
A NOTE ON ELEPHANTS AND GIT CHAMBERS

SEUNG-JO JUNG

Abstract. In this note, we investigate the GIT chambers for G-
constellations where G ⊂ GL3(C) is the group of type 1

r (b, 1, r−1).
We conjecture that there exists a “strong connection” between the
chamber structure and the Weyl chamber structure of Ar−1.

1. Elephants for the economic resolution

Let G ⊂ GL3(C) be the group of type 1
r
(b, 1, r − 1). Consider the

quotient variety X = C3/G.
Let D be the hyperplane section of X defined by x = 0, i.e. the Weil

divisor defined by x = 0. One can see that

KX +D ∼Q 0.

Thus D is an element1 of the anticanonical system |−KX |. Moreover,
D is isomorphic to the quotient C2 by the group of type 1

r
(1, r − 1) so

D has an Ar−1 singularity.
Consider the economic resolution ϕ : Y → X = C3/G. Let S be the

strict transform of D. Then one can show that S is an element of the
anticanonical system |−KY | and that we have the following diagram:

S �
� //

��

Y

��
D �
� // X,

where the vertical morphism S → D is the minimal resolution of D.
It is well known [1,6] that the minimal resolution of Ar−1 singularities

is isomorphic to the moduli space of θ-stable A-constellations for a
generic parameter θ where A ⊂ SL2(C) is the group of type 1

r
(1,−1).

Moreover, the chamber structure of the GIT stability parameter space
for A-constellations coincides with the Weyl chamber structure of type
Ar−1. We expect that the morphism Y → X might have a modular
description as moduli spaces of G-constellations.
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1Elements of the anticanonical system of a variety X are called elephants of X.
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2. Root system in Ar−1

We review well known facts on the Ar−1 root system. Let I := Irr(G)
be identified with Z/rZ. As is well known, the following three are in
1-to-1 correspondence:

(1) Sets of simple roots ∆.
(2) Open Weyl Chambers C.
(3) Elements of Sr :=

{
ω
∣∣ ω is a permutation of I

}
.

Let
{
εi
∣∣ i ∈ I} be an orthonormal basis of Qr, i.e. 〈εi, εj〉 = δij. Note

that the indices are in I = Z/rZ. Define

Φ :=
{
εi − εj

∣∣ i, j ∈ I, i 6= j
}
.

Let h∗ be the subspace of Qr generated by Φ. Elements in Φ are called
roots. For each nonzero i ∈ I, set αi = εi − εi−1. For any root α, one
can see that 〈α, α〉 = 2. Note that

〈αi, αj〉 =


2 if i = j,

−1 if |i− j| = 1,

0 otherwise.

This is the root system of Ar−1 and the Weyl group of this root system
is the group generated by simple reflections

si : α 7→ α− 〈α, αi〉
〈αi, αi〉

αi.

It is easy to see that

si(εk − εl) = εωi(k) − εωi(l),

where ωi is the (adjacent) transposition in Sr

ωi(j) =


i+ 1 if j = i,

i if j = i+ 1,

j otherwise.

Thus the Weyl group can be thought as the group of permutations of
I.

Here, we consider roots as dimension vectors:

(i) αi is the dimension vector of the vertex simple at the vertex
ρi;

(ii) the dimension vector of the vertex simple at the trivial repre-
sentation ρ0 is −

∑
i 6=0 αi.

The stability parameter space Θ can be identified with the dual space
of h∗. Let ω be a permutation of I. As is customary (see e.g. [4]),
define a set of simple roots and an open Weyl chamber associated to
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ω:

∆(ω) :=
{
εω(i) − εω(i−a) ∈ Φ

∣∣ i ∈ I, i 6= 0
}
,

C(ω) :=
{
θ ∈ (h∗)∗

∣∣ θ(εω(i) − εω(i−a)) > 0 ∀i ∈ I, i 6= 0
}
.

In particular, for the identity permutation of I, the corresponding sim-
ple roots ∆+ and Weyl chamber C+ are

∆+ =
{
εi − εi−a ∈ Φ

∣∣ i ∈ I, i 6= 0} = {αi
∣∣ i ∈ I, i 6= 0

}
,

C+ =
{
θ ∈ (h∗)∗

∣∣ θ(αi) > 0 ∀i ∈ I, i 6= 0
}
,

which is the cone Θ+ for G-Hilb.

A chamber in stability parameter space. For each i ∈ I, let ρi de-
note the irreducible representation of G of weight i. Note that each root
α can be considered as the support of a submodule of a G-constellation.
In other words, αi corresponds to the dimension vector of ρi. Thus in
general root α =

∑
i niαi is the dimension vector of the representation

⊕niρi. Abusing notation, let α =
∑

i niαi also denote the correspond-
ing representation ⊕niρi.

Let ∆ be a set of simple roots. Define a subset C of Θ associated to
∆ as

C := C(∆) :=
{
θ ∈ Θ

∣∣ θ(α) > 0 ∀α ∈ ∆
}
.

At this moment, C(∆) is not necessarily a chamber in Θ because C(∆)
may contain nongeneric elements.

3. Chamber structures and elephants

Let G ⊂ GL3(C) be the group of type 1
r
(b, 1,−1), with b coprime to

r, which is the same group as before but taking another primitive rth
root of unity. In this section, we investigate the chamber structure of
the GIT parameter space of G-constellations.

Let ρi be the irreducible representation of G whose weight is i. We
can identify I := Irr(G) with Z/rZ.

Recall the McKay quiver of G is the quiver whose vertex set is I with
the 3r following arrows:

xi : i→ i+ b,
yi : i→ i+ 1,
zi : i→ i− 1,

for each i ∈ I. The representation of the McKay quiver of G with
commutation relations is the representation of the McKay quiver whose
dimension vector is (1, . . . , 1) satisfying the following relations:

xiyi+b = yixi+1,

xizi+b = zixi−1,

yizi+1 = ziyi−1.
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Let A ⊂ SL2(C) be of type 1
r
(1,−1) with coordinates y, z. The

McKay quiver of A is the quiver whose vertex set is I with the 2r
following arrows:

yi : i→ i+ 1,
zi : i→ i− 1,

for each i ∈ I. The representation of the McKay quiver of A with
commutation relations is the representation of the McKay quiver whose
dimension vector is (1, . . . , 1) satisfying the following relations:

yizi+1 = ziyi−1 for all i ∈ I.

Note that the GIT parameter space Θ of G-constellations can be
identified with

Θ =
{
θ = (θi) ∈ Qr

∣∣∣∑ θi = 0
}
,

which is also the GIT parameter space of A-constellations. Further-
more, we have the following proposition.

Proposition 3.1. Let G ⊂ GL3(C) be the finite subgroup of type
1
r
(b, 1,−1) and A ⊂ SL2(C) the finite subgroup of type 1

r
(1,−1). Then

the chamber structure of the GIT parameter space of G-constellations
is finer than, or equal to, that of A-constellations.

Proof. It suffices to show that a wall of the GIT parameter space
of A-constellations is also a wall of the GIT parameter space of G-
constellations.

Let θ be a stability parameter on a wall of the GIT parameter space
of A-constellations. This means that there exists a θ-semistable A-
constellation F such that it is not θ-stable, i.e. there exists a C[y, z]-
submodule G with θ(G) = 0.

Note that we have a natural identification between A-constellations
and G-constellations whose x-action is zero. Thus F can be thought of
as a G-constellation and G is a C[x, y, z]-submodule of F with θ(G) = 0.
As it is easy to see that F is θ-semistable G-constellation, it proves that
θ is also on a wall of the GIT parameter space of G-constellations. �

Note that the chamber structure of GIT parameter space of A-
constellations is the same as the Weyl chamber structure of Ar−1.

Conjecture 3.2. The chamber structure of the GIT stability parameter
space Θ of G-constellations coincides with the Weyl chamber structure
of Ar−1.

Let θ be a generic element of the GIT parameter space ofG-constellations.
By Proposition 3.1, θ is generic in the GIT parameter space of A-
constellations so there exists an open Weyl chamber C such that θ ∈ C.
Let ω be the corresponding element in Sr.
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Let us consider the space of G-constellations RepG and the space of
A-constellations RepA. Consider the reductive group

GL(δ) :=
∏
i∈I

C×

acting on RepG and RepA as basis change. The moduli space Mθ of
θ-stable G-constellations is

Mθ = Proj

(⊕
n≥0

C[RepG]χnθ

)
.

Let RepsG be the θ-stable locus in RepG and RepsA the θ-stable
locus in RepA. We can identify RepA with the closed subvariety of
RepG defined by x0 = · · · = xr−1 = 0 and RepsA with the closed

subvariety S̃θ of RepsG defined by x0 = · · · = xr−1 = 0.

Since S̃θ is a GL(δ)-invariant closed set, andMθ is a geometric quo-

tient, the inclusion S̃θ ⊂ RepsG induces an inclusion Sθ ⊂Mθ

S̃θ
� � //

��

RepsG

��
Sθ
� � //Mθ

where Sθ is the closed subvariety ofMθ parametrising G-constellations
on which x acts trivially. Note that the variety Sθ is isomorphic to the
moduli space of θ-stable A-constellations.

Let D be the hyperplane section of C3/G defined by x = 0. Then D
is isomorphic to C2/A and has an Ar−1 singularity as in Section 1. Since
M0 is isomorphic to C3/G by Proposition ??, we have the following
diagram

Sθ
� �

codim.1
//

��

Yθ
� �

irr.
//

��

Mθ

��
D �
�

codim.1
// C3/G M0

where the vertical morphisms are the canonical projective morphisms
induced by GIT quotients. As is known, the morphism Sθ → D is the
minimal resolution of D.
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