we can

observe how the algorithm moves on the Lenstra graph.

A natural follow-up question is how the data from the same lattice but differ-
ent variants compare. To this end, we present in Table 5 parts of the frequency

19

table for the same lattice as in Table 3 with respect to the original and random
LLL.

Bases δ = 0.999 δ = 0.994 δ = 0.99
1 13569 6740 4844
2 6819 8698
3 10605 12820 13319
4 4445 4405 4414
5 6139 6148 6233
6 2447 2230 2238
7 6140 6138 6135
...
9 21492 12831 12120
10 5163 3803 3404
11 1372 1497
...

14 4433 5066
...

18 212 425
19 2049 1607
...

Bases δ = 0.999 δ = 0.994 δ = 0.99
1 15124 6619 5816
2 8663 9225
3 12374 12841 13039
4 6760 6848 6812
5 7090 7028 6879
6 4451 3704 3879
7 5267 5346 5238
...
9 14369 9261 9340
10 4565 3091 3085
11 1216 1336
...

14 3965 3924
...

18 396 453
19 1022 974
...

Table 5. Part of the frequency table for seed = 36365, original and random.

The numbers appearing in Tables 3 and 5 are not exactly identical; especially
standing out is Basis 9, which is especially favored by the original LLL. Still, it
is not to say that they are totally random. For every frequency data we have
obtained in this experiment, log(frequency) of a basis varies at most by ±1, often
much less, across the variants. In particular, all three variants discover nearly the
same set of bases, and an LLL basis “popular” to one variant is never obscure
to any other variant, and vice versa.

Furthermore, all three variants observe more or less the same boundary struc-
ture. For example, in Table 5, just as in Table 3, the frequencies of Bases 1 and
2 with δ = 0.994 add up to nearly that of Basis 1 with δ = 0.999(6740 + 6819 =
13559 ≈ 13569, 6619 + 8663 = 15282 ≈ 15124); the reader may enjoy verifying
the relation for the rest of the boundary structure.

Varying δ opens and closes some paths, which does not affect the potential
variant but does for the others. This allows us to find some additional structure
of the Lenstra graph: for example, (i) between δ = 0.99 and δ = 0.994, it is
as though Bases 1 and 2 are exchanging some of their hits, (ii) for the original
version, the sum of the frequencies of Bases 9, 14, 19 with δ = 0.994 equals 19313,

20

which falls a bit short of 21492 for Basis 9 with δ = 0.999 — the remaining 2000
hits probably come from Basis 3.

Fig. 4. The same data as Figure 2, for seed = 36368. Circle, triangle, and X shape
correspond to the original, random, and potential variants, respectively.

On the shape of the Lenstra graph. Our data from Experiment 2 supports
Conjecture 1 by suggesting that the Lenstra graph has a very forcing structure
— in other words, put it roughly, no matter how one walks on it, somehow one
ends up taking the same paths (in a statistical sense). The fact that all three
variants exhibit the identical boundary structure implies that, near the terminal
points of the Lenstra graph, all three variants behave in almost the same way.
More precisely, our data makes it plain clear that, if we chose the input bases
uniformly from the 0.97-LLL bases found in the experiment, the variants would
yield indistinguishable frequency tables. As we start from farther and farther
away, this tendency probably weakens, as there may exist occasional divergences
off the main flow directed by the graph’s structure (in near future, we plan to
carry out a deeper investigation in this direction). Still, even in this case, the
graph seems to play the dominant role in shaping the dynamics of any random
walk on it: variation in log(frequency) is bounded by a small number, and thus
so should be the “coefficient of proportionality” between log(frequency) and
log(energy) — see Figure 4 for instance.

All of this is very surprising, since the odds that procedures as disparate as
our three variants display such similar patterns on a family of graphs that are as
vast as the Lenstra graph must be extremely tiny. By the same token, it is truly
fortunate that Conjecture 1 has survived the challenge. Had it been otherwise,
one would have to take into account the Lenstra graph plus the specific charac-

21

teristics of each LLL-like algorithm in order to handle the problems concerning
its behavior — e.g. those mentioned in the introduction — which is likely to
make matters virtually intractable.

As n→∞, we predict that the phenomena we have discovered in this section
will become more conspicuous, though it may seem counterintuitive to some. The
source of our intuition is the conjectured 0-1 law for polynomial-time computable
properties of random lattices due to Ajtai [Ajt02], which rigorously phrases the
conventional wisdom “All lattices look the same.” Unfortunately, as we com-
mented earlier, an experiment as microscopic as what we have conducted here is
computationally infeasible in higher dimensions. In a forthcoming work, we will
report on a separate set of experiments that test Conjecture 1 in dimensions at
least 100.

5 Summary and further discussions

The original intention of the experiments above was to explore if walking on
the Lenstra graph in different ways leads to any improvement of LLL. On the
contrary, we have found that those variants exhibit remarkably alike behavior, at
many levels — hence Conjecture 1. This is in fact a very pleasant news for lattice-
based cryptography because it reduces the study of all LLL-like algorithms to
the study of the Lenstra graph. In this section, we discuss the role of Conjecture
1 in responding to the motivating problems in the introduction, which will be
the subject of a series of forthcoming works.

Potential explanation for “1.02.” For x1 < x2, let D(x1, x2) be the “density”
of LLL bases among the set of all size-reduced bases of energy between x1 and
x2. Here, the word density is defined in some appropriate manner, and we do not
have to specify a lattice, thanks to Theorem 2, which suggests that D(x1, x2)
should not differ by much across lattices.

Clearly D(x1, x2) is expected to approach 1 as x1 and x2 goes to zero. Now
imagine any walk on the Lenstra graph. Our basic idea is that, this walk is
very likely to get “stuck” and terminate while passing a certain energy window
(x1, x2) at which D(x1, x2) is high enough.

To elaborate, observe that from D(x1, x2) one can compute the (right cu-
mulative) distribution function of the energy of the terminal point. The corre-
lation between energy and ‖b1‖ can be quickly studied, so this translates to
the distribution function, say B(x) of ‖b1‖. Our goal is to show that B(x)
sharply decreases at x ≈ (1.02)n det(L)1/n, in accordance with the experiment
of [NS06]. If this can be verified, it would be a convincing explanation for the
over-performance of LLL. It would also explain why the input basis would not
affect RHF, as conjectured in (reference): our suggested shape of B(x) puts an
overwhelming pressure for a walk to terminate at a certain point, and it must
be extremely difficult to find the starting point of a path that could circumvent
it.

The hardest part in studying D(x1, x2) is to find the correct notion of “den-
sity.” The set of the size-reduced bases of a given energy range can easily be

22

shown to have infinite cardinality, so one has to trim it carefully so as to reflect
the actual behavior of LLL. Once this is done, D(x1, x2) would be computed by
the same method as in the proof of Theorem 1.

Note that the idea outlined above would have been quickly falsified had
different variants induced different values for RHF in Experiment 1. In other
words, at least some part of Conjecture 1 must be true in order for the present
argument to work at all.

The case of BKZ. The earlier subsection may be recapitulated as follows:

LLL-like algorithms exhibit RHF ≈ 1.02 due to the high concentra-
tion of terminal points at a certain section of the Lenstra graph.

In future works, we hope to argue something similar of BKZ that leads to a
lower bound on its performance. However, a good analogue of the Lenstra graph
in this case does not immediately come to mind.

We take a step back and ask, why does LLL fail to reach a basis of better
quality? The reason we suggested above may be paraphrased as follows: since
LLL is limited to working on local blocks of size two, it cannot “see” an im-
provement that is too far away (and the Lenstra graph is precisely the pictorial
representation of what LLL can immediately see from where it is standing). BKZ
would be capable of seeing farther, the more so if the blocksize β is greater. Our
eventual aim is to find a scientific argument directly associating β to the per-
formance of any variant of BKZ-β, just as in the present paper we initiated the
project for β = 2, via the Lenstra graph. We believe this is a superior approach
to the security estimate of lattice-based cryptosystems to re-estimating every-
thing each time a new variant of BKZ (reference to the Progressive BKZ) arrives
to the scene.

References

[Ajt02] Miklos Ajtai. Random lattices and a conjectured 0-1 law about their poly-
nomial time computable properties. Proc. of FOCS, pages 13–39, 2002.

[BBC+09] Brandon Ballinger, Grigoriy Blekherman, Henry Cohn, Noah Giansiracusa,
Elizabeth Kelly, and Achill Schürmann. Experimental study of energy-
minimizing point configurations on spheres. Experiment. Math., 18(3):257–
283, 2009.

[FSW14] Felix Fontein, Michael Schneider, and Urs Wagner. PotLLL: a polynomial
time version of LLL with deep insertions. Des. Codes Cryptogr., 73(2):355–
368, 2014.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke
points. Forum Math., 15(2):165–189, 2003.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Ad-
vances in cryptology—EUROCRYPT 2008, volume 4965 of Lecture Notes in
Comput. Sci., pages 31–51. Springer, Berlin, 2008.

[KV16] Seungki Kim and Akshay Venkatesh. The behavior of random re-
duced bases. Preprint, available at http://math.stanford.edu/~akshay/

research/research.html, 2016.

23

[Len01] Hendrik W. Lenstra, Jr. Flags and lattice basis reduction. In European
Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr.
Math., pages 37–51. Birkhäuser, Basel, 2001.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261(4):515–534, 1982.

[Neu16] Arnold Neumaier. Bounding basis reduction properties. Des. Codes Cryp-
togr., pages 1–23, 2016.

[NS05] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In
Advances in cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes
in Comput. Sci., pages 215–233. Springer, Berlin, 2005.

[NS06] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Algorithmic
number theory, volume 4076 of Lecture Notes in Comput. Sci., pages 238–
256. Springer, Berlin, 2006.

[Sch11] Peter Schnorr. Accelerated and improved slide- and LLL-reduction. ECCC,
11(50), 2011.

[Ser73] J.-P. Serre. A course in arithmetic. Springer-Verlag, New York-Heidelberg,
1973. Translated from the French, Graduate Texts in Mathematics, No. 7.

[Sho] Victor Shoup. NTL, number theory C++ library. http://www.shoup.net/

ntl/.

[Sie45] Carl Ludwig Siegel. A mean value theorem in geometry of numbers. Ann.
of Math. (2), 46:340–347, 1945.

[Ste10] Damien Stehlé. Floating-point LLL: theoretical and practical aspects. In
Phong Nguyen and Brigitte Vallée, editors, The LLL Algorithm, Survey and
Applications, Informaton Security and Cryptography, chapter 5, pages 179–
213. Springer-Verlag, Berlin, Heidelberg, 2010.

Appendix: special cases

In this appendix, we account for the two known cases, according to Stehlé [Ste10],
in which LLL is known to perform particularly well; that is, it often finds the
shortest vector of the lattice.

The case dimension ≤ 6. This is easily explained by Theorem 1, which pro-
vides an exact formula for the average number of LLL bases per lattice. Table 6
shows the average number of (0.999, 0.501)-LLL bases in dimensions 2 through
15, up to the sign of each basis vector. Table 6 makes it plain that in dimensions
≤ 6, an LLL basis is very much likely also a Minkowski-reduced basis — so it is
very hard for LLL to not find the shortest vector in these cases.

The case λi � λi+1 for some i. λi, as usual, means the i-th successive min-
imum of a lattice under question, say L. λi � λi+1 means that there exists
a constant C > 0, depending on the dimension n of L and detL, such that
Cλi < λi+1. Throughout the argument below, we will be implicitly increasing C
whenever needed for the desired inequality to hold.

Let {b1, . . . ,bn} be a (δ, η)-reduced basis, and write β = 1/(δ−η2) > 1. The
crucial fact is that

β1−kλk ≤ ‖bk‖2 ≤ βn−1λk (3)

24

n average/2n n average/2n

2 1.002 9 9.036
3 1.013 10 41.09
4 1.046 11 378
5 1.132 12 8351
6 1.345 13 524517
7 1.878 14 1.096× 108

8 3.397 15 8.830× 1010

Table 6. Average number of (0.999,0.501)-LLL bases in low dimensions.

for all k = 1, . . . , n; for a proof, see [LLL82]. Now let {m1, . . . ,mn} be the
Minkowski-reduced basis of the lattice under question. Then using (3) we can
show that

‖mi‖2 ≤ ‖bi‖2 ≤ βn−1λi � λi+1 ≤ ‖mi+1‖2.

Since a Minkowski-reduced basis is also size-reduced, this implies that

‖bi‖ � ‖m∗i+1‖.

Furthermore, because a Minkowski-reduced basis is also (1, 0.5)-reduced, we
have ‖m∗i+1+j‖ ≥ (3/4)j/2‖m∗i+1‖. Therefore,

spanZ(b1, . . . ,bi) = spanZ(m1, . . . ,mi).

So ‖b1‖ ≤ β(i−1)/4 det(m1 . . .mi)
1/i. It remains to show that det(m1 . . .mi)

1/i

is not too large. Therefore,

detL ≥
i∏

j=1

‖m∗j‖ ·
(

3

4

) (n+i+2)(n−i+1)
2

‖m∗i+1‖n−i.

So if ‖m∗i+1‖ is sufficiently large,
∏i
j=1 ‖m∗j‖ = det(m1 . . .mi) must be small,

as desired.

Remark. We do not claim that the above argument, though completely rigorous,
describes the exact reality. However, it does convey a couple of intuitions as
to why LLL should operate particularly well on lattices satisfying λi � λi+1

for some i: i) LLL acts on such a lattice as though it does on a direct sum
of two lattices, each of dimensions i and n − i, ii) if λi+1 is sufficiently large,
det(m1 . . .mi) is small, or at least not too large.

