MODULI SPACES OF MCKAY QUIVER REPRESENTATIONS: G-IRAFFES

SEUNG-JO JUNG

ABSTRACT. This article introduces a (generalized) G-graph which is a generalized version of Nakamura G-graphs in [18]. As Nakamura G-graphs are associated with torus invariant G-clusters, our G-graphs are associated with torus invariant G-constellations. If a G-graph Γ satisfies a certain condition, then we call the G-graph a G-iraffe. For each G-iraffe Γ , we define a toric affine open set $U(\Gamma)$ and a family over the open set $U(\Gamma)$. Using G-iraffes, we describe local charts of the birational component Y_{θ} .

INTRODUCTION

Let G be a finite subgroup of $\operatorname{GL}_n(\mathbb{C})$. A G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^n is called a G-constellation if its global sections $\operatorname{H}^0(\mathcal{F})$ are isomorphic to the regular representation $\mathbb{C}[G]$ of G as a G-module. In particular, the structure sheaf of a G-invariant subscheme $Z \subset \mathbb{C}^n$ with $\operatorname{H}^0(\mathcal{O}_Z)$ isomorphic to $\mathbb{C}[G]$ as a G-module, which is called a Gcluster, is a G-constellation. It is known that G-clusters are θ -stable Gconstellations for a particular choice of GIT stability parameter θ [10].

For a finite group $G \subset \mathrm{SL}_2(\mathbb{C})$, Ito and Nakamura [11] introduced G-Hilb \mathbb{C}^2 which is the fine moduli space parametrising G-clusters and proved that G-Hilb \mathbb{C}^2 is the minimal resolution of \mathbb{C}^2/G . Nakamura showed that for a finite abelian subgroup of $\mathrm{SL}_3(\mathbb{C})$, G-Hilb \mathbb{C}^3 is a crepant resolution of the quotient variety \mathbb{C}^3/G . In his paper, he introduced (Nakamura) G-graphs to describe a local chart of G-Hilb for an abelian group G. He also claimed that every G-cluster is over the birational component, which is turned out to be false.

On the other hand, for a finite abelian group $G \subset \operatorname{GL}_n(\mathbb{C})$ and a generic GIT parameter $\theta \in \Theta$, Craw, Maclagan and Thomas [4] showed that the moduli space \mathcal{M}_{θ} of θ -stable *G*-constellations has a unique irreducible component Y_{θ} which contains the torus $T := (\mathbb{C}^{\times})^n/G$. So the irreducible component is birational to the quotient variety \mathbb{C}^n/G . The component Y_{θ} is called the *birational component*¹ of \mathcal{M}_{θ} . In their consecutive paper [5], they introduced a new technique to describe a local chart of the birational component of *G*-Hilb using Gröbner basis.

Date: 29th June 2014.

¹This component is also called the coherent component.

Moreover, they presented a counterexample of Nakamura's claim: there exists a G-cluster which does not lie over the birational component.

The motivation of this paper is from the question on why Nakamura's claim is wrong in general. Nakamura [18] defined an open set $U(\Gamma)$ associated to each Nakamura *G*-graph Γ . He assumed that $U(\Gamma)$ has a torus fixed point. We find out that if $U(\Gamma)$ has a torus fixed point, then $U(\Gamma)$ is an open set in the birational component of *G*-Hilb. In other words, there should be *G*-graphs such that $U(\Gamma)$ has no torus fixed point by the existence of *G*-clusters outside the birational component [5].

Main results. Let $G \subset GL_3(\mathbb{C})$ be the group of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$, i.e. G is the subgroup generated by the diagonal matrix $\operatorname{diag}(\epsilon^{\alpha_1}, \epsilon^{\alpha_2}, \epsilon^{\alpha_3})$ where ϵ is a primitive *r*th root of unity. The group G acts naturally on $S := \mathbb{C}[x, y, z]$.

Define the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$$

which is an overlattice of $\overline{L} = \mathbb{Z}^3$ of finite index. Set $\overline{M} = \operatorname{Hom}_{\mathbb{Z}}(\overline{L}, \mathbb{Z})$ and $M = \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$. The embedding of G into the torus $(\mathbb{C}^{\times})^3 \subset \operatorname{GL}_3(\mathbb{C})$ induces a surjective homomorphism

wt:
$$\overline{M} \longrightarrow G^{\vee}$$

where $G^{\vee} := \operatorname{Hom}(G, \mathbb{C}^{\times})$ is the character group of G.

We define a (generalized) G-graph Γ and an affine toric variety $U(\Gamma)$:

Definition 0.1. A *(generalized)* G-graph Γ is a subset of Laurent monomials in $\mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$ satisfying:

- (i) $\mathbf{1} \in \Gamma$.
- (ii) wt: $\Gamma \to G^{\vee}$ is bijective, i.e. for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ whose weight is ρ .
- (iii) if $\mathbf{m} \cdot \mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{m}, \mathbf{n} \in \overline{M}_{\geq 0}$, then $\mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$.
- (iv) Γ is *connected* in the sense that for any element \mathbf{m}_{ρ} , there is a (fractional) path from \mathbf{m}_{ρ} to **1** whose steps consist of multiplying or dividing by one of x, y, z in Γ .

As is defined in [18], for a *G*-graph $\Gamma = {\mathbf{m}_{\rho}}$, define $S(\Gamma)$ to be the subsemigroup of *M* generated by $\frac{\mathbf{m} \cdot \mathbf{m}_{\rho}}{\mathrm{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})}$ for all $\mathbf{m} \in \overline{M}_{\geq 0}$, $\mathbf{m}_{\rho} \in \Gamma$. We prove the semigroup $S(\Gamma)$ is finitely generated. We define

$$U(\Gamma) = \operatorname{Spec} \mathbb{C}[S(\Gamma)],$$

which is an affine toric variety whose torus is $\operatorname{Spec} \mathbb{C}[M]$ and define a *G*-constellation $C(\Gamma)$ associated with Γ .

Definition 0.2. A generalized G-graph Γ is called a G-iraffe if the open set $U(\Gamma)$ has a torus fixed point.

 $\mathbf{2}$

We prove that for a finite group $G \subset \operatorname{GL}_3(\mathbb{C})$ of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$ and a generic GIT parameter θ , there is a 1-to-1 correspondence between the set of torus fixed points in the birational component Y_{θ} and the set of θ -stable *G*-iraffes (see Proposition 6.7). Furthermore, we have the following theorem.

Theorem 0.3. Let $G \subset GL_3(\mathbb{C})$ be a finite diagonal group and θ a generic GIT parameter for G-constellations. Assume that \mathfrak{G} is the set of all θ -stable G-iraffes.

- (i) The birational component Y_{θ} of \mathcal{M}_{θ} is isomorphic to the notnecessarily-normal toric variety $\bigcup_{\Gamma \in \mathfrak{G}} U(\Gamma)$.
- (ii) The normalization of Y_{θ} is isomorphic to the normal toric variety whose toric fan consists of the full dimensional cones $\sigma(\Gamma)$ for $\Gamma \in \mathfrak{G}$ and their faces.

In general, finding all θ -stable *G*-iraffes is a very difficult job. Nakamura [18] introduces *G*-igsaw transforms which finds all Nakamura *G*graphs lying over the birational components. We expect that there is a method to find all θ -stable *G*-iraffes which is analogous to *G*-igsaw transforms in [18].

Remark 0.4 (Link to [4]). Craw, Maclagan, and Thomas [4] described Y_{θ} using a certain polyhedron P_{θ} . The vertices \mathbf{v}_{α} of the polyhedron P_{θ} correspond to fixed points p_{α} of the torus action. For each vertex \mathbf{v}_{α} , they define a semigroup A_{α} such that $\operatorname{Spec} \mathbb{C}[A_{\alpha}]$ gives an affine open set through p_{α} .

In our description, since each torus fixed point p_{α} represents the isomorphism class of a θ -stable torus invariant *G*-constellation lying over Y_{θ} , we have a unique *G*-iraffe Γ_{α} and the semigroup $S(\Gamma_{\alpha})$. We expect that our semigroup $S(\Gamma_{\alpha})$ is equal to the semigroup A_{α} .

Warning 0.5. In this paper, we restrict ourselves to the case where a group G is a finite cyclic group in $GL_3(\mathbb{C})$. It is possible to generalize part of the argument to include general small abelian groups in $GL_n(\mathbb{C})$ for any dimension n. However, we prefer to focus on this case where we can avoid the difficulty of notation.

Layout of this paper.

Acknowledgement. I am deeply grateful to my supervisor Prof. Miles Reid for his generous guidance. Also I would like to thank Dr. Diane Maclagan, Dr. Alastair Craw for valuable conversations. I am grateful to Dr. Andrew Chan and Tom Ducat for proofreading earlier drafts. I would like to thank Prof. Yongnam Lee for a visit to Sogang University in the spring of 2011 when part of this work was done.

1. Moduli of quiver representations

In this section, we briefly review the construction of moduli spaces of quiver representations introduced in [12].

1.1. Quivers and their representations. A quiver Q is a directed graph with a set of vertices $I = Q_0$ and a set of arrows Q_1 . For an arrow $a \in Q_1$, let h(a) (resp. t(a)) denote the head (resp. tail) of the arrow a:

$$t(a) \xrightarrow{a} h(a)$$
.

One can define the *path algebra* of a quiver Q to be the \mathbb{C} -algebra whose basis is nontrivial paths in Q and trivial paths corresponding to the vertices of Q and whose multiplication is given by the concatenation of two paths.

A representation of a quiver Q is a collection of \mathbb{C} -vector spaces V_i for each vertex $i \in I$ and linear maps $V_i \to V_j$ for each arrow from i to j. For a representation V, the I-tuple $(\dim_{\mathbb{C}} V_i)_{i \in I} \in \mathbb{Z}_{\geq 0}^I$ is called the dimension vector of V denoted by $\underline{\dim}(V)$. A representation (U, ξ') of a quiver Q is called a subrepresentation of a representation (V, ξ) if Uis an I-graded subspace of V such that $\xi_a(U_{t(a)}) \subset U_{h(a)}$ for all $a \in Q_1$ and ξ' is the restriction of ξ to U.

It is well known that the abelian category of representations of a quiver Q is equivalent to the category of finitely generated left modules of the path algebra of Q.

Let us fix a dimension vector $\mathbf{v} = (v_i)_{i \in I}$. Let $\operatorname{Rep}(Q, \mathbf{v})$ denote the representation space of Q with dimension vector \mathbf{v} :

$$\operatorname{Rep}(Q, \mathbf{v}) = \bigoplus_{a \in Q_1} \operatorname{Hom}(V_{t(a)}, V_{h(a)}) = \bigoplus_{a:i \to j} \operatorname{Hom}(\mathbb{C}^{v_i}, \mathbb{C}^{v_j}),$$

which is an affine space. Note that the reductive group $GL(\mathbf{v}) := \prod_{i \in I} GL_{v_i}$ acts on $\operatorname{Rep}(Q, \mathbf{v})$ as basis change.

One can see that

$$\operatorname{Rep}(Q, \mathbf{v}) \longrightarrow \operatorname{Rep}(Q, \mathbf{v}) / / \operatorname{GL}(\mathbf{v}) := \operatorname{Spec} \mathbb{C}[\operatorname{Rep}(Q, \mathbf{v})]^{\operatorname{GL}(\mathbf{v})}$$

is a categorical quotient and that $\operatorname{Rep}(Q, \mathbf{v}) / / \operatorname{GL}(\mathbf{v})$ is an affine variety.

Remark 1.1. Geometric points of $\operatorname{Rep}(Q, \mathbf{v}) /\!\!/ \operatorname{GL}(\mathbf{v})$ correspond to $\operatorname{GL}(\mathbf{v})$ -orbits of semisimple representations of Q whose dimension is \mathbf{v}

1.2. Background: Geometric Invariant Theory. In this section, we present results from standard Geometric Invariant Theory (GIT), cf. [16].

Definition 1.2. Let G be a reductive group acting on an affine variety X. A surjective morphism $\psi: X \to Y$ is a *good quotient* if:

(i) ψ is constant on *G*-orbits.

- (ii) for any open set $U \subset Y$, the natural map $\mathcal{O}_Y(U) \to \psi_* \mathcal{O}_X(U)$ induces $\mathcal{O}_Y(U) = (\psi_* \mathcal{O}_X)^G(U)$.
- (iii) $\psi(W)$ is closed in Y for any G-invariant closed set $W \subset X$.
- (iv) $\psi(W_1) \cap \psi(W_2) = \emptyset$ for two disjoint *G*-invariant closed sets W_1, W_2 of *X*.

Moreover, if Y is an orbit space, then $\psi \colon X \to Y$ is called a *geometric quotient*.

Consider an affine algebraic variety X with a reductive group G acting on it. Given a character $\chi: G \to \mathbb{C}^{\times}, f \in \mathbb{C}[X]$ is called a χ semi-invariant function if

$$f(g \cdot x) = \chi(g)f(x) \quad x \in X, \ \forall g \in G.$$

Let $\mathbb{C}[X]_{\chi^n}$ denote the \mathbb{C} -vector space of all χ^n semi-invariant functions. One defines the *semistable locus* as

$$X^{ss}(\chi) := \left\{ x \in X \mid \exists n \ge 1, f \in \mathbb{C}[X]_{\chi^n} \text{ such that } f(x) \neq 0 \right\}$$

and the *stable locus* as

$$X^{s}(\chi) := \left\{ x \in X^{ss}(\chi) \mid \begin{array}{c} G \cdot x \text{ is closed in } X^{ss}(\chi), \\ \text{the stabiliser } G_{x} \text{ is finite} \end{array} \right\}.$$

The quasiprojective variety

$$X /\!\!/_{\chi} G := \operatorname{Proj}\left(\bigoplus_{n \ge 0} \mathbb{C}[X]_{\chi^n}\right)$$

is called a *GIT quotient* corresponding to χ . In particular, if the character $\chi = 0$, i.e. θ is trivial, then $\mathbb{C}[X]_{\chi^n} = \mathbb{C}[X]^G$ for all n so we have

$$X /\!\!/_0 G = \operatorname{Spec} \mathbb{C}[X]^G$$

which is an affine variety. Thus we have a canonical projective morphism

$$X /\!\!/_{\chi} G \to \operatorname{Spec} \mathbb{C}[X]^G.$$

Remark 1.3. Let G be a reductive group acting on an affine variety X. Fix a character χ of G. For each positive integer d, define the dth Veronese subalgebra of $\bigoplus_{n\geq 0} \mathbb{C}[X]_{\chi^n}$ to be

$$\bigoplus_{n\geq 0} \mathbb{C}[X]_{\chi^{dn}}.$$

One can show that the inclusion of the subalgebra induces an isomorphism of algebraic varieties

$$X /\!\!/_{\chi} G \xrightarrow{\sim} X /\!\!/_{\chi^d} G.$$

Thus any positive multiple of a character χ gives the same GIT quotient as χ .

As is well known by GIT [16], the quasiprojective variety $X /\!\!/_{\chi} G$ is a categorical quotient $X^{ss}(\chi)$ by G.

Theorem 1.4 (Geometric Invariant Theory [16]). Let G be a reductive group acting on an affine variety X and χ a character of G. Then:

- (i) $\pi: X^{ss}(\chi) \to X /\!\!/_{\chi} G$ is a good quotient of $X^{ss}(\chi)$ by G.
- (ii) there exists an open subset Y of X ∥_χG such that Y is a geometric quotient of X^s(χ) by G, i.e. an orbit space.
- (iii) the GIT quotient $X /\!\!/_{\chi} G$ is projective over the affine variety $\operatorname{Spec} \mathbb{C}[X]^G$.

Remark 1.5. Let $\pi: X /\!\!/_{\chi} G \to X^{s}(\chi)/G$ be the GIT quotient with $X^{s}(\chi) = X^{ss}(\chi)$. Then π is a geometric quotient. Let U be a G-invariant affine open set in $X^{ss}(\chi)$. Then

$$\pi|_U \colon U \to \pi(U)$$

is a good quotient and $\pi(U) = \operatorname{Spec} \mathbb{C}[U]^G$ is an open set of $X^s(\chi)/G$.

The following theorem is helpful to understand the local behaviour of the GIT quotients.

Theorem 1.6 (Luna's Étale Slice Theorem [9,15]). Let G be a reductive group acting on an affine variety X. Assume that $\pi: X \to X /\!\!/ G$ is a good quotient. Let $x \in X$ be a point with closed G-orbit G·x. Then there exists a G_x -invariant locally closed affine subset V of X containing x such that the G-action on X induces an étale G-equivariant morphism $\psi: G \times_{G_x} V \to X$. Moreover, ψ induces an étale morphism $V /\!\!/ G_x \to$ $X /\!\!/ G$, and the following diagram

is Cartesian.

1.3. Moduli spaces of quiver representations. This section explains a notion of stability on quiver representations introduced by King [12]. His main result is that the notion of stability on quiver representations and the notion of GIT stability are equivalent and that we can construct a fine moduli space of quiver representations in a certain case.

An element $\theta \in \mathbb{Q}^{I}$ can be thought as a group homomorphism from the Grothendieck group of representations of Q to \mathbb{Q} defined by

$$\theta(V) := \sum_{i \in I} \theta_i \dim_C V_i = \theta \cdot \mathbf{v}$$

where V is a representation of Q with dimension vector \mathbf{v} .

Definition 1.7. Let V be a **v**-dimensional representation of a quiver Q. For a parameter $\theta \in \mathbb{Q}^I$ satisfying $\theta \cdot \mathbf{v} = 0$, we say that:

- (i) V is θ -semistable if $\theta(W) \ge 0$ for any subrepresentation W of V.
- (ii) V is θ -stable if $\theta(W) > 0$ for any nonzero proper subrepresentation W of V.
- (iii) θ is generic if every θ -semistable representation is θ -stable.

The parameter $\theta \in \mathbb{Q}^I$ plays the same role as χ does in Section 1.2. The character χ_{θ} defined by

$$\chi_{\theta}(g) := \prod_{i \in I} \det(g_i)^{\theta_i}$$

for $g = (g_i) \in \operatorname{GL}(\mathbf{v})$ vanishes on the diagonal matrices $\mathbb{C}^{\times} \in \operatorname{GL}(\mathbf{v})$ if and only if $\theta \cdot \mathbf{v} = 0$.

King [12] shows that a representation $V \in \operatorname{Rep}(Q, \mathbf{v})$ is θ -semistable (resp. θ -stable) if and only if the corresponding point $V \in \operatorname{Rep}(Q, \mathbf{v})$ is χ_{θ} -semistable (resp. χ_{θ} -stable). Moreover:

Theorem 1.8 (King [12]). Let \mathbf{v} be a dimension vector. Assume a parameter $\theta \in \mathbb{Q}^I$ satisfies $\theta \cdot \mathbf{v} = 0$.

(i) The quasiprojective variety

$$\mathcal{M}_{\theta}(Q, \mathbf{v}) := \operatorname{Proj}\left(\bigoplus_{n \ge 0} \mathbb{C}[\operatorname{Rep}(Q, \mathbf{v})]_{\chi_{\theta}^{n}}\right)$$

is a coarse moduli space of θ -semistable **v**-dimensional representations of Q up to S-equivalence.

- (ii) If θ is generic, $\mathcal{M}_{\theta}(Q, \mathbf{v})$ is a fine moduli space of θ -stable \mathbf{v} -dimensional representations of Q.
- (iii) The variety $\mathcal{M}_{\theta}(Q, \mathbf{v})$ is projective over Spec $\mathbb{C}[\operatorname{Rep}(Q, \mathbf{v})]^{\operatorname{GL}(\mathbf{v})}$.

Remark 1.9. By Luna's Étale Slice Theorem, if θ is generic, then the quotient map

$$\pi\colon \operatorname{Rep}^{s}(Q,\mathbf{v}) \to \mathcal{M}_{\theta}(Q,\mathbf{v})$$

is a principal $\operatorname{GL}(\mathbf{v})/\mathbb{C}^{\times}$ -bundle.

٠

2. McKay quiver and G-constellations

Let $G \subset \operatorname{GL}_3(\mathbb{C})$ be the finite group of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$. Let ρ_i be the irreducible representation of G whose weight is i. Since G is abelian, every irreducible representation is one-dimensional and the number of irreducible representation is equal to the order of G. We can identify $I := \operatorname{Irr}(G)$ with $\mathbb{Z}/r\mathbb{Z}$. Note that the inclusion $G \subset \operatorname{GL}_3(\mathbb{C})$ induces a natural representation of G on \mathbb{C}^3 , which can be decomposed as

$$\rho_{\alpha_1} \oplus \rho_{\alpha_2} \oplus \rho_{\alpha_3}.$$

2.1. McKay quiver representations.

Definition 2.1. (McKay quiver) The *McKay quiver* of *G* is the quiver whose vertex set is the set *I* of irreducible representations of *G* and the number of arrows from ρ_i to ρ_j is the dimension of $\text{Hom}_G(\rho_j, (\rho_{\alpha_1} \oplus \rho_{\alpha_2} \oplus \rho_{\alpha_3}) \otimes \rho_i)$.

Since G has r irreducible representations, the McKay quiver of G has r vertices $\rho_0, \ldots, \rho_{r-1}$. For two irreducible G-representations ρ_i and ρ_j ,

$$\operatorname{Hom}_{G}\left(\rho_{j},\left(\rho_{\alpha_{1}}\oplus\rho_{\alpha_{2}}\oplus\rho_{\alpha_{3}}\right)\otimes\rho_{i}\right)\right)=\operatorname{Hom}_{G}(\rho_{j},\bigoplus_{k=1}^{3}\rho_{\alpha_{k}}\otimes\rho_{i})$$
$$=\bigoplus_{k=1}^{3}\operatorname{Hom}_{G}(\rho_{j},\rho_{i+\alpha_{k}}),$$

and by Schur's lemma

$$\dim \operatorname{Hom}_{G}(\rho_{j}, \rho_{i+\alpha_{k}}) = \begin{cases} 1 & \text{if } j = i + \alpha_{k} \mod r, \\ 0 & \text{otherwise.} \end{cases}$$

Thus the McKay quiver has 3r arrows. Let x_i, y_i, z_i denote the arrow from ρ_i to $\rho_{i+\alpha_1}, \rho_{i+\alpha_2}, \rho_{i+\alpha_3}$, respectively. We are interested in the McKay quiver with the following commutation relations:

(2.2)
$$\begin{cases} x_i y_{i+\alpha_1} - y_i x_{i+\alpha_2}, \\ x_i z_{i+\alpha_1} - z_i x_{i+\alpha_3}, \\ y_i z_{i+\alpha_2} - z_i y_{i+\alpha_3}. \end{cases}$$

Definition 2.3. A *McKay quiver representation* is a representation of the McKay quiver of dimension $(1, \ldots, 1)$ with the relations (2.2), i.e. it is a collection of one-dimensional \mathbb{C} -vector spaces V_i for each $\rho_i \in G^{\vee}$, and a collection of linear maps from V_i to V_j assigned to each arrow from ρ_i to ρ_j which satisfy the commutation relations (2.2).

Example 2.4. Let $G \subset GL_3(\mathbb{C})$ be the finite group of type $\frac{1}{12}(1,5,7)$, i.e. r = 12 and a = 5. The set of irreducible representations of G is $\{\rho_i \mid 0 \leq i \leq 11\}$ and the induced representation is isomorphic to $\rho_1 \oplus \rho_5 \oplus \rho_7$. The McKay quiver of G has 12 vertices and 36 arrows.

After fixing basis on vector spaces attached to vertices, the McKay quiver representations are in 1-to-1 correspondence with points of the closed subscheme of the affine space

$$\mathbb{C}^{3r} = \operatorname{Spec} \mathbb{C}[x_0, \dots, x_{r-1}, y_0, \dots, y_{r-1}, z_0, \dots, z_{r-1}]$$

defined by the commutation relations (2.2).

Let $\operatorname{Rep} G$ denote the McKay quiver representation space of G. Note that its coordinate ring is

$$\mathbb{C}[\operatorname{Rep} G] = \mathbb{C}\left[x_i, y_i, z_i \mid i \in I\right] / I_G$$

where I_G is the ideal generated by the quadrics in (2.2).

Let $\delta = (1, \ldots, 1) \in \mathbb{Z}_{\geq 0}^{I}$. The reductive group $\operatorname{GL}(\delta) := \prod_{i \in I} \mathbb{C}^{\times} = (\mathbb{C}^{\times})^{r}$ acts on Rep *G* by basis change. Note that $\operatorname{GL}(\delta)$ -orbits are in 1-to-1 correspondence with isomorphism classes of the McKay quiver representations.

Consider the algebraic torus $\mathbf{T} = (\mathbb{C}^{\times})^3$ acting on Rep G by

$$(t_1, t_2, t_3) \cdot (x_i, y_i, z_i) = (t_1 x_i, t_2 y_i, t_3 z_i).$$

One can see that **T**-action commutes with $GL(\delta)$ -action. This action naturally comes from the notion of *G*-constellations, which are a certain kind of coherent sheaves on \mathbb{C}^3 (see Remark 2.15).

We define the GIT parameter space Θ to be

$$\Theta := \left\{ \theta \in \mathbb{Q}^I \, \middle| \, \theta \cdot \delta = 0 \right\}.$$

By Theorem 1.8, we know that:

(i) the quasiprojective scheme

$$\mathcal{M}_{\theta} := \operatorname{Proj}\left(\bigoplus_{n \ge 0} \mathbb{C}[\operatorname{Rep} G]_{\chi^{n}_{\theta}}\right)$$

is a coarse moduli space of θ -semistable McKay quiver representations up to S-equivalence.

- (ii) if θ is generic, \mathcal{M}_{θ} is a fine moduli space of θ -stable McKay quiver representations of Q.
- (iii) \mathcal{M}_{θ} is projective over Spec $\mathbb{C}[\operatorname{Rep} G]^{\operatorname{GL}(\delta)}$.

Remark 2.5. The affine scheme $\operatorname{Spec} \mathbb{C}[\operatorname{Rep} G]^{\operatorname{GL}(\delta)}$ contains the quotient variety \mathbb{C}^3/G as a closed subvariety.

2.2. G-constellations.

Definition 2.6. A *G*-constellation on \mathbb{C}^3 is a *G*-equivariant $\mathbb{C}[x, y, z]$ module \mathcal{F} on \mathbb{C}^3 , which is isomorphic to the regular representation $\mathbb{C}[G]$ of *G* as a *G*-module.

Remark 2.7. Any *G*-constellation \mathcal{F} is isomorphic to $\bigoplus_i \mathbb{C}\rho_i$ as a vector space.

The representation ring R(G) of G is $\bigoplus_{\rho \in G^{\vee}} \mathbb{Z}\rho$. Define the GIT stability parameter space

$$\Theta = \left\{ \theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G]) = 0 \right\}$$
$$= \left\{ \theta = (\theta^i) \in \mathbb{Q}^r \mid \Sigma_{i \in I} \theta^i = 0 \right\}.$$

Definition 2.8. For a stability parameter $\theta \in \Theta$, we say that:

- (i) a *G*-constellation \mathcal{F} is θ -semistable if $\theta(\mathcal{G}) \geq 0$ for any nonzero proper submodule $\mathcal{G} \subset \mathcal{F}$.
- (ii) a *G*-constellation \mathcal{F} is θ -stable if $\theta(\mathcal{G}) > 0$ for any nonzero proper submodule $\mathcal{G} \subset \mathcal{F}$.
- (iii) θ is generic if every θ -semistable object is θ -stable.

Remark 2.9. It is known that the language of G-constellations is the same as the language of the McKay quiver representations. Thus we can construct the moduli spaces of G-constellations by Geometric Invariant Theory as in Section 1.

Let \mathcal{M}_{θ} denote the moduli space of θ -stable *G*-constellations. Ito and Nakajima [10] showed that *G*-Hilb \mathbb{C}^3 is isomorphic to \mathcal{M}_{θ} if θ is in the following set:

(2.10)
$$\Theta_{+} := \left\{ \theta \in \Theta \mid \theta(\rho) > 0 \text{ for nontrivial } \rho \neq \rho_{0} \right\}.$$

Let Z be a G-orbit in the algebraic torus $\mathbf{T} := (\mathbb{C}^{\times})^3 \subset \mathbb{C}^3$. Then $\mathrm{H}^0(\mathcal{O}_Z)$ is isomorphic to $\mathbb{C}[G]$, thus it is a G-constellation. Moreover, since Z is a free G-orbit, \mathcal{O}_Z has no nonzero proper submodules. Hence it follows that \mathcal{O}_Z is θ -stable for any parameter θ . Thus for any parameter θ , there exists a natural embedding of the torus $T := (\mathbb{C}^{\times})^3/G$ into \mathcal{M}_{θ} .

Remark 2.11. The existence of the natural embedding of the torus $T := (\mathbb{C}^{\times})^3/G$ into \mathcal{M}_{θ} can be proved by Luna's Étale Slice Theorem as is standard in the theory of moduli spaces of sheaves (e.g. see [9]).

Lemma 2.12. Let Z be a free G-orbit in \mathbb{C}^3 . Then \mathcal{O}_Z is a Gconstellation supported on the free G-orbit Z. Conversely, if a Gconstellation \mathcal{F} is supported on a free G-orbit $Z \subset \mathbb{C}^3$, then \mathcal{F} is isomorphic to \mathcal{O}_Z as a G-constellation.

Proof. For the first statement, one can refer to [17].

To prove the second statement, let \mathcal{F} be a *G*-constellation whose support is a free *G*-orbit *Z*.

Then \mathcal{F} has no nonzero proper submodules. Indeed, for a nonzero submodule \mathcal{G} of \mathcal{F} , the support of \mathcal{G} is a G-invariant nonempty subset of the free G-orbit Z. As Z is a free G-orbit, the support of \mathcal{G} is Z. Since \mathcal{F}_x is 1-dimensional for any $x \in Z$, it follows that $\mathcal{G}_x = \mathcal{F}_x$ and hence $\mathcal{G} = \mathcal{F}$.

Consider $\psi \colon \mathbb{C}[x, y, z] \to \mathcal{F}$ defined by $f \mapsto f * e_0$ where e_0 is a basis of $\mathbb{C}\rho_0$. As \mathcal{F} has no nonzero proper submodules, ψ is surjective. Since the support of \mathcal{F} is Z, it follows that I_Z is in the kernel of ψ . Thus we have

 $\mathcal{O}_Z = \mathbb{C}[x, y, z]/I_Z \ge \mathbb{C}[x, y, z]/\ker(\psi) \cong \mathcal{F}.$

From the fact that both \mathcal{O}_Z and \mathcal{F} are *G*-constellations, it follows that $\mathcal{O}_Z \cong \mathcal{F}$ as $\dim_{\mathbb{C}} \mathcal{O}_Z = \dim_{\mathbb{C}} \mathcal{F}$.

Craw, Maclagan and Thomas [4] proved the following theorem.

Theorem 2.13 (Craw, Maclagan and Thomas [4]). Let $\theta \in \Theta$ be generic. Then \mathcal{M}_{θ} has a unique irreducible component Y_{θ} which contains the torus $T := (\mathbb{C}^{\times})^n/G$. Moreover Y_{θ} satisfies the following properties:

- (i) Y_θ is a not-necessarily-normal toric variety which is birational to the quotient variety C³/G.
- (ii) Y_{θ} is projective over the quotient variety \mathbb{C}^3/G .

Remark 2.14. We call the unique irreducible component Y_{θ} of \mathcal{M}_{θ} the *birational component*. For generic $\theta \in \Theta$, Craw, Maclagan and Thomas [4] constructed the birational component Y_{θ} as GIT quotient of a reduced irreducible affine scheme by an algebraic torus. From this, it follows that Y_{θ} is irreducible and reduced.

Remark 2.15. Since the algebraic torus \mathbf{T} acts on \mathbb{C}^3 , \mathbf{T} acts on the moduli space \mathcal{M}_{θ} naturally. Fixed points of the **T**-action play a crucial role in the study of the moduli space \mathcal{M}_{θ} . Note that this **T**-action is the same as the **T**-action in Section 2.1.

3. Abelian group actions and toric geometry

Let $G \subset \operatorname{GL}_3(\mathbb{C})$ be the finite subgroup of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$, i.e. *G* is the subgroup generated by the diagonal matrix $\operatorname{diag}(\epsilon^{\alpha_1}, \epsilon^{\alpha_2}, \epsilon^{\alpha_3})$ where ϵ is a primitive *r*th root of unity. The group *G* acts naturally on $S := \mathbb{C}[x, y, z]$. Define the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r} (\alpha_1, \alpha_2, \alpha_3)$$

which is an overlattice of $\overline{L} = \mathbb{Z}^3$ of finite index. Let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{Z}^3 . Set $\overline{M} = \operatorname{Hom}_{\mathbb{Z}}(\overline{L}, \mathbb{Z})$ and $M = \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$. The dual lattices \overline{M} and M can be identified with Laurent monomials and G-invariant Laurent monomials, respectively. The embedding of G into the torus $(\mathbb{C}^{\times})^3 \subset \operatorname{GL}_3(\mathbb{C})$ induces a surjective homomorphism

wt:
$$\overline{M} \longrightarrow G^{\vee}$$

where $G^{\vee} := \text{Hom}(G, \mathbb{C}^{\times})$ is the character group of G. Note that M is the kernel of the map wt.

Remark 3.1. There are two isomorphisms of abelian groups $L/\mathbb{Z}^3 \to G$ and $\overline{M}/M \to G^{\vee}$.

Let $\overline{M}_{\geq 0}$ denote genuine monomials in \overline{M} , i.e.

$$\overline{M}_{\geq 0} = \left\{ x^{m_1} y^{m_2} z^{m_3} \in \overline{M} \, \big| \, m_1, m_2, m_3 \geq 0 \right\}.$$

For a set $A \subset \mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$, let $\langle A \rangle$ denote the $\mathbb{C}[x, y, z]$ -submodule of $\mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$ generated by A.

Let σ_+ be the cone in $L_{\mathbb{R}} := L \otimes_{\mathbb{Z}} \mathbb{R}$ generated by e_1, e_2, e_3 , i.e.

 $\sigma_+ := \operatorname{Cone}(e_1, e_2, e_3).$

For the cone σ_+ and the lattice L, we define a corresponding affine toric variety

$$U_{\sigma_+} := \operatorname{Spec} \mathbb{C}[\sigma_+^{\vee} \cap M].$$

Note that U_{σ_+} is the quotient variety $X = \mathbb{C}^3/G = \operatorname{Spec} \mathbb{C}[x, y, z]^G$ as M is the *G*-invariant Laurent monomials.

4. Generalized G-graphs

Definition 4.1. A *(generalized) G*-graph Γ is a subset of Laurent monomials in $\mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$ satisfying:

- (i) $\mathbf{1} \in \Gamma$.
- (ii) wt: $\Gamma \to G^{\vee}$ is bijective, i.e. for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ whose weight is ρ .
- (iii) if $\mathbf{m} \cdot \mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{m}, \mathbf{n} \in \overline{M}_{\geq 0}$, then $\mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$.
- (iv) Γ is *connected* in the sense that for any element \mathbf{m}_{ρ} , there is a (fractional) path from \mathbf{m}_{ρ} to **1** whose steps consist of multiplying or dividing by one of x, y, z in Γ .

For any Laurent monomial $\mathbf{m} \in \overline{M}$, let $\operatorname{wt}_{\Gamma}(\mathbf{m})$ denote the unique element \mathbf{m}_{ρ} in Γ whose weight is $\operatorname{wt}(\mathbf{m})$.

Remark 4.2. Nakamura *G*-graphs Γ in [18] are *G*-graphs in this sense because if a monomial $\mathbf{m} \cdot \mathbf{n}$ is in Γ for two monomials $\mathbf{m}, \mathbf{n} \in \overline{M}_{\geq 0}$, then \mathbf{m} is in Γ . The main difference between Nakamura's definition and ours is that we allow elements to be Laurent monomials, not just genuine monomials.

Example 4.3. Let G be the group of type $\frac{1}{7}(1,3,4)$. Then

$$\Gamma_{1} = \left\{ 1, y, y^{2}, z, \frac{z}{y}, \frac{z^{2}}{y}, \frac{z^{2}}{y^{2}} \right\},\$$
$$\Gamma_{2} = \left\{ 1, z, y, y^{2}, \frac{y^{2}}{z}, \frac{y^{3}}{z}, \frac{y^{3}}{z^{2}} \right\}$$

are G-graphs. In Γ_1 , $\operatorname{wt}_{\Gamma_1}(x) = \frac{z}{y}$ and $\operatorname{wt}_{\Gamma_1}(y^3) = \frac{z^2}{y^2}$.

As is defined in [18], for a generalized *G*-graph $\Gamma = \{\mathbf{m}_{\rho}\}$, define $S(\Gamma)$ to be the subsemigroup of *M* generated by $\frac{\mathbf{m} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})}$ for all $\mathbf{m} \in \overline{M}_{\geq 0}, \, \mathbf{m}_{\rho} \in \Gamma$. Define a cone $\sigma(\Gamma)$ in $L_{\mathbb{R}} = \mathbb{R}^{3}$ as follows: $\sigma(\Gamma) = S(\Gamma)^{\vee}$ $= \left\{ \mathbf{u} \in L_{\mathbb{R}} \, \middle| \, \left\langle \mathbf{u}, \frac{\mathbf{m} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})} \right\rangle \geq 0 \quad \forall \mathbf{m}_{\rho} \in \Gamma, \, \mathbf{m} \in \overline{M}_{\geq 0} \right\}.$

Observe that:

12

(i) $\sigma(\Gamma) \subset \sigma_+,$ (ii) $\left(\overline{M}_{\geq 0} \cap M\right) \subset S(\Gamma),$ (iii) $S(\Gamma) \subset \left(\sigma(\Gamma)^{\vee} \cap M\right).$

Define two affine toric open sets:

$$U(\Gamma) := \operatorname{Spec} \mathbb{C}[S(\Gamma)],$$
$$U^{\nu}(\Gamma) := \operatorname{Spec} \mathbb{C}[\sigma^{\vee}(\Gamma) \cap M].$$

One can see that $U^{\nu}(\Gamma)$ is the normalization of $U(\Gamma)$ and that the torus $\operatorname{Spec} \mathbb{C}[M]$ of $U(\Gamma)$ is isomorphic to $(\mathbb{C}^{\times})^3/G$.

Craw, Maclagan and Thomas [5] showed that there exists a torus invariant G-cluster which does not lie over the birational component Y_{θ} . The following definition is implicit in [5].

Definition 4.4. A generalized G-graph Γ is called a G-iraffe if the open set $U(\Gamma)$ has a torus fixed point.

Remark 4.5. As is standard in toric geometry, note that $U(\Gamma)$ has a torus fixed point if and only if $S(\Gamma) \cap (S(\Gamma))^{-1} = \{\mathbf{1}\}$. The open set $U(\Gamma)$ does not need to have a torus fixed point. In other words, the cone $\sigma(\Gamma)$ is not necessarily a 3-dimensional cone. For counterexamples, see Appendix A.

Example 4.6. For the *G*-graphs in Example 4.3,

$$\sigma(\Gamma_1) = \left\{ \mathbf{u} \in \mathbb{R}^3 \left| \langle \mathbf{u}, \mathbf{m} \rangle \ge 0, \text{ for all } \mathbf{m} \in \left\{ \frac{y^5}{z^2}, \frac{z^3}{y^4}, \frac{xy}{z} \right\} \right\},\$$

= Cone $\left((1, 0, 0), \frac{1}{7} (3, 2, 5), \frac{1}{7} (1, 3, 4) \right), \text{ and}$
$$\sigma(\Gamma_2) = \left\{ \mathbf{u} \in \mathbb{R}^3 \left| \langle \mathbf{u}, \mathbf{m} \rangle \ge 0, \text{ for all } \mathbf{m} \in \left\{ \frac{y^4}{z^3}, \frac{z^4}{y^3}, \frac{xz^2}{y^3} \right\} \right\},\$$

= Cone $\left((1, 0, 0), \frac{1}{7} (1, 3, 4), \frac{1}{7} (6, 4, 3) \right).$

In both cases, they are *G*-iraffes. One can see that $S(\Gamma_1) = \sigma(\Gamma_1)^{\vee} \cap M$ and $S(\Gamma_2) = \sigma(\Gamma_2)^{\vee} \cap M$.

Lemma 4.7. Let Γ be a G-graph. Define

$$B(\Gamma) := \left\{ \mathbf{f} \cdot \mathbf{m}_{\rho} \, \big| \, \mathbf{m}_{\rho} \in \Gamma, \, \, \mathbf{f} \in \{x, y, z\} \right\} \backslash \Gamma.$$

Then the semigroup $S(\Gamma)$ is generated as a semigroup by $\frac{\mathbf{b}}{\mathrm{wt}_{\Gamma}(\mathbf{b})}$ for all $\mathbf{b} \in B(\Gamma)$. In particular, $S(\Gamma)$ is finitely generated as a semigroup.

Proof. Let S be the subsemigroup of M generated by $\frac{\mathbf{b}}{\mathrm{wt}_{\Gamma}(\mathbf{b})}$ for all $\mathbf{b} \in B(\Gamma)$ as a semigroup. Clearly, $S \subset S(\Gamma)$. For the inverse inclusion, it is enough to show that the generators of $S(\Gamma)$ are in S.

An arbitrary generator of $S(\Gamma)$ is of the form $\frac{\mathbf{m}\cdot\mathbf{m}_{\rho}}{\mathrm{wt}_{\Gamma}(\mathbf{m}\cdot\mathbf{m}_{\rho})}$ for some $\mathbf{m} \in \overline{M}_{\geq 0}, \mathbf{m}_{\rho} \in \Gamma$. We may assume that $\mathbf{m} \cdot \mathbf{m}_{\rho} \notin \Gamma$. In particular, $\mathbf{m} \neq \mathbf{1}$. Since \mathbf{m} has positive degree, there exists $\mathbf{f} \in \{x, y, z\}$ such that \mathbf{f} divides \mathbf{m} , i.e. $\frac{\mathbf{m}}{\mathbf{f}} \in \overline{M}_{\geq 0}$ and $\deg(\frac{\mathbf{m}}{\mathbf{f}}) < \deg(\mathbf{m})$. Let $\mathbf{m}_{\rho'}$ denote $\mathrm{wt}_{\Gamma}(\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho})$. Note that

$$\operatorname{wt}_{\Gamma}(\mathbf{f} \cdot \mathbf{m}_{\rho'}) = \operatorname{wt}_{\Gamma}(\mathbf{f} \cdot \frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho}) = \operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho}).$$

Thus

$$\frac{\mathbf{m} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})} = \frac{\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho})} \cdot \frac{\mathbf{f} \cdot \operatorname{wt}_{\Gamma}(\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho})}{\operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})} = \frac{\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\frac{\mathbf{m}}{\mathbf{f}} \cdot \mathbf{m}_{\rho})} \cdot \frac{\mathbf{f} \cdot \mathbf{m}_{\rho'}}{\operatorname{wt}_{\Gamma}(\mathbf{f} \cdot \mathbf{m}_{\rho'})}.$$

By induction on the degree of monomial \mathbf{m} , the assertion is proved. \Box

5. G-graphs and local charts

Let Γ be a *G*-graph. Define

$$C(\Gamma) := \langle \Gamma \rangle / \langle B(\Gamma) \rangle,$$

then it can be seen that $C(\Gamma)$ is a torus invariant *G*-constellation. Note that $C(\Gamma)$ can be realised as follows: $C(\Gamma)$ is the \mathbb{C} -vector space with a basis Γ whose *G*-action is induced by the *G*-action on $\mathbb{C}[x, y, z]$ and whose $\mathbb{C}[x, y, z]$ -action is given by

$$\mathbf{m} * \mathbf{m}_{\rho} = \begin{cases} \mathbf{m} \cdot \mathbf{m}_{\rho} & \text{if } \mathbf{m} \cdot \mathbf{m}_{\rho} \in \Gamma, \\ 0 & \text{if } \mathbf{m} \cdot \mathbf{m}_{\rho} \notin \Gamma, \end{cases}$$

for a monomial $\mathbf{m} \in \overline{M}_{>0}$ and $\mathbf{m}_{\rho} \in \Gamma$.

Any submodule \mathcal{G} of $C(\Gamma)$ is determined by a subset $A \subset \Gamma$, which forms a \mathbb{C} -basis of \mathcal{G} . We give a combinatorial description of submodules of $C(\Gamma)$.

Lemma 5.1. Let A be a subset of Γ . The following are equivalent.

- (i) The set A forms a \mathbb{C} -basis of a submodule of $C(\Gamma)$.
- (ii) If $\mathbf{m}_{\rho} \in A$ and $\mathbf{f} \in \{x, y, z\}$, then $\mathbf{f} \cdot \mathbf{m}_{\rho} \in \Gamma$ implies $\mathbf{f} \cdot \mathbf{m}_{\rho} \in A$.

Example 5.2. From Example 4.3, recall the *G*-graph

$$\Gamma = \{1, y, y^2, z, \frac{z}{y}, \frac{z^2}{y}, \frac{z^2}{y^2}\},\$$

where G is of type $\frac{1}{7}(1,3,4)$. For the element $y + y^2 + \frac{z}{y}$ in $C(\Gamma)$,

$$y * (y + y^2 + \frac{z}{y}) = y^2 + 0 + z = y^2 + z \in C(\Gamma).$$

Let \mathcal{G} be the submodule of $C(\Gamma)$ generated by a basis e_1 of $\mathbb{C}\rho_1$. Then one can see that the set $A = \{z, \frac{z}{y}, \frac{z^2}{y}\}$ satisfies the condition (ii) in the lemma above. Indeed, A is a \mathbb{C} -basis of \mathcal{G} .

Let p be a point in $U(\Gamma)$. Then there exists the evaluation map

 $\operatorname{ev}_p \colon S(\Gamma) \to (\mathbb{C}, \times),$

which is a semigroup homomorphism.

To assign a G-constellation $C(\Gamma)_p$ to the point p of $U(\Gamma)$, firstly consider the \mathbb{C} -vector space with basis Γ whose G-action is induced by the G-action on $\mathbb{C}[x, y, z]$. Endow it with the following $\mathbb{C}[x, y, z]$ -action,

(5.3)
$$\mathbf{m} * \mathbf{m}_{\rho} := \operatorname{ev}_{\rho} \left(\frac{\mathbf{m} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho})} \right) \operatorname{wt}_{\Gamma}(\mathbf{m} \cdot \mathbf{m}_{\rho}),$$

for a monomial $\mathbf{m} \in \overline{M}_{\geq 0}$ and an element \mathbf{m}_{ρ} in Γ .

Lemma 5.4. With the notation as above, we have the following:

- (i) $C(\Gamma)_p$ is a G-constellation for any $p \in U(\Gamma)$.
- (ii) For any p, Γ is a \mathbb{C} -basis of $C(\Gamma)_p$.
- (iii) $C(\Gamma)_p \not\cong C(\Gamma)_q$, if p and q are different points in $U(\Gamma)$.
- (iv) Let $Z \subset \mathbf{T} = (\mathbb{C}^{\times})^3$ be a free *G*-orbit and *p* the corresponding point in the torus $\operatorname{Spec} \mathbb{C}[M]$ of $U(\Gamma)$. Then $C(\Gamma)_p \cong \mathcal{O}_Z$ as *G*-constellations.
- (v) If Γ is a *G*-iraffe and *p* is the torus fixed point of $U(\Gamma)$, then $C(\Gamma)_p \cong C(\Gamma)$.

Proof. From the definition of $C(\Gamma)_p$, The assertions (i), (ii) and (v) follow immediately. The assertion (iii) follows from the fact [3] that points on the affine toric variety $U(\Gamma)$ are in 1-to-1 correspondence with semigroup homomorphisms from $S(\Gamma)$ to \mathbb{C} .

It remains to show (iv). Let $Z \subset \mathbf{T} = (\mathbb{C}^{\times})^3$ be a free *G*-orbit and *p* the corresponding point in Spec $\mathbb{C}[M] \subset U(\Gamma)$. Define a *G*-equivariant $\mathbb{C}[x, y, z]$ -module homomorphism

$$\mathbb{C}[x, y, z] \to C(\Gamma)_p,$$
 given by $f \mapsto f * \mathbf{1}$.

One can check the morphism is surjective and whose kernel is equal to the ideal of Z. This proves (iv).

This is a family of McKay quiver representations in the following sense of [12].

Definition 5.5. A family of representations of a quiver Q with relations over a scheme B is a representation of Q with relations in the category of locally free sheaves over B.

Definition 5.6. A *G*-graph is said to be θ -stable if the *G*-constellation $C(\Gamma)$ is θ -stable.

Proposition 5.7. Let Γ be a *G*-iraffe, that is, $U(\Gamma)$ has a torus fixed point. Let Y_{θ} be the birational component in \mathcal{M}_{θ} . For a generic θ , assume that $C(\Gamma)$ is θ -stable. Then $C(\Gamma)_p$ is θ -stable for any $p \in U(\Gamma)$. Thus there exists an open immersion

$$U(\Gamma) = \operatorname{Spec} \mathbb{C}[S(\Gamma)] \longrightarrow Y_{\theta} \subset \mathcal{M}_{\theta}.$$

Proof. Let us assume that the *G*-constellation $C(\Gamma)$ is θ -stable. Let *p* be an arbitrary point in $U(\Gamma)$ and \mathcal{G} a submodule of $C(\Gamma)_p$. By the definition of $C(\Gamma)_p$, it is clear that \mathcal{G} is a submodule of $C(\Gamma)$. Since $C(\Gamma)$ is θ -stable, $\theta(\mathcal{G}) > 0$, and thus $C(\Gamma)_p$ is θ -stable.

Now we introduce deformation theory of the *G*-constellation in \mathcal{M}_{θ} . Deforming $C(\Gamma)$ involves 3r parameters $\{x_{\rho}, y_{\rho}, z_{\rho} \mid \rho \in G^{\vee}\}$

$$\begin{cases} x * \mathbf{m}_{\rho} = x_{\rho} \operatorname{wt}_{\Gamma} (x \cdot \mathbf{m}_{\rho}), \\ y * \mathbf{m}_{\rho} = y_{\rho} \operatorname{wt}_{\Gamma} (y \cdot \mathbf{m}_{\rho}), \\ z * \mathbf{m}_{\rho} = z_{\rho} \operatorname{wt}_{\Gamma} (z \cdot \mathbf{m}_{\rho}), \end{cases}$$

such that the following quadrics vanish:

(5.8)
$$\begin{cases} x_{\rho} y_{\mathrm{wt}(x \cdot \mathbf{m}_{\rho})} - y_{\rho} x_{\mathrm{wt}(y \cdot \mathbf{m}_{\rho})}, \\ x_{\rho} z_{\mathrm{wt}(x \cdot \mathbf{m}_{\rho})} - z_{\rho} x_{\mathrm{wt}(z \cdot \mathbf{m}_{\rho})}, \\ y_{\rho} z_{\mathrm{wt}(y \cdot \mathbf{m}_{\rho})} - z_{\rho} y_{\mathrm{wt}(y \cdot \mathbf{m}_{\rho})}. \end{cases}$$

Since Γ is a \mathbb{C} -basis, for $\mathbf{f} \in \{x, y, z\}$, $\mathbf{f}_{\rho} = 1$ if $\operatorname{wt}_{\Gamma}(\mathbf{f} \cdot \mathbf{m}_{\rho}) = \mathbf{f} \cdot \mathbf{m}_{\rho}$. Define a subset of the 3r parameters

$$\Lambda(\Gamma) := \left\{ \mathbf{f}_{\rho} \, \big| \, \mathrm{wt}_{\Gamma}(\mathbf{f} \cdot \mathbf{m}_{\rho}) = \mathbf{f} \cdot \mathbf{m}_{\rho}, \, \, \mathbf{f}_{\rho} \in \left\{ x_{\rho}, y_{\rho}, z_{\rho} \right\} \right\}$$

Define an affine scheme $D(\Gamma)$ whose coordinate ring is

$$\mathbb{C}\left[x_{\rho}, y_{\rho}, z_{\rho} \,\middle|\, \rho \in G^{\vee}\right] \big/ I_{\Gamma}$$

where $I_{\Gamma} = \langle$ the quadrics in (5.8), $\mathbf{f} - 1 | \mathbf{f} \in \Lambda(\Gamma) \rangle$.

By King's GIT [12], the affine scheme $D(\Gamma)$ is an open set of \mathcal{M}_{θ} which contains the point corresponding to $C(\Gamma)$. More precisely, for a θ -stable *G*-graph Γ , we have an affine open set \widetilde{U}_{Γ} in the McKay quiver representation space Rep *G*, which is defined by \mathbf{f}_{ρ} to be nonzero for all $\mathbf{f}_{\rho} \in \Lambda(\Gamma)$. Note that \widetilde{U}_{Γ} is $\operatorname{GL}(\delta)$ -invariant and that any point in \widetilde{U}_{Γ} is θ -stable. Since the quotient map $\operatorname{Rep}^{s} G \to \mathcal{M}_{\theta}$ is a geometric quotient, by GIT (see Remark 1.5), it follows that

$$\widetilde{U_{\Gamma}} /\!\!/ \operatorname{GL}(\delta) = \operatorname{Spec} \mathbb{C}[\widetilde{U_{\Gamma}}]^{\operatorname{GL}(\delta)}$$

is an open set in \mathcal{M}_{θ} . On the other hand, after changing basis, we can set $\mathbf{f}_{\rho} \in \Lambda(\Gamma)$ to be 1 for all $\mathbf{f}_{\rho} \in \Lambda(\Gamma)$. One can see that this gives a slice² so that $D(\Gamma)$ is isomorphic to $\operatorname{Spec} \mathbb{C}[\widetilde{U}_{\Gamma}]^{\operatorname{GL}(\delta)}$.

²First, see that $\mathbb{C}[\widetilde{U_{\Gamma}}] = \operatorname{Rep} G[\Lambda(\Gamma)^{-1}]$. Note that $\operatorname{GL}(\delta)$ -invariants in $\mathbb{C}[\widetilde{U_{\Gamma}}]$ are generated by cycles with inverting the arrows in $\Lambda(\Gamma)$. Assume that a is the linear map corresponding to an arrow from ρ to ρ' . For ρ, ρ' , there exists an undirected path \mathbf{p}_a in $\Lambda(\Gamma) \cap \Lambda(\Gamma)^{-1}$ from ρ to ρ' , that is unique up to the commutation relations. This means that $a\mathbf{p}_a^{-1}$ is $\operatorname{GL}(\delta)$ -invariants. From this, one can show that there exists an algebra isomorphism between $\mathbb{C}[D(\Gamma)]$ to $\mathbb{C}[\widetilde{U_{\Gamma}}]^{\operatorname{GL}(\delta)}$ defined by $a \mapsto a\mathbf{p}_a^{-1}$.

Note that there is a \mathbb{C} -algebra epimorphism from $\mathbb{C}[D(\Gamma)]$ to $\mathbb{C}[S(\Gamma)]$ defined by

$$\mathbf{f}_{\rho} \mapsto \frac{\mathbf{f} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{f} \cdot \mathbf{m}_{\rho})},$$

for $\mathbf{f}_{\rho} \in \{x_{\rho}, y_{\rho}, z_{\rho}\}$. It follows that $U(\Gamma)$ is a closed subscheme of $D(\Gamma)$.

As Craw, Maclagan, and Thomas [4] proved that the birational component Y_{θ} is a unique irreducible component of \mathcal{M}_{θ} containing torus T which is isomorphic to $(\mathbb{C}^{\times})^3/G$ as an algebraic group, $Y_{\theta} \cap D(\Gamma)$ is a unique irreducible component of $D(\Gamma)$ which contains the torus T. Note that $Y_{\theta} \cap D(\Gamma)$ is reduced by Remark 2.14.

We now prove that the morphism $U(\Gamma) \to D(\Gamma) \subset \mathcal{M}_{\theta}$ induces an isomorphism from the torus $\operatorname{Spec} \mathbb{C}[M]$ onto the torus T of Y_{θ} . In other words, $U(\Gamma)$ contains the torus T of Y_{θ} . Let ψ denote the restriction of the morphism to $\operatorname{Spec} \mathbb{C}[M]$. First note that T represents G-constellations whose support is in $\mathbf{T} = (\mathbb{C}^{\times})^3$. Let p be a point in the torus $\operatorname{Spec} \mathbb{C}[M] \subset U(\Gamma)$ with the corresponding free G-orbit Z. By Lemma 5.4, the G-constellation $C(\Gamma)_p$ over p is isomorphic to \mathcal{O}_Z . Thus ψ maps $\operatorname{Spec} \mathbb{C}[M]$ into T. On the other hand, Lemma 2.12 shows that any G-constellation whose support is a free G-orbit Z in \mathbf{T} is isomorphic to \mathcal{O}_Z . From this, it follows that ψ is a bijective morphism between the two tori. As ψ is a group homomorphism by the construction of $C(\Gamma)_p, \psi$ is an isomorphism between $\operatorname{Spec} \mathbb{C}[M]$ and T.

Remember that $U(\Gamma)$ is reduced and irreducible as it is defined by an affine semigroup algebra $\mathbb{C}[S(\Gamma)]$. Note that $U(\Gamma)$ is in the component $Y_{\theta} \cap D(\Gamma)$ because $U(\Gamma)$ is a closed subset of $D(\Gamma)$ containing T. Since both are of the same dimension, $U(\Gamma)$ is equal to $Y_{\theta} \cap D(\Gamma)$. Thus there exists an open immersion from $U(\Gamma)$ to Y_{θ} .

6. G-iraffes and torus fixed points in Y_{θ}

In this section, we present a 1-to-1 correspondence between the set of torus fixed points in Y_{θ} and the set of θ -stable *G*-iraffes.

For a genuine monomial $\mathbf{m} \in M_{\geq 0}$, let $\mathbf{m}_{(\rho)}$ denote the path induced by \mathbf{m} in the McKay quiver from the vertex ρ . In other words, $\mathbf{m}_{(\rho)}$ is the linear map induced by the action of the monomial \mathbf{m} on the vector space $\mathbb{C}\rho$.

An undirected path in the McKay quiver is a path in the underlying graph of the McKay quiver. For a G-constellation \mathcal{F} , an undirected path in the McKay quiver is said to be *defined* if the linear maps corresponding to the opposite-directed arrows in the path are nonzero in \mathcal{F} .

Definition 6.1. A defined undirected path in the McKay quiver is of type **m** for a Laurent monomial $\mathbf{m} \in \overline{M}$ where **m** is the Laurent monomial obtained by forgetting outgoing vertices.

Example 6.2. Let G be the group of type $\frac{1}{7}(1,3,4)$. Consider the G-graph

$$\Gamma = \{1, y, y^2, z, \frac{z}{y}, \frac{z^2}{y}, \frac{z^2}{y^2}\}.$$

The torus invariant G-constellation $C(\Gamma)$ has the following configurations:

where the marked arrows are nonzero and the others are all zero. The path from 1 to y^2 is induced by y^2 at ρ_0 , whose type is y^2 . The undirected path from ρ_2 to ρ_4 is a defined undirected path of type $\frac{y^2}{z}$ because the path consists of nonzero linear maps:

$$\rho_2 \xrightarrow{y} \rho_5 \xleftarrow{z} \rho_1 \xrightarrow{y} \rho_4.$$

However, the following undirected path of the same type $\frac{y^2}{z}$ from ρ_2 to ρ_4

$$\rho_2 \xrightarrow{y} \rho_5 \xrightarrow{y} \rho_1 \xleftarrow{z} \rho_4$$

is not defined because the third arrow is zero in $C(\Gamma)$.

Remark 6.3. Let **p** be a nonzero path induced by a genuine monomial $\mathbf{m} \in \overline{M}_{\geq 0}$ from ρ_i . If **q** is a path induced by a genuine monomial $\mathbf{n} \in \overline{M}_{\geq 0}$ from ρ_i with the condition that **n** divides **m**, then the path **q** is nonzero.

Lemma 6.4. Let \mathcal{F} be a torus invariant *G*-constellation. Then there are no defined (undirected) cycles of type \mathbf{m} with $\mathbf{m} \neq \mathbf{1}$.

Proof. For a contradiction, suppose that there is a defined cycle of type $\mathbf{m} \neq \mathbf{1}$. Then \mathbf{m} is a *G*-invariant Laurent monomial.

We may assume that the cycle is a cycle around ρ_0 of type $\mathbf{m} = x^{m_1}y^{m_2}z^{m_3}$. A point $(t_1, t_2, t_3) \in \mathbf{T} = (\mathbb{C}^{\times})^3$ acts on the cycle by a scalar multiplication of $t_1^{m_1}t_2^{m_2}t_3^{m_3}$. Since $\mathbf{m} \neq \mathbf{1}$, there exists $t \in \mathbf{T}$ such that $t_1^{m_1}t_2^{m_2}t_3^{m_3} \neq 1$, i.e. $t^*(\mathcal{F})$ is not isomorphic to \mathcal{F} . Therefore \mathcal{F} is not torus invariant.

In Section 5, we proved that if Γ is a θ -stable *G*-iraffe, then $C(\Gamma)$ is a torus invariant *G*-constellation over Y_{θ} and the corresponding point is fixed by its algebraic torus. Clearly, two different *G*-iraffes Γ , Γ' give non-isomorphic *G*-constellations $C(\Gamma)$, $C(\Gamma')$. Moreover, we now prove

18

that for any torus fixed point $p \in Y_{\theta}$, the corresponding *G*-constellation is isomorphic to $C(\Gamma)$ for some *G*-iraffe Γ .

Let p be a torus fixed point in Y_{θ} . There exists a one parameter subgroup

$$\lambda^u \colon \mathbb{C}^{\times} \longrightarrow T \subset Y_{\theta}$$

with $\lim_{t\to 0} \lambda^u(t) = p$. Since Y_θ is the fine moduli space of θ -stable G-constellations, we have a family \mathcal{U} of θ -stable G-constellations over $\mathbb{A}^1_{\mathbb{C}}$ with the following property: for nonzero $s \in \mathbb{A}^1_{\mathbb{C}}$ and the point $q := \lambda^u(s)$, the G-constellation \mathcal{U}_s over s is isomorphic to \mathcal{O}_Z where Z is the free G-orbit in \mathbf{T} corresponding to the point q. In particular, the support of the G-constellation \mathcal{U}_s is in the torus $\mathbf{T} = (\mathbb{C}^{\times})^3 \subset \mathbb{C}^3$.

Let \mathcal{F} be the θ -stable *G*-constellation over $0 \in \mathbb{A}^1$. Let us define a subset Γ of Laurent monomials to be

$$\Gamma = \left\{ \mathbf{m} \in \overline{M} \mid \begin{array}{l} \exists \text{ a defined nonzero undirected} \\ \text{path in } \mathcal{F} \text{ of type } \mathbf{m} \text{ from } \rho_0 \end{array} \right\}$$

Firstly, we prove that Γ is a *G*-graph. Clearly, Γ contains **1**. Since θ is generic and \mathcal{F} is θ -stable, there exists a nonzero undirected defined path from ρ_0 to ρ so there is a Laurent monomial \mathbf{m}_{ρ} in Γ for each $\rho \in G^{\vee}$. The Laurent monomial \mathbf{m}_{ρ} is unique: suppose there exists a defined path of type \mathbf{n}_{ρ} from ρ_0 to ρ , and then there exists a defined cycle of type $\frac{\mathbf{m}_{\rho}}{\mathbf{n}_{\rho}}$ at ρ_0 , which implies $\mathbf{n}_{\rho} = \mathbf{m}_{\rho}$ by Lemma 6.4. It remains to show the condition (c) of Definition 4.1. We need the following lemma:

Lemma 6.5. With the notation as above, let \mathbf{p} and \mathbf{q} be two defined (undirected) paths of the same type \mathbf{m} from ρ to ρ' for some Laurent monomial $\mathbf{m} \in \overline{M}$. Then, in \mathcal{F} ,

$$\mathbf{p} \ast e_{\rho} = \mathbf{q} \ast e_{\rho}$$

where e_{ρ} is a basis of $\mathbb{C}\rho$.

Proof. Firstly, note that if **m** is a genuine monomial, then the assertion follows from the $\mathbb{C}[x, y, z]$ -module structure.

Let **m** be a Laurent monomial. There exists a genuine monomial $\mathbf{n} \in \overline{M}_{\geq 0}$ so that $\mathbf{n} \cdot \mathbf{m}$ is a genuine monomial with **n** nonzero on $\lambda^u(\mathbb{C}^{\times})$. Since two paths $\mathbf{p} * e_{\rho}$ and $\mathbf{q} * e_{\rho}$ are of type $\mathbf{m} \cdot \mathbf{n}$, we have

(6.6)
$$\mathbf{n}_{(\rho')} * \mathbf{p} * e_{\rho} = \mathbf{n}_{(\rho')} * \mathbf{q} * e_{\rho}.$$

Since (6.6) implies $\mathbf{p} * e_{\rho} = \mathbf{q} * e_{\rho}$ in the *G*-constellation \mathcal{U}_s for nonzero $s \in \mathbb{A}^1$, the assertion is proved by flatness of the family \mathcal{U} .

To show that Γ satisfies the condition (c) of Definition 4.1, suppose that $\mathbf{m} \cdot \mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{m}, \mathbf{n} \in \overline{M}_{\geq 0}$. We need to show that $\mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$. By the definition of Γ , there exist nonzero (undirected) paths \mathbf{p} of type $\mathbf{m} \cdot \mathbf{n} \cdot \mathbf{m}_{\rho}$ and \mathbf{q} of type \mathbf{m}_{ρ} . By Lemma 6.5, it follows that the defined undirected path $\mathbf{m}_{(\rho'')} * \mathbf{n}_{(\rho')} * \mathbf{q}$ is nonzero as it is of the same type as bp. This implies that the defined undirected path $\mathbf{n}_{(\rho')} * \mathbf{q}$ is nonzero. Thus $\mathbf{n} \cdot \mathbf{m}_{\rho} \in \Gamma$.

Proposition 6.7. Let $G \subset GL_3(\mathbb{C})$ be the finite cyclic group of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$. For a generic parameter θ , there is a 1-to-1 correspondence between the set of torus fixed points in the birational component Y_{θ} and the set of θ -stable *G*-iraffes.

Proof. From the argument above, we have shown that there exists a G-graph Γ for each torus fixed point p. Using Lemma 6.5, one can easily show that $C(\Gamma)$ is actually isomorphic to \mathcal{F} as a G-constellation. In particular, $C(\Gamma)$ lies over $p \in Y_{\theta}$, and hence $U(\Gamma)$ contains the torus fixed point p. Thus Γ is a G-iraffe.

Let Γ be a θ -stable *G*-iraffe. By Proposition 5.7 and Lemma 5.4, we can see that $C(\Gamma)$ lies over Y_{θ} for a *G*-graph Γ if Γ is a *G*-iraffe. Thus we have a torus fixed point *p* representing the isomorphism class of $C(\Gamma)$.

Corollary 6.8. Let Γ be a *G*-graph. Then $C(\Gamma)$ lies over the birational component Y_{θ} if and only if Γ is a *G*-iraffe.

Theorem 6.9. Let $G \subset GL_3(\mathbb{C})$ be a finite diagonal group and θ a generic GIT parameter for G-constellations. Assume that \mathfrak{G} is the set of all θ -stable G-iraffes.

- (i) The birational component Y_{θ} of \mathcal{M}_{θ} is isomorphic to the notnecessarily-normal toric variety $\bigcup_{\Gamma \in \mathfrak{G}} U(\Gamma)$.
- (ii) The normalization of Y_{θ} is isomorphic to the normal toric variety whose toric fan consists of the full dimensional cones $\sigma(\Gamma)$ for $\Gamma \in \mathfrak{G}$ and their faces.

Proof. Let $G \subset GL_3(\mathbb{C})$ be the finite subgroup of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$. Consider the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r}(\alpha_1, \alpha_2, \alpha_3).$$

Let Y_{θ} be the birational component of the moduli space of θ -stable G-constellations and Y_{θ}^{ν} the normalization of Y_{θ} . Let Y denote the not-necessarily-normal toric variety $\bigcup_{\Gamma \in \mathfrak{G}} U(\Gamma)$. Define the fan Σ in $L_{\mathbb{R}}$ whose full dimensional cones are $\sigma(\Gamma)$ for $\Gamma \in \mathfrak{G}$. One can see that the corresponding toric variety $Y^{\nu} := X_{\Sigma}$ is the normalization of Y.

Since Y^{ν}_{θ} is a normal toric variety, it is covered by toric affine open sets U_i with the torus fixed point p_i in U_i . Let q_i be the image of p_i under the normalization. As each q_i is a torus fixed point, it follows from Proposition 6.7 that there is a (unique) *G*-iraffe $\Gamma_i \in \mathfrak{G}$ with $C(\Gamma_i)$ isomorphic to the *G*-constellation represented by q_i .

By Proposition 5.7, for each G-iraffe $\Gamma \in \mathfrak{G}$, there is an open immersion of $U(\Gamma)$ into Y_{θ} . Thus we have an open immersion $\psi \colon Y \to Y_{\theta}$ and the image $\psi(Y)$ contains all torus fixed points of Y_{θ} .

The induced morphism $\psi^{\nu}: Y^{\nu} \to Y^{\nu}_{\theta}$ is an open embedding. Note that the numbers of full dimensional cones are the same. Thus ψ^{ν} should be an isomorphism. This proves (ii).

To show (i), suppose that $Y_{\theta} \setminus \psi(Y)$ is nonempty so it contains a torus orbit O of dimension $d \geq 1$. Since the normalization morphism is torus equivariant and surjective, there exists a torus orbit O' in $Y_{\theta}^{\nu} = Y^{\nu}$ of dimension d which is mapped to the torus orbit O. At the same time, from the fact that Y^{ν} is the normalization of Y and that the normalization morphism is finite, it follows that the image of O' is a torus orbit of dimension d, so the image is O. Thus O is in $\psi(Y)$, which is a contradiction. \Box

Corollary 6.10. With notation as Theorem 6.9, Y_{θ} is a normal toric variety if and only if $S(\Gamma) = \sigma(\Gamma)^{\vee} \cap M$ for all $\Gamma \in \mathfrak{G}$.

7. Example

Let G be the finite group of type $\frac{1}{7}(1,3,4)$. Firstly, consider the following G-graphs:

$$\begin{aligned}
 \Gamma_{1} &:= \left\{ 1, z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6} \right\}, \\
 \Gamma_{2} &:= \left\{ 1, y, z, z^{2}, z^{3}, z^{4}, z^{5} \right\}, \\
 \Gamma_{3} &:= \left\{ 1, y, y^{2}, z, z^{2}, z^{3}, \frac{y^{2}}{z} \right\}, \\
 \Gamma_{4} &:= \left\{ 1, \frac{y^{3}}{z^{2}}, \frac{y^{2}}{z}, \frac{y^{3}}{z}, y, y^{2}, z \right\}, \\
 \Gamma_{5} &:= \left\{ 1, y, y^{2}, \frac{z}{y}, z, \frac{z^{2}}{y^{2}}, \frac{z^{2}}{y} \right\}, \\
 \Gamma_{6} &:= \left\{ 1, y, y^{2}, y^{3}, y^{4}, \frac{z}{y}, z \right\}, \\
 \Gamma_{7} &:= \left\{ 1, y, y^{2}, y^{3}, y^{4}, y^{5}, y^{6} \right\}, \\
 \Gamma_{8} &:= \left\{ 1, x, x^{2}, x^{3}, z, xz, x^{2}z \right\}, \\
 \Gamma_{9} &:= \left\{ 1, x, y, y^{2}, z, xz, \frac{y^{2}}{z} \right\}, \\
 \Gamma_{10} &:= \left\{ 1, x, y, y^{2}, z, xz, \frac{y^{2}}{z} \right\}, \\
 \Gamma_{11} &:= \left\{ 1, x, y, y^{2}, y^{3}, y^{4} \right\}, \\
 \Gamma_{12} &:= \left\{ 1, x, y, xy, y^{2}, y^{3}, y^{4} \right\}, \\
 \Gamma_{13} &:= \left\{ 1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6} \right\},
 \end{aligned}$$

Secondly, consider the cone \mathfrak{C} in Θ generated by the row vectors of the following matrix:

$$\begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

For each $0 \leq i \leq 7$, let v_i denote the lattice point $\frac{1}{7}(\overline{5i}, i, 7-i)$ where denotes the residue modulo 7. One can check that all *G*-iraffes in (7.1) are θ -stable for any $\theta \in \mathfrak{C}$ and that each Γ_i corresponds to the cone σ_i where:

$$\sigma_i := \begin{cases} \operatorname{Cone} \left(e_1, v_{8-i}, v_{7-i} \right) & \text{if } 1 \le i \le 7, \\ \operatorname{Cone} \left(v_3, v_{15-i}, v_{14-i} \right) & \text{if } 8 \le i \le 10, \\ \operatorname{Cone} \left(e_3, v_{14-i}, v_{13-i} \right) & \text{if } 11 \le i \le 12, \\ \operatorname{Cone} \left(e_2, e_3, v_3 \right) & \text{if } i = 13. \end{cases}$$

Moreover, by a direct calculation, it can be shown that

$$S(\Gamma_i) = \sigma_i^{\vee} \cap M.$$

Thus every affine piece $U(\Gamma)$ is normal and the fan corresponding to the birational component Y_{θ} is shown in Figure \bigstar .

Appendix A. Example: G-graphs which are not G-iraffes

In [18] Nakamura assumed that $U(\Gamma)$ has a torus fixed point for any Nakamura *G*-graph Γ , i.e. every *G*-graph in his sense is a G-iraffe. His assumption implies that every torus invariant *G*-cluster lies over the birational component of *G*-Hilb. However, Craw, Maclagan and Thomas [5] showed that there exists a torus invariant *G*-cluster which is not over the birational component.

Example A.1 (Craw, Maclagan and Thomas [5]). Let $G \subset GL_3(\mathbb{C})$ be the group of type $\frac{1}{14}(1,9,11)$. Note that G is isomorphic to $\frac{1}{7}(1,2,4) \times \frac{1}{2}(1,1,1)$. Consider the monomial ideal

$$I = \langle y^2 z, xz^2, xy^2, x^2 y, yz^2, x^2 z, x^4, y^4, z^4 \rangle$$

and the corresponding Nakamura G-graph

$$\Gamma = \{1, x, x^2, x^3, y, y^2, y^3, z, z^2, z^3, xy, xz, yz, xyz\}.$$

Craw, Maclagan and Thomas [5] showed that this ideal does not lie over the birational component using Gröbner basis techniques. We show this by proving the G-graph Γ is not a G-iraffe. One can calculate the semigroup $S(\Gamma)$ and notice that $S(\Gamma)$ is generated as a subsemigroup in M by $\frac{xy^2}{z^3}, \frac{yz^2}{x^3}, \frac{x^2z}{y^3}, \frac{y^2z}{x}$. Note that

$$\frac{xy^2}{z^3}\cdot \frac{yz^2}{x^3}\cdot \frac{x^2z}{y^3}=1$$

and hence $\frac{xy^2}{z^3} \in S(\Gamma) \cap (S(\Gamma))^{-1} \neq \{1\}$. Thus $U(\Gamma)$ does not have a torus fixed point. Indeed, the cone $\sigma(\Gamma)$ is the cone generated by $\frac{1}{14}(7,7,7)$ so it is not a full dimensional cone. Therefore the *G*-cluster $C(\Gamma) = \mathbb{C}[x, y, z]/I$ does not lie over the birational component.

Remark A.2. Craw, Maclagan, and Thomas [5] provided an equivalent condition using Gröbner basis for a monomial ideal to be over the birational component. In the terms of G-iraffes, the condition is equivalent for a Nakamura G-graph to be a G-iraffe.

Example A.3 (Reid). Let $G \subset SL_4(\mathbb{C})$ be the finite subgroup of type $\frac{1}{30}(1, 6, 10, 13)$ with coordinates x, y, z, t. Consider the monomial ideal

$$I = \left\langle \begin{matrix} x^6, x^3y, x^3t, x^2z, x^2t^2, xy^2, xyt, xzt, xt^3, \\ y^5, y^4z, y^3t, y^2zt, yz^2, yt^2, z^3, z^2t, zt^2, t^4 \end{matrix} \right\rangle$$

and the corresponding Nakamura G-graph

$$\Gamma = \left\{ \begin{aligned} 1, x, x^2, x^3, x^4, x^5, y, y^2, y^3, y^4, z, z^2, \\ t, t^2, t^3, xy, x^2y, xz, xz^2, xt, x^2t, xt^2, \\ yz, y^2z, y^3z, yt, y^2t, zt, xyz, yzt \end{aligned} \right\}.$$

Note that $\frac{y^2 zt}{x^5}, \frac{x^3 y}{t^3}, \frac{x^2 t^2}{y^3 z}$ are in the semigroup $S(\Gamma)$ and

$$\frac{y^2 z t}{x^5} \cdot \frac{x^3 y}{t^3} \cdot \frac{x^2 t^2}{y^3 z} = 1.$$

Thus $\frac{y^2zt}{x^5} \in S(\Gamma) \cap (S(\Gamma))^{-1} \neq \{\mathbf{1}\}$. Thus $U(\Gamma)$ does not have a torus fixed point. Therefore the *G*-cluster $C(\Gamma) = \mathbb{C}[x, y, z, t]/I$ does not lie over the birational component.

Remark A.4. Reid used the ideal in Example A.3 to provide a case where *G*-Hilb has a 5-dimensional component even if *G* is a subgroup of $GL_4(\mathbb{C})$.

References

- T. Bridgeland, A.King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.
- [2] A. Craw, A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259–307.
- [3] D. Cox, J. Little, H. Schenck, *Toric Varieties*, Graduate Studies in Mathematics, **124**. American Mathematical Society, Providence, RI, 2011.
- [4] A. Craw, D. Maclagan, R. R. Thomas, Moduli of McKay quiver representations I: The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179–198.
- [5] A. Craw, D. Maclagan, R. R. Thomas, Moduli of McKay quiver representations II: Gröbner basis techniques, J. Algebra 316 (2007), no. 2, 514–535
- [6] J.-M. Drézet, Luna's slice theorem and applications, Algebraic group actions and quotients, 39–89, Hindawi Publ. Corp., Cairo, 2004.
- [7] G. Gonzalez-Sprinberg, J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 409–449 (1984).
- [8] J. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised. Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978.
- [9] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves*, Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2010.
- [10] Y. Ito, H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000), no. 6, 1155–1191.
- [11] Y. Ito, I. Nakamura, *Hilbert schemes and simple singularities*, New trends in algebraic geometry (Warwick, 1996), 151–233, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999.
- [12] A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser.(2) 45 (1994), no. 180, 515–530.
- P. Kronheimer, The construction of ALE spaces as a hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683.
- [14] T. Logvinenko, Natural G-constellation families, Doc. Math. 13 (2008), 803– 823.
- [15] D. Luna, *Slices étales*, Sur les groupes algébriques, 81–105. Bull. Soc. Math. France, Paris, Mémoire **33** Soc. Math. France, Paris, 1973.
- [16] D. Mumford, J. Fogarty, F. Kirwan, *Geometric invariant theory*, Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), **34**. Springer-Verlag, Berlin, 1994.
- [17] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18. American Mathematical Society, Providence, RI, 1999.
- [18] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic. Geom. 10 (2001), no.4, 757–779.
- [19] M. Reid, La correspondence de McKay, Séminaire Bourbaki, Vol.1999/2000, Astérisque No. 276 (2002), 53–72.

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, CV4 7AL, ENGLAND E-MAIL: s-j.jung@warwick.ac.uk