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Thermodynamic Signatures of Genuinely Multipartite Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Mir Alimuddin, Samgeeth Puliyil and Manik Banik

[Regular Talks (Parallel session A)]

An Optimal Oracle Separation of Classical and Quantum Hybrid Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Atsuya Hasegawa and Francois Le Gall

Quantum Search with Noisy Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Ansis Rosmanis

Divide-and-conquer verification method for noisy intermediate-scale quantum computation . . . . . . . . . . . . . . . . . . . . . . . . 69
Yuki Takeuchi, Yasuhiro Takahashi, Tomoyuki Morimae and Seiichiro Tani

[Regular Talks (Parallel session B)]

Transformation of an unknown unitary operation: complex conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Tomasz Młynik, Daniel Ebler, Michał Horodecki, Marcin Marciniak, Marco Túlio Quintino and Michał
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Quantum Entanglement, Bell’s Theorem, Quantum Information Science
Marek Zukowski1

1ICTQT, University of Gdansk

Abstract. Quantum mechanics gives probabilistic predictions. Its predictions seem paradoxical. It was
discovered twice in 1925. By Heisenberg, at the Helgoland island, and by Schroedinger half a year later
in Alps. It almost immediately met an opposition. Einstein fully recognized it as a practical tool but
criticized its non-deterministic nature. The Einstein-Bohr debate begun.

The talk will cover the developments which led to the 2022 Nobel prize in physics, the recipients of which
closed the debate of the two 1922 Nobel Laureates. Brief resume on the EPR-paradox, Bell’s comment
on that. Clauser’s better Bell inequalities, proposal of an experiment, and the first experiment. Aspect
masterpiece versions of Clauser experiments. The mood of the times. Reemergence of interest in Bell-
type photon correlations. Loopholes in experiments. Down-conversion as the work horse in optical Bell
experiments. G-H-Zeilinger correlations. Entanglement swapping as the path to observable multiphoton
entanglement/interference. Birth of quantum information science. Innsbruck teleportation experiment.
2015-2017 loophole free Bell experiments.

On the way I shall discuss various misinterpretations of all that, and present some less known approaches
to Bell’s Theorem, and important quantum optical conditions which allow to observe and control multi-
photon interference.

[MZ is supported by the ICTQT IRAP (MAB) project of FNP, co-financed by structural funds of the
EU.]
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Quantum Complexity for Discrete Logarithms and Related Problems

(Extended Abstract)

Minki Hhan
1 ⇤

Takashi Yamakawa
2 3 †

Aaram Yun
4 ‡

1 Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

3 NTT Social Informatics Laboratories, Tokyo 180-8585, Japan
4 Department of Cyber Security, Ewha Womans University, Seoul 03760, Korea

Abstract. This paper studies the quantum computational complexity of the discrete logarithm and
related group-theoretic problems in the context of “generic algorithms”—that is, algorithms that do not
exploit any properties of the group encoding.

We prove that any generic quantum discrete logarithm algorithm for the underlying group G must make
⌦(log |G|) depth of group operation queries. This shows that Shor’s algorithm that makes O(log |G|) group
operations is asymptotically optimal among the generic quantum algorithms, even considering parallel
algorithms. Furthermore, we extend this result to the generic hybrid quantum-classical algorithms and the
bounded-size quantum memory setting, showing that variants of Shor’s discrete logarithm algorithm are
essentially optimal in each setting.

Keywords: Shor’s algorithm, Lower bound, Discrete Logarithm

1 Introduction

The discrete logarithm (DL) problem and related prob-
lems have long been fundamental cryptographic primi-
tives in the pre-quantum world [3, 10]. The emergence of
quantum computing has drastically altered the landscape
of cryptography in the post-quantum world. Shor’s algo-
rithm [29] has demonstrated that the DL problem (and
integer factoring) can be solved in quantum polynomial
time, rendering many cryptographic protocols that rely
on the DL problem insecure against full-fledged quantum
computers.
Algorithmic optimizations for quantum algorithms

solving the DL problem have shown significant
progress [21, 22, 11, 27, 14], and a recent estimation
of Gidney and Eker̊a [12] predicted that a single prac-
tical DL instance could be solved in few hours un-
der some plausible physical assumptions. However, the
base algorithm of these circuit optimizations is essen-
tially the same as Shor’s original one or its near vari-
ants [16, 7, 6, 5]. In other words, the complexity of the
quantum DL algorithms is still dominated by O(log |G|)
group operations for the underlying group G, just like in
the original Shor’s algorithm. As such, no asymptotic im-
provements have been made since the original algorithm.
This state of a↵airs raises an important question:

Can we solve the discrete logarithm asymptotically
better than Shor’s algorithm?

There are several potential approaches to addressing
this question. In an extreme case, a direct quantum algo-
rithm with better asymptotic complexity may suddenly
appear. Alternatively, a hybrid classical-quantum algo-
rithm could take advantage of the potentially massive

⇤minkihhan@kias.ac.kr
†takashi.yamakawa.ga@hco.ntt.co.jp
‡aaramyun@ewha.ac.kr

power of classical computation with a favorable classical-
quantum tradeo↵. Another interesting avenue of explo-
ration is a shallow quantum circuit that exploits paral-
lelism, making quantum depth another important mea-
sure of complexity.1

To the best of our knowledge, there is no known lower
bound, in terms of either time complexity or depth, for
the quantum complexity of the DL problem.

2 Our Result

In this paper, we study the hardness of the discrete
logarithm problem and related problems by considering a
natural class of quantum algorithms referred to as generic
algorithms. A generic quantum algorithm is an algorithm
that does not take advantage of the special properties
of the encodings of group elements. Instead, these al-
gorithms only use group operations only in a black-box
manner, potentially in superposition.

We formally establish the quantum generic group
model (QGGM) by restricting that access to group ele-
ments is provided through the group oracle. The QGGM
resembles the classical generic group model (GGM) [30,
20] proposed for arguing the security of group-theoretic
cryptographic problems in classical settings. As in the
classical GGM, the main complexity measure in the
QGGM is the number of group operation queries. In
addition, we are also concerned with the depth of group
operation queries to study the power of near-term quan-
tum computers.

1
Cleve and Watrous [2] showed a lower bound on the depth for

the quantum Fourier transform, which is a crucial step of Shor’s

algorithm. However, there might exist a completely di↵erent quan-

tum algorithm that does not rely on the quantum Fourier trans-

form. For example, the phase estimation-based DL algorithm [17]

can be done without the quantum Fourier transform.
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2.1 Lower bound in the fully quantum setting

Our first result states that no generic quantum algo-
rithm in the QGGM can solve the DL problem much
faster than Shor’s original algorithm, even with parallel
group operations. Precisely, we show the following theo-
rem.

Theorem 1 For a prime-order cyclic group G, any
generic quantum algorithm solving the DL problem over
G must make queries of depth ⌦(log |G|).

To establish this theorem, for any generic quantum
DL algorithm A, we construct a generic DL algorithm B

in the classical GGM that perfectly simulates the out-
put of A. Although the classical simulation may re-
quire unbounded time for precise simulation, its query
complexity is only exponentially larger than that of A.
It is known that a generic DL algorithm in the classi-
cal GGM must make ⌦(|G|1/2) classical group operation
queries even if the algorithm is allowed to run in un-
bounded time [30, 20]. Combined with the above simu-
lation with an exponential blowup, we obtain the desired
result. We also establish the similar hardness of other
group-theoretic problems, such as CDH and DDH using
this simulation. We note that the näıve version of Shor’s
algorithm2 has the matching group operation complexity
to the lower bound in Theorem 1.

2.2 Hybrid quantum-classical algorithms

The above result may initially seem su�cient to refute
our main question. However, this is not the case because
this lower bound only considers purely quantum algo-
rithms. We observe that some simple (combination of)
folklore hybrid quantum-classical algorithms can do bet-
ter than the purely quantum bound, exploiting classical
computation to perform most group operations.
These hybrid algorithms consist of two phases:

They first compute multiple group elements using
O(polylog |G|) classical group operation queries and store
them as precomputed data. Then, they implement
Shor’s algorithm using the stored group elements us-
ing O(log |G|/ log log |G|) quantum group operations and
O(log log |G|) quantum query depth3.
We complement these algorithms by proving the

matching lower bounds. We formalize a model for generic
hybrid quantum-classical algorithms that captures the
above algorithms and more general class of algorithms. In
the model, we allow an algorithm to make both classical
and quantum group operation queries with the restric-
tion that it is forced to measure all the registers when-
ever its quantum query number or depth count exceeds
a certain threshold. It is supposed to capture hybrids of
classical and quantum computers with limited coherence
time. Note that we do not consider noises in our model
whereas actual near-term quantum computers are likely
to be noisy. Since our main results are the lower bounds,
this just makes our results stronger.

2
We describe Shor’s algorithm in the QGGM in the full version

of our paper for completeness.
3
We describe the hybrid algorithms in the full version.

The following theorem states the limitations of the
generic hybrid algorithms, showing that the above hy-
brid algorithms are indeed optimal with respect to both
query number and depth.

Theorem 2 (Informal) For a prime-order cyclic group
G, any generic hybrid quantum-classical algorithm
solving the DL problem with O(poly log |G|) total
queries (including both classical and quantum) must
make ⌦(log |G|/ log log |G|) quantum queries of depth
⌦(log log |G|) between some two consecutive forced mea-
surements.

More generally, any generic hybrid DL algorithm with
Q total queries must make ⌦(log |G|/ logQ) quantum
queries of depth ⌦(log log |G| � log logQ) between some
two consecutive forced measurements.

2.3 Quantum memory-bounded algorithms

Quantumly processable memory is an expensive re-
source, either quantum memory that can store quantum
states or quantum random accessible (classical) memory
(qRAM) that stores classical data but can be accessed
coherently.4 While the original Shor’s algorithm only
uses quantum memory that stores a single group element,
the hybrid algorithms make use of relatively large quan-
tum memory or large qRAM. This motivates the question
of whether quantumly processable memory is necessary
even for a mild speed-up of Shor’s algorithm.

We prove that it is indeed necessary. The following
theorem asserts such a lower bound.

Theorem 3 For a prime-order cyclic G, any generic
hybrid algorithm solving the DL problem with quantum
memory that can store t group elements and no qRAM
must make either ⌦(

p
|G|) classical or quantum group op-

eration queries in total or ⌦(log |G|/ log t) quantum group
operation queries between some two consecutive forced
measurements.5

More generally, any generic hybrid DL algorithm with
quantum memory that can store t group elements and
qRAM that can store r group elements must make
either ⌦(

p
|G|) group operation queries in total or

⌦(log |G|/ log(tr)) quantum group operation queries be-
tween some two consecutive forced measurements.

In particular, the above theorem means that classical
queries cannot reduce the number of quantum queries be-
yond ⌦(log |G|/ log t), or just ⌦(log |G|) when t = O(1).
We have algorithms that match the above lower bounds:
Baby-step giant-step algorithm makes O(

p
|G|) classical

group operations, and the hybrid algorithm with quan-
tum memory that can store t group elements and no
qRAM makes ⌦(log |G|/ log t) quantum queries.

4
Formally, it enables one to realize a unitary |ii⌦ |0i 7! |ii⌦ |xii

for a classical data (xi)i.
5
This gives a depth lower bound of ⌦(log |G|/t log t) as an im-

mediate corollary as an algorithm can make at most t queries in

one parallel query in this setting.
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2.4 The multiple DL problem

The multiple discrete logarithm problem asks to solve
multiple instances of the DL problem with the same un-
derlying group simultaneously. When m DL instances
are given, this problem is written by m-MDL. This prob-
lem is important in the context of the standard curves
in elliptic curve cryptography, where only a few curves
are recommended as standard. In the classical setting,
Kuhn and Struik [18] suggested an O(

p
m|G|) generic al-

gorithm for the m-MDL problem, and Yun [33] proved
the matching lower bound.
We present a generic quantum MDL algorithm us-

ing the results in vectorial addition chain [24], slightly
faster than Shor’s algorithm. When m is a mod-
erate size6, our algorithm solves the m-MDL prob-
lem using O(m log |G|/ log(m log |G|)) group operations.
This gives an amortized group operation complexity of
O(log |G|/ logm) per DL instance.
Regarding Theorem 1, the complexity of the m-MDL

problem is lower than solving each instance individually.
It is related to the quantum annoying property [32, 4]
suggested in the context of password-authenticated key
exchange (PAKE), which roughly means that quantum
algorithms must solve a DLP for each password guess of
PAKE. Our algorithm shows that the strongest form of
quantum annoying cannot hold.

3 Discussion

Tight complexity. Our lower bounds show asymp-
totically tight group operation complexity, but the con-
stant factor has room for improvement. In the for-
mal theorems, the concrete quantum query bounds are
0.25 log |G| + O(1) (or depth) in the fully quantum case
and 0.5 log |G| + O(1) for the memory-bounded hybrid
case with t = r = 1. Shor’s DL algorithm and early
variants [21, 17] make quantum and classical group op-
erations 2 log |G| times each, having a gap in the con-
stant factor. The later hybrid quantum-classical algo-
rithms [16, 5, 6, 7] narrow down this gap to about
(1 + c) log |G| group operations before the forced mea-
surement for some small c (depending on the algorithms)
with appropriate classical pre- and post-processing. The
constant gap still exists besides the number of subroutine
calls. Filling this gap is of practical interest.
We may ask if a small number of quantum group oper-

ations could reduce the classical group operation queries.
Our theorem says that if a generic hybrid algorithm
makes one quantum group operation, then it should make
⌦(|G|0.25) classical group operations. This does not rule
out a hybrid DL algorithm with |G|0.25 classical group
operations and one quantum group operation, leaving a
gap between the algorithm.

The quantum complexity of the composite-order DL
problem is also unknown. We also do not know how to
use the composite order either in constructing algorithms
or proving lower bounds. The lower bound or better al-
gorithm for the MDL problem is also unknown.

6
Loosely speaking, m = polylog|G| works.

Generic vs. non-generic algorithms. While the
group-theoretic algorithms discussed above can be
viewed as generic algorithms, some variants leverage spe-
cific encoding structures [25, 15, 28, 27, 14] for theoretic
or practical purposes, most of which are for speeding up
the group operation in a non-black-box manner. In par-
ticular, Høyer and Spalek [15] showed that the DL prob-
lem on ZN can be solved by a hybrid quantum-classical
algorithm with a constant quantum depth if we allow for
unbounded fan-out gates.7 This overcomes our quantum
depth lower bound using the non-generic method.8

This circumstance is reminiscent of the classical GGM,
where some non-generic algorithms, such as index cal-
culus, show better e�ciency than generic algorithms by
exploiting the integer encoding of group elements. Still,
the classical GGM has been used as a meaningful model
for arguing the hardness of group-theoretic problems, es-
pecially for the general elliptic curves. Thus, we believe
that lower bounds in the QGGM are at least as mean-
ingful as those in classical GGM. Moreover, to the best
of our knowledge, all non-generic quantum algorithms
for the DL problem are circuit optimization of (variants
of) Shor’s algorithm, which is generic. In contrast, non-
generic classical algorithms start from fundamentally dif-
ferent ideas. This fact gives us more motivation to study
the limitations of generic quantum algorithms.

Relation to the hidden subgroup problems. This
paper suggests the number of (quantum) group opera-
tions as a complexity measure for studying the DL and
related problems. We believe this is an important con-
ceptual contribution. The usual complexity in this con-
text is the query complexity to the relevant function f

that instantiates the hidden subgroup problem (HSP).
For the DL problem, this query complexity is 1 and the
lower bound regarding f is pointless, suggesting that the
new complexity measure is essential.

The known HSP algorithms [13, 8, 19, 9] can be con-
sidered as generic algorithms by extending our QGGM
for general groups. In terms of the query complexity to
the oracle function, proving a meaningful lower bound is
unlikely because [9] showed that O(log4 |G|) queries suf-
fice for the HSP over an arbitrary group. Contrary to the
query complexity, the group operation complexity of [9]
is exponentially large.

One may wonder if the group operation complexity
provides an interesting lower bound of the HSP for some
nonabelian groups. The answer is elusive with this pa-
per’s tools. The dihedral group case, a crucial case con-
nected to the lattice-based [26] and isogeny-based cryp-
tography [23, 1], has a negative answer to this question,
as the algorithm of Ettinger and Høyer [8] only makes a
polynomial number of group operations.

7
It does not contradict the depth lower bound of the quantum

Fourier transform [2], which assumes that each gate acts on a con-

stant number of qubits.
8
For example, they use that multiplication of many elements

of ZN can be done in TC0, i.e., computed by a constant depth

classical circuit with threshold gates [31]. Also, note that using

fan-out gates does not a↵ect the query depth in the QGGM.
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Abstract. We propose a hybrid quantum-classical algorithm that integrates quantum computing and
quantum Monte Carlo (QMC) methods for understanding many-body quantum systems. Our algorithm
mitigates the sign problem in QMC through the use of non-stoquasticity indicator (NSI) and its upper
bounds. We leverage quantum computing to decrease NSIs and enhance the expressivity of shallow quantum
circuits. We validate the method with numerical tests on the N2 molecule and the Hubbard model. This
approach opens possibilities for solving practical problems using intermediate-scale and early-fault tolerant
quantum computers, with applications in chemistry, condensed matter physics, materials, and high energy
physics.

Keywords: quantum many-body systems, sign problem, quantum Monte Carlo

1 Introduction

In recent years, tremendous e↵orts have been put into
finding the find ground (excited) eigenstates and eigenen-
ergies of a quantum many-body system [6, 8, 17, 28].
Among various methods, projector QMC has drawn great
attention and has been widely exploited to study chem-
istry and condensed matter physics problems. The pro-
jector QMC algorithms realize the imaginary time evo-
lution (ITE) process in a statistical way. The insight is
that one can represent quantum states by an e↵ective
superposition of classical basis states that are dubbed
as “walkers”, and evolve the distribution of the walk-
ers through a sampling process upon enforcing the ITE
operator. Therefore, the whole process manages to cir-
cumvent the ITE operator’s non-unitarity. However, the
QMC algorithms su↵er from the sign problem [25], which
is statistical fluctuation caused by the vanishing parti-
tion function Z = Tr(e��H). On the other hand, with
the development of quantum hardware, it is intriguing
to wonder if near-term quantum devices are able to pro-
vide classically-inaccessible results for the ground-state
problem. While many recent works have shown the po-
tential applicability of quantum computing using NISQ
devices [1, 2, 7, 10, 20], whether they are su�ciently pow-
erful (extensive and accurate) to solve practical problems
better than their classical counterpart still remains open.
Here we introduce a hybrid approach that integrates

quantum Monte Carlo and quantum computing, lever-
aging their complementary strengths in representing and
processing quantum states while mitigating their weak-
nesses of exponentially small average signs and hard-
ware limitations. The sign problem comes from the non-
stoqusticity [5] of the Hamiltonian. We first introduce
the non-stoquaticity indicator (NSI) which is a generic
formula for measuring the seriousness of the sign prob-
lem and a low-computational-cost upper bound for the

⇤lvdingshun@bytedance.com
†xiaoyuan@pku.edu.cn

NSI. For easing the sign problem, the general way is to
perform a similar transformation [13] that preserves the
spectrum of the Hamiltonian. However, a general trans-
formation could scramble the operator, which renders the
Hamiltonian highly non-local. To this end, we propose
the quantum version of the full configuration interaction
quantum Monte Carlo (FCIQMC) [4, 9], which we call
the QC-FCIQMC algorithms. Compare to its classical
counterpart, our protocol leverages quantum circuits to
e↵ectively perform the similarity transformation of the
QMC basis, but still remains e�cient. By computing the
upper bound for the NSI for di↵erent quantum systems,
we see the seriousness of the sign problem drop by several
orders of magnitudes in aiding our methods.

2 Sign problem and its indicators

The sign problem manifests when computing the ex-
pectation value of observable with the final-round walkers
as we normalize the wave function in the chosen basis. To
see this, let us consider a similar scenario—the thermal
state e

��H
/Z with Z = Tr[e��H ], and the expectation

of observable A is hAi = Tr[Ae
��H ]/Z. In the following,

we consider a general walker basis (orthonormal states)
{|�ii}. Denote G = ↵I � H with ↵ = maxi Hii, and
we expand the expectation estimation formula in a path-
integral form by inserting bases in the trace

hAi =
Tr[Ae

��H ]

Tr[e��H ]
=

Tr[Ae
�G]

Tr[e�G]

=

P1
k=0

�
k

k!

P
i0,i1,...ik

Ai0i1Gi1i2 · · ·Giki0

P1
k=0

�k

k!

P
i1,i2...ik

Gi1i2Gi2i3 · · ·Giki1

=

P1
k=0

�
k

k!

P
i0,i1,...ik

Ai0i1 |Gi1i2 ···Giki0 |si1···ik,i0P
i1,i2...ik

|Gi1i2 ···Giki0 |
P1

k=0
�k

k!

P
i1,i2...ik

|Gi1i2Gi2i3 ···Giki1 |si1···ik,i1P
i1,i2...ik

|Gi1i2 ···Giki1 |

=
hAsi

hsi
,

(1)
where denote Mij := h�i|M |�ji for any operator M , and
extract the sign of Gi1i2Gi2i3 · · ·Giki1 as si1···ik,i1 . Ac-
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cording to Troyer [25], a system presents the sign problem
whenever the path integral in Eq. (1) contains negative
paths. “Stoquastic” [5] or “bonsonic” Hamiltonians are
known to be sign-problem-free. Specifically, a Hamilto-
nian is “stoquastic” when all its o↵-diagonal terms (in
the walker basis) are non-positive. Thus, every element
of G is positive in this case, and so are the expanded
terms of Tr[e�G]. This suggests that the sign problem is
basis-dependent. In general cases, due to both positive
and negative paths being involved, the standard way for
Monte Carlo simulation is to sample according to the ab-
solute value of each path as the second line in Eq. (1).
However, it is shown that the average sign hsi vanishes
exponentially compared to its “bosonic” form [25], so as
the requiring number of walkers to counterbalance the
variance.
To quantify the sign problem of Hamiltonian H, we

separate it by H = H+ + H� with nonzero elements
(H�)ij = Hij ([i = j] or [i 6= j and Hij < 0]) and
(H+)ij = Hij [i 6= j and Hij > 0]. The bosonic form [25]
of H is H̃ = H��H+, which is stoquastic and hence has
no sign problem. The non-stoquasticity indicator (NSI)
is defined by

S(H) =
Tr[e��H̃ ]� Tr[e��H ]

Tr[e��H ]
=

1

hsi � 1
. (2)

As discussed above, the sign problem indicates an expo-
nentially small average sign hsi = e

���f with �f being
the free energy di↵erence between H and H̃. Thus S(H)
also exponentially increases with ��f . However, it is
in general hard to evaluate �f . Here, we provide an up-
per bound of S(H) with more explicit dependence on the
matrix element of the Hamiltonian H±.

Theorem 1 The non-stoquasticity indicator is upper-
bounded by S(H)  2e�k(↵�H�)kL1 sinh(�kH+kL1),
where we define the matrix norm as kMkL1 :=

P
i,j

|Mij |

for matrix M .

A stoquastic Hamiltonian has H+ = 0, which indicates
S(H) = 0 and hence no sign problem. In general, a
smaller kH+kL1 also corresponds to a less serious sign
problem, which is consistent with recent works [13, 15,
16, 24].

Meanwhile, when we focus on the imaginary time evo-
lution of a specific initial state, say �0, with time ⌧ = �/2,
we can similarly define the NSI as

S(H,�0) =
h�0|e

��H̃
|�0i � h�0|e

��H
|�0i

h�0|e
��H |�0i

. (3)

Again, S(H,�0) measures the sign problem and is re-
lated to the average sign. We provide an upper bound of
S(H,�0) as a function of �0 and H±.

Theorem 2 The non-stoquasticity indicator is upper-
bounded by S(H, 0) = O (k⇧?H |�0i k), where k |vi k =p
hv| vi and ⇧? = I � |�0i h�0|.

Here, we have ignored the dependence on other matrix
elements of H. We can see that apart from small H+, a
good initial state that is close to an eigenstate of H can
also alleviate the sign problem.

3 QC-FCIQMC algorithm

We now introduce our hybrid algorithm using a quan-
tum computer to mitigate the sign problem of QMC. The
basic idea is to replace the simple walker states {|ii} with
states {|�ii} prepared by quantum circuits |�ii = U |ii.
This is equivalent to considering walkers {|ii} with a sim-
ilarity transformed Hamiltonian U

†
HU . We may use a

quantum computer to find U that approximately diag-
onalizes H [18, 19], where the o↵-diagonal part U

†
HU

is suppressed. Furthermore, according to Theorem 2, we
may not even need to diagonalize H, but just find an
approximate ground state, which is a much simpler task
and requires even shallower circuits [11, 12, 22, 23, 27].
Our algorithm requires VQAs such as VQE with an even
shorter circuit but still runs QMC with eased sign prob-
lems. In particular, as one can see in our numerical re-
sults in Fig. 1 (c), for the ground state of the nitrogen
molecule, we manage to boost the results of VQE at dif-
ferent circuit depths much closer to the exact energy with
the help of QMC. Meanwhile, as we increase the circuit
depth according to the capability of the quantum de-
vices, the severity of the sign problem of the traditional
FCIQMC is suppressed exponentially as shown by our
numerical results in Fig. 1 (d), and we expect this trend
to continue for many more layers. Therefore, our work
hints at a new direction toward practical quantum ad-
vantage.

Now we introduce the methodology of our algorithm.
Suppose we already find the unitary U using either
approximate Hamiltonian diagonalization [18, 19] or
VQE [11, 12, 22, 23, 27], and replace |ii with |�ii = U |ii,
the wavefunction is expanded as | (⌧)i =

P
i
eci(⌧) |�ii

and the coe�cients eci(⌧) follow the imaginary time evo-
lution as

deci(⌧)
d⌧

= �

X

j

(Hij � S�ij)ecj(⌧), (4)

with Hij = h�i|H |�ji and an adjustable energy shift S.
Now, we need to propagate the (quantum) walkers to ef-
fectively realize the imaginary time evolution. FCIQMC
realizes the ITE of the state as | (⌧)i / e

�(H�S)⌧
| (0)i

with time ⌧ > 0 and certain parameter S by walkers
of weights ±1. The algorithm is designed such that the
population Ni(⌧) by summing up all of the weights of
walkers at configuration i is proportional to the corre-
sponding amplitude ci(⌧) following the imaginary time
dynamics. Incorporate the new walker states generated
from VQE to FCIQMC, we first initialize Ni(⌧) number
of the walker |�ii at time ⌧ = 0; then, for small time
�⌧ , we repeatedly update each walker |�ii through (1)
spawning — spawn a child walker |�ji (j 6= i) with prob-
ability |Hji|�⌧ with the same sign as walker |�ii multi-
plied by �Hji/|Hji|; (2) Death or cloning — the walker
|�ii dies with probability (Hii � S)�⌧ (if Hii � S > 0)
and clones itself with probability |(Hii � S)|�⌧ other-
wise; (3) Annihilation — annihilate same walker pairs
with opposite signs. Here, a major challenge is how to
realize the spawning process, i.e., to propagate walker
|�ii to |�ji with probability |Hji|�⌧ . In conventional
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Figure 1: (a) Quantum circuits for evaluating |Hji|
2. (b) Circuit for evaluating the real part of Hji. (c) ADAPT-

VQE energies and QC-FCIQMC energies with standard deviations for di↵erent depths of ADAPT-VQE. (d) Standard
deviations from (a) as well as the non-stoquastic indicator with � = 10�1.

FCIQMC, this is possible since there is only a polyno-
mial number of nonzero Hji for (classical) walkers {|ii}.
However, for (quantum) walkers |�ii, there might be an
exponential number of nonzero Hji, so naively, we may
need to measure all Hji to realize the spawning process,
which is formidable.
Here we introduce an e�cient way to realize the spawn-

ing process. To evaluate the probability |Hji|�⌧ , we
note that |Hji|

2 = hi|U
†
HU⇧jU

†
HU |ii with ⇧j =

|ji hj|. Suppose the Hamiltonian is expanded as
H =

P
k
hkPk with coe�cients hk and Pauli opera-

tors Pk, then |Hji|
2 =

P
kk0 hkhk0p

i

kk0(j) with p
i

kk0(j) =
Rehi|U †

PkU⇧jU
†
Pk0U |ii satisfying

P
j
|p

i

kk0(j)|  1.
For fixed i, k, k

0, we can use the quantum circuit in
Fig. 1(a) to measure p

i

kk0(j) for all j and hence ob-
tain |Hji| up to a desired accuracy. We usually get a
small number of nonzero |Hji|. Then we can apply the
quantum circuit in Fig. 1(b) to further estimate the sign
(phase) of Hji. Note that the quantum circuits for es-
timating |Hji| and its sign only introduce one ancillary
qubit and at most doubles the unitary U (apart from a
few gates independent of U). Meanwhile, Hji only needs
to be measured once and information could be re-used.
After implementing the evolution (with initial walkers

�0), we can get the energy by the mixed energy evaluation

E(⌧) = E0 +
P

i 6=0 h�i|H |�0i
sign(i)Ni(⌧)

N0(⌧)
, where E0 =

h�0|H|�0i, and Ni(⌧) and sign(i) are the number and
sign of walker �i, respectively, at time ⌧ . Suppose �0 is
obtained by running VQE, then our method e↵ectively
introduces corrections from all other �i by implementing
QMC. Note that our protocol is capable of evaluating
any observable as long as it can be expressed succinctly
in the Pauli basis.

4 Discussion

In this work, we propose a hybrid QC-QMC method.
We derive upper bounds to NSIs, which guide the dis-
covery and testing of the e↵ectiveness of the method.
The QC-FCIQMC algorithm also relies on a nontrivial
e�cient realization of the spawning process, which oth-
erwise requires exponential resources. We benchmark the

algorithm for N2 and the Hubbard model, and the results
show notable improvements over the single use of QC or
FCIQMC.

There are several interesting future directions. First,
the derived bounds for NSIs could be exploited to find
other basis rotations as a classical means to mitigate the
sign problem. Besies, our algorithm is compatible with
current and near-term quantum hardware, and therefore
its detailed resource analysis, error mitigation, and exper-
imental realization also deserve future work. One could
also explore the use of the VQE basis and our circuit
construction for the deterministic selected-CI variants of
FCIQMC [3, 14, 21, 26].
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Abstract. Several classes of quantum circuits have been shown to provide a quantum computational
advantage under certain assumptions. The study of ever more restricted classes of quantum circuits capable
of quantum advantage is motivated by possible simplifications in experimental demonstrations. In this
paper we study the e�ciency of measurement-based quantum computation with a completely flat temporal
ordering of measurements. We propose new constructions for the deterministic computation of arbitrary
Boolean functions, drawing on correlations present in multi-qubit Greenberger, Horne, and Zeilinger (GHZ)
states. We characterize the necessary measurement complexity using the Cli↵ord hierarchy, and also
generally decrease the number of qubits needed with respect to previous constructions. In particular, we
identify a family of Boolean functions for which deterministic evaluation using non-adaptive MBQC is
possible, featuring quantum advantage in width and number of gates with respect to classical circuits.

Keywords: Measurement-based Quantum computing, Non-local games, Circuit Complexity, Boolean
analysis.

1 Introduction

One of the primary motivations for studying quantum
information and computation, along with the search for
practical advantage, is to clarify the longstanding ques-
tion of what generates the classical-quantum separation
with respect to information processing power [1]. Phe-
nomena such as non-locality and contextuality have been
identified as possible sources of quantum computational
advantage [2, 3, 4], among others [5, 6, 7]. It appears
that no single phenomenon can be associated with all
forms of quantum information processing advantage, so
it is important to identify and study quantum advantage
in di↵erent models and regimes.
In this pursuit, the measurement-based quantum com-

putation (MBQC) model, first presented by Raussendorf
and Briegel in [8] as a sequence of adaptively selected
single-qubit measurements on a highly entangled quan-
tum state, is a natural setting to study quantum-to-
classical separations. In particular, it allows for demon-
strations that specific structures of non-local correlations
between qubits are necessary for universal quantum com-
putation [9]. Nevertheless, a temporal structure for the
measurements is simultaneously imposed to achieve uni-
versality [10, 11, 12]. This means statically selected mea-
surements are not computationally expressive enough to
implement arbitrary quantum algorithms, even with ac-
cess to highly correlated resource states. A judicious
choice of side classical computation and control is essen-
tial for universality in the MBQC model.
The importance of time structure in measurement-

based quantum computation is not fully understood. For
instance, it is conjectured that classical computers can-

⇤michael.oliveira@inl.int
†lsb@di.uminho.pt
‡ernesto.galvao@inl.int
This paper was uploaded to arxiv

(https://arxiv.org/abs/2212.03668) and submitted to the Quan-
tum journal.

not e�ciently simulate instantaneous quantum polyno-
mial (IQP) circuits [13], despite the fact that these cir-
cuits of commuting gates have no temporal structure, and
can be implemented without adaptive measurements in
MBQC [14]. These results have motivated the study of
temporally flat computation for demonstrations of quan-
tum advantage [15, 16, 17]. Despite having an output
distribution that is hard to simulate classically, no prac-
tical application for IQP circuits has been found. Even
for quantum circuits with temporal order, constant im-
provements in classical simulation techniques contribute
to enlarging the classes of circuits that are classically ef-
ficiently simulable [18].

In this paper, we study non-adaptive MBQC computa-
tions, which lack temporal structure for the measurement
operators, enabling simpler realizations across various
quantum computing platforms. For instance, in photonic
quantum computations, adaptive measurements generate
high photon losses [19]. Furthermore, we focus our inter-
est on exploring the potential use of this model in deci-
sion problems, which are well-known for their multitude
of applications, contrasting with the di�cult-to-simulate
probability distributions previously studied [20, 21].

2 Our results

For temporally unstructured MBQC computations, we
propose new constructions that synthesize quantum cir-
cuits for the deterministic evaluation of Boolean func-
tions. These constructions reduce the number of qubits
required in the GHZ resource states used, especially for
the case of symmetric Boolean functions. We also im-
prove the circuit synthesis process, removing an expo-
nential scaling of previous constructions on the degree of
the Boolean function [22, 23]. Regarding the complexity
of the single-qubit measurements, we also characterize
the maximum level of the Cli↵ord hierarchy required for
deterministic Boolean function evaluation.
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Theorem 1 (Informal) Any Boolean function f can be
evaluated deterministically in the non-adaptive MBQC
model using measurement operators of the deg(f)-level
of the Cli↵ord hierarchy.

This result describes a measure of complexity for the eval-
uation of Boolean functions in the model while defining
the type of measurement operators (Figure 1) necessary
to maximally violate a multipartite Bell inequality with
dichotomic observables and outcomes [24]. Furthermore,
this strengthens the idea that the degree of a Boolean
function that can be computed with certain given quan-
tum resources introduces a hierarchy for quantum corre-
lations, connecting measures of computational complex-
ity with measures of non-classicality beyond the binary
characterization, as suggested in [23].

Figure 1: Representation of the required precision of the
angles, which characterize the measurement operators,
concerning the degree of the Boolean function being com-
puted.

We translate the abstract description of the quantum
circuits obtained from the constructions into specific cir-
cuits based on a fixed gate set. We also characterize how
the solutions produced by the constructions are related to
various circuit complexity measures. This enables us to
prove a quantum classical separation on the circuit level
for computations of a specific class of Boolean functions
with degree two.

Theorem 2 (Informal) Any classical circuit with unary
and binary Boolean operators with single fan out com-
putes symmetric Boolean functions f with deg(f) = 2
with ⇥(n ⇤ log2(n)) gates and circuit width. In contrast,
realizations of the non-adaptive MBQC model compute
these functions with ⇥(n) gates and circuit width.

The proof compares these quantum circuits with the
length of the classical Boolean formulas, which describe
classical circuits without a memory. The comparison is
indeed very strong in the sense that the quantum cir-
cuit also does not use any memory (see Figure 2 for a
pictorial representation of this subclass of circuits). In-
terestingly, this result also has an interpretation in terms
of Bell inequalities. In particular, the evaluation of the
specific family of Boolean functions for which we identify
quantum advantage corresponds to maximal violations
of generalized Svetlichny inequalities [25]. Therefore, a

maximal violation of these inequalities starting from a
specific size implies a corresponding circuit separation.
More precisely, any quantum state that can be prepared
and measured with linearly bounded quantum circuits
that violate these inequalities maximally implies a corre-
sponding circuit separation.

Figure 2: Illustration of the circuit classes for which we
prove a separation in Theorem 2.

Finally, we extend the previous analysis to higher de-
gree symmetric Boolean functions, and conjecture that
these have no advantage with respect to classical circuits.

Conjecture 1 (Informal) Symmetric Boolean functions
f with deg(f) � 3 evaluated within the non-adaptive
MBQC model do not entail circuits with better scalings
than classical circuits with unary and binary Boolean op-
erators with single fan out.

This conjecture is based on several independent results.
The first one is the exponential lower bound proven in
[24] for the general AND function, which is symmetric
and has an instance for any possible degree. Then, we
conjecture and provide support with a finite number of
instances that the symmetric Boolean functions require
quantum states whose size scales at a greater rate than
the corresponding number of classical bits required in
the optimal classical circuits for the same computations.
Furthermore, we show that with the Cli↵ord+T gate set
the necessary measurement operators cannot be synthe-
sized exactly, and always need to be approximated. In
contrast, there is no di�culty in computing the same
function deterministically with classical circuits. This
illustrates some of the restrictions resulting from the im-
posed flat temporal order.

3 Related work

Non-local games. Computations within the non-
adaptive MBQC model were proven to have a one-to-one
correspondence to multi-party Bell inequalities with di-
chotomic observables and outcomes [24]. Therefore, the
classical and the quantum bounds determined in previ-
ous works for this type of Bell inequalities immediately
translate to computational e�ciencies of the respective
functions in the non-adaptive MBQC model [26]. For the
quantum bounds, we obtain the maximal e�ciency that
can be obtained from quantum resources to compute the
respective Boolean functions, and equivalently, the same
happens for classical bounds. From this relation, we can
compare our work with a large spectrum of results and
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techniques on the optimal strategies for non-local games
[26, 27, 28].

Quantum circuits. A breakthrough result by Bravyi,
Gosset, and König [29] shows that a specific relation
problem can be solved in constant depth with a quan-
tum circuit, while requiring logarithmic depth in a clas-
sical computer [29]. Our main result demonstrates that
the quantum advantage does prevail, respective to the
number of gates, if we use the circuit that computes this
relation to solve the equivalent decision problem (see Fig-
ure 3) 1.

x1 y1

x2 y2

...
... f(x)

xn yn

yn+1

FPHP

L
circuit

Figure 3: The quantum circuits used in Theorem 2, com-
posed by the circuits used in [29] to solve a particular
relation problem, and additional quantum pre-processing
and classical post-processing.

From another perspective, the quantum advantage for
the decision problem we identified can be described in
terms of the number of gates and the width of the circuits.
Interestingly, in [30], the authors prove an advantage us-
ing the same symmetric Boolean function of degree two
that we address here. The advantage regarding the equiv-
alent classical model is established by fixing the compu-
tational space and showing that these computations can
be computed with higher e�ciency on a quantum device
(IBM’s quantum computer). Consequently, our result
can be interpreted as the computation of the same func-
tion without any width restriction. Additionally, for the
classes of symmetric Boolean functions we studied here,
quantum advantages were demonstrated in the branch-
ing programs setting in [31], and sampling problems in
[32, 33].

4 Conclusions

We investigated the problem of evaluating determin-
istically Boolean functions in the non-adaptive MBQC
computational model, providing new constructions, and
a more precise understanding of the instructions for each
stage of the model, using the discrete Fourier series de-
composition of the algebraic normal forms of the func-
tions as the main techniques. We characterized the com-
plexity of two resources in this model: the number of

1Importantly, our separation indicates that for equivalent sub-
classes of QNC1 and NC1 circuits, there is a di↵erence between
quantum and classical circuits concerning the minimal size neces-
sary to compute the identified functions, thus moving the discussion
beyond the confines of constant depth circuits we mention.

required qubits in a GHZ state, and the required level
of the Cli↵ord hierarchy for single-qubit measurements.
Regarding the number of qubits in a GHZ state, we low-
ered the upper bound for the number of qubits required
to evaluate the entire set of symmetric Boolean functions
and conjectured a lower bound for this same set, assum-
ing symmetries between the instructions of the process.
Regarding the complexity of the measurements required,
we proved an upper bound on the level of the Cli↵ord hi-
erarchy. In particular, this bound is proven to be tight to
the boundary identified in [23], which limits the degree of
the Boolean functions that a set of operators can evalu-
ate. In the end, we translated the examined non-adaptive
MBQC evaluations to possible circuit realizations. This
translation motivated our main result demonstrating a
circuit separation for a family of degree two symmet-
ric Boolean functions. For higher-degree functions, al-
though these functions have not shown any prospect for
advantage under the non-adaptive MBQC model, they
guide the way to other computational models with po-
tential advantages. Also, they can solve non-local games
for which classical circuit analogs fail. Therefore, non-
adaptive MBQC computations could still be exciting for
studying non-locality and contextuality.
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Abstract. Simulating the quantum dynamics of molecules in the condensed phase represents a long-
standing challenge in chemistry. Trapped-ion systems may serve as a platform for the analog-quantum
simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To iden-
tify a “quantum advantage”, performance analysis of both classical-digital algorithms and analog-quantum
simulation on noisy hardware is needed. Here, we make this comparison for the simulation of model
molecular Hamiltonians that possess linear vibronic coupling, comparing the accuracy and computational
cost. Further, we identify dynamical regimes where classical-digital simulations seem to have the weakest
performance compared to analog-quantum simulations.
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This extended abstract is based on the work in Ref. [1].

1 Introduction

One of the ubiquitous challenges in quantum chemistry
is to describe the time-evolving dynamics of molecules,
often in the condensed phase. The highest accuracy is
achieved using the full quantum theory, but the compu-
tational cost grows exponentially with system size for the
most reliable descriptions. As such, high-accuracy sim-
ulations of even modest-sized molecules (tens of atoms)
are challenging, even on the world’s finest supercomput-
ers [2]. The most common approach to addressing quan-
tum problems on classical computers is to use approxi-
mations. While many practical approximations are avail-
able, there is generally a trade-o↵ between accuracy and
computational cost.
It was suggested that quantum computers/simulators

might provide an advantage over classical-digital simu-
lation for problems faced in quantum chemistry, since
quantum properties may be best explored using com-
putational resources that, themselves, are intrinsically
quantum mechanical [3]. This Perspective motivates the
search for a quantum advantage in the area of molecular
quantum dynamics [4]. Advances in understanding the
physical underpinnings of photosynthesis [5, 6] and pro-
tein function [7, 8] could result from advances in quantum
computing and simulations.
Finding quantum advantages requires making detailed

⇤mingyu.kang@duke.edu
†david.beratan@duke.edu
‡ken.brown@duke.edu

comparisons between the strengths and weaknesses of
classical-digital and quantum simulation methods. Find-
ing opportunities where the performance of quantum sim-
ulations may surpass those of classical-digital methods is
anticipated to be challenging, as over 80 years of progress
in quantum calculations using classical-digital computers
must be confronted by an emerging quantum-simulation
technology.

We focus our attention on analog quantum simulation
using trapped-ion systems. Trapped ions have excellent
coherence of their internal states and allow high-fidelity
state preparation, manipulation, and measurement [9].
As well, significant progress has been made to control
the external degrees of freedom for trapped ions, namely
their motional modes [10, 11, 12]. The internal and ex-
ternal states of trapped ions can be mapped onto the
electronic and nuclear degrees of freedom of molecular
Hamiltonians [13, 14, 15]. This makes trapped-ion sys-
tems natural candidates for analog quantum simulators
of quantum molecular dynamics. The weakness of analog
quantum simulation is its inaccuracy, especially as noise
is intrinsic to the computing hardware.

2 Test match: classical-digital vs. analog

trapped-ion simulations

We first consider simulating quantum molecular dy-
namics using linear vibronic coupling models (LVCMs).
This class of models is approximate, and real molecules
exhibit rich anharmonicities and nonlinear interactions
that are beyond the reach of these simple models (see
the Outlook section below). A LVCM includes M elec-

16

https://arxiv.org/abs/2305.03156


(a)

(b) (c)

Figure 1: Comparison of classical (tDMRG and Ehrenfest) and quantum (trapped ion) methods for simulating the
model Hamiltonian (1). � = 0.08679 eV, ⌫k = [0.08679 + 0.01240(k � 1)/(N � 1)] eV for k = 1, ..N , where N is
the number of bath modes. For the trapped-ion method, we assume using dN/2e-ion chain to generate N radial
motional modes. (a) Evolution of the donor population, for the indicated reorganization energy values (�) and N = 2,
simulated using various methods. For the curves labeled “Trapped ion”, we numerically simulate the evolution of a
trapped-ion simulator system. The ideal case assumes no decoherence, and the noisy case assumes state-of-art noise
parameters, such as the motional heating rate and the coherence times of motional modes and lasers that characterize
their dephasing rates. In all panels, the blue and red solid curves overlap. (b) Computational run time for the tDMRG
method, with various values of �/� and N . See Ref. [16] for details of the method (the start-geometry algorithm). The
singular value decomposition threshold is set to 10�4. Computational run time for the Ehrenfest method is negligible
compared to the tDMRG method. (c) Estimated experimental time for the trapped-ion simulation, with various values
of �/� and N . We assume 40 equally-spaced time steps and 100 simulation runs per time step, in order to produce
accurate estimates of the average donor population from the binary result of each measurement. The time spent for
cooling and state preparation, which precedes each simulation, and measurement, which follows each simulation, is
not included.

tronic states and N harmonic bath modes, where the
bath modes represent the degrees of freedom in the in-
tra/intermolecular vibrations and/or the vibrations of
solvents. Each electronic state and the linear coupling
between electronic states is often coupled linearly to the
bath degrees of freedom.
The time-dependent density-matrix renormalization

group (tDMRG) method [17] is an example of numer-
ically exact classical-digital simulation method that can
describe the dynamics of the LVCM up to a controllable
error, which can be made arbitrarily small if infinite com-
puting resources are used. The Ehrenfest method [18]
is an example of approximate classical-digital simulation
method that relies on a physical or mathematical simpli-
fication of the Hamiltonian dynamics.
Analog trapped-ion simulations can e�ciently simu-

late the LVCM dynamics. Specifically, each term in
the LVCM can be mapped to one of, or a combination
of, the three native operations in trapped-ion systems:
single-qubit rotation, spin-dependent force, and Mølmer-
Sørensen (MS) [19] interaction (see Ref. [1] for details).
Then, the evolution with respect to the full LVCM can

be tracked using Trotterization [20].
Figure 1a compares the predicted performance of the

analog trapped-ion simulation with two classical-digital
algorithms, tDMRG and Ehrenfest, in simulating the
electronic-state population dynamics of a simple LVCM.
The Hamiltonian, consisting of two electronic states
(donor |Di and acceptor |Ai) and N bath modes, is

Ĥ =
�

2

�
|Di hA|+ |Ai hD|

�

+
NX

k=1

h

�
|Di hD|� |Ai hA|

��
âk + â

†
k

�
+ ⌫kâ

†
kâk

i
,

(1)

where� is the coupling between the two electronic states,
⌫k is the energy (frequency) of the k-th bath mode, and
 is the state-dependent coupling between the states and
each mode. The reorganization energy � of the system
is given by � = 

2
PN

k=1
1
⌫k
. Typical reorganization en-

ergies range from a few � to hundreds of � [21, 22]. We
assume that the vibrational modes have high frequencies
compared to the room temperature (times kB/}), such
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that the average phonon number is much smaller than 1
for the initial state of each bath mode.
For all � values examined, the populations calculated

using the tDMRG and the numerical simulation of the
ideal trapped-ion simulation without noise match per-
fectly. Indeed, both methods capture the quantum dy-
namics with high accuracy. The Ehrenfest method does
not describe the strong population oscillations for smaller
values of �, as the e↵ects of quantum coherence are ig-
nored. The Ehrenfest simulations perform better when
the system-bath coupling is very strong (� & 20�), as
the bath oscillators become highly excited and behave
nearly classically.
For � . 5�, the populations calculated by the numeri-

cal simulation of the noisy trapped-ion simulation closely
matches the ideal simulation and the tDMRG analysis,
capturing many fine details of the population dynam-
ics. However, for larger � values, the experimental time
approaches the timescale of the noise due to longer op-
erations, so the population curve deviates from the ideal
simulation. Interestingly, when � is very large (& 20�),
the populations of the noisy trapped-ion simulation ap-
proach those of the Ehrenfest calculations.
Figure 1b and c show the run time of the tDMRG sim-

ulation and the experimental time for the trapped-ion
simulation, with various � and N values. The run time
of the tDMRG simulation increases exponentially with
the value of �. This shows that a model Hamiltonian,
even as simple as (1), carries a fairly large computational
cost when the entanglement between the molecular com-
ponents is large. For more complicated LVCMs, where
multiple electronic states are strongly coupled to each
other and to many vibrational modes, the computation
becomes intractable when the entanglement is large. For
example, if the Hamiltonian cannot be transformed into
a one-dimensional topology, the tDMRG method is ine�-
cient even for systems with moderately large reorganiza-
tion energy compared to the electronic coupling strength.
The experimental time of the trapped-ion simulations

is only O() = O(�1/2). This indicates that trapped
ions can simulate strongly entangled dynamics rather ef-
ficiently. We expect similar scaling of experimental time
to hold for simulations of more complicated models that
involve MS interactions.
Combining (i) the comparison between Fig. 1b and

c and (ii) the observation that noisy trapped-ion sim-
ulation and Ehrenfest calculation results match for very
large � values, we expect that trapped-ion simulations
may have advantages over classical-digital methods, in
terms of both computational cost and accuracy, for an
intermediate regime of reorganization energy compared
to the electronic coupling and energy gap.

3 Outlook: beyond the LVCM

The LVCM is simple, as (i) it contains only a finite
number of vibrational modes that are (ii) harmonic and
(iii) only linearly coupled to the electronic states. As a
consequence of these simplifications, the LVCM may fail
to capture several key aspects of real molecular systems.

Aside from these limitations, models beyond the
LVCM might provide a compelling target to achieve
quantum advantage in simulating molecular dynamics, as
the LVCM is a favorable framework for classical-digital
simulation. There are fundamental reasons to suggest
that the approximations used in quantum-classical [23]
or semiclassical [24, 25] analysis are particularly e↵ective
for dynamics generated by the LVCM. Thus, building
quantum simulators for models beyond the LVCM may
lead to a more immediate quantum advantage.

There are at least three ways to go beyond the LVCM
to describe molecular systems more realistically, and
these strategies can make classical-digital simulation
methods less tractable. First, dissipation of the bath
modes may be added. Second, the coupling between elec-
tronic states and bath modes may be of higher order, and
the bath modes may be anharmonic.

The dissipation of bath modes can be simulated by
trapped ions using sympathetic laser cooling or heating,
which may require trapping two kinds of ions [4, 26, 27].
Alternatively, averaging over many instances of random
stochastic operations, which does not require trapping
two kinds of ions, can simulate a limited regime of dissi-
pation [28].

The higher-order coupling and anharmonicity can be
simulated by trapped ions using interactions that are res-
onant to higher-order sidebands, as demonstrated in re-
cent experiments [29, 30, 31, 32, 33]. The challenge is
that the higher-order sideband interactions are typically
order(s) of magnitude weaker than the first-order interac-
tion, so larger laser power and/or longer coherence times
of the experimental system may be required.

4 Conclusion

In order to identify quantum advantages in simulating
molecular quantum dynamics, it is essential to under-
stand the capabilities of both classical-digital algorithms
and analog quantum simulations on noisy devices. Us-
ing a simplified model Hamiltonian based on linear vi-
bronic couplings, we suggest that analog trapped-ion sim-
ulations may have an advantage over classical-digital al-
gorithms, in terms of accuracy and computational cost,
in an intermediate regime of coupling strength between
the electronic states and bath modes. LVCMs with com-
plex connectivity between the electronic states and bath
modes, or models where the bath modes are themselves
dissipative, are of particular interest. Quantum advan-
tages may also be achieved in models with nonlinear
system-bath couplings and anharmonic bath modes, fea-
tures that semiclassical or quantum-classical approxima-
tions struggle to treat accurately.

This Perspective is intended to inspire collaboration
between the communities of quantum-chemical theory
and analog quantum simulation. Analog quantum sim-
ulation may serve as a catalyst for advancing our un-
derstanding of complex chemical dynamics, and may al-
low studying elements of molecular realism that remain
inaccessible with current classical-digital simulation ap-
proaches.
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Abstract. Stochastic modelling enables us to understand and predict the behaviour of complex systems.
Yet, accurate models of highly non-Markovian processes must track copious amounts of information about
past observations, bearing high memory cost. Quantum technologies o↵er a promising route to mitigating
this cost. We implement quantum models with a single qubit of memory using a photonic setup, and
show that they can simulate a family of non-Markovian processes to higher precision than possible with
any classical model of the same memory dimension. This heralds a key step towards applying quantum
technologies in complex systems modelling.

Keywords: Quantum information, non-Markovianity, photonics, stochastic processes, complex systems

We are surrounded by complex processes at all scales.
Faced with such rich complexity, we turn to stochastic
modelling to predict the future behaviour of these pro-
cesses. Often, these future behaviours – and thus our
predictions – are based not only on what we can observe
about the current state of the process, but also its past:
they are non-Markovian. To simulate such processes,
our models must have a memory to store information
about the past. Storing all past observations comes with
a prohibitively-large memory cost, forcing a more par-
simonious approach to be adopted whereby we seek to
distil the useful information from the past observations,
and store only this. Yet, when processes are highly non-
Markovian, we must typically retain information about
observations far into the past, which still bears high mem-
ory costs. This leads to a bottleneck, where we trade-
o↵ reductions in the amount of past information stored
against a loss in predictive accuracy.
Quantum technologies can o↵er a significant advantage

in this endeavour, even when modelling processes with
purely classical dynamics. They can be used to encode
past information into quantum states to push memory
costs below classical limits [1, 2]. This advantage can be
particularly pronounced for highly non-Markovian pro-
cesses where the separation between quantum and clas-
sical memory costs can grow without bound [3, 4, 5].

⇤yangchengran92@gmail.com
†mgu@quantumcomplexity.org
‡gyxiang@ustc.edu.cn
§physics@tjelliott.net

Here, we experimentally realise quantum models for
a family of non-Markovian stochastic processes within a
photonic system. This family of processes has a tunable
parameter that controls their e↵ective memory length,
and the memory dimension of the minimal classical model
grows with the value of this parameter. Our quantum
models can simulate any process within the family with
only a single qubit of memory. Moreover, we show that
even with the experimental noise in our implementation,
our models are more accurate than any distorted classical
compression to a single bit of memory. Our work thus
presents a key step towards demonstrating the scalability
and robustness of such quantum memory advantages.
Framework and Theory. Stochastic processes consist
of a series of (possibly correlated) random events occur-
ring in sequence. We consider discrete-time stochastic
processes [7], such that events occur at regular timesteps.
The sequence of events can be partitioned into a past  �x
detailing events that have already happened, and a future
�!x containing those yet to occur. Stochastic modelling
then consists of sequentially drawing samples of future
events from the process given the observed past.

This requires a model that can sample from the con-
ditional form of the process’ distribution, using a mem-
ory that stores relevant information from past observa-
tions. An (impractical) brute force approach would re-
quire the model to store the full sequence of past obser-
vations. A more e↵ective model consists of an encoding
function that maps from the set of pasts to a set of mem-
ory states {sj}, and an evolution procedure that produces
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the next output (drawn according to the conditional dis-
tribution) and updates the memory state accordingly [8].
See manuscript for the full exposition.
A natural way to quantify the memory cost is in terms

of the requisite size (i.e., dimension):
Definition: (Memory Cost) The memory cost D of a

model is given by the logarithm of the memory dimension,

i.e., D := log2 dim({sj}).
The number of (qu)bits required by the model’s mem-

ory system corresponds to the ceiling of this quantity.
For classical models, where the memory states must
all be orthogonal, the memory cost is simply given by
the (logarithm of the) number of memory states, i.e.,
D = log2 |{sj}|. Moreover, when statistically-exact sam-
pling of the future is required, a systematic prescription
for encoding the memory states with provably minimal
classical memory cost Dµ is known [9, 10].
Renewal processes [11] represent a particularly apt

class of stochastic process for studying the impact of
non-Markovianity in stochastic modelling. They gener-
alise Poisson processes to time-dependent decay rates. In
discrete-time, families of renewal processes with tunable
lengths of memory e↵ects can be constructed, provid-
ing a means of exploring how memory costs change as
non-Markovianity is increased [4, 12]. Renewal processes
consist of a series of ‘tick’ events (labelled “1”), stochas-
tically spaced in time; in discrete-time, timesteps where
no tick occurs are denoted “0”. The time between each
consecutive pair of events is drawn from the same dis-
tribution. Thus, a discrete-time renewal process is fully
characterised by a survival distribution �(n), codifying
the probability that two consecutive tick events are at
least n timesteps apart.
In this work we consider a family of renewal processes

with a periodically modulated decay (PMD) rate, which
we refer to as PMD processes. Their survival probabil-
ity takes the form �(n) = �n(1 � V sin2(n✓)), where
✓ := ⇡/N . Here, � represents the base decay factor
(i.e., the probability that the process survives to the next
timestep in the absence of modulation), V the strength
of the modulation, and N 2 N the period length.
For a general renewal process, the minimal memory

states are synonymous with the number of timesteps
since a tick event last occurred [12, 13], as the condi-
tional distribution for the number of timesteps until next
tick is unique for each n. However, due to the symme-
try of PMD processes the conditional distribution repeats
every N steps, and so the states group according to the
value of n mod N . Correspondingly, the minimal clas-
sical memory cost for statistically-exact modelling of a
PMD process is Dµ = log2 N .

Quantum models can push memory costs below clas-
sical limits [1, 2, 14] by encoding relevant past in-
formation into a set of quantum memory states (i.e.,
{sj} ! {|�ji}). By coupling the quantum memory sys-
tem with an ancilla probe (initialised in a ‘blank’ state
|0i) at each timestep, the output statistics can be im-
printed onto the probe state. See manuscript for details.

The memory cost of a quantum model is given by

the (logarithm of the) span of its memory states:
Dq = log2(dim({|�ji})). Thus, when these quantum
memory states are linearly dependent, Dq is less than
the corresponding classical cost [2, 3, 4]. Linear de-
pendence is central to quantum memory advantage: a
quantum model will still require 2Dµ di↵erent memory
states {|�ji} in one-to-one correspondence with the clas-
sical states, but when they are linearly dependent (such
that they span a Hilbert space of dimension 2Dq < 2Dµ),
a quantum memory advantage is achieved.
Result (Theory): For any PMD process, we can con-

struct a statistically-exact quantum model with memory

cost Dq  1.
See manuscript for proof of this statement. That is,

a statistically-exact quantum model can be constructed
for any PMD process that requires only a single qubit
memory. Crucially, this holds for any value of N , and so
while the classical memory cost will diverge with increas-
ing N , the quantum memory cost remains bounded. The
quantum memory advantage Dµ�Dq is thus scalable. In
the manuscript, we prescribe an explicit construction of
such a quantum model for any given PMD process.
Experimental Implementation. We implement these
memory-e�cient quantum models of PMD processes us-
ing a quantum photonic setup. We outline the setup here,
with full details given in the manuscript. The polarisa-
tion of a photon is used for the memory qubit, and the
ancilla(e) are encoded in its path degree of freedom.

An initial state preparation module is able to initialise
the memory qubit in an arbitrary pure state, together
with an initial vacuum state of the ancilla. This allows
us to initialise the model in the state |�ji|0i for any of
the memory states {|�ji}. Following this is the the sim-
ulation module – the key part of the model – where the
photon undergoes an evolution to produce the outputs
and updated memory state. At each timestep the pho-
ton passes through a series of optical components that
displaces the beam such that the path corresponds to
the outputs {0, 1}, and the polarisation is conditionally
rotated into the subsequent memory state for the next
timestep. Finally, a state tomography module enables us
to validate the performance of the model. By detecting
the final path of the photon the output statistics of the
model are manifest. Further, through tomographic re-
construction of the final polarisation of the photon (con-
ditional for each initial state and set of outputs) we are
able to verify the integrity of the final memory state,
which could in principle instead been used to produce
the outputs for further timesteps.

Our implementation runs the model for L = 2
timesteps. This is su�cient to witness the e↵ect of mem-
ory preserved across timesteps; the conditional distribu-
tion of the second output given the first changes based
on the initial memory state, indicating that information
contained within this initial state is propagated across
the simulation – i.e., that there is a persistent memory.
We modelled multiple PMD processes with base decay
factor � ranging from 0.49 to 0.64, period N from 3 to 8,
and modulation strength V = 0.4.
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(a) (b) (c) (d)

Figure 1: Distortion of single (qu)bit memory models. (a) KL divergence dKL of experimentally-obtained
statistics from our quantum models (orange) and lower bound on divergence of single bit distorted classical models
(yellow) for N = [3..8], � = 0.5, and V = 0.4. (b-d) Analogous plots for N = 3 (b), N = 4 (c), and N = 5 (d) with
varying �. Disks show quantum model distortion, solid lines the lower bound distortion of single bit classical models.

Experimental Results. We first verify that the out-
put statistics produced by our model are faithful to
the process. Outputs are determined by measurement
of the final path of the photon, each corresponding
to one of the four possible outputs for two timesteps
of the process {00, 01, 10, 11}. For each of parameter
ranges detailed above, and for each of the initial mem-
ory states {|�ji} we obtain O(106) coincidence events,
each corresponding to a single simulation run. We
use these to reconstruct the probability distributions
P̃ (x0x1|sj). We quantify the distortion of the statistics
using the Kullbach-Liebler (KL) divergence [15] between
experimentally-reconstructed and exact theoretical dis-
tributions (see maniscript). We find that the normalised
(per symbol) KL divergence dKL yielded a distortion be-
low 10�2 bits for all parameters simulated by our models.
Given this statistical distortion due to experimental

imperfections, it would be disingenuous to consider only
the memory cost of statistically-exact classical models.
In order to provide a fair comparison we compare the ac-
curacy we achieve to that of the least-distorted classical
models with the same memory cost D = 1 (i.e., one bit).
Specifically, we establish a lower bound on the smallest
distortion (according to the KL divergence) that can be
achieved by classical models with a single bit of memory
(see manuscript). This bound is plot together with the
distortion of our quantum models in Fig. 1, where we can
see that our quantum models in all cases have a smaller
distortion. That is, even accounting for the experimen-
tal imperfections of current quantum technologies, our
quantum models of PMD processes achieve a greater ac-
curacy than is possible with any classical model of the
same memory size. Note that the distortion in the classi-
cal models here is fundamental due to the constraints on
the memory size, while for the quantum case the distor-
tion is purely due to imperfect experimental realisation.
We also verify the integrity of the final memory state

at the end of our simulations. While we run our models
for L = 2 timesteps, in principle they can be run for an
arbitrarily-many timesteps given su�cient optical com-
ponents as the simulation updates the memory state at
each step. This continuation requires that the final mem-
ory state output by the model (i.e., the polarisation of

the photon) is faithful. By tomographic reconstruction
of the photon polarisation we can evaluate the infidelity
of the final memory state ⇢̃: I(⇢̃) = 1� h�k|⇢̃|�ki, where
|�ki is the requisite final memory state given the initial
state and outputs. We find that reconstructed final states
are highly faithful to their corresponding requisite states
(across all parameters simulated, a maximum infidelity
of 0.0212 was obtained), suggesting that our simulation
could be run for several more timesteps before the onset
of significant degradation in the statistics.
Discussion. We report the first experimental implemen-
tation of quantum simulators of non-Markovian stochas-
tic processes exhibiting memory advantages over optimal
classical counterparts. We modelled a family of stochas-
tic processes that have a tunable memory length, theo-
retically possessing a scalable quantum advantage. This
advantage is robust to experimental noise introduced by
our implementation, shown via comparison with bounds
on the smallest noise achievable with classical models of
the same memory cost.

The photonic setup in which we have implemented our
quantum models is well-suited to the task at hand. As
the circuit is fixed, the optical components can be finely
calibrated in advance to achieve much smaller errors than
typical of current universal quantum processors. Fur-
thermore, our setup can readily be modified to simulate
other non-Markovian stochastic processes; by adjusting
only single-qubit unitaries acting on photon polarisation
our setup can implement single-qubit-memory quantum
models (exact if possible, approximate otherwise [5]) of
any renewal process.

A further advantage of our quantum models is that
the outputs are not measured until the final step, up
until which the output system is in a weighted super-
position of the possible output strings [16]. This quan-
tum sample (‘q-sample’) state can be used as an input to
quantum algorithms for e.g., quantum-enhanced stochas-
tic analysis [17] with potential applications in financial
modelling [18, 19]. Quantum models of stochastic pro-
cesses have also been shown to exhibit other advantages
over classical models that can be explored, such as re-
duced thermal dissipation [20, 21].
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Abstract. The characterization of continuous-variable quantum states is crucial for applications in quan-
tum communication, sensing, and computing. However, a full characterization of multimode quantum
states requires a number of experiments that grows exponentially with the number of modes. Here we
propose an alternative approach where the goal is not to reconstruct the full quantum state, but rather to
estimate its characteristic function at a given set of points. For multimode states with reflection symmetry,
we show that the characteristic function at M points can be estimated using only O(logM) copies of the
state, independently of the number of modes. The number of copies can be further reduced to a constant
when the characteristic function is known to be positive, as in the case of squeezed vacuum states. In these
cases, the estimation is achieved by an experimentally friendly setup.

Keywords: continuous variable, shadow tomography, quantum state characterization

1 Introduction

Continuous-variable (CV) quantum systems [1, 2] are
an important platform for quantum computing, sim-
ulation, sensing and communication. A large body
of work has been devoted to the characterization of
CV quantum states, exploring a variety of techniques
including quantum tomography [3, 4], quantum com-
pressed sensing [5], quantum fidelity estimation [6], de-
tection of nonclassicality [7], certification of quantum
states [8, 9, 10, 11] and CV classical shadow tomogra-
phy [12, 13, 14]. Recently, classical machine learning
techniques have been applied to the characterization of
CV states [15, 16, 17, 18, 19, 20, 21].
The full characterization of a multimode quantum

state generally requires measurements on an exponen-
tial number of copies of the state, and therefore becomes
unfeasible when the number of modes is large. Here, we
explore an alternative approach, where the goal is not
to completely characterize the state, but rather to es-
timate its characteristic function at a finite number of
points. Having an estimate of the characteristic function
is important for estimating physical properties, such as
amount of nonclassicality [7], non-Gaussianity [16, 22], or
the fidelity with a given target state [6]. The character-
istic function is also important in the study of quantum
information scrambling in phase space [23], and its es-
timation is often used as the first step in experimental
schemes of CV state tomography [24, 25, 26].

2 Background

To get around the exponential complexity of quantum
state tomography, Huang et al. proposed classical shadow

⇤giulio@cs.hku.hk
†nana.liu@quantumlah.org

tomography [27], which has been recently extended to CV
quantum states [12, 13, 14]. When used to estimate the
expectation values of any of all 4n Pauli observables on
an n-qubit state, however, classical shadow tomography
still requires an exponential number of measurements.
To provide an e�cient estimate of all Pauli observables,
a quantum strategy using global measurements on mul-
tiple copies was then shown [28]. In the following we
will establish an analogue result for CV systems, with
the crucial di↵erence that instead of estimating the ex-
pectation values of an arbitrary set of observables, we
will estimate the values of the characteristic function at
an arbitrary set of phase space points.

Consider a k-mode quantum system, described by
the Hilbert space H

⌦k where each H is an infinite-
dimensional Hilbert space. A multimode displacement
operator is s unitary operator of the form D(↵) =

e↵â†�↵̄â, where ↵ = (↵1, . . . ,↵k) 2 Ck, â =
(â1, . . . , âk)>, â† = (â†1, . . . , â

†
k
)>, âj and â

†
j
are the anni-

hilation and creation operators for j-th mode, and satisfy

the canonical communication relations
h
âj , â

†
l

i
= �jl for

every j and l.
The characteristic function of a quantum state ⇢ is de-

fined as C⇢(↵) := tr[D(�i↵)⇢] [29]. It fully characterizes
the quantum state ⇢, which can be reconstructed with the
tomographic formula ⇢ = 1/⇡k

R
Ck d

2k↵C⇢(↵)D(i↵).
The Wigner function, often used to represent CV states,
can be obtained from the characteristic function via a
Fourier transform in phase space [30, 29, 31].

A simple way to estimate the characteristic function
at a specific point ↵ is to subject each mode j to a ho-
modyne measurement, i.e. a projective measurement of
the quadrature operator Q↵j := (↵j â

†
j
+ ↵j âj)/|

p
2↵j |.

From the value of the measurement outcome qj , one can
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then evaluate the empirical average of the exponential
exp[�i

P
k

j=1 qj |
p
2↵j |], which provides an estimate of

the characteristic function when averaged over many rep-
etitions of the measurement procedure. This approach is
commonly used in quantum state tomography due to its
ease of implementation [4]. On the other hand, it has
the obvious limitation that the sample complexity grows
linearly with the number of points where the character-
istic function is evaluated. In the following, we provide
an exponentially more e�cient method.

3 E�cient estimation of the characteris-
tic function

Our method applies to quantum states with reflection
symmetry, that is, quantum states ⇢ for which there ex-
ists a k⇥k unitary matrix U such that C⇢(↵) = C⇢(↵U)
for every vector of displacements ↵. In the single-
mode case, quantum states with reflection symmetry in-
clude important classes of states such as Gaussian states
with zero mean values, Fock states, Gottesman-Kitaev-
Preskill (GKP) states [32], Schrödinger cat states [33]
and binomial code states [34].
Our main result is the following theorem, which pro-

vides a method for estimating the characteristic function
of a multimode state with reflection symmetry. The sam-
ple complexity of our estimation strategy is independent
of the number of modes, and logarithmic in the number
of evaluation points.

Theorem 1 For every k-mode state ⇢ with reflection
symmetry, the values of the characteristic function C⇢(↵)
at M given points {↵i}

M

i=1 can be accurately estimated
using O(logM) copies, independently of k. Specif-
ically, O(1/✏4 log(M/�)) copies are su�cient to pro-

duce an estimate \C⇢(↵) that satisfies the condition

Prob
⇣
maxi

��� \C⇢(↵i)� C⇢(↵i)
��� > ✏

⌘
< � for any fixed

✏ > 0 and � > 0.

The theorem is based on two techniques, which are in-
teresting in their own right. The first technique allows
one to estimate the product C⇢(↵)C⇢(↵) for an arbitrary
CV state ⇢, without any assumption of reflection symme-
try. The measurements used in the estimation are exper-
imentally friendly, requiring only beamsplitters and ho-
modyne detections. The sample complexity of this strat-
egy is constant in the number of modes, and depends
only on the chosen error threshold:

Lemma 2 For every k-mode state ⇢, O(log(1/�)/✏2)
copies of ⇢ are su�cient to produce an esti-

mate \C⇢(↵)C⇢(↵̄) that satisfies the condition

Prob
⇣��� \C⇢(↵)C⇢(↵̄)� C⇢(↵)C⇢(↵̄)

��� > ✏

⌘
< � , 8↵ 2 Ck.

The protocol and its sample complexity are independent
of ↵.

In the single-mode case, the joint measurement is
achieved by a simple setup, illustrated in Fig. 1(a): The
product state ⇢⌦⇢ goes through a balanced beam splitter

Figure 1: (a) estimation of C⇢(↵)C⇢(↵) using a balanced
beam splitter and two homodyne measurements. (b) es-
timation of the characteristic function at M phase-space
points using global measurements, and (c) conventional
scenarios using single-copy measurements.

followed by two homodyne detections on the two ouput
modes, measuring on the spectral resolutions of the the
position operator x̂ := (â + â

†)/
p
2 and the momentum

operator p̂ := (â� â
†)/(

p
2i), respectively. Denoting the

two measurement outcomes by x and p respectively, we
have

hD(�i↵)⌦D(�i↵̄)i
⇢⌦⇢

= E
h
e�2i(Re(↵)x+Im(↵)p)

i
, (1)

where E denotes the expectation value over all possible
pairs (x, p) of measurement outcomes obtained in the ex-
periment.

For states with reflection symmetry, the estimation
of the product C⇢(↵)C⇢(↵̄) is equivalent to the estima-
tion of the square of the characteristic function C⇢(↵)2.
This fact is evident for states satisfying the condition
C⇢(↵̄) = C⇢(↵). For characteristic functions with re-
flection symmetry, the result in Lemma 2 can be used
to estimate the purity tr(⇢2) = 1/⇡2k

R
Ck d

2k↵|C⇢(↵)2|.
Lemma 2 has another important implication: if we know
that the characteristic function of the state is has re-
flection symmetry, and, in addition, is positive, then we
can estimate its value at M phase points with a constant
number of copies, independent of k and M .

Corollary 3 For every k-mode state ⇢ with reflection
symmetry and positive characteristic function, the val-
ues of the characteristic function at M given points can
be estimated from O(log(1/�)/✏2) copies using only beam-
splitters and homodyne measurements.

This result can be used to estimate the characteristic
function of squeezed vacuum states with known phase,
both in the single-mode and in the multimode scenario.

Let us consider now the general case where the char-
acteristic function can take arbitrary complex values. In
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this case, the square C⇢(↵)2 determines the value of the
characteristic function up to a sign. The second tech-
nique used in the derivation of Theorem 1 is a method
for identifying the correct sign of the characteristic func-
tion.

Lemma 4 Let ⇢ be a k-mode CV state and let {↵i}
L

i=1

be a set of phase space points satisfying the condition
|C⇢(↵i)| > ✏ for every i 2 {1, . . . , L}. Then, the signs of
all C⇢(↵i) can be estimated from O(1/✏2 log(L/�)) copies
of ⇢ with probability of error at most �.

Combining Lemma 2 and Lemma 4, we then obtain
Theorem 1. To estimate the characteristic function up
to error ✏, we first estimate its square C⇢(↵)2 up to error
O(✏2), using the technique provided by Lemma 2. This
step requires O(log(1/�)/✏4) copies of the state ⇢. We
then check whether the modulus of the estimate is close to
zero for the M values of interest. If

��� \C⇢(↵i)2
��� is less than

4✏2/9, we set the estimate of the characteristic function

to zero, namely \C⇢(↵i) = 0. Otherwise, we can estimate
the sign of the characteristic function. By Lemma 4, this
step consumes O(✏�2 log(M/�)).

4 Comparison with conventional scenar-
ios

Theorem 1 shows that the characteristic function at M
points can be accurately estimated using global measure-
ments on O(logM) copies of the state, as illustrated in
Figure 1(b). This setting is di↵erent from that of conven-
tional scenarios in which each copy of the state undergoes
an individual measurement [Figure 1(c)] Consider for ex-
ample the naive conventional scenario in which each copy
is used to estimate the value of the characteristic func-
tion value at one specific point. Intuitively, estimating M

di↵erent values in this naive setting will require a num-
ber of samples growing linearly in M , no matter what
kind of classical post-processing is done on the experi-
mental data. This intuition can be made rigorous using
the results of Ref. [28] on the complexity of learning point
functions. This result can be summarized in the following
proposition.

Proposition 5 For every reflection symmetric CV
state, the sample complexity of the estimation of the char-
acteristic function at M points up to a constant error
with high probability is at least ⌦(M) using individual
measurements in the naive scenario.

Our method also exhibits advantages over classical
shadow tomography. When used for estimating a set of
observables over a k-mode CV state, existing methods of
classical shadow tomography using homodyne measure-
ments [13, 14] have a sample complexity growing expo-
nentially with k, in contrast with the sample complexity
of our method, which is independent of k. Moreover,
classical shadow tomography approaches require a trun-
cation, either in Fock space or the phase space, which
is not necessary in our method for estimation of point
values of a state characteristic function.

5 Application: estimation of CV observ-
ables

Our method for estimating the characteristic function
can be used to estimate the expectation value of a variety
of CV observables. In general, the expectation value of
a k-mode observable O on a state ⇢ is given by the to-
mographic formula tr[O ⇢] =

R
d2k↵C⇢(↵)CO(�↵)/⇡k,

with C0(↵) := tr[OD(�i↵)] [31]. Now, sup-
pose that the observable satisfies the condition
|
R
↵/2A d2k↵C⇢(↵)CO(�↵)| < ✏/2 for some ✏ > 0

and some compact region A ⇢ Ck. For example, this
condition is satisfied if CO(↵) decays exponentially
with |↵|, as it happens e.g. when O is the fidelity
with a k-mode coherent state and the region A is
large compared to the amplitude of such state. In this
case, an estimate of the expectation value of O can
be obtained by randomly sampling M points inside
A and by estimating the characteristic function of ⇢

at these points. In the Supplemental Material, we
show that picking M = 16�2

M
|A|

2
/✏

2, where �
2
M

:=

1
M�1

P
M

i=1

⇣
\C⇢(↵i)CO(�↵i)�

1
M

P
M

i=1
\C⇢(↵i)CO(�↵i)

⌘2

and |A| is the volume of A, and estimating the charac-
teristic function with error ✏̃ = ✏/(4|A|) guarantees an
accurate estimate of tr[O⇢].

Corollary 6 The expectation value of a k-mode ob-
servable O on a state ⇢ can be estimated using
O
�
|A|

4
/✏

4 log(|A|
2
/(✏2�))

�
copies of ⇢ and the estimate

o := |A|
⇡2M

P
M

i=1
\C⇢(↵i)CO(↵i) satisfies the condition

Prob (|o� tr(⇢O)| & ✏) < �, where ⇠ comes from the ap-
proximation of estimation error of Monte Carlo integra-
tion.

Note also that the same randomly sampled points can
be used for multiple observables O, provided that all ob-
servables have a small contribution outside the region A.
Hence, the sample complexity of the estimation depends
on the region A, and is independent of the number of
observables.

6 Conclusions

We have shown that the characteristic function of a
multimode state with reflection symmetry can be esti-
mated at M points using O(logM) copies of the state,
independently of the number of modes. This contrasts
with the naive conventional scenario, where ⌦(M) copies
of ⇢ are required. For states with positive characteris-
tic function, such as squeezed vacuum states, the sample
complexity can be further reduced to a constant, inde-
pendent of the number of points and on the number of
modes. In this case, the estimation is achieved by an
experimentally-friendly setup that uses only beamsplit-
ters and homodyne measurements.

A full technical version of this work can be found via
the link https://arxiv.org/abs/2303.05097.
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Abstract. Gaussian boson sampling is a sampling task that has been used to experimentally demonstrate
quantum computational advantage. While a common critical weakness of the current Gaussian boson
sampling experiments is a large amount of photon loss, they are claimed to be hard to classically simulate
with the best-known classical algorithm even under the loss. In this work, we present a novel classical
algorithm that simulates Gaussian boson sampling and whose complexity can be significantly reduced
when the photon loss rate is large. The key observation is that due to the large photon loss, the actual
quantum resources are much smaller and thermal photons generated by photon loss are dominant and that
a tensor network method can take advantage of such a property. Using the proposed algorithm we simulate
the largest Gaussian boson sampling experiments in about 10 minutes, which was claimed to take 1010
years.

Keywords: Quantum computational advantage, Gaussian boson sampling, Algorithm

1 Introduction

Over the last few years, we have seen the first experi-
mental claims of quantum computational advantages us-
ing random circuit sampling [1, 2, 3] and Gaussian boson
sampling [4, 5, 6], which are proven to be hard under
plausible conjectures. Quantum advantage demonstra-
tion is not only a crucial step toward practical quantum
advantage but also a fundamental milestone as evidence
of violation of the extended Church-Turing thesis. An
important feature that characterizes the current quan-
tum experiments is uncorrected noise. Since the quan-
tum advantage demonstration has been implemented by
noisy quantum devices, it is imperative to understand
the e↵ect of noise on the complexity of the experiments.
Especially for Gaussian boson sampling, the main

source of noise is photon loss. Even though the state-of-
the-art Gaussian boson sampling has 0.5 to 0.7 loss rate
in the circuits, the experiments claimed that their exper-
iments cannot be simulated using classical algorithms in
a reasonable time, based on the best-known classical al-
gorithm [7]. A caveat is that many classical algorithms
simulating Gaussian boson sampling, including the best-
known classical algorithm, do not take advantage of such
a large amount of loss. Therefore, understanding the
complexity of the current experiments requires us to de-
velop a classical algorithm that fully takes advantage of
the e↵ect of loss.
In this work, we present a novel classical algorithm that

simulates the state-of-the-art Gaussian boson sampling in
a much more e�cient way than the existing algorithms
by exploiting the e↵ect of loss. The presented algorithm
is particularly e�cient when a loss rate is large, which is
the case for the current Gaussian boson sampling experi-
ments. The algorithm first separates the actual quantum

⇤changhun@uchicago.edu

resources of the output state of Gaussian boson sampling
from the classical resources. More specifically, due to
photon loss, many of photons from input squeezed states
become thermalized, so they do not contribute to the
exponential complexity; this property has not been em-
ployed in the existing classical algorithms in an e�cient
way to the best of our knowledge. Here, the quantum
resources are described again by a Gaussian boson sam-
pling circuit with a much smaller photon number, while
the classical part can be described by a Gaussian ran-
dom displacement channel (see Fig. 1). Our strategy is
to simulate the quantum part by using the matrix prod-
uct state (MPS), which is particularly useful method for
a system that has a slight entanglement [8]. Then since
the additional classical part can be implemented by lo-
cal operations, which does not increase entanglement, we
can e�ciently apply and sample. Using the proposed
algorithm, we simulate the largest Gaussian boson sam-
pling experiments so far, which claimed that it would
take 1010 years using the largest supercompter, in about
10 minutes.

2 Results

2.1 New classical algorithm for simulating Gaus-
sian boson sampling

We now present a decomposition of Gaussian boson
sampling’s output state, which is a crucial first step for
our classical algorithm. As mentioned before, our strat-
egy is to decompose the output state into the quantum
part and the classical part. To do that, we decompose
the output Gaussian state’s covariance matrix into two
parts as V = Vp + W , where Vp represents the covari-
ance matrix of a pure Gaussian state and W � 0. Here,
clearly, the covariance matrix Vp can be interpreted as
a pure quantum resource because it is composed of pure
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Figure 1: (a) Gaussian boson sampling circuit with pho-
ton loss with Gaussian input state ⇢̂in, which is, in the
standard setup, the product of squeezed vacuum states.
Using the decomposition introduced in the main text,
we decompose the output state as pure squeezed states
input followed by a beam splitter network and Gaussian
random displacement channel. Note that the random dis-
placement follows a Gaussian distribution which is gen-
erally correlated over di↵erent modes.

squeezed states and beam splitters. On the other hand,
the positive semidefinite matrix W can be interpreted
as a Gaussian random displacement because the initial
covariance matrix V can be obtained by applying Gaus-
sian random displacement characterized by the classical
covariance matrix W to the pure Gaussian state of its co-
variance matrix Vp. Since any pure Gaussian state with
the zero mean vector can be written as squeezed vac-
uum states followed by a beam splitter network, we can
always decompose the output state of Gaussian boson
sampling with photon loss as Fig. 1. More specifically,
for multimode Gaussian state’s covariance matrix V , we
can implement the procedure by using semidefinite pro-
gramming under the constraint:

min
Vp

Tr[Vp] with V � Vp � 0, Vp � i⌦, (1)

where the second constraint is to guarantee that Vp rep-
resents a proper physical Gaussian state’s covariance ma-
trix.
We now simulate the quantum part by using the matrix

product states (MPS). The MPS is a method of writing
a quantum state as a product of matrices:

| i =
d�1X

n1,··· ,nM=0

��1X

↵1,··· ,↵M�1=0

�[1]n1
↵1

�
[1]
↵1
�[2]n2
↵1↵2

�
[2]
↵2
⇥

· · ·�[M�1]
↵M�1

�[M ]nM
↵M�1

|n1, · · · , nM i, (2)

where d is the dimension of a local Hilbert space and � is
the bond dimension. Here, the bond dimension � deter-
mines the accuracy of the approximation and the compu-
tational cost. We provide a new method of constructing
an MPS of a Gaussian state. The idea is based on Ref. [8]
with using the fact that a marginal state of a Gaussian
state is still a Gaussian state and that a Gaussian state
can be easily diagonalized by Williamson decomposition.
After constructing the MPS of an output Gaussian state,
the remaining part is to apply random displacement and
perform a photon-number measurement. A crucial fact to
use the MPS is that a random displacement and photon-
number measurement are local operations, which do not
increase entanglement. As a result, this step is e�cient
as long as the MPS construction is e�cient.

Figure 2: XEB and two-point correlation function for (a)
Borealis M = 216 (low), (b) Jiuzhang2.0’s P65-1 with
M = 144, and (c) Jiuzhang2.0’s P65-2 with M = 144. It
clearly shows that our sampler attains comparable scores
for di↵erent benchmarks.

2.2 Asymptotic behavior of running time

We study the asymptotic behavior of running time of
our algorithm by investigating how the entanglement en-
tropy scales as system size and loss rate. Here, we pa-
rameterize the loss rate as ⌘ = O(K�), where K is the
number of squeezed states and 0  �  1 In particular,
we show that when � < 1/2, our proposed MPS algo-
rithm takes polynomial time in the number of squeezed
states K and the accuracy 1/✏. On the other hand, when
� > 1/2, we show that the MPS algorithm starts to take
superpolynomial time in the parameters. While it recov-
ers the existing results, it has a significant advantage over
other classical algorithms in that our algorithm can e�-
ciently improve the accuracy by increasing the running
time.

2.3 Simulation of the state-of-the-art Gaussian
boson sampling

We finally simulate the state-of-the-art Gaussian bo-
son sampling experiments by using the proposed classi-
cal algorithm. We first simulate the intermediate-scale
experiments and verify that our algorithm outperforms
the experiments by using the cross-entropy benchmark-
ing (XEB) and the two-point correlation method, which
is shown in Fig. 2. We show that for both benchmark-
ings, our choices of bond dimension � render comparable
scores.

For the largest Gaussian boson sampling experiments,
which were claimed in the quantum computational ad-
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vantage regime, we choose the bond dimension � = 10000
and demonstrate that the two-point correlation functions
of the MPS simulator recover more precisely than the ex-
periments, which is presented in Fig. 3. We also verify
that our MPS sampler can reproduce even higher-order
correlations better than the experiments. Therefore, all
the benchmarkings that were employed for demonstrat-
ing quantum computational advantage from experiments
can be outperformed by our new algorithm. Using the
simulation, we also observe that the connectivity of the
beam-splitter circuit is another important factor that
changes the running time of our algorithm. It can be un-
derstood by the fact that MPS’s cost is determined by the
entanglement, which gets larger as the circuit is deeper.
We emphasize that the experiments in Refs. [4, 5, 6]
claimed that for the hardest sample they experimentally
attained the largest supercomputer would take 109�1010

years using the best-known classical algorithm. However,
our classical sampler only takes less than 10 minutes us-
ing the number of GPUs which is the same as the num-
ber of modes. Therefore, it indicates that we have strong
evidence that our classical sampler implemented in a rea-
sonable time can outperform the existing Gaussian bo-
son sampling experiments and that to achieve a quantum
advantage, the experiments have to improve the trans-
mission rate, or the number of squeezers, or the noise
parameters.

3 Discussion

In summary, we have proposed a novel classical algo-
rithm that can simulate the state-of-the-art Gaussian bo-
son sampling experiments in a reasonable time using a
classical computer. Our new classical algorithm signif-
icantly pushes the boundary of quantum computational
advantages. In addition, our algorithm enables us to cap-
ture the main quantum resources in lossy Gaussian boson
sampling, which will guide future Gaussian boson sam-
pling experiments to demonstrate the quantum advan-
tage. One possible way to make our algorithm ine�cient
is to scale up the number of input squeezed states instead
of increasing the squeezing parameters. Another obvious
way is to improve the transmission rate. From the sim-
ulation, we also observe that circuit connectivity is an
important factor that decides the complexity because it
determines the entanglement of the output state. There-
fore, future experiments need to the connectivity su�-
ciently large so the output state has a large amount of
entanglement.
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Abstract. It is well known that certain artificial neural networks converge to Gaussian pro-
cesses in the limit of large number of neurons per hidden layer. In this work we prove an analogous
result for Quantum Neural Networks (QNNs). Namely, we show that the outputs of certain mod-
els based on Haar random unitary or orthogonal QNNs converge to Gaussian processes in the
limit of large Hilbert space dimension. Our theorems imply that the concentration of measure
phenomenon in Haar random QNNs is much worse than previously thought, as we prove that
expectation values and gradients concentrate exponentially in the Hilbert space dimension.

Keywords: Quantum computing, quantum machine learning, random quantum circuits

1 Introduction

Neural Networks (NNs) have revolutionized the
fields of Machine Learning (ML) and artificial intelli-
gence. Their tremendous success across many fields
of research in a wide variety of applications [1, 2]
is certainly astonishing. While much of this success
has come through heuristics, the past few decades
have witnessed a significant increase in our theoret-
ical understanding of their inner workings. One of
the most interesting results regarding NNs is that
fully-connected models with a single hidden layer
converge to Gaussian Processes (GPs) in the limit of
large number of hidden neurons, when the parame-
ters are initialized from independent and identically
distributed (i.i.d.) priors [3]. More recently, it has
been shown that i.i.d.-initialized, fully-connected,
multi-layer NNs also converge to GPs in the infinite-
width limit [4]. Furthermore, other architectures,
such as convolutional NNs [5], transformers [6] or re-
current NNs [7] are also GPs under certain assump-
tions. More than just a mathematical curiosity, the
correspondence between NNs and GPs opened up
the possibility of performing exact Bayesian infer-
ence for regression and learning tasks using wide
NNs [3].
With the advent of quantum computers, there

has been an enormous interest in merging quantum
computing with ML, leading to the thriving field of
Quantum Machine Learning (QML) [8, 9]. Rapid
progress has been made in this field, largely fueled
by the hope that QML may provide a quantum
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Figure 1: Schematic of our main results. It is
well known that certain classical NNs with Nh neu-
rons per hidden layer become GPs when Nh ! 1.
That is, given inputs x1 and x2, and correspond-
ing outputs y1 and y2, then the joint probability
P (y1, y2) is a multivariate Gaussian N (~0, ~⌃). In this
work, we show that a similar result holds under cer-
tain conditions for deep QNNs in the limit of large
Hilbert space dimension, d ! 1. Now, given quan-
tum states ⇢1 and ⇢2, C(⇢) = Tr[U⇢U †O] is such
that P (C(⇢1), C(⇢2)) = N (~0, ~⌃).

advantage in the near-term for some practically-
relevant problems.
In this work, we contribute to the QML body

of knowledge by proving that under certain con-
ditions, the outputs of deep Quantum Neural Net-
works (QNNs) – i.e., parametrized quantum circuits
acting on input states drawn from a training set–
converge to GPs in the limit of large Hilbert space
dimension (see Fig. 1). Our results are derived for

34



QNNs that are Haar random over the unitary and
orthogonal groups. Unlike the classical case, where
the proof of the emergence of GPs stems from the
central limit theorem, the situation becomes more
intricate in the quantum setting as the entries of the
QNN are not independent – the rows and columns
of a unitary matrix are constrained to be mutually
orthonormal. Hence, our proof strategy boils down
to showing that each moment of the QNN’s out-
put distribution converges to that of a multivariate
Gaussian. In addition, we show that in contrast to
classical NNs, the Bayesian distribution of the QNN
is ine�cient for predicting the model’s outputs. We
then use our results to provide a precise characteri-
zation of the concentration of measure phenomenon
in deep random quantum circuits [10, 11]. Here, our
theorems indicate that the expectation values, as
well as the gradients, of Haar random processes con-
centrate exponentially faster than reported in pre-
vious barren plateau studies [10, 11]. Finally, we
discuss how our results can be leveraged to study
QNNs that are not fully Haar random but instead
form t-designs, which constitutes a much more prac-
tical assumption [12, 13, 14].

2 Main results

We consider a setting where one is given repeated
access to a dataset D containing pure quantum
states {⇢i}i on a d-dimensional Hilbert space. We
will make no assumptions regarding the origin of
these states, as they can correspond to classical data
encoded in quantum states [29, 30], or quantum
data obtained from some quantum mechanical pro-
cess [31, 32]. Then, we assume that the states are
sent through a deep QNN, denoted U . While in gen-
eral U can be parametrized by some set of trainable
parameters ✓, we leave such dependence implicit for
the ease of notation. At the output of the circuit one
measures the expectation value of a traceless Her-
mitian operator taken from a set O = {Oj}j such
that Tr[OjOj0 ] = d�j,j0 and O2

j
= 1, for all j, j0 (e.g.,

Pauli strings). We denote the QNN outputs as

Cj(⇢i) = Tr[U⇢iU
†Oj ] . (1)

Then, we collect these quantities over some set of
states from D and some set of measurements from
O in a vector

C = (Cj(⇢i), ..., Cj0(⇢i0), . . . ) . (2)

What we show in this work is that, in the large-d
limit, C converges to a GP when the QNN unitaries

Figure 2: Two-dimensional GPs. We plot the
joint probability density function, as well as its
scaled marginals, for the measurement outcomes at
the output of a unitary Haar random QNN act-
ing on n = 18 qubits. The measured observable
is Oj = Z1, where Z1 denotes the Pauli z opera-
tor on the first qubit. Moreover, the input states
are: ⇢1 = |0ih0|⌦n and ⇢2 = |GHZihGHZ| with
|GHZi = 1p

2
(|0i⌦n+|1i⌦n), for the left panel; ⇢1 and

⇢3 = | ih | with | i = 1p
d
|0i⌦n +

q
1� 1

d
|1i⌦n for

the right panel. In both cases we took 104 samples.

U are sampled according to the Haar measure on
the degree-d unitary U(d) or orthogonal O(d) groups
(see Fig. 1). Moreover, we assume that when the
circuit is sampled from O(d), the states in D and
the measurement operators in O are real valued.
We prove convergence to GPs in three di↵erent

regimes (Theorems 1,2 and 3 in our manuscript,
linked below), depending on the overlaps between
input states in the training set D . Namely,
i) when the overlaps are such that Tr[⇢i, ⇢i0 ] 2

⌦(poly(log(d))) for all i, i0, ii) when Tr[⇢i, ⇢i0 ] =
1
d

for all i, i0, and iii) when Tr[⇢i, ⇢i0 ] = 0 for all i, i0.
We remark that in each of these di↵erent regimes,
the variables in the GP show positive, null and neg-
ative correlations respectively (see Fig. 2).
There are several corollaries that stem from our

main results. A first corollary is

Corollary 1 Let Cj(⇢i) be the expectation value of

a Haar random QNN as in Eq. (1). Then, for any

⇢i 2 D and Oj 2 O, we have

P (Cj(⇢i)) = N (0,�2) , (3)

where �2 = 1
d
, 2
d
for U(d) and O(d).
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This result shows that when a single state from
D is sent through the QNN, and a single operator
from O is measured, the outcomes follow a Gaussian
distribution with a variance that vanishes inversely
proportional with the Hilbert space dimension (see
Fig. 3).
A second corollary that we can prove is the fol-

lowing,

Corollary 2 Let Cj(⇢i) be the expectation value of

a Haar random QNN as in Eq. (1). Assuming that

there exists a parametrized gate in U of the form

e�i✓H
for some Pauli operator H, then

P (|Cj(⇢i)| � c), P (|@✓Cj(⇢i)| � c) 2 O

✓
1

cedc2
p
d

◆
.

Corollary 2 indicates that the QNN outputs, and
their gradients, actually concentrate with a proba-
bility which vanishes exponentially with d. In an
n-qubit system, where d = 2n, then P (|Cj(⇢i)| � c)
and P (|@✓Cj(⇢i)| � c) are doubly exponentially van-
ishing with n. The tightness of our bound arises
from the fact that Chebyshev’s inequality is loose for
highly narrow Gaussian distributions. Corollary 2
also implies that the narrow gorge region of the
landscape [15], i.e., the fraction of non-concentrated
Cj(⇢i) values, also decreases exponentially with d.
Another theorem that we prove in our work is the

following,

Theorem 4 Consider a GP obtained from a

Haar random QNN. Given the set of obser-

vations (y(⇢1), . . . , y(⇢m)) obtained from N 2

O(poly(log(d))) measurements, then the predictive

distribution of the GP is trivial:

P (Cj(⇢m+1)|Cj(⇢1), . . . , Cj(⇢m)) = P (Cj(⇢m+1)) = N (0,�2) ,

where �2
is given by Corollary 1.

Here, the observations are y(⇢i) = Cj(⇢i)+"i, where
the statistical noise terms "i (arising from finite sam-
pling) are independently drawn from the same zero-
mean Gaussian distribution. Theorem 4 shows that
by spending only a poly-logarithmic-in-d number of
measurements , one cannot use Bayesian statistical
theory to learn any information about new outcomes
given previous ones.

3 Conclusions and Outlook

In this manuscript we have shown that under
certain conditions, the output distribution of deep
Haar random QNNs converges to a Gaussian pro-
cess in the limit of large Hilbert space dimension.
While this result had been conjectured in [17], a

Figure 3: Probability density function for

Cj(⇢i), for Haar random QNNs and di↵erent

problem sizes. We consider unitary and orthogo-
nal QNNs with n-qubits, and we take ⇢i = |0ih0|⌦n,
and Oj = Z1. The colored histograms are built from
104 samples in each case, and the solid black lines
represent the corresponding Gaussian distributions
N

�
0,�2

�
, where �2 is given in Corollary 1. The

insets show the numerical versus predicted value of
E[Cj(⇢i)k]/E[Cj(⇢i)2]k/2. For a Gaussian distribu-
tion with zero mean, such quotient is k!

2k/2(k/2)!
(solid

black line).

formal proof was still lacking. We remark that al-
though our result mirrors its classical counterpart
–that certain classical NNs form GPs–, there exist
nuances that di↵erentiate our findings from the clas-
sical case. For instance, we need to make assump-
tions on the states processed by the QNN, as well
as on the measurement operator. Moreover, some of
these assumptions are unavoidable, as Haar random
QNNs will not necessarily always converge to a GP.
As an example, we have that if Oi is a projector
onto a computational basis state, then one recov-
ers a Porter-Thomas distribution [16]. Ultimately,
these subtleties arise because the entries of unitary
matrices are not independent. In contrast, classical
NNs are not subject to this constraint.
It is worth noting that our theorems have further

implications beyond those discussed here. We en-
vision that our methods and results will be useful
in more general settings where Haar random uni-
taries / t-designs are considered, such as quantum
information scramblers and black holes [18, 20, 19],
many-body physics [21], quantum decouplers and
quantum error correction [22].
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Link to the manuscript

https://arxiv.org/abs/2305.09957

References

[1] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-
Dujaili, Y. Duan, O. Al-Shamma, J. Santamaŕıa,
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Exponential quantum speedup in simulating coupled classical oscillators
Ryan Babbush1

1Google Quantum AI

Abstract. We present a quantum algorithm for simulating the classical dynamics of 2
n
coupled oscillators

(e.g., 2
n
masses coupled by springs). Our approach leverages a mapping between the Schrodinger equation

and Newton’s equation for harmonic potentials such that the amplitudes of the evolved quantum state

encode the momenta and displacements of the classical oscillators. When individual masses and spring

constants can be e�ciently queried, and when the initial state can be e�ciently prepared, the complexity of

our quantum algorithm is polynomial in n, almost linear in the evolution time, and sublinear in the sparsity.

As an example application, we apply our quantum algorithm to e�ciently estimate the kinetic energy of

an oscillator at any time. We show that any classical algorithm solving this same problem is ine�cient and

must make 2
⌦(n)

queries to the oracle and, when the oracles are instantiated by e�cient quantum circuits,

the problem is BQP-complete. Thus, our approach solves a potentially practical application with an

exponential speedup over classical computers. Finally, we show that under similar conditions our approach

can e�ciently simulate more general classical harmonic systems with 2
n
modes. This talk is based on the

paper arXiv:2303.13012.
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Abstract. Quantum error mitigation enables access to accurate expectation values even on existing, noisy
quantum computers. Establishing the applicability of these techniques at scales beyond those accessible
to brute force classical methods is a crucial step toward probing a computational advantage with near-
term noisy quantum computers. Here, we experimentally demonstrate the e�cacy of an error mitigation
technique, zero-noise extrapolation, for exactly verifiable Cli↵ord quantum circuits using up to 127 qubits.
The accuracy of the mitigated expectation values is greatly enhanced by novel advances in the coherence
of large-scale superconducting quantum processors, and the ability to controllably scale noise at this scale.
These experiments demonstrate an important tool for the realization of near-term quantum applications
in a pre-fault tolerant era.

Keywords: quantum error mitigation, zero noise extrapolation, IBM hardware, experiment

1 Motivation

While exciting demonstrations of quantum error cor-
rection have been made for recent years [1, 2, 3, 4], nu-
merous challenges remain to establish logical qubits at a
scale capable of tackling useful problems. This motivates
a search for near-term applications utilizing noisy quan-
tum computers. Recent development in error mitigation
techniques such as zero-noise extrapolation (ZNE) [5, 6]
have led to greatly improved accuracy of experimentally
measured observables. In this work, we further extend
ZNE, and improve its performance at scale by accurately
characterizing the device noise and manipulating it.

2 Summary of our results

We primarily focus on establishing the reliability of
the hardware and methods at su�cient scale, as an im-
portant first step before finding advantageous applica-
tions that fit the demonstrated circuit volume. Here, we
provide an evidence that we are producing accurate ex-
pectation values at a scale beyond direct diagonalization.
This is in itself particularly valuable since the majority of
near-term quantum algorithms reduce to the estimation
of expectation values.
Our benchmark circuit is the Trotterized time evolu-

tion of a 2D transverse-field Ising spin lattice, sharing the
topology of the qubit processor. Specifically, we consider
time dynamics of the Hamiltonian,

H = �J

X

hi,ji

ZiZj + h

X

i

Xi, (1)

where J > 0 is the coupling of nearest neighbor spins and
h is the global transverse field.

⇤These authors contributed equally to this work

Despite advances in coherence and gate calibration, the
measured expectation values are biased from their noise-
free values by noise over the duration of the circuit. We
therefore rely on ZNE to combine results from multiple
configurations of a noisy circuit to obtain an improved
estimate of an observable of interest, at an increased sam-
pling cost. ZNE requires the controlled amplification of
the intrinsic hardware noise by a known gain factor G

in order to extrapolate to the ideal G = 0 result. ZNE
has been widely adopted in part because amplification
methods based on pulse stretching [7, 5] or subcircuit
repetition [8, 9, 10] permit relatively simple implemen-
tations, though these often rely on certain simplifying
assumptions about the device noise. Pulse stretching,
for instance, has enabled estimates of expectation values
for 26-qubit circuits at a level competitive with certain
tensor-network calculations [6]. However, the ability to
learn and controllably amplify noise over a large device
can enable significant reductions in the bias of the ex-
trapolated estimators. This is precisely where the Pauli-
Lindblad noise model comes into play. Given the success
of Pauli-Lindblad noise learning in recent experiments,
we follow the characterization procedure in [11] to ob-
tain such a noise model for each CNOT layer. Applying
random Pauli twirls [12, 13, 14, 15, 16] to each layer of
noisy two-qubit gates simplifies the overall noise in that
layer, on average, to a Pauli channel. The noise charac-
terization then provides a decomposition of the obtained
Pauli channel as a set of local Pauli generators. Based
on the obtained noise model, we can amplify the noise
for ZNE by stochastic insertion of Pauli gates. Errors
inserted with appropriate probabilities e↵ectively realize
a second copy of the original Pauli channel. By tuning
the sampling probabilities, we enable precise, arbitrary
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scaling of the noise gain desired for extrapolation.
The above mentioned error scaling technique allows

us to deploy ZNE for a superconducting quantum pro-
cessor with 127 qubits to run quantum circuits with up
to 60 layers of 2-qubit gates comprising a total of 2,880
CNOT gates. First, we verify that the resulting expec-
tation values for local observables agree with the ideal
values for a set of Cli↵ord circuits permitting direct clas-
sical evaluation. We then evaluate the utility of running
these circuits, by turning to circuit regimes and observ-
ables where classical simulation becomes challenging, and
compare to the results from state-of-the-art approximate
classical methods.

3 Conclusion

In conclusion, the observation that even noisy quan-
tum processors at a scale beyond 100 qubits and signif-
icant circuit depth are able to produce reliable expecta-
tion values provides us with strong evidence that there
is a path to useful quantum computation prior to the
advent of full fault tolerance. We have now reached reli-
ability at a scale where one will be able to verify proposals
that utilize noise limited quantum circuits, and explore
new approaches to determine which can provide optimal
utility of noisy quantum computers.
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Estimate distillable entanglement and quantum capacity by squeezing
useless entanglement
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Abstract. We propose methods for evaluating the distillable entanglement and the quantum capacity
by squeezing out useless entanglement within a state or a quantum channel. We first consider a general
resource measure called the reverse divergence of resources to quantify the minimum divergence between a
target state and the set of free states. We then introduce the reverse max-relative entropy of entanglement
and apply it to establish e�ciently computable upper bounds on the distillable entanglement. We also
extend the reverse divergence of resources to quantum channels and derive upper bounds on the quantum
capacity. Our method has practical applications for purifying maximally entangled states under practical
noises, such as depolarizing and amplitude damping noises, leading to improvements in estimating the
one-way distillable entanglement. Our bounds also o↵er useful benchmarks for evaluating the quantum
capacities of qubit quantum channels of interest, including the Pauli channels and the random mixed
unitary channels. Note: A technical version of this work is attached.

Keywords: Distillable entanglement, quantum capacity, quantum resources, extendibility.

Background. In quantum entanglement theory, the
golden resource is usually assumed to be ideal copies
of the maximally entangled states. In a practical sce-
nario, noises inevitably occur in quantum states, result-
ing in some mixed entangled states. This naturally raises
the question of how to obtain the maximally entangled
states from a source of less entangled states using well-
motivated operations, known as the entanglement distil-

lation.
One fundamental measure for characterizing the en-

tanglement distillation is the one-way distillable entan-

glement [1], denoted by ED,!. It captures the highest
rate at which one can obtain the maximally entangled
states from less entangled states by one-way local opera-
tions and classical communication (LOCC):

ED,!(⇢AB) = sup{r : lim
n!1

[inf
⇤

k⇤(⇢⌦n
AB)��(2rn)k1] = 0},

where ⇤ ranges over one-way LOCC operations and
�(d) = 1/d

Pd
i,j=1 |iiihjj| is the standard d⌦dmaximally

entangled state. Likewise, the two-way distillable entan-

glement ED,$(⇢AB) is defined by the supremum over all
achievable rates under two-way LOCC. We have for all
bipartite states ⇢AB that ED,!(⇢AB)  ED,$(⇢AB). No-
tably, the distillable entanglement is closely connected
to the fundamental notion of quantum capacity in quan-
tum communication tasks [2], which is central to quan-
tum Shannon theory. Consider modeling the noise in
transmitting quantum information from Alice to Bob
as a quantum channel NA!B . The quantum capacity
Q(NA!B) is the maximal achievable rate at which Al-
ice can reliably transmit quantum information to Bob by
asymptotically many uses of the channel.
Despite many e↵orts that have been made in the past

two decades, computing ED,!(·) and Q(·) still generally
remains a challenging task. Therefore, numerous stud-
ies try to estimate them by deriving lower and upper
bounds (see, e.g., [1, 3–8] for the distillable entanglement,
e.g., [9–12] for the quantum capacity). For the distil-
lable entanglement, a well-known lower bound dubbed

Hashing bound is established by Devetak and Winter [1].
Considering upper bounds, the Rains bound [3] is ar-
guably the best-known e�ciently computable bound for
the two-way distillable entanglement of general states.
Recent works [6, 8] utilize the techniques of finding up-
per bounds by constructing meaningful extended states.
For quantum capacity, many useful upper bounds for
general quantum channels are studied for benchmarking
arbitrary quantum noise [13–20]. Useful upper bounds
are also developed to help us better understand quantum
communication via specific channels [8, 10–12, 21–23].

In specific, due to the regularization in the characteri-
zations of ED,!(·) and Q(·), one main strategy to estab-
lish e�ciently computable upper bounds on them is to de-
velop single-letter formulae. For example, a common ap-
proach is to decompose a state (resp. a quantum channel)
into degradable parts and anti-degradable parts [11], or
use approximate degradability (anti-degradability) [14].
Another recent fruitful technique called flag extension
optimization [8, 10, 12] relies on finding a degradable
extension of the state or the quantum channel. However,
the performance of these methods is limited by the ab-
sence of a good decomposition strategy. It is unknown
how to partition a general state or quantum channel to
add flags or how to construct a proper and meaningful
convex decomposition on them. Thus, the flag extension
optimization is only e↵ective for the states and channels
with symmetry or known structures.

Overview of Results. This work aims to derive up-
per bounds for the distillable entanglement of a general
state and the quantum capacity of a noisy channel. To
achieve this, we explore a family of resource measures
known as the ”reverse divergence of resources” and in-
troduce multiple variants within this framework. In par-
ticular, we establish the following:

• We introduce reverse max-relative entropy of

entanglement for quantum states, which can be
e�ciently computed via semidefinite programming
(SDP) [24] and has applications for estimating the
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distillable entanglement.

• We introduce reverse max-relative entropy of

anti-degradability for quantum channels, which
can be e�ciently computed via SDP and applied to
bound the quantum capacity.

• We investigate the distillation of the maximally
entangled states under practical noises. We show
that the bound obtained by the reverse max-
relative entropy of entanglement outperforms other
known computable bounds for general states in a
high-noise region, including the Rains bound and
the anti-degradability continuity bounds.

• We study the quantum capacity of qubit chan-
nels. The upper bound o↵ered by the reverse max-
relative entropy of anti-degradability provides an
alternative interpretation of the no-cloning bound
of the Pauli channel [21], and notably outperforms
the continuity bounds on random unital qubit chan-
nels.

Main Methods. In this paper, we mainly study a
measure called reverse max-relative entropy of resources,

Rmax,F (⇢AB) := min
⌧2F

Dmax(⌧AB ||⇢AB), (1)

where F is some set of free states, Dmax is the max-

relative entropy [25] of ⇢ with respect to �: Dmax(⇢||�) =
inf{� 2 R : ⇢  2��}. This measure can be e�ciently
computed via SDP in many cases and gives the clos-
est free state ⌧AB 2 F to ⇢AB , w.r.t. the max-relative
entropy. In fact, Rmax,F (⇢AB) is closely related to the
weight of resource W (⇢AB) [26–29] and the free compo-

nent �(⇢AB) [30], both of which have fruitful properties
and applications [31–33], as follows

2�Rmax,F (⇢AB) = 1�W (⇢AB) = �(⇢AB). (2)

We note that each part of Eq. (2) quantifies the largest
weight where a free state can take in a convex decompo-
sition of ⇢AB . When moving on to operational tasks that
the free state can be ignored, what is left in a convex
decomposition becomes our main concern. Optimization
of the weight in the decomposition can be visualized as
squeezing out all free parts of the given state. Thus, we
further introduce the F-squeezed state of ⇢AB as follows.

Definition 1 For a bipartite quantum state ⇢AB and a

free state set F , if Rmax,F (⇢AB) is non-zero, the F-

squeezed state of ⇢AB is defined by

!AB =
⇢AB � 2�Rmax,F (⇢AB)

· ⌧AB

1� 2�Rmax,F (⇢AB)
, (3)

where ⌧AB is the closest free state to ⇢AB in terms of the

max-relative entropy, i.e., the optimal solution in Eq. (1).
If Rmax,F (⇢AB) = 0, the F-squeezed state of ⇢AB is itself.

Next, we illustrate the applications of Rmax,F (⇢AB) and
the concept of squeezing in determining upper bounds for
the distillable entanglement and quantum capacity.

Distillable Entanglement. Our first contribution
is to introduce the reverse max-relative entropy of unex-

tendible entanglement :

Rmax,ADG(⇢AB) := min
⌧2ADG

Dmax(⌧AB ||⇢AB), (4)

where ADG is the set of all anti-degradable (extendible)
states. Combined with the idea of entanglement of for-
mation, we apply Rmax,ADG(⇢AB) to establish an upper
bound on the one-way distillable entanglement of an ar-
bitrary state ⇢AB as shown in Theorem 2.

Theorem 2 For any bipartite state ⇢AB, it satisfies

ED,!(⇢AB)  Eu
rev(⇢AB) := [1�2�Rmax,ADG(⇢AB)]·EF (!AB),

where !AB is the ADG-squeezed state of ⇢AB, EF (·) is

the entanglement of formation.

Thanks to the essential convexity of ED,!(·) on decom-
posing a state into degradable and anti-degradable parts,
the main insight of our method is to squeeze out as much
of the free or useless part, the anti-degradable state here,
as possible. We note Rmax,ADG(⇢AB) can be e�ciently
computed via SDP and EF (!AB) has a trivial upper
bound as EF (!AB) 

P
i �iS(B) i where S(B) i is the

von Neumann entropy of | ii. Then we obtain an e�-
ciently computable bound as Corollary 3.

Corollary 3 For any bipartite state ⇢AB, it satisfies

ED,!(⇢AB)  Êu
rev(⇢AB)

:= [1� 2�Rmax,ADG(⇢AB)] ·
X

�iS(B) i ,

where !AB =
P

i �i| iih i| is the spectral decomposition

of the ADG-squeezed state !AB of ⇢AB.

Also, after choosing the free states to be the states
with positive partial transpose (PPT), we introduce the
reverse max-relative entropy of NPT entanglement :

Rmax,PPT(⇢AB) := min
⌧2PPT

Dmax(⌧AB ||⇢AB). (5)

This helps to give an upper bound on the two-way distil-
lable entanglement as Theorem 4.

Theorem 4 For any bipartite state ⇢AB, it satisfies

ED,$(⇢AB)  Enpt
rev (⇢AB) := [1�2�Rmax,PPT(⇢AB)]·EF (!AB),

where !AB is the PPT-squeezed state of ⇢AB.

It also follows an easily computable relaxation Ênpt
rev (·) as

that in Corollary 3. Remarkably, for the example states
illustrated in [6], our bound tightens the approximation
of the upper bound EMP(·) presented in [6].

Quantum Capacity. Our second contribution is
to introduce the reverse max-relative entropy of anti-

degradability for a quantum channel NA!B :

eRmax,ADG(NA!B) := min
N 0

A!B2CADG

Dmax(N
0
||N ), (6)
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Figure 1: Upper bounds on the one-way distillable entanglement of less entangled states. The x-axis
represents the change of the depolarizing noise p. The state’s coherent information Ic provides a lower bound. R is
the Rains bound. Êu

rev is the upper bound derived in Corollary 3. ESCB and EMCB are continuity bounds that can be
found in the full version. It shows that Êu

rev outperforms all other upper bounds on these less entangled states.

where CADG is the set of all anti-degradable channels and
the max-relative entropy ofN 0

A!B with respect toNA!B

is given by Dmax(N 0
A!B ||NA!B) := inf{� 2 R : JN 0

AB 

2�JN
AB}. We then introduce the ADG-squeezed channel

of NA!B in Definition 5 and use these ideas to derive an
upper bound on the quantum capacity in Theorem 6.

Definition 5 For a quantum channel NA!B and the

anti-degradable channel set CADG, if eRmax,ADG(N ) is

non-zero, the ADG-squeezed channel of NA!B is defined

by

SA!B =
NA!B � 2�

eRmax,ADG(N )
· N

0
A!B

1� 2� eRmax,ADG(N )
(7)

where N
0
A!B is the closest anti-degradable channel to

NA!B in terms of the max-relative entropy, i.e., the op-

timal solution in Eq. (6). If eRmax,ADG(N ) is zero, the

ADG-squeezed channel of NA!B is itself.

Theorem 6 Given a quantum channel NA!B, if it

has an ADG-squeezed channel SA!B, we denote

bSA!BB0 as an extended channel of SA!B such that

TrB0 [ bSA!BB0(⇢A)] = SA!B(⇢A), 8⇢A 2 D(HA). Then

it satisfies

Q(N )  Qsqz(N ) := [1� 2�
eRmax,ADG(N )]·

min
n
Q(1)( bS)| bSA!BB0 is degradable

o
,

(8)

where the minimization is over all possible extended chan-

nels of SA!B. If there is no such a degradable bSA!BB0

exists, the value of this bound is set to be infinity.

Notably, eRmax,ADG(N ) can be e�ciently computed via
SDP. For qubit quantum channels, we prove that the
ADG-squeezed channel is always degradable. As a re-
sult, we obtain an e�ciently computable upper bound
on the quantum capacity of qubit channels as shown in
the full version.

Applications to cases of interest. Our third con-
tribution involves examining specific examples of various

less entangled states and qubit channels. We demon-
strate the advantages of our bounds in evaluating the
distillable entanglement and the quantum capacity, com-
pared with previous computable bounds. First, suppose
Alice and Bob are sharing pairs of maximally entangled
states a↵ected by bi-local noisy channels, i.e.,

⇢A0B0 = NA!A0 ⌦NB!B0(�AB). (9)

With regard to the amplitude damping channel and the
depolarizing channel acting on Alice and Bob respec-
tively, our bound outperforms the Rains bound [3] and
di↵erent continuity bounds in a high-noise region in dif-
ferent dimensional systems, as shown in Fig. 1.

For the quantum capacity of noisy channels, we com-
pare the performance of our method with some best-
known computable bounds, e.g., the continuity bound in
Theorem [34] and the bound R̂↵ [20] generalized from
the max-Rain information [17], using the mixed uni-

tary channel UA!B(·) as U(⇢) =
Pk

i=0 piUi⇢U
†
i , wherePk

i=0 pi = 1 and Ui are unitary operators on a qubit
system. For many instances, our bound can outperform
the continuity bound of anti-degradability and achieve
comparable results to R̂↵ shown in the full version.

In particular, a qubit Pauli channel ⇤(·) is defined as
⇤(⇢) = p0⇢ + p1X⇢X + p2Y ⇢Y + p3Z⇢Z, where X,Y, Z
are the Pauli operators and

P3
i=0 pi = 1 are probabil-

ity parameters. Our method can recover the no-cloning
bound [21] on the quantum capacity of qubit Pauli chan-
nels. Moreover, recent work [35] studies the capacities of
a subclass of Pauli channels called the covariant Pauli

channel, where the parameters are set p1 = p2 with
p0+2p1+p3 = 1, i.e., ⇤cov(⇢) = p0⇢+p1(X⇢X+Y ⇢Y )+
p3Z⇢Z. We compare our bound with the upper bounds
given in [35], as well as the previous computable bounds
shown in the full version Part.IV. It can be seen that
our bound, coinciding with the no-cloning bound, out-
performs other bounds in certain regions, and thus can
better characterize the quantum capacity of ⇤cov(·) when
it is in proximity to being anti-degradable.
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Pekka Pellonpää, and Nicolas Brunner. All Quan-
tum Resources Provide an Advantage in Exclusion
Tasks. Physical Review Letters, 125(11):110402, sep
2020. ISSN 0031-9007. doi: 10.1103/PhysRevLett.
125.110402. URL https://link.aps.org/doi/10.
1103/PhysRevLett.125.110402.

[30] Kun Fang and Zi-Wen Liu. No-Go Theorems for
Quantum Resource Purification: New Approach and
Channel Theory. PRX Quantum, 3(1):010337, mar
2022. ISSN 2691-3399. doi: 10.1103/PRXQuantum.
3.010337. URL https://link.aps.org/doi/10.
1103/PRXQuantum.3.010337.

[31] Bartosz Regula and Ryuji Takagi. Fundamental
limitations on distillation of quantum channel re-
sources. Nature Communications, 12(1), jul 2021.
doi: 10.1038/s41467-021-24699-0. URL https://
doi.org/10.1038%2Fs41467-021-24699-0.

[32] Bartosz Regula, Ludovico Lami, and Mark M
Wilde. Overcoming entropic limitations on asymp-
totic state transformations through probabilistic
protocols. arXiv preprint arXiv:2209.03362, 2022.

[33] Bartosz Regula, Ludovico Lami, and Mark MWilde.
Postselected quantum hypothesis testing. arXiv

preprint arXiv:2209.10550, 2022.

[34] David Sutter, Volkher B. Scholz, Andreas Win-
ter, and Renato Renner. Approximate degradable
quantum channels. IEEE Transactions on Infor-

mation Theory, 63(12):7832–7844, dec 2017. doi:
10.1109/tit.2017.2754268.

[35] Abbas Poshtvan and Vahid Karimipour. Capac-
ities of the covariant pauli channel. Physical

Review A, 106(6):062408, 2022. doi: 10.1103/
physreva.106.062408. URL https://doi.org/10.
1103%2Fphysreva.106.062408.

46

http://ieeexplore.ieee.org/document/4608993/
http://ieeexplore.ieee.org/document/4608993/
https://www.sciencedirect.com/science/article/pii/037596019290952I
https://www.sciencedirect.com/science/article/pii/037596019290952I
https://link.aps.org/doi/10.1103/PhysRevLett.80.2261
https://link.aps.org/doi/10.1103/PhysRevLett.80.2261
https://link.aps.org/doi/10.1103/PhysRevLett.125.110401
https://link.aps.org/doi/10.1103/PhysRevLett.125.110401
https://link.aps.org/doi/10.1103/PhysRevLett.125.110402
https://link.aps.org/doi/10.1103/PhysRevLett.125.110402
https://link.aps.org/doi/10.1103/PRXQuantum.3.010337
https://link.aps.org/doi/10.1103/PRXQuantum.3.010337
https://doi.org/10.1038%2Fs41467-021-24699-0
https://doi.org/10.1038%2Fs41467-021-24699-0
https://doi.org/10.1103%2Fphysreva.106.062408
https://doi.org/10.1103%2Fphysreva.106.062408


Limitations and optimizations of quantum computing
in the presence of resource constraints

Marco Fellous-Asiani
1

Jing Hao Chai
2 1

Robert S. Whitney
3

Alexia Au↵èves
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Abstract. Fault-tolerant quantum computing is the only known route to bring our present-day small
and noisy devices to large-scale ones capable of accurate computation for useful problems. In current
experiments, however, physical resource constraints (e.g., energy, space, bandwidth, etc.) place significant
limitations in the attainable computational accuracy. In a series of two papers [1, 2], we discuss the
performance of quantum computers in the presence of resource constraints, and demonstrate how to make
the best use of available resources to achieve a target accuracy. Our study highlights the power of a full-
stack, user-to-experimenter, analysis that accounts for all physical and computational elements that enter
a large-scale quantum computer.

Keywords: Fault-tolerant quantum computing, full-stack quantum computers, implementations

1 Introduction

With the advent of small-scale quantum computing de-
vices from companies like IBM, and the myriad software
and hardware quantum startups, the interest in realising
quantum computers is at an all-time high. While we hope
for small quantum advantages in NISQ-era devices, the
central question is still “how do we make our quantum
computers more powerful?” The answer is, of course, to
have larger quantum computers. But larger also usually
means noisier, with more fragile quantum components
that can go wrong, leading to more computational errors.
The standard way out of this conundrum is fault-tolerant
quantum computation (FTQC), the only known route to
scaling up quantum computers while keeping errors in
check.
FTQC schemes have been known since the early days

of the field, and remain an active field of research, espe-
cially with the more recent discussions of experimentally
feasible surface codes. Underlying all FTQC schemes are
basic assumptions about the nature of the quantum de-
vices and the noise a✏icting them. Many of these as-
sumptions, laid down long before experimental devices
came about, were based on general physical expectations
not specific to any one implementation. As we learn more
about the shape of quantum computers to come, it is im-
portant to re-visit those assumptions, to update them to
properly describe real devices, so that the schemes re-
main relevant to our progress towards large-scale, useful
quantum computers.
FTQC tells us, for a fixed problem size, how to im-

prove computational accuracy by increasing the number
of physical qubits and gates—and hence the physical size
or scale of the quantum computer—spent on implement-
ing the computation. Every known FTQC scheme relies

⇤huikhoon.ng@nus.edu.sg

on quantum error correction (QEC) to remove errors, us-
ing more and more powerful codes to remove more and
more errors, accompanied by a prescription to avoid un-
controlled spread of errors as the computer grows. One
key assumption is that the physical error probability (or
more generally, the strength) ⌘—the maximum proba-
bility that an error occurs in a physical qubit or gate—
remains constant as the computer scales up in size. If ⌘
grows as the computer grows, we cannot expect to keep
up with the rapid accumulation of errors.

Unfortunately, the growth of ⌘ with scale is observed
in current quantum devices. For example, in ion-trap
experiments, the gate fidelity drops rapidly if more and
more ions are put into the same trap; this is the mo-
tivation behind the push for networked ion traps and
flying qubits to communicate between traps (see, for ex-
ample, [3]). Another example is provided by qubits that
are coherently controlled, by resonantly addressing their
transition. Here a limit on the total available driving
power results in lower gate fidelity, if many gates have
to be done simultaneously [4]. This e↵ect can also oc-
cur simply because qubit transition frequencies are too
close for the available physical separation: Qubits may
be placed closer together as we scale up, giving rise to
greater cross-talk between qubits when doing individual
gates [5]. All these are, of course, indicators of how cer-
tain aspects of current technology are not yet fully scal-
able, but such practical di�culties are likely to remain in
near- to middle-term devices.

This reality of the growth of physical error probability
as the computer scales up in size brings into complex in-
terplay two parts of building a quantum computer: On
the one side, we have the computational accuracy we
want to achieve; on the other side, we have the e↵ects
of noise and our attempts, using limited resources, to
control it. With constrained resources, we find a limit to
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the attainable computational accuracy even if we make
use of FTQC procedures that promises arbitrarily accu-
rate computation but only if physical error probability
remains scale-independent. Our Paper [1] examines this
limitation in various contexts, from toy models to more
realistic cross-talk situations. On the flip side, with the
recognition that we need only achieve some target ac-
curacy for some given algorithm we want to run on the
quantum computer, we can instead talk about minimiz-
ing the physical resource cost—e.g., number of physi-
cal qubits used, the total energy usage, physical volume,
etc.—to achieve the desired computation. Our Paper [2]
discusses this optimization angle using a full-stack super-
conducting quantum computer as the illustrative exam-
ple. We refer the reader to the full articles for further
details. Below, we highlight some of the lessons learned.

2 Some highlights

The toy model defined in Paper [1], though simple, al-
ready brings out the qualitative nature of the limits to
computational accuracy in the presence of physical error
probability that grows with scale, or “scale-dependent
noise” for short. Making use of the concrete FTQC
scheme of Aliferis et al. [6], built by concatenating the
7-qubit quantum error correcting code, we show how the
standard quantum accuracy threshold theorem—a cor-
nerstone result that says that arbitrarily accurate quan-
tum computation is attainable by scaling up the size of
the physical computer once the noise is below a threshold
level—no longer holds. Fig. 1 depicts the typical situa-
tion: As the computer scales up (quantified here by
the concatenation level k in the fault tolerance scheme),
rather than having the accuracy of the computer
(quantified here by the error per logical gate operation)
increase monotonically without limit as in stan-
dard fault tolerance, scale-dependent noise re-
sults in a turnaround of the computational accu-
racy after reaching a maximum, or, equivalently,
a minimum error.
With the violation of a basic assumption of fault tol-

erance theory, that the standard threshold theorem fails
should come as no surprise. What is startling is how early
its failure can set in, and how easily such conditions can
arise in real experiments. In one of our examples (see
Sec. IVA in Paper [1]), for error correction to even be
useful, we require a condition on the physical error prob-
ability that is 105 smaller than the usual fault-tolerance
threshold condition. This highlights the areas of current
weakness that demand further study, if we want to con-
tinue on the road to genuinely useful quantum computers.
The close link between computational accuracy and

our attempts to control noise by investing more phys-
ical resources o↵ers the possibility of estimating and
optimizing the resource use, to attain a specific target
computational accuracy for a given algorithm. This is
what is done in our Paper [2], using superconducting
qubit devices as the central example. One of the tasks
we examine is to optimize the power cost to crack the
RSA public-key cryptographic system using Shor’s fac-
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Figure 1: (Taken from Fig. 3 of Paper [1].) A schematic
diagram depicting the conventional situation (black dot-
ted lines) where the physical error probability ⌘ is inde-
pendent of the physical size—quantified by the “concate-
nation level k” of the 7-qubit FTQC scheme—of the com-
puter, and our current consideration where ⌘ grows with
k (red solid lines, each for a di↵erent value of p(0) ⌘ ⌘). If
⌘ is scale-independent, standard fault tolerance analysis
says that the error per logical gate p(k)—quantifying the
computational accuracy—can be brought as close to 0 as
desired by increasing k, provided one starts below the
threshold (solid horizontal line) at k = 0. If ⌘ depends
on k, even if one starts below the threshold, p(k) eventu-
ally turns around for large enough k; p(k) cannot reach
0, there is a maximum concatenation level, and further
increase in k only increases the logical error.

toring algorithm. Such an analysis requires a com-
plete model of the full-stack quantum computer
protected by fault-tolerant quantum error cor-
rection, necessarily drawing on a wide range of exper-
tise on computational-theoretical knowledge to physical-
experimental details. Figure 2 illustrates the level of
detailed description of the physical and FTQC pieces
used in our analysis. Our optimization is able to give
the experimental settings, including operating tempera-
tures and attenuation levels for the di↵erent classical and
quantum physical layers, that minimize the power cost.
We discuss this for the 7-qubit FTQC scheme of [6] as
well as for the currently popular surface-code approach.
In addition, we observe surprising behaviors that
could not have easily been predicted without a di-
rect computational-physical link as we have used
here, including regimes of energetic advantage for quan-
tum computers without a speed advantage over classical
computers; see Fig. 3. In some cases, the optimization of
the computer design can reduce the power bill by orders
of magnitude.

Our analysis can be applied to a wide array of quan-
tum computing platforms. The conclusions provide bet-
ter clarity on areas of practical constraints that can af-
fect computational accuracy, and give design guidance to
experimentalists striving towards resource-e�cient quan-
tum devices.
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Figure 2: (Taken from Figs. 8 & 9 of Paper [2].) The
full-stack quantum computing system considered in our
work: (a) shows the physical system, including the clas-
sical electronics and cryogenic stages in addition to the
quantum layer at the bottom; (b) shows the 7-qubit-code
concatenated FTQC scheme. The comprehensive analy-
sis in our work requires a detailed model of every aspect of
the quantum computing system. Such an analysis yields
results that cannot be easily deduced from more sim-
plistic modeling that neglects the close ties between the
physical and algorithmic aspects. We consider mainly
the 7-qubit code FTQC scheme of Ref. [6] due to its the-
oretical simplicity; however, we also discuss the situation
of the currently popular surface-code scheme. See full
details in Paper [2].
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49



References

[1] Marco Fellous-Asiani, Jing Hao Chai, Robert S.
Whitney, Alexia Au↵èves, and Hui Khoon Ng. Lim-
itations in quantum computing from resource con-
straints. PRX Quantum, 2:040335, Nov 2021.

[2] Marco Fellous-Asiani, Jing Hao Chai, Yvain Thon-
nart, Hui Khoon Ng, Robert S. Whitney, and Alexia
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Theory of bipartite entanglement shares profound similarities with thermodynamics. In this letter

we extend this connection to multipartite quantum systems where entanglement appears in different

forms with genuine entanglement being the most exotic one. We propose thermodynamic quantities

that capture signature of genuineness in multipartite entangled states. Instead of entropy, these quan-

tities are defined in terms of energy – particularly the difference between global and local extractable

works (ergotropies) that can be stored in quantum batteries. Some of these quantities suffice as faith-

ful measures of genuineness and to some extent distinguish different classes of genuinely entangled

states. Along with scrutinizing properties of these measures we compare them with the other ex-

isting genuine measures, and argue that they can serve the purpose in a better sense. Furthermore,

generality of our approach allows to define suitable functions of ergotropies capturing the signa-

ture of k-nonseparability that characterizes qualitatively different manifestations of entanglement in

multipartite systems.

Journal Reference: Phys. Rev. Lett. 129, 070601 (2022)

Introduction.– Like the second law of thermodynamics that prohibits complete conversion of heat (disor-

dered form of energy) to work (ordered form of energy) in a cyclic process, the theory of entanglement is

also governed by a no-go that forbids creation of entanglement among spatially separated quantum systems

under local operations and classical communication (LOCC). This qualitative analogy goes even deeper

– in accordance with the thermodynamic reversibility, the inter-conversion among pure bipartite entangled

states is reversible under LOCC in asymptotic limit [1–3]. Furthermore, the rate of inter-conversion is quan-

titatively determined by von Neumann entropy, which has direct relation with the thermodynamic entropy

[4–7]. For such states, the von Neumann entropy of the reduced marginal, in fact, serves as the unique

quantifier (measure) of entanglement [3]. Although the reversibility of entanglement theory breaks down

for mixed states [8–11], it does not cancel the analogy between entanglement theory and thermodynamics;

rather, it acts as a constitutive element [9]. In this letter we ask the question how far the analogy between

thermodynamics and entanglement theory can go when multipartite systems are considered. This question

is quite pertinent, since for such systems classification of quantum states becomes much richer as compared

to the separable vs entangled dichotomy of bipartite scenario. Depending on how different subsystems are

correlated with each other, qualitatively different classes of entangled states are possible when more than

two subsystems are involved. Among these, the most exotic one is the genuinely entangled state that first ap-

51

https://doi.org/10.1103/PhysRevLett.129.070601


2

FIG. 1: Different amount of ergotropic works can be extracted from a multipartite entangled quantum state:

(a) local ergotropic work WA|B|C
e ⌘ W l

e, (b) biseparable ergotropic work WX|XC

e , with X 2 {A,B,C},

and (c) global ergotropic work W g
e . In general, W l

e  WX|XC

e  W g
e , where strict inequalities hold for

genuinely entangled states.

pears in the seminal Greenberger–Horne–Zeilinger (GHZ) Version of the Bell test [12, 13]. Subsequently,

it has been shown that genuinely entangled states can also be of different types [14–16]. Identification,

characterization, and quantification of genuine entanglement are of practical relevance, as they find several

applications [17–25], and accordingly different quantifiers have been suggested [26–32]. In this letter, we

propose thermodynamic quantities that capture signature of genuineness in multipartite states. Unlike the

bipartite pure states, where entanglement is captured through entropic quantity, our proposed measures are

defined in terms of internal energy of the system. In particular, the ergotropic gap – difference between the

extractable works from a composite system under global and local unitary operations, respectively – plays a

crucial role to define these measures. We show that, suitably defined functions of this quantity – minimum

ergotropic gap, average ergotropic gap, ergotropic fill, and ergotropic volume – can serve as good measures

of genuineness for multipartite systems. In fact, one can come up with measures that capture the notion

of k-separability for arbitrary multipartite systems [33]. Apart from theoretical curiosity these measures

are of special interest as there are several proposals for quantum batteries to store ergotropic work [34–40].

By comparing strengths and weaknesses of these newly proposed measures with the other existing genuine

measures, we show that the ergotropic measures show superiority.

Ergotropy and genuine entanglement.– Ergotrpic work (We) defines how much work can be extracted from

an isolated system[41–43]. For the multipartite system different scenarios can be constructed for the er-

gotropic work extraction (See fig 1). Now we can define various measure of entanglement (fully separable,

ni-separable, genuine) in terms of ergotropic work difference. Here I will very shortly introduce those quan-

tities:

A. Fully separable entanglement measure: A n-partite fully separable measure is defined by the global

ergotropic work and completely local ergotropic work i.e., �(n)
A1|···|An

= W g
e �WA1|···|An

e .

B. K-separble entanglement measure: To capture the notion of k-nonseparability here we propose the
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concept of k-separable ergotropic gap �(k)
X1|···|Xk

:= W g
e � WX1|···|Xk

e , where WX1|···|Xk
e denotes the er-

gotropic works when n different parties are partitioned as X1| · · · |Xk.

C. Genuine entanglement measure: (i) Minimum ergotropic gap
�
�G

min

�
:- It is defined as the min-

imum among all possible bi-separable ergotropic gaps, i.e., for | iA1···An
2
Nn

i=1Cdi �G
min(| i) :=

min
n
�(2)

X|XC(| i)
o

, where minimization is over all possible bipartitions {X|XC} of the parties.

(ii) Genuine average ergotropic gap
⇣
�G

avg

⌘
:- The following quantity is also a genuine measure,

�G
avg(| i) :=

⇥

✓Q
X �

(2)

X|XC (| i)
◆

2(n�1)�1

P
X �(2)

X|XC(| i), where X ranges over all possible bipartitions (2(n�1)�
1 in number for n-party system) and ⇥(Z) = 0 for Z = 0 else ⇥(Z) = 1.

(iii) Ergotropic fill
�
�G

F

�
:- Motivated by the genuine measure of ‘concurrence fill’ recently introduced for

three-qubit systems [32], we can define ergotropic fill for such systems as follows,

�G
F (| i) :=

1p
3

2

4
 
X

X

�(2)
X|XC

!2

� 2

 
X

X

⇣
�(2)

X|XC

⌘2
!3

5

1
2

,

where X 2 {A,B,C}.

(iv) Ergotropic volume
�
�G

V

�
:- For an n-party state | iA1···An

2 ⌦n
i=1Cdi we can define the normalized

volume �G
V of N -edged hyper-cuboid with sides �(2)

X|XC(| i) as a genuine measure of entanglement, i.e.,

�G
V (| i) :=

⇣QN
X=1�

(2)
X|XC(| i)

⌘ 1
N
; N = 2(n�1) � 1.

In our letter, we have discussed the LOCC monotonicity of genuine measures (i), (ii) and (iv) as well as

compare them with the existing measures. Most importantly, with addition we state their physical meaning.

Discussion.– Genuine entanglement represents prototypical features of multipartite quantum systems. Apart

from their foundational importance [12] they find several applications [17–25] and also they are crucial for

the emerging technology of quantum internet [44, 45]. Here we have proposed several measures of genuine

entanglement based on thermodynamic quantities. The correspondence between thermodynamics and en-

tanglement theory is not new as information theory makes a link between bipartite entanglementment and

thermodynamics through the abstract concept of entropy. Importantly, the connection established between

genuine entanglement and thermodynamics in this work is much direct as it does not invoke entropy, rather

it is based on internal energies or ergotropic works of the system. Ergotropic work being an experimentally

measurable quantity, even under ambient conditions, makes this connection more interesting. In particular,

we have introduced four different measures for genuine entanglement among which ergotropic volume has

been inferred to perform better than other three as well as the previously existing measures. Importantly, er-

gotropic volume also captures a physical meaning up-to some degree while still maintaining the integrity as

a genuine multipartite entanglement measure without any ad-hoc conditions. Furthermore, we have shown

that based on ergotropic quantities it is also possible to define measures of k-nonseparability that signi-

fies qualitatively different manifestations of entanglement for multipartite systems. As for future, possible
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experimental realisations of the proposed measures would be quite interesting. It would be instructive to ex-

plore the multi-qubit systems, more particularly three-qubit system, first. Another possible study would be

to see how the ergotropic gap decreases when more and more restrictions are imposed on the collaboration

among the parties, as this would give an idea whether or not the cost of coming together pays off significant

increment in work extraction. It would also be interesting to capture the signature of entanglement depth

[46] of an multipartite state through the ergotropic approach explored in this letter. Finally, it would also

be interesting to see how our approach can be generalized to study other forms of correlation in mutipartite

systems, a closely related study recently made for bipartite systems in Ref.[47].
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Abstract. Recently, Chia, Chung and Lai (JACM 2023) and Coudron and Menda (STOC 2020) have
shown that there exists an oracle O such that BQPO

6= (BPPBQNC)O [ (BQNCBPP)O. In fact, Chia et al.
proved a stronger statement: for any depth parameter d, there exists an oracle that separates quantum
depth d and 2d+1, when polynomial-time classical computation is allowed. This implies that relative to an
oracle, doubling quantum depth gives classical and quantum hybrid schemes more computational power.

In this paper, we show that for any depth parameter d, there exists an oracle that separates quantum
depth d and d + 1, when polynomial-time classical computation is allowed. This gives an optimal oracle
separation of classical and quantum hybrid schemes. To prove our result, we consider d-Bijective Shu✏ing
Simon’s Problem (which is a variant of d-Shu✏ing Simon’s Problem considered by Chia et al.) and an
oracle inspired by an “in-place” permutation oracle.

Keywords: small-depth quantum circuit, hybrid quantum computer, oracle separation

1 Introduction

Background. In recent years, the development of
quantum computers has been very active (see, e.g., [1]
for information about current quantum computers) and
“quantum supremacy” has been claimed [8, 20]. How-
ever, it is still di�cult to implement large-depth quan-
tum circuits with current quantum technology since such
quantum devices are subjective to noise and have short
coherent time. One potential way to extract the compu-
tational powers of such quantum devices is to consider a
hybrid scheme combining them with classical computers.
For example, variational quantum algorithms are consid-
ered in such a scheme to obtain quantum advantage (see
[9] for a survey).
Therefore, understanding the capabilities and limits of

this hybrid approach is an essential topic in quantum
computation. As one of the most notable results, Cleve
and Watrous [13] showed the quantum Fourier transfor-
mation can be implemented by combining logarithmic-
depth quantum circuits with a classical polynomial-time
algorithm. With the possibility to implement Shor’s al-
gorithm in such a hybrid scheme and the developments
of measurement-based quantum computation, Jozsa [17]
conjectured that “Any quantum polynomial-time algo-
rithm can be implemented with only O(log n) quantum
depth interspersed with polynomial-time algorithm clas-
sical computations”. This can be formalized as BQP =
BQNCBPP. On the other hand, Aaronson [3, 4, 5] con-
jectured “there exists an oracle separation between BQP
and BPPBQNC”. BPPBQNC is a complexity class recog-
nized by a polynomial classical scheme which has access
to poly-logarithmic depth quantum circuits. BQNCBPP

and BPPBQNC are sets of problems recognized by two nat-
ural and seemingly incomparable models of hybrid clas-

⇤atsuyahasegawa@is.s.u-tokyo.ac.jp
†legall@math.nagoya-u.ac.jp

sical and quantum computation.
Recent works by Chia, Chung and Lai [10] and

Coudron and Menda [14] proved Aaronson’s conjec-
ture and refuted Jozsa’s conjecture in a relativized set-
ting. Interestingly, computational problems and oracles
they considered were completely di↵erent. Coudron and
Menda [14] considered, as an oracle problem, the Welded
Tree Problem which exhibits a di↵erence between quan-
tum walks and classical random walks: this problem can
be solved e�ciently by a quantum algorithm [12] but,
in the classical setting, exponential queries are required
[12, 16]. To prove a lower bound of classical and quantum
hybrid schemes, Coudron and Menda introduced “Infor-
mation Bottleneck” to simulate classical and quantum
hybrid schemes with fewer classical queries. They showed
if we assume the hybrid schemes solve the problem, we
reach a contradiction with the lower bound of classical
queries from [16].

Chia, Chung and Lai [10] considered d-Shu✏ing Si-
mon’s Problem, which is a variant of Simon’s Prob-
lem [18]. Since Simon’s Problem can be solved with
a constant-depth quantum circuit with classical post-
processing, we cannot prove the hardness for classical and
quantum hybrid schemes. To devise a harder problem,
they combine Simon’s function with sequential random
permutations: for a Simon’s function f , they consider
random one-to-one functions f0, ..., fd�1 and two-to-one
function fd such that f = fd � · · · � f0. They also hide
the domains of the functions in larger domains and apply
the idea of the Oneway-to-Hiding (O2H) lemma [6, 19]
to prove the hardness. In fact, they proved a stronger
statement below.

Theorem 1 ([10]) For any d 2 N, there exists an oracle

O such that

(BQNCBPP
d )O[(BPPBQNCd)O 6= (BQNCBPP

2d+1)
O
\(BPPBQNC2d+1)O.

56



Description of our result. In this paper, we improve
Theorem 1 above and show the following result.

Theorem 2 For any d 2 N, there exists an oracle O

such that

(BQNCBPP
d )O[(BPPBQNCd)O 6= (BQNCBPP

d+1)
O
\(BPPBQNCd+1)O.

Our result implies that, relative to an oracle, increasing
the quantum depth even by one gives the hybrid schemes
more computational power and it cannot be traded by
combining polynomial-time classical processing.
In Theorem 2, quantum circuits consisting of any 1-

and 2-qubit gates are considered. Indeed, we give an al-
gorithm by d+1-depth quantum circuits consisting only
of {H,CNOT} with classical processing for the upper
bound (this is also the case for Theorem 1 but not men-
tioned in [10]). Therefore we also prove that, even if we
are allowed to use quantum circuits consisting of a re-
stricted gate set contains {H,CNOT} such as Cli↵ord
circuits, adding even one quantum depth gives the two
hybrid schemes more computational power relative to an
oracle.

Outline of our approach. Chia et al. gave the up-
per bound (BQNCBPP

2d+1)
O
\(BPPBQNC2d+1)O for d-Shu✏ing

Simon’s Problem by an algorithm inspired by the Si-
mon’s algorithm. Since they considered a standard or-
acle, Uf |xi |0i = |xi |f(x)i, it is required to erase the in-
formation of past queries and it takes d-quantum depth.
To eliminate the d-quantum depth, we propose an idea
to consider an “in-place” permutation oracle [2, 15] acts
as Uf |xi = |f(x)i. However, when f is a Simon’s
function, fd on a restricted domain is also a two-to-one
function and there is no unitary operator Ufd such that
Ufd |xi = |fd(x)i. Therefore, in this paper, we consider
another function ⌘ and make the function bijective. We
name the problem d-Bijective Shu✏ing Simon’s Problem
and show an upper bound (BQNCBPP

d+1)
O
\(BPPBQNCd+1)O.

The other obstacle is, for fd and the shadows to prove
the lower bounds, how to define a unitary operator that
includes mappings to ? (a constant with no information).
Note that this is because there exists no unitary opera-
tor U? such that U? |xi = |?i. In this paper, we give
a solution by keeping values on domains and considering
“flags” on ancilla qubits. Finally we carefully tailor the
Oneway-to-Hiding lemma in our quantum oracle setting
and show that the similar proofs of the lower bounds also
follow as [10].
The main contribution of our work is to define the

d-Bijective Shu✏ing Simon’s Problem and give the up-
per bound with quantum depth d + 1. The proof of the
lower bound is very similar to [10] except the Oneway-to-
Hiding lemma, which has to be adapted to the quantum
oracle of this paper. We are grateful to Nai-Hui Chia
for discussions about this, and in particular for clarify-
ing that all steps in the lower bound from [10] remain
true for our new oracle as well, with the exception of this
Oneway-to-Hiding lemma.

Related work. Arora, Gheorghiu and Singh [7] proved
oracle separations of (BQNCBPP

d )O and (BPPBQNCd)O

with respect to each other. As corollaries, they obtained
sharper separations than [10] for each scheme. For the
quantum-classical scheme, they proved an oracle separa-
tion between quantum depth d and d+1 if the Hadamard
measurements are allowed in every layer. In our result,
we only need to measure qubits in the Hadamard basis
in the last layer. For the classical-quantum scheme, they
proved a separation between quantum depth d and d+5
relative to what they call a stochastic oracle (which is
non-unitary). Our separation is between quantum depth
d and d+ 1 relative to a unitary oracle.

In an independent work [11], Chia and Hung have also
shown how to reduce the gap from d versus 2d+1 to d ver-
sus d+ 1 by techniques similar to ours (they consider an
oracle inspired by an “in-place” permutation oracle and
manage to make the final function one-to-one). They also
instantiate the oracle separation to construct a protocol
such that a classical verifier can check if a prover has a
quantum depth of at least d+ 1.
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Abstract. We consider quantum search algorithms that have access to a noisy oracle that, for every oracle
call, with probability p > 0 completely depolarizes the query registers, while otherwise working properly.
Previous results had not ruled out quantum O(

p
n)-query algorithms in this setting, even for constant p.

We show that for all p 2 [1/
p
n, 1�⌦(1)], the quantum noisy-query complexity of the unstructured search

is ⌦(np), which is tight up to logarithmic factors. The same bound holds for the dephasing noise and even
when, for every oracle call, the algorithm is provided with a flag indicating whether the noise has occurred.

Keywords: query algorithms, noisy oracle, unstructured search

Extended Abstract

Unstructured search is one of the most studied com-
putational tasks in quantum computing, in part due
to Grover algorithm performing this task quadratically
faster than any classical algorithm [Gro96]. Even be-
fore Grover presented his algorithm, Bennett, Bernstein,
Brassard, and Vazirani showed that quadratic quantum
speedups is the best one can hope for [BBBV97]. More
formally, these works showed that finding a marked ele-
ment among n elements has the bounded-error quantum
query complexity ⇥(

p
n).

Since then, many subsequent works have shed more
light on the problem. Zalka showed that quadratic
speedups do not survive parallelization [Zal99]. In the
same work, it was shown that Grover’s algorithm is the
very best algorithm for the problem and that not even
constant additive gains can be made in quantum query
complexity over it (see also [DH09] for an alternative
proof). Recent works also investigated hybrid quantum-
classical algorithm that can access the oracle both in
a quantum, coherent manner as well as in a classical,
non-coherent manner, and showed that sublinear num-
ber of classical queries cannot substantially speed up the
quantum search [Ros22, HLS22]. Yet, multiple important
questions regarding unstructured search remain open.
In this work we focus on search with faulty oracles.

That is, we consider models of quantum query algorithms
where the algorithm itself is faultless, but the interaction
with the oracle can su↵er from certain faults. Regev and
Schi↵ [RS08] considered a scenario where the oracle is
neglectful and, independently for each oracle call, with
some constant probability p it forgets to apply the uni-
tary query operatorOf , instead simply applying the iden-
tity operator I. Regev and Schi↵ showed that, in such a
scenario, ⌦(n) queries are required to perform search.
The faults of the neglectful oracle can be considered as

a certain type of noise: since I = OfO
⇤
f , we can think

of O⇤
f as the noise N that (with probability p) occurs

after the faultless oracle call. This noise, O
⇤
f , is how-

ever arguably rather artificial and non-local. Instead, in
this work, we consider dephasing and depolarizing noise.

⇤rosmanis@math.nagoya-u.ac.jp

Here, after the faultless oracle call, independently for
each oracle call, with probability p the query register gets
projected to the computational basis (dephasing noise) or
replaced by the maximally mixed state, e↵ectively eras-
ing the registers (depolarizing noise).

While these noise models are seemingly much harsher
than the one considered by Regev and Schi↵, for them,
quadratic speedups by quantum algorithms were not
ruled out even for constant p. The proof technique in
[RS08] relied on the fact that, when there are no marked
elements, one has O⇤

f = I, and hence there are no faults
and the overall computation remains pure. In the case
of the dephasing noise, however, the overall state of the
system will become mixed whenever we attempt to ac-
cess the oracle in a superposition, and, in the case of the
depolarizing noise, it will always become mixed.

Results. In this work we show that the dephasing and
the depolarizing oracle faults indeed thwart quantum
speedups. More precisely, we consider the model of quan-
tum query algorithms where, after each oracle call, with
probability p > 0 we apply noise N , which is either
the completely dephasing or the completely depolarizing
channel, then the quantum query complexity of finding a
marked element, assuming there exists one, has the query
complexity query complexity ⌦(np).

Theorem 1 For noise probability p > 0, the ✏-error

quantum noisy-query complexity of the unstructured

search is at least np(1� ✏)/65� 1.

When p � 1/
p
n, the lower bound ⌦(np) is tight up

to logarithmic factors [CCHL22] (for the completely de-
polarizing channel, additionally assuming 1� p = ⌦(1)).
For p = o(1/

p
n), one expects to be able to run the en-

tire Grover’s algorithm before the first occurrence of the
noise.

The lower bound holds even when for every oracle call
the algorithm is provided with the flag bit indicating
whether or not the noise occurred. Hence, this extra bit
of information does not help the algorithm to overcome
e↵ects of noise. Let us note that, in the fault model con-
sidered by Regev and Schi↵, having such an a bit would
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restore the quadratic speedups achieved by Grover’s al-
gorithm.

Techniques. The aforementioned flag bit plays an ad-
ditional role in our proof. Namely, because of it, it is
su�cient to prove the result only for the dephasing noise.
Indeed, if there were faster algorithms for the depolariz-
ing noise, those algorithms could be transformed into al-
gorithms for the dephasing noise of the same query com-
plexity. In particular, whenever the flag bit received by
the algorithm indicates that the dephasing noise has oc-
curred, the algorithm can depolarize all query registers,
in e↵ect simulating the depolarizing noise.
The dephasing noise, in turn, has a close connection

to the classical oracle calls considered in works on hybrid
quantum-classical search algorithms in [Ros22, HLS22].
Indeed, the faultless quantum oracle call followed by a
completely dephasing noise is exactly the same as the
classical oracle call considered in those works. The dif-
ference being that, unlike in the hybrid algorithm sce-
nario, now the algorithm has no control over when this
e↵ectively-classical oracle call will happen, every oracle
call being classical with probability p.
For the noisy oracle scenario considered in this work,

proof techniques by Hamoudi, Liu, and Sinha [HLS22],
which allow one to deal with mixed-state computation,
are more useful than the ones in [Ros22], which stay
closer to the approach in [RS08]. In addition to be-
ing inspired by techniques in [HLS22], we also draw in-
spiration from the quantum lower bound for search in
[Ros21]. Both of these works, in turn, are inspired by
Zhandry’s compressed oracle approach [Zha19]. While
[HLS22] builds upon [Zha19] by showing how to simul-
taneously handle both classical and quantum queries,
[Ros21] shows how to avoid compression-decompression
steps and thus allows handling scenarios where the out-
put of the oracle on one input may depend on that on
another input (as is the case when searching for a unique
marked element).
Similarly to the adversary bound [Amb02] and many of

its variants, we introduce the truth-table register, which
contains the full description of the function f computed
by the oracle. This register then controls actions of the
oracle Of . Furthermore, similarly to [HLS22], we also
introduce what we call the “record” registers that pu-
rify the overall system. We then use the joint state of
the truth-table and record registers, which are the reg-
isters not directly accessible by the algorithm, to define
a certain metric that measures the progress of the com-
putation. More precisely, similarly to [HLS22], we de-
compose the entire memory space (including that of the
algorithm) into three parts as HA

�H
B
�H

C, where HC

essentially corresponds to the scenario where the classi-
cal oracle has succeeded (that is, the dephasing noise has
collapsed the query input register to a marked input x),
H

B corresponds to the space orthogonal to H
C where the

quantum oracle has found a marked input, and H
A cor-

responds to the space where no substantial progress has
been made. All three spaces are invariant under linear

operations on the algorithm registers alone. Initially, all
the probability weight is on the subspace HA, but, in or-
der for the algorithm to succeed, this probability weight
has to be transferred to H

B
�H

C.
Departing from previous proof techniques, now we

have to go further and decompose the space H
B as

H
B,act

�H
B,pas, where, this time, the “active” subspace

H
B,act and the “passive” subspace H

B,pas are not in-
variant under linear operations on the algorithm regis-
ters. The active subspace H

B,act is the subspace of HB

to which the probability weight from H
A can be partially

transferred, and the subspace which would be used by a
noiseless execution of Grover’s algorithm. Unfortunately,
however,HB,act is also the subspace a↵ected by the noise.
On the other hand, the passive subspace H

B,pas can be
used to shield the quantum memory from noise, yet this
shielding thwarts the progress of the computation. So, we
show that, in this case, you can’t have your cake and eat
it too; namely, we show that you cannot simultaneously
both progress the computation and avert its corruption
by noise. As a result, we show the tight bound ⌦(np) as
given in Theorem 1.

Related work on noisy search. In a recent and in-
dependent work [CCHL22], Chen, Cotler, Huang, and Li
formulated the computational class of noisy intermediate-
scale quantum (NISQ) computation, where all qubits are
a↵ected by the depolarizing noise of rate p. Among other
results, they showed that in such a scenario a noisy quan-
tum algorithm cannot perform quantum search faster
than in time ⇥̃(np), also providing a matching upper
bound. While their upper bound carries over to our
model, our lower bound is stronger then theirs in var-
ious aspects. First, for us only the oracle registers and
only just after oracle calls are a↵ected by noise. Second,
our results also work for the dephasing noise. Third, our
lower bound applies even when the algorithm gets in-
formed whenever the noise occurs. And, finally, we also
get rid of logarithmic factors in the complexity.

Technical version. For technical details of the com-
putational model and the proof of the main theorem,
Theorem 1, refer to Appendices A–E.
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A Model of Computation

We assume that the reader is familiar with basic con-
cepts of quantum computation. For introductory texts,
see, for example [NC00, Wat18].
In this section we define query algorithms for a rather

general computational problem, and we focus on unstruc-
tured search in Section B.

A.1 Quantum memory

The memory of a quantum algorithm is organized in
registers. Each register is associated with some finite set
S and a complex Euclidean space of dimension |S|, de-
noted CS . The standard basis of this space is some fixed

orthonormal basis whose vectors are uniquely labeled by
the elements of S, and we write it as {|si : s 2 S}. The
pure states of the register are denoted by (column) unit
vectors in CS . A qubit is a register associated with the
set {0, 1}, and multiple qubits can be grouped together
into a larger register. We will also occasionally associate
a qubit with the set {q, c}, where q := 0 and c := 1 are
flags with c indicating that the noise has occurred and
thus the oracle call is classical in nature, and q indicat-
ing no noise and the oracle call being quantum in nature.

We may also write a pure state | i as its correspond-
ing density operator | ih |. The quantum memory can
also be in a mixed-state, in which case its corresponding
density operator is a convex combination over pure states
| ih |.

We use capital letters A,Q,R,T,W in sans serif font to
denote registers, and we might add them as subscripts to
operators to highlight on which registers these operators
act.

The memory of a quantum algorithm typically consists
of multiple registers, and the state of the entire memory
is a density operator on the tensor product of the Eu-
clidean spaces corresponding to each register. The evo-
lution of quantum memory is governed by completely-
positive trace-preserving (CPTP) maps, also known as
quantum channels, an evolution governed by unitary op-
erators being a special case. When an operator or a
CPTP map acts as the identity on some registers, we
typically omit those registers from the notation.

A.2 Oracle calls

Let us here introduce various forms of the quantum or-
acle and notation pertaining to it. Let [n] := {1, 2, . . . , n}
here and throughout the text.

We consider algorithms that have oracle access to a
function f : [n] ! {0, 1}. We call such algorithms query

algorithms, and we refer to each oracle access to f by us-
ing terms an “oracle call” and a “query” interchangeably.

As we will discuss in more detail in Section A.3, the
algorithm registers A will consist of the query register Q
and the workspace register W. When considering oracles
with flag qubits, each oracle call will grow the workspace
register by a qubit.

Noiseless oracle. The oracle call acts on the query

register Q = QiQo, which is composed of two subreg-
isters: the query-input register Qi corresponding to the
set [n] and the query-output register Qo corresponding to
{0, 1}.1 The oracle call to f is the unitary

Of :=
X

x2[n]

X

y2{0,1}

(�1)f(x)·y|x, yihx, y|

= I2n � 2
X

x2f�1(1)

|x, 1ihx, 1|,

1
The query-input register and the query-output registers are

also commonly referred to as, respectively, the index and the target

register.
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which is sometimes referred to as the phase oracle, as
opposed to the standard oracle

O
std
f :=

X

x2[n]

X

y2{0,1}

|x, y � f(x)ihx, y|.

The two oracles are equivalent up to a basis change of
the query-output register.2 We denote the CPTP map
corresponding to Of by Of .

Noisy oracles. We will define noisy oracles as CPTP
maps on the query register Q as the composition of the
noiseless oracle call Of followed by a probabilistic, non-
unitary noise Np. For ⇢ a linear operator on Q, we define
the completely depolarizing noise (of QiQo) as the CPTP
map

N
polar

1 : ⇢ 7! Tr[⇢] IQ/(2n)

and the completely dephasing noise (of Qi) as the CPTP
map

N
phase

1 : ⇢ 7!

X

x2[n]

�
|xihx|⌦ IQo

�
⇢
�
|xihx|⌦ IQo

�
.

Note that we have chosen to define the completely de-
phasing noise so as not to a↵ect the query-output regis-
ter. This will turn out to be without loss of generality
because we will have an access to the flag qubits indicat-
ing whether the noise has occurred and thus we will be
able to purposely dephase Qo whenever Qi dephases.
We omit superscripts polar and phase from N1 when

we make general statements addressing both types of
noise or, starting Section A.3, when we only consider the
dephasing noise. The subscript 1 in N1 indicates that
the noise happens with probability 1. More generally,
for both noise models and for a probability p 2 [0, 1],
we define Np := (1 � p)I + pN1, where I is the iden-
tity map. That is, Np as a CPTP map that maps ⇢ to
(1 � p)⇢ + pN1(⇢). We might drop the subscript p from
Np when it is clear from the context, especially when
making informal statements.

We define the noisy oracle call as the CPTP map Np �

Of = Of �Np, where � denotes the composition of maps.

Oracles with flag bits. Let us now introduce noisy or-
acles that signal whether or not the noise has occurred.
This signal is in a form of a flag (qu)bit that the oracle
call adds to the workspace of the algorithm. After the
oracle call, the algorithm is then permitted to do what-
ever it pleases with this additional qubit, including, to
ignore it, as if it were not even received. We will refer
to this new qubit register, which extends the workspace,
as W+. Hence, we can formalize signaling probabilistic

noise as a CPTP map that maps from Q to QW+ that
acts on linear operators ⇢ on Q as

fNp : ⇢ 7! (1� p)⇢⌦ |qihq|+ pN1(⇢)⌦ |cihc|.

2
The basis choice for the query-output register could play a role

when one talks about dephasing that qubit as the dephasing noise is

basis-specific. However, in this work we already show the hardness

of the case when the dephasing noise a↵ects only the query-input

register. That, together with flag qubits indicating the presence of

noise, will also imply hardness for stronger noise models.

Consider a CPTP map D acting on QW+ that first mea-
sures qubit W+ with respect to basis {|qi, |ci} and, if
the measurement yields c, it then applies the completely
depolarizing noise N

polar
1 on Q. We have fN polar

p =

D � fN phase
p . Since the algorithm can implement D with-

out any queries, any hardness results that we show for
noise-signaling oracles with dephasing noise will carry
over to oracles with depolarizing noise (see also foot-
note 2).

We define the noise-signaling noisy oracle call as the
CPTP map from Q to QW+ as the composition Of,p :=
fNp � Of . From now on, we will only consider the noise-

signaling noisy oracle corresponding to the dephasing
noise, and, for brevity, we will simply refer to it as the
noisy oracle.

A.3 Quantum noisy-query algorithms

Now that we have introduced the oracle, let us formal-
ize the query algorithm with noisy oracles, and describe
its operation.

We divide the memory of the algorithm into two reg-
isters: one is the query register Q and the other is the
workspace register W that we assume to consist of some
number of qubits. As we have described above, every
call to the noisy oracle Of,p introduces an extra qubit,
which we incorporate into the workspace register. We
call the joint register A = QW the algorithm register (or
registers).

A quantum noisy-query algorithm is specified by four
components: (1) the number of quantum queries, (2) the
initial state of the algorithm, (3) input-independent uni-
tary operators that govern the evolution of the quantum
system between oracle calls, and (4) the final measure-
ment. Let us describe these components in detail.

1. We denote the number of queries by ⌧ and we enu-
merate oracle calls from 1 to ⌧ .

2. Let initially the workspace register W consist of
` qubits, therefore the entire initial memory cor-
responds to a 2n2`-dimensional Euclidean space.
The initial state of the algorithm is an input-
independent pure state | 

0
i in this space; the first

oracle call is performed directly on this state.

3. Each noisy oracle call expands the workspace reg-
ister by a qubit. The evolution between oracle calls
and after the last call is given by input-independent
unitary operators U1, . . . , U⌧ , where the dimension
of Ut is 2n2`+t.

4. Given some finite set A of answers, the final mea-
surement is given by a set {⇧a : a 2 A}, where each
⇧a is an orthogonal projector of dimension 2n2`+⌧

and
P

a ⇧a = I.

The execution of the algorithm starts in the initial state
| 

0
i, and then alternates between oracle calls and input-

independent unitaries as follows. Iteratively, for t =
1, 2, . . . , ⌧ , the algorithm first performs an oracle call
Of,p, and then applies unitary Ut. Finally, the algorithm
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performs the measurement according to {⇧a : a 2 A},
returning the measurement outcome a as an answer. We
say that the algorithm is successful if a is a correct answer
for f , and we say that it fails otherwise.

B Purifying the Computation

From now on, let us focus on the problem of unstruc-
tured search. Here we will introduce registers that will
purify the overall computation, those extra registers be-
ing a part of the overall lower bound framework.
For a function f : [n] ! {0, 1}, we call an input x 2 [n]

marked if f(x) = 1. The goal of the unstructured search
is, given an oracle access to f , to find a marked input x,
assuming there exists one.
Intuitively, the hardest instances of the problem are

functions f that have exactly one marked input, and we
will only consider such functions. Namely, let fx : [n] !
{0, 1} be the function for which x is the unique marked
input, that is,

fx(x
0) =

(
1 if x0 = x,

0 if x0
2 [n] \ {x}.

Note that the noiseless oracle corresponding to fx is
Ofx = I2n � 2|x, 1ihx, 1|.

Let us consider a scenario where we are given a noisy
oracle access to the function fx being chosen uniformly
at random from the set of functions F := {f1, . . . , fn}.
Our goal is to find x.

Without loss of generality, let the query-input register
Qi be also used by the algorithm to return the answer,
and thus let {⇧x := |xihx| : x 2 [n]} be the final measure-
ment. Hence, if ⇢x,t is the final state of the computation
with oracle access to fx, then average success probability
qsucc is given by

qsucc =
1

n

X

x2[n]

Tr[(⇧x ⌦ IQoW)⇢x,t].

B.1 Environment registers

The overall quantum system will consist of three sets
of registers. In addition to the registers Q and W used
by the algorithm, we introduce two additional registers,
which we describe below.

Truth register. The truth register T corresponds to
the set of functions F . One can think of each its basis
state |fi containing the full truth table of f .3

At the beginning of the computation, we initialize
the register T as the uniform superposition |ui :=P

x2[n] |fxi/
p
n, and we can think of this register as ef-

fectively purifying the random choice of fx 2 F .

Record register. The record register R will start
empty, then the subregister R1 will be appended to it by
the first oracle call, R2 by the second oracle call, and so

3
In similar lower bound techniques, this register is called the

oracle register, the adversary register, and the function register.

on. For every t 2 {1, . . . , ⌧}, the register Rt corresponds
to the set R := {?, 1, 2, . . . , n} = [n] [ {?}, where ?

indicates the absence of noise in t-th oracle call,4 while,
x 2 [n] indicates that the dephasing has occurred and
the query-input register has been dephased to the basis
state |xi. In e↵ect, the register Rt will purify the action
of non-unitary, noisy oracle call number t.

After t oracle calls, the register R corresponds to
the set Rt, and we think about its contents as strings
R = r1r2 . . . rt of length t, which we call records. As
per standard notation, let R⇤ :=

S
t R

t be the set of all
records.

For a record R = r1 . . . rt 2 R⇤, we say that an input
x 2 [n] appears in R if rt = x for some t, and let Rin ⇢ [n]
be the set of all inputs appearing in R; note that here we
ignore the symbol ?. Also note that, for R 2 Rt, we have
|Rin|  t. For conciseness, let nR := n�|Rin| = |[n]\Rin|,
which will be approximately n because we will mostly
consider R 2 Rt with t ⌧ n.

For a record R = r1 . . . rt 2 Rt and a symbol r 2 R,
let R or denote the record obtained by appending r to R.
That is, R or = r1 . . . rtr 2 Rt+1. We have (R o ?)in =
Rin and (R ox)in = Rin [ {x} for x 2 [n].

B.2 Extended oracles

We define the extended noisy oracle call as a linear
isometry

Op :=
X

fz2F
|fzihfz|⌦

⇣�p
1� pIQi ⌦ |q,?i

+
p
p

X

x2[n]

|xihx|⌦ |c, xi
�
⌦ IQo

⌘
Ofz ,

where the states |q,?i and |c, xi are on registers W+Rt.
Here, the subscript of the register Rt indicates that we
implicitly think of Op as t-th oracle call. While Op acts
as the identity on earlier record subregisters R1 . . .Rt�1,
it is sometimes useful to reintroduce them—and thus the
whole record register R—in the notation when expressing
Op. So, we can write t-th extended noisy oracle call as

Op =
X

fz2F
|fzihfz|⌦

X

R2Rt

⇣�p
1� pIQi ⌦ |q, R o ?ihR|

+
p
p

X

x2[n]

|xihx|⌦ |c, R oxihR|
�
⌦ IQo

⌘
Ofz ,

It will be useful to separate the noiseless and the noisy
components of Op, and express it as Op =

p
1� pOQ +

p
pOC , where

OQ := O0 =
X

f

|fihf |⌦Of ⌦ |q,?i,

OC := O1 =
X

f

|fihf |⌦

X

x2[n]

|xihx|

⌦

X

y2{0,1}

(�1)f(x)·y|yihy|⌦ |c, xi

4
The state | ?i corresponding to the label ?2 R is unrelated

to an equally-denoted state in Zhandry’s work on the compressed

oracle [Zha19].
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are linear isometries with orthogonal images. The latter
one, OC , exhibits close similarity to the classical oracle
considered in works [Ros22, HLS22] on hybrid quantum-
classical query algorithms, except that it permits the
query-output register to remain in a superposition. For
that reason, we may refer to OC as the classical oracle

and to OQ as the quantum oracle.

B.3 Extended computation

Now let us consider how the algorithm extends to entire
space of registers TAR, and describe its execution. The
execution of the extended algorithm starts in the initial
state |�0i := |ui ⌦ | 

0
i, which is also the state of the

overall system just before the first oracle call. Recall
that we start the computation with empty record. That
is, initially, the register R corresponds to one-dimensional
Euclidean space (i.e., zero qubits).
Then, similarly as before, the computation alternates

between extended noisy oracle calls on TQR and input-
independent unitaries on QW as follows. Iteratively, for
t = 1, 2, . . . , ⌧ , the algorithm first performs an oracle call
Op, and then applies unitary Ut. For t 2 {1, . . . , ⌧ � 1},
let |�ti be the state of the overall system just before
(t + 1)-th oracle call and let |�⌧ i be the final state of
the system. These states can be recursively expressed as
|�ti = UtOp|�t�1i for all t 2 {1, . . . , ⌧}.
Finally, on state |�⌧ i, the algorithm measures regis-

ters T and Qi, obtaining a function fz and an input
x, and the algorithm is successful if and only if x is
a marked input for fz, that is, x = z. Accordingly,
let us define the projector on successful outcomes as
⇧succ :=

P
x2[n] |fx, xihfx, x|, which acts on registers

TQi. We have qsucc = k⇧succ|�⌧ ik
2.

C Progress Measure

Let us decompose the whole joint space of registers
TAR in three subspaces corresponding to the scenarios
where, informally, 1) the query-input register has been
dephased to a marked input, 2) the query-input regis-
ter has not been dephased to the marked input, but the
quantum oracle has found the marked input, and 3) no
progress has been made. When considering queries, we
will further decompose the second subspace.

C.1 Progress-defining subspaces

Let us consider the n-dimensional space corresponding
to the register T, that is, the space spanned by |fxi.
Recall the uniform superposition |ui =

P
x2[n] |fxi/

p
n,

and note that the initial state of the truth register is |ui.
Also recall the notation nR = n� |Rin|. Let us define the
unit vector

| Rini :=
X

x2[n]\Rin

|fxi/
p
nR,

for which we have

hfx| Rini =

(
1/
p
nR if x 2 [n] \Rin,

0 if x 2 Rin.
(1)

In turn, let us define projectors

⇧C
t :=

X

R2Rt

X

z2Rin

|fzihfz|⌦ |RihR|,

⇧B
t :=

X

R2Rt

⇣ X

z2[n]\Rin

|fzihfz|� | Rinih Rin |

⌘
⌦ |RihR|,

⇧A
t :=

X

R2Rt

| Rinih Rin |⌦ |RihR|

on registers TR, which act as the identity on the algo-
rithm registers A. We denote the spaces corresponding to
these projectors, that is, their images, by H

C
t ,H

B
t ,H

A
t ,

respectively. We might drop the subscript t when it is
clear from the context.

Similarly to [HLS22], we define the progress measure

as
 t := k⇧C

t |�tik
2 + 4k⇧B

t |�tik
2
,

which is essentially an upper bound on the provisional
success probability of the algorithm after t oracle calls
(see the second claim of Lemma 2). We elaborate on the
choice for the scalar 4 in front of k⇧B

t |�tik
2 in Remark 1.

C.2 Proof of main theorem

Here we state Lemma 2 and show how it easily leads
to Theorem 1. Then, the rest of the paper is devoted to
proving the lemma, its first two claims being relatively
easy to show.

Lemma 2 We have

 0 = 0, (2a)

qsucc   ⌧ +
2

n� ⌧
, (2b)

 t+1 � t 
64

p(n� t� 1)
. (2c)

Proof. (Theorem 1 given Lemma 2). From Lemma 2, we
see that the success probability qsucc is at most

2

n� ⌧
+

64

p

⌧X

t=1

1

n� t


2

n� ⌧
+

64⌧

p(n� ⌧)
=

2p+ 64⌧

p(n� ⌧)

Since we want the success probability to be at least 1� ✏,
we thus get

⌧ �
p(n(1� ✏)� 2)

64 + p(1� ✏)
�

pn(1� ✏)

65
� 1.

⇤

Now it is left to prove Lemma 2. Its first claim is
trivial, because initially the record is empty and for the
empty record we have | ;i = |ui, which is the initial
state of the truth register.

Let us now prove the second claim of the lemma, while
the proof of the final claim is much more involved, and
we leave it to Sections D and E.

Proof. (The second claim of Lemma 2). To prove the sec-
ond claim of Lemma 2, recall ⇧succ =

P
z2[n] |fzihfz| ⌦
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|zihz|. It can be easily seen that ⇧succ commutes with
both ⇧C

⌧ and ⇧B
⌧ +⇧A

⌧ (see Claim 1 below), and hence

qsucc = k⇧succ⇧
C
⌧ |�⌧ ik

2 + k⇧succ(⇧
B
⌧ +⇧A

⌧ )|�⌧ ik
2

k⇧C
⌧ |�⌧ ik

2 +
�
k⇧B

⌧ |�⌧ ik+ k⇧succ⇧
A
⌧ k

�2

k⇧C
⌧ |�⌧ ik

2 + 2k⇧B
⌧ |�⌧ ik

2 + 2k⇧succ⇧
A
⌧ k

2

 ⌧ + 2k⇧succ⇧
A
⌧ k

2
,

where for the first inequality we have used k⇧succk = 1
and k|�⌧ ik = 1. To conclude, we have

k⇧succ⇧
A
⌧ k = max

R2R⌧

z2[n]

k|fzihfz| Rinih Rin |k = 1/
p
n� ⌧ .

⇤

D Transitions Among Progress-defining

Subspaces

Here we first decompose H
B
t as HB,act

t �H
B,pas
t , and

then we provide various claims that will serve as basis of
proving Lemma 2.

D.1 Active and passive intermediate subspaces

It is important to note that the progress measure  t

is not a↵ected by any operations on the algorithm reg-
isters alone, in particular, unitaries Ut. That is because
⇧C

t , ⇧
B
t , ⇧A

t all act as the identity on the algorithm reg-
isters. However, when analyzing how  t evolves under
oracle calls, it is useful to decompose ⇧B

t further, this
decomposition involving query input register as well.
For R 2 R⇤ and x 2 [n] \Rin, let us define the approx-

imation of |fxi with respect to R as the unit vector

|f̃x,Ri :=

r
nR � 1

nR
|fxi �

1p
nR(nR � 1)

X

x02[n]\Rin

x0 6=x

|fx0i

=

p
nR|fxi � | Rini

p
nR � 1

.

We note that h Rin |f̃x,Ri = 0. Also note that |f̃x,Ri is
the same for all R with the same Rin.
For every t, let us decompose

⇧B
TR ⌦ IQi = ⇧

B,act
TRQi

+⇧B,pas
FEQi

,

where

⇧B,act
t :=

X

R2Rt
0

X

x2[n]\Rin

|f̃x,R, R, xihf̃x,R, R, x|.

We call the subspace HB,act
t corresponding to ⇧B,act

t the
active subspace and the subspace H

B,pas
t corresponding

to ⇧B,pas
t the passive subspace.

D.2 Non-alterability of the record

Claim 1 ⇧C
and ⇧B + ⇧A

both commute with |fzihfz|

for every z. Moreover, OQ⇧C
t = ⇧C

t+1OQ. We also have

that the images of ⇧C
t+1OC⇧C

t and ⇧C
t+1OC(⇧B

t + ⇧A
t )

are orthogonal. We also have Op⇧C
t = ⇧C

t+1Op⇧C
t .

Proof. By direct inspection, ⇧C clearly commutes with
|fzihfz|, and thus so does I �⇧C = ⇧B +⇧A. Since OQ

appends ? to the record, yet Rin = (R o ?)in, we have

OQ⇧
C
t =

X

R2Rt

X

z2Rin

OQ

�
|fzihfz|⌦ |RihR|

�

=
X

R2Rt

X

z2Rin

|fzihfz|⌦Ofz ⌦ |q, R o ?ihR|

=
X

R02Rt+1

R0
t+1=?

X

z2R0
in

OQ

�
|fzihfz|⌦ |R

0
ihR

0
|
�
OQ

=⇧C
t+1OQ.

where we have used that hR
0
|OQ = 0 whenever the last

entry of the record R
0 is not ?.

If we look at the truth T and the record R registers
of the image of ⇧B

t + ⇧A
t , it is spanned by vectors in

form |fz, Ri, where R 2 Rt and z 2 [n] \Rin. Hence, the
image of ⇧C

t+1OC(⇧B
t +⇧A

t ) restricted to those registers is
spanned by vectors form |fz, R ozi where R 2 Rt and z 2

[n]\Rin. On the other hand, the image of ⇧C
t restricted to

TR is spanned by vectors in form |fz, Ri, where R 2 Rt

and z 2 Rin. Hence, the image of ⇧C
t+1OC⇧C

t restricted
to TR is spanned by vectors in form |fz, R oxi where R 2

Rt, z 2 Rin, and x 2 [n].
Because |fzihfz| commutes with OC and because the

oracle appends some symbol r 2 R to the record, we have

OC⇧
C
t =

X

R2Rt

X

z2Rin

OC

�
|fzihfz|⌦ |RihR|

�

=
X

R2Rt

X

z2Rin

X

r2R

�
|fzihfz|⌦ |R orihR or|

�

OC

�
|fzihfz|⌦ |RihR|

�
.

For every x 2 [n], we clearly have (R ox)in = Rin [ {x} ◆

Rin. Thus, for R 2 Rt, z 2 Rin, and x 2 [n], we have

⇧C
t+1

�
|fzihfz|⌦ |R oxihR ox|

�
= |fzihfz|⌦ |R oxihR ox|

concluding the proof. ⇤

D.3 The action of OQ and OC on the active sub-

space

Claim 2 We have ⇧B
t+1OQ⇧

B,act
t = ⇧B,act

t+1 OQ⇧
B,act
t

and ⇧B
t+1OQ⇧

B,pas
t = ⇧B,pas

t+1 OQ⇧
B,pas
t . We have

OC⇧
B,act
t = (⇧C

t+1 +⇧
A
t+1)OC⇧

B,act
t .

Proof. The space H
B,act
t is spanned by vectors

in form |f̃x,R, x, y, Ri (here we ignore the content of
workspace registers), on which the oracle OQ acts as
OQ|f̃x,R, x, 0, Ri = |f̃x,R, x, 0, Ri, and

OQ|f̃x,R, x, 1, Ri

=

✓
�

r
nR � 1

nR
|fxi �

1p
nR(nR � 1)

X

x02[n]\Rin

x0 6=x

|fx0i

◆

|x, 1, R o ?, qi

=

✓
�

nR � 2

nR
|f̃x,Ri �

2
p
nR � 1

nR
| Rini

◆
|x, 1, R o ?, qi.
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Opening the parenthesis, the former vector is in
H

B,act
t+1 while the latter is in H

A
t+1. This shows that

⇧B
t+1OQ⇧

B,act
t = ⇧B,act

t+1 OQ⇧
B,act
t .

Note that OQ is essentially its own inverse (aside from
it adding | ?i to the record and |qi to the workspace).
So, for |⇣t+1i the state right after tth oracle call, we have
h⇣t+1|OQ = 0 whenever the last flag subregister W+ is
not hq| or the last record subregister Rt+1 is not h? |. If
they are, however, similarly as above, we get

hf̃x,R, x, 0, R o ?, q|OQ = hf̃x,R, x, 0, R|,

hf̃x,R, x, 1, R o ?, q|OQ

=

✓
�

nR � 2

nR
hf̃x,R|�

2
p
nR � 1

nR
h R|

◆
hx, 1, R|.

Hence, we also have ⇧B,act
t+1 OQ⇧B

t = ⇧B,act
t+1 OQ⇧

B,act
t ,

which means that ⇧B
t+1OQ⇧

B,pas
t = ⇧B,pas

t+1 OQ⇧
B,pas
t .

Now, let us consider OC⇧
B,act
t . For R 2 R⇤ and x 2

[n] \Rin. We have

OC |f̃x,R, x, y, Ri

=

r
nR � 1

nR
OC |fx, x, y, Ri

�
1p

nR(nR � 1)

X

x02[n]\Rin

x0 6=x

OC |fx0 , x, y, Ri

= (�1)y
r

nR � 1

nR
|fx, x, y, R oxi

�
1p

nR(nR � 1)

X

x02[n]\Rin

x0 6=x

|fx0 , x, y, R oxi

= (�1)y
r

nR � 1

nR
|fx, x, y, R oxi

�
1

p
nR

| (R ox)ini|x, y,R oxi.

The former vector is in H
C
t+1, while the latter is in H

A
t+1.
⇤

D.4 Escaping the no-progress subspace

Claim 3 We have ⇧B
t+1OQ⇧A

t = ⇧B,act
t+1 OQ⇧A

t , and its

norm is 2
p
n�t�1
n�t .

Proof. We can see that

⇧B
t+1OQ⇧

A
t

=

✓ X

R02Rt+1

⇣ X

z2[n]\R0
in

|fzihfz|� | R0
in
ih R0

in
|

⌘
⌦|R

0
ihR

0
|

◆

·

✓⇣
ITQ � 2

X

x2[n]

|fx, x, 1ihfx, x, 1|
⌘
⌦ |q,?i

◆

·

✓ X

R2Rt

| Rinih Rin |⌦ |RihR|

◆

= � 2
X

R2Rt

X

x2[n]

✓⇣ X

z2[n]\Rin

|fzihfz|� | Rinih Rin |

⌘

|fxihfx|| Rinih Rin |

◆

⌦ |x, 1ihx, 1|⌦ |qi ⌦ |R o ?ihR|,

where we have used (R o ?)in = Rin. Because of (1), we
have

⇧B
t+1OQ⇧

A
t

= � 2
X

R2Rt

X

x2[n]\Rin

|fxi � | Rini/
p
nR

p
nR

h Rin |

⌦ |x, 1ihx, 1|⌦ |qi ⌦ |R o ?ihR|

= � 2
X

R2Rt

X

x2[n]\Rin

p
nR � 1|f̃x,Ri

nR
h Rin |

⌦ |x, 1ihx, 1|⌦ |qi ⌦ |R o ?ihR|,

whose image is in H
B,act
t+1 . Since the terms corresponding

to distinct x and R are orthogonal,

k⇧B
t+1OQ⇧

A
t k = max

R2Rt
2

p
nR � 1

nR
= 2

p
n� t� 1

n� t
.

⇤

Claim 4 We have ⇧B
t+1OC⇧A

t = 0 and

k⇧C
t+1OC⇧A

t k
2 = 1/(n� t).

Proof. We can write OC⇧A
t as the summation

OC⇧
A
t =

⇣ X

x,z2[n]
y2{0,1}

(�1)y·�x,y |fz, x, yihfz, x, y|⌦ |xi ⌦ |ci
⌘

⇣ X

R2Rt

| Rinih Rin |⌦ |RihR|

⌘

=M
0 +M

00

whereM 0 corresponds to all terms in the summation such
that z 6= x, and M

00 to those with z = x. For both, we
use (1) to evaluate hfx| Rini, and let IQo = |0ih0|+ |1ih1|
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and ZQo = |0ih0|� |1ih1| below. We have,

M
0 =

X

R2Rt

X

z2[n]\Rin

X

x2[n]
x 6=z

|fzih Rin |
p
nR

⌦ |R oxihR|

⌦ |xihx|⌦ IQo ⌦ |ci

=
X

R2Rt

X

x2[n]

✓ X

z2[n]\Rin
z 6=x

|fzi
p
nR

|R oxi

◆
h Rin |hR|

⌦ |xihx|⌦ IQo ⌦ |ci

=
X

R2Rt

X

x2[n]

✓r
nR ox
nR

| (R ox)ini|R oxi

◆
h Rin |hR|

⌦ |xihx|⌦ IQo ⌦ |ci,

whose image is in H
A
t+1. We have

M
00 =

X

R2Rt

X

z2[n]\Rin

|fzih Rin |
p
nR

⌦ |R ozihR|

⌦ |zihz|⌦ ZQo ⌦ |ci,

whose image is in H
C
t+1. Since the terms correspond-

ing to distinct z and R are orthogonal, kM
00
k =

maxR2Rt 1/
p
nR = 1/

p
n� t. ⇤

E Bounding Increase in Progress

Now we combine Claims 1–4 to show the following
lemma, which bounds the size of overlaps on spaces HB

t+1

andH
C
t+1 after the quantum and the classical oracle calls,

given the size of overlaps on H
B,act
t , HB,pas

t , and H
C
t be-

fore those oracle calls. We then use this lemma to con-
clude the proof of Lemma 2.

Lemma 3 Let |�i := |�ti be the state of the whole sys-

tem just before (t+ 1)th oracle call. We have

k⇧B
t+1OQ|�ik

2


✓
k⇧B,act

t |�ik+
2

p
n� t� 1

◆2

+ k⇧B,pas
t |�ik

2
, (3a)

k⇧B
t+1OC |�ik

2
 k⇧B,pas

t |�ik
2
� k⇧C

t+1OC⇧
B,pas
t |�ik

2
,

(3b)

k⇧C
t+1OQ|�ik

2 = k⇧C
t |�ik

2
, (3c)

k⇧C
t+1OC |�ik

2
 k⇧C

t |�ik
2 + 3k⇧B,act

t |�ik
2

+ 3k⇧C
t+1OC⇧

B,pas
t |�ik

2 +
3

n� t� 1
.

(3d)

Proof. Towards (3a), first note that ⇧B
t+1OQ⇧C

t = 0 due
to Claim 1. Then, by Claims 2 and 3, we have

⇧B
t+1OQ = ⇧B,act

t+1 OQ⇧
B,act
t

+⇧B,pas
t+1 OQ⇧

B,pas
t +⇧B,act

t+1 OQ⇧
A
t .

Because ⇧B,act
t+1 and ⇧B,pas

t+1 have orthogonal images, we
therefore have

k⇧B
t+1OQ|�ik

2 =k⇧B,act
t+1 OQ⇧

B,act
t |�i+⇧B,act

t+1 OQ⇧
A
t |�ik

2

+ k⇧B,pas
t+1 OQ⇧

B,pas
t |�ik

2



⇣
k⇧B,act

t |�ik+ k⇧B,act
t+1 OQ⇧

A
t |�ik

⌘2

+ k⇧B,pas
t |�ik

2
,

and the inequality (3a) follows due to k⇧B,act
t+1 OQ⇧A

t k <
2p

n�t�1
, as given by Claim 3.

Towards (3b), we have ⇧B
t+1OC⇧C

t = 0 by Claim 1,

⇧B
t+1OC⇧

B,act
t = 0 by Claim 2, and ⇧B

t+1OC⇧A
t = 0

by Claim 4. Hence, ⇧B
t+1OC = ⇧B

t+1OC⇧
B,pas
t , and the

inequality (3b) follows from

k⇧B
t+1OC⇧

B,pas
t |�ik

2

= k(⇧C
t+1 +⇧

B
t+1)OC⇧

B,pas
t |�ik

2
� k⇧C

t+1OC⇧
B,pas
t |�ik

2

 k⇧B,pas
t |�ik

2
� k⇧C

t+1OC⇧
B,pas
t |�ik

2
.

The equality (3c) follows immediately from Claim 1.
Towards (3d), recall Claim 1 stating that ⇧C

t+1OC⇧C
t =

OC⇧C
t and that its image is orthogonal to that of

⇧C
t+1OC(⇧B

t +⇧A
t ). Hence,

k⇧C
t+1OC |�ik

2

= k⇧C
t |�ik

2 + k⇧C
t+1OC(⇧

B,act
t +⇧B,pas

t +⇧A
t )|�ik

2

 k⇧C
t |�ik

2 + 3k⇧B,act
t |�ik

2 + 3k⇧C
t+1OC⇧

B,pas
t |�ik

2

+ 3 k⇧C
t+1OC⇧

A
t k

2

| {z }
= 1

n�t<
1

n�t�1

, (4)

where the equality under the brace is due to Claim 4. ⇤

Remark 1 Consider the last three squares of norms on

the left hand side of (4), namely, a := k⇧B,act
t |�tik

2
, b :=

k⇧C
t+1OC⇧

B,pas
t |�tik

2
, and c := k⇧C

t+1OC⇧A
t k

2
, and also

consider d := k⇧B
t |�tik

2
appearing in the definition of

the progress measure  t. As we will see below, when

proving the final claim of Lemma 2, we need that the

scalar in front of d in the definition of  t must be both

at least as large as the scalar in front of b in (4) and

strictly larger than the scalar in front of a in (4). While

currently those scalars are 4, 3, and 3, respectively, we

could have taken them to be 2 + ↵, 2 + ↵, and 2 + ↵/2
for any ↵ > 0. That is because we could have used in (4)

the fact that

(a+ b+ c)2  (2 + ↵/2)a2 + (2 + ↵)b2 + (1 + 3/↵)c2.

We have chosen the scalar 4 instead of 2+↵ in the defi-

nition of  t for sake of simplicity.

Proof. (The final claim of Lemma 2). For conciseness, let
nt := n � t � 1. Note that ⇧B

t+1OQ, ⇧B
t+1OC , ⇧C

t+1OQ,
⇧C

t+1OC have orthogonal images. Hence, by Lemma 3
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and the fact that Ut+1 commutes with both ⇧C
t+1 and

⇧B
t+1, we have

 t+1 = k⇧C
t+1Ut+1Op|�tik

2 + 4k⇧B
t+1Ut+1Op|�tik

2

k⇧C
t |�tik

2 + 3pk⇧B,act
t |�tik

2

+ 3pk⇧C
t+1OC⇧

B,pas
t |�tik

2 +
3p

nt

+ 4(1� p)
⇣
k⇧B,act

t |�tik+
2

p
nt

⌘2

+ 4k⇧B,pas
t |�tik

2
� 4pk⇧C

t+1OC⇧
B,pas
t |�tik

2
.

Here we observe that the sum of the two terms having
k⇧C

t+1OC⇧
B,pas
t |�tik

2 is non-positive, and thus can be
omitted (in Remark 1, this concerns the scaling of b and
d). Moreover, note that

k⇧C
t |�tik

2 + 4k⇧B,pas
t |�tik

2 =  t � 4k⇧B,act
t |�tik

2
,

therefore we have

 t�1 � t 
3p

nt
� (4� 3p)k⇧B,act

t |�tik
2

+ 4(1� p)
⇣
k⇧B,act

t |�tik+
2

p
nt

⌘2

=
64� 112p+ 51p2

pnt

� p

✓
k⇧B,act

t |�tik �
8(1� p)

p
p
nt

◆2


64

pnt
.

(In above, we used that �(4 � 3p) + 4(1 � p) is strictly
negative, which, in Remark 1, concerns the scaling of a
and d.) ⇤
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Abstract. Several noisy intermediate-scale quantum computations can be regarded as logarithmic-depth
quantum circuits on a sparse quantum computing chip. In this presentation, we propose a method to effi-
ciently verify such noisy intermediate-scale quantum computation. Although the direct fidelity estimation
requires O(2n) copies of an n-qubit output state on average, our method requires only O(D3212D) copies
even in the worst case, where D = O(log n) is the denseness of the ideal output state. We also perform
a proof-of-principle experiment of our method by using IBM’s cloud quantum computing platform. The
detail is given in the full paper [1].

Keywords: Verification of quantum computation, Noisy intermediate-scale quantum computation, Pla-
nar separator theorem

1 Background

Universal quantum computers are expected to effi-
ciently solve several hard problems that are intractable
for classical counterparts. However, to exploit their full
potential, quantum error correction (QEC) is necessary.
For current technologies, QEC is highly demanding be-
cause it requires precise state preparations, quantum op-
erations, and measurements. That is why the potential
of quantum computation without QEC is being actively
explored. Such non-fault-tolerant quantum computation
is called noisy intermediate-scale quantum (NISQ) com-
putation [2], and several NISQ algorithms have already
been proposed [3, 4, 5].
Although several error mitigation techniques have been

proposed [6, 7, 8, 9], NISQ computation should be fin-
ished in at most logarithmic time due to the lack of fault-
tolerance. Note that when an error occurs with a con-
stant probability in each time step, logarithmic-depth
quantum circuits succeed with a probability of the in-
verse of a polynomial. Furthermore, some current quan-
tum computing chips are sparse in the sense that they
can be separated into two parts by removing a small
number of connections between two qubits. For exam-
ple, IBM’s 53-qubit chip [10, 11] in Fig. 1 can be sepa-
rated into two parts (0 − 27 and 28 − 52) by removing
only two connections between the 21st and 28th qubits
and between the 25th and 29th qubits. In short, sev-
eral NISQ computations can be regarded as shallow (i.e.,
at most logarithmic-depth) quantum circuits on a sparse
chip, and we focus on such NISQ computations.
Since the performance of NISQ computations is

strongly affected by noise, it is necessary to efficiently
check whether a given NISQ computer works as expected.
This task is known as the verification of quantum com-
putation. Although various efficient verification meth-
ods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28] have been proposed so far, they all assume
(fault-tolerant) universal quantum computations. Par-
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Figure 1: The connectivity of qubits within the IBM
Rochester 53-qubit chip. Two-qubit operations can be
directly applied on only pairs of two qubits connected by
a line. This chip can be separated into two parts (0− 27
and 28− 52) by removing only two connections between
the 21st and 28th qubits and between the 25th and 29th
qubits.

ticularly, some of these methods [12, 13, 14, 16, 17, 19,
22, 23, 26, 28] are based on measurement-based quan-
tum computation (MBQC) [29], which consumes at least
one qubit to apply a single elementary quantum gate.
Therefore, MBQC requires more qubits than the quan-
tum circuit model. Since the number of available qubits
is limited in NISQ computations, the MBQC is inade-
quate for it. The method of Fitzsimons et al. [18] re-
quires a prover (i.e., a quantum computer to be verified)
to generate a Feynman-Kitaev history state whose gen-
eration seems to be hard for NISQ computations. Other
methods [21, 24, 25, 27] require the prover to compute
classical functions in a superposition, where the func-
tions are constructed from the learning-with-errors prob-
lem [30]. This task also seems to be beyond the capability
of NISQ computations. Furthermore, since NISQ com-
puters are expected to be used to solve several problems
such as optimizations, classifications, and simulations of
materials, a verification method should be developed for
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Figure 2: Diagram of our verification method. The n-qubit quantum state ρ̂out is the output from a sparse chip. m
and other n−m qubits of ρ̂out are measured by noisy quantum measurement devices 1 and 2 with an ancillary qubit
|0〉, respectively. Our method repeats these procedures polynomially many times. Then by classically post-processing
all measurement outcomes, we obtain an estimate Fest of the fidelity 〈ψt|ρ̂out|ψt〉. Although we depict the quantum
measurement devices 1 and 2 as different devices for simplicity, they can be treated as a single (m + 1)-qubit device
by sequentially measuring m and the other n−m qubits of ρ̂out.

general problems other than decision problems, which
can be answered by YES or NO. It is highly nontriv-
ial whether an n-qubit NISQ computer can be efficiently
verified by using a quantum measurement device that is
strictly smaller than n qubits.

2 Our result

Let |ψt〉 be any n-qubit pure state generated from an
ideal logarithmic-depth quantum circuit on a sparse chip.
We propose an efficient method to estimate the fidelity
between |ψt〉 and the actual state ρ̂out generated from an
actual NISQ computer. Our method needs a (m + 1)-
qubit measurement device, where n/2 + 1 ≤ m + 1 < n.
Since our method estimates the fidelity between the ac-
tual and ideal quantum states, it can be used for any
problems beyond decision problems. Our method is con-
structed as follows (see also Fig. 2): first, we obtain an
upper bound on the diamond norms between the ideal
quantum operations achieved in the (m + 1)-qubit mea-
surement device and its actual ones. Our method works
even if the (m + 1)-qubit measurement device is some-
what noisy, i.e., the upper bound is non-zero but suffi-
ciently small. Then we measure m qubits of ρ̂out and an
ancillary qubit |0〉 by using the noisy (m+1)-qubit oper-
ators. The remaining n −m qubits of ρ̂out are also sim-
ilarly measured with another ancillary qubit |0〉, where
n − m ≤ m. We repeat these procedures by generat-
ing a polynomial number of copies of ρ̂out. Finally, by
classically post-processing all measurement outcomes, we
estimate the fidelity 〈ψt|ρ̂out|ψt〉. Since we divide ρ̂out
into two parts and measure each of them separately, our
verification method can be considered as a divide-and-
conquer method. Its detailed procedure is given in our
full paper [1].
The efficiency of our verification method can be sum-

marized as the following theorem:

Theorem 1 Let |ψt〉 ≡ U |0n〉 be an n-qubit pure state
generated from an ideal logarithmic-depth quantum cir-
cuit on a sparse chip, where U consists of a polyno-
mial number of CZ gates and single-qubit quantum gates.

Suppose that n qubits are divided into m and (n − m)
qubits, where n/2 ≤ m, m = Θ(n), and n −m = Θ(n),
such that the number of CZ gates between them is D =
O(log n). We assume that the diamond norm between
any ideal and actual (m+1)-qubit gates is upper bounded
by ε/4D+2. Then for any n-qubit state ρ̂out, our method
outputs Fest such that with probability of at least 1 − δ,
|Fest−〈ψt|ρ̂out|ψt〉| ≤ ε, by performing (m+1)-qubit mea-
surements on

O
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ε6

(
D + log

1

δε4
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copies of ρ̂out, where 0 < ε, δ < 1.

The proof of this theorem and experimental evaluation
of our protocol with IBM’s cloud quantum computing
platform are given in our full paper [1].

3 Comparisons to existing methods

Our verification method is superior to existing meth-
ods in terms of the number of required copies, which
we call the sample complexity. The sample complexity
of our method is O(D3212D) that is a polynomial in n
for NISQ computations because D = O(log n). As an
existing fidelity estimation method, the quantum state
tomography [31, 32, 33] can estimate the fidelity by re-
constructing the matrix representation of ρ̂out. Since any
n-qubit state can be identified using O(4n) complex num-
bers, the quantum state tomography requires at least the
same number of copies of ρ̂out. To improve the efficiency,
Flammia and Liu proposed a direct fidelity estimation
method that estimates the fidelity without reconstructing
ρ̂out [34]. Their method requires O(2n) copies of ρ̂out on
average. Although their method improved on the quan-
tum state tomography in terms of the number of required
copies, the number is still exponential in n. On the other
hand, as mentioned above, our method requires only a
polynomial number of copies even in the worst case.
So far, we have assumed that the quantum comput-

ing chip C is sparse. Our method is superior to the di-
rect fidelity estimation method [34] even when C is not
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sparse but is a planar graph with a constant maximum
degree. Since the graphs underlying almost all current
physical chips are planar ones with constant maximum
degrees, this assumption is quite natural. For example,
the geometry of Google’s Sycamore 53-qubit chip [35] is
a planar graph with the maximum degree four, although
it is not sparse. As a consequence of the planar separa-
tor theorem [36, 37], D is O(

√
n logn) for logarithmic-

depth quantum circuits on any planar graph with a con-
stant maximum degree. Therefore, the sample complex-
ity of our method is 2O(

√
n logn), which is less than the

sample complexity O(2n) of the direct fidelity estimation
method.
Prior to our work, as far as we know, only two types

of verification methods were developed for NISQ com-
puters [38, 39, 40, 41]. Our method can estimate the
fidelity between ideal and actual output states, unlike
the methods in Refs. [38, 40], which can estimate the
total variation distance between an actual output prob-
ability distribution and the ideal one. In this sense, our
method is superior to theirs. Note that theirs can also be
used to estimate lower and upper bounds on the proba-
bility that the target quantum circuit is afflicted by er-
rors. By using the upper bound, a lower bound on the
fidelity can be obtained, which may be loose. The meth-
ods in Refs. [39, 41] achieve both verifiability and the
security, i.e., they enable us to securely and verifiably
delegate quantum computing to a remote server even if
the server’s quantum computer is noisy. Its error robust-
ness is promising. However, their method is based on the
MBQC, which seems to be inadequate for NISQ comput-
ers as we have mentioned, whereas our method is not.
Efficient verification methods have already been pro-

posed for several quantum states such as graph states [13,
28, 22], hypergraph states [17, 19, 26], weighted graph
states [23], and Dicke states [42]. Since these previous
methods are tailored for the specific classes of states, they
cannot be used for our purpose. Our method can effi-
ciently estimate the fidelity for any pure state generated
by shallow quantum circuits on a sparse chip.
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Abstract. Let U 2 SU(d) be an arbitrary unitary operator representing an arbitrary d-dimensional
unitary quantum operation. We present optimal quantum circuits for transforming a number k of calls of
U : Cd ! Cd into its complex conjugate U . Our circuits admit a parallel implementation and are proven
to be optimal for any k and d with an average fidelity of hF i = k+1

d(d�1) . This extends previous works which

considered the scenario of a single call (k = 1) of the operation U , and the special case of k = d� 1 calls.

Keywords: Quantum circuit , Quantum channels , Quantum Combs

1 Introduction

The field of quantum information and computation
typically describes how physical devices process infor-
mation encoded into quantum systems. Such devices
are often referred to as quantum gates in mathematical
frameworks and can be combined into quantum circuits
by defining the order of processing [7]. Conventionally,
quantum gates were thought of as operations that take
quantum states as inputs, and, after processing, output
a quantum state. However, in a paradigm sometimes
referred to as “higher-order quantum transformations”
quantum gates rather than quantum states may be sub-
ject to transformation [8, 9]. Such higher-order quantum
transformations can be viewed as a “circuit-board” ap-
proach for quantum operations, and have been found to
have versatile applications encompassing quantum circuit
design. When considering the transformation of an un-
known unitary U 2 SU(d) with a function f , access to
multiple copies or simply, multiple calls of the same uni-
tary U , may be used to perform transformations f(U)
with higher fidelity than a single use of U . This intro-
duces the freedom to arrange the multiple uses of U in
di↵erent configurations. One could apply all uses in par-
allel or concatenate them in a sequence or consider the
case where with indefinite causal order [4]. In particular
one may analyze the performance of a general process
transforming k uses of an unknown unitary operation U
into its arbitrary function f(U) such as unitary inver-
sion, unitary transposition, or unitary complex conjuga-
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‡marcin.marciniak@ug.edu.pl
§tomasz.mlynik@phdstud.ug.edu.pl
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tion [4]. The question regarding such a task is to know
how well such processes, represented by quantum comb
can perform in a deterministic manner. This and other
similar tasks are of great importance showing theoreti-
cal limitations on potential quantum machines executing
quantum program encoded in f(U) and their attracted a
lot of attention in recent years [1, 2, 3, 4].

Figure 1: Parallel superchannel transforming k calls of a
unitary operation U 2 SU(d) into its complex conjuga-
tion U . Here eE stands for an ”encoder” quantum channel
which is performed before the input operations U⌦k and
eD stands for a “decoder” quantum channel acting after
the input operations.

2 Our approach: f(U) = U

We take a closer look at the case when the desired
function f possesses a property of homomorphism i.e.,
f(UV ) = f(U)f(V ), where U, V 2 SU(d), and quan-
tum comb representing demanding process exhibits par-
allel structure, see for example [5]. It was shown in [6]
that transformations f acting on unitary operation U 2
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SU(d) as f(U) can be implemented optimally by parallel
circuits when f is a homomorphism. A crucial exam-
ple within this class, from the point of view of quantum
computing, is when f(U) = U (the bar denotes complex
conjugation). A parallel designed circuit for implemen-
tation of a unitary complex conjugation is shown in Fig.
1.
Up to now, it was known how to construct optimal deter-
ministic quantum comb which executes U⌦k

7! U with
fidelity 1, but it demands exactly k = d � 1 uses [1].
This leaves the situation with access to fewer trials than
k completely unsolved. In our work, we present a deter-
ministic and universal quantum circuit that transforms
k calls of an arbitrary d-dimensional unitary operator U
producing U in unexplored earlier regime k < d� 1.

3 Used tools

Let fCin : L(HI) ! L(HO) be an arbitrary input chan-
nel to a quantum circuit, which transforms it into an
output channel gCout : L(HP ) ! L(HF ). The labels P
and F stand for past and future, respectively (see Fig. 1).
Quantum circuits designed to obtain the transformation
fCin 7! gCout may be analyzed by means of the encoder
and decoder channels [3], a method which we describe in
the following.

1. Before performing the input operation fCin, we ap-
ply a quantum channel (encoder) eE : L(HP ) !

L(HI ⌦ Haux), where Haux is an arbitrary auxil-
iary (memory) space.

2. Then, the operation fCin ⌦ gIaux is applied.

3. Finally, we perform a quantum channel (decoder)
eD : L(HO ⌦Haux) ! L(HF ) to obtain the output

gCout = eD �

⇣
fCin ⌦ gIaux

⌘
� eE. (1)

The use of k independent calls of a unitary operation
U may be mathematically represented by a single oper-
ation U⌦k, where U(⇢) := U⇢U † is the unitary channel
associated to the operator U . Then, by identifying U⌦k

as fCin in the routine described above, a parallel quantum
circuit transforms k calls of U as

U
⌦k

7! eD �

⇣
U

⌦k
⌦ gIaux

⌘
� eE, (2)

as illustrated in Fig. 1.
By exploiting the Jamio lkowski-Choi isomorphism and

the link product ⇤ defined as A ⇤B := tr2([AT2 ⌦ I3][I1 ⌦
B]) where A 2 L(H1 ⌦H2), B 2 L(H2 ⌦H3) and T2 is
partial transposition applied on second system. We can
reformulate (2) as

D ⇤ (|IiihhI|⌦ C) ⇤ E = D ⇤ C ⇤ E, (3)

where |IiihhI| is the Choi operator for the identity map
eI, D,C,E are Choi operators of eD, eC, eE respectively.
Thanks to the associativity and commutativity of the
link product, we can represent an incomplete circuit as

S := E ⇤D and we will call it superchannel. In this way,
for any quantum channel C that we plug into the circuit,
the output operation is described by

S ⇤ C = E ⇤D ⇤ C, (4)

= D ⇤ C ⇤ E, (5)

which is a quantum channel from the past space HP to
the future space HF . As discussed earlier, since the com-
plex conjugation function is a homomorphism, i.e., UV =
U V , we can restrict our analysis to parallel quantum cir-
cuits. A linear operator S 2 L(HO ⌦HI ⌦HO ⌦HF ) is
k-slot parallel superchannel if and only if

S � 0, (6)

trF (S) = trOF (S)⌦
IO
dO

, (7)

trIOF (S) = tr(S)⌦
IP
dP

, (8)

tr(S) = dP dO, (9)

where HI := HI1 ⌦ . . .⌦HIk , similarly, we write HO :=
HO1 ⌦ . . . ⌦HOk . Further, we have HP

⇠= HF
⇠= HIi

⇠=
HOi

⇠= Cd for every i 2 {1, . . . , k} and HI
⇠= HO

⇠= C⌦k

d
.

Our target is to design a universal quantum circuit that
approximates the transformation U⌦k

7! f(U) for any
U 2 SU(d) thus we can formulate the problem in the
following way:
Given a function f : SU(d) ! SU(d), find the optimal
superchannel S such that: S ⇤ |UiihhU |

⌦k
' |f(U)iihhf(U)|

for all U 2 SU(d) where f(U) = U.
To quantify how similar two operations are alike is

given by the channel fidelity. The fidelity between an
arbitrary quantum channel eC and a unitary channel act-
ing as U(⇢) = U⇢U† on an input ⇢ is given by [12]

F ( eC,U) :=
1

d2
hhU |C|Uii, (10)

where |Uii the Choi vector of U . A natural way to quan-
tify the performance of a superchannel S on transform-
ing |UiihhU |

⌦k into |f(U)iihhf(U)| is given by its average
fidelity

hF i :=

Z

U2SU(d)
F
⇣
(S ⇤ |UiihhU |

⌦k), |f(U)iihhf(U)|
⌘
dU,

(11)
where superchannel S has to satisfy casual constrains
given by (6)-(9) and the integral is executed according to
the Haar measure dU with respect to SU(d). Authors in
[4] proved that for the case of homomorphic transforma-
tions, the optimal average fidelity coincides with the op-
timal worst-case fidelity showing that average fidelity is a
relevant figure of merit. Then in [2], when seeking for the
optimal superchannels to maximize the average fidelity
for a desired transformation |UiihhU |

⌦k
! |f(U)iihhf(U)|

it is convenient to define the performance operator

⌦ :=
1

d2

Z

U2SU(d)
|f(U)iihhf(U)|PF ⌦ |UiihhU |

⌦k

IO
dU.

(12)
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The performance operator is useful to evaluate the av-
erage fidelity of superchannel S via the relation hF i =
tr(S⌦). For any given performance operator ⌦, the prob-
lem of maximising the fidelity over all possible frame-
works S of superchannels with k-slots can be phrased as

max
S

tr(S⌦), (13)

where the set S = {parallel, sequential, general}. Au-
thors [2] also showed that the dual problem of the SDP
presented in (13) is given by

min
S

� (14)

such that: ⌦  �S, (15)

where S stands for the dual a�ne of the set of the desired
k-slot supechannels S. For particular case when function
f is homomorphism then the performance operator re-
spects the commutation relations for all U, V 2 SU(d)
submit

[⌦, f(V )P ⌦ V
⌦k

I
⌦ U

⌦k

O
⌦ f(U)F ] = 0. (16)

Exploiting those commutation relations leads to

⌦ =
1

d2

X

i

(P i

IP
⌦ P i

OF
)

di
, (17)

where {P i
}i is an orthogonal basis for the linear space

spanned by operators P 2 L(C⌦k

d
⌦ Cd) respecting

[P,U
⌦k

⌦ f(U)] = 0 for all U 2 SU(d), and di :=
tr(PiP

†
i
). Given permutation relation (16) allows us to

exploit the celebrated Schur-Weyl duality and show that
the operators under consideration must belong to the al-
gebra of the symmetric group Sk.

4 Main Results

We state our main result for the transformation of an
unknown unitary operation for complex conjugation.

1. The action of the encoder E 2 L(HP⌦HI), channel
expressed in the Choi operator is given by

E :=
d

�
d

k+1

�A(d, k + 1). (18)

2. The decoder D 2 L(HO ⌦ HF ) channel expressed
in Choi operator is given by

D :=

�
d

k

�
�

d

k+1

�A(d, k+1)OF +
⇣
I⌦k

d
�A(d, k)

⌘

O

⌦�F ,

(19)
where � 2 L(HF ) ⇠= L(Cd) is an arbitrary quantum
state, i.e., � � 0 and tr(�) = 1 and A(d, k) is
projector onto antisymmetrical space.

3. Such a quantum circuit does not make use of any
auxiliary space.

4. Using the methods of group representation and
SDP duality theory, we solved the fidelity optimiza-
tion problem, ensuring that the circuit presented in
(18) and (19) is indeed the optimal one. We con-
clude that with the following theorem

Theorem 1. Let U 2 SU(d) be a unitary opera-
tor representing an arbitrary d-dimensional unitary
channel U(⇢) = U⇢U †. When k  d � 1 uses are
available, the optimal quantum circuit which trans-
forms k uses of U into its complex conjugation U
attains average fidelity hF i = k+1

d(d�k) .

We summarize the results of Theorem 1 in the form of
Fig 2 for certain dimensions d and uses k.

Figure 2: Average fidelity given by Theorem 1 for dimen-
sions d = {3, 4, 6} and uses k = {1, 2, 3, 4, 5}
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Abstract. In this work, we report a deterministic and exact protocol to reverse any unknown qubit-
unitary and qubit-encoding isometry operations. We present the semidefinite programming (SDP) to search
the Choi matrix representing a quantum circuit reversing any unitary operation. We derive a quantum
circuit transforming four calls of any qubit-unitary operation into its inverse operation by imposing the
SU(2)⇥SU(2) symmetry on the Choi matrix. This protocol only applies only for qubit-unitary operations,
but we extend this protocol to any qubit-encoding isometry operations. For that, we derive a subroutine
to transform a unitary inversion protocol to an isometry inversion protocol by constructing a quantum
circuit transforming finite sequential calls of any isometry operation into random unitary operations.

Keywords: Higher-order quantum transformations, Quantum supermaps, Catalytic resource theory,
Isometry operations, Encoding and decoding of quantum information

1 Background and main result

A quantum operation is reversible if and only if it is
unitary [1]. Unitary operations encode quantum infor-
mation reversibly, but reversible encoding of quantum
information is not necessary a reversible quantum oper-
ation. General reversible encoding of a d-dimensional
quantum system into a D-dimensional quantum sys-
tem (D � d) is represented by an isometry operation
eVd,D(⇢) = Vd,D⇢V

†
d,D, where Vd,D : Cd ! CD is an

isometry operator. Unitary operations are special cases
of isometry operations where D = d, namely, eUd(⇢) =
Ud⇢U

†
d for a unitary operator Ud. If a full description of

Vd,D is given, we can decode the original quantum infor-

mation by applying a quantum operation eVinv satisfying
eVinv � eVd,D = e1d, where e1d is the identity operation,

and we call eVinv an inverse operation of eV. However,
a full description of Vd,D is not necessarily available in
distributed or cryptographic settings, e.g., when Alice
implements eVd,D in her laboratory and Bob would like to

implement a decoding operation eVint without asking her
the full description of eVd,D. In this situation, we need to
“learn” the black box isometry Vd,D and implement the
inverse operation based on the learned data. Process to-
mography may be used to estimate the full description of
Vd,D, but it introduces an extra resource overhead [2, 3].
Instead of storing the information of Vd,D in a classical
memory, it is possible to store it in a quantum state, but
it is still impossible to retrieve the stored operation de-
terministically and exactly [4]. In this work, we consider
the following task called isometry inversion: Given an

⇤satoshi.yoshida@phys.s.u-tokyo.ac.jp
†soeda@nii.ac.jp
‡murao@phys.s.u-tokyo.ac.jp

unknown oracle of isometry operation eVd,D, the task is

to implement its inverse operation eVinv.
It is nontrivial whether such a protocol exists in quan-

tum regime, even for the special case D = d of isome-
try inversion, namely, unitary inversion. As often is the
case with universal protocols (e.g., state cloning [5]), we
cannot implement the inverse operation U

�1
d determinis-

tically and exactly with a single use of Ud [6]. To avoid
this no-go theorem, protocols utilizing finite calls of Ud

to implement U
�1
d have been investigated. One trivial

protocol is to perform a process tomography [2, 3] of Ud

and implement the inverse operation of the estimated op-
eration. However, this protocol needs a large number of
calls of Ud and the implemented operation is non-exact.
More e�cient unitary inversion protocols have been pro-
posed [7–14]. Also, Ref. [15] proposes isometry inversion
protocols that use input operations in parallel. Yet, the
proposed protocols so far are either probabilistic or non-
exact.

Some works have investigated the fundamental limits
of unitary inversion and isometry inversion. The limits
of probabilistic exact or deterministic non-exact unitary
inversion and isometry inversion have been investigated
using semidefinite programming (SDP) [9, 15, 16]. How-
ever, the obtained numerical results are limited to small
d, D and n since we need to search within a large space
including all possible protocols. No-go results for deter-
ministic exact unitary inversion are known for certain
classes of protocols [7, 8, 16, 17]. It has been an open
problem whether deterministic exact inversion is possible
or not using more general protocols even when restricted
to unitary.

In this work, we report a deterministic and exact pro-
tocol of isometry inversion for d = 2 and any D � 2. This
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=
: unitary inversion

: transformation from isometries to random unitaries

: isometry inversion
Theorem 4

Theorem 1 (main result)

Theorem 5

4 calls

4 calls

Figure 1: Construction of an isometry inversion comb eeC0 by connecting a unitary inversion comb eeC and a quantum

comb eeT transforming sequential calls of any isometry operation eVd,D into sequential calls of a random unitary operation
eUd.

protocol utilizes n = 4 calls of a qubit-encoding isome-
try V2,D in sequence with fixed quantum operations. We
treat the input isometry operation as an unknown oracle
(blackbox). The special case D = 2 of this protocol is a
deterministic exact unitary inversion protocol. The main
result is stated as follows.

Theorem 1. For any given D � 2, there exists a quan-
tum circuit transforming 4 calls of any qubit-encoding
isometry operation eV2,D given as an unknown oracle into

its inverse operation eVinv deterministically and exactly.

To search isometry inversion protocols, we use the
framework of quantum combs. Quantum combs are lin-
ear transformations of quantum operations that can be
implemented by a quantum circuit using input opera-
tions in a fixed order. We represent quantum combs us-
ing their Choi matrices [18], and present an SDP to find
deterministic exact unitary inversion for any dimension.
It is shown that the maximum value of the SDP can be
searched within the Choi matrices having a SU(d)⇥SU(d)
symmetry, which reduces the size of the SDP. We present
a deterministic exact qubit-unitary inversion protocol by
solving the SDP and constructing the protocol. We also
show that the qubit-unitary inversion protocol generates
the “catalyst” state as a byproduct. This protocol ap-
plies only for qubit-unitary operations, but we extend
this protocol to any qubit-encoding isometry operations.
For that, we derive a subroutine to transform a unitary
inversion protocol for any dimension to an isometry in-
version protocol by constructing a transformation from
isometry operations to random unitary operations (see
Figure 1).

2 Deterministic exact qubit-unitary in-
version

A quantum comb eeC :
Nn

i=1[L(Ii) ! L(Oi)] !
[L(P) ! L(F)] can be characterized by a martix
C 2 L(P ⌦ In ⌦ On ⌦ F) called the Choi matrix [18],
where L(H) denotes the space of linear operators on
H, [L(H1) ! L(H2)] denotes the space of linear op-
erators from L(H1) to L(H2), and In :=

Nn
i=1 Ii and

On :=
Nn

i=1 Oi, as follows.

Lemma 2. [18] Suppose a matrix C 2 L(P⌦In⌦On⌦F)

satisfies

C � 0,

TrIiCi = Ci�1 ⌦ 1Oi�1 8i 2 {1, · · · , n+ 1}, (1)

C0 = 1,

where 1H is the identity operator on H, Cn+1 := C,
Ci�1 := TrIiOi�1Ci/ dimOi�1, In+1 := F , and O0 := P.
Then, there exists a circuit implementation of a quantum

comb eeC corresponding to the Choi matrix C.

The unitary inversion condition can be formulated as
an SDP by introducing a figure-of-merit called average

fidelity defined as
R
dUdF (eeC( eU⌦n

d ), eU�1
d ) using the Haar

measure dUd of SU(d) and the channel fidelity F .

Lemma 3. [16] The maximal average fidelity of d-
dimensional unitary inversion with n calls of the input
unitary operation eUd is calculated by the following SDP:

maxTr(C⌦d,n) s.t. C satisfies Eq. (1), (2)

where ⌦d,n is defined as ⌦d,n :=
R
dUd|UdiihhUd|⌦n+1

InF,OnP
using the Choi vector |Udii :=

P
i |ii⌦Ud |ii for the com-

putational basis {|ii}.

It is shown that the maximum value of the SDP (2)
can be searched within the set of the Choi matrices com-
muting with U

⌦n+1
InF ⌦ V

⌦n+1
POn for all U, V 2 SU(d). Us-

ing this SU(d) ⇥ SU(d) symmetry, we reduce the num-
ber of variables in the SDP (2). We introduce a basis
{Eµ

ij} of the set of operators on (Cd)⌦n+1 commuting

with U
⌦n+1 for all U 2 SU(d) [19, 20], associated to

the Young-Yamanouchi basis, where µ runs in the set of
Young diagrams with n + 1 boxes and at most d rows,
denoted by Yd

n+1, and i, j take the value from 1 to dµ,
where dµ is the number of standard tableaux whose frame
is µ. Any matrix C commuting with U

⌦n+1
InF ⌦V

⌦n+1
POn for

all U, V 2 SU(d) is written by a linear combination of the
tensor products (Eµ

ij)InF ⌦ (E⌫
kl)POn . The partial trace

of Eµ
ij in the last system and the tensor product Eµ

ij⌦1Cd

is written simply using a similar basis {E↵
ab} for ↵ 2 Yd

n

and ↵ 2 Yd
n+2, respectively. Using these relations, we re-

cursively derive the quantum comb condition (1) for the
Choi matrix C in the form of the linear combination of
E

µ
ij ⌦ E

⌫
kl.

By this procedure, we reduce the size of the matrix C

in the SDP (2), and extend the numerical calculation of
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Table 1: The maximal average fidelity of d-dimensional
unitary inversion with n calls of the input unitary op-
eration is obtained from the numerical calculation of
the SDP (2). The newly obtained values compared to
Ref. [16] are written with an underline.

n = 2 n = 3 n = 4 n = 5
d = 2 0.750 0.9330 1 1
d = 3 0.3333 0.4444 0.5556 0.6667
d = 4 0.1875 0.2500 0.3125 0.3750

...

the optimal value of the SDP (2) in Ref. [16] up to n  5
for arbitrary d (see Table 1). This numerical calculation
shows the existence of a deterministic exact qubit-unitary
inversion.

Theorem 4. There exists a quantum comb eeC transform-
ing 4 calls of any qubit unitary operation eU2 into its in-
verse operation eU�1

2 deterministically and exactly.

We show Theorem 4 by constructing a deterministic
exact qubit-unitary inversion protocol. It is implemented
using four calls of the input qubit-unitary operation U2

and fixed quantum operations e⇤1 and e⇤2 and the anti-
symmetric state | �i := (|01i � |10i)/

p
2 (see Figure 2

and Ref. [21]). This quantum circuit implements unitary
inversion since the inverse operation U

�1
2 is applied on

an arbitrary quantum state |�ini. We also obtain an ad-
ditional quantum state (U2 ⌦ I) | �i in the final state.
Since the first call of U2 in Figure 2 can be replaced
by the quantum state (U2 ⌦ I) | �i, we show that the
quantum state (U2 ⌦ I) | �i is used as a “catalyst” in
the qubit-unitary inversion, and we can implement the
qubit-unitary inversion using three calls of U2 with the
“catalyst.” This argument shows that m calls of the in-
verse operation can be obtained from 3m+1 calls of the
input qubit-unitary operation.

3 Construction of sequential isometry in-
version protocols

We show the following theorem on isometry inversion.
Combining it with Theorem 4, we obtain Theorem 1.

Theorem 5. Suppose there exists a quantum comb eeC
transforming n calls of any d-dimensional unitary opera-
tion eUd to its inverse operation eU�1

d . Then, for any given

D � d, there exists another quantum comb eeC0 transform-
ing n calls of any isometry operation eVd,D to its inverse

operation eVinv.

We construct a quantum comb eeT transforming n + 1
calls of an isometry operation eVd,D to n + 1 calls of a

random unitary operation eUd (see the left-bottom part
of Figure 1). Then, we construct an isometry inversion

comb eeC0 by connecting the given unitary inversion comb
eeC and the quantum comb eeT as shown in Figure 1.

|�ini

e⇤1
e⇤2

e⇤1
e⇤2

(U2 ⌦ I) | �i

| �i
U2 U2 U2 U2

U
�1
2 |�ini

Figure 2: Deterministic exact qubit unitary inversion
protocol using four calls of an input qubit-unitary op-
eration U2, which implements the inverse operation U

�1
2

on an arbitrary input quantum state |�ini and an addi-
tional quantum state (U2 ⌦ I) | �i. Here, | �i is the
antisymmetric state defined as | �i := (|01i � |10i)/

p
2,

and e⇤1 and e⇤2 are fixed quantum operations.

4 Discussions

We compare the performance of the deterministic ex-
act unitary inversion with the previously known proto-
cols. The optimal success probability of qubit-unitary
inversion using input unitaries in parallel is p = n/(n+3)
[9]. The success probability is improved using a “success-
or-draw” protocol to p = 1� (2/3)bn/2c [22]. To achieve
p = 1�✏, we need n = O(✏�1) (parallel) or n = O(log ✏�1)
(“success-or-draw”), while our protocol only requires n =
O(1).

5 Conclusion and future work

This work shows the existence of deterministic ex-
act isometry inversion protocol using 4 calls of input
qubit-encoding isometry operation eV2,D in sequence. We
present the SDP approach to seek deterministic ex-
act unitary inversion. We solve the SDP using the
SU(d) ⇥ SU(d) symmetry to show the existence of a de-
terministic exact qubit-unitary inversion protocol. We
construct a deterministic exact qubit-unitary inversion
protocol, which transforms four calls of the input qubit-
unitary operation U2 to the inverse operation U

�1
2 and

the “catalyst” state. Using the “catalyst” state, we can
transform 3m + 1 calls of U2 to m calls of U�1

2 . Then,
we show a qubit-encoding isometry inversion protocol by
constructing a quantum comb transforming n + 1 calls
of any isometry operation into n + 1 calls of a random
unitary operation.

Reference [23] presents the reduction of SDPs with the
SU(d) symmetry and a certain additional symmetry to
linear programming. It is an interesting future work to
invent a similar technique for the SDP of unitary inver-
sion, which will be applied to seek deterministic exact
unitary inversion for d > 2. This work shows a potential
to use “catalysts” to transform unknown quantum oper-
ations. It is also an interesting future work to investigate
the power of “catalysts” in other tasks to transform un-
known quantum operations.
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[14] P. Schiansky, T. Strömberg, D. Trillo, V. Sag-
gio, B. Dive, M. Navascués, and P. Walther, arXiv
preprint arXiv:2205.01122 (2022).

[15] S. Yoshida, A. Soeda, and M. Murao, arXiv preprint
arXiv:2110.00258 (2021).

[16] M. T. Quintino and D. Ebler, Quantum 6, 679
(2022).
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Perturbation theory enabled by quantum signal processing
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Abstract. Perturbation theory is an important technique for reducing computational cost and providing
physical insights in simulating quantum systems with classical computers. Here, we provide a quantum
algorithm to obtain perturbative energies on quantum computers via quantum signal processing (QSP).
We also estimate a rough computational cost of the algorithm for simple chemical systems such as water
clusters and polyacene molecules. To the best of our knowledge, this is the first of such estimates for
practical applications of QSP other than the Hamiltonian simulation.

Keywords: Perturbation theory, quantum signal processing, quantum simulation

1 Introduction

Perturbation theory is one of the most important tech-
niques to understand quantum systems. It solves prob-
lems by separating them into easy parts and di�cult
ones, and gradually taking the e↵ect of di�cult parts into
account. For weakly correlated systems, it usually gives
su�ciently accurate physics. A benefit of using perturba-
tive methods is its computational e�ciency compared to
the exact solvers. The computational cost to obtain an
exact solution of an n-body quantum system is generally
exponential to n on classical computers, while that of per-
turbative methods is only polynomial. Another impor-
tant aspect of perturbation is its physical interpretability.
It provides us insights into what e↵ect a specific interac-
tion of the system has on its overall physical properties.
In this work, we provide a method to implement per-

turbation theory on quantum computers. Our method
allows one to use strongly-interacting Hamiltonians that
are only solvable with quantum computers as a starting
point of the perturbation. More specifically, our algo-
rithm first constructs a ground state of an unperturbed
Hamiltonian via quantum signal processing (QSP) [1–3]
and fixed-point amplitude amplification [4]. Then, we
generate a perturbative state by applying the inverse of
an unperturbed Hamiltonian again with QSP, and ob-
tain an expectation value of a perturbation operator via
robust amplitude estimation (RAE) [5–7].
We also perform a concrete resource analysis of the al-

gorithm for simple chemical systems such as water clus-
ters and polyacenes to discuss its practicality. This is,
to the best of our knowledge, the first such analysis of
a practical application of the QSP and the QSP-based
matrix inversion technique. Despite of e�ciency of QSP
compared to conventional techniques, it is found that our
algorithm gives impractical numbers as computational
cost; for example, we estimate over 1031 calls of block-
encodings would be required to perform perturbation on
a pentacene molecule. This is much larger than the cost
required for naively performing the phase estimation of
the total Hamiltonian, which only requires 1010 calls of

⇤mitarai.kosuke.es@osaka-u.ac.jp

block-encodings. While we could not achieve a reduc-
tion of computational cost like the classical perturbation
theory, the other benefit of perturbation, that is, the in-
terpretability of the result, is still an important point.
Conventional techniques of quantum simulations based
on phase estimation can give us energy and its eigen-
states, but cannot provide us insights into why the energy
is the obtained value. We, therefore, believe this work is
a first step toward an “explainable” quantum simulation
on fault-tolerant quantum computers.

2 Result

First, we introduce the block-encoding [3, 8]. We say
a unitary UA block-encodes a matrix A when it has the
following form:

UA =

✓
A/↵ ·

· ·

◆
. (1)

with ↵ 2 R. Given a block-encoding UA of A, we can
construct a block encoding of P (A) for certain polyno-
mials P (x) [1–3]. This procedure is called quantum signal
processing (QSP) [1–3].

We have an n-qubit Hamiltonian Htotal = H + V . We
consider the Hamiltonian H and the perturbation V that
can be decomposed into Pauli operators �` as,

H =
LHX

`=1

h`�` (2)

V =
LVX

`=1

v`�` (3)

Let the ground state of Htotal with eigenvalue E0 be |E0i.
Also, let an eigenstate H with an eigenvalue ✏i be |✏ii.
We assume that the eigenvalues are ordered in ascending
order ✏0 < ✏1  · · ·  ✏2n�1 and that we know � such
that ✏1� ✏0 > �. Note that Hamiltonians H in this form
can be block-encoded with ↵ = khk1 =

P
` |h`| [9].

It is well known that |E0i can be approximated as

|E0i ⇡ |✏
(1)
0 i (4)

:= |✏0i �⇧(H � ✏0)
�1⇧V |✏0i , (5)
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where ⇧ = I � |✏0i h✏0|, to the first order in kV k if ✏i is
not degenerate. The corresponding eigenvalue E0 can be
approximated as,

E0 ⇡ ✏0 + ✏
(1)
0 + ✏

(2)
0 , (6)

where

✏
(1)
0 = h✏0|V |✏0i (7)

and

✏
(2)
0 = �h✏0|V⇧(H � ✏0)

�1⇧V |✏0i . (8)

This work aims to provide quantum procedures to ob-

tain ✏
(1)
0 and ✏

(2)
0 . Our formal results can be stated as

follows:

Theorem 1 Assume that we have an estimate ✏̂0 of ✏0,
the ground state energy of H, such that |✏̂0�✏0| < �0 < �.
Moreover, assume that we can preprare a state | i such

that | h✏0| i |2 = p. Then, we can estimate ✏(1)0 within an
additive error of �1 by using

O

✓
kh0

k1kvk2/3
�0�1

p
p

log

✓
kV k

�1

◆
log

✓r
p

1� p

kV k

�1

◆◆
(9)

calls of a block-encoding of H 0, where �0 = � � �0 and
H

0 = H � ✏̂0.

Theorem 2 Let ✏̂0, �0, | i, �0, H 0 and p be defined as
in Theorem 1. Additionally, let ⇧ = I � |✏0i h✏0|. Then,

we can estimate the second-order perturbation energy ✏(2)0

within an additive error of �2 by using

O

 
khk1kvk22/3

�02�2
p
p

log

✓
kV k

2

��2

◆
log

✓r
p

1� p

kV k
2

��2

◆!

(10)

calls of a block-encoding of H 0.

Our approach for performing perturbation on a quan-
tum computer is as follows:

1. Assume that we have an estimate ✏̂0 of ✏0 such that
|✏̂0 � ✏0| < �0.

2. E�ciently generate |✏0i via QSP-based eigenstate
filtering.

3. Estimate the first-order perturbation energy by
measuring h✏0|V |✏0i.

4. Estimate the second-order perturbation energy by
performing the Hadamard test of a unitary which
approximates ⇧(H � ✏0)�1⇧ constructed via QSP.

Note that step 1 can be performed by various techniques
for ground state energy estimation e.g. [10].
For step 2 of the algorithm, we utilize the QSP-

approximation of rectangular functions to prepare the
reference state |✏0i. The construction of rectangular func-
tions closely follows that of [2, 11] but we give more

Figure 1: Values of nfilter calculated with xth = 10�6,
which is a typical value for the molecules studied in this
work, and with di↵erent error parameters " as a func-
tion of . Points corresponds to the values for specific
molecules presented in Tables ?? and 1.

detailed cost, that is, the degree of polynomial needed
for their approximation, than the previous works. In
the full version [12], we show that there exists a QSP-
implementable polynomial P filter

",,xth
(x) such that,

P
filter
",,xth

(x) > 1� " (|x| < xth),

|P
filter
",,xth

(x)| < " (|x| > xth + ),
(11)

where xth > 0, 0 <  < 2(1 � xth) are parameters, with
degree nfilter(",, xth) = O(log(1/")/) plotted as Fig. 1.

For step 4 of the algorithm, we need to implement
⇧(H � ✏0)�1⇧. In the full version [12], we show that
there exists a QSP-implementable polynomial P ptb

",w,w0
(x)

that satisfies the following conditions:
����P

ptb
",w,w0

(x)�
w

2

1

x

���� <
w

2
" (w < |x| < 1) (12)

��P ptb
",w,w0

(x)
�� < w

2
" (|x| < w0) (13)

Its degree nptb(", w, w0) is plotted in Fig. 2 with var-
ious parameter settings. Applying this polynomial to
H

0 = H � ✏̂0 results in a operator that approximates
⇧(H � ✏0)�1⇧. We set w = ���0

kh0k1
and w0 = �0

kh0k1
by

the same reason; the ground state energy of H 0
/kh0

k1 is
within [��0/kh0

k1, �0/kh0
k1] and its second largest en-

ergy is larger than (�� �0)/kh0
k1.

Finally, we describe our approach for estimating the
expectation values, i.e., h✏0|V |✏0i and h✏0|V⇧(H �

✏0)�1⇧V |✏0i, that appears in step 3 and 4 of the algo-
rithm. In this work, we estimate these expectation values
by term-by-term basis, e.g., h✏0|V |✏0i =

P
` v` h✏0|�`|✏0i,

like in the variational quantum eigensolvers. This allows
us to know the contribution of each term to the total en-
ergy, which are essential for obtaining physical insights
of the target system.

We utilize a state-of-the-art method called the robust
amplitude estimation (RAE) [5–7], which can empirically
estimate h |�| i for a Pauli operator � within a mean

squared error of �2 by using 5
p
2

2
e2

e�1
1
� calls of U which
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Figure 2: Values of nptb calculated with w0 = 10�6,
which is a typical value for the molecules studied in this
work, and with di↵erent error parameters " as a func-
tion of w. Points corresponds to the values for specific
molecules presented in Table 1.

Table 1: Total cost for estimating perturbation energies
in terms of block-encoding calls.

System Cost for ✏(1)0 Cost for ✏(2)0

(H2O)2 5.4⇥1010 1.2⇥1018

(H2O)4 1.0⇥1013 6.8⇥1021

(H2O)6 9.1⇥1013 2.1⇥1023

Tetracene N/A 2.0⇥1030

Pentacene N/A 2.6⇥1031

Hexacene N/A 2.3⇥1032

prepares | i from |0i. The technique demands us to de-
terministically prepare |✏0i but we resolve this require-
ment by via the fixed-point amplitude amplification al-
gorithm [4]. The number of calls to the state preparation
oracle can be optimized by the maginitude of coe�cients
v`; �` with bigger v` should be measured more precisely
than those with smaller v`. Using the optimized distri-
bution of oracle calls, the total number of calls to the
oracle for estimating h✏0|V |✏0i within precision of � be-

comes O((
P

` v
2/3
` )3/2)/�.

The overall cost in terms of the number of block-
encoding calls for various molecules are calculated nu-
merically and shown in Table 1. (H2O)n represents wa-
ter clusters and we treat intermolecular interaction as
perturbation. For polyacenes, we treat the Hamiltonians
acting on pi-orbitals as H and other terms as V . This

choice makes ✏(1)0 = 0 so we do not show the cost for ✏(1)0

for polyacenes. For details of the calculation, see the full
version [12].

3 Conclusion

First, the estimated numbers are rather pessimistic;
the algorithm needs over 1010 block-encoding calls for
the simplest system considered here. However, it should
be remarked that the large contribution to the overall
cost comes from the expectation value estimation of the
perturbation operator V . Second, although the overall
cost seems to be impractical, the polynomial degrees are

on the order of only 108 even for the largest system we
considered. Hence, we might be able to perform the gen-
eration of the perturbed state in a practical time scale.
Finally, it should be stressed again that the perturbative
approach allows us to interpret the physical meaning of
the results. We believe that, while the values of energy
are indeed an important quantity, the interpretability of
the results is key to the practical applications of quan-
tum simulation algorithms. This work is only a first step
toward this goal, which remains to be reached in the fu-
ture.
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Abstract. Quantum processors surpassed the largest supercomputers for the specific computational
benchmark of Random Circuit Sampling [1-5], without using quantum error correction protocols. Prac-
tical application of such noisy processors to typical tasks of simulating evolution of a quantum system
in Physics and Chemistry would require computing expectation values of local observables. This adds
important constraints on the resources needed for an equivalent simulation on a classical computer. In this
presentation we will describe a unified framework that utilizes the underlying e↵ective circuit volume to
explain the tradeo↵ between the signal-to-noise ratio for a specific observable that can be achieved on a
noisy quantum computer, and the corresponding classical computational cost. We apply this framework to
recent quantum processor experiments of Random Circuit Sampling [5], quantum information scrambling
[6], and a Floquet circuit unitary [7]. This allows us to reproduce the results of Ref. [7] in less than one
second per data point using one GPU.
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Reflections on the Life and Legacy of Göran Lindblad
Francesco Petruccione1
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Abstract. This presentation o↵ers an exploration of the life and legacy of Göran Lindblad, a pioneering
figure in mathematical physics. Centered on his foundational work in open quantum systems and quantum
communication, the talk will provide a snapshot of Lindblad’s academic impact and influence on modern
quantum technology.
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Activation of genuine multipartite entanglement: Beyond the
single-copy paradigm of entanglement characterisation
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Abstract. Entanglement shared among multiple parties presents complex challenges for the characteri-
sation of di↵erent types of entanglement. One of the most fundamental insights is the fact that some mixed
states can feature entanglement across every possible cut of a multipartite system yet can be produced via a
mixture of states separable with respect to di↵erent partitions. To distinguish states that genuinely cannot
be produced from mixing such partition-separable states, the term genuine multipartite entanglement was
coined. All these considerations originate in a paradigm where only a single copy of the state is distributed
and locally acted upon. In contrast, advances in quantum technologies prompt the question of how this
picture changes when multiple copies of the same state become locally accessible. Here we show that
multiple copies unlock genuine multipartite entanglement from partially separable states, i.e., mixtures of
the partition-separable states, even from undistillable ensembles, and even more than two copies can be
required to observe this e↵ect. With these findings, we characterise the notion of genuine multipartite
entanglement in the paradigm of multiple copies and conjecture a strict hierarchy of activatable states and
an asymptotic collapse of the hierarchy.

Based on (the technical version follows the extended abstract):
Quantum 6, 695 (2022), arXiv:2106.01372 [quant-ph].

Keywords: Entanglement theory, genuine multipartite entanglement, many-copy activation

BACKGROUND

Entanglement shared among multiple parties is ac-
knowledged as one of the fundamental resources driv-
ing the second quantum revolution. Yet, its detec-
tion and characterisation are complicated by several fac-
tors: among them, the computational hardness of de-
ciding whether any given system even exhibits any en-
tanglement at all [1] as well as the fact that the usual
paradigm of local operations and classical communica-
tion (LOCC) lead to infinitely many types of entangle-
ment [2, 3, 4, 5, 6, 7, 8] already for single copies of mul-
tipartite states. Significant e↵ort has thus been devoted
to devising practical means of entanglement certification
from limited experimental data [9, 10].
One of the principal challenges for the characterisa-

tion of multipartite entanglement lies in distinguishing
between partial separability and its counterpart, gen-
uine multipartite entanglement (GME). Here, a multi-
partite state shared among multiple parties is said to be
partition-separable if the density operator is written as
a mixture of pure product states with respect to some
fixed partition of the parties into two or more groups. A
multipartite state is called partially separable if it can be
decomposed as a mixture of partition-separable states,
i.e., of states separable with respect to some (potentially
di↵erent) partitions of the parties. Any state that cannot
be decomposed in this way has GME (see Fig. 1, as well
as Table 1 of the technical version). One may further
classify partially separable states as k-separable states
according to the maximal number k of tensor factors

⇤jessica.bavaresco@unige.ch

that all terms in the partially separable decomposition
can be factorised into. If a state admits a decomposition
where each term is composed of at least two tensor factors
(k = 2), the state is called biseparable. Thus, every par-
tially separable state is k-separable for some k � 2, and
hence (at least) biseparable. This distinction arises natu-
rally when considering the resources required to create a
specific state: any biseparable state can be produced via
LOCC in setups where all parties share classical random-
ness and subsets of parties share entangled states. One of
the counter-intuitive features of partially separable states
is the possibility for bipartite entanglement across ev-
ery possible bipartition. Consequently, the notion of bi-
partite entanglement across partitions is insu�cient to
capture the notion of partial separability, and conven-
tional methods, such as positive maps [11, 12], cannot
be straightforwardly applied to reveal GME, which re-
sults in additional challenges compared to the—relatively
simpler—scenario of detecting bipartite or partition en-
tanglement (e.g., as in Ref. [13]).

An assumption inherent in the definitions above is
that all parties locally act only on a single copy of the
distributed state. However, in many experiments where
quantum states are distributed among (potentially
distant) parties, multiple independent but identically
prepared copies of states are (or at least, can be) shared.
For instance, exceptionally high visibilities of photonic
states can only be achieved if each detection event stems
from almost identical quantum states [14, 15]. Adding
noise to the channel then produces the situation here:
multiple copies of noisy quantum states produced in a
laboratory [16, 17]. Even limited access to quantum
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Figure 1: GME and (partial) separability for three
qubits. All three-qubit states separable with respect
to one of the three bipartitions, A1|A2A3 (yellow),
A2|A1A3 (darker green), and A3|A1A2 (background),
form convex sets, whose intersection (turquoise) contains
(but is not limited to) all fully separable states A1|A2|A3

(dark blue). The convex hull of these partition-separable
states contains all partially separable (the same as bisep-
arable for tripartite systems) states. All states that are
not biseparable are GME. States with k-copy activat-
able GME are contained in the set of biseparable but not
partition-separable states and are conjectured to form the
lighter green areas, with those states for which GME is
activatable for higher values of k farther away from the
border between GME and biseparability. The horizontal
line represents the family of isotropic GHZ states ⇢(p),
containing the maximally mixed state (p = 0) and the
GHZ state (p = 1). The values p(k)

GME indicate k-copy
GME activation thresholds.

memories or signal delays then allows one to act on mul-
tiple copies of the distributed states, which is a recurring
theme also in research on quantum networks [18, 19, 20].
Characterising properties of GME in multi-copy sce-
narios is thus not only of fundamental theoretical
interest but also crucial for practical applications that
require GME to be distributed, such as conference key
agreement [21].

MAIN RESULTS

We demonstrate here that, unlike the distinction be-
tween separable and entangled states, the distinction be-
tween biseparability and GME is not maintained in the
transition from one to many copies; i.e., partial sepa-
rability is not a tensor-stable concept. As we show,
for N parties 1, . . . , N , there exist multipartite quan-
tum states ⇢A1,A2, . . . ,AN

that are biseparable, but which
can be activated in the sense that sharing two copies
results in a GME state, i.e., such that the joint state
⇢A1,A2, . . . ,AN

⌦ ⇢B1,B2, . . . ,BN
of two identical copies (la-

belled A and B, respectively) is not biseparable with re-
spect to the partition A1B1|A2B2| . . . |ANBN .

Here, we systematically investigate this phenomenon
of multi-copy GME activation. That such activation of
GME is in principle possible had previously only been
noted in Ref. [22], where it was observed that two copies
of a particular four-qubit state that is itself almost fully
separable can become GME. By contrast, as the first
main result, we show that the property of biseparabil-
ity is not tensor stable in general by identifying a family
of N -qubit isotropic Greenberger-Horne-Zeilinger (GHZ)
states with two-copy activatable GME for all N . The
isotropic GHZ states are defined as a convex combina-
tion of a pure GHZ state and the maximally mixed state,
i.e., ⇢(p) := p |GHZihGHZ| + (1� p) 1

2N 12N . To overcome
the di�culty in analysing GME, the crucial technique
here is to use states in X-form, i.e., those with nonzero
entries of density operators only on the main diagonal
and the main anti-diagonal with respect to the compu-
tational basis. For a multipartite state in the X-form,
a necessary and su�cient condition of having GME re-
duces to positivity of the genuine multipartite (GM) con-
currence, a measure of multipartite entanglement given
by a polynomial function [23, 24]. Since an isotropic
GHZ state is in an X-form, we can calculate the GM
concurrence to certify GME. However, another di�culty
in our analysis arises from the fact that multiple copies of
isotropic GHZ states are no longer in the X-form. To re-
solve this di�culty, we exploit a Hadamard-product map
of the multiple copies of isotropic GHZ states, which is
implementable via stochastic LOCC (i.e., does not gen-
erate GME from partially separable states) and yet keeps
the resulting state in the X-form [25]. In particular, we
construct a su�cient GME criterion by converting the
multi-copy isotropic GHZ states using the Hadamard-
product map and applying the GM concurrence, to prove
the multi-copy GME activation. We further demonstrate
the existence of biseparable states within this family for
which two copies are not enough to activate GME, but
three copies are. Moreover, we show that the bound of
p for partition-separability coincides with the asymptotic
(in terms of the number of copies) GME-activation bound
in the family of the isotropic GHZ states.

Multi-copy GME activation is particularly
remarkable—and may appear surprising at first—
because it is in stark contrast to bipartite entanglement:
Two copies of states separable with respect to a fixed
partition always remain partition-separable and can
never become GME. However, from the perspective
of entanglement distillation, such an activation seems
more natural. After all, if one party shares bipartite
maximally entangled states with each other party, these
could be used to establish any GME state among all
N parties via quantum teleportation, thus distributing
GME by sharing only two-party entangled states. Such
a procedure would require at least N � 1 copies of these
bipartite entangled states (in addition to a local copy of
the GME state to be distributed). By contrast, already
the example from Ref. [22] suggests that one does not
have to go through first distilling bipartite entangled
pairs, followed by teleportation, but two copies can
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naturally feature GME already. While we have seen
that the phenomenon of GME activation can be more
than just distillation, one may still be tempted to think
that distillable entanglement may be required for GME
activation.
As another main result, we show that distillable

entanglement is not necessary at all for the GME activa-
tion. It is known that there exist bound entangled states
— entangled states that do not admit distillation of
entanglement no matter how many copies are provided.
In particular, all entangled states with positive partial
transpose (PPT) across a given cut are undistillable.
One might suspect that GME activation should not be
possible for biseparable states that are PPT across every
cut and hence have no distillable entanglement (even if
multiple parties are allowed to collaborate). However,
we here construct a biseparable state that is PPT with
respect to every cut, and yet prove that multiple copies
of this state have GME. A challenge in our proof is
that we here cannot use the above techniques based on
the X-form since the criteria on partition-separability,
PPT, and GME turn out to coincide for the isotropic
GHZ states. For the proof, we reduce the problem of
constructing such a biseparable PPT state to that of a
PPT-triangle state in the form of ⇢PPT

1,2 ⌦ ⇢PPT
2,3 ⌦ ⇢PPT

3,1

with GME, where the subscript of each PPT state
represents the pair of the parties 1, 2, 3 between which
the state is shared. Although GME witnesses based on
PPT would fail to certify GME in this case, we employ
a GME witness based on the lifted Choi map [26, 27] to
prove the GME.

IMPACT

Our results show that a modern theory of entanglement
in multipartite systems, which includes the potential to
locally process multiple copies of distributed quantum
states, exhibits a rich structure that goes beyond the
convex structure of partially separable states on single
copies. Together, our results support the following con-
jectures:

(i) There exists a hierarchy of k-copy activatable GME,
i.e., for all k � 2, there exists a biseparable but
not partition-separable state ⇢ such that ⇢⌦k�1 is
biseparable, but ⇢⌦k is GME.

(ii) GME is activatable for any biseparable but not
partition-separable state (light green areas in
Fig. 1) of any number of parties as k ! 1.

These conjectures suggest that asymptotically, an even
simpler description of multipartite entanglement might
be possible; i.e., separability in multipartite systems col-
lapses to a simple bipartite concept of separability. At the
same time, we have shown that two copies are certainly
not su�cient for reaching this simple limit, thus leaving
the practical certification with finite copies a problem
to be studied. Indeed, our results show that GME is
a resource with a complex relationship to bipartite en-
tanglement in the context of local operations and shared

randomness. An array of important open questions arises
from our results, which can thus be considered to estab-
lish an entirely new direction of research: first and fore-
most, this includes the quest for conclusive evidence for
or against our conjectures. Besides determining whether
these conjectures are ultimately correct or not, it will
be of high interest to determine which properties (of
the biseparable decompositions) of given states permit or
prevent GME activation with a certain number of copies.
Furthermore, from a practical point of view, our results
also motivate development of a theory of k-copy multi-
partite entanglement witnesses, which are non-linear ex-
pressions of density matrices and allow for a more fine-
grained characterisation of multipartite entanglement in
networks with local memories.
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Abstract. We consider general prepare-and-measure scenarios in which Alice can transmit qubit states
to Bob, who can perform general measurements in the form of positive operator-valued measures (POVMs).
We show that the statistics obtained in any such quantum protocol can be simulated by the purely classical
means of shared randomness and two bits of communication. Furthermore, we prove that two bits of
communication is the minimal cost of a perfect classical simulation. In addition, we apply our methods
to Bell scenarios, which extends the well-known Toner and Bacon protocol. In particular, two bits of
communication are enough to simulate all quantum correlations associated to arbitrary local POVMs
applied to any entangled two-qubit state. For the case of projective measurements, we provide explicit
protocols that simulate perfectly the statistics of all local projective measurements on any pair of entangled
qubits by communicating one classical trit. If the state is weakly entangled, already a single bit is sufficient
and the expected amount of communication approaches zero in the limit where the degree of entanglement
approaches zero.

This submission is mainly based on https://doi.org/10.1103/PhysRevLett.130.120801 and the
presentation will also contain some results from https://arxiv.org/abs/2207.12457.
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1 Classical simulation of qubit correla-
tions in prepare-and-measure scenarios

Quantum resources enable a sender and a receiver to
break the limitations of classical communication [1–3].
Already in the simplest meaningful scenario, namely that
in which the communication of a bit is substituted for a
qubit, advantages are obtained in important tasks like
Random Access Coding [4]. It is natural to explore the
fundamental limits of quantum over classical advantages.
Consider for instance the following question: You and
your partner are allowed to send either a classical mes-
sage of a given length (for instance one, two or even more
classical bits) or one quantum bit (qubit). In the latter
case, the sender is allowed to prepare the qubit in an ar-
bitrary state and the receiver is allowed to measure the
received qubit with an arbitrary measurement. If you
have the choice between one qubit and one classical bit
you are always better of by sending one qubit since the
qubit can be used to perfectly encode one classical bit.
In fact, the sender can prepare the qubit in one out of
two orthogonal states and the receiver measures the re-
ceived qubit in the corresponding basis. At the same
time, a qubit provides an advantage over a classical bit
in tasks like Random Access Coding [4]. However, to
decide whether you should choose one qubit or a larger
classical message such as two bits, is less obvious. Not-
ably, Holevo’s bound [5] shows that one qubit cannot be
used to faithfully transmit more than one classical bit.
Hence, there is at least one situation in which sending
two bits is more powerful than sending one qubit. How-
ever, is it always better to send two classical bits? Our
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result shows that this is indeed the case. More precisely,
we prove that two classical bits are sufficient to simulate
any strategy that can be achieved by sending one qubit.

In fact, we consider general prepare-and-measure (PM)
scenarios, in which Alice can prepare an arbitrary qubit
state ⇢ and sends it to Bob. Secondly, Bob receives the
state and performs an arbitrary quantum measurement
(POVM) on the qubit to obtain an outcome b (see Fig. 1).
By providing an explicit protocol, we show that any cor-
relations they obtain in this scenario can be perfectly
simulated by purely classical resources, namely shared
randomness and two classical bits of communication.
Moreover, we show that two bits is the minimal classical
simulation cost, i.e. there exists no classical simulation
that uses less communication than our protocol. This is
shown through an explicit quantum protocol, based on
qubit communication, that eludes a simulation with a
ternary classical message.

Notably, there exists a trivial classical simulation in
which Alice sends the Bloch vector coordinates of her
quantum state to Bob. After that, Bob can classically
compute the Born rule and samples his outcome accord-
ingly. However, sending the coordinates requires an in-
finite amount of classical bits. Whether a classical simu-
lation is possible with a finite classical message is much
less trivial. Notably, the simulation protocol of Toner
and Bacon showed that if we additionally restrict the
quantum measurements to be projective, a classical simu-
lation with two bits is possible [6]. However, this does not
account for the full power of quantum theory. The most
general measurements are known as positive operator-
valued measures (POVMs). Such POVMs are even in-
dispensable for important tasks like unambiguous state
discrimination [7, 8] and hold a key role in many quantum
information protocols (see e.g. [9–17]). This naturally
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Qubit > 1 bit: qubit can simulate one classical bit; qubit advantage in tasks like Random Access Coding [4]
=) Qubit performs at least as good as 1 classical bit for any task!

Qubit vs. 1 trit: for some tasks one trit is stronger (Holevo’s bound [5]); for others, one qubit is stronger (our result)
=) Choice between 1 qubit and 1 trit depends on the task!

Qubit < 2 bits: two classical bits can simulate all qubit correlations (our result)
=) Two bits perform at least as good as one qubit for any task!

Table 1: Summary: Comparing the strength of a classical and a qubit message in any prepare-and-measure scenario

a)
Qubit channel

Alice:
Qubit state
⇢ 2 L(C2)

Bob:
Qubit POVM

{Bb}

b

b)

c1, c2 2 {0, 1}
(c1 = 1, c2 = 0)

Alice sends

Alice calculates
ci = H(~x · ~�i)

Bob flips
~�i iff ci = 0

~x

~�1

~�2

~�
0

1 = ~�1

~�
0

2 = �~�2

Figure 1: a) Quantum PM scenario: Alice sends a qubit state to Bob who performs a POVM to obtain his outcome
b. b) A two-dimensional illustration of our classical simulation protocol: Alice and Bob share some random vectors on
the Bloch-sphere ~�1 and ~�2. Alice sends the two bits ci = H(~x · ~�i) where ~x is the Bloch vector representation of the
qubit state she wants to send and H(·) denotes the Heaviside function. We show that, for any state and any POVM,
these two bits are sufficient for Bob to produce an outcome b that obeys the same statistics as in the quantum case.

raises the question of identifying the classical cost of sim-
ulating the most general predictions of quantum theory,
based on POVMs. Notably, previous work has shown
that there exists a classical simulation that requires 5.7
bits of communication on average [18]. However, that
protocol has a certain probability to fail in each round,
leading to an unbounded amount of communication in
the worst case. In the contrary to these previous results,
our protocol always succeed with two bits and allows for
the most general qubit strategies including POVMs.

2 Classical simulation of local measure-
ments on entangled qubit pairs

These results have direct applications to the task
of simulating the non-local correlations of entangled
quantum states. Bell’s nonlocality theorem [19] shows
that quantum correlations cannot be reproduced by local
hidden variables. These non-local correlations are the
cornerstone for many tasks in quantum information pro-
cessing and found several applications in important fields
like quantum cryptography [20]. In order to quantify
the strength of these non-local correlations it is natural
to quantify the amount of classical communication
required to simulate the same statistics. More precisely,
is there a classical protocol such that Alice and Bob
can, for a given entangled two-qubit state, reproduce
the same correlations for any local measurements on
that quantum state? Since measurements are described
by continuous parameters, it was even expected that the
communication cost to reproduce these correlations is
infinite [21]. After a sequence of improved protocols for
entangled qubits [22–26], a breakthrough was made by
Toner and Bacon in 2003 [6]. They showed that only two
classical bits of communication are sufficient to simulate

the statistics of all local projective measurements on any
entangled two-qubit state. At the same time, they also
show that if the state is maximally entangled, only a
single bit is sufficient. Classical communication has then
been established as a natural measure of Bell nonlocal-
ity [27–35] and found applications in constructing local
hidden variable models [28]. However, two independent
problems remained open for almost two decades [36–38]:

What about general POVMs? — The result of
Toner and Bacon only applies to projective measure-
ments. How does the communication cost changes if we
consider the most general class of measurements, namely
POVMs? The previously best protocol used 5.7 bits on
average but an unbounded amount of communication in
the worst case [18]. However, following an idea by Cerf
et al. [24], we can adapt our classical protocol in the
prepare-and-measure scenario to simulate the statistics
obtained from arbitrary local POVMs on any entangled
qubit pair with two classical bits of communication.
In this way, our protocol immediately extends the
Toner and Bacon model [6] to Bell scenarios involving
POVMs. At the same time, we use the same amount of
classical communication, in fact, two bits. If the state
is maximally entangled, we also obtain a novel one bit
protocol.

Why are partially entangled states harder to

simulate? — The second open problem concerns the
amount of communication to simulate general, partially
entangled two-qubit states. Toner and Bacon have shown
that a single bit of communication is sufficient to simu-
late all local projective measurements of a maximally en-
tangled qubit pair. At the same time, the best protocol to
simulate non-maximally entangled qubit pairs requires,
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somehow counterintuitively, strictly more resources, in
fact two bits. The asymmetry of partially entangled
states and other evidences suggested that simulating
weakly entangled states may be harder than simulating
maximally entangled ones. For instance, in Ref. [39] the
authors prove that at least two uses of a PR-box are re-
quired for simulating weakly entangled qubit pairs, while
a single use of a PR-box is sufficient for maximally en-
tangled qubits [40]. Additionally, weakly entangled states
are strictly more robust than maximally entangled ones
when the detection loophole is considered [41–44]. This
raises an important foundational question [36–38]: Are
partially entangled states strictly harder to simulate and
therefore in a certain sense more non-local than the max-
imally entangled one, or, is a single bit still sufficient to
simulate partially entangled qubits as well? It has been
even called "a simple looking question waiting for an an-
swer" in a recent article by Nicolas Gisin and Florian
Fröwis [38]. In the second part of our work, we solve
that question for weakly entangled states.

Our results — We present an explicit protocol that
perfectly simulates local projective measurements on any
pair of entangled qubits, | ABi =

p
p |00i+

p
1� p |11i,

by communicating one classical trit. Additionally, when
2p(1�p)
2p�1 log

⇣
p

1�p

⌘
+ 2(1� p)  1, approximately 0.835 

p  1, we present a classical protocol which requires only
a single bit of communication. The latter model even al-
lows a perfect classical simulation with an average com-
munication cost that approaches zero in the limit where
the degree of entanglement approaches zero (p ! 1).
More precisely, Alice has to send the single bit only in
a certain fraction of rounds. In the remaining rounds,
they do not have to communicate with each other. We
show that even under these circumstances a perfect sim-
ulation of all local projective measurements on weakly
entangled states is possible. It is known that a simu-
lation of a maximally entangled state without commu-
nication in some fraction of rounds is impossible. This
would contradict the fact that the singlet has no local
part [45, 46]. In this way, our result shows that simu-
lating weakly entangled states requires strictly less com-
munication resources than the maximally entangled one,
solving a longstanding open problem [37, 38].

In order to derive our results we introduce a general
framework to simulate entangled qubits. It is worth men-
tioning that this framework does not only allow us to
derive our new results, it is also capable to reproduce
known results in that field. Most importantly, a one-bit
protocol for the maximally entangled state similar to the
one from Toner and Bacon also fits into our framework
[6, 28]. Independently of this, we obtain an independent
proof of the result by Portmann et al. [47] which quan-
tifies the local content of any pure entangled two-qubit
state.

To conclude, we found explicit protocols that simu-
late the statistics of local measurements on any entangled
qubit pair. If general POVMs are considered, two bits al-
ways suffices. If we restrict the measurements to be pro-
jective, we found a protocol with one trit for any state

0.5 0.84 1

2

3

4

p

d

Figure 2: Summary of our results: Length of the clas-
sical message d (d = 2: one bit; d = 3: one trit; d = 4:
two bits) required to simulate projective measurements
on a general qubit pair | ABi =

p
p |00i+

p
1� p |11i as

a function in p. The previous best result, from Toner
and Bacon [6], is presented in red. Our novel results are
presented in blue. The dashed curve in blue represents
the fraction of rounds where Alice needs to send a bit to
Bob.

and a protocol with only a single bit if the state is weakly
entangled. A natural direction is to consider classical
simulations for higher-dimensional quantum PM scen-
arios or higher dimensional entangled quantum states.
Although this has received some attention [29, 30, 34],
few general results are known. Most notably, it is still an
open problem whether a qutrit PM scenario can be clas-
sically simulated with a finite amount of classical bits.
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Abstract. In this work, we propose a framework for designing multipartite entanglement criteria based on
permutation moments, which have an e↵ective implementation with either the generalized control-SWAP
quantum circuits or the random unitary techniques. As an example, in the bipartite scenario, we develop
an entanglement criterion that can detect bound entanglement and show strong detection capability in the
multi-qubit Ising model with a long-range XY Hamiltonian. In the multipartite case, the permutation-
moment-based criteria can detect entangled states that are not detectable by any criteria extended from
the bipartite case. Our framework also shows potential in entanglement quantification and entanglement
structure detection. This work has been published on PRL [1].
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1 Introduction

Multipartite entanglement plays an essential role
in both quantum information science and many-body
physics. Due to the exponentially large dimension and
complex geometric structure of the state space, the detec-
tion of entanglement in many-body systems is extremely
challenging in reality. Conventional means, like entangle-
ment witness and state-moment criterion, either highly
depend on the prior knowledge of the studied systems or
the detection capability is relatively weak.
The index permutation criteria [2] are multipartite cri-

teria that can be applied in systems with an arbitrary
number of parties and dimensions and has many gener-
alizations [3]. In the bipartite scenario, the permutation
criteria cover the widely-used positive partial transposi-
tion (PPT) criterion [4] and the computable cross norm
(CCNR) criterion [5]. However, because index permuta-
tion is an unphysical operation, and the permutation cri-
teria are based on singular value decomposition, a highly
nonlinear operation, the verification of permutation cri-
teria is extremely resource-consuming.
In this work, we solve this problem by combing the

permutation criterion with state-moment methods and
propose a framework for designing multipartite entangle-
ment criteria based on permutation moments.

2 Moment-based permutation criteria.

In general, a k-partite quantum state can
be represented using a matrix with 2k indices,
⇢ =

P
s1,··· ,s2k ⇢s1s2,··· ,s2k�1s2k |s1 · · · s2k�1ihs2 · · · s2k|,

where s1, s3, . . . , s2k�1 represent the row indices,
and s2, s4, . . . , s2k represent the column ones. The
two indices, s2r�1 and s2r, denote for the r-
th subsystem. By changing the order of these

⇤xma@tsinghua.edu.cn

2k indices, one gets a new matrix, R⇡, with
[R⇡]s1s2,··· ,s2k�1s2k

= ⇢s⇡(1)s⇡(2),··· ,s⇡(2k�1)s⇡(2k)
, where ⇡

is an element of 2k-th permutation group S2k. Using the
property of index permutation, one could prove that [2]

kR⇡k = tr

✓q
R⇡R†

⇡

◆
=
X

i

�i  1, (1)

for all k-partite separable states, where {�i} are the sin-
gular values of R⇡. The violation of this inequality in-
dicates entanglement. In the bipartite scenario, when
setting ⇡ to be (1, 2) and (2, 3), where (·, ·) denotes ex-
changing two indices, one gets the PPT and the CCNR
criterion, respectively. As we mentioned before, the di�-
culty of measuring kR⇡k hinders the further applications
of permutation criteria.

To make the permutation criteria more practical, we
borrow the idea from moment criteria. We find that the
higher-order moments, M⇡

2n = tr
⇥
(R⇡R†

⇡)
n
⇤
=
P

i �
2n
i

are much easier to access, according to Theorem 1. These
permutation moments can help to lower bound kR⇡k =P

i �i and thus infer whether the state is multipartite en-
tangled or not. By changing the index permutation op-
eration ⇡ and measuring di↵erent orders of moments, we
generate a series of implementable multipartite entangle-
ment criteria, which we call moment-based permutation

criterion. The entanglement detection flowchart is shown
in Fig. 1.

Theorem 1 (Informal) Given a k-partite state ⇢ and the

index permutation operation R⇡, the 2n-th moment of

R⇡, M⇡
2n := tr

⇥
(R⇡R†

⇡)
n
⇤
, can be estimated by observ-

able measurement on 2n copies of ⇢,

M⇡
2n = tr

�
O⇡

2n⇢
⌦2n
�
=

1

2
tr

" 
kO

i=1

U⇡
i + h.c.

!
⇢⌦2n

#
,

(2)
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where U⇡
i can be chosen from four di↵erent operators,

�!
⇧ i,
 �
⇧ i, S(2n,1)i ⌦ S(2,3)i ⌦ · · · ⌦ S(2n�2,2n�1)

i and S(1,2)i ⌦
S(3,4)i ⌦ · · · ⌦ S(2n�1,2n)

i depending on ⇡. Here
�!
⇧ and

 �
⇧ are the cyclic permutation operators in di↵erent di-

rections, satisfying
�!
⇧ |s1, · · · , s2ni = |s2n, s1, · · · , s2n�1i

and
 �
⇧ |s1, · · · , s2ni = |s2, · · · , s2n, s1i, S(u,v) is the

SWAP operator acting on the u-th and v-th copies.

However, Eq. (2) requires simultaneous preparation
and operation of many copies of states, which is chal-
lenging for state-of-the-art devices. To solve this prob-
lem, we design protocols based on randomized measure-
ments techniques to measure them, which only require
single-copy state preparation and measurements. In the

bipartite scenario, M (1,2)
n = tr

⇥
(R(1,2))

n
⇤
= tr

h
(⇢TA

AB)
n
i

and M (2,3)
2n are key quantities that help to construct the

weak-form PPT criteria [6, 7] and the criteria proposed
later in Eq. (4) and Eq. (5), respectively. We list the
sample complexities of measuring them using local or
global randomized measurement techniques in Table 1,
from which one could find that our new criteria have ex-
ponential advantages in sample complexity than those
weak-form PPT criteria.

Global Protocol Local Protocol

M (1,2)
3 O(D

2
3 )[8] O(D2)[6]

M (2,3)
4 O(D

1
2 ) O(D1.187)

Table 1: This table shows the best-known sample com-

plexities of measuring M (1,2)
3 and the complexities of pro-

tocols developed in this work to measure M (2,3)
4 . D is the

dimension of the underlying Hilbert space.

Adopting the Lagrange Multiplier Method, we can
design a simple optimization problem to lower bound
kR⇡k =

P
i �i using higher-order moments:

Theorem 2 The minimum value of kR⇡k given M⇡
2 ,

..., M⇡
2n is reached when there are at most n non-zero

�is. Thus, the minimum value, denoted as E⇡
2n(⇢), can

be evaluated by the following problem,

min
q1,··· ,qn2N

E⇡
2n(⇢) = q1�1 + q2�2 + · · ·+ qn�n

s.t.
nX

i=1

qi�
2
i = M⇡

2 , · · · ,
nX

i=1

qi�
2n
i = M⇡

2n

q1 + q2 + · · ·+ qn  L,

(3)

where L is the number of the singular values of R⇡.

As a special case, when we only know the value of M⇡
2

and M⇡
4 , the minimum of

P
i �i has an analytical form

E⇡
4 (⇢) =

q
q(qM⇡

2 +U)
q+1 +

q
M⇡

2 �U
q+1 , where q = b (M

⇡
2 )2

M⇡
4
c and

U =
p
q(q + 1)M⇡

4 � q(M⇡
2 )

2.
Now, we can formally represent the moment-based per-

mutation criteria as

E⇡
2n(⇢)  1 , 8⇡ 2 S2k , n 2 N (4)

for all separable k-partite state ⇢. In fact, E⇡
2n(·) may not

necessarily be the function of ⇢. Adopting the bipartite
entanglement criterion introduced in Ref. [3], we get

E(2,3)
2n (⇢AB � ⇢A ⌦ ⇢B) 

q
(1� tr ⇢2A)(1� tr ⇢2B) (5)

for separable ⇢AB .
Compared with existing entanglement detection

schemes based on partial transposed moments [6, 7], this
framework is not only a direct generalization to multipar-
tite entanglement, but also enhances the detection capa-
bility in the bipartite scenario. We prove that, with the
second and fourth moments only, Eq. (5) can detect 3⇥3-
dimensional bound entanglement [9].

𝜌ℛ𝜋 = 𝑂2𝑛𝜋

𝜌

𝜌

𝜌

𝑀2𝑛
𝜋 = tr ℛ𝜋ℛ𝜋

† 𝑛
= tr 𝑂2𝑛𝜋 𝜌⊗2𝑛

OptimizationEntanglement  
Threshold

‖ℛ𝜋‖

Lower Bound

Detected

Undetected

𝑀2𝑛
𝜋

𝑛

Figure 1: Flowchart of entanglement detection. To detect
multipartite entanglement of ⇢, one first chooses an index
permutation operation ⇡ and sets kR⇡k as the indicator.
Then, one measures the permutation moments {M⇡

2n}n
to lower bound kR⇡k. If the lower bound is larger than
the entanglement threshold set for kR⇡k, the multipartite
entanglement is successfully detected. Otherwise, one
can measure higher-order moments or pick another index
permutation and repeat the procedure.

3 Bipartite Entanglement Detection

To investigate the detection capability of the moment-
based permutation criteria in real physical systems, we
choose a 10-qubit Ising model evolved under a long
range XY Hamiltonian with open boundary condition,
HXY =

P
i<j Jij(�̂

+
i �̂

�
j + �̂�

i �̂
+
j ) +Bz

P
i �̂

z
i . We divide

the 10-qubit chain into three parts, A, B and C, where
A and B constitute the local system we study, initialized
to be 1p

2
(|0i⌦NAB + |1i⌦NAB ); C acts as the bath, which

is initialized to be the tensor product of |0i. We com-
pare four implementable nonlinear criteria in detecting
the entanglement within system AB. The first two crite-
ria are Eq. (4) and Eq. (5), when setting ⇡ = (2, 3) and

n = 2, labeled by E(2,3)
4 and E⇤

4 , respectively. Others are
the purity comparison criterion, labeled by P2; and the

weak-form PPT criterion based on M (1,2)
3 = tr

h
(⇢TA

AB)
3
i

[7], labeled by P3. The numerical simulation results in
Fig. 2 shows that the moment-based permutation criteria
have an obvious advantage since it detects entanglement
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while all others fail in various time periods and di↵erent
choices of A and B.

4 Multipartite Entanglement Detection

Another advantage of our framework lies in multipar-
tite entanglement detection. There exist multipartite en-
tangled states that are separable in any bipartition and
thus cannot be detected by any criteria extended from
the bipartite case, including the PPT and CCNR crite-
ria. Theorem 2 provides us new means to design practi-
cal entanglement criteria for these states. We depict the
sets of detectable multipartite entangled states of di↵er-
ent criteria in Fig 2. In this work, we pick a three-qubit
entangled state as an example. This state is separable in
any bipartition while can be detected by Eq. (4) when
setting ⇡ =

�1,2,3,4,5,6
1,3,2,4,5,6

�
and n = 4.

�0.5

0.0

0.5

1.0

E
(⇢
)

�2.0

�1.0

0.0

1.0

E
(⇢
)

�1.0

�0.5

0.0

0.5

1.0

E
(⇢
)

0 1 2 3 4 5

�0.5

0.0

0.5

1.0

Time (ms)

E
(⇢
)

1

G�

F�

E�

a�
C CA B

E4

(2,3)

E⇤
4

P2

P3

Bipartition PPT Bipartition Separable
Fully Separable Index Permutation

Moment Permutation Example State

Multipartite 
States

Figure 2: Left: We use four quantities to represent the
four criteria, and the entanglement of AB is detected
when the value is above zero for each criterion. The
grey areas represent the time periods in which the en-
tanglement can only be detected by the E⇤

4 criterion.
Right: Illustration of di↵erent sets of detectable states.
Bipartition PPT: PPT in any bipartition; Bipartition
Separable: separable in any bipartition; Fully Separable:P

i pi⇢
i
1 ⌦ · · · ⌦ ⇢ik; Index Permutation: states that can-

not be detected by an index permutation criterion other
than the bipartite partial transposition; Moment Permu-
tation: states that cannot be detected using finite num-
bers of permutation moments; Example State: a state
that is separable in any bipartition while can be detected
by a moment-based permutation criterion.

5 Other Remarks

As the quantity proposed in this work, E⇡
2n(⇢), has

clear physical meaning, we conjecture that these quanti-
ties can be used as entanglement quantifiers. We prove
this by showing that E⇡

2n(⇢) can be used to witness the
entanglement phase transition in a many body localiza-
tion system [1].
For multipartite quantum systems, entanglement can

have a rather complex entanglement structure while the
tools for detecting entanglement structure are quite re-
strictive. In this work, we also show that our framework

can be generalized to detect the multipartite entangle-
ment structure.

This work also inspires our new work about conformal
field theory (CFT) [10], in which we use a new moment-
based permutation criterion to quantify the entanglement
between two disjoint intervals in one dimensional CFT.
This is an open problem in CFT.

References

[1] Liu. Z. H. Detecting entanglement in quantum many-
body systems via permutation moments Physical Re-
view Letters, 2022, 129(26): 260501.

[2] Horodecki. M. Separability of mixed quantum states:
linear contractions and permutation criteria Open
Systems and Information Dynamics, 2006, 13: 103-
111.

[3] Zhang. C. J. Entanglement detection beyond
the computable cross-norm or realignment criterion.
Physical Review A, 2008, 77(6): 060301.

[4] Peres. A. Separability criterion for density matrices.
Physical Review Letters, 1996, 77(8): 1413.

[5] Chen. K. A matrix realignment method for recogniz-
ing entanglement. arXiv preprint quant-ph/0205017,
2002.

[6] Elben. A. Mixed-state entanglement from local ran-
domized measurements. Physical Review Letters,
2020, 125(20): 200501.

[7] Yu. X. D. Optimal entanglement certification from
moments of the partial transpose. Physical Review
Letters, 2021, 127(6): 060504.

[8] Zhou. Y. Single-copies estimation of entanglement
negativity. Physical Review Letters, 2020, 125(20):
200502.

[9] Bennett. C. H. Unextendible product bases and
bound entanglement. Physical Review Letters, 1999,
82(26): 5385.

[10] Yin. C. Universal Entanglement and Correlation
Measure in Two-Dimensional Conformal Field Theo-
ries. Physical Review Letters, 2023, 130(13): 131601.

97



Extended Abstract : Distilling nonlocality in quantum correlations

Sahil Gopalkrishna Naik,1 Govind Lal Sidhardh,1 Samrat
Sen,1 Arup Roy,2 Ashutosh Rai,3, 4 and Manik Banik1

1Department of Physics of Complex Systems,
S.N. Bose National Center for Basic Sciences,

Block JD, Sector III, Salt Lake, Kolkata 700106, India.
2Department of Physics, A B N Seal College Cooch Behar, West Bengal 736101, India

3School of Electrical Engineering, Korea Advanced Institute
of Science and Technology, Daejeon 34141, Republic of Korea

4Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia

Abstract : Nonlocality, as established by seminal Bell’s theorem, is considered to be the
most striking feature of correlations present in space like separated events. Its practical
application in device independent protocols, such as, secure key distribution, randomness
certification etc., demands identification and amplification of such correlations observed in
quantum world. In this letter we study the prospect of nonlocality distillation, wherein, by
applying a natural set of free operations (called wirings) on many copies of weakly nonlocal
systems, one aims to generate correlations of higher nonlocal strength. In the simplest Bell
scenario, we identify a protocol, namely logical OR-AND wiring, that can distil nonlocality
to significantly high degree starting from arbitrarily weak quantum nonlocal correlations.
As it turns out, our protocol has several interesting facets: (i) it demonstrates that set
of distillable quantum correlations has non zero measure in the full eight dimensional
correlation space, (ii) it can distil quantum Hardy correlations by preserving its structure,
(iii) it shows that (nonlocal) quantum correlations sufficiently close to the local deterministic
points can be distilled by a significant amount. Finally, we also demonstrate efficacy of the
considered distillation protocol in detecting post quantum correlations.
Keywords : Quantum Correlations, Distillation , Nonlocality
Reference : Accepted in Phys. Rev. Lett. [arXiv:2208.13976v3 ]

Introduction: One of the most celebrated
non-classical aspects of quantum mechanics was
pioneered by J. S. Bell in the year 1964 [1] (see
also [2]). Bell’s theorem mandates departure of
quantum theory from the locally causal world
view which subsequently has been confirmed
in several milestone experiments led by Clauser,
Aspect, Zeilinger, and others [3–12]. Unlike
other non-classical features, such as entangle-
ment and coherence, study of nonlocality can
be conducted in a device independent setting
where only the input-output statistics of the
device matters and one does not need to know
the inner design or working mechanisms of the
device [13]. Along with foundational implica-
tions, Bell nonlocality has also been identified
as the necessary resource for several important
protocols [14–25], which, thus, makes the ques-
tion of refinement or distillation of this resource

practically indispensable. Study of nonlocality
distillation has two major implications – (i) prac-
tical: where one aims to distil nonlocal correla-
tions observed in the quantum world which can
be then applied to make information flow net-
works efficient and secure, and (ii) foundational:
where the goal is to identify post quantum cor-
relations, which, in turn, helps to understand
the speciality of quantum theory among other
possibilities allowed within the framework of
generalized probabilistic theories. Interestingly,
in Ref.[26], Forster et al. proposed a nonlocality
distillation protocol that can extract nonlocal-
ity in stronger form starting with many copies
of weakly nonlocal systems; this work has in-
spired a number of subsequent works consisting
of interesting results on nonlocality distillation
[27–41].

The research conducted so far on nonlocality
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distillation is mainly focused on distilling post
quantum correlations [27–32, 34–39]. Only a
few protocols are known that successfully distil
some quantum correlations [26, 39]. The dif-
ficulty arises due to the top-down approach
considered in earlier works where one starts
with some parametric family of generic no-
signaling (NS) correlations, and after obtain-
ing a successful distillation protocol the aim
is to check whether for some range of the
parameter values the considered NS correla-
tions allow quantum realization or not. For
the simplest bipartite case, the well known ana-
lytical criterion by Tsirelson-Landau-Masanes
[42–44] and the Navascues-Pironio-Acin (NPA)
criterion [45], and in general case a hierarchy
of semi-definite programming conditions [46]
can serve this purpose. Only in some fortunate
cases sophisticated choices of the parametric
class of NS correlations might lead to a desirable
subset of quantum realizable correlations. How-
ever, the approach has severe pitfall when more
input-output scenarios are considered, as the
recent mathematical breakthrough by W. Slof-
stra and the subsequent results establish that
the set of quantum correlations is not topologic-
ally closed [47–49]. There are only a few results
that report distillation of nonlocal correlations
within quantum setup [26, 39], albeit the non-
local strength of the distilled correlation is low.
Therefore the aspects of analytical and quantit-
ative study for distillation of quantum nonlocal
correlations remain open.

In this letter we primarily focus to address
the former aspect of nonlocality distillation,
i.e., we intend to find out efficient distillation
protocol(s) for quantum correlations. Interest-
ingly, we identify a simple protocol and come
up with a generic approach that successfully
distil nonlocality in a large class of weakly
nonlocal quantum correlations. Towards this
goal, first we consider a variant of nonlocal-
ity test proposed by Lucien Hardy [50]. Suc-
cess probability in Hardy’s test qualifies as
a measure of nonlocality for Hardy’s correl-
ations [51]. Given two copies of a quantum

Hardy correlation, we show that there exists a
simple wiring that can distil Hardy nonlocality.
We call this wiring logical OR-AND protocol,
where OR (_) and AND (^) functions on 2-bits
z1, z2 are defined as _(z1, z2) = max{z1, z2} and
^(z1, z2) = min{z1, z2}, respectively.

Figure 1. Multi-copy OR-AND wiring. Given n-
number of parent correlations {PNS[i]}n

i=1 ⇢ NS ,
the OR-AND wiring produce a child correlation
P(n)

NS 2 NS . The outcome a on Alice’s side for
the child box is obtained as, a = a1 _ · · · _ an =
max{a1, · · · , an} for the input x1 = · · · = xn = x,
where xi and ai are the input and output of the ith

parent. On the Bob’s side, y1 = · · · = yn = y and
b = b1 ^ · · · ^ bn = min{b1, · · · , bn}.

The OR-AND protocol allows an immedi-
ate n-copy generalization , which can provide a
substantial distillation of Hardy’s success with
a sufficiently large copies of initial correlations.
Further, we show that the OR-AND wiring
when applied to a broader class of quantum
correlations yields an interesting result: an ar-
bitrarily small violation of the Clauser-Horne-
Shimony-Holt (CHSH) [3] inequality can be
amplified to a significantly higher degree. Fi-
nally, by applying our protocol we demonstrate
that nonlocal correlations arbitrarily close to the
extreme points of the set of local correlations
are always distilled, which, in turn, establishes
that set of distillable quantum correlations has
non-zero measure in the full eight dimensions
of the correlation space. We also study distil-
lation of post quantum correlations, and show
that OR-AND protocol becomes efficient there
too. In particular, we find correlations whose
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post-quantum signature is established through
OR-AND distillation, while the known informa-
tion principles, such as nontrivial communica-
tion complexity [52] and information causality
[53, 54], fail to serve the purpose.

Results:

Theorem 1. The OR-AND wiring preserves the
structure of quantum Hardy correlations and can
efficiently distil the strength of success probability in
Hardy’s test of nonlocality.

Theorem 2. Starting with a quantum correlation
with arbitrarily small CHSH nonlocality OR-AND
wiring can yield Tsirelson gain up to (⇡) 39.75%.

Theorem 3. CHSH nonlocality of any no-singling
correlation of the form C̃(l) = lC + (1 �
l)PL1 , where 0 < l  1 and C 2
ConvexHull {PNL, PLi | i 2 {1, · · · , 8}} can be
distilled through OR-AND wiring by choosing the
values of l sufficiently small. Furthermore, 2-copy
OR-AND distillation is successful for all the C̃(l)
correlation boxes whenever l < 2

3 c0; where c0 is the
PNL fraction in C.

Theorem 3 has profound topological implica-
tion. It establishes that the sets of no-signalling
as well as quantum correlations allowing non-
locality distillation have non-zero measure in
the full eight dimensional correlation space. Fur-
thermore, it should be mentioned that the correl-
ation box PL1 appearing in Theorem 3 is not any
special local deterministic box: the result holds
also for all the remaining 15 local deterministic
boxes on suitable relabeling of the OR-AND
wiring.

Distillation of post-quantum nonlocality:
We point out that checking membership to

the different levels of NPA hierarchy can be-
come computationally expensive, particularly at
higher levels of the hierarchy, whereas the distil-
lation criteria can be far more computationally
tractable. We have given an example of a cor-
relation, that is post-quantum by observing that
after 2-copy distillation using OR-AND protocol,
the Hardy success goes up to 0.0925 (a value
beyond the maximum possible success probail-
ity in quantum mechanics). On the other hand,

for the considered correlation, tests, like known
necessary conditions for violating non-trivial
computational complexity [52] (see also [63–65])
and information causality principle[53, 54], fail
to detect its post-quantumness. On consider-
ing NPA criteria, a membership test into the
second tier of the NPA hierarchy is required to
establish the post-quantumness of this correla-
tion. Along similar lines, one may imagine post-
quantum correlations like the one discussed,
which lie at further deeper levels of the NPA-
hierarchy, while its post-quantumness may be
conveniently detected via efficient nonlocality
distillation protocols.

Discussion.– In this letter, we have estab-
lished a generic approach for distillation of non-
local correlations arising in quantum mechanics.
This problem is of utmost importance as Bell
nonlocal correlations are ubiquitous in device
independent protocols – more the nonlocality
more the utility. Interestingly, we come up with
an elegant protocol, the OR-AND wiring, that
distils nonlocality in quantum correlations with
high efficiency. In the simplest bipartite scen-
ario, in stark distinction with the results repor-
ted prior to our work [26–41], our protocol es-
tablishes that, within the set of full eight dimen-
sional correlation space, the distillable quantum
as well as no-signaling nonlocal correlations
form subsets of non-zero measures; i.e., sec-
tor of open balls of a specified radius centered
at local deterministic correlations. Moreover,
by considering correlations arbitrarily close to
local deterministic points, applying our pro-
tocol, with optimal number of copies, one can
distill nonlocality by a significant amount both
for the quantum as well as post-quantum non-
signaling correlations. As for future, it would
be interesting to explore the full potential of our
generic framework proposed here in distilling
quantum nonlocal correlations. In particular,
obtaining some bound on the relative volume
of the quantum correlations in the correlation
space that can be distilled under OR-AND wir-
ing would be interesting. Furthermore a gener-
alization of this protocol for higher input-output
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as well as in multiparty scenario might be of
great use.
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Abstract. We investigate and ascertain the ideal inputs to any finite-time quantum thermodynamic
process. We demonstrate that the expectation values of entropy flow, heat, and work can all be determined
via Hermitian observables of the initial state. These Hermitian operators encapsulate the breadth of
behavior and the ideal inputs for common thermodynamic objectives. We show how to construct these
Hermitian operators from measurements of thermodynamic output from a finite number of e↵ectively
arbitrary inputs. Behavior of a small number of test inputs thus determines the full range of thermodynamic
behavior from all quantum states.

Keywords: quantum thermodynamics, dissipation, generalized Bloch vectors, optimization

1 Introduction

Throughout its history, thermodynamics primarily in-
vestigated the e�ciency of various control processes for
implementing a desired functionality. However, the com-
plementary question of which initial physical states pro-

duce the best thermodynamic behavior remains relatively
unexplored. Indeed, there is a historical reason for this:
In equilibrium transformations, the system always stays
infinitesimally close to equilibrium, so there is no sense
in asking about alternative inputs to the process. Yet
modern devices transform quantum and classical sys-
tem rapidly. These finite-time nonequilibrium transfor-
mations have highly non-trivial initial-state dependence.
Here we explore the ideal thermodynamic inputs to such
devices, where the system can be arbitrarily far from
equilibrium throughout the transformation.
The initial-state dependence of entropy production and

associated thermodynamic quantities has been explored
only recently in relation to the ideal inputs, via mis-
match costs [1, 2, 3, 4]. However, the minimally dissi-
pative input was only characterized in the case of reset
processes [3, 4] and, even then, a construction was only
given for qubits [3]. In the following, we constructively
identify the thermodynamically ideal inputs for a much
broader class of objectives, including heat minimization,
maximizing work extraction, and maximizing gain in free
energy. Moreover, the ideal inputs are characterized and
constructively identified for systems of arbitrary finite
dimensions, for any finite-time process. The results thus
apply broadly to quantum processes—whether minimiz-
ing decoherence or optimizing for energetic e�ciency—
wherever finite-time thermodynamics is relevant.

⇤pmriechers@gmail.com

2 Framework

Expectation values in quantum thermodynamics typi-
cally either take the form of a linear functional

hXi⇢0
= tr(⇢0X ) , (1)

or a particular type of nonlinear function involving a
change in von Neumann entropy

f (X )
⇢0

:= tr(⇢0X ) + S(⇢⌧ )� S(⇢0) . (2)

Through our study, we discover the optimal initial state
that extremizes these quantities in general.

Any density matrix of a d-dimensional quantum sys-
tem has a unique decomposition in any traceless and
mutually orthogonal Hermitian operator basis ~� =
(�1,�2, . . .�d2�1) with tr(�m�n) = ⌘ �m,n, described by

the generalized Bloch vector ~bt 2 Rd2�1 via

⇢t = I/d+~bt · ~� . (3)

Leveraging this general Bloch decomposition of the ini-
tial state, we find that we can express each expectation
value in Eq. (1) as

hXi⇢0
= hXiI/d +~b0 · ~x , (4)

where ~x 2 Rd2�1 is the relevant thermodynamic vector

~x = tr(~�X ) . (5)

Conversely, the thermodynamic operators can be con-
structed from the thermodynamic vectors:

X = hXiI/d I + ~x · ~�/⌘ . (6)

We find that both hXiI/d and the thermodynamic vec-
tor ~x can be obtained linear algebraically from experi-
mental measurements of thermodynamic output from a
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finite number of almost arbitrary inputs. Via Eq. (6),
this allows us to experimentally reconstruct the thermo-
dynamic operators from observations of any process.
Crucially, we have derived several theorems and several

algorithms that show how to obtain the ideal quantum in-

puts either analytically or numerically from the Hermi-

tian thermodynamic operator X [5].

3 Example: Nonequilibrium thermody-
namics of a qubit-reset device

Quantum computing requires a mechanism for reset-
ting each qubit to the computational-basis state |0i =
�z |0i. Di↵erent implementations of the same task will
however have distinct sets of thermodynamically ideal
inputs. Nonequilibrium thermodynamic quantities are
determined less by what you do than how you do it.
For a paradigmatic illustration of our results, we con-

sider a device for qubit reset that works by changing
both the energy gap and spatial orientation of the en-
ergy eigenstates of the qubit, while the qubit is weakly
coupled to a thermal environment.
To determine how the device’s thermodynamic behav-

ior depends on the input state, we track the evolution of
four randomly sampled initial density matrices, together
with the thermodynamic output from each of these four
inputs. From the matrix of Bloch vectors and the mea-
sured thermodynamic output, we construct the Hermi-
tian thermodynamic operators. The expected-heat and
expected-work operators, Q and W, allow us to deter-
mine (i) the ideal inputs leading to minimal and maxi-
mal heat and work, and (ii) the full range of heat and
work that can be attained by any input to the device.
These are obtained from the extremal eigenvalues and
associated eigenstates of the thermodynamic operators.

Diversity among ideal inputs for thermodynamic
objectives Simple combination and manipulation of
the heat and work operators reveals the diversity of ideal
inputs for a multitude of di↵erent thermodynamic objec-
tives, as shown in Fig. 1.
In this example, with a single environmental bath at

constant temperature T , entropy flow to the environ-
ment is simply related to heat out of the system via
� = �Q/T . The expected-entropy-flow operator is thus
simply related to the expected-heat operator in this case,
via � = �Q/T . Meanwhile, the expected-energy-change
operator is simply Q+W.

Bounding the behavior of all inputs Continuing
our example of the qubit-reset dynamics, we now lever-
age our results to identify the extremal thermodynamic
behavior that can be attained by any input throughout
the process.

Fig. 2 demonstrates that thermodynamic observations
from just four inputs yield the full range of thermody-
namic behavior from any input. For example, the min
and max expected work at any time t 2 [0, ⌧ ], obtainable
from alternative inputs, is determined by the expected-
work operator at that time. The expected-work operator

at any time is constructed from the expected work per-
formed on each of the four test inputs up to that time.
Determining the ranges of work, energy change, and heat
thus reduces to determining eigenvalue ranges of the re-
spective Hermitian operators.

Determining the range of entropy production through-
out the process is somewhat more complicated, although
it still only requires the data from four test inputs. No-
tably, in the bottom panel of Fig. 2, we find the states of
minimal and maximal entropy production at times before
the state is fully reset. This employs the novel gradient-
descent algorithm that we developed on the manifold of
density matrices for quantum systems of any dimension.

4 Summary of Results

For any process, entropy flow, heat, and work can all
be extremized by pure input states—eigenstates of the
respective operators. In contrast, the input states that
minimize entropy production or maximize the change in
free energy are non-pure mixed states obtained from the
operators as the solution of a convex optimization prob-
lem. To attain these, we provide an easily implementable
gradient descent method on the manifold of density ma-
trices, where an analytic solution yields a valid direc-
tion of descent at each iterative step. Ideal inputs within
a limited domain, and their associated thermodynamic
operators, are easily obtained. This allows analysis of
ideal thermodynamic inputs within quantum subspaces
of infinite-dimensional quantum systems; it also allows
analysis of ideal inputs in the classical limit. Our ex-
amples illustrate the diversity of ‘ideal’ inputs: Distinct
initial states minimize entropy production, extremize the
change in free energy, and maximize work extraction.

5 Conclusion

We have determined the ideal inputs that minimize
or maximize various thermodynamic quantities for any
fixed process that transforms a physical system in fi-
nite time. Many of these optimal inputs turn out to
be pure states corresponding to eigenstates of Hermi-
tian thermodynamic operators. We showed how to re-
construct these operators via observed behavior from a
finite number of experimentally accessible input states.
Another class of thermodynamic quantities, based on en-
tropies, have mixed-state minimizers but pure-state max-
imizers. The Hermitian thermodynamic operators de-
termine these ideal states too. Our examples illustrate
the incompatibility of common objectives: The ‘ideal’
input depends on whether one intends to minimize heat,
minimize entropy production, maximize free-energy gain,
maximize work extraction, etc.

This investigation of ideal initial states complements
the centuries-old tradition of rather seeking ideal pro-
tocols with an assumed initial state. Whether or not
a protocol is ideal, our results highlight the initial-state
dependence of a device’s performance across thermody-
namic metrics, and expose the breadth of its possible
behavior. While we emphasized thermodynamics, the
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(1, 0, 0)

(0, 1, 0)

|0i $ (0, 0, 1)

|1i $ (0, 0,�1)

Objective Ideal input

min entropy production argmin⇢0
h⌃i⇢0

mixed ~a0 ⇡ (�0.02, 0.03,�0.15)

max free-energy gain argmax⇢0
�Ft mixed ~a0 ⇡ (0, 0,�0.10)

min entropy change argmax⇢0
�St mixed ~a0 = (0, 0, 0)

max heat exhausted argmax⇢0
h�Qi⇢0

=

max entropy production argmax⇢0
h⌃i⇢0

= pure ~a0 ⇡ (0.13,�0.20, 0.97)

max entropy flow argmax⇢0
h�i⇢0

min heat exhausted argmin⇢0
h�Qi⇢0

=
pure ~a0 ⇡ (�0.13, 0.20,�0.97)

min entropy flow argmin⇢0
h�i⇢0

min free-energy change argmin⇢0
�Ft = pure ~a0 ⇡ (0, 0, 1)

min energy change argmin⇢0
hQ+W i⇢0

max energy change argmax⇢0
hQ+W i⇢0

pure ~a0 ⇡ (0, 0,�1)

min work argmin⇢0
hW i⇢0

pure ~a0 ⇡ (�0.32, 0.49,�0.81)

max work argmax⇢0
hW i⇢0

pure ~a0 ⇡ (0.32,�0.49, 0.81)

max entropy change argmax⇢0
�St pure anywhere on Bloch shell

Figure 1: Diversity of ideal inputs for a finite-time qubit-reset process, displayed on and in the Bloch sphere. The states
extremizing heat, work, and energy-change all lie on the surface of the Bloch sphere, in the direction of a maximal
eigenstate of the corresponding thermodynamic operators. The entire surface of the Bloch sphere maximizes entropy
gain. Minimal entropy production and maximal free energy gain are achieved by non-trivial mixed-state inputs. The
change in entropy is minimized by the fully-mixed input. Entropy production is maximized by the same pure-state
input that maximizes heat exhaustion. The greatest loss of free energy occurs for the same pure-state input that loses
the most energy.

results of this paper extend easily to other domains—
where the ideal inputs, as judged by some other criteria,
like maximizing the yield of a desired quantum output
state [6], will be obtained from the linear operators in-
duced by those criteria.
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Figure 2: Tracking the behavior of four inputs is enough
to bound the behavior of all other inputs to a qubit pro-
cess. Here we show the the range of expectation values
for exhausted heat and entropy production throughout
a finite-time qubit-reset process. The expectation val-
ues from four random inputs are shown as dashed lines.
This allows construction of the thermodynamic operator
Q throughout time. (top) Maximal and minimal heat,
corresponding to extremal eigenvalues of Q, shown as
thick red solid lines; (bottom) Maximal and minimal en-
tropy production, obtained from gradient descent/ascent,
shown as thick red solid lines. These extrema bound the
behavior of all other inputs, including the behavior of 100
other random initial conditions shown as thin gray lines.
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Quantum dichotomies and coherent thermodynamics
beyond first-order asymptotics

P. Lipka-Bartosik, C.T. Chubb, J.M. Renes, M. Tomamichel, K. Korzekwa

May 22, 2023

We address the problem of exact and approximate transformation of quantum dichotomies in
the asymptotic regime, i.e., the existence of a quantum channel E mapping ⇢

⌦n
1 into ⇢

⌦Rnn
2 with an

error ✏n (measured by trace distance) and �
⌦n
1 into �

⌦Rnn
2 exactly, for a large number n. We derive

second order asymptotic expressions for the optimal transformation rate Rn in the small, moderate,
large and zero-error regimes for an arbitrary pair (⇢1,�1) of initial states and a commuting pair
(⇢2,�2) of final states. We also prove that for �1 and �2 given by thermal Gibbs states, the de-
rived optimal transformation rates in the first three regimes can be attained by thermal operations.
This allows us, for the first time, to study the second order asymptotics of thermodynamic state
interconversion with fully general initial states that may have coherence between di↵erent energy
eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent
inputs and describe three novel resonance phenomena allowing one to significantly reduce trans-
formation errors induced by finite-size e↵ects. What is more, our result on quantum dichotomies
can also be used to obtain, up to second order asymptotic terms, optimal conversion rates between
pure bipartite entangled states under local operations and classical communication.

Introduction: One of the fundamental questions in quantum statistical inference is whether one
quantum dichotomy, i.e., a pair of quantum states (⇢1,�1), can be transformed into another one,
(⇢2,�2), using a quantum channel. In other words, whether there exists a completely positive trace-
preserving map E such that ⇢2 = E(⇢1) and �2 = E(�1). If so, we write (⇢1,�1) � (⇢2,�2). We can
further relax this condition by requiring that the two states are only reproduced approximately by
the channel. That is, we write (⇢1,�1) �(✏⇢,✏�)

(⇢2,�2) if and only if there exists a quantum channel
E such that

kE(⇢1)� ⇢2ktr  ✏⇢ and kE(�1)� �2ktr  ✏�, (1)

where kXktr = 1

2
tr|X| denotes the trace distance. For the commuting case, when [⇢1,�1] = [⇢2,�2] = 0,

the necessary and su�cient conditions for the existence of such a channel are known and captured by
the seminal result of Blackwell [1]. However, such conditions in the general non-commutative case so
far seem out of reach in the single-shot regime [2–8].

In this contribution we address this problem in the asymptotic regime, i.e., for quantum di-
chotomies (⇢⌦n

1
,�

⌦n

1
) and (⇢⌦Rnn

2
,�

⌦Rnn
2

) with large n and ✏� = 0, and for the half-commuting
case with [⇢1,�1] 6= 0 and [⇢2,�2] = 0. We then employ the obtained solutions to study the opti-
mal thermodynamic transformations from general input states within the resource theory of quantum
thermodynamics [9–11], where one is allowed to process quantum systems only via thermal opera-
tions [12]. Recall that a quantum channel E acting on a system with Hamiltonian H is a thermal
operation if and only if it can be written as

E [⇢] = trB0

h
U (⇢⌦ �B)U

†
i
, �B =

e
��HB

tr(e��HB )
, (2)

where � is the inverse temperature of the ancillary bath B in a thermal Gibbs state �B and described
by a Hamiltonian HB, U is a unitary that conserves the total energy, [U,H ⌦ B + ⌦HB] = 0, and
the partial trace can be performed over any subsystem B

0 of the joint system.

Main contributions: Let R⇤
n be the largest rate Rn such that

(⇢⌦n

1
,�

⌦n

1
) �(✏,0) (⇢

⌦Rnn
2

,�
⌦Rnn
2

) (3)

for states ⇢1 ⌧ �1, ⇢2 ⌧ �2. Also, let

D(⇢k�) := tr (⇢ (log ⇢� log �)) , V (⇢k�) := tr
⇣
⇢ (log ⇢� log �)2

⌘
�D(⇢k�)2, (4)
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denote the relative entropy and relative entropy variance, let

D↵(⇢k�) =
1

↵� 1
max

⇢
log Tr

⇣p
⇢�

1�↵
↵

p
⇢

⌘
↵

, log Tr
⇣p

�⇢
↵

1�↵
p
�

⌘1�↵
�

(5)

denote the sandwiched Rényi relative entropy, and

⇠ :=
V (⇢1k�1)/D(⇢1k�1)
V (⇢2k�2)/D(⇢2k�2)

, S
�1

⌫ (✏) = inf
x2(✏,1)

p
⌫��1(x)� ��1(x� ✏), (6)

denote the reversibility parameter [13, 14] and the inverse of the cumulative distribution function for
the so-called sesquinormal distribution S⌫ , which we introduce in this contribution.

For [⇢2,�2] = 0, we then have the following results on transforming quantum dichotomies:

• In the small deviation regime, for any fixed ✏ 2 (0, 1), the optimal rate is given by

R
⇤
n(✏) =

D(⇢1k�1)
D(⇢2k�2)

"
1 +

s
V (⇢2k�2)

nD(⇢1k�1)D(⇢2k�2)
S
�1

⇠
(✏)

#
+ o(1/

p
n). (7)

• In the moderate deviation regime, for any a 2 (0, 1) and the accepted error level of ✏n = exp(��n
a)

for some � > 0, the optimal rate is given by

R
⇤
n(✏n) =

D(⇢1k�1)�
��1� ⇠

�1/2
��p2�V (⇢1k�1)na�1

D(⇢2k�2)
+ o

⇣p
na�1

⌘
. (8)

• In the large deviation regime, for any constant � > 0 and the accepted error level of ✏n = exp(��n),
the optimal rate is bounded by

lim sup
n!1

R
⇤
n(✏n)  U(�) and lim inf

n!1
R

⇤
n(✏n) � L(�), (9)

where the explicit forms of U(�) and L(�), based on two variants of the Rényi relative entropy,
are given in the technical manuscript, and U(�) = L(�) if [⇢1,�1] = 0.

• The optimal zero-error rate is given by

lim
n!1

R
⇤
n(0) = min

↵2R

D↵(⇢1k�1)
D↵(⇢2k�2)

. (10)

• For [⇢2,�2] 6= 0, corresponding upper bounds on the optimal rate hold in all regimes.

The above technical results lead us to the following results concerning quantum thermodynamics:

• For �1 and �2 given by thermal states �1 and �2, the optimal transformation rates that we
derived (excluding the zero-error case) can be attained by thermal operations. Thus, Eqs. (7)-
(9) describe optimal rates R

⇤
n for state transformations under thermal operations between n

copies of generic quantum states ⇢1 and R
⇤
nn copies of energy-incoherent states ⇢2. Note that it

also proves that up to second-order asymptotics and for final energy-incoherent states, the sets
of thermal operations and Gibbs-preserving operations [15] have the same power.

• Consider the following ✏-approximate work-assisted transformation via thermal operations:

⇢
⌦n

1
⌦ |0ih0|

W

✏��!
TO

⇢
⌦Rnn
2

⌦ |1ih1|
W

, (11)

where W is the ancillary battery system with an energy gap w = w1n+w2

p
n with constant w1

and w2, and the target state ⇢2 is energy-incoherent. Then, for any fixed transformation error
✏ 2 (0, 1), the optimal rate R

⇤
n is given by

R
⇤
n(✏) =

D(⇢1k�1)� �w1

D(⇢2k�2)
+

p
V (⇢1k�1)S�1

1/⇠0(✏)� �w2

p
nD(⇢2k�2)

+ o(1/
p
n), (12)

where

⇠
0 :=

V (⇢1k�1)
D(⇢1k�1)� �w1

�
V (⇢2k�2)
D(⇢2k�2)

. (13)
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Figure 1: Coherent resonance in thermodynamic transformations of two-level systems.
Left: the ratio V (⇢k�)/D(⇢k�) (encoding the resonance condition) for qubit states lying in the xz

plane of the Bloch sphere for a thermal state � = diag(0.95, 0.05) (indicated by a white triangle).
The white disk corresponds to the final state ⇢2 = diag(0.75, 0.25), while the dashed white line
indicates a family of initial states ⇢1(x) with diagonal (0.85, 0.15) and o↵-diagonal elements equal top
0.85 · 0.15x for x 2 [0, 1]. Right: threshold transformation error ✏ required to achieve the asymptotic

transformation rate D(⇢1(x)k�)/D(⇢2k�) for finite number n of transformed systems (i.e., ✏ such that
the second order correction term in Eq. (7) disappears). Resonance is obtained when the relative free
energy fluctuations V/D are the same for the initial state ⇢1(x) and the final state ⇢2, i.e., when ⌫ = 1.

Discussion: Our results provide a framework to study the second order asymptotics of thermody-
namic state transformations [16, 17] for fully general input states with coherence between di↵erent
energy eigenspaces, thus for the first time going beyond the semi-classical regime with no quantum
interference e↵ects. As a result, we can investigate optimal performance of various thermodynamic
protocols with coherent inputs. In particular, we obtain that one can extract

W =
1

�

⇣
nD(⇢k�) +

p
nV (⇢k�)��1(✏) + o(

p
n)
⌘

(14)

of ✏-deterministic work from n copies of the system in a general state ⇢. Analogously, we also derived
the thermodynamic cost Wcost of ✏-deterministic erasure of information from n copies of a system in
a state ⇢, and showed that the number M of messages that can be encoded into ⇢

⌦n via thermal
operations [18] allowing for decoding probability 1� ✏ satisfies logM = �W with W specified above.
Importantly, in all these protocols the optimal final states are always energy-incoherent, and thus our
results allow to study them in full generality.

Our results also show that by appropriately tuning the initial and final states so that the re-
versibility parameter ⇠ = 1, the second order correction to the optimal rate may vanish in the limit of
zero transformation error, and so, up to higher order terms, one obtains a reversible transformation
(with no free energy dissipation). This intriguing phenomenon, termed resource resonance, was first
predicted in Ref. [14] for the case of energy-incoherent initial and final states. The results we present
in this contribution allow us to extend the resource resonance phenomenon in three novel ways. First,
we extend it to coherent resonance, in which the coherence present in the initial state of the processed
system can be exploited to significantly reduce the transformation error ✏ when processing a finite
number of copies n of a quantum system. In Fig. 1, we present the non-trivial dependence of the
transformation error ✏ on the coherence level x for examplary qubit systems, where we can observe
two resonant values of x for which error-free and dissipationless transformations (up to second order
asymptotics) are possible. This clearly illustrates that quantum coherence can play an important role
in avoiding free energy dissipation in thermodynamic transformations of quantum states. Second,
we can achieve work-assisted resonance, where the dissipation is avoided by charging/discharging a
battery by an amount w1 that sets ⇠0 from Eq. (13) to 1. And third, by extending to large and extreme
deviation analyses, it can be seen that there exists an even stronger notion of resonance, which we
term strong resonance, in which errors are not just exponentially suppressed, but entirely eliminated.
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Catalysts enable the decomposition of thermal operations into simpler
operations

Jeongrak Son
1 ⇤
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1 †
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Abstract. In thermodynamic resource theories, the most popular set of free operations is the thermal
operation, assuming access to any energy-preserving unitaries between the system and the bath. However,
the real implementation of such operations is improbable due to their generality. We show that catalysts,
auxiliary states that assist the evolution while retaining their state, are extremely useful in boosting
more experiment-friendly operations to approach usual thermal operations: when catalysts can be chosen
arbitrarily, thermal operations with catalysts can be fully emulated; even when catalysts are restricted,
the advantage remains significant. We also provide some intuition on why catalysts are useful.

Keywords: resource thoery, quantum thermodynamics, quantum catalysis

1 Motivation

When studying thermodynamics as a resource theory,
di↵erent choices of free operations are available. The
most popular option is to allow the attachment of a ther-
mal bath in the Gibbs state at a specific temperature,
followed by the application of a global energy-preserving
unitary, and finally tracing out the bath. These oper-
ations form a set of channels, known as thermal opera-
tions (TO) [1]. Choosing thermal operations as the set
of free operations provides fundamental limits, as it con-
siders any unitaries that obey the first law of thermody-
namics. Moreover, for initial states that are incoherent
in the energy basis, characterizing possible transitions
becomes straightforward using thermomajorization rela-
tions, which rely only on the energy level populations of
the initial and target states. However, for any practical
settings, assuming all energy preserving unitaries to be
available is unrealistic. Therefore, alternative choices for
free operations become necessary.
Elementary thermal operations (ETO) [2] was pro-

posed to remedy this issue by imposing an additional
restriction on energy-preserving unitaries within TO. In
ETO, the set of free operations consists of sequences
of TO channels, each acting on only two system levels
at a time, or their convex combinations. Remarkably,
each two-system-level TO can be implemented by Jaynes-
Cummings type interactions, which are well-studied in
various experimental setups. Their concatenations are
also more experimentally feasible compared to arbitrary
energy-preserving unitaries of TO. Nevertheless, two ma-
jor problems hinder further research on this version of
free operations. Firstly, ETO is strictly weaker than TO
for state transitions. Secondly, characterizing reachable
final states under ETO is extremely di�cult, even when
the initial state is energy-incoherent.
To strengthen the capabilities of ETO, we introduced

catalytic transformations. Catalysts are auxiliary states
that interact with both the system and the bath dur-
ing the state transformation process. However, they re-

⇤jeongrak.son@e.ntu.edu.sg
†nelly.ng@ntu.edu.sg

turn to their original state at the end of the procedure.
Sometimes, when a transformation ⇢ ! ⇢

0 is not possi-
ble using any free operation, an extended transformation
⇢⌦ � ! ⇢

0
⌦ � is achievable via some free operation [3].

In this case, � serves as an (exact) catalyst. Catalytic
transformations are justified as the resource in the cata-
lyst state � remains intact, and the returned state can be
used to activate similar processes repeatedly. In particu-
lar, we adopt the most conservative notion of catalysts,
where they should be recovered without any error or cor-
relation to the system. We study three di↵erent scenarios
of catalytic ETO [4, 5]: the most general case, where any
catalyst state is allowed; the use of any Gibbs state with
the ambient temperature as the catalyst; and the uti-
lization of small catalysts with fixed dimensionality. In
particular, we provide the full characteriztion of catalytic
ETO in the former two cases.

Surprisingly, catalysts also enhance another class of
weaker operations, namely Markovian thermal opera-
tions (MTO). MTO has a di↵erent operational motiva-
tion: it assumes that the thermal bath remains in equilib-
rium throughout the evolution [6]. We demonstrate that
with arbitrary states and with Gibbs states, catalytic ver-
sion of MTO also coincides with the corresponding cat-
alytic ETO. Consequently, catalysis collapses the hierar-
chy of thermal processes for all known restricted versions
of TO.

For the computability problem, we have made signifi-
cant progress in deriving analytical results for construct-
ing final states under ETO. Notably, for certain special
classes of initial states, an e�cient method of determin-
ing the complete set of reachable final states is found.

2 Elementary thermal operations with
Gibbs state catalysts

Gibbs states are natural equilibrium states at fixed
temperature, since they are completely passive and have
maximum entropy with the fixed average energy. This
motivates the assumption that we have access to any
Gibbs state thermalized with the environment, i.e. Gibbs
states are free states of TO. Combined with the fact that
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any concatenation and convex combination of TOs can
be represented as a single TO channel, choosing a Gibbs
state as a catalyst does not yield any additional advan-
tage – instead, one can incorporate that catalyst state
into the bath state itself.
However, for ETO and MTO, concatenations of chan-

nels cannot be expressed as a single ETO or MTO chan-
nel, leaving room for potential improvements through
the use of a Gibbs state catalyst. In fact, by exclu-
sively employing Gibbs state catalysts, we achieve full
TO state transitions1. Another merit of this approach
is that Gibbs states are assumed to be readily accessible,
unlike other catalyst states that often require fine-tuning.
We denote the set of final states reachable from an initial
state ⇢ via free operations X as RX(⇢). We also use the
abbreviations GC-ETO and GC-MTO to refer to ETO
and MTO using Gibbs catalysts, respectively.

Theorem 1 RGC�ETO(⇢) = RGC�MTO(⇢) = RTO(⇢).

Note that this result holds for any initial state
⇢, including energy coherent states. The inclusion
RGC�ETO(⇢),RGC�MTO(⇢) ⇢ RTO follows immediately
from the fact that ETO and MTO themselves are sub-
sets of TO, and Gibbs catalysts are useless for TO. The
other direction can be obtained by decomposing a given
TO. Each TO assumes a thermal bath and an energy-
preserving unitary. We consider this thermal bath as a
Gibbs state catalyst for ETO or MTO. Now recall that
all system-bath energy preserving unitaries form a Lie
group, where the corresponding Lie algebra is given by
the set of �iHint, where Hint are interaction Hamilto-
nians commuting with the total Hamiltonian. Then it
is known that any element of the Lie group can be writ-
ten as a finite product of two-level energy-preserving uni-
taries whose generators form the basis of the Lie algebra.
Since the bath is now a catalyst, which is part of the
system, it is not traced out after each unitary and each
two-level unitary is a valid ETO or MTO. It is an ETO
since it only acts on two levels of the system plus cat-
alyst; it is an MTO since no (non-Markovian) bath is
required. At the end, we fully thermalize the catalyst so
that it goes back to the Gibbs state. Full thermalization
is also permitted in ETO and MTO. Therefore, the full
protocol is ETO and MTO with a Gibbs state catalysis.
The above result establishes the existence of an ex-

act decomposition, but not a construction. An easy (ap-
proximate) construction can be achieved by expressing
the original unitary in a Trotter-Suzuki form, where each
term corresponds to a two-level energy-preserving uni-
tary. By increasing the number of Trotter steps, the error
can be made arbitrarily small.
From this proof sketch, we can infer that the main

value provided by the Gibbs state catalyst is its non-
Markovianity, or in other words, its ability to retain mem-
ory throughout the process. A similar observation can
be made when the catalyst is not necessarily in a Gibbs

1
Theorems 1 and 2 are stronger than the results already included

in our preprint [5], which only guarantees the approximate recovery

of TO state transitions.

state and is small. Such intuition can provide a di↵erent
perspective for investigating other catalytic setups.

3 Elementary thermal operations with
arbitrary catalysts

As a corollary of Theorem 1, we have RGC�ETO(⇢ ⌦

�) = RGC�MTO(⇢⌦ �) = RTO(⇢⌦ �), when incorporat-
ing an additional catalyst �. This allows us to recover
catalytic thermal operations (CTO).

Theorem 2 RCETO(⇢) = RCMTO(⇢) = RCTO(⇢).

Here, C(E)(M)TO refers to the catalytic versions of
(E)(M)TO, where we have access to any catalyst state.

Again, the existence of an exact decomposition is
shown for any initial state ⇢. That is, we fully solve
the problem of general catalytic elementary thermal op-
erations and catalytic Markovian thermal operations.

However, this time, the (approximate) construction is
not as straightforward as in the GC-ETO case. The com-
plication arises from the requirement that the additional
catalyst � must be recovered exactly and without cor-

relation, even though the final state only needs to be
reached with an arbitrarily small error. Nonetheless, a
similar Trotterization strategy can be employed for en-
ergy incoherent initial states ⇢.

In sum, catalytic thermal operations can be decom-
posed into simpler catalytic operations without the need
for highly demanding types of interactions. The trade-o↵,
however, is that a longer sequence of unitaries is needed,
and the memory of the Gibbs state should remain intact
in the typically noisy environment.

4 Elementary thermal operations with
small catalysts

We have demonstrated that the hierarchy between TO,
ETO, and MTO collapses when large catalysts are avail-
able. However, to maximize the value of easier opera-
tions, it is crucial to investigate whether catalysts can
also be small, allowing for control over only a small sys-
tem plus catalyst composite. To showcase the power of
small catalysts, we focus on the minimal nontrivial model
of a qutrit system with the help of small catalysts whose
size varies from dimension two to thirty. Also, we restrict
our analysis to energy incoherent initial states, as deter-
mining the feasibility of transitions for energy coherent
systems remains an open problem.

In the simplest scenarios involving a qutrit system
and a qubit catalyst, characterizing the complete set of
reachable states is computationally tractable. For typi-
cal states, a qubit catalyst can activate CETO processes
that (partially) bridge the gap between TO and ETO
or go beyond the set RTO. This o↵ers a significant ad-
vantage from an implementation perspective. Instead of
dealing with generic interactions between the system and
a potentially complicated bath, by increasing the size of
the total system from dimension three to six, a collection
of thermal harmonic oscillators and Jaynes-Cummings
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type interactions can execute the same, or sometimes
even more powerful, operations.
For higher-dimensional catalysts, the exhaustive com-

putation of the reachable states becomes infeasible.
Therefore, we impose restrictions on our initial states.

Remark 1 Suppose that ⇢ is an energy incoherent,

whose energy population is given by p = (p1, · · · , pd) with
respect to energy levels ordered as E1  E2  · · ·  Ed.

When the ambient temperature is �
�1

and ⇢ satisfies

p1e
�E1  p2e

�E2  · · ·  pde
�Ed or p1e

�E1 � p2e
�E2 �

· · · � pde
�Ed , we refer to ⇢ as a monotonic �-order state.

Then the following theorem holds.

Theorem 3 If ⇢ is a monotonic �-order state with di-

mension d, it is possible to verify the feasibility of a tran-

sition from ⇢ to ⇢
0
via ETO in O(d2) time.

This is a dramatic improvement compared to the generic
computation time scaling as O(d2d!).
A notable class of states with monotonic �-order is the

set of Gibbs states with di↵erent temperatures. There-
fore, we can investigate the operationally important task
of cooling from one thermal state to another2.

Figure 1: The cooling of a thermal qutrit state to another
thermal qutrit state via (C)ETO with small catalysts.
The blue diamonds represent the best results obtained
from our sample of catalysts, while the purple circles
mark the worst results. The initial inverse temperature
is �h = 0.5, the ambient inverse temperature is � = 1,
and the final temperature is denoted as �

�1
c . The TO

limit is indicated by �TO (shown as a black dashed line),
and the result with dim(c) = 1 represents the ETO limit.
The energy levels of the system are given as (0, 0.4, 0.5).

In Fig. 1, we sampled catalysts in the restricted pool,
where the catalyst Hamiltonian is trivial and the initial
system-catalyst composite has monotonic �-order. The
gap between the ETO and TO limits is bridged with
small catalysts and when dim(c) = 16 some catalytic
ETOs outperform TO limit of cooling. Interestingly, the
worst performing catalysts turned out to be the Gibbs
states, which approach the TO limit as the dimension

2
This part of the result has not been included in our preprint [4]

yet, but it will be included in the revised version soon.

grows, as expected from Thm. 1. Therefore, within this
restricted range of catalysts, any catalysts outperform
Gibbs catalysts, which reduces the need of fine-tuning
the catalyst state.

5 Free energy dynamics during catalytic
processes

Finally, we examine how free energies change in a par-
ticular CETO process where the system is a qutrit and
the catalyst is a qubit to better understand what is hap-
pening during the catalytic process. When TO channel is
applied, non-equilibrium free energy, defined as the av-
erage energy minus temperature times entropy, cannot
increase. Since each ETO step is also a TO channel, the
same constraint holds. This can be seen in the total free
energy, since the channel acts on the total (system plus
catalyst) state.

Figure 2: The change in non-equilibrium free energies
after each CETO step. (a) and (b) tracts the free energy
of the system and catalyst reduced states, while (c) shows
the total free energy of the system-catalyst composite.
(d) captures the correlation between the system and the
catalyst by their mutual information. x-axes are scaled
by the distance in the barycentric representation between
the system reduced states before and after the ETO step.

The most interesting part of Fig. 2 is panel (a), where
the system free energy decreases initially, but increases
in the later time, which is impossible if the system
evolves without a catalyst. Fig. 2 thus exhibits the non-
Markovian e↵ect of the catalyst. Qualitatively, catalysts
are useful for their capability of storing free energy dur-
ing the process and releaseing it back to the system at the
later stage. This observation could provide novel insights
when designing good catalytic protocols.
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Abstract. The use of ancillary quantum systems known as catalysts is known to be able to enhance the
capabilities of entanglement transformations under local operations and classical communication. However,
the limits of these advantages have not been determined, and in particular it is not known if such assistance
can overcome the known restrictions on asymptotic transformation rates — notably the existence of bound
entangled (undistillable) states. Here we establish a general limitation of entanglement catalysis: we show
that catalytic transformations can never allow for the distillation of entanglement from a bound entangled
state, even if the catalyst may become correlated with the system of interest, and even under permissive
choices of free operations. This precludes the possibility that catalysis can make entanglement theory
asymptotically reversible. Our methods are based on new asymptotic bounds for the distillable entanglement
and entanglement cost assisted by correlated catalysts. Extending our approach beyond entanglement theory,
we show that catalysts also cannot enable reversibility in the manipulation of quantum coherence, establishing
even stronger restrictions on asymptotic catalytic transformations in this resource theory.
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The study of quantum entanglement as a resource has
been one of the most fundamental problems in the field
of quantum information ever since its inception [1]. To
utilize this resource e�ciently, it is often required to trans-
form and manipulate entangled quantum systems, which
leads to the well-studied question of how quantum states
can be converted using only local operations and classi-
cal communication (LOCC) [2, 3]. The limits of such
conversion capability are represented by asymptotic trans-
formation rates, which are particularly important in the
context of purifying noisy quantum states into singlets �2,
a task known as entanglement distillation, as well as for
the reverse task of using such singlets to synthesize noisy
quantum states. This leads to the notions of distillable
entanglement Ed(⇢) [2], which tells us how many copies of
�2 we can extract from a given state ⇢, and of entangle-
ment cost Ec(⇢) [3], which tells us how many copies of a
pure singlet are needed to obtain ⇢.

A phenomenon that can severely restrict our ability to
extract entanglement is known as bound entanglement [4]:
there exist states from which no entanglement can be dis-
tilled, even though their entanglement cost is non-zero. A
consequence of this is the irreversibility of entanglement
theory — after performing a transformation ⇢ ! !, one
may not be able to realize the reverse process ! ! ⇢ and
recover all of the supplied copies of ⇢. This contrasts with
the asymptotic reversibility of theories such as classical and
quantum thermodynamics [5–7]. Although reversibility
may still hold in some restricted cases (e.g., for all bipartite
pure quantum states [3, 5]), and there are even approaches
that may enable reversibility by suitably relaxing the re-
strictions on the allowed physical transformations [8–10],
irreversibility is often a fundamental property of the theory
of quantum entanglement [11]. It is then important to
understand how, if at all, irreversibility can be overcome.
A promising approach to increase the capabilities of

entanglement transformations is the use of so-called cata-

lysts [12], that is, ancillary systems that can be employed
in the conversion protocol, but must eventually be re-

turned in an unchanged state. Although this phenomenon
has been shown to be remarkably powerful in the context
of single- and many-copy transformations [12–18], it is
unknown whether catalysis can enhance the asymptotic
conversion rates. This motivates in particular an impor-
tant question: is the use of catalysis enough to facilitate
the reversibility of entanglement theory?

In this work [19], we close this question by showing that
even very permissive forms of catalytic transformations
are insu�cient to distill entanglement from bound entan-
gled states. Specifically, we show that the catalytically
distillable entanglement of any state with positive par-
tial transpose (PPT) is zero, which is strictly less than
its catalytic entanglement cost. The result relies on the
establishment of a general upper bound on distillable en-
tanglement under catalytic LOCC operations, namely, the
relative entropy of PPT entanglement, which was known
to be an upper bound only in conventional, non-catalytic
protocols [20, 21]. We show that this limitation persists
even if one allows the catalyst to build up correlations with
the main system, as well as if one allows sets of operations
larger than LOCC, in particular all PPT-preserving trans-
formations. This presents a very general limitation on
the power of catalytic transformations of entangled states.
We additionally study the applications of various resource
monotones to constraining asymptotic state conversion
with catalytic assistance, obtaining a number of bounds
that may be of independent interest.
We further demonstrate the power of our methods by

applying them to another quantum resource that is closely
related to entanglement, namely, coherence [22–25]. In this
context, incoherent operations (IO) [23, 24] have emerged
as the main example of a set of operations that are suf-
ficiently powerful to allow for generic coherence distilla-
tion [26], yet not powerful enough to enable full reversibil-
ity. It is natural to ask whether one could improve either
distillation or dilution under IO via catalysis. Here we an-
swer this question in the negative in the most general sense:
neither the IO distillable coherence nor the IO coherence
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cost are a↵ected by the introduction of catalysts.

Preliminaries We use SEP(A :B) to denote the set of
states �AB which are separable across the bipartition A :B.
The notation PPT(A :B) will be used to denote the set of
positive partial transpose states, i.e., ones for which the
partially transposed operator ��

AB is also a valid quantum
state. States which are not in PPT will be conventionally
called NPT (non-positive partial transpose).

Even though the choice of LOCC in the context of entan-
glement transformations is well motivated from a practical
perspective, in many settings there exist other possible
choices of allowed ‘free’ operations; let us then use F to
denote the chosen set of such permitted protocols. One
such choice is the set of so-called PPT operations [27],
or the even larger choice of all PPT-preserving opera-
tions PPTP [28], i.e., all maps ⇤ : AB ! A0B0 such that
⇤(�AB) 2 PPT(A0 :B0) for all �AB 2 PPT(A :B).

Given two bipartite states ⇢AB and !A0B0 , we say
that the transformation from ⇢AB to !A0B0 is possi-
ble via operations in F assisted by catalysts if there
exists a finite-dimensional state ⌧CD and an operation
⇤ 2 F (AC : BD ! A0C : B0D) such that

⇤ (⇢AB ⌦ ⌧CD) = !A0B0 ⌦ ⌧CD. (1)

We denote this by ⇢AB
F c

�! !A0B0 . More generally, we
say that the transformation is possible via operations in
F assisted by correlated catalysts [29–31] and we write

⇢AB
F cc

�! !A0B0 , if there exists a finite-dimensional state
⌧CD and an operation ⇤ 2 F (AC : BD ! A0C : B0D)
such that

TrCD ⇤ (⇢AB ⌦ ⌧CD) = !A0B0 (2)

and
TrA0B0 [⇤ (⇢AB ⌦ ⌧CD)] = ⌧CD. (3)

This relaxed notion allows for the output state of the
protocol to be correlated between the main system (AB)
and catalyst (CD), as long the marginal systems satisfy
the required constraints. Crucially, correlated catalysis is a
strictly more powerful framework than standard catalysis,
and allowing for such correlations can greatly enlarge the
set of achievable state transformations, even already in
the one-shot regime [30–36].

Let us now define the notion of asymptotic transforma-
tion rates. Given any allowed choice of transformations

eF 2 {F ,Fc,Fcc}, we write ⇢AB
eF�!⇡" !A0B0 if there

exists a state !0
A0B0 such that

⇢AB
eF�! !0

A0B0 ,
1

2
k!0

A0B0 � !A0B0k
1
 " . (4)

For every pair of states ⇢AB and !A0B0 , the corresponding
asymptotic rate is given by

R eF (⇢AB ! !A0B0)

:= sup

⇢
R : ⇢⌦n

AB

eF�!⇡"n !
⌦dRne
A0B0 , lim

n!1
"n = 0

�
.

(5)

The distillable entanglement and entanglement cost under
operations in eF are then defined by

Ed, eF (⇢) := R eF (⇢ ! �2) , Ec, eF (⇢) :=
1

R eF (�2 ! ⇢)
,

(6)

where �2 := |�2ih�2| with |�2i = 1p
2
(|00i + |11i). Con-

ventionally, the notation Ed and Ec is used to refer to
Ed,LOCC and Ec,LOCC.
An entangled state �AB is called bound entangled if

Ed,LOCC(�AB) = 0. A particularly useful criterion to
detect undistillability was established in [4]: if a state �AB

is PPT, then Ed,LOCC(�AB) = 0. As Ec,LOCC(�AB) > 0
for any entangled state �AB [37], this means that any PPT
�AB which is not separable has a non-zero entanglement
cost, while no entanglement can be extracted from it.

Monotones A very common way to constrain entangle-
ment transformations, also in the asymptotic transforma-
tion regime, is to use so-called entanglement monotones,
also known as entanglement measures [38]. These are func-
tions M which satisfy M(⇤(⇢AB))  M(⇢AB) for all free
operations ⇤ 2 F . It is well known that, if the monotone
satisfies weak additivity, i.e., M(⇢⌦n) = nM(⇢), as well
as a stronger form of continuity known as asymptotic con-
tinuity [39, 40], then the (non-catalytic) transformation
rate is bounded as [28, 41]

RF (⇢ ! !)  M(⇢)

M(!)
. (7)

Monotones are typically chosen so that they are normalized
on the maximally entangled state, i.e., M(�2) = 1. Any
such monotone then satisfies [42]

Ed,F (⇢)  M(⇢)  Ec,F (⇢). (8)

A particularly important example of an LOCC monotone
that obeys the above requirements is the regularized rela-
tive entropy of (PPT) entanglement

D1
PPT

(⇢) := lim
n!1

min
�2PPT(A⌦n:B⌦n)

1

n
D(⇢⌦nk�), (9)

where the quantum relative entropy is defined by
D(!k⌧) := Tr! (log2 ! � log2 ⌧) [43, 44].
The situation is much more intricate when it comes

to catalytic transformations [17, 45, 46]. To establish a
similar bound, it appears that several more assumptions
about the given monotone are needed. In particular, if
we also assume full additivity (i.e., M(⇢AB ⌦ !A0B0) =
M(⇢AB) +M(!A0B0) for any ⇢AB ,!A0B0) and strong su-
peradditivity (i.e., M(⇢AA0:BB0) � M(⇢AB) +M(⇢A0B0)),
then we analogously obtain

RFcc(⇢ ! !)  M(⇢)

M(!)
(10)

(see [19] for a proof). However, to date, there are only
two LOCC monotones that are known to satisfy all the
required assumptions: the squashed entanglement Esq [47]
and the conditional entanglement of mutual information
EI [48, 49], both of which are however typically di�cult to
evaluate. Importantly, as the regularized relative entropy
D1

PPT
is not known to satisfy the above properties, we

do not yet know whether it is monotone under asymp-
totic correlated–catalytic protocols. This entails that we
cannot straightforwardly use it to bound Ed,LOCCcc or
Ec,LOCCcc . Any attempt to establish readily computable
asymptotic bounds on transformations with correlated cat-
alysts therefore requires a completely di↵erent approach
than conventional, non-catalytic bounds.

116



Results Our main technical contribution is the estab-
lishment of two very general bounds on correlated catalytic
transformations, and in particular the recovery of the regu-
larized relative entropy as an upper bound for distillation.

Proposition 1. For all states ⇢AB, the distillable en-

tanglement and entanglement cost under PPT-preserving

operations assisted by correlated catalysts satisfy

Ed,PPTPcc(⇢AB)  D1
PPT

(⇢AB)  DPPT(⇢AB) (11)

and

Ec,PPTPcc(⇢AB) � DPPT,1
PPT

(⇢AB) � DPPT
PPT

(⇢AB) , (12)

where

DPPT
PPT

(⇢) := inf
�2PPT

sup
M2PPT

D
�
M(⇢)

��M(�)
�

(13)

is the measured relative entropy of entanglement [50] under

PPT measurements PPT, and DPPT,1
PPT

is its regularization.

The key consequences of this result, as well as some
additional insights that follow from our approach, are
summarized in the following theorem.

Theorem 2. The following holds:

(a) A PPT state cannot be converted to an NPT state by

means of PPT-preserving operations assisted by corre-

lated catalysts, including all catalytic LOCC protocols.

(b) In particular, not even a single copy of �2 can be

distilled with error " < 1/2 by an unbounded number

of copies of any given PPT state via LOCC or PPT-

preserving operations assisted by correlated catalysts.

(c) Therefore, all PPT entangled states ⇢AB are bound

entangled under LOCC or PPT-preserving operations

assisted by correlated catalysts, but have non-zero cost

under LOCC assisted by correlated catalysts. More

formally, if ⇢AB is PPT entangled then

Ed,LOCCcc(⇢AB) = Ed,PPTPcc(⇢AB) = 0,

Ec,LOCCcc(⇢AB) > 0 .
(14)

(d) Consequently, entanglement theory is irre-

versible even under LOCC assisted by corre-

lated catalysts.

Let us remark here that a di↵erent notion of ‘catalytic
irreversibility’ was previously considered in the seminal
work of Vidal and Cirac [51]. However, the transformations
considered there are much more restricted than the ones
allowed in our approach — indeed, they are not truly
‘catalytic’ in the sense that the preservation of the assisting
ancillary system is not actually required, and furthermore
no correlations are permitted between the main and the
ancillary systems. Our setting is thus strictly more general
than that of [51], and as far as we know it is not possible
to retrieve our findings on catalytic bound entanglement
using results from [51] only.

An additional consequence of the bound in Proposition 1
is that the entanglement cost of any NPT entangled state
is non-zero, even under PPT-preserving operations assisted
by correlated catalysis.
A crucial ingredient in our proofs is the measured rel-

ative entropy of entanglement DPPT
PPT

, which belongs to a

family of entanglement measures first studied by Piani in
a pioneering work [50]. An important feature of this quan-
tity is that it satisfies strong superadditivity, and in fact
it allows for the establishment of a superadditivity–like
relation for the relative entropy of entanglement DPPT

itself: it holds that [50]

DPPT (⇢AA0:BB0) � DPPT(⇢A:B) +DPPT
PPT

(⇢A0:B0). (15)

This remarkable relation allows us to avoid having to rely
solely on the properties of DPPT, which — as we discussed
before — are not su�cient to use this quantity in the
catalytic setting.

Coherence Quantum coherence is another important
example of quantum resource [22–25]. On the formal level,
its theory shares many similarities with entanglement.
Instead of separable states here we have incoherent states,
i.e., states that are diagonal in a fixed basis (computational
basis). The unit of pure coherence is the coherence bit
|+i := 1p

2
(|0i+ |1i). As for the set of free operations,

several choices are possible, including strictly incoherent
operations (SIO) [24, 26, 52–54], incoherent operations
(IO) [23, 24], dephasing-covariant incoherent operations
(DIO) [55–57], maximal incoherent operations (MIO) [22].

For each one of these sets F , and for each eF 2
{F ,Fc,Fcc}, we can define the corresponding distillable
coherence Cd, eF and coherence cost Cc, eF as in (6), by
replacing �2 with |+ih+|. All of these quantities have
been computed in the unassisted case where catalysis is
not considered [24, 54, 57]. For example, it is known
that for F 2 {IO,DIO,MIO} the distillable coherence sat-
isfies Cd,F (⇢) = Cr(⇢) := S(�(⇢)) � S(⇢), where Cr is
known as the relative entropy of coherence [23, 24]. Here,
�(·) :=

P
i |iihi| (·) |iihi| is the dephasing map. On the

contrary, coherence is generically bound, i.e., undistillable,
under SIO [26]. As for the coherence cost, Cc,DIO(⇢) =
Cc,MIO(⇢) = Cr(⇢) so that the theory is reversible under
MIO/DIO, while under SIO/IO it holds that Cc, SIO(⇢) =
Cc, IO(⇢) = Cf (⇢) := inf⇢=P

x px x

P
x pxS(�( x)), where

the infimum that defines the coherence of formation Cf is
over all pure state decompositions of ⇢ [24].

We can now meaningfully ask: does catalysis help asymp-

totically in either coherence distillation or coherence dilu-

tion? Since coherence is already reversible under DIO and
MIO, we focus on SIO and IO. The result below answers
this question very generally in the negative for dilution
under both SIO and IO, and for distillation under IO.

Proposition 3. The IO distillable coherence and the

SIO/IO coherence cost of any state do not change if one

allows assistance by either catalysts or correlated catalysts.

Formally, for F 2 {IO, IOc, IOcc}, and for all states ⇢,

Cd,F (⇢) = Cr(⇢) . (16)

Analogously, for eF 2 {SIO, SIOc, SIOcc, IO, IOc, IOcc}
and for all ⇢,

Cc,F (⇢) = Cf (⇢) . (17)

The above result shows conclusively that the funda-
mental irreversibility of the resource theory of quantum
coherence under SIO/IO persists even if catalytic transfor-
mations are included into the picture, a finding that goes
substantially beyond what was previously known [24].
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[29] Johan Åberg. Catalytic Coherence. Phys. Rev. Lett.,
113:150402, 2014.

[30] Matteo Lostaglio, Kamil Korzekwa, David Jennings,
and Terry Rudolph. Quantum Coherence, Time-
Translation Symmetry, and Thermodynamics. Phys.
Rev. X, 5:021001, 2015.

[31] Henrik Wilming, Rodrigo Gallego, and Jens Eisert.
Axiomatic Characterization of the Quantum Relative
Entropy and Free Energy. Entropy, 19:241, 2017.

[32] Markus P. Müller. Correlating Thermal Machines
and the Second Law at the Nanoscale. Phys. Rev. X,
8:041051, 2018.

[33] N. Shiraishi and T. Sagawa. Quantum thermodynam-
ics of correlated-catalytic state conversion at small
scale. Phys. Rev. Lett., 126:150502, 2021.

[34] T. V. Kondra, C. Datta, and A. Streltsov. Catalytic
transformations of pure entangled states. Phys. Rev.
Lett., 127:150503, 2021.

118



[35] Soorya Rethinasamy and Mark M. Wilde. Relative
entropy and catalytic relative majorization. Phys.

Rev. Res., 2:033455, 2020.

[36] H. Wilming. Entropy and Reversible Catalysis. Phys.
Rev. Lett., 127:260402, 2021.

[37] Dong Yang, Micha l Horodecki, Ryszard Horodecki,
and Barbara Synak-Radtke. Irreversibility for All
Bound Entangled States. Phys. Rev. Lett., 95:190501,
2005.

[38] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L.
Knight. Quantifying Entanglement. Phys. Rev. Lett.,
78:2275–2279, 1997.

[39] Matthew J. Donald and Micha l Horodecki. Continuity
of relative entropy of entanglement. Physics Letters

A, 264:257–260, 1999.

[40] Barbara Synak-Radtke and Micha l Horodecki. On
asymptotic continuity of functions of quantum states.
J. Phys. A: Math. Gen., 39:L423, 2006.

[41] Matthew J. Donald, Micha l Horodecki, and Oliver
Rudolph. The uniqueness theorem for entanglement
measures. J. Math. Phys., 43:4252–4272, 2002.

[42] M. Horodecki, P. Horodecki, and R. Horodecki. Limits
for entanglement measures. Phys. Rev. Lett., 84:2014–
2017, 2000.

[43] Hisaharu Umegaki. Conditional expectation in an op-
erator algebra, IV (Entropy and information). Kodai

Math. Sem. Rep., 14:59–85, 1962.
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Quantum simulation of partial di↵erential equations via
Schrodingerisation

Nana Liu1

1Shanghai Jiao Tong University

Abstract. Quantum simulators were originally proposed to be helpful for simulating one partial di↵er-
ential equation (PDE) in particular – Schrodinger’s equation. If quantum simulators can be useful for
simulating Schrodinger’s equation, it is hoped that they may also be helpful for simulating other PDEs.
It turns out that by transforming a linear partial di↵erential equation (PDE) into a higher-dimensional
space, it can be transformed into a system of Schrodinger’s equations, which is the natural dynamics of
quantum devices. This new method – called Schrodingerisation [1,2] – allows one to simulate, in a simple
way, any general linear partial di↵erential equation and system of linear ordinary di↵erential equations via
quantum simulation.

This formulation gives us enough flexibility to allow simulation on both qubit-based and continuous-
variable quantum systems. The continuous-variable representation is via qumodes and can be more natural
for PDEs since, unlike most computational methods, one does not need to discretise the PDE first. In
this way, we can directly map D-dimensional linear PDEs onto a (D + 1)-qumode quantum system where
analog Hamiltonian simulation on (D + 1) qumodes can be used [3].

I will introduce the idea of Schrodingerisation and a body of work using this framework. I show how this
method can be applied to linear PDEs, certain nonlinear PDEs and nonlinear ordinary di↵erential equations
(ODEs) [4, 5]. It can also be applied to problems in discrete linear dynamics systems and linear algebra
[6] by transforming iterative methods in linear algebra into evolution of ODEs. For realistic problems,
this method can be adapted to also solve boundary value problems like physical boundary conditions,
interface conditions [7] and quantum dynamics with artificial boundary conditions [8]. I will also present
new protocols for simulating linear PDEs with random coe�cients [3, 9], which is important in uncertainty
quantification.
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Quantum State Preparation with Optimal Circuit Depth:

Implementations and Applications

Xiao-Ming Zhang1 Tongyang Li1 Xiao Yuan1 ⇤
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Abstract. We show that any n-qubit quantum state can be prepared with a ⇥(n)-depth circuit using only
single- and two-qubit gates. For sparse quantum states with d > 2 non-zero entries, we can reduce the circuit
depth to ⇥(log(nd)) with O(nd log d) ancillary qubits. The algorithm for sparse states is exponentially
faster than best-known results and the number of ancillary qubits is nearly optimal and only increases
polynomially with the system size. We discuss applications of the results in di↵erent quantum computing
tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random
access memories.

Keywords: quantum state preparation, quantum circuit, Hamiltonian simulation, quantum random ac-
cess memory

1 Background

Quantum state preparation (QSP) is one of the most
fundamental tasks in quantum information processing
(QIP). For a n-qubit system, the goal of QSP is to con-
struct the quantum state

| i =
2n�1X

k=0

ak|ki (1)

from a trivial initial state, such as |0i⌦n, and given the
classical description of [a0, a1, · · · , a2n�1]. Here, ak 2 C,P

N�1
k=0 |ak|2 = 1, and |ki ⌘ |knkn�1 · · · k1i being the ba-

sis with bits kj for j = 1, 2, . . . , n. QSP is also of prac-
tical interest, as it determines the e�ciency of inputting
classical data into a quantum computer. QSP plays a
critical subroutine for many quantum algorithms in ma-
chine learning [12–14] and quantum simulation [5, 15].
As an example, block-encoding has broad applications in
Hamiltonian simulation, solving linear systems, etc. It
can be realized with QSP together with a selector oracle.

Circuit depth measures the runtime of QSP. Without
ancillary qubit, exponential circuit depth is inevitable
to prepare an arbitrary quantum state [17]. Leveraging
ancillary qubits, the circuit depth could be reduced to
be sub-exponential scaling [18, 19, 22, 23], indicating a
space-time trade-o↵ of QSP.

On the other hand, in minimizing circuit depth, the
sub-exponential circuit depth is only achievable with ex-
ponential space complexity, which could be challenging
for near-term quantum devices. Moreover, strong data
structure assumptions leave space for quantum-inspired
classical algorithms. With a classical data structure en-
abling l2 sampling, there are classical algorithms with
poly-logarithmic runtime dequantizing the quantum al-
gorithms for recommendation systems [20], solving linear
systems [2, 7], semidefinite programs [3], etc. These re-
sults show that space resources should not be neglected
when discussing the quantum exponential advantages.

In practice, the data may behave with a certain struc-
ture enabling the significant simplification of QSP. There-

⇤xiaoyuan@pku.edu.cn

fore, a task of more practical interest is to find QSP pro-
tocol for target states with certain structures. A typical
scenario that has both theoretical and practical relevance
is the sparse quantum state, because sparsity is a very
common property in both classical and quantum infor-
mation processing. Using a constant number of ancillary
qubits, arbitrary d-sparse quantum states (with d non-
zero entries) can be prepared using a circuit depth of
O(dn) [6, 9, 16]. However, it was unclear if the QSP for
sparse target state could be further sped up. The fun-
damental speed limit of sparse state preparation is still
an open question, which is important for studying the
ultimate power of QIP.

2 General state preparation

For arbitrary target states, we developed a QSP pro-
tocol with linear circuit depth. The result is summarized
as follows.

Theorem 1 With only single- and two-qubit gates, an
arbitrary n-qubit quantum state can be deterministically
prepared with a circuit depth ⇥(n) and O(2n) ancillary
qubits.

Theorem. 1 saturates the circuit depth lower bound [19,
22]. We were aware that there are other two compa-
rable schemes also achieving linear circuit depth with
O(2n) [19] and Õ(2n) [18] ancillary qubits shortly before
our work. Our scheme is simpler, because each qubit only
connects to a constant number (three) of other qubits,
while [18, 19] assume all-to-all connectivity (Fig. 1).

The hardware architecture used for general state
preparation is illustrated in Fig. 1. In practical im-
plementation, it can be realized with non-local quan-
tum gates based on teleportated CNOT gates. Alterna-
tively, it can also be realized fault-tolerantly with nearest-
neighbour coupled qubit arrays based on surface code and
lattice surgery, at the cost of a mild increasing of ancillary
qubit complexity to O(n22n).
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Figure 1: Hardware architecture for general QSP taking n = 3 as an example. Each rectangle represents a qubit and
each solid line represents the connectivity between two qubits. (a) The architecture contains a binary tree H with
(n + 1) layers. (b) Each layer of H connects to the leaf layer of another binary tree. For example, the third layer of
H connects to a three-layer binary tree.

Table 1: Space and time complexities for SLS when |bi contains d = O(poly(n)) nonzero elements. “O(1)-sparse”
corresponds to P, ↵, d = O(1). We have defined F ⌘ kĤkF /kĤk with k · kF the Frobenius norm, and  is the
condition number of H. Both quantum sequential and quantum parallel methods use the algorithm in [4] with the
qubitization technique for Hamiltonian simulation [15], and the sparse state preparation method in Theorem. 2. See
technical manuscript for details.

Algorithm Time Space Time (O(1)-sparse) Space (O(1)-sparse)
Quantum-inspired [2, 7] Õ(poly(n, , F )) O(n2nP ) Õ(poly(n, , F )) O(n2n)

Quantum sequential Õ(nP↵ poly()) O(log P + poly(n)) Õ(n poly()) O(n)
Quantum parallel Õ(log(nP )↵ poly()) O(P poly(n)) Õ(log(n)poly()) O(n)

3 Sparse state preparation

For sparse target states, we developed an indepen-
dent protocol with circuit depth increasing logarithmi-
cally with both qubit number n and the number of non-
zero elements of the target state d. The result is summa-
rized as follows.

Theorem 2 With only single- and two-qubit gates, an
arbitrary n-qubit, d-sparse (d > 2) quantum state can be
deterministically prepared with a circuit depth ⇥(log(nd))
and O(nd log d) ancillary qubits.

Theorem. 2 improves the best-known circuit depth for
sparse state preparation [6, 9, 16] exponentially, and also
saturates the fundamental lower bound of circuit depth.
The required number of ancillary qubits increases only
(near) linear with n and d, while only constant connec-
tions between qubits are required.

4 Applications

Based on the QSP results in Theorem. 1 and Theo-
rem. 2, and other relevant techniques, we find applica-
tions in the fields of Hamiltonian simulation and quan-
tum machine learning. The applications are summarized
as follows.
Quantum simulation. We have considered the quan-
tum simulation with Hamiltonian in the form of

H =
PX

p=1

↵pVp, (2)

where P = O(poly(n)), ↵p > 0, and V̂ (p) =
N

n�1
l=0 V̂l(p)

and V̂l(p) 2 SU(2). This type of Hamiltonians contains
most of the scenarios in condense matter physics and
quantum chemistry. By combining our QSP protocol and
relevant techniques with the qubitization algorithm [15],
we develop an algorithm for simulating e�iHt with run-
time O (log(nP )(↵t + log(1/"))), where ↵ =

P
p
↵p and

" is the error. As a comparison, for conventional methods
based on ancillary-free state preparation, the runtime is
typically linear with n and P .
Quantum solving linear system (SLS). Given a
square matrix H and vector b, the task for quantum
SLS is to output a wave function |xi proportional to
H�1b. It has been shown that quantum algorithms can
solve the quantum SLS problem with polylogarithmic
runtime [1, 4, 12, 21]. However, provided similar data
structure for classical algorithms, the same task can be
equivalently solved using quantum-inspired algorithms,
also with polylogarithmic runtime [2, 7, 20]. So it re-
mains open questions whether the exponential quantum
advantage for SLS exists, and in what scenarios it can
be expected. Based on our sparse state preparation and
relevant techniques, we show that when b is sparse, and
H can be decomposed in the form of Eq. (2) , there exist
exponential quantum advantages, even compared to the
best-known classical quantum-inspired algorithm. The
comparison is summarized in Table. 1.
Quantum random access memory (QRAM).
QRAM is an important type of data structures for
quantum machine learning [8, 10, 11]. Conventional
scheme for QRAM requires O(log N) circuit depth us-
ing O(N) ancillary qubits, where N is the data dimen-
sion. We show that when the classical data is sparse,
both space and time resources for QRAM can be signif-
icantly reduced. In particular, for N -dimensional classi-
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cal data with d non-zero elements, our protocol requires
O(log(d log N)) circuit depth and O(d log N) ancillary
qubit. When d is independent of n, exponential improve-
ment can be expected for both time and space complex-
ities.

5 Significance

We have answered the question of what is the funda-
mental speed limit of preparing sparse and non-sparse
quantum states. Moreover, the resource, such as connec-
tivity, ancillary qubit number, and classical preprocessing
time required to achieve the speed limit cannot be signifi-
cantly reduced further. Based on our techniques for QSP,
we find exponential speedups in the fields of Hamilto-
nian simulation, solving linear systems and QRAM. Our
results therefore provide significant advances in QIP, in
both fundamental and application aspects.

Technical version:
https://doi.org/10.1103/PhysRevLett.129.230504
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Abstract. Accurate information processing is crucial both in technology and in nature. To achieve it,
any information processing system needs a supply of resources away from thermal equilibrium. Here we
establish a fundamental limit on the accuracy achievable with a given amount of nonequilibrium resources.
The limit applies to arbitrary information processing tasks and arbitrary information processing systems
subject to the laws of quantum mechanics. It is easily computable and is expressed in terms of an entropic
quantity, which we name reverse entropy, associated to a time reversal of the information processing task
under consideration. The limit is achievable for all deterministic classical computations and for all their
quantum extensions. As an application, we establish the optimal tradeo↵ between nonequilibrium and
accuracy for the fundamental tasks of storing, transmitting, cloning, and erasing information. Our results
set a target for the design of new devices approaching the ultimate e�ciency limit, and provide a framework
for demonstrating thermodynamical advantages of quantum devices over their classical counterparts. This
work has been published on Nature Communication 13, 7155 (2022).

Keywords: quantum thermodynamics, resource theory, quantum advantage

1 Introduction

At the fundamental level, information is stored into
patterns that stand out from the thermal fluctuations of
the surrounding environment. In order to achieve devia-
tions from thermal equilibrium, any information process-
ing machine needs supplies of systems in a non-thermal
state, e.g. batteries. For example, an ideal copy ma-
chine for classical data replication requires at least one
clean bit initialized in a pure state, say |0i, for every bit
it copies [1]. Without su�cient supply of non-thermal
state, coppying cannot be made perfect. For a general
information processing task, a fundamental question is:
what is the minimum amount of nonequilibrium needed
to achieve a target level of accuracy? This question is
especially prominent at the quantum scale, where many
tasks cannot be achieved perfectly even in principle, as
illustrated by the no-cloning theorem.
In recent years, there has been a growing interest in

the interplay between quantum information and thermo-
dynamics [2, 3, 4], motivated both by fundamental ques-
tions [5, 6, 7, 8, 9] and by the experimental realisation
of new quantum devices [10, 11, 12]. Research in this
area led to the development of resource-theoretic frame-
works that can be used to study thermodynamics beyond
the macroscopic limit [13, 14, 15, 16, 17, 18, ?, 19, 20].
These frameworks have been applied to characterise ther-
modynamically allowed state transitions, to evaluate the
work cost of logical operations [21, 22] and to study in-
formation erasure and work extraction in the quantum
regime [23, 24, 25]. From a di↵erent perspective, re-
lations between accuracy and entropy production have

⇤giulio@cs.hku.hk
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Figure 1: The nonequilibrium cost of accurate in-
formation processing. A source generates a set of in-
put states for an information processing machine. The
machine uses an information battery (a supply of qubits
initialised in a fixed pure state) and thermal fluctuations
(a reservoir in the Gibbs state as a source of randomness)
to transform the input state ⇢x into an approximation of
the ideal target state ⇢0x. Finally, the similarity between
the output and the target is assessed by a measurement.
The number of pure qubits consumed by the machine is
the nonequilibrium cost that needs to be paid in order to
achieve the desired level of accuracy.

been investigated in the field of stochastic thermodynam-
ics [26, 27, 28, 29, 30], referring to specific physical mod-
els such as classical Markovian systems in nonequilibrium
steady states.

Here, we establish a fundamental tradeo↵ between ac-
curacy and nonequilibrium, valid at the quantum scale
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and applicable to arbitrary information processing tasks.
Our main result is a bound of nonequilibrium cost by
the accuracy, expressed in terms of an entropic quantity,
which we call the reverse entropy, associated to a time re-
versal of the information processing task under consider-
ation. The bound depends only on the task itself, and not
on any particular quantum channel implementing it. The
bound is attainable for a broad class of tasks, including
all deterministic classical computations and all quantum
extensions thereof. For the task of erasing, our results
generalize Landauer’s principle to imperfect erasure. For
the tasks of storage, transmission, and cloning of quan-
tum information, our results reveal a thermodynamic ad-
vantage of quantum setups over all classical setups that
measure the input and generate their output based only
on the measurement outcomes. In the cases of storage
and transmission, we show that quantum machines can
break the ultimate classical limit on the amount of work
required to achieve a desired level of accuracy. This re-
sult enables the demonstration of work-e�cient quantum
memories and quantum communication systems outper-
forming all possible classical setups.
Our results establish a direct link between thermody-

namic resources and the accuracy of information pro-
cessing. They set an ideal target for the design of new
devices, and provide a framework for demonstrating a
thermodynamic advantage of quantum devices in funda-
mental tasks such as storing, copying, and transmitting
information.

2 Results

The nonequilibrium cost of accuracy. Fundamen-
tally, the goal of information processing is to set up a de-
sired relation between inputs and outputs. In the quan-
tum domain, information processing tasks are often asso-
ciated to ideal state transformations ⇢x 7! ⇢0x, in which
an input state described by a density operator ⇢x has
to be converted into a target output state described by
another density operator ⇢0x, where x is a parameter in
some given set X. From now on, the input system is de-
noted by A whose Gibbs state is denoted by �A and the
output system is B, whose Gibbs state is �B .
Since every realistic machine is subject to imperfec-

tions, the physical realisations of an ideal information
processing task can have varying levels of accuracy. Op-
erationally, the accuracy can be quantified by performing
a test on the output of the machine and by assigning a
score to the outcomes of the measurement. The resulting
measure of accuracy is given by the expectation value of
a suitable observable Ox, used to assess how similar the
output is to the target state ⇢0x. In the worst case over all
possible inputs, the accuracy achieved in a given task T
has the expression FT (M) = minx Tr[OxM(⇢x)], where
M is the quantum channel describing the action of the
machine.
Accurate information processing generally requires an

initial supply of systems away from equilibrium. The
amount of nonequilibrium required to implement a given
task can be rigorously quantified in a resource theo-

retic framework where Gibbs states are regarded as freely
available, and the only operations that can be performed
free of cost are those that transform Gibbs states into
Gibbs states [22]. These operations, known as Gibbs
preserving, are the largest class of processes that main-
tain the condition of thermal equilibrium. The initial
nonequilibrium resources can be represented in a canon-
ical form by introducing an information battery [21, 22],
consisting of an array of qubits with degenerate energy
levels. The battery starts o↵ with some qubits in a pure
state (hereafter called the “clean qubits”), while all the
remaining qubits are in the maximally mixed state. To
implement the desired information processing task, the
machine will operate jointly on the input system and on
the information battery, as illustrated in Figure 1.

The number of clean qubits used by a machine (mod-
eled by a quantum channel M) is an important mea-
sure of e�ciency, hereafter called the nonequilibrium
cost. Let us denote by c(M,⇧A) the minimal nonequi-
librium cost required for implementing a given ma-
chine M on input states in the subspace specified
by a projector ⇧A. When the input subspace is in-
variant under time evolution, namely [⇧A, HA] = 0,
where HA is the Hamiltonian of the input system,
the nonequilibrium cost is given [22] by the max rela-
tive entropy, c(M,⇧A) = Dmax(M(⇧A�A⇧A)||�B) with

Dmax(⇢||�) = log2

����� 1
2 ⇢�� 1

2

���. We will focus on the

cases where the input subspace is invariant under time
evolution. This is not a strict restriction, since when the
inputs span the whole space, ⇧A becomes the identity
operator and the requirement is automatically fullfilled.

Then the nonequilibrium cost for achieving accuracy F
in a task T is cT (F ) := min{c(M,⇧A) | FT (M) � F},
minimizing over all possible machines M, which can be
formulated as a semi-definite program(SDP). Note that
the the specification of the input subspace is included in
the task T .

Solving the SDP, we obtain a universal bound for the
one-shot nonequilibrium cost, valid for all quantum sys-
tems and to all information processing tasks:

cT (F ) � T + logF , (1)

where T := � logF Trev
max is an entropic quantity, which we

call the reverse entropy, and F Trev
max is the maximum accu-

racy allowed by quantum mechanics to a time-reversed
information processing task Trev : ⇢0x 7! ⇢x, 8x 2 X.
Note that the reverse entropy is a monotonically de-
creasing function of F Trev

max , and becomes zero when the
time-reversed task can be implemented with unit accu-
racy. Crucially, the reverse entropy depends only on the
task under consideration, and not on a specific quantum
channel used to implement the task. In fact, the reverse
entropy is well defined even for tasks that cannot be per-
fectly achieved by any quantum channel, as in the case
of ideal quantum cloning, and even for tasks that are
not formulated in terms of state transitions (see Meth-
ods in the published version [31]). This bound is proved
to be tight for a number of information processing tasks,
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notably including all classical computations and all quan-
tum extensions thereof.

Limit on the accuracy of classical machines. A
classical machine can be modelled as a machine that mea-
sures the input and produces an output based on the mea-
surement result, which is entanglement breaking. Here
we show that entanglement breaking machines satisfy a
stricter bound. The minimum nonequilibrium cost over
all entanglement breaking machines, denoted by cebT (F ),
must satisfy the inequality

cebT (F ) � max{T ,T ⇤}+ logF , (2)

where T is the reverse entropy of the state transforma-
tion task ⇢x ! ⇢0x, and T ⇤ is the reverse entropy of the
transposed task T ⇤, corresponding to the state transfor-
mation ⇢x 7! (⇢0x)

T . This bound can be used to demon-
strate that a thermodynamic advantage of general quan-
tum machines over all entanglement binding machines,
including in particular all classical machines. For exam-
ple, we proved that the non-equilibrium cost used by a
classical machine to achieve certain level of accuracy, is
strictly larger than that of a general quantum machine,
as shown in Fig.2

0.0
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0.0
0.5

1.0
1.5=1
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Fidelity
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=3
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=4

Figure 2: Entanglement binding machines vs gen-
eral quantum machines. The figure illustrates the
accessible regions for the cloning fidelity for various val-
ues of N and N 0 in the case of qubits with degenerate
Hamiltonian. The values of the fidelity in the blue region
are attainable by general quantum machines, while the
values in the orange region are attainable by entangle-
ment binding machines. The di↵erence between the two
regions indicates a thermodynamic advantage of general
quantum machines over all classical machines.

Thermodynamic signature of geniune quantum
devices. Quantum machines that are able to preserve
free entanglement also o↵er a thermodynamic advantage
in the storage and transmission of quantum states, cor-
responding to the ideal state transformation ⇢x 7! ⇢x
where x parametrises the states of interest. In theory, a
noiseless quantum machine can achieve perfect accuracy
at zero work cost. In practice, however, the transmis-
sion is always subject to errors and ine�ciencies, result-

ing into nonunit fidelity and/or nonzero work. For this
reason, realistic experiments that aim to demonstrate
genuine quantum transmission or storage need criteria
to demonstrate superior performance with respect to all
classical setups. A popular approach is to demonstrate
an experimental fidelity larger than the maximum fidelity
achievable by classical schemes. In the qubit case, the
maximum classical fidelity is F eb

max = 2/3 [32], and is of-
ten used as a benchmark for quantum communication
experiments [33, 34, 35]. Here we provide a di↵erent
benchmark, in terms of the nonequilibrium cost needed
to achieve a target fidelity F . We show that the mini-
mum nonequilibrium cost over all entanglement breaking
machines for the storage/transmission of qubit states is

cebstore/transmit(F ) = log


F + e

�E
kT

(2F � 1)2

1� F

�
, (3)

where �E is the energy gap of the qubit. Eq. (3) is valid
for every qubit Hamiltonian and for every value of F in
the interval [F eb

min, F
eb
max], with F eb

max = 2/3 and F eb
min =

(e
�E
kT +1)/(2e

�E
kT +1). The minimum cost cebstore/store(F )

can be achieved by state estimation, and therefore can
be regarded as the classical limit on the nonequilibrium
cost.

For every F > Fmin, the minimum nonequilibrium
cost (3) is strictly larger than zero for every nondegen-
erate Hamiltonian. Since the nonequilibrium cost is a
lower bound to the work cost, Eq. (3) implies that ev-
ery entanglement breaking machine with fidelity F re-
quires at least kT (ln 2) cebstore/transmit(F ) work. In the-
ory, this value can be used as a benchmark to cer-
tify genuine quantum information processing: every re-
alistic setup that achieves fidelity F with less than

kT ln
h
F + e

�E
kT (2F � 1)2/(1� F )

i
work will necessarily

exhibit a performance that cannot be achieved by any
classical setup. Notably, the presence of a thermody-
namic constraint (either on the nonequilibrium or on
the work) provides a way to certify a quantum advan-
tage even for noisy implementations of quantum mem-
ories and quantum communication systems with fidelity
below the classical fidelity threshold Fmax = 2/3. This
points out new paths in certifying quantum devices but
also poseses challenges to acccurately measure the ther-
modynamic cost of quantum processes experimentally.

3 Conclusion.

We derive fundamental trade-o↵ between the nonequi-
libirum cost and the accuracy of information processing.
Our bound is applicable to single-shot experiments and
we prove that they reduce to conventional thermodynam-
ics in the asymptotic limit. Our conceptual contribution
is to move from previous results [21, 22] on the nonequi-
librium cost of quantum channels to arbitrary informa-
tion processing tasks. This enables us to establish ther-
modynamic advantages of quantum devices in transmit-
ting, storing, and cloning quantum information over their
classical counterparts.
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Abstract. The entangled coherent state, a multipartite extension of the cat state, has been studied in
such various fields as quantum optics, quantum information, and quantum communication. It has been
experimentally realized with photons and microwave cavities, but not with trapped ions although they
have been extensively used in the study of non-classical states. Here, we report the generation and basic
characterization of an entangled coherent state that consists of two orthogonal motional modes of a single
trapped ion. We generate an entangled coherent state with spin-dependent force and heralded measurement
of the spin state, and then observe the modulation of the parity in one of the two modes. We also utilize the
two dimensional spin-dependent force to realize Mølmer–Sørensen gates with motion in multiple directions.

Keywords: coherent state, cat state, trapped ion, entanglement, Molmer-Sorensen gate

1 Introduction

In recent decades, there has been extensive theoreti-
cal and experimental exploration focused on the coher-
ent state [1]. This particular quantum state possesses
remarkably classical attributes due to its minimal spread
in phase space, and its time evolution follows the trajec-
tory of a classical harmonic oscillator [2]. The entangled
coherent state, an extension of the coherent state to mul-
tiple modes, has proven to be a valuable theoretical tool
in diverse areas such quantum optics, quantum comput-
ing, and quantum communication. Despite their sensitiv-
ity to decoherence, entangled coherent states have been
experimentally realized in a few experiments involving
photons [3] and microwave cavities [4, 5]. The trapped
ion has been a very useful tool for studying the quan-
tum world because of its isolation from the environment
and precise controllability. Various theoretical studies
have explored the implementation of entangled coherent
states in trapped ion systems [6, 7, 8, 9], but none have
been experimentally implemented so far.
In this work, we present results on the generation and

basic characterization of the entangled coherent state of
a trapped ion’s two-dimensional motion. To accomplish
this, we implement a simultaneous spin-dependent force
(SDF) on the ion along the two principal axes, X and Y.
We accomplish this by carefully adjusting the transverse
trap potential to achieve nearly isotropic trap, resulting
in the X and Y modes having similar secular frequencies.
We generate Lissajous-curve-like motion in two dimen-

sions with a signle ion, with various commensurate oscil-
lation periods in each direction and observe correspond-
ing periodic variation in the spin state [10]. Then, we
decouple the spin from the motion with projective mea-

⇤taehyun@snu.ac.kr

surement [11] and herald the generation of the entan-
gled coherent state of motion in two transverse axes.
Subsequently, we proceed to observe the modulation of
phonon number parity, which arises due to the cyclic
entanglement and disentanglement of the two motional
modes. Additionally, in an ion chain comprising two
ions, we successfully generate a Bell state by utilizing
the Mølmer–Sørensen(MS) interaction [12, 13]. The geo-
metric phase accumulation is facilitated through motion
occurring in two spatial dimensions, which leads to a re-
duced requirement for the Rabi frequency compared to
the one-dimensional scenario.

2 Parity of entangled coherent states

We realize the simultaneous excitation of the X and Y
mode by implementing the following interaction Hamil-
tonian with a bichromatic beam:

Ĥ =
~⌦⌘X

2

⇣
âXe

�i(�Xt+�M ) + â
†
Xe

i(�Xt+�M )
⌘
�̂�S+

~⌦⌘Y
2

⇣
âY e

�i(�Y t+�M ) + â
†
Y e

i(�Y t+�M )
⌘
�̂�S

(1)

⌘j and �j are the Lamb-Dicke factor for the j-th axis
and the detuning from the secular frequency of the j-th
axis, and âj(âj

†) is the phonon annihilation (creation)
operator for the j-th axis. ⌦ is the Rabi frequency of the
Raman transition. The motion and spin phase of spin-
dependent interaction is proportional to the di↵erence,
�M = (�b � �r)/2, and sum, �S = (�b + �r)/2, of the
laser phases for the blue and red sidebands, �b and �r.

When the above Hamiltonian is applied to the quat-
num state of a single ion for a duration t, we get the
following wave funtion where ↵(t) and �(t) represent the
coordinate of the X and Y mode coherent states in their
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respective phase spaces. |+i and |�i are the eigenstates
of the spin operator defined by the SDF.

| (t)i = 1p
2
(|+i |↵(t)i |�(t)i+ |�i |�↵(t)i |��(t)i) (2)

Figure 1: The X mode cat state and the Y mode cat
state are excited and de-excited at di↵erent frequen-
cies, corresponding to (a) R = �X/�Y = �2/3 and (b)
R = �X/�Y = �2. The black data points are the parity
of the Y mode phonon distribution, and the solid lines are
fits to the theory. The red data points are mean phonon
numbers calculated from the phonon distribution. The
red solid lines are the phonon number time evolution pre-
dicted from the fitting results.

With a heralded measurement, we project the spin to
|#i resulting in an entangled coherent state of the X and
Y modes:

| ECS(t)i = |#i |↵(t)i |�(t)i+ |�↵(t)i |��(t)ip
2 + 2e�2(|↵(t)|2+|�(t)|2)

(3)

For various values of R = �X/�Y , we observed the
time evolution of the phonon distribution of the Y mode,
which is modulated by the periodic entanglement with
the X mode. The results are shown in Fig. 1. The pe-
riodic modulation in the parity of the Y mode is clearly
visible and agrees with the theoretical prediction, signal-
ing the entanglement between the X and the Y mode cat
states.

3 Mølmer–Sørensen gate with two-
dimensional motion

Next, we drive MS interaction in two-dimension by ap-
plying the two-dimensional SDF to a chain of two ions

Figure 2: (a) Contribution of the X modes and Y modes
to the required geometric phase at various gate detun-
ings. (b) Time evolution of the qubit states under 2D MS
interaction. (c) Parity oscillation of the two-qubit states.
Population measurement results over 32 trials are shown
in the inset.

and observed the successful generation of the Bell state,
1/

p
2(|00i + |11i). In 2D MS interaction, both the X

and Y axes phase spaces contribute to the geometric
phase, which reduces the required Rabi frequency by ap-
proximately 1/

p
2. In our case, the two axes contribute

equally at a gate detuning d2/(2⇡) ' 6 kHz, where d2

is the detuning between the laser and the center-of-mass
mode of the X mode. It is indicated by an arrow in
Fig. 2(a) and we observed the time evolution of the two-
qubit states, which is shown in Fig. 2(b). By fitting the
time evolution results, we confirmed that the required
Rabi frequency is 2⇡ ⇥ 81.3 ± 0.6 kHz which is indeed
28.3% lower compared to using only the X axis, and
30.1% lower compared to using only the Y axis, at the
same gate time and gate detuning. From the parity os-
cillation and population measurement results, we measre
a gate fidelity of 89.7± 0.6 % which is comparable to our
single axis Mølmer–Sørensen gate fidelity, 93.2± 0.6 %.
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4 Conclusion

We have experimentally implemented two-dimensional
SDF by exciting the two transverse modes of a single
trapped ion with bichromatic laser beams. We observed
the periodic entanglement and disentanglement of the
two cat states in the two motional modes, which resulted
in the modulation of the phonon number parity. We also
trapped a chain of two ions and realized 2D MS inter-
action with the 2D SDF. The observed time evolution
agrees with theoretical prediction, and confirms that the
required Rabi frequency is reduced because more phase
spaces contribute to the accumulation of geometric phase.

5 Additional Information

A preprint with technical details of this work is avail-
able online [14].
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Abstract.
In this paper [1], we consider the distance balancing of quantum locally testable codes (qLTCs) using

any classical code (with independent checks), where previously only the repetition code had been analysed.
Our main result is that the new soundness is at least the old soundness divided by the classical code length
(up to a constant factor).

We discuss applications to existing constructions [2, 3, 4], from which we obtain qLTCs of multiple
new parameters. In particular, we obtain codes for which soundness times distance exceeds locality with
dimension arbitrarily close to square-root, where the previous best was a constant.

Keywords: Quantum locally testable codes, soundness, distance balancing, homological product

1 Extended Abstract

For several decades, researchers have searched for
error-correcting codes, both classical and quantum, with
novel parameters. The results of this search have had,
and continue to have, wide-reaching implications in prac-
tice, and also in theory - in areas far beyond the theory of
coding alone. A handful of conjectures have been formed
over what parameters may be allowed to exist for both
classical and quantum codes. There have been some suc-
cesses, but several natural open problems remain.
The three most commonly considered parameters in

the field of LDPC (low-density parity check) coding,
whether classical or quantum, are dimension, distance
and locality. Let us give a non-technical idea of what
these are. A code’s dimension is the number of (qu)bits
of information that it may be used to encode, while its
distance is closely related to the maximum size of an er-
ror against which the code may protect. Locality requires
a somewhat more technical description involving checks,
but it will su�ce to say here that locality is (roughly) the
maximum number of (qu)bits on which the code acts si-
multaneously when attempting to determine whether an
error has occurred.
It is then natural for one to consider infinite families of

codes of a growing size, denoted by N , and the question
that one might ask is whether there exists such a fam-
ily for which these three parameters may simultaneously
scale optimally. This requires the dimension and distance
to be as large as possible, linear (⇥(N)), and the locality
to be as small as possible, constant (⇥(1)). An a�rma-
tive answer to this in the classical case has been known
since the work of Gallager some 60 years ago [5], but the
same result in the quantum case (formerly known as the
qLDPC conjecture) was not known until 2021 [6], after
two decades of progress.
There are then many further requests that one could

make of the code (strictly ‘infinite family of codes’). One

⇤adamjwills7248@gmail.com
†til022@ucsd.edu
‡min-hsiu.hsieh@foxconn.com

of the most important is local testability, which is closely
related to the parameter ‘soundness’. The question be-
hind local testability is, roughly speaking, whether one
may determine (with a certain probability) whether a
given string of (qu)bits is a valid codeword, by looking
at only some small subset of the (qu)bits. The fewer
(qu)bits need be viewed to determine this, the better the
soundness of the code.

In the classical case, this concept, although simple,
has influenced many areas of computer science including
cryptography, property testing and many more. Most
importantly, locally testable codes play a pivotal role in
the proofs of the famed PCP theorem - see for example
[7]. As for constructing these codes, the c3 - conjecture,
positing the existence of codes with optimal dimension,
distance and locality, as well as the largest possible (con-
stant) soundness, was answered in the a�rmative in 2021,
almost simultaneously to the resolution of the qLDPC
conjecture.

The concept of local testability for quantum codes was
first introduced in 2013 by Aharonov and Eldar [9] and
is, as an area of study, still likely in its infancy. The no-
tion quickly garnered attention when it was proved in [10]
that quantum locally testable codes (qLTCs) of certain
parameters would imply the famous NLTS conjecture of
Freedman and Hastings [11]. This latter conjecture was
subsequently resolved independently [12] but construct-
ing qLTCs with new parameters remains an important,
wide-open area due to the hope that qLTCs could have
as extensive applications as their classical counterparts,
in particular to a possible ‘qPCP theorem’.

The end goal of constructing qLTCs of better param-
eters is to construct a code (again, strictly, ’family of
codes’) for which the four given parameters (dimension,
distance, soundness and locality) are simultaneously op-
timised. The existence of such a code is the postulate
of the qLTC conjecture. Whilst it is hoped that such
codes exist, there is no guarantee that they do. In an
e↵ort towards resolving this, a line of research has begun
constructing codes in new parameter regimes in order to
establish what is, in fact, possible.
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There have been three papers prior to the present
work that aimed to construct qLTCs of new parame-
ters [2, 3, 4]. The former two, [2] and [3], respectively in-
troduce the hypersphere product code and the hemicubic
code. These each have very good soundness and locality
as well as good distance, but both su↵er from the notable
deficiency of having constant dimension. Meanwhile, [4]
introduces four constructions of qLTCs displaying a va-
riety of parameters. We must be brief here, and so we
display only the parameters of all the above construc-
tions most relevant to us: those of the hemicubic code
and those of the third construction of [4]. We remind the
reader that the qLTC conjecture requires soundness as
large as ⇥(1), distance and dimension as large as ⇥(N),
as well as locality as small as ⇥(1), in terms of the num-
ber of physical qubits N .

Table 1: The parameters of the hemicubic code [3] and
the third construction of [4] are shown respectively below.
Again, only these two most important to us are displayed
for the sake of brevity - but we recommend page 4 of
[4] for full details. We note that the latter parameters
represent a whole collection of codes - both n and l may
be allowed to vary. Examples of this construction may
be found via the substitution of values. For example,

with N physical qubits, one may set n = ⇥
⇣

N
log(N)

⌘
and

l = ⇥(log(N)) to obtain a code of inverse-logarithmic

soundness, dimension equal to ⇥
⇣

N
log(N)

⌘
, logarithmic

distance and constant locality.

Hemicubic Code
[3]

Thm 1.3
of [4]

Physical Qubits N O(nl)

Soundness ⌦
⇣

1
log(N)

⌘
⌦(1/l)

Distance ⇥
⇣p

N
⌘

⇥ (min(n, l))

Dimension ⇥(1) ⇥(n)

Locality O (log(N)) ⇥(1)

The constructions of [2] and [3] are largely geometric
in nature, whereas those of [4] are more algebraic. In par-
ticular, the latter paper makes use of a technique known
as ‘distance balancing’ which is based on a construction
from algebraic topology known as the homological prod-
uct of chain complexes. The distance balancing proce-
dure was previously used in the construction of better
qLDPC codes in the pursuit of the qLDPC conjecture.
The idea is as follows. Quantum codes (at least the ones
we are interested in) have two distances: the X - dis-
tance and the Z - distance, unlike classical codes which
have one. These two distances are respectively related to
the code’s ability to correct bit flip errors and phase flip
errors. The ‘distance’ of the quantum code is then the
minimum of these two values.
Distance balancing then addresses the issue that arises

when a code has good X - distance, but poor Z - dis-
tance, or vice versa. A distance balancing procedure will
improve the scaling of the worse distance, at the expense

of the scaling of the better distance, so that the overall
‘distance’ of the code may be improved. The first dis-
tance balancing construction to be considered was due
to Hastings in [13] and an improved method was given
in [14] (their Theorem 4.2). The latter paper allows
for the combination, via the homological product, of the
quantum code with some classical code in order to per-
form the desired distance balancing. This paper allows
for any classical code to be used in this role1, whereas the
former paper of Hastings analyses only the case where the
classical code is the repetition code.

The results on the parameters that result from the dis-
tance balancing in [14] are stated informally below.

Theorem 1 (Theorem 4.2 of [14], Informal.) Let

us denote the inputted quantum code as Q and the

classical code to be used for the distance balancing as C.

Let us denote the number of physical (qu)bits of each

code as N(Q) and N(C), the dimension of each code

as dim(Q) and dim(C), the X - and Z - distances of Q
as dX(Q) and dZ(Q), and finally the distance of C as

d(C). The relevant quantities scale under the distance

balancing construction as follows.

N(Q) 7! ⇥ (N(Q)N(C))

dim(Q) 7! dim(Q) dim(C)

dX(Q) 7! dX(Q)d(C)

dZ(Q) 7! dZ(Q)

It is also true that the locality of the resultant quan-
tum code will scale with the maximum of the localities of
the inputted quantum code and the classical code that is
used. Therefore, when using an optimal classical LDPC
code (with constant locality and linear dimension and
distance), the scaling of the X - distance is improved at
the expense of worsened Z - distance scaling, the scaling
of dimension is improved, while the scaling of locality is
(at worst) preserved. If the desire is instead to improve
the Z - distance at the expense of the X - distance, we
simply take the dual of the quantum code before and af-
ter the distance balancing is applied. The dual is a simple
homological operation that serves only to swap the role
of X and Z.

The construction due to Hastings is exactly the same
as the above, but the analysis is limited to the case of the
classical code being the repetition code. The repetition
code is a classical code with linear distance and constant
locality, but with the deficiency of having constant di-
mension. Therefore, under this distance balancing, the
same facts about the changes in parameters go through,
except that the dimension scaling now worsens.

However, Hastings considers something that Evra et
al. do not: soundness. The result relevant to us is stated
below.

1
Here, an important technical caveat for the distance balancing

is that the classical code must have independent checks, although

this is not in any way restrictive given that optimal classical LDPC

codes with independent checks exist [5].
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Theorem 2 (Lemma 7 of [13], Informal) With the

same notation as in Theorem 1 and denoting the sound-

ness of the inputted quantum code as ⇢(Q), when using a

repetition code of length l to balance distances, the sound-

ness changes as follows:

⇢(Q) 7! ⌦

✓
⇢(Q)

l

◆
.

Our technical contribution is then to generalise this
result to the work of [14], in which distance balancing is
performed with any classical code. From our paper [1],
this is stated as follows:

Theorem 3 (Theorem 1.1 of [1], Informal) We

use the same notation as Theorems 1 and 2. When

distance balancing with any classical code
2
of length t,

the soundness scales, under reasonable assumptions, as

⇢(Q) 7! ⌦

✓
⇢(Q)

t

◆
.

We hope this result proves useful in future to obtain
codes of new parameters. For now, we discuss applica-
tions that can already be stated. The most obvious such
application, although not the best, is to the improvement
of the parameters of Theorem 1.3 of [4]. The authors first
produce a quantum code of constant soundness, linear Z
- distance, constant X - distance, linear dimension and
constant locality, which is then an ideal candidate for
distance balancing. Their Theorem 1.3 then follows from
the applications of Theorems 1 and 2 to this code, giving
the former parameters shown in Table 2. We may there-
fore directly improve the dimension scaling by distance
balancing with an optimal classical LDPC code rather
than the repetition code, as shown in the following table.

Table 2: The first set of parameters on which we improve,
and that improvement, is given below. The dimension
scaling remains optimal (linear) during distance balanc-
ing, rather than becoming worse.

Thm 1.3 of [4]
New

Parameters (1)

Physical Qubits O(nl) O(nt)

Soundness ⌦(1/l) ⌦(1/t)

Distance ⇥(min(n, l)) ⇥(min(n, t))

Dimension ⇥(n) ⇥(nt)

Locality ⇥(1) ⇥(1)

There is a better application of this result, both in
terms of the immediate applicability and, we hope, in
terms of the applicability to future constructions. The
idea here is not really ‘distance balancing’ at all, although
it uses the above distance balancing construction with an
optimal classical LDPC code. This is an idea that was

2
The technical caveat of independence of checks is needed here,

as it is in Theorem 1, but, again, this is not restrictive.

used previously in the search for qLDPC codes of new
parameters in the setting where one has a code of very
good distance but poor dimension - see for example [15].

The procedure is: to any quantum code, first apply
distance balancing so as to improve the X - distance, and
then apply distance balancing again so as to improve the
Z - distance. We will refer to this procedure as ‘dou-
ble distance balancing’. With a classical code length of
t, it has the e↵ect of increasing the number of physical
qubits by a factor of ⇥(t2), increasing both distances by
a factor of ⇥(t), increasing the dimension by a factor of
⇥(t2), preserving the locality (at worst) and decreasing
the soundness by a factor of O(t2).

Ultimately, double distance balancing increases the di-
mension up to linear, causes the distance to tend towards
a square-root and decreases the soundness - but now we
have a lower bound on this decrease. Note that this ap-
plication was impossible before the present work because
the constancy of the dimension of the repetition code
leads to the dimension scaling worsening during this pro-
cedure. With this, any qLTC representing a point in
parameter space may be turned into a line in parameter
space; the discovery of one new qLTC now immediately
implies the discovery of a whole collection.

The best current application of this is to the hemicubic
codes of Leverrier et al. [3]. Again, an infinite collection
of parameters is obtained by doing this. We now display
the general parameters obtained, as well as two examples.

Table 3: The parmeters of the hemicubic code, followed
by the general set of new parameters that arises from ap-
plying double distance balancing to it, and two examples
that follow via a classical code length of t =

p
log(n) and

t = n↵, respectively.

Hemicubic Code
[3]

(General) New
Parameters (2)

Physical Qubits n ⇥
�
nt2

�

Soundness ⌦
⇣

1
log(n)

⌘
⌦
⇣

1
log(n)t2

⌘

Distance ⇥ (
p
n) ⇥ (

p
nt)

Dimension ⇥(1) ⇥
�
t2
�

Locality ⇥ (log(n)) O (log(n))

(Example) New
Parameters (2)

(Example) New
Parameters (2)

Physical Qubits N N

Soundness ⌦
⇣

1
log(N)2

⌘
⌦

✓
1

N
2↵

1+2↵ log(N)

◆

Distance ⇥
⇣p

N
⌘

⇥
⇣p

N
⌘

Dimension ⇥ (log(N)) ⇥
⇣
N

2↵
1+2↵

⌘

Locality O (log(N)) O (log(N))

Finally, we mention that the parameter regime of ‘dis-
tance ⇥ soundness > locality’ is a well-motivated regime
to consider in the area of local testability. Here, we ob-
tain codes in this regime of dimension ⇥(N

1
2�✏) for any

✏ > 0, where the previous best was a constant.
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Abstract. We consider two classes of quantum generalisations of Random Access Code (RAC) and study
lower bounds for probabilities of success for such tasks. The first class is based on a random access code
with quantum inputs and output known as No-Signalling Quantum RAC (NS-QRAC) [A. Grudka et al.
Phys. Rev. A 92, 052312 (2015)], where unbounded entanglement and constrained classical communication
are allowed, which can be seen as quantum teleportation with constrained classical communication. The
second class is based on a random access code with a quantum channel and shared entanglement [A.
Tavakoli et al. PRX Quantum 2 (4) 040357 (2021)] which can be seen as quantum dense coding with
constrained quantum channel.
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This abstract submission to AQIS 2023 is based on the
arXiv preprint [1] which is now accepted to New Journal
of Physics with DOI 10.1088/1367-2630/acd716.

1 Motivation

Quantum information processing protocols offer an un-
precedented advantage over classical schemes [2] pro-
viding new resources [3] for computation, communica-
tion or cryptography. In realistic scenarios, one has to
cope with noise and other factors affecting protocols’ ef-
ficiency. One such limiting constraint is the amount of
available (quantum or classical) resources [4, 5]. Such
a limiting constraint within the context of Quantum
communication protocols can be quantified through con-
straints on signalling resources (quantum or classical)
and no-signalling resources (shared randomness or entan-
glement) [6]. While bipartite communication protocols,
such as Quantum teleportation [7] and Dense-coding [8],
focus on perfect quantum encoding and decoding over a
classical channel, or on perfect classical encoding and de-
coding over a quantum channel, respectively, one need
not always require perfect transmission.

One such class of (bipartite, one-way communication)
protocols that have been studied are the (Classical) Ran-
dom Access Codes (RACs), where Alice wishes to encode
a long string into fewer signalling resources such that
Bob can decode some part of the string by his choice,
unknown to Alice, with a probability higher than the

⇤nitica.sakh@gmail.com
†studzinski.m.g@gmail.com
‡michal.eckstein@uj.edu.pl
§pawhorod@pg.edu.pl

guessing probability. Some Quantum generalisations of
RACs have been studied such as considering the channel
shared by Alice to Bob to be Quantum, called Quantum
RAC (or QRAC) [9, 10], or aiding the classical channel
with Entanglement, called Entanglement Assisted RAC
(or EA-RAC) [11], although these do not exhaust all pos-
sibilities of quantum generalisations for RACs, which we
will outline and further study in this work.

2 Quantum regimes for Random Access

Codes

The quantum generalisations for RACs can be cate-
gorised using Figure 1. Here Alice encodes multiple states
⇢i into a smaller message m with the aid of some No-
Signalling Resources. Bob wishes to decode ⇢c given his
choice bit c. The following generalisations may be con-
sidered:

Alice Bob

NS

m

⇢1 ⇢2 ... c

⇢c

Figure 1: Possible quantum generalisations to Random
Access Codes
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• The inputs ⇢i of Alice and outputs ⇢c of Bob are
classical or quantum

• The message m sent by Alice to Bob is classical or
quantum

• They share no-signalling resources such as entan-
glement

• The channel on which the message is sent has con-
strained or unconstrained capacity

• If they share some no-signalling resource if it is
bounded or unbounded

We tabulate the quantum generalisations, from the lit-
erature as well as the ones pertinent to our work, in terms
of the above list in Table 1.

One class of quantum generalisations of RAC concerns
using quantum resources for transmission of classical in-
formation, which fall into three broad categories where:
1) the communication channel is quantum and the parties
share randomness — Quantum Random Access Codes
with Shared Randomness (QRAC-SR) [12] (Row 2 of Ta-
ble 1), 2) the channel is classical and the parties share
entanglement — Entanglement Assisted Random Access
Codes (EA-RAC) [11] (Row 3 of Table 1) and most re-
cently, where 3) the channel is quantum and the par-
ties share entanglement [13] — which we will refer to as
Quantum Random Access Codes with Shared Entangle-
ment (QRAC-SE) (Row 4 of Table 1). In Section III B
of [13] quantum upper bounds were studied for a lower
number of inputs. In this work, we study lower bounds
for QRAC-SE for a higher number of inputs, which we
will also employ for our modification of the NS-QRAC
scenario.

Another class of quantum generalisation of RAC con-
cerns the transmission of quantum information, rather
than classical bits, which has been dubbed No-Signalling
Quantum Random Access Code (NS-QRAC) [14] (Row 5
of Table 1). The authors of [14] consider a restricted clas-
sical channel and unbounded No-Signalling resources and
achieve the logical bound using PR boxes. In this work,
we consider the quantum lower bound, which was left as
an open question (Row 6 of Table 1). Further, we anal-
yse two modifications to the NS-QRAC scenario. First
1) we consider a quantum channel instead of a classical
channel shared between the two parties (Row 7 of Table
1) and next 2) we consider a constrained entanglement
scenario with unbounded classical communication which
we call Constrained-No-Signalling Quantum Random Ac-
cess Code (CNS-QRAC) (Row 8 of Table 1), which has
not been considered before in the literature.

Therefore, in this work, we provide lower bounds for
the probability of success of these two different classes of
quantum random access codes. We show that some of
the considered tasks are operationally equivalent to tele-
portation and dense coding with constrained resources.

3 Results and Outline

The arXiv preprint [1] is organised as follows:
In Sec. II we consider, as a warm-up, the task of quan-

tum teleportation with constrained classical resources.
We show, using the notion of generalised Bell states, that

Scenario Input Channel NS resource Output
RAC Cl Cl SR Cl

QRAC Cl Q SR Cl
EA-RAC Cl Cl Ent. Cl
QRAC-SE Cl Q Ent. Cl
NS-QRAC Q Con. Cl Unb NS Q
NS-QRAC Q Con. Cl Unb Ent. Q
NS-QRAC Q Con. Q Unb Ent. Q

CNS-QRAC Q UnC. Cl B Ent. Q

Table 1: Quantum generalisations of RACs. Here NS
stands for non-signalling, Cl stands for classical, Q for
quantum, Con. stands for Constrained, UnCon. stands
for Unconstrained, SR stands for Shared Randomness
and Ent. stands for entanglement, NS for No-Signalling
resources Unb for Unbounded and B for Bounded.

the maximal fidelity of a teleported state equals k/d2,
where d is the Hilbert space dimension and k < d2 is the
number of bits of classical communication transmitted by
Alice to Bob.

Sec. III concerns the NS-QRAC scenario as presented
in [14], in which Bob aims at reproducing at his output
one of the two qubits possessed by Alice. In doing so,
Bob is equipped with two bits of classical communica-
tion received from Alice, as well as two maximally entan-
gled pairs. We show that this problem can be seen as a
constrained teleportation task. We provide a quantum
lower bound, PQM

succ = 5
8 , for the success of such a task

for the qubit case. It proves a clear separation from a
post-quantum scenario, with Alice and Bob sharing two
PR-boxes, in which case PPR

succ = 1, as shown in [14].
This fact can be utilised to perform foundational tests of
quantum theory — see [15].

In Sec. IV, we introduce and study Quantum Random
Access Code with Shared Entanglement (QRAC-SE), the
setup for which was first seen in [13]. It concerns the clas-
sical information to be encoded and decoded (like in the
classical RAC) while using both a quantum channel as
well as a shared entanglement resource. The QRAC-SE
brings together QRAC which uses a quantum channel but
no entanglement [12] and EA-RAC which involves entan-
glement but employs a classical channel [11]. We show
that this problem can be seen as a constrained dense
coding protocol, which is dual to the constrained quan-
tum teleportation considered in the previous sections.
Namely, here the parties have more classical input than
they can send perfectly using qudit dense coding [16].
We provide and analyse the efficiency of such protocols
which can be quantified in two ways: by calculating 1)
the minimum probability of success of decoding either of
two strings, each of which consists of two digits of base-d
or 2) the average probability of success of the protocol
(over all possible strings). We show that in the qubit
case, both these measures coincide. The encoding by Al-
ice utilises the roots of the generalised Pauli matrices, as
well as Gray codes [17] and its non-Boolean generalisa-
tions [18, 19], which is an example of a single distance
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code. We also present analysis for higher dimensions,
d = 3, 4 and show that the two measures of efficiency
differ (in contrast to d = 2) — the interpretation of this
fact is also discussed. Doriguello et al. [20] have studied
RAC variations extended to Boolean functions denoted
by the prefix f�, including f�QRAC and f�EA-RAC.
We show a proof of concept of extending QRAC-SE to
encode Boolean functions of initial classical information
called f�QRAC-SE.

In Sec. V we revisit and provide a modification for the
NS-QRAC scenario as presented in [14], in which Bob
aims at reproducing at his output one of the two qubits
possessed by Alice. In doing so, Bob is equipped with
one qubit received from Alice, as well as three maximally
entangled pairs. This modification is in some sense a
truly Quantum RAC problem since the information to
be encoded as well as the channel shared by the parties
is quantum. We show that the quantum lower bound for
the success of such a task coincides with that of QRAC-
SE studied in Sec. IV (PQM

succ ⇡ 0.728), which is a better
bound than the scenario in Sec. III.

Finally, in Sec VI, we consider a second modification of
the NS-QRAC scenario, in which Bob aims at reproduc-
ing at his output one of the two qubits possessed by Al-
ice. Here we consider constrained No-Signalling resources
while allowing unbounded classical information to be
sent from Alice and Bob — we call these Constrained-
No-Signalling Quantum Random Access Codes (CNS-
QRAC). We provide a quantum lower bound, PQM

succ =
3
4 ,

for the success of such a task for the qubit case. We fur-
ther generalise the protocol to the case of N � 2 inputs
of d-level quantum systems and show that PQM

succ(d,N) 
(N + d � 1)/(dN). Furthermore, we discuss an ‘asym-
metric’ scenario in which the input quantum systems are
chosen randomly with prescribed probabilities {pi}Ni=1.
We present an algorithmic solution for this case using
constraints coming from entanglement monogamy by ex-
ploiting the framework of universal asymmetric quantum
cloning machines [21, 22]. However, the interesting as-
pect of this scenario is that here the transmission of quan-
tum information does not go from the single system to
two receivers — as it is the case in standard quantum
channel capacity restrictions based on quantum cloning
(see for example [23, 24]). Rather, the transmission goes
from the composite system of two ‘senders’ who cooper-
ate quantumly to transfer quantum information to a sin-
gle receiver. Since the ‘senders’ are required to transmit
different quantum information, which is also supposed to
come as an alternative rather then jointly, there seems
to be no a priori reasons why the cloning bound should
be obeyed. Nevertheless, it turns out to apply in such a
scenario as well.

4 Discussion and outlook

We studied two instances of random access codes us-
ing quantum information. The first one involved remote
access to one of the two given quantum states via an NS-
QRAC box implemented quantumly in the ‘distant labs’
paradigm. We considered a variation where a constrained

quantum channel is used as contrasted to a constrained
classical channel used in [14]. This, in a way, is the most
natural quantum version of the 2 ! 1 classical RAC
problem, because we have remote access to one of two
qubits transmitted over a qubit channel. In this case,
we found a lower bound for the probability of success
PQM

succ � 0.728.
We also considered another modification — the CNS-

QRAC, where we find that the trade-off for information
transmission corresponds to a typical monogamy rela-
tion. In this case, we provided a reasonable upper bound
for the probability of success for a general CNS-QRAC
with N input states of dimension d. An interesting aspect
of this scenario is that here the transmission of quan-
tum information does not involve a single sender and
two receivers, as it is the case in the standard quantum
channel capacity restrictions based on quantum cloning
(see for example [23, 24]). Instead, the transmission goes
from the composite system of two ‘senders’ who cooper-
ate quantumly to transfer quantum information to a sin-
gle receiver. Since the ‘senders’ are required to transmit
different quantum information, which is also supposed to
come as an alternative rather than jointly, there seems
to be no a priori reasons why the cloning bound should
be obeyed. Nevertheless, it turns out to apply in such a
scenario as well.

An interesting open problem is to extend this analysis
to the quantumly simulable NS boxes, where the two par-
ties may interact (see [25], [26]). Clearly, when the labs
are far apart, such boxes are super-quantum. In fact —
as shown in a recent paper [27] — its subclasses with
classical inputs are even interconvertible with PR boxes
with the help of shared entanglement and local opera-
tions. Hence, at the intuitive level, it is possible that the
corresponding CNS-QRAC might allow both (all) fideli-
ties to be perfect, but this conjecture would need further
investigation.

The second instance of random access codes, and to
some extent a complementary scenario, has been intro-
duced here to analyse the power of quantum entangle-
ment when aiding quantum random access coding. To
this end, we have defined and studied quantum random
access codes with shared entanglement and a quantum
channel. An interesting aspect of this problem occurs for
the class of QRAC-SE 2d2

p,1d27���! (1d, 1d) problems, as the
encoding by Alice depends on the existence of generalised
Gray codes. This should be compared with the problem
of QRAC-SR [12], where Alice’s encoding depends on
finding some form of symmetric quantum states in the
Bloch sphere. The presented explicit protocols provide
lower bounds for the probabilities of success. It is an
open problem to find the relevant upper bounds, per-
haps using numerical methods similar to the techniques
involved in finding the upper bounds in [13]. Lastly, we
provided a proof of concept for extending the QRAC-SE
to f�QRAC-SE over Boolean functions, similar to the
studies of f�QRAC in [20], which may inspire an inter-
esting line of future research.
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Abstract. We propose a scheme for fault-tolerant long-range entanglement generation at the ends of a
rectangular array of qubits of length R with a square cross section of m = O(log2 R) qubits. It is realized
by a constant-depth circuit and produces a constant-fidelity entangled Bell-pair (independent of R) for
arbitrary local stochastic noise of strength below an experimentally realistic threshold value. Conversely,
we show that any scheme for noise-resilient distance-R entanglement generation realized by a constant-
depth circuit needs at least m = ⌦(logR) qubits per repeater station. A key element of our construction
is a robust single-shot decoding procedure for the 2D surface code.

Keywords: fault-tolerant quantum computing, long-range entanglement generation

1 Introduction

Long-range entanglement is a key resource for a va-
riety of information-processing protocols ranging from
(distributed) quantum computation and sensing [1, 2, 3,
4, 5, 6, 7] to communication and cryptography [8, 9, 10,
11, 12]. A repeater-based entanglement-generation pro-
tocol seeks to establish entanglement between qubits lo-
cated at the ends of a line of repeater stations. This task
is non-trivial because neighboring stations are connected
by noisy quantum channels.

2 Our scheme

2.1 An architecture using nearest-neighbor op-
erations.

Here we propose a scheme for long-range entanglement-
generation based on a quasi-1D array of qubits. The
latter consists of R square slices of d ⇥ d qubits, see
Fig. 1b. Each square slice is associated with a re-
peater, and entanglement is generated at the two ends
(at distance R). The scheme starts in a product state
|0i⌦n of all qubits, applies a depth-6 Cli↵ord circuit
W = W6 · · ·W1 (where each gate layer Wj consists of
geometrically local one- and two-qubit gates on the ar-
ray), and finally performs single-qubit measurements si-
multaneously on all but two qubits {q1, q2}. In partic-
ular, every processing step involves only operations be-
tween neighboring repeaters and operations within each
repeater. The latter are local if the qubits at each re-
peater are arranged on a square lattice. By construction,
the post-measurement state on qubits {q1, q2} is the two-
qubit Bell state |�i = 1p

2
(|00i+ |11i) up to a Pauli cor-

rection Z
↵(s)
q1 X

�(s)
q1 on qubit q1, where (↵(s),�(s)) can

be e�ciently computed from the measurement results s.
In particular, since the entire scheme is realized by a
constant-depth circuit, this is a low-latency scheme: the
entanglement is available after a constant amount of time
(independent of R). We note that the Pauli correction

⇤shinho.choe@tum.de
†robert.koenig@tum.de

can be accounted for by classical post-processing if e.g.,
the entanglement is used for subsequent computation re-
alized by magic states and Cli↵ord circuits.

2.2 Noise-resilience against local stochastic
noise.

How well does our scheme perform under noise? While
repeater-based schemes are often analyzed using simpli-
fying assumptions such as i.i.d. Pauli noise or the avail-
ability of ideal operations at each repeater station, our
scheme allows to provide a full analysis of general (corre-
lated) circuit-level noise: We consider a situation where
all operations (state preparation, gates and measure-
ments) are a↵ected by noise. Specificallly, we use the con-
cept of local stochastic noise, a general notion of errors
introduced in [13] to model situations where the noise is
“locally decaying” but otherwise arbitrary, see also [14].
Formally, a Pauli error E (a random variable on the n-
qubit Pauli group) is a local stochastic error of strength
p 2 [0, 1], written in E ⇠ N (p), if the probability of hav-
ing non-trivial Pauli errors on each qubit of any subset of
k  n qubits is at most pk. A noisy execution of the quan-
tum circuit W is obtained by replacing the circuit W by
Wnoisy = Ed+1EdWd · · ·E2W2E1W1E0 with Ej ⇠ N (p)
for each j (here d = 6 is the circuit depth). Here the
random variables {Ej}d+1

j=0 need not be independent: We
only require that each marginal distribution Ej ⇠ N (p)
is local stochastic.

Since all gate layers in our protocol are Cli↵ord uni-
taries, all errors Ej can be commuted forward or back-
ward. This transforms a noisy execution of quantum cir-
cuit W into the form Wnoisy = Wd · · ·Wt+1EWt · · ·W1

for any t 2 {0, . . . , d} with E ⇠ N
�
p
O(1)

�
, see [15,

Lemma 11]. To establish noise-resilience of our protocol,
it is thus su�cient to consider (with the choice t = d) a
circuit of the form Wnoisy = EW , where W is a depth-6
Cli↵ord unitary. In our case,W |0i⌦n is a 3D cluster state
on an elongated slab C[d⇥d⇥R] of dimensions d⇥d⇥R.
Our main result is the following threshold theorem:
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Theorem 1 (Long-range entanglement genera-
tion) Consider a cluster state W |0i⌦n

associated with

the lattice C[d ⇥ d ⇥ R] where d � 3 is arbitrary. Sup-

pose the measurement pattern in Fig. 1b is applied to a

corrupted cluster state EW |0i⌦n
, where E ⇠ N (p) is a

local stochastic error. Then there are two e�ciently com-

putable functions ↵,� taking the collection s of measure-

ment outcomes to bits such that the post-measurement

state on qubits q1, q2 is the state Z
↵(s)
q2 X

�(s)
q2 � with prob-

ability at least 1� 5006p, for any 0 < p  p0 ⇡ 2⇥ 10�4

and any R  1p
d

⇣
1

10
p
p

⌘d�2
.

Considering each d⇥d-slice of the lattice C[d⇥d⇥R] as a
repeater station, we have m = ⇥(d2) qubits per repeater.
Theorem 1 thus implies that below the threshold error
strength p0,

m = ⇥(log2 R) (1)

qubits per repeater are su�cient to establish constant-
fidelity over distance R.

2.3 A converse to low-latency entanglement gen-
eration

Our scheme is an example of a low-latency scheme re-
alized by a constant-depth (adaptive) circuit. Adaptiv-
ity refers to the fact that a Pauli correction depending
on the measurement outcomes is applied to the post-
measurement state. We ask whether our scheme is opti-
mal and find the following converse:

Theorem 2 (Converse for low-latency entangle-
ment generation) Consider a scheme for entanglement

generation over distance R realized by a constant-depth

quantum adaptive circuit which achieves constant fidelity

using m qubits per repeater. If it is resilient to arbitrary

local stochastic noise of strength below a constant p0 > 0,
then we must have m = ⌦ (logR).

Closing the gap between the achievability result 1 and
the converse 2 will most likely require considering a dif-
ferent resource state and measurement pattern. Indeed,
we show that the bound on our protocol given in The-
orem 1 (i.e., Eq. (1)) is tight (and this applies to any
protocol where ↵,� are replaced by di↵erent functions).

2.4 Application: Fault-tolerant measurement of
non-local constant-weight stabilizers

Because of the simplicity of the involved operations,
our scheme can act as a data bus which can exchange
information between various components as first studied
in [16]. Our protocol could be especially beneficial in
the setting where gates or measurements need to be per-
formed between spatially distant qubits. Such a need
arises for example when using a quantum low-density
parity check (LDPC) code whose stabilizer generators
are not spatially local. With our scheme, we can design
a quasi-2D architecture that allows for the application of
joint measurements on any subset of size ` = O(1) of n
qubits using a total of O(n · polylog(n)) qubits, see [17].

2.5 Single-shot surface code decoding

A main building block for our entanglement generation
method is a novel protocol for fault-tolerant single-shot
surface code decoding. It is illustrated in Fig. 1a and has
the following properties:

Theorem 3 (Single-shot surface code decoding)
Consider a distance-d surface code with d � 2. Sup-

pose the measurement pattern of Fig. 1a is applied to a

state E 2
�
C2

�⌦n
, where  is the encoded state associ-

ated with a logical qubit state  2 C2
and E ⇠ N (p) is a

local stochastic error. Then there are two e�ciently com-

putable functions ↵,� taking the collection s of measure-

ment outcomes to bits such that the post-measurement

state on qubit q is the state Z
↵(s)
q X

�(s)
q  with probability

at least 1� 94p, for any p  p0 := 1
144 ⇡ 7⇥ 10�3

.

Combining the measurement pattern of Fig. 1a with a

single-qubit correction Z
↵(s)
q X

�(s)
q thus transfers the en-

coded logical state to the qubit q. This can then be fur-
ther processed: For example, subsequent measurement in
the computational or T -basis thus gives a fault-tolerant
measurement of Z and T , thus subsuming the proto-
cols proposed earlier in [15, 18]. (We note that [18]
uses an identical measurement pattern for the logical T -
measurement.) More generally, one may apply arbitrary
quantum information-processing steps to the logical in-
formation by operating on q.

3 Main idea

3.1 Single-shot decoding

To illustrate the ideas underlying our single-shot de-
coding strategy, consider the repetition code with n

qubits labeled by elements j 2 Zn and stabilizer gen-
erators {Sj = ZjZj+1}j2Zn , where addition is modulo n.
Let us assume that n is odd such that we have logical
operators X =

Q
j2Zn

Xj and Z =
Q

j2Zn
Zj . We can

write Z as

Z = Z0

Y

j2LZ

Zj where LZ = {1, . . . , n� 1} . (2)

We note that a logical Pauli-Z operator in this code can
equivalently be realized by a single-qubit operator Zj on
any qubit j 2 Zn, but we will use (2) for our example.
Suppose our goal is to transform an encoded state  2
(C2)⌦n into a single-qubit state  on qubit 0 that has the
same Pauli-Z-expectation value as  , i.e., h |Z | i =⌦
 
��Z

�� 
↵
. This can be achieved by

(i) measuring each qubit j 2 LZ in the computational
basis, getting outcome zj 2 {0, 1}.

(ii) computing the parity ↵(z) :=
L

j2LZ
zj and “cor-

recting”, i.e., applying X
↵(z) to qubit 0.

This protocol is not fault-tolerant: i.i.d. bit-flip errors
on each qubit result in a wrong parity ↵(z) with prob-
ability exponentially close to 1/2 (in n), thus the “vis-
ibility” of the Pauli-Z operator becomes negligible for
large n. A better protocol is obtained by observing
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(a) A surface code of distance d

(b) A cluster state on the lattice C[d⇥ d⇥R]. Entanglement is
established between q1 and q2.

Figure 1: Measurement patterns of (a) the single-shot
distance-d (here for d = 4) surface code decoding proto-
col and (b) the long-range entanglement generation pro-
cedure using a lattice C[d⇥d⇥R]. Qubits belonging to X
are measured in the Hadamard basis, whereas qubits be-
longing to Z are measured in the computational basis.
The first protocol transfers encoded logical information
to physical qubit q. The second protocol generates a Bell
pair between qubits q1 and q2.

that the measurement results {zj}n�1
j=1 determine syn-

drome bits s = {sj := zj � zj+1}n�2
j=1 . Note that this

is only partial syndrome information for the repetition
code since qubit 0 is not measured and syndrome bits
associated with S0 and Sn�1 are missing. Nevertheless,
when measuring an encoded state X(E) corrupted by
a Pauli error X(E) =

Q
j2E

Xj , E ✓ Zn, this par-
tial syndrome s determines a certain partial boundary
s = @E ✓ {1, . . . , n�2} of the error set E. Here @E is ob-
tained by taking the “usual” boundary map @ : ZE

2 ! ZV
2

taking the edges E of the cycle graph to its vertices V =
Zn, and subsequently restricting (projecting) to the ver-
tices {1, . . . , n�2}. We can think of @E as the boundary
of E in a decoding graph Tdec that has distinguished ex-
ternal vertices. In our case, Tdec is a line graph with
n vertices, where {0, n�1} is the set of external vertices.
This motivates the following improved protocol.

(i) measure each qubit j 2 LZ in the computational
basis, getting outcome zj 2 {0, 1}. Compute the
syndrome s = {sj := zj � zj+1}n�2

j=1 .

(ii) compute bE = MinMatch(s). Here MinMatch
produces a minimum matching on the decoding
graph Tdec: An error of the form X( bE) is consis-

tent with the observed syndrome s.

(iii) compute the parity ↵(z) :=
L

j2LX
(zj � �

j2 bE) and

apply a local “correction” operatorX↵(z) to qubit 0.

It is easy to check that this modified protocol is fault-
tolerant against i.i.d. Pauli errors with Bernoulli-p dis-
tribution: For p  p0 below some threshold value p0,
the residual (logical) error on qubit 0 has probability of
order O(p) independently of the system size n. In fact,
our work provides a combinatorial framework for show-
ing, more generally, that such a scheme is resilient to
local stochastic errors, and show that for surface codes,
both X- and Z-type logical information is transferred to
a single qubit.

3.2 Long-range entanglement generation

As shown in the pioneering work [19], the cluster state
has localizable entanglement on the two boundaries: A
surface-code encoded Bell pair can be created by mea-
suring “bulk qubits” up to a (computable) residual local
stochastic error (see Ref. [15, Theorem 23]). Combin-
ing this with our single-shot surface code decoding pro-
tocol yields our entanglement-generation scheme. How-
ever, our analysis leading to Theorem 1 considers the en-
tire process (instead of studying the two stages individu-
ally) in order to establish a stringent bound on the error
threshold. The converse follows by considering certain
concrete strength-p local stochastic errors and showing
that the resulting state is separable with high probabil-
ity.
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Abstract. Parameter estimation is an indispensable task in various applications of quantum information
processing. To predict parameters in the post-processing stage, it is inherent to first perceive the quantum
state with a measurement protocol and store the information acquired. In this work, we propose a general
framework for constructing classical approximations of arbitrary quantum states with quantum reservoir
networks. A key advantage of our method is that only a single local measurement setting is required for
estimating arbitrary parameters, while most of the previous methods need exponentially increasing number
of measurement settings. Moreover, this estimation scheme is extendable to higher-dimensional systems
and hybrid systems with non-identical local dimensions, which makes it exceptionally generic.
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Parameter estimation plays a central role in the im-
plementation of various quantum technologies, such as
quantum computing, quantum communication and quan-
tum sensing. This highlights that extracting information
from a quantum system to a classical machine lies at the
heart of quantum physics. The prominent technique for
this task, quantum tomography, studies the reconstruc-
tion methods of density matrices for quantum states. The
density matrix captures all the information of a quantum
system, and is useful in predicting properties of it. How-
ever, the curse of dimensionality has emerged with the
advent of the noisy intermediate-scale quantum (NISQ)
era, which renders it infeasible to obtain a complete de-
scription of quantum systems with a large number of
constituents. Moreover, a full description is often su-
perfluous in tasks where only key properties are relevant.
As a consequence, the concept of shadow tomography is
proposed to focus on predicting certain properties of a
quantum system [1].
A particularly important progress in the study of

shadow tomography is the advancement of randomized
measurements [2, 3], the virtue of which is highlighted
as “Measure first, ask questions later” [4]. The ran-
domized measurement protocols proposed by Huang,
Kueng and Preskill construct approximate representa-
tions of the quantum system, namely classical shadows,
via Pauli group and Clifford group measurements [3].
The single-snapshot variance upper bound of classical
shadows is determined by the so-called shadow norm.
They proved that the shadow norm of classical shad-
ows with global measurements is asymptotically opti-
mal for linear functions as it matches the information-
theoretic lower bound. In addition, the statistical fluctu-
ation can be further suppressed by constructing classical
shadows with optimized positive operator-valued mea-
sures (POVMs). The classical shadows are highly effi-
cient in the estimation of various properties in the post-
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processing phase, the benefits of which extend to entan-
glement detection, characterization of topological order,
machine learning for many-body problems, etc. How-
ever, these protocols pose a challenge in experiments due
to the need for exponentially increasing measurement set-
tings to achieve an arbitrary accuracy. Hence, techniques
like de-randomization and measurement settings such as
symmetric informationally complete positive operator-
valued measures (SIC POVMs) are introduced to tackle
this problem. Moreover, the theoretical results are based
on the fact that multi-qubit Clifford groups are unitary 3-
designs, which is not the case for arbitrary qudit systems.
The generalization of these results to higher-dimensional
systems typically require complex unitary ensembles that
are hard to implement. Therefore, a general method for
direct estimation with a single measurement setting is
highly desirable.
Recently, quantum neural networks are widely studied

as promising artificial neural networks due to their en-
hanced information feature space supported by the expo-
nentially large Hilbert space. Unlike traditional comput-
ing frameworks, neural networks learn to perform com-
plex tasks based on training rather than predefined algo-
rithms or strategies. With the capacity to produce data
that displays atypical statistical patterns, quantum neu-
ral networks have the potential to outperform their clas-
sical counterparts. However, training a quantum neural
network can be equally hard. Indeed, it has been shown
that training of quantum neural networks could be excep-
tionally difficult owing to the barren plateaus or far local
minima in the training landscapes. This is the reason
that quantum neural networks are often limited to shal-
low circuit depths or small number of qubits. A trending
line of research that circumvents this issue is quantum
reservoir processing (QRP) [5, 6], which is a quantum
analogy of recurrent networks.
In this work we present a direct parameter estimation

scheme via quantum neural networks, which overcomes
the obstacles faced by randomized measurement proto-

144



cols by harnessing the richness of QRP. In QRP, training
is completely moved out of the main network to a single
output layer, such that the training becomes a linear re-
gression eliminating the possibility of producing barren
plateaus or local minima. Such a quantum neural net-
work retains its quantum enhanced feature space while
being trainable via a fast and easy mechanism. Based
on this efficiently trainable QRP, we establish a unified
measurement protocol for direct quantum parameter es-
timations. A scheme of minimal quantum hardware com-
prising pair-wise connected quantum nodes is developed
to estimate arbitrary parameters of a quantum state. As
major advantages, our scheme requires single-qubit mea-
surements, only in a single setting, and a logarithmic
network size ∼ ln d with respect to the dimension d of
the input state. All of these are particularly favorable
for actual physical implementations.
Furthermore, we establish rigorous performance guar-

antee by adopting the mindset of shadow estimation. Ac-
cording to Born’s rule, one measurement of a quantum
state is analogous to sampling a probability distribution
once. Thus, learning properties of a quantum state in-
volves measuring identical and independently distributed
(i.i.d.) samples of the quantum state a certain num-
ber of times. To estimate M observables of the state
within an additive error ε and with constant confidence,
the number of i.i.d. input samples consumed scales as
O
(

Fres lnM/ε2
)

. The factor Fres represents the variance
upper bound of the single sample estimator, which de-
pends solely on the observables and the reservoir dy-
namics, and its magnitude is comparable to that of the
shadow norm. As a direct consequence of the pair-wise
reservoir dynamics, Fres for a k-local observable is the
product of that for each single-qubit observable. We sup-
port the theoretical results with extensive numerical sim-
ulations.
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Abstract. This work introduces a general decoder construction called Classical-to-Quantum
(C-to-Q) decoders, which extend the complementarity principle in decoding quantum informa-
tion from noisy quantum systems. The C-to-Q decoder is constructed from two quantum mea-
surements that decode classical information defined in two different bases, and its decoding
error is determined by the errors of the two decoding measurements and the degree of comple-
mentarity between the two bases. As an application, the Hayden-Preskill protocol, a toy model
of the black hole information paradox, is analyzed based on the C-to-Q decoder, providing an
improved decoding scheme with better error exponents compared to previous results.

Keywords: Quantum error correction, Complementarity, Hayden-Preskill

Introduction and a brief summary of results

Reversing the effects of quantum noise and re-
covering quantum information from a noisy sys-
tem plays a central role in the theory of quantum
information and computation as well as in fun-
damental physics aiming to understand complex
quantum physics by a quantum information ap-
proach. It is accomplished by utilizing quantum
error correction (QEC), in which constructing a de-
coder is particularly important. So far, little is ex-
plored about explicit constructions of decoders for
a general class of quantum error correcting codes
(QECCs), except the one based on the Petz map that
has been successful in investigating quantum ca-
pacities [1, 2], quantum Markov chains [3, 4], and
fundamental physics [5].

Random encoding is an example of QECCs that
remains largely unexplored in terms of decoding
methods. It was originally introduced in infor-
mation theory as an analytical technique and later
has found many applications in theoretical physics.
Despite having a good understanding of its encod-
ing based on the theory of unitary designs [6–8],
decoding has not been fully investigated yet. A de-
coder for random encoding is of particular interest
in the gauge-gravity correspondence in fundamen-
tal physics since it provides a dictionary that trans-
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lates one language to the other [5, 9]. This is espe-
cially the case in the study of the black hole infor-
mation paradox, a long-standing open problem in
fundamental physics [10–14].

Unlike the difficulty in constructing general de-
coders, decoding a certain class of QECCs, such as
the Calderbank-Shor-Steane (CSS) codes [15, 16],
is relatively straightforward. This is because CSS
codes merge two classical codes, one for Pauli-X
and the other for -Z, making decoding of the quan-
tum information into decoding of two types of clas-
sical information, which is easier to deal with. This
feature of the decoders for CSS codes should be ex-
tendable to any QECCs since the feature is a con-
sequence of the property of quantum information
itself, not of CSS codes. Namely, quantum informa-
tion consists of two types of classical information
defined in two bases complementary to each other,
such as the Pauli-X and -Z. This property can be
further traced back to the complementarity princi-
ple of quantum mechanics [17]; for a complete de-
scription of quantum systems, revealing two mu-
tually exclusive features is necessary. The comple-
mentarity principle have also played a prominent
role in other fields of quantum information the-
ory such as quantum key distribution [18, 19] and
quantum state merging [20].

In our study (preprint [21]), we examine the
role of the complementarity principle in the de-
coding of quantum information, and present a
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coherent

Figure 1: A diagram of the C-to-Q decoder D
C!A
CtoQ constructed from two POVMs ME and MF , which

consists of two CPTP maps, RE and QF . The first one RE is designed for coherently measuring the noisy
system C and storing the outcome in the auxiliary system A. To this end, we use the Naimark extension of
the POVM ME , i.e., a pair of an isometry VE and projections {Pj}

d�1
j=0 . The outcome is coherently recorded

in A as |jEi
A. The second channel QF is to measure C by the POVM MF and apply a unitary ⇥l on A

depending on the outcome l, which works as a ‘quantum eraser’. See Sec.III.B in [21] for details.

general and explicit method for constructing de-
coders for any given QECC. We call this de-
coder Classical-to-Quantum (C-to-Q) decoder since
it is constructed from two positive-operator-valued
measures (POVMs) for decoding two types of clas-
sical information, each defined in a distinct basis of
the quantum system. The underlying idea is to use
one POVM for ‘coherently measuring’ the noisy
system, and the other for the ‘quantum eraser’,
which will be of independent interest (Sec.III.B.1
in [21]). We show that the decoding error for quan-
tum information by the C-to-Q decoder is charac-
terized by the decoding errors of classical infor-
mation obtained through the two POVMs and by
the degree of complementarity of the two bases in
which the two types of classical information are
embedded. In particular, if the two bases are mu-
tually unbiased, the decoding error can completely
be characterized by the two POVMs. Importantly,
the C-to-Q decoder is nearly optimal if the POVMs
for decoding classical information are optimal, in
the sense that its decoding error for quantum infor-
mation is at worst square root of the decoding er-
ror by an optimal decoder (Sec.III.B.2 in [21]). The
construction of the C-to-Q decoder, as it directly
connects classical and quantum information, has
a direct implication on classical and quantum ca-
pacities; for a given noisy channel, no encoder can
simultaneously achieve classical capacity for two
types of classical information defined in two dif-
ferent bases, unless the classical capacity coincides
with the quantum capacity (Sec.III.B.2 in [21]).

We then apply the C-to-Q decoder, constructed
from two POVMs similar to the pretty-good mea-
surements (PGMs) [22], to the Hayden-Preskill pro-
tocol [10], which is a qubit toy model of the black
hole information paradox based on random encod-
ing. We establish a sufficient condition for reliable
decoding of classical and quantum information in

general cases (Sec.III.C in [21]) without relying on
the common assumption of Haar scrambling. Sub-
sequently, we calculate the decoding errors explic-
itly, assuming Haar scrambling (Sec.III.D in [21]).
Compared to the previous results based on the de-
coupling approach [23–25], our approach improves
the exponents of the decoding errors both for clas-
sical and quantum information. This implies that
employing the C-to-Q decoder could improve all
analyses based on the decoupling approach.

The impact of our results is multifold. From a
theoretical and foundational standpoint, we have
conducted a quantitative exploration of the ap-
plication of the complementarity principle in de-
coding quantum information from noisy systems.
While this principle is expected to underlie quan-
tum error correction, its comprehensive and quan-
titative investigation has been lacking, except in
specific contexts [26]. Therefore, our work estab-
lishes a step toward understanding QEC from the
fundamental principle of quantum theory. More-
over, the practical utility of the C-to-Q decoder is
noteworthy as it simplifies the search for an opti-
mal decoder for QECCs to the search for two op-
timal positive-operator-valued measures (POVMs)
for decoding classical information. We also demon-
strated the practicality of the C-to-Q decoder by ap-
plying it to the Hayden-Preskill protocol. We not
only provide an explicit decoder but also improve
the previous results. These advancements hold sig-
nificance for fundamental physics as the develop-
ment of explicit decoding schemes for the Hayden-
Preskill protocol has been sought after in the con-
text of gauge-gravity correspondence.

Our work broadly contributes to the theory of
quantum information and computation, both fun-
damentally and practically, since decoders are at
the center of all studies in the field. It also has im-
pact on an interdisciplinary topics, which will be a
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benefit in our community as well since it extends
the future scope of the field to broader disciplines.

Main result 1: Constructing a C-to-Q decoder

Let T
A!C be a composite quantum channel of

an encoding map and a noisy channel in the con-
text of QEC. Given T

A!C and a decoder DC!A, the
error on decoding quantum information is defined
as �q(D|T ) := 1

2

���AR
� D

C!A
� T

A!C(�AR)
��
1
,

where �AR is a maximally entangled state (MES)
between A and R with dimension d. An error on
decoding classical information in the basis W :=
{|jW i}

d�1
j=0 , which we refer to as W -classical infor-

mation, is defined for a POVM M = {Mj}
d�1
j=0 as

�cl,W (M |T ) := 1
d

P
i 6=j Tr

⇥
T

A!C(|iW ihiW |
A)MC

j

⇤
.

See Sec.III.A in [21] for more details.
Let E := {|jEi}j and F := {|lF i}l be bases in

a d-dimensional Hilbert space H
A. For a given

quantum channel T A!C , let ME := {M
C
E,j}j and

MF := {M
C
F,l}l be POVMs for decoding E- and

F -classical information from the noisy system C,
respectively. We denote the decoding errors by
�cl,E(ME |T ) and �cl,F (MF |T ). In the C-to-Q de-
coder, we use one POVM, say ME , for constructing
a channel RC!AC

E that measures C and stores the
outcome coherently in an auxiliary system A, and
the other POVM, MF , for constructing a channel
Q

CA!A
F that plays the role of quantum eraser. See

the caption of Fig. 1 for the outline of the construc-
tion as well as Sec.III.B in [21]. The C-to-Q decoder
D

C!A
CtoQ is given by D

C!A
CtoQ := Q

CA!A
F �R

C!CA
E (See

Sec.III.B in [21] for more detail).

Theorem 1 (Classical-to-Quantum decoder) In the
setting described above, the C-to-Q decoder DCtoQ =
Q

CA!A
F � R

C!CA
E constructed from the POVMs ME

and MF satisfies

�q(DCtoQ|T ) 
q
�cl,E

�
2��cl,E(ME |T )

�

+
q
�cl,F (MF |T ) +

p
⌅EF ,

(1)

where ⌅EF := 1�minl=0,...,d�1 FBC(unifd, pl) with a
Bhattacharyya distance FBC between the uniform dis-
tribution unifd and the probability distribution pl =
{pl(j) = |hjE |lF i|

2
}
d�1
j=0 .

Note that ⌅EF measures how far the two bases E
and F are from mutually unbiased; ⌅EF = 0 if and
only if (E,F ) is mutually unbiased such as Pauli-
X and -Z bases. To better understand the C-to-Q
decoder, it is helpful to closely look at each step.
First, the channel RE transforms the noisy state
T

A!C(�AR) into a GHZ-like state defined on the

E bases in CRA with the error�cl,E . The GHZ-like
state is then transformed by QF based on the quan-
tum eraser. The quantum eraser is ideally achieved
by measuring C of the GHZ-like state in the basis
mutually unbiased to E and applying a correction
to A. However, since only the measurement error
in the F basis is a priori given, we use the POVM
MF instead of the ideal one, resulting, with the er-
ror �cl,F , in a state  AR that differs from �AR. Fi-
nally, the infidelity between the obtained state  AR

and the initial state �AR is upper-bounded by ⌅EF .
In total, this scheme works with an error character-
ized by �cl,E , �cl,F , and ⌅EF .

Main result 2: Decoding the Hayden-Preskill

protocol by the C-to-Q decoder

The Hayden-Preskill protocol is a toy model of
the black hole information paradox [10]. Let Bin

be an N -qubit system, and ⇠
Bin be its initial state,

whose purification is denoted by |⇠i
BinBrad . A k-

qubit quantum information A is combined with
Bin and undergoes a given unitary dynamics U

S ,
where S = ABin. The system S is then randomly
split into two subsystems Sin and Srad. The goal
is to clarify the number ` of qubits in Srad for
which the k-qubit information is decodable from
BradSrad. The problem can be rephrased as trans-
mitting quantum information via a quantum era-
sure channel [27, 28] with erasure rate 1�`/(N+k).
However, unlike the usual scenario, encoding is
done by a given unitary U

S , not by the best pos-
sible encoding map.

Based on the decoupling, it has already been
shown that there exists a decoder D and de-
coding POVMs MW for W = X,Z such that
EU⇠H

⇥
�cl,W (MW |⇠, U)

⇤
 EU⇠H

⇥
�q(D|⇠, U)

⇤


2(`th�`)/2
, where `th = k+(N�H2(Bin)⇠)/2 with the

collision entropy H2(Bin)⇠. A concrete construc-
tion of the decoders in a general situation has been
open [5, 9]. The C-to-Q decoder with PGM-like
POVMs, which we call pPGMs, provides an explicit
decoder for quantum information. The decoding
errors satisfy, for sufficiently large N ,

EU⇠H

⇥
�cl(MpPGM|⇠, U)

⇤
. 4`th�`

, (2)

and

EU⇠H[�q(DCtoQ|⇠, U)] . (1 +
p

2)2`th�`
. (3)

Compared to the previous results, these improve
the error exponents by factor 4 for classical infor-
mation and by factor 2 for quantum information.
See Sec.III.D in [21] for the details.
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Abstract. Although numerous quantum error-mitigation protocols have been proposed as means to suppress
noise e�ects on intermediate-scale quantum devices, their general potential and limitations have still been elusive.
In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the
fundamental sampling cost — how many times an arbitrary mitigation protocol must run a noisy quantum device.
Here, we establish universal lower bounds on the sampling cost for quantum error mitigation to achieve the desired
accuracy with high probability. Our bounds apply to general mitigation protocols, including the ones involving
nonlinear postprocessing. We further show that the number of samples required for a wide class of protocols
to mitigate errors in layered circuits must grow exponentially with the circuit depth for various noise models,
revealing the fundamental obstacles in showing useful applications of noisy near-term quantum devices.

Keywords: quantum error mitigation, NISQ computing

1 Overview

As recent technological developments have started to re-
alize controllable small-scale quantum devices, a central
problem in quantum information science has been to pin
down what can and cannot be accomplished with noisy
intermediate-scale quantum (NISQ) devices [2]. One of the
most relevant issues in understanding the ultimate capability
of quantum hardware is to characterize how well noise e�ects
could be circumvented. As an alternative to quantum error
correction, quantum error mitigation has recently attracted
much attention as a potential tool to help NISQ devices real-
ize useful applications [3, 4]. It is thus of primary interest
from practical and foundational viewpoints to understand the
ultimate feasibility of quantum error mitigation — although
numerous quantum error-mitigation protocols have been pro-
posed, their general potential and limitations have still

been elusive.
Quantum error mitigation runs the available noisy quan-

tum devices many times and applies postprocessing to the
collected data, aiming to extract the classical information
of interest. Therefore, the crucial quantity that determines
the feasibility of quantum error mitigation is the sampling
cost, the number of times one needs to run the available
noisy device to ensure the desired computational accuracy.
Various quantum error mitigation strategies proposed so far
indeed face this problem — they tend to require exponentially
many samples with respect to the circuit size [5–9]. The
natural question then is whether there is a hope to come up
with a new error mitigation that avoids this hurdle or this is
a universal feature shared by all quantum error mitigation
protocols. Addressing this question needs the evaluation of
the necessary sampling cost incurred on the general class of
error-mitigation protocols.

In this work [1], we provide the first universal bounds for

⇤ryuji.takagi@phys.c.u-tokyo.ac.jp
†hiroyasu.tajima@uec.ac.jp
‡mgu@quantumcomplexity.org

the sampling cost applicable for general error-mitigation

protocols. Our results apply to general error-mitigation
protocols including the ones involving nonlinear postpro-
cessing — such as virtual distillation [10–12], symmetry
verification [13], and subspace expansion [14–16] — which
constitute a large class of protocols [8, 10–25]. We also
show that our bounds are tight in terms of error scaling.
As an application, we show that the required samples for
a wide class of mitigation protocols to error-mitigate lay-
ered circuits under various noise models — including the
depolarizing and stochastic Pauli noise as examples — must
grow exponentially with the circuit depth to achieve the tar-
get performance. This turns the conjecture that quantum
error mitigation would generally su�er from the exponen-
tial sampling overhead into formal relations 1. Our results
disclose the fundamental limitations underlying the general
error-mitigation strategies that include existing protocols [6–
22, 24, 25, 28–32] and the ones yet to be discovered, being
analogous to the performance converse bounds established in
several other disciplines — such as thermodynamics [33–35],
quantum communication [36, 37], and quantum resource the-
ories [38, 39] — that contributed to characterize the ultimate
operational capability allowed in each physical setting.

2 Framework

Suppose we wish to obtain the expectation value of an
observable � 2 O for an ideal state d 2 S where O and S are
some sets of observables and states that error mitigation aims
to get good estimates for. In the mitigation procedure, one can
first modify the circuit, e.g., use a di�erent choice of unitary
gates, apply nonadaptive operations, and supply ancillary
qubits — the allowed modifications are determined by the
capability of the available device. Together with the noise

1The previous works of Refs. [26, 27] addressed related questions in
terms of di�erent figures of merit but did not fully prove the exponential
blow up of the sample number, which is the most operationally relevant
quantity.
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present in the modified circuit, this turns the original unitary
U into some quantum channel F , which produces a distorted
state d0. The distorted state can be represented in terms of
the ideal state d by d0 = E(d) where we call E B F �U† an
e�ective noise channel. The second step consists of collecting
# samples {E= (d)}#==1 of distorted states represented by a
set of e�ective noise channels E B {E=}#==1 and applying an
trailing quantum process P� over them. The trailing process
P� then outputs an estimate represented by a random variable
⇢̂�(d) for the true expectation value Tr(�d) (see also Fig. 1
(a)). The main focus of our study is the sampling number
# , the total number # of distorted states used in the error
mitigation process.

3 Sampling lower bounds

We now consider the required samples to ensure the target
performance. The performance of quantum error mitiga-
tion can be defined in multiple ways. Here, we consider
two possible performance quantifiers that are operationally
relevant.

Our first performance measure is the combination of the
accuracy of the estimate and the success probability. This
closely aligns with the operational motivation, where one
would like an error mitigation strategy to be able to provide a
good estimate for each observable in O and an ideal state in
S at a high probability. This can be formalized as a condition

Prob( | Tr(�d) � ⇢̂�(d) |  X) � 1 � Y, 8d 2 S, 8� 2 O
(1)

where X is the target accuracy and 1�Y is the success probabil-
ity (see also Fig. 1 (a)). To formulate our result, let us define
the observable-dependent distinguishability with respect to a
setO of observables as ⇡O (d,f) B max�2O | Tr[�(d�f)] |.
We then obtain the following sampling lower bound.

Theorem 1. Suppose that an error-mitigation strategy
achieves (1) with some X � 0 and 0  Y  1/2 with #
distorted states characterized by the e�ective noise channels
E = {E=}#==1. Then, the sample number # is lower bounded
as

# � max
d,f2S

⇡O (d,f)�2X

min
E2E

log
h

1
4Y (1�Y)

i
log [1/� (E(d), E(f))] , (2)

where � (d,f) B kpd
p
fk2

1 is the (square) fidelity.

This result tells that if the noise e�ect brings states close
to each other, it incurs an unavoidable sampling cost to error
mitigation. The minimization over E chooses the e�ective
noise channel that least reduces the infidelity. On the other
hand, the maximum over the ideal states represents the fact
that to mitigate two states d and f that are separated further
than 2X in terms of observables in O, the sample number #
that achieves the accuracy X and the success probability 1� Y
must satisfy the lower bounds with respect to d and f.

Let us now consider our second performance measure
based on the standard deviation and the bias of the estimate.
Let fQEM

� (d) be the standard deviation of ⇢̂�(d) for an
observable � 2 O, which represents the uncertainty of
the final estimate of an error mitigation protocol. Since a
good error mitigation should come with a small fluctuation
in its outcome, the standard deviation of the underlying

distribution for the estimate can serve as a performance
quantifier. However, the standard deviation itself is not
su�cient to characterize the error mitigation performance,
as one can easily come up with a useless strategy that always
outputs a fixed outcome, which has zero standard deviation.
This issue can be addressed by considering the deviation of
the expected value of the estimate from the true expectation
value called bias, defined as 1�(d) B

⌦
⇢̂�(d)

↵
� Tr(�d)

for a state d 2 S and an observable � 2 O (see also Fig. 1).
To assess the performance of error-mitigation protocols, we
consider the worst-case error among possible ideal states and
measurements. This motivates us to consider the maximum
standard deviation fQEM

max B max�2Omaxd2S f
QEM
� (d) and

the maximum bias 1max B max�2Omaxd2S 1�(d). Then,
we obtain the following sampling lower bound in terms of
these performance quantifiers.

Theorem 2. The sampling cost for an error-mitigation strat-
egy with the maximum standard deviation fQEM

max and the
maximum bias 1max is lower bounded as

# � max
d,f2S

⇡O (d,f)�21max�0

min
E2E

log

2666664
1 � 1✓

1+ 2fQEM
max

⇡O (d,f)�21max

◆2

3777775

�1

log [1/� (E(d), E(f))] .

(3)

This result represents the trade-o� between the standard
deviation, bias, and the required sampling cost. To realize
the small standard deviation and bias, error mitigation needs
to use many samples; in fact, the lower bound diverges at
the limit of fQEM

max ! 0 whenever there exist states d,f 2 S
such that ⇡O (d,f) � 21max. On the other hand, a larger
bias results in a smaller sampling lower bound, indicating a
potential to reduce the sampling cost by giving up some bias.

The bounds in Theorems 1, 2 are universally applicable
to arbitrary error mitigation protocols in our framework and
thus are not expected to give good estimates for a given
specific error-mitigation protocol in general (just as there is
a huge gap between the Carnot e�ciency and the e�ciency
of most of the practical heat engines). Nevertheless, it is
still insightful to investigate how our bounds are compared
to existing mitigation protocols. Rather remarkably, we show
that the error scaling of the lower bound in Theorem 2 can
be achieved by the probabilistic error cancellation method
in a certain scenario, showing the tightness of our bound in
Theorem 2 as well as the optimality of probabilistic error
cancellation in terms of error scaling; details can be found in
Appendix D of the technical manuscript. In Fig. 1 (b), we
also numerically study the bound in Theorem 1 to mitigate
local depolarizing noise in relation to several specific error-
mitigation methods. This shows that our bound can provide
nontrivial lower bounds in this setting, with the gap being
the factor of 3 to 6 in the studied range. Although this does
not guarantee (and we do not even expect) that our bound
behaves similarly for other scenarios in general, this ensures
that there is a setting in which the bound in Theorem 1 can
provide a nearly tight estimate.

4 Noisy layered circuits

The above results clarify the close relation between the
sampling cost and state distinguishability. As an application
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Figure 1: (a) Framework of quantum error mitigation. (b) The lower bound in Theorem 1 and the actual samples # used
for several specific error-mitigation protocols to mitigate 7-qubit local depolarizing noise with noise strength ?. Details in
Appendix E of the technical manuscript.

of our general bounds, we study the inevitable sample over-
head to mitigate noise in the circuits consisting of multiple
layers of unitaries. Although we here focus on the local
depolarizing noise, our results can be extended to a number
of other noise models.

Suppose that an "-qubit quantum circuit consists of layers
of unitaries, each of which is followed by a local depolarizing
noise D⌦"

? with D? = (1 � ?) id+?I/2. Although the
noise strength can vary for di�erent locations, we suppose
that at least ! layers are followed by the local depolarizing
noise with noise strength of at least W and call these layers
*1,*2, . . . ,*! . We aim to estimate ideal expectation values
for the target states S and observables O by using # such
noisy layered circuits. Here, we consider the error mitigation
protocols that apply an arbitrary trailing process over #
distorted states and any unital operations (i.e., operations that
preserve the maximally mixed state) before and after *; .

Theorem 3. Suppose that an error-mitigation strategy de-
scribed above is applied to an "-qubit circuit to mitigate
local depolarizing channels with strength at least W that
follow ! layers of unitaries, and achieves (1) with some X � 0
and 0  Y  1/2. Then, if there exist at least two states
d,f 2 S such that ⇡O (d,f) � 2X, the required sample
number # is lower bounded as

# � (1 � 2Y)2

2 ln(2) " (1 � W)2!
. (4)

This result particularly shows that the required number
of samples must grow exponentially with the circuit depth
!, revealing the fundamental obstacles in showing useful
applications of noisy near-term quantum devices. We remark
that the bound always holds under the mild condition, i.e.,
⇡O (d,f) � 2X for some d,f 2 S. This reflects that, to
achieve the desired accuracy X satisfying this condition, error
mitigation really needs to extract the expectation values about
the observables in O and the states in S, prohibiting it from
merely making a random guess. In the technical manuscript,
we also obtain a similar exponential growth of the required
sample overhead for a fixed bias and standard deviation.

As we discuss in Appendix I of the technical manuscript,
we can extend these results to a wide class of noise models,
including stochastic Pauli, global depolarizing, and thermal
noise. The case of thermal noise particularly provides an

intriguing physical interpretation: the sampling cost # re-
quired to mitigate thermal noise after time C is characterized
by the loss of free energy # = ⌦(1/[� (dC ) � �eq]) where dC
is the state at time C and �eq is the equilibrium free energy.
This in turn shows that the necessary sampling cost grows as
# = ⌦(4UentC ) where Uent is a constant characterized by the
minimum entropy production rate.

5 Discussion

We established sampling lower bounds imposed on the
general quantum error-mitigation protocols. Our results for-
malize the idea that the reduction in the state distinguishability
caused by noise and error-mitigation processes lead to the
unavoidable operational cost for quantum error mitigation.
We then showed that error-mitigation protocols with certain
intermediate operations and an arbitrary trailing process re-
quire the number of samples that grows exponentially with the
circuit depth to mitigate various types of noise. We presented
these bounds with respect to two performance quantifiers
— accuracy and success probability, as well as the standard
deviation and bias — each of which has its own operational
relevance. Our bounds provide fundamental limitations that
universally apply to general mitigation protocols, clarify-
ing the underlying principle that regulates error-mitigation
performance.
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A Race Track Trapped-Ion Quantum Processor
Michael Mills1

1Quantinuum

Abstract. We describe and benchmark a new quantum charge-coupled device (QCCD) trapped-ion quan-
tum computer based on a linear trap with periodic boundary conditions, which resembles a race track. The
new system successfully incorporates several technologies crucial to future scalability, including electrode
broadcasting, multi-layer RF routing, and magneto-optical trap (MOT) loading, while maintaining, and in
some cases exceeding, the gate fidelities of previous QCCD systems. The system is initially operated with
32 qubits, but future upgrades will allow for more. We benchmark the performance of primitive operations,
including an average state preparation and measurement error of 1.6(1)e-3, an average single-qubit gate
infidelity of 2.5(3)e-5, and an average two-qubit gate infidelity of 1.84(5)e-3. The system-level performance
of the quantum processor is assessed with mirror benchmarking, linear cross-entropy benchmarking, a
quantum volume measurement of QV = 216, and the creation of 32-qubit entanglement in a GHZ state.
We also tested application benchmarks including Hamiltonian simulation, QAOA, error correction on a
repetition code, and dynamics simulations using qubit reuse. We also discuss future upgrades to the new
system aimed at adding more qubits and capabilities.

156



An invertible map between Bell non-local and contextuality scenarios
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Abstract.
We present an invertible map between correlations in any bipartite Bell scenario and behaviours in a

family of contextuality scenarios. The map takes local, quantum and non-signalling correlations to non-

contextual, quantum and contextual behaviours, respectively. Consequently, we find that the membership

problem of the set of quantum contextual behaviours is undecidable, the set cannot be fully realised via

finite dimensional quantum systems and is not closed. Finally, we show that neither this set nor its closure

is the limit of a sequence of computable supersets, due to the result MIP*=RE.

Keywords: non-locality, generalised contextuality, semidefinite programming

Introduction Bell non-locality [1] is a property of cor-

relations observed between space-like separated experi-

ments. Bell non-local correlations are impossible in any

locally realistic theory, such as those of classical physics.

Such correlations are, however, allowed in quantum the-

ory. Beyond their fundamental relevance these correla-

tions have technological applications such as secure ran-

dom number generation [2] and cryptography [3].

Generalised contextuality [4] similarly describes cor-

relations that are absent from classical physics but in-

stead of space-like separation, these correlations occur

in experiments where there are operationally equivalent

experimental procedures. For example, two preparation

procedures for a system are operationally equivalent if no

measurement on the system can distinguish which prepa-

ration procedure was used, even after many rounds of

preparation and measurement. Contextual correlations

have also found practical relevance, for example, in state

discrimination [5] and demonstrating quantum advantage

in communication tasks [6].

These two types of experiments both distinguish quan-

tum physics from its classical counterpart, so one can

ask whether they are independent of each other, whether

they share a common underlying mechanism or, more

strongly, whether one subsumes the other. It is not un-

common to hear in the contextuality community that

non-locality is “an example” of contextuality. This work

puts a formal meaning to this claim in the case of two-

party non-locality and generalised contextuality. Our re-

sults show that combining quantum contextuality and

the no-signalling principle exactly constraints non-local

correlations to those allowed for in quantum theory. We

then use this connection to prove fundamental results

about quantum contextuality.

Generalised contextuality In this work a contextu-

ality scenario is a prepare-and-measure experiment with

a fixed number of preparations, measurements and out-

comes, in which some operational equivalences must hold

∗victoriawright@icfo.eu
†matefarkas@icfo.eu

between the preparations (more generally, equivalences

between measurements and transformations can also be

considered). Two preparations, P and P ′
, are opera-

tionally equivalent, P ≃ P ′
, if they give the same statis-

tics for every measurement on the system. A theory de-

scribing these measurements would say the probabilities,

q(a|P,M) and q(a|P ′,M), of seeing an outcome a of a

measurement M when the system was prepared as per

procedure P or P ′
should be equal for all measurements,

M , and their outcomes, a.
The correlations observed in a contextuality scenario

reveal a difference between non-contextual theories, such

as classical physics, quantum theory and more general

contextual theories, as depicted in each square on the

right hand side of Fig. 1. Analogously to how quantum

non-locality does not extend to all non-signalling corre-

lations in Bell scenarios, quantum contextuality does not

extend to all contextual correlations.

The map One way to enforce operational equivalences

between preparations is by using the setup of a Bell non-

locality experiment (known as a Bell scenario), under the

assumption that no signal can travel faster than light.

Let Alice and Bob share many copies of a physical sys-

tem. If Alice selects and performs a measurement x on

each of her parts, then the statistics Bob can observe

by measuring his parts at any the time before a signal

could have arrived must not depend on x, otherwise he

could infer Alice’s choice x. Thus, the average prepara-

tion of Bob’s system given any choice, x, of Alice must be

operationally equivalent to that given any other choice,

x′
, of Alice. In this way, a Bell scenario is viewed as

a remote-preparation and measurement experiment with

preparation equivalences given by the no-signalling con-

straints.

This connection between two party Bell scenarios

and (prepare-and-measure) contextuality scenarios is de-

scribed in various works
1
[10, 5, 11]. In general, the re-

1Viewing a Bell scenario as a remote-preparation and measure-
ment experiment has also been used to link entanglement and con-
textuality [7], as well as non-locality and quantum advantage in
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Figure 1: A schematic representation of the invertible map between correlations in a Bell scenario and correlations

in a family of contextuality scenarios. Here q(b|[a|x], y) = p′(a, b|x, y)/p′A(a|x). The sets L, Cqs and NS represent

the local, quantum spatial and no-signalling sets in Bell scenarios, respectively, while NC, Q and C represent the

non-contextual, quantum and contextual sets in contextuality scenarios, respectively. See the main text for details.

lationship is described via examples and the general case

is not addressed. We formalise the relationship defining

an invertible map in the general case.

Explicitly, let Pa|x describe the preparation procedure

for Bob’s system in which Alice chooses a measurement

x and sees an outcome a. When Alice chooses measure-

ment x the average preparation of Bob’s system is de-

scribed by the mixture
!

a pA(a|x)Pa|x, where pA(a|x)
is Alice’s marginal probability distribution of seeing out-

come a given that she chose input x in the Bell scenario.

No-signalling implies that this preparation should be op-

erationally equivalent to
!

a pA(a|x′
)Pa|x′ for any other

input x′
of Alice.

Viewing the Bell scenario as a contextuality scenario

with Alice performing the preparation procedures and

Bob the measurements, the probability, q, that Bob sees

outcome b given that preparation Pa|x was performed and

he chose measurement y is given by:

q(b|[a|x], y) = p(a, b|x, y)
pA(a|x)

, (1)

where p(a, b|x, y) is the probability of Alice and Bob see-

ing outcomes a and b, given they gave inputs x and y,
respectively, when the experiment is viewed as a Bell sce-

nario.

This equation maps the correlations in a Bell scenario

to correlations in one of a family of contextuality sce-

narios, defined by (i) the number of preparations Pa|x,
measurements y and possible outcomes b, each of which

only depend on the numbers of inputs and outputs of the

oblivious communication tasks [8, 9].

Bell scenario, and, (ii) the operational equivalences

"

a

pA(a|x)Pa|x ≃
"

a

pA(a|x′
)Pa|x′ (2)

for all pairs x and x′
of inputs for Alice. These

equivalences vary based on the correlation, p(a, b|x, y),
since they depend on Alice’s marginals pA(a|x) =!

b p(a, b|x, y). This variation is the main reason why

one Bell scenario maps to a family of contextuality sce-

narios, see Fig. 1.

Note that if Alice has some outcomes which never oc-

cur, pA(a|x) = 0, we map to a contextuality scenario

without the preparation Pa|x. In order for the map to be

invertible we also add an index to record where the zero

probability outcome should be added back in to the Bell

scenario. We show that our map, loosely given by Eq. (1),

takes correlations that are (i) local to non-contextual cor-

relations, (ii) quantum
2
to quantum correlations and (iii)

non-signalling to general contextual correlations.

We then show the map to be invertible, with the in-

verse similarly preserving the three relationships above.

In the quantum case we use the Schrödinger-HJW the-

orem [12], which gives an explicit construction to show

that a quantum system can be steered into any assem-

blage of quantum states non-locally. Density operators

obeying preparation equivalences of the form in Eq. (2)

form an assemblage, and the Schrödinger-HJW theorem

2The quantum Bell correlations we consider are those given by
the tensor product formalism for potentially infinite dimensional
quantum systems, often denoted Cqs for quantum spatial correla-
tions.
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gives a construction for the quantum realisation of the
corresponding non-local correlation.
It was previously thought that all contextuality scenar-

ios of a certain kind (in which there are no measurement
equivalences and the preparation equivalences comprise
various decompositions of one single hypothetical prepa-
ration) could be mapped to Bell scenarios in this manner
[5, Sec. VII]. However, we find examples of such scenar-
ios in which this mapping is not possible. Of course,
this does not rule out an isomorphism in this case but a
different map would be required.

Consequences Firstly, imagine if it were possible to
produce a correlation outside of the quantum set, Cqs, in
a Bell scenario. Then, if we believe no signal can travel
faster than light (ensuring the preparation equivalences
hold when viewing the Bell scenario as a contextuality
scenario with remote preparation), our map shows we
would also be able to observe a superquantum contextual
correlation, i.e. a correlation outside the quantum set, Q.
In other words, the no-signalling principle together with
quantum correlations constrain non-local correlations to
exactly the quantum spatial correlations, Cqs.
Secondly, the existence of our isomorphism gives vari-

ous corollaries about the set of quantum correlations in
contextuality scenarios.

Corollary 1 The membership problem for the set of
quantum behaviours in a contextuality scenario is unde-
cidable.

Corollary 2 The set of behaviours deriving from finite-
dimensional quantum systems in contextuality scenarios
is a strict subset of its infinite-dimensional counterpart.

Corollary 3 In general, the set of behaviours in a con-
textuality scenario is not closed.

Corollary 4 No hierarchy of computable supersets con-
verges to the quantum contextual set Q or its closure Q
for all contextuality scenarios.

This final corollary shows that the semidefinite pro-
gramming (SDP) hierarchies approximating the set of
quantum contextual correlations [13, 14] do not, in gen-
eral, converge to the quantum set or its closure. This
result follows from showing that a computable hierarchy
of outer approximations converging to the quantum set
of contextual behaviours would give rise to an algorithm
capable of deciding the weak membership problem for the
closure Cqa of Cqs. However, this problem is known to be
undecidable as a consequence of the result MIP∗ = RE
[15].

Outlook Corollary 4 raises several open questions. To
what superset, Q∞, of quantum behaviours do the SDP
hierarchies in Refs. [13, 14] converge? What would be
the image of Q∞ in the Bell setting under our mapping?
A natural candidate could be the set of quantum com-
muting correlations. If this is the case, does Q∞ have a

physical interpretation in the contextuality setting? Al-
ternatively, the image of Q∞ might provide a new outer
approximation of the set Cqs.
More generally, our map opens a path to better under-

standing quantum contextuality and the technologies it
powers. For example, there is potential to translate self-
testing results and device-independent security proofs
from non-locality to contextuality, where the technologi-
cally demanding requirement of space-like separation can
be replaced by an assumption that allows trust in the op-
erational equivalences, a tradeoff which will be preferable
in some settings.
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[7] Martin Plávala and Otfried Gühne. Contextuality as
a precondition for entanglement. arXiv:2209.09942,
2022.

[8] Alley Hameedi, Armin Tavakoli, Breno Marques,
and Mohamed Bourennane. Communication games
reveal preparation contextuality. Phys. Rev. Lett.,
119:220402, 2017.

[9] Debashis Saha and Anubhav Chaturvedi. Prepara-
tion contextuality as an essential feature underlying
quantum communication advantage. Phys. Rev. A,
100(2):022108, 2019.

[10] Yeong-Cherng Liang, Robert W. Spekkens, and
Howard M. Wiseman. Specker’s parable of the over-
protective seer: A road to contextuality, nonlocality
and complementarity. Phys. Rep., 506(1):1 – 39,
2011.

159



[11] David Schmid, Robert W. Spekkens, and Elie Wolfe.

All the noncontextuality inequalities for arbitrary

prepare-and-measure experiments with respect to

any fixed set of operational equivalences. Phys. Rev.
A, 97:062103, Jun 2018.

[12] K Kirkpatrick. The Schrödinger-HJW theorem.

Found. Phys. Lett., 19:95, 2006.

[13] Armin Tavakoli, Emmanuel Zambrini Cruzeiro,

Roope Uola, and Alastair A Abbott. Bounding and

simulating contextual correlations in quantum the-

ory. PRX Quantum, 2(2):020334, 2021.

[14] Anubhav Chaturvedi, Máté Farkas, and Victo-
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Abstract. Distillation, or purification, is central to the practical use of quantum resources in noisy set-
tings often encountered in quantum communication and computation. Conventionally, distillation requires
using some restricted ‘free’ operations to convert a noisy state into one that approximates a desired pure
state. Here, we propose to relax this setting by only requiring the approximation of the measurement
statistics of a target pure state, which allows for additional classical postprocessing of the measurement
outcomes. We show that this extended scenario, which we call virtual resource distillation, provides con-
siderable advantages over standard notions of distillation, allowing for the purification of noisy states from
which no resources can be distilled conventionally. We show that general states can be virtually distilled
with a cost (measurement overhead) that is inversely proportional to the amount of existing resource,
and we develop methods to e�ciently estimate such cost via convex and semidefinite programming, giving
several computable bounds. We consider applications to coherence, entanglement, and magic distillation,
and an explicit example in quantum teleportation (distributed quantum computing).

Keywords: quantum resources, entanglement distillation, error mitigation

Full paper: arXiv:2303.00955

Introduction A particularly important task in the ma-
nipulation of quantum resources is resource distillation,
aiming to extract optimal resources — typically pure,
highly resourceful ones — from non-optimal ones, us-
ing only free operations. Resource distillation is critical
since it provides a systematic approach to obtain ideal
resources from ones that are possibly damaged by imple-
mentation imperfections and the noisy environments in
which near-term quantum technologies operate.
Conventional studies focus on unconditional resource

distillation, in that the distilled resource could be used
almost exactly as the optimal resource. Many powerful
theoretical results have been obtained for one-shot and
asymptotic resource distillation for general and specific
resource theories [1–3]. Yet, especially in the one-shot
scenario, fundamental limitations exist that prohibit re-
source distillation even for highly resourceful objects, ei-
ther demanding many copies of the resource object to
enable a successful conversion, or incurring large errors
in the process. Are there more e�cient resource distilla-
tion schemes in less restrictive settings?
Here [4], we answer in the a�rmative by proposing a

new paradigm of virtual resource distillation. We observe
first that in most quantum information protocols, the
output of a circuit is destined for measurement. There-
fore, we focus on recovering classical expectation values
of the target optimal resources. Without physically hav-
ing the optimal resource, we can virtually simulate it,
in the sense that any operation and measurement on the

target resource can be approximated to any desired accu-
racy. We show that virtual distillation enables us to e↵ec-
tively increase the distillation e�ciency at an increased
cost in the measurement samples. We study the prop-
erties of this cost, showing how it could be bounded us-
ing resource monotones and calculated via e�cient semi-
definite programs. We illustrate that various limitations
on conventional distillation schemes can be circumvented
by employing virtual distillation, enabling resource dis-
tillation in situations where the extraction of resources
is otherwise impossible. In the technical manuscript, we
give examples of virtual distillation for coherence, en-
tanglement, and magic, and discuss the application in
quantum teleportation.

Background A resource theory of states consists of
two parts: the set of free states F and the set of free op-
erations O. A weak and undemanding assumption about
the free operations ⇤ 2 O is the so-called ‘golden rule’,
which states that ⇤(�) 2 F , 8� 2 F . The set of all
operations that satisfy the golden rule, called resource
non-generating (RNG) operations, is then the largest set
of free operations. In most state resource theories, we
can define an optimal unit pure resource state, denoted
as  . A common task is to consider the conversion be-
tween a given state ⇢ and the optimal unit state  . The
one-shot resource distillation rate

D"(⇢) = max
⇤2O

�
m :

1

2

��⇤(⇢)�  ⌦m
��
1
 "

 
(1)

161

https://arxiv.org/abs/2303.00955


<latexit sha1_base64="mCxvtBDo2lejjt+pHKDakyIWcN0="></latexit>

⇡
<latexit sha1_base64="UHikvgjNdaOVr+9rjE/7n+5Pchk="></latexit>

⇤
<latexit sha1_base64="oMxM+erIVO/WaQ5xV9CX1eIq5SU="></latexit>

⇤+

<latexit sha1_base64="8XRrbnRhnTRp0BqVpI2mZyaTgQI="></latexit>

⇤�

<latexit sha1_base64="agsPzfIzC0scl6Rkh2egBTHxd48="></latexit>

Tr "d0

<latexit sha1_base64="6irHj96rtLiR7CA8bLCNr7g5rX4="></latexit>

Tr "d00

<latexit sha1_base64="Hs5LPRdmkmbPYuzAWsHnXIAeLhM="></latexit>

_+
<latexit sha1_base64="T2/ZqrDZD6YVjsG1+pdkHjiCOwc="></latexit>+_�

<latexit sha1_base64="agsPzfIzC0scl6Rkh2egBTHxd48="></latexit>

Tr "d0

<latexit sha1_base64="mCxvtBDo2lejjt+pHKDakyIWcN0="></latexit>

⇡

<latexit sha1_base64="WFs8jgDFoc1CnpPYQrMHc56prcQ="></latexit>

Tr "k⌦<

<latexit sha1_base64="leYjyjNZ79xdEIMceom4sNQnBWg="></latexit>d
<latexit sha1_base64="leYjyjNZ79xdEIMceom4sNQnBWg="></latexit>d

<latexit sha1_base64="leYjyjNZ79xdEIMceom4sNQnBWg="></latexit>d

<latexit sha1_base64="XPAclLQkf/d4MWO260VlKuG90Ag="></latexit>

d0

<latexit sha1_base64="Q4yrR4gtg7V7QukI/5K6OWbOG6Q="></latexit>

k⌦<

<latexit sha1_base64="XPAclLQkf/d4MWO260VlKuG90Ag="></latexit>

d0

<latexit sha1_base64="4T+1Pw/DDaimatKD8TIMQlWijpE="></latexit>

d00

<latexit sha1_base64="Q4yrR4gtg7V7QukI/5K6OWbOG6Q="></latexit>

k⌦<
<latexit sha1_base64="WFs8jgDFoc1CnpPYQrMHc56prcQ="></latexit>

Tr "k⌦<

<latexit sha1_base64="VsXyKqafO7yWiNJL02xlUehFbwU="></latexit>

Tr "⇤̃(d)

(a) (b)
<latexit sha1_base64="CXN08bOQE8+Z7om1zNt4a2c79ng="></latexit>

"

<latexit sha1_base64="CXN08bOQE8+Z7om1zNt4a2c79ng=">AAADkXicdVJdb9MwFHUWGKN8rGOPvFhUFZs0RQ2CwTSEKpAQEkwMtG6T6qpynNs0mmNnjsNWTH4ob/wTcD6mdh27UuSje871ubm+QcrjTPd6v50V987d1Xtr91sPHj56vN7eeHKcyVwxGDDJpToNaAY8FjDQseZwmiqgScDhJDj7UPInP0BlsRRHepbCKKGRiCcxo9qmxu2fXfI9jqaaKiUvMDnPaYjJ1wQiOjYkoXoaBOZjUWwRNZXbmERwfiv9fBu3ukSmoKiWStAEzJEq8AEmOuYhGPLFthXS5q7Wwbjd6Xm9KvBN4Degg5o4HG84f0koWZ6A0IzTLBv6vVSPDFU6ZhyKFskzSCk7oxEMLSxbyEamGlKBuzYT4olU9hMaV9nFCkOTLJslgVWWP5Ytc2Xyf9ww15M3IxOLNNcgWG00yTnWEpcTx2GsgGk+s4AyFdteMZtSRZm279K6ZiPgQl9quNQ7FaosrYKDJoIRm2MySagIbU4wQ94WxnITTTgVUTUABXORIe8sr8rXJaoRLCsCqqxmn6icg7HDLMye98oeddkvsl80VjwDfeVWH15RM6pmap9iUa/mBTsLYnWl9uZFFWmbuaWb8payGbsy/vKC3ATHLzx/1/O/vez0d5vlWUNP0TO0hXz0GvXRJ3SIBoihP86qs+603U13z+2772vpitPUbKJr4X7+B6HjLKw=</latexit>

"

<latexit sha1_base64="CXN08bOQE8+Z7om1zNt4a2c79ng="></latexit>

"

<latexit sha1_base64="CXN08bOQE8+Z7om1zNt4a2c79ng="></latexit>

"

<latexit sha1_base64="CXN08bOQE8+Z7om1zNt4a2c79ng="></latexit>

"

Figure 1: Illustration of two di↵erent approaches to resource distillation. (a) Conventional resource distillation, which
employs a free operation ⇤ to map ⇢ into a state such that, for any measurement M , the statistics of the output state
approximate the statistics of the target state  ⌦m. (b) Virtual distillation, which approximates the measurement
statistics of  ⌦m by using the virtual operation ⇤̃ = �+⇤+ + ��⇤�, a linear combination of free operations ⇤±.

then defines number of optimal states we can synthesize
with ⇢ at allowable error ✏ 2 [0, 1). A central task in
resource theories is to determine D"(⇢) as well as the
rate when more copies of the input state are available.

Virtual resource distillation We consider the gen-
eral context of using a resource within a quantum infor-
mation processing protocol where the ultimate goal is to
emit classical data. In such cases, the protocol involves
applying certain operations N on the resource state (pos-
sibly together with other states), after which classical
outputs are obtained by measurement of some Hermitian
observable M . In order for a distillation protocol ⇤ to
be successful, we thus require that measuring N � ⇤(⇢)
approximates the measurement outcomes of N ( ⌦m) for
any choice of a channel N and measurement M . Since
applying a channel N cannot make the error any larger,
our requirement is equivalent to the statement that

��TrM⇤(⇢)� TrM ⌦m
��  " (2)

for any Hermitian operator M satisfying 0  M  I. At
this stage, this condition is actually the same as the one
for conventional distillation in Eq. (1), so we have gained
no advantage. However, since TrM⇤(⇢) is a classical re-
sult, we can further apply a classical post-processing:
we can consider a linear combination of the classical
results

P
j �jTr (M⇤j(⇢)) = Tr

⇣
M

P
j �j⇤j(⇢)

⌘
us-

ing di↵erent choices of {⇤j} ✓ O and real coe�cients
�j satisfying

P
j �j = 1. Grouping free operations

with the same sign together, we can extend Eq. (2) to���Tr
⇥
M
�
�+⇤+(⇢)� ��⇤�(⇢)

�⇤
� TrM ⌦m

���  ". where

�± =
P

j:sign(j)=±1 �j � 0, �+ � �� = 1, and ⇤± =
1
�±

P
j:sign(j)=±1 �j⇤j . This is equivalent to the virtual

distillation condition 1
2

��⇤̃(⇢)� ⌦m
��
1
 ", where we de-

fine ⇤̃ = �+⇤+ � ��⇤� to be a virtual operation, see
also Fig. 1.
We can e↵ectively implement ⇤̃ by following a

Monte Carlo–based approach previously used in sim-
ulation of quantum circuits [5, 6] and quantum er-
ror mitigation [7–9]. Notice that for any M ,

we have TrM ⇤̃(⇢) = C
⇥
sign(⇤+)p+TrM⇤+(⇢) +

sign(⇤�)p�TrM⇤�(⇢)
⇤
. Therefore, we can obtain

TrM ⇤̃(⇢) by randomly applying ⇤± with probability
p± = �±/(�+ + ��) and multiply each classical out-
come by Csign(⇤±) = ±C. Here, C := �+ + �� � 1
contributes to a larger variance of the outcome distribu-
tion. This essentially increases the number of required
samples by a factor of C2 compared to the case of con-
ventional distillation where resource state  itself is avail-
able. Thus, the e↵ective number of  virtually obtained
as ⇤̃(⇢) is reduced by a factor of 1/C2 for the purpose
of estimating the expectation value of an observable with
the desired accuracy.

This observation motivates us to define the one-shot
virtual resource distillation rate as

D"(⇢) = max
m

m

C✏
d(⇢,m)2

, (3)

with the overhead C✏
d(⇢,m) of virtual operations defined

by

C✏
d(⇢,m) = inf

⇤̃=�+⇤+���⇤�

�+���=1
⇤±2O,�±�0

�
�+ + �� :

1

2

��⇤̃(⇢)�  ⌦m
��
1
 "

 
.

(4)
The virtual distillation rate D" can be considered as a
generalization of the conventional distillation rate D",
which would be recovered by restricting the optimiza-
tion in (4) to the case of �� = 0. This immediately
implies that the one-shot distillation rate satisfies
D"(⇢)  D"(⇢). In fact, we show shortly that the virtual
distillation rate can be non-zero even when D"(⇢) = 0.
It is also easy to verify that both the virtual distillation
rate D"(⇢) and the inverse overhead 1/C✏

d(⇢,m) are
resource monotones. Since D"(⇢) is fully determined by
C✏
d(⇢,m), we focus on the estimation of C✏

d(⇢,m) in the
following.

Estimation of C✏
d(⇢,m).— We introduce upper and

lower bounds on C✏
d(⇢,m) in general quantum state re-

source theories. The bounds rely on two ingredients.
First, we introduce two related optimization problems,
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⇣s✏ (⇢, k) and ⇣g✏ (⇢, k), which we will show to satisfy an
extremely powerful property: in very general classes
of quantum resources, the resource overhead C✏

d(⇢,m)
can be both upper and lower bounded using ⇣s✏ (⇢, k) or
⇣g✏ (⇢, k) with di↵erent choices of parameter k, giving the

problems ⇣s/g✏ an explicit operational application. Impor-
tantly, both ⇣s✏ and ⇣g✏ are convex optimization problems,
and in many relevant resource theories (e.g. coherence,
magic states, or non-PPT entanglement), they are e�-
ciently computable as semidefinite programs (SDP).
The second ingredient that our bounds rely on are

three di↵erent resource measures for the target pure re-
source state  — the generalised robustness [10] Rg

F
(⇢),

the standard robustness Rs
F
(⇢) [10], and the resource fi-

delity FF (⇢) := max�2F

⇣
Tr

p
⇢1/2�⇢1/2

⌘2
. Our first re-

sult is then as follows.

Result 1. Let  denote the optimal resource and O

be the class of RNG operations. When FF ( ⌦m)�1 =

Rs/g
F

( ⌦m) + 1 the overhead C✏
d(⇢,m) of virtual distilla-

tion is C✏
d(⇢,m) = ⇣s/g✏

�
⇢, FF ( ⌦m)�1

�
.

We stress that the above result applies to many impor-
tant resource theories of interest, e.g. when the target  
is a maximally entangled state in entanglement theory,
or a maximally coherent state in the theory of coher-

ence. Recall that the problems ⇣s/g✏ are often e�ciently
computable, allowing for an exact evaluation of C✏

d in
relevant cases. Next, we show that the cost is not only
computable numerically, but in fact an exact expression
for it can be obtained in terms of a resource monotone
fO(⇢,m) that measures the maximum overlap between
⇤(⇢) and  ⌦m as fO(⇢,m) := max⇤2O Tr[⇤(⇢) ⌦m].
This will be possible whenever there exists a free “gen-
eralized twirling” operation [11] T 2 O of the form
T (⇢) = Tr[ ⌦m⇢] ⌦m + Tr[(I �  ⌦m)⇢]�? for some
�?

2 F with Tr[ �?] = 0, which is true for many resource
theories of practical interest, such as entanglement and
magic theory for specific target states.

Result 2. Suppose a free generalized twirling operation

exists. Then C✏
d(⇢,m) = max

n
2(1�✏)
fO(⇢,m) � 1, 1

o
.

Importantly, Ref. [11] showed that the existence of a
twirling operation is guaranteed whenever FF ( ⌦m)�1 =
1 + Rs

F
( ⌦m) for RNG operations, which gives a condi-

tion for equality which is easy to verify.
We thus give an alternative characterization of

C✏
d(⇢,m) via the resource monotone fO(⇢,m). We note

that while Result 1 can provide an exact characterization
of the virtual distillation overhead without the need for
an explicit optimization over the allowed free operations,
Result 2 is applicable also for general free operations
that are weaker than RNGs. Therefore, these results
can be applicable to complementary scenarios.

Surpassing conventional limitations Distillation in
the conventional sense is constrained by many no-go theo-
rems that restrict what transformations can be achieved

in certain regimes. A clear-cut way to understand the
advantages of virtual distillation is to observe how it can
overcome such limitations.

Consider, for instance, zero-error distillation (✏ = 0).
In such a case, conventional distillation schemes are sig-
nificantly limited: they cannot, for example, distill any
pure states from states which are highly mixed (full- or
almost full-rank, depending on the theory) [2, 3, 12], not
even when many copies of input states are available, and
not even probabilistically [2, 13]. Virtual distillation suf-
fers from no such no-go limitation: even full-rank states
allow for distillation with a finite overhead cost.

An even stronger limitation constrains the one-shot
distillation from isotropic states ⇢p in theories such as
quantum entanglement or coherence. Here, no free op-
eration can improve the fidelity of ⇢p with a maximally
resourceful state, making distillation impossible from a
single copy of ⇢p for all small values of ✏ [14, 15]; virtual
distillation allows one to surpass such restrictions.

In the technical manuscript [4], we also discuss
applications of virtual resource distillation in coherence,
entanglement, and magic.

Conclusions In this work, we introduce virtual re-
source distillation, an extended framework of resource
distillation that takes integrates classical linear poss-
processing into free operations. We derive computable
convex or semi-definite programming for the cost and
show it is linearly related to the inverse of a resource
monotone. We consider examples of coherence, entan-
glement, and magic, and calculate the virtual distillation
rate for examples resource states. The results are appli-
cable for many scenarios, such as quantum teleportation
using noisy entangled state, fault-tolerant quantum com-
puting using noisy magic states, etc. While this work
only consider specific example optimal resource states,
the results are also applicable to any pure resource states.
The results are also applicable to other resource theories,
such as uniformity and thermodynamics [16]. We also
study virtual distillation of quantum channels, applica-
ble to resource theories such as the theory of quantum
communication.
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Unitary channel discrimination beyond group structures:
Advantages of sequential and indefinite-causal-order strategies
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Abstract. For minimum-error channel discrimination tasks that involve only unitary channels, we show
that sequential strategies may outperform parallel ones. Additionally, we show that general strategies that
involve indefinite causal order are also advantageous for this task. However, for the task of discriminating
a uniformly distributed set of unitary channels that forms a group, we show that parallel strategies are
indeed optimal, even when compared to general strategies. We also show that strategies based on the
quantum switch cannot outperform sequential strategies in the discrimination of unitary channels. Finally,
we derive an absolute upper bound for the maximal probability of successfully discriminating any set of
unitary channels with any number of copies, for the most general strategies that are suitable for channel
discrimination. Our bound is tight since it is saturated by sets of unitary channels forming a group k-design.

Based on (the technical version follows the extended abstract):
J. Math. Phys. 63, 042203 (2022), arXiv:2105.13369 [quant-ph] and
Phys. Rev. Lett. 127, 200504 (2021), arXiv:2011.08300 [quant-ph].

Keywords: Channel discrimination, unitary discrimination, higher-order operations, indefinite causal
order, computer assisted proofs

The discrimination of different hypothesis is a funda-
mental part of the scientific method that finds application
in the most distinct areas, such as information theory [1],
bioinformatics [2], machine learning [3], and behavioral
and social sciences [4]. In a discrimination task, one seeks
for the best manner to decide whether a particular hy-
pothesis is the most likely to be the best description of
some scenario or experiment. An important, albeit gen-
eral, instance of a discrimination task consists in identify-
ing between different input-output relations, or different
causal-effect dynamics a physical system may undergo.

In its most fundamental level, closed-system dynamics
in quantum theory are described by unitary operations.
Hence, being able to discriminate between different unit-
ary operations is a ubiquitous task within quantum theory
and quantum technologies. Examples of tasks directly re-
lated to our ability to discriminate unitary operations are
quantum metrology [5, 6], quantum hypothesis testing [7],
quantum parameter estimation [8], alignment and trans-
mission of reference frames [9, 10], and discrimination and
tomography of quantum circuit elements [11].

Discrimination tasks are also relevant to the field of
computer science. An oracle, which is an abstract ma-
chine used to study decision problems, may be under-
stood as a black box that solves certain problems with
a single operation. From a quantum computational per-
spective, a quantum oracle is a unitary operation whose
internal mechanisms are unknown, and are employed in
seminal quantum algorithms such as the Deustch-Josza
algorithm [12], Grover’s algorithm [13], and Simon’s al-
gorithm [14]. These oracle-based quantum algorithms
may be recast as unitary discrimination tasks [15].

Such practical and fundamental interest has motivated
⇤jessica.bavaresco@unige.ch

an extensive study of the discrimination of unitary chan-
nels within the context of quantum information theory,
leading to a plethora of interesting results.

Contrarily to the problem of quantum state discrim-
ination [16], in which two states cannot be perfectly dis-
tinguished with a finite number of uses, or copies, unless
their are orthogonal, it has been remarkably shown that
any pair of unitary channels can indeed always be per-
fectly distinguished with a finite number of copies [17, 18].
Moreover, perfect discrimination of a pair of unitary chan-
nels can always be achieved by a parallel scheme [17, 18]
(see also Ref. [19]). Even when perfect discrimination is
not possible, sequential strategies can never outperform
parallel strategies in a task of discrimination between a
pair of unitary channels [20]. Concerning the discrimin-
ation of sets of more than two unitary channels, when
considering unitaries which are a representation of a group
and uniformly distributed, Ref. [20] showed once more
that, for any number of copies, sequential strategies are
not advantageous when compared to parallel strategies.
For related tasks such as error-free and unambiguous unit-
ary channel discrimination [21], unitary estimation [20],
unitary learning [22], and unitary store-and-retrieve [23],
parallel strategies were also proven to be optimal. Up to
this point, no unitary channel minimum-error discrimina-
tion task in which sequential strategies outperform parallel
strategies are known, to the extent of our knowledge.

In this work, we start by constructing a unified frame-
work for channel discrimination, for both unitary and
also general channels, that encompasses discrimination
tasks between any number of candidate channels and that
allow for the use of any number of copies. We formalized
under a single umbrella the well-known parallel (i.e. non
adaptive) and sequential (i.e. adaptive) strategies of
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discrimination, as well as a new general class of strategies
that involve indefinite causal order.

FRAMEWORK

The task of minimum-error channel discrimination
works as follows: With some probability pi, Alice is given
an unknown quantum channel eCi : L(HI) ! L(HO),
drawn from an ensemble E = {pj ,

eCj}
N

j=1 that is known
to her. Being allowed to use a finite number of cop-
ies of eCi, her task is to determine which channel she
received by performing operations on it and guessing
the value of i 2 {1, . . . , N}. If Alice is allowed to use
one copy of the channel she received, the most gen-
eral quantum operations she could apply are to send
part of a potentially entangled state ⇢ 2 L(HI

⌦H
aux)

through the channel eCi, and jointly measure the out-
put with a positive operator-valued measure (POVM)
M = {Ma},Ma 2 L(HO

⌦ H
aux), announcing the out-

come of her measurement as her guess. Then, her
probability of correctly guessing the value i is given by
psucc :=

P
N

i=1 piTr
h
( eCi ⌦

e1)(⇢)Mi

i
, where e1 is the iden-

tity map on L(Haux). Alice can improve her chances by
optimizing her operations based on her knowledge of the
ensemble. Her maximal probability of success is then
given by p

⇤
succ := max{⇢,M} psucc, where the optimization

occurs over all possible strategies {⇢,M}.
Now if Alice is given access to two or more copies of

the unknown channel Ci, things become more interesting,
since now she has the freedom of choosing how to concat-
enate these copies of the channel in order to gain more
information about them. The manner, and in particular,
the order with which she applies these channels give rise
to different classes of strategies.

Parallel strategies are the ones that consist of sending
each system that composes a multipartite state through
one of the copies of the unknown channel, in such a way
that the output of each copy does not interact with the
input of the others, and jointly measuring the output
state at the end (see Fig. 1(a)).

Sequential strategies consist of sending a quantum sys-
tems through the first copy of the unknown channel, and
its output system is allowed to be sent as input of the next
copy, while general CPTP maps may act on the systems
in between copies. The final output is measured by a
POVM (see Fig. 1(b)).

General strategies, on the other hand, are strategies
that are defined without imposing any particular order
under which the copies of the unknown channel will be
applied. They are defined by the most general higher-
order operations that can transform k quantum channels
into a joint probability distribution. They can be regarded
as the most general ‘measurement’ that acts jointly on
k quantum channels, yielding a classical output . By
characterising such class of strategies we find out that,
indeed, some valid general strategies act on the copies of
the unknown channel with an indefinite causal order [24]
(see Fig. 1(c)).

We characterise all of these strategies in terms of

testers, which are sets of positive-semidefinite operators
that satisfy some linear constraints that specify the class
of strategies to which they belong.

RESULTS

Most results in the literature of unitary channel discrim-
ination focus on tasks that either involve discriminating
between a pair of unitaries, or between a set of unitaries
that form the unitary representation of a group. Until this
point, not a single example of a unitary discrimination
task for which parallel strategies were not optimal was
known. In our work, we first show that when the set of
unitary channels being discriminated forms a group and
is distributed according to a uniform probability distri-
bution, then indeed parallel strategies are optimal, even
when comparing against general strategies that employ
indefinite causal order. However, when considering sets
of more than two unitaries that either do not form a
group or are not distributed according to a uniform prob-
ability distribution, we show that sequential strategies
may in fact outperform parallel strategies, just as gen-
eral strategies may outperform sequential ones, forming
a strict hierarchy of discrimination strategies. We then
show that a class of indefinite-causal-order strategies that
are constructed from switch-like processes do not provide
advantage over sequential strategies for any set of unitary
channels. Finally, we provide an absolute upper bound
for the maximal probability of successful discrimination
of any sets of unitary channels under any strategies and
show that our bound can be saturated.

In summary, our main results consist of the following:

Result 1. For ensembles composed of a uniform
probability distribution and a set of unitary channels that
forms a group up to a global phase, in discrimination
tasks that allow for k copies, parallel strategies are
optimal, even when considering general strategies.

Result 2. There exist ensembles of unitary channels for
which sequential strategies of discrimination outperform
parallel strategies. Moreover, sequential strategies can
achieve perfect discrimination in some scenarios where
the maximal probability of success of parallel strategies
is strictly less than one.

Result 3. There exist ensembles of unitary channels for
which general strategies of discrimination outperform
sequential strategies.

Result 4. The action of the switch-like process on k

copies of a unitary channel can be equivalently described
by a sequential process that acts on k copies of the same
unitary channel.

Result 5. Let E = {pi, Ui}
N

i=1 be an ensemble composed
of N d-dimensional unitary channels and a uniform prob-
ability distribution. The maximal probability of successful
discrimination of a general strategy with k copies is upper
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This bound is attained by ensembles of unitary channels
where the set of unitaries form a group k-design, and as a
consequence of Result 1, can be optimally discriminated
by parallel strategies.

METHODS

We remark that to prove some of out results that involve
showing the gap between the performance of different
classes of strategies for a fixed ensemble of channels, we
developed and applied a method of computer-assisted
proofs.

In our framework, the problem of computing the max-
imal probability of successful discrimination of a given
channel ensemble under any of our classes of strategies, as
we show, can be solved through semidefinite programming
(SDP). SDPs can be solved by efficient numerical packages,
however, despite being in practice accurate, these meth-
ods suffer from imprecision that arises from the use of
floating-point variables [25, 26]. In order to overcome this
issue, we developed and applied an algorithm of computer-
assisted proofs (see [27, 28] for other examples) to obtain
rigorous upper and lower bounds for maximal probab-
ilities of successful discrimination, arriving at a result
that has the same mathematical rigour of an analytical
proof. Our algorithms are described in Ref. [29], while
our results for unitary channels are in Ref. [30]. All our
code is available at the repositories in Refs [31] and [32].
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Abstract. We develop a time-dependent Hamiltonian simulation algorithm with circuit depth indepen-
dent of the algorithmic error. Compared to the continuous-qDRIFT method, the single- and two-qubit
gate complexity is reduced from O(⇤2/") to O(⇤2), where ⇤ is the time integration of the Hamiltonian
strength and " is the algorithmic error. The number of measurement repetition, O(1/"2) is comparable to
existing methods.

Keywords: Time-dependent Hamiltonian simulation, qDRIFT, Dyson expansion

1 Background and introduction

Time-dependent Hamiltonian simulation (TDHS) can
be used to explore rich physics phenomena, ranging from
adiabatic quantum evolution [1] to driven systems under
highly-oscillated external driving fields [18] and chemical
reactions [7, 21]. Moreover, time-independent Hamilto-
nians can be transformed to a time-dependent one in the
interaction picture, providing significant improvements
to the performance of Hamiltonian simulation [16].

All existing TDHS algorithms are approximate and
hence biased. We have to increase the circuit depth to
reduce the algorithmic error ". For example, based on
product formula [2, 7, 14, 19, 24, 25], the gate count
scales as O(poly(1/")), restricting the precision that can
be achieved when the circuit depth is limited. The com-
plexity can be improved to be polylogarithmic with al-
gorithms beyond the product formula framework [3, 5–
7, 9, 15–17, 20, 23]. But these methods require ancillary
qubits and oracles based on multi-qubit entangling gates,
so their implementations are actually more challenging
for intermediate-scale problems and near-term quantum
devices, as shown in Ref. [10].

We propose an unbiased random circuit compiler
(URCC) for general time-dependent Hamiltonian simu-
lation. The accuracy can be arbitrarily small by just
increasing the number of measurements. For each run
of the quantum circuit, the single- and two-qubit gate
count of our method is O(⇤2), where ⇤ is the time
integration of total Hamiltonian strength. In particu-
lar, the gate count is independent of the accuracy and
number of terms in the Hamiltonian. As a comparison,
the continuous qDRIFT method [7] (the generalization
of qDRIFT [8] to time-dependent cases) has gate count
O(⇤2/"), while measurement repetition O(1/"2) is com-
parable to our method . Moreover, our method is com-
patible with simultaneous measurement techniques, such
as classical shadow [13] and group measurement [22].

Algorithm overview.— Given a time-dependent
Hamiltonian H(t) and quantum state | 0i, the quan-

⇤xiaoyuan@pku.edu.cn

tum state after time ⌧ > 0 is | ⌧ i = U(0, ⌧)| 0i,
where U(0, ⌧) = T exp

⇥
�i

R ⌧
0 dtH(t)

⇤
. Here, T

is the time-ordering operator. We care about the
expectation value of observable Ô, i.e. hOi =

tr
⇣
ÔU(0, ⌧)| 0ih 0|U(0, ⌧)†

⌘
. Our algorithm outputs

an unbiased estimator for hOi by the combination of three
di↵erent techniques: Dyson expansion of time-dependent
evolution [11], classical unbiased continuous sampling of
the linear combination of unitaries [12], and leading or-
der rotation [26]. The main di↵erence from existing
Dyson expansion based algorithms [7, 9, 15, 16] is that we
are performing classical sampling according to the exact
Dyson expansion without truncation, which is the origin
of the unbiased property of our method. Although there
are infinite number of terms in the expansion, such sam-
pling can be realized e�ciently by a poisson distribution
and a continuous sampling techniques (see Algorithm 1,2
in the technical version).

An overview of our algorithm is provided in Fig. 1(a).
Based on the Dyson expansion to infinite orders, we first
rewrite the evolution as the linear combination of Pauli
strings (LCPS). Then, we develop an unbiased and e�-
cient circuit sampling algorithm according to the LCPS.
The variance of such LCPS-based sampling is, however,
exponential with respect to the time integral of Hamilto-
nian strength. We then apply the leading order rotation
technique, which combines the zero and the first order of
the Dyson expansion into a rotation operator with O(n)
circuit depth. This reduces the variance of unbiased sam-
pling from exponential to polynomial.

The process above works for evolution with small ⌧ .
For large ⌧ , we divide the total evolution into Nseg seg-
ments. Let ⇤ =

R ⌧
0 htot(t)dt, to control the total variance

to a constant value, it su�ce to set Nseg = O(⇤2). There-
fore, the total single- and two-qubit gate count of our
algorithm is O(⇤2n) for n qubit systems, which is inde-
pendent of ". If we further assume that the Hamiltonian
is k-local, the gate count becomes Ngate = O(⇤2k).

Numerical examples.— We provide two numerical
examples and compare the performance to c-qDRIFT.
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om}

LCPS for H(t)
Dyson expansion

Leading order rotation

measurement outcomes omOest

Eq.(9) (small variance)

Unbiased Random circuit compiling
(Algorithm.2+ Fig.1(b))

Eq.(6)

(a)

(b)

LCPS for U (large variance)

Figure 1: (a) Overview of the URCC algorithm for short-
time evolution. See technical version for details.

The first example is the many-body spin model un-
der interaction picture. The e↵ective Hamiltonian
has the form H̃(t) = J/2 (cos(2!t)G1 + sin(2!t)G2),
where G1 =

Pn�1
k=1 X̂kX̂k+1 + ŶkŶk+1 and G2 =Pn�1

k=1(�1)k(X̂kŶk+1 � ŶkX̂k+1). Fig. 2(a) shows the
error versus M under fixed single- and two-qubit gate
counts for both algorithms. The error of our method al-
ways reduces with increasing M . On the other hand, the
error for c-qDRIFT converges to a fixed value. In partic-
ular, we observe > 10 times reduction of the error with
M > 107. Fig. 2(c), shows the single- and two-qubit gate
count ratio for c-qDRIFT to URCC method under dif-
ferent M . The gate count ratio is larger for larger M .
With M / 1/"2

tot, the gate count ratios always increase
with 1/"tot. For fixed M , the gate count ratios also in-
crease in general, but drop slightly when "tot is close to
the sampling error, i.e. the minimal error that can be
achieved.

Similar to qDRFIT, the gate count of the URCC
method is independent of the number of terms in Hamil-
tonian. So it is suitable for models with large P , such as
molecular systems. Here, we take the adiabatic ground
state preparation for H2 [4] as an example. The observ-
able for energy is the Hamiltonian itself, which should
be decomposed into Pauli strings. URCC is compatible
with measurement techniques, and we take the grouping
measurements as an example [22] to reduce the number
of measurements. In Fig. 2(b), we demonstrate the to-
tal error versus M for c-qDRFIT and URCC methods.
Fig. 2(d) demonstrates the single- and two-qubit gate
count ratios. Similar to the spin model example, our
method shows significant improvement.

Significance.— For the first time, we developed a
quantum algorithm for time-dependent Hamiltonian sim-
ulation with gate count independent of simulation accu-
racy. Our algorithm is one of the most promising meth-
ods in the NISQ era, especially for many-body and molec-
ular systems. First, arbitrary accuracy can be achieved
only by increasing the sampling size, while keeping qubit
and gate numbers unchanged. This is a significant ad-
vantage for NISQ hardware, where the qubit and gate
numbers are limited. Second, the gate count is indepen-
dent of the number of terms in the Hamiltonian, which
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Figure 2: Numerical simulation results. (a) and (b): Er-
ror versus the number of measurements. (c) and (d):
Single- and two-qubit gate count ratios for di↵erent M .
(a) and (c) and correspond to the spin model in inter-
action picture. (b) and (d) correspond to the adiabatic
ground state preparation for H2.

is typically a large value for many-body and molecular
systems.
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Abstract. Quantum computing can provide speedups in solving many problems as the evolution of a
quantum system is described by a unitary operator in an exponentially large Hilbert space. Such unitary
operators change the phase of their eigenstates and make quantum algorithms fundamentally different
from their classical counterparts. Based on this unique principle of quantum computing, we develop
a new algorithmic toolbox “Quantum phase processing” that can directly apply arbitrary trigonomet-
ric transformations to eigenphases of a unitary operator. The quantum phase processing circuit is con-
structed simply, consisting of single-qubit rotations and controlled-unitaries, typically using only one
ancilla qubit. Besides the capability of phase transformation, quantum phase processing in particular
can extract the eigen-information of quantum systems by simply measuring the ancilla qubit, making
it naturally compatible with indirect measurement. Quantum phase processing complements a power-
ful framework known as quantum singular value transformation and leads to more intuitive and efficient
quantum algorithms for solving problems that are particularly phase-related. As a notable application, we
propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires
the fewest ancilla qubits and matches the best performance so far. We further exploit the power of our
method by investigating a plethora of applications in Hamiltonian simulation, entanglement spectroscopy
and quantum entropies estimation, demonstrating improvements or optimality for almost all cases. Note
that the technical version is attached.

Keywords: Quantum signal processing, quantum phase estimation, quantum entropies estimation

Introduction. Quantum computing has been applied
in areas such as breaking cryptographic systems [1],
searching databases [2], and simulating quantum sys-
tems [3]. Recent advances in quantum computing show
that quantum singular value transformation (QSVT) [4]
formalizes a unified framework of the most known quan-
tum algorithms [5], leading to various applications [6–
13]. The framework of QSVT was originated from a
technique called quantum signal processing (QSP) [14,
15]. By interleaving single-qubit signal unitaries and
signal processing unitaries, QSP is able to implement a
transformation of the signal in SU(2).

There are several conventions of QSP varied by choos-
ing different signal unitaries. In the construction of
QSVT, Gilyén et al. [4] chose the signal unitary to be
a reflection, then extended the signal unitary to a multi-
qubit block encoding with the idea of qubitization [16],
which naturally leads to a Chebyshev polynomial trans-
formation on the singular values of a block-encoded lin-
ear operator. In recent work, Yu et al. [17] developed
a new convention of QSP by choosing the signal uni-
tary as a z-rotation and adding an extra signal process-
ing unitary. Such a modified QSP could implement ar-
bitrary complex trigonometric polynomials, which natu-
rally corresponds to the phase transformation. The abil-
ity of processing phase plays a central role in many quan-
tum algorithms. For example, phase kickback, where the
phase of the target qubits is kicked back to the ancilla

⇤wangxin73@baidu.com

qubit, is intensively used almost everywhere in quantum
computing. With the help of controlled-unitary opera-
tors, many quantum algorithms utilize phase kickback
to extract information of large unitary operations from
phases of ancilla qubits, also known as indirect measure-
ments, such as the quantum phase estimation [18, 19],
the swap test [20, 21], the Hadamard test [22], and the
one-clean-qubit model [23]. Hence, it is of great interest
and necessity to explore a generalized toolbox based on
the trigonometric QSP that could interpret those phase-
related quantum algorithms, which may further lead to
improved performances or new quantum algorithms.

Overview of results. We develop an algorithmic tool-
box “Quantum phase processing” and investigate its ap-
plications in quantum computing. In particular, we es-
tablish the following:

1. We leverage QPP to design an efficient quantum
phase estimation that uses only one ancilla qubit
and matches the best query complexity so far. QPP
enables the algorithm to directly classify phases of
a unitary and then locate the target phase by an in-
tuitive idea of binary search, making it fundamen-
tally different from the traditional phase estima-
tion based on quantum Fourier transform.

2. We propose a generic QPP-based method of quan-
tum entropies estimation that demonstrates im-
provements over previous works. In particular, the
QPP-based quantum entropies estimation does not
require the quantum amplitude estimation, signifi-
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cantly reducing the demand for quantum resources
compared to the related algorithms using QSVT,
which is more friendly to near-term quantum de-
vices than previous methods.

3. We further showcase applications of QPP in
Hamiltonian simulation. The method of Hamil-
tonian simulation matches the previously optimal
query complexity.

Quantum phase processing. Our first contribution is
to develop a generic toolbox of quantum phase process-
ing for higher dimension systems, which generalizes the
trigonometric QSP [17] to process a multi-qubit unitary
U by replacing the signal unitary Rz(x) with controlled-
U and its inverse. The quantum phase processing circuit
of the unitary U is defined as

V
L

!,✓,�(U) := R
(0)
z (!)R(0)

y (✓0)R
(0)
z (�0)

"
L/2Y

l=1


U

† 0
0 I

�
R

(0)
y (✓2l�1)R

(0)
z (�2l�1)


I 0
0 U

�
R

(0)
y (✓2l)R

(0)
z (�2l)

#
, (1)

where R
(0)
y and R

(0)
z are rotation gates applied on

the first qubit. Then we could measure the first an-
cilla qubit and achieve an evolution of the input state
upon post-selection of the measurement result being
|0i. The intuition lying behind the extension is that
controlled-U and its inverse are naturally multi-qubit
analogs of Rz gates, which was frequently used in pre-
vious works [10, 15, 16, 24].

Theorem 1 (Quantum phase evolution) Given an n-

qubit unitary U =
P2n�1

j=0 e
i⌧j |�jih�j | and an n-

qubit state | i =
P2n�1

j=0 ↵j |�ji, for any trigonomet-

ric polynomial F (x) =
P

L

j=�L
cje

ijx
with kck1 

1, there exists a QPP V (U) of 2L layers such that

(h0|⌦ I
⌦n)V (U) |0, i =

P2n�1
j=0 ↵jF (⌧j) |�ji.

The theorem shows that QPP can act in a similar man-
ner to QSVT, but transforming eigenphases of a unitary
rather than singular values of an embedded linear oper-
ator. Moreover, the achievable transformation of QPP
is arbitrary complex trigonometric polynomial, which
overcomes the parity constraint of Chebyshev polyno-
mials in QSVT without using linear-combination-of-
unitaries. Other than implementing the phase evolution,
QPP is natively compatible with the indirect measure-
ment, which could directly extract eigen-information of
a unitary by measuring the single ancilla qubit.

Theorem 2 (Quantum phase evaluation) Given an n-

qubit unitary U =
P2n�1

j=0 e
i⌧j |�jih�j | and an n-

qubit state ⇢, for any real-valued trigonometric poly-

nomial F (x) =
P

L

j=�L
cje

ijx
with kck1  1,

there exists a QPP V (U) of L layers such that ⇢̂ =
V (U)(|0ih0| ⌦ ⇢)V (U)† satisfies tr

⇥
(Z(0)

⌦ I) · ⇢̂
⇤
=P2n�1

j=0 pjF (⌧j), where pj = h�j | ⇢ |�ji and Z
(0)

is a

Pauli-Z observable acting on the first qubit.

Such a useful feature enables QPP to process and ex-
tract the eigen-information without quantum amplitude

estimation as used in QSVT, which significantly reduces
the demand for quantum resources and hence is more
friendly to near-term quantum devices. Next we will
show that QPP is a powerful tool for designing efficient
and intuitive quantum algorithms, including quantum
phase estimation, Hamiltonian simulation, and quantum
entropies estimation.

Quantum phase estimation. To show the power of
QPP on solving phase-related problems, our second con-
tribution is to propose a new quantum phase estima-
tion algorithm without using quantum Fourier transform,
which requires only one ancilla qubit and matches the
best performance so far. The main idea is to find a
trigonometric polynomial that approximates a step func-
tion, so that we could use QPP to locate the eigen-
phases by a binary search procedure. Specifically, given
a unitary U and an eigenstate |�i with eigenvalue e

i⌧ ,
for any � 2 (0,⇡) and " 2 (0, 1), there exists a
QPP V (U) with L = O( 1

� log 1
"
) layers such that

V (U) |0,�i =
p
1� " |0,�i+

p
" |1,�i if ⌧ 2 [�,⇡ �

�), and V (U) |0,�i =
p
" |0,�i +

p
1� " |1,�i if

⌧ 2 (�⇡ + �,��]. Measuring the ancilla qubit de-
cides which subinterval the eigenphase ⌧ belongs to with
high probability. Next we apply a phase shift ei⇣ to U

to move to the middle point of the designated subinter-
val, then V (ei⇣U) determines the next subinterval. Re-
peating the binary search procedure shrinks the phase
interval until QPP cannot decide next subintervals, i.e.
⌧ 2 [⇣l, ⇣r] and |⇣r � ⇣l| ⇡ 2�. Then we apply QPP
on (ei⇣U)d for some appropriate integer d so that the
binary search procedure can continue to locate the am-
plified phase d⌧ 2 [d⇣l, d⇣r]. Repeating the entire proce-
dure above gives an estimation of phase ⌧ up to required
precision. We establish the following result describing
the QPP-based quantum phase search algorithm: Given
a unitary U and an eigenstate |�i of U with eigenvalue
e
i⌧ , there exists an algorithm that uses one ancilla qubit

and eO
�
1
�
log(1

"
)
�

queries to controlled-U to obtain an
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estimation of ⌧ up to � precision with probability at least
1� ".

Quantum entropies estimation. Our third contri-
bution is to propose a generic method of QPP-based
quantum entropies estimation that demonstrate improve-
ments over previous works. Our method assumes ac-
cess to a purification oracle U⇢ that prepares a purifi-
cation of a quantum state ⇢. Following [16], one can
construct a qubitized block encoding Û⇢ such that eigen-
values {pj} of ⇢ and eigenphases {⌧j}j of Û⇢ corre-
late as pj = cos(±⌧j) under an appropriate subspace.
Note that quantum entropies of a quantum state ⇢ can
be interpreted as the corresponding classical entropies
of the eigenvalues of ⇢. The main idea of our QPP-based
method is to find polynomials that approximate the clas-
sical entropic functions, then quantum entropies can be
naturally estimated via phase evaluation of Û⇢ by The-
orem 2. We present the general method of quantum en-
tropies estimation as follows.

Theorem 3 Suppose ⇢ and � are n-qubit states. Given

an oracle access to a qubitized block encoding Û�

of � with m ancilla qubits, for any real-valued poly-

nomial f(x) =
P

L

k=0 cjx
k

with kck1  1, there

exists a QPP circuit V (Û�) of L layers such that

⇢̂ = V (Û�)(|0⌦(m+1)
ih0⌦(m+1)

| ⌦ ⇢)V (Û�)† satis-

fies tr
⇥
(Z(0)

⌦ I) · ⇢̂
⇤
= tr(⇢f(�)) , where f(�) :=P

L

k=0 cj�
k
.

Let � > 0 be a lower bound of non-zero eigenvalues
of ⇢ and �, we select a polynomial f(x) that approx-
imates the function ln(x) on [�, 1] to estimate the von
Neumann entropy S(⇢) and the quantum relative entropy
D(⇢ k �). For estimating the quantum ↵-Rényi entropy
S↵(⇢) with ↵ 2 (0, 1)[(1,+1), we select a polynomial
f(x) that approximates the function x

↵�1 on [�, 1]. In
this application of QPP on entropies estimation, we fully
leverage its compatibility with the indirect measurement,
which enable us to extract entropies by simply measur-
ing the first ancilla qubit.

We here remark the advantages of our method. Com-
pared with previous works that used QSVT and ampli-
tude estimation to estimate von Neumann entropies [6,
25], the QPP method has a higher computational over-
head but a shorter circuit depth and fewer ancilla qubits.
For quantum ↵-Rényi entropies where ↵ is an integer,
QPP establishes an efficient algorithm for entanglement
spectroscopy that significantly reduces the width of cir-
cuit compared to previous algorithms [26, 27], from
⇥(n↵) to 4n + 1 without using qubit resets [28]. For
a more general case that ↵ is a non-integer, the QPP
method improves the query complexity in [29], in which
the authors applied the DQC1 model on QSVT.

Hamiltonian simulation. We then utilize QPP to
solve the Hamiltonian simulation problem with access
to the block encoding of a Hamiltonian, which matches
the optimal query complexity. By the qubitization tech-
nique [16], one could construct a qubitized block encod-
ing ÛH such that eigenvalues of H and eigenphases of
ÛH correlate as � = cos(±⌧�). Since the time-evolution
operator e

�iHt can be decomposed as e
�i�t, the main

idea is applying QPP on ÛH to transform eigenphases as
⌧� 7! e

�i�t. We select the trigonometric polynomial
F (x) to approximate the function f(x) = e

�i cos(x)t

with desired precision. Then applying the trigonometric
polynomial F (x) on each eigenphase ⌧� approximates
f(⌧�) = e

�i cos(⌧�)t = e
�i�t, which provides a pre-

cise approximation of the time-evolution operator e�iHt.
Since the method follows the same idea as in [16], the
query complexity also matches the optimal result.

Comparison to related works. QPP generalizes the
trigonometric QSP by extending the Rz rotation in-
stead of the reflection in the Chebyshev-based QSP as
QSVT did [4]. Due to the distinctions between trigono-
metric and Chebyshev-based QSP, our results show
that QPP essentially complements the existing QSVT
paradigm. To be specific, QPP implements arbitrary
complex trigonometric polynomial, which overcomes
the parity constraints in QSVT and thus exempts the
use of linear-combination-of-unitaries in certain cases.
Notably, QPP could work without amplitude estimation,
which requires shorter circuits and less coherence time
than QSVT, and hence might be more friendly to near-
term quantum hardware. Further, QPP natively inherits
the trick of phase kickback, making it suitable for de-
signing phase-related quantum algorithms.

Concluding remarks. QPP is a powerful tool for
unifying and designing quantum algorithms related to
eigenphase transformation and processing, which com-
plements the framework of QSVT. Moreover, QPP is
naturally compatible with indirect measurements, which
could extract desired eigen-information by measuring a
single ancilla qubit. By implementing different trigono-
metric polynomials, we have applied QPP to solve var-
ious problems including phase estimation, quantum en-
tropies estimation, and Hamiltonian simulation, which
recover or improve prior best results. Overall, the QPP
algorithmic toolbox provides a new perspective of un-
derstanding and designing phase-related quantum algo-
rithms for physics, chemistry, machine learning and be-
yond.
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Abstract. The search for the ground state of a quantum system Hamiltonian is a typical application of a
quantum computer even though the computational complexity is of QMA-hard. In practice, knowing some
partial information about the studied system, one could simplify such problem. Here, we show analytically
that there exists an exponential amplitude amplification at every step of the quantum iterative power
algorithms as compared to the quantum imaginary time evolution algorithm, within the constraint the
quantum ansatz circuit used. We also provide numerical evidence to support our analytical results.

Keywords: Quantum iterative power algorithms, ground state search, quantum algorithms

1 Introduction

Quantum computers promise exponential speedup over
classical counterparts in solving certain tasks [1]. When
fault-tolerant general-purpose quantum computers be-
come available, adiabatic state preparation and quan-
tum phase estimation may become the standard quan-
tum routines for determining the ground-state energy of
sophisticated physical Hamiltonians [2, 3, 4, 5]. How-
ever, such schemes are very costly in terms of required
overhead and hence are not suitable for the current era
of noisy intermediate-scale quantum (NISQ) hardware
[6, 7, 8, 9, 10]. This limitation of quantum comput-
ers today shifts central attention towards low-depth hy-
brid quantum-classical algorithms, known as NISQ algo-
rithms [11, 12, 13, 14]. The variational quantum eigen-
solver (VQE) [15, 16] serves as a prototypical example,
as an algorithm that computes the expectation value of a
Hamiltonian, which is measured on a quantum machine,
resulting in a cost function with a set of variational pa-
rameters, which are optimized using classical computers.
The process is repeated until the cost function reaches
its local minimum.

On the other hand, the variational quantum simula-
tor [17] has been proposed for hybrid quantum-classical
simulations of quantum dynamics based on the McLach-
lan’s variational principle [18, 19], including quantum
imaginary time evolution to prepare ground states [18,

⇤thiha.kyaw@lge.com
†msoley@wisc.edu
‡victor.batista@yale.edu
§alan@aspuru.com

19, 20]. Here, we introduce the “quantum iterative power
algorithm” inspired by the variational quantum simulator
to provide an accelerated method to the general problem
of global optimization with near term quantum comput-
ers.

Global optimization is central to many important prob-
lems in science and engineering, from back-propagation
in machine learning [21] and molecular geometry opti-
mization/protein structure prediction [22, 23] to route
planning and control of drone/unmanned aerial vehicles
[24]. However, the brute force approach of considering
each possible element of a search space often becomes
computationally intractable. For example, identification
of the optimal configuration of a protein faces Levinthals
paradox [25] that the native configuration must be iden-
tified out of about 10300 possibilities. This has inspired a
broad array of both classical [26] and quantum comput-
ing [27] optimizers. Recently, we have shown that ten-
sor trains [28, 29] (also known as matrix product states)
provide a way to vastly reduce the computational cost
of exploring low-rank optimization cost functions, and
have employed the approach to introduce an optimization
algorithm that deterministically explores the full search
space in data-compressed form, the tensor-train “itera-
tive power algorithm (IPA)” [30].

We recognize the strategy of tensor-train IPA can be
implemented on quantum computers to enable global op-
timization of an even broader class of optimization prob-
lems. In tensor-train IPA, the optimization cost function
of interest is taken to be a potential energy surface. A
density is initialized in the potential energy surface, and
an oracle is iteratively applied in a sifting approach akin
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to imaginary time propagation (with infinite mass) to
localize the density as a delta function at the global min-
imum position. The expectation value of position then
gives the location of the global minimum. Tensor-train
IPA represents the density and potential energy surface
as tensor trains to avoid calculation of the cost function
everywhere in search space, which is e�cient for repre-
sentation of problems amenable to low-rank representa-
tions, such as prime factorization or molecular geome-
try optimization [30]. However, the tensor-train strategy
faces the roadblock that highly-correlated systems cannot
be e�ciently represented in low-rank tensor-train format.
In contrast, quantum computers excel in the simulation
of highly-correlated systems, as the coupling or entan-
glement between qubits is limited only by the choice of
ansatz [31].

The quantum iterative power algorithm (QIPA) takes
advantage of the high degree of entanglement possible on
quantum computers with a hybrid variational scheme. In
standard variational approaches such as the variational
quantum eigensolver (VQE) [15, 16], classical optimiz-
ers are used to determine the parameters of a quantum
circuit, which are used to prepare trial wavefunctions
measured to obtain expectation values. Analogously, the
variational quantum simulator [17] evolves the parame-
ters that define the time-evolved wavefunction by using
a classical computer that integrates the Euler–Lagrange
equation obtained from the Schrödinger equation with
the McLachlans variational principle. Parameters re-
quired by the Euler–Lagrange equation are obtained with
a quantum circuit with a small number of quantum op-
erations. QIPA generalizes the variational quantum ap-
proach to evolve an initial wavefunction such that the
corresponding probability density (modulus squared of
the wavefunction) becomes localized at the global mini-
mum of a given cost function. As in IPA, the propagator
of QIPA is not limited to the imaginary time quantum
propagator enabling the use of other propagators that are
maximal at the minimum of the cost function.

2 Results

We are interested in a particular case of global op-
timization involving the search of the ground state of a
Hamiltonian Ĥ: a problem that is typically solved by the
imaginary time propagation. QIPA can solve the same
problem analogously by using Ĥ in the normalized ora-
cle function f(Ĥ; ⌧) that acts on the initial wavefunction
| (0)i, as follows (onwards setting ~ = 1):

| (⌧)i = f(Ĥ; ⌧) | (0)i

=
U(⌧) | (0)ip

hU(⌧) (0)|U(⌧) (0)i
, (1)

where U(⌧) is an arbitrary oracle function with maximum
at the global minimum position of the potential energy
surface M , or here the Hamiltonian Ĥ. In the following,
we show that oracles defined by concatenated exponential
functions,

U(⌧) = Un(⌧) = �n(�Ĥ⌧)) = e
bn�n�1(�Ĥ⌧)

, (2)

with n � 1 the number of concatenated exponentials,
�0(y) = y, �1(y) = e

b1y,�2(y) = e
b2e

b1y

, . . . and real
constants b1, . . . , bn 6= 0, provide e↵ective QIPAs based
on a generalization of the McLachlans variational prin-
ciple. For example, the oracle defined by the double-

exponential U2(⌧) = e
e
�⌧Ĥ

is obtained by setting n = 2
and b2 = b1 = 1.

We remark that the choice of U1 corresponds to the
standard quantum imaginary time evolution (QITE),
which is widely used in quantum Monte Carlo algo-
rithms. Refs. [18, 19] show that one can perform imag-
inary time evolution [20] with unitary gates defined by
Eq. (1) with n = 1 that evolve the initial state according
to the Wick-rotated Schrödinger equation: @ | (⌧)i/@⌧ =

�

⇣
Ĥ � E1(⌧)

⌘
| (⌧)i , where E1(⌧) = h (⌧)| Ĥ | (⌧)i.

Here, we introduce a family of near-term quantum al-
gorithms defined by �n with n � 1 that evolve the ini-
tial state according to the generalized Wick-like-rotated
Schrödinger equation:

@

@⌧
| (⌧)i = �

nY

k=1

bk

⇣
Ĥ exp(Ŝn�1) (3)

� RehĤ exp(Ŝn�1) (⌧) |  (⌧)i
⌘

| (⌧)i ,

where Ŝn�1 =
P

n�1
k=1 bk�k�1(�Ĥ⌧).

With the choice n = 2 and b2 = b1 = 1 we arrive at a
double-exponential function and the following Wick-like-
rotated Schrödinger equation:

@

@⌧
| (⌧)i = �

⇣
Ĥe

�Ĥ⌧
� E2(⌧)

⌘
| (⌧)i , (4)

with E2(⌧) = h (⌧) | Ĥe
�Ĥ⌧

|  (⌧)i. According to the
McLachlan’s variational principle, when we constrain the
equation of motion as such

�

���
⇣
@/@⌧ +

h
Ĥe

�Ĥ⌧
� E2(⌧)

i⌘
| (⌧)i

���
2

= 0, (5)

the result is equivalent in finding a solution of the
linear equation:

P
m
Ak,m✓̇m = Ck, where the en-

tries of the symmetric and positive semi-definite ma-
trix A and the right-hand side C can be computed
on a quantum computer by deploying the Hadamard
tests. The parameters ✓ are updated with ✓̇ for a short
time step �⌧ > 0 according to the Euler method as
✓(⌧ + �⌧) ⇡ ✓(⌧) + ✓̇(⌧)�⌧ . The underlying assump-
tion is that we can approximate | (⌧)i by |�(✓(⌧))i =

U(✓1(⌧))U(✓2(⌧)) · · ·U(✓N✓
(⌧)) |0̄i, where |0̄i = |0i

⌦N

and U(✓1(⌧)), . . . , U(✓N✓
(⌧)) are parameterized quantum

circuits (PQCs), with ✓ = (✓1, . . . , ✓N✓
) the correspond-

ing real-valued parameter vector.

2.1 Exponential amplitude amplification

To precisely define what exponential amplitude ampli-
fication means, let us look at a general setting where we
are interested to find a unique ground state | i of a quan-
tum system Ĥ, assuming no degeneracy. In variational
quantum algorithms, one is interested to find the ground
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Figure 1: Ground-state energy optimization plot for a
flux tunable transmon at the external flux f = 0.25 as a
function of the number of iteration steps for both QIPA
and QITE, 4-qubit numerical experiments. In all results,
both QIPA and QITE are run with the same time step
�⌧ for a fair comparison. Here QIPA runs require signif-
icantly fewer steps to reach the convergence criteria.

state as close as possible using hybrid quantum-classical
approach and would end up obtaining an approxiate state
|�i, where |h |�i| = �. It was recently shown that
� / exp(�N ) [32] as the system size N grows for com-
plex chemical molecular systems. In a specific condition
that we are interested in (within the reach of the varia-
tional quantum ansatz), we prove analytically that � can
be amplified in exponentially less number of timesteps
defined by the ratio ◆ = �1,U1/�2,U1 . The number of
timesteps necessary to achieve more than 50% fidelity
with the final desired quantum state is upper bounded by
kQIPA/kQITE � log ◆/◆. We are aware that local quan-
tum Hamiltonian ground state problem is QMA-complete
and our approach does not change such problem’s com-
putational complexity class. We are merely pointing out
that there is a special case with the proposed algorithm,
where we are able to converge the solution in exponen-
tially less number of steps as compared to the existing
QITE program. See Fig.1 for additional numerical evi-
dences where we find the ground state energy of a flux
tunable transmon at the external flux parameter f = 0.25
as a function of the number of iteration steps for both
QIPA and QITE. QIPA runs require significantly fewer
steps to reach the set convergence criteria.

We remark that we used double-exponential oracle
function as a particular working example. Other types
of oracle functions such as U(⌧) = sech(Ĥ⌧) can also be
used. The choice of an oracle function highly depends on
the problem considered and the desired rate of conver-
gence. The change in oracle function would result in the
di↵erent convergence rate, with kQIPA/kQITE � ", with
" ⌧ 1.

2.2 Resource estimate and error analysis

In general, for an N -qubit system with Hamiltonian
Ĥ with NH � 1 Pauli words and a parameterized
wavefunction |�(✓)i (where ⌧ dependency ✓(⌧) is un-
derstood throughout) with N✓ � 1 parameters, the
upper bound for the number of distinct measurements
NA required to obtain the matrix A for QIPA via the
Hadamard test and the number of gates required are
N✓(N✓ � 1)/2 and GNA

� N✓, respectively. Such an
estimate can be understood as the number of times re-
quired to completely evaluate all the A matrix elements
since A is symmetric. Moreover, to obtain the vector
C, the number of measurements and gates required (as-
suming a second-order Taylor series expansion of the re-
quired function of the Hamiltonian) are N✓ and GNC

�

NH + N
2
H

+ N
3
H

+ N✓, respectively. ‘>’ sign in GNA

and GNC
holds when two-qubit gates are not parameter-

ized, while ‘=’ sign holds when they are parameterized.
Assuming a polynomial scaling: NH = O(N h), N✓ =
O(N d), the leading order becomes NA = O(N d) and
NC = O(Nmax(3h,d)), respectively. In comparison, in
QITE, one needs NA = O(N d) and NC = O(Nmax(h,d)),
with the same number of Hadamard test measurements
required. In general, QIPA yields improved convergence
in shorter times compared to QITE, requiring the same
number of Hadamard test operations and a higher num-
ber of unitary gates. More importantly, we have also esti-
mated that the error from the Taylor expansion causing
the major di↵erence between QITE and QIPA is given
by ✏ =

p
�2�⌧2 + O(�⌧3)  ��⌧ + O(�⌧3/2), where

�2 = h (t)| ((1 + e
�Ĥ�⌧ )2/(�⌧2) + 2(e�Ĥ�⌧

� 1)Ĥ/�⌧ �

(e�Ĥ�⌧
� 2)Ĥ2) | (t)i.

3 Conclusion

In summary, we have presented a family of general-
ized imaginary-time-like near-term quantum algorithms
which we coin the “quantum iterative power algorithm,”
inspired by its classical counterpart. (Plural “algo-
rithms” is used since depending on the choice of ora-
cle function, the performance and behaviour will di↵er.
However, they all fall under the same family.) We have
analyzed its convergence rate. One caveat is that since
the proposed algorithm relies heavily on the ansatz cir-
cuit used, its convergence rate is di�cult to discern in
the generic case. We have also determined QIPA’s es-
timated resource count as well as analytical error anal-
ysis, and demonstrated it can outperform the quantum
imaginary time evolution while it reduces the number of
required iterations, at the cost of a moderate increase
in the number of gates. We note that even when the
initial quantum state has an exponentially small overlap
with the final target state, QIPA needs only a polynomial
number of steps to reach convergence. This is particu-
larly important when starting with an initial state de-
fined by a uniform superposition, or a low-rank reference
state for a highly correlated system [32]. Furthermore,
we have used the three numerical case studies – quantum
computer-aided design of a superconducting transmon,
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to highlight how QIPA outperforms QITE.
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Abstract. Recently, Aaronson, Atia, and Susskind (arXiv:2009.07450) showed that detecting interference
between two orthogonal states is as hard as swapping these states. While their original motivation was
quantum gravity, we show its applications in quantum cryptography.

1. We construct the first public key encryption scheme from cryptographic non-abelian group actions.
This resolves an open question posed by Ji et al. (TCC ’19).

2. We give a simple and e�cient compiler that converts the flavor of quantum bit commitments, showing
that two di�erent notions of quantum bit commitment are essentially the same. Our compiler calls
the base scheme only once. Previously, all known compilers call the base schemes polynomially many
times (Crépeau et al., Eurocrypt ’01 and Yan, Asiacrypt ’22).

Keywords: Cryptography, Public-key encryption, Quantum bit commitment, Group action

1 Introduction
When can we e�ciently distinguish a superposition of

two orthogonal states from their probabilistic mix? They
can be certainly distinguished if we drop the e�ciency,
but with the restricted resource it is unclear.

A folklore answer to this question was that we can
distinguish them whenever we can map one of the states
to the other. Recently, Aaronson, Atia and, Susskind [1]
gave a complete answer to the question. They confirmed
that the folklore was almost correct but what actually
characterizes the distinguishability is the ability to swap

the two states rather than the ability to map one of the
states to the other.1

We explain their result in more detail by using the ex-
ample of Schrödinger’s cat following [1]. Let |AliveÍ and
|DeadÍ be orthogonal states, which can be understood
as the states of alive and dead cats in Schrödinger’s cat
experiment. Then, the authors show that one can e�-
ciently swap |AliveÍ and |DeadÍ, or more formally there
is an e�ciently computable unitary U such that

U |DeadÍ = |AliveÍ and U |AliveÍ = |DeadÍ

if and only if there is an e�cient distinguisher that dis-
tinguishes two states

|ÂÍ = |AliveÍ + |DeadÍÔ
2

and |„Í = |AliveÍ ≠ |DeadÍÔ
2

with certainty. Note that distinguishing |ÂÍ and |„Í is
equivalent to distinguishing |AliveÍ+|DeadÍÔ

2 and the uniform

úminkihhan@kias.ac.kr
†tomoyuki.morimae@yukawa.kyoto-u.ac.jp
‡takashi.yamakawa.ga@hco.ntt.co.jp
1We remark that the meaning of “swap” here is di�erent from

that of the SWAP gate as explained below.

probabilistic mix of |AliveÍ and |DeadÍ.2
Moreover, they showed that the equivalence is robust

in the sense that a partial ability to swap |AliveÍ and
|DeadÍ, i.e.,

| ÈDead| U |AliveÍ + ÈAlive| U |DeadÍ | = �

for some � > 0 is equivalent to the distinguishability
of |ÂÍ and |„Í with advantage � = �/2. They give an
interpretation of their result that observing interference
between alive and dead cats is “necromancy-hard”, i.e.,
at least as hard as bringing a dead cat back to life.

While their original motivation was from quantum grav-
ity, we find their result interesting from cryptographic
perspective. Roughly speaking, the task of swapping
|AliveÍ and |DeadÍ can be thought of as a kind of search
problem where one is given |AliveÍ (resp. |DeadÍ) and
asked to “search” for |DeadÍ (resp. |AliveÍ). On the other
hand, the task of distinguishing |ÂÍ and |„Í is apparently
a decision problem.

From this perspective, we can view their result as a
“search-to-decision” reduction. Search-to-decision reduc-
tions have been playing the central role in cryptography,
e.g., the celebrated Goldreich-Levin theorem [13]. Based
on this observation, we tackle the following two problems
in quantum cryptography.3

Public key encryption from non-abelian group
actions. Brassard and Yung [5] initiated the study of
cryptographic group actions. We say that a group G acts
on a set S by an action ı : G ◊ S æ S if the following
are satisfied:

2The distinguishing advantage is (necessarily) halved. This can
be seen by observing that the mixture of |ÂÍ and |„Í is the same
with the mixture of |AliveÍ and |DeadÍ.

3It may be a priori unclear why these problems are related to
[1]. This will become clearer in the full version.
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1. For the identity element e œ G and any s œ S, we
have e ı s = s.

2. For any g, h œ G and any s œ S, we have (gh) ı s =
g ı (h ı s).

For a cryptographic purpose, we assume (at least) that the
group action is one-way, i.e., it is hard to find gÕ such that
gÕ ı s = g ı s given s and g ı s. The work of [5] proposed
instantiations of such cryptographic group actions based
on the hardness of discrete logarithm, factoring, or graph
isomorphism problems.

Cryptographic group actions are recently gaining a
renewed attention from the perspective of post-quantum

cryptography. Ji et al. [17] proposed new instantiations
of cryptographic group actions based on general linear
group actions on tensors. Alamati et al. [2] proposed
isogeny-based instantiations based on earlier works [9, 7].
Both of them are believed to be secure against quantum
adversaries.

An important di�erence between the instantiations in
[17] and [2] is that the former considers non-abelian groups
whereas the latter considers abelian groups.

Abelian group actions are particularly useful because
they give rise to a non-interactive key exchange protocol
similar to Di�e-Hellman key exchange [11]. Namely,
suppose that s œ S is published as a public parameter,
Alice publishes gA ı s as a public key while keeping gA

as her secret key, and Bob publishes gB ı s as a public
key while keeping gB as his secret key. Then, they can
establish a shared key gA ı (gB ı s) = gB ı (gA ı s). On
the other hand, an eavesdropper Eve cannot know the
shared key since she cannot know gA or gB by the one-
wayness of the group action.4 This also naturally gives a
public key encryption (PKE) scheme similar to ElGamal
encryption [12].

The above construction does not work if G is a non-
abelian group. Indeed, cryptographic applications given
in [17] are limited to Minicrypt primitives [16], i.e., those
that do not imply PKE in a black-box manner. Thus,
[17] raised the following open question:5

Question 1: Can we construct PKE from

non-abelian group actions?

Flavor conversion for quantum bit commitments.
Commitments are one of the most important primitives in
cryptography. It enables one to “commit” to a (classical)
bit6 in such a way that the committed bit is hidden from

4For the actual security proof, we need a stronger assumption
than the one-wayness. This is similar to the necessity of decisional
Di�e-Hellman assumption, which is stronger than the mere hardness
of the discrete logarithm problem, for proving security of Di�e-
Hellman key exchange.

5The statement of the open problem in [17] is quoted as follows:
“Finally, it is an important open problem to build quantum-secure
public-key encryption schemes based on hard problems about GLAT
or its close variations.” Here, GLAT stands for General Linear
Action on Tensors, which is their instantiation of non-abelian group
action. Thus, Question 1 is slightly more general than what they
actually ask.

6We can also consider commitments for multi-bit strings. But
we focus on bit commitments in this paper.

other parties before the committer reveals it, which is
called the hiding property, and the committer cannot
change the committed bit after sending the commitment,
which is called the binding property.

One can easily see that it is impossible for classical

commitments to achieve both hiding and binding proper-
ties against unbounded-time adversaries. It is known to
be impossible even with quantum communication [18, 19].
Thus, it is a common practice in cryptography to re-
lax either of them to hold only against computationally
bounded adversaries. We say that a commitment scheme
is computationally (resp. statistically) binding/hiding,
if it holds against (classical or quantum depending on
the context) polynomial-time (resp. unbounded-time) ad-
versaries. Then, there are the following two flavors of
commitments: One is computationally hiding and statis-
tically binding, and the other is computationally binding
and statistically hiding.7 In the following, whenever we
require statistical hiding or binding, the other one should
be understood as computational one since it is impossible
to statistically achieve both of them as already explained.

In classical cryptography, though commitments of both
flavors are known to be equivalent to the existence of
one-way functions [20, 15, 14], there is no known direct
conversion between them that preserves e�ciency or the
number of interactions. Thus, their constructions have
been studied separately.

Recently, Yan [21], based on an earlier work by Cré-
peau, Légaré, and Salvail [10], showed that the situation is
completely di�erent for quantum bit commitments, which
rely on quantum communication between the sender and
receiver. First, he showed a round-collapsing theorem,
which means that any interactive quantum bit commit-
ments can be converted into non-interactive one. Then
he gave a conversion that converts the flavor of any non-
interactive quantum bit commitments.

Though Yan’s conversion gives a beautiful equivalence
theorem, a disadvantage of the conversion is that it does
not preserve the e�ciency. Specifically, it calls the base
scheme polynomially many times (i.e., �(⁄2) times for
the security parameter ⁄). Then, it is natural to ask the
following question:

Question 2: Is there an e�ciency-preserving

flavor conversion for quantum bit commit-

ments?

2 Our Result
We answer both questions a�rmatively using (a gener-

alization of) the result of [1].
For Question 1, we construct a PKE scheme with

quantum ciphertexts based on non-abelian group actions.
This resolves the open problem posed by [17].8 Our main

7Of course, we can also consider computationally hiding and
computationally binding one, which is weaker than both flavors.

8The statement of their open problem (quoted in Footnote 5)
does not specify if we are allowed to use quantum ciphertexts. Thus,
we claim to resolve the problem even though we rely on quantum
ciphertexts. If they mean post-quantum PKE (which has classical
ciphertexts), this is still open.
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construction only supports classical one-bit messages, but
we can convert it into one that supports quantum multi-
qubit messages by hybrid encryption with quantum one-
time pad as shown in [6]. Interestingly, ciphertexts of our
scheme are quantum even if messages are classical. We
show that our scheme is IND-CPA secure if the group
action satisfies pseudorandomness, which is a stronger
assumption than the one-wayness introduced in [17]. In
addition, we show a “win-win” result similar in spirit to
[22]. We show that if the group action is one-way, then
our PKE scheme is IND-CPA secure or we can construct
one-shot signatures [3] using the group action.9 Note
that constructing one-shot signatures has been thought
to be a very di�cult task. The only known construction
is relative to a classical oracle and there is no known con-
struction in the standard model. Even for its significantly
weaker variant called tokenized signatures [4], the only
known construction in the standard model is based on
indistinguishability obfuscation [8]. Given the di�culty of
constructing tokenized signatures, let alone one-shot signa-
tures, it is reasonable to conjecture that our PKE scheme
is IND-CPA secure if we built it on “natural” one-way
group actions. Our PKE scheme is constructed through
an abstraction called swap-trapdoor function pairs (STFs),
which may be of independent interest.

For Question 2, We give a new conversion between
the two flavors of quantum commitments. That is, for
X, Y œ {computationally,statistically,perfectly}, if the
base scheme is X-hiding and Y-binding, then the resulting
scheme is Y-hiding and X-binding. Our conversion calls
the base scheme only once in superposition. Specifically,
if Qb is the unitary applied by the sender when commit-
ting to b œ {0, 1} in the base scheme, the committing
procedure of the resulting scheme consists of a single call
to Q0 or Q1 controlled by an additional qubit (i.e., appli-
cation of a unitary such that |bÍ |ÂÍ ‘æ |bÍ (Qb |ÂÍ)) and
additional constant number of gates. For the security
proof of our conversion, we develop a generalization of
the result of [1] considering auxiliary quantum inputs.

We show several applications of our conversion. We re-
mark that our conversion does not give any new feasibility
result since similar conversions with worse e�ciency were
already known [10, 21]. However, our conversion gives
schemes with better e�ciency in terms of the number of
calls to the building blocks.
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Abstract. Privacy amplification is the key step to guarantee the security of quantum communi-
cation. The existing security proofs require accumulating a large number of raw key bits for privacy
amplification. This is similar to block ciphers in classical cryptography that would delay the final
key generation since an entire block must be accumulated before privacy amplification. Moreover,
any leftover errors after information reconciliation would corrupt the entire block. By modifying the
security proof based on quantum error correction, we develop a stream privacy amplification scheme,
which resembles the classical stream cipher. This scheme can output the final key in a stream way,
prevent error from spreading, and hence can put privacy amplification before information reconcili-
ation. The stream scheme can also help to enhance the security of trusted-relay quantum networks
and improve the practicality of randomness extraction for quantum random number generators.

I. INTRODUCTION

Quantum key distribution (QKD) aims at generating
information-theoretic secure key strings between two distant
parties by exploiting properties of quantum mechanics [1, 2].
The postprocessing of QKD can be divided into quantum bit
error correction and phase error correction [3], corresponding
to information reconciliation and privacy amplification [4].
Between them, privacy amplification is the key step to guar-
antee the security of quantum communication [5, 6]. The
existing security proofs require accumulating a large number
of raw key bits for privacy amplification. This is similar to
block ciphers in classical cryptography that would delay the
final key generation since an entire block must be accumu-
lated before privacy amplification. Moreover, any leftover
errors after information reconciliation would corrupt the en-
tire block.
To solve these problems, we reexamine the security proof

for QKD based on quantum error correction [3], where pri-
vacy amplification is reduced from phase error correction
[4]. As a clear and simple showcase, we mainly focus on
the Bennett-Brassard-1984 QKD protocol (BB84) [1] and go
back to the original security proof by Lo and Chau [3]. By
rearranging the phase error correcting gates and error syn-
drome measurement, we divide privacy amplification into
two steps: (a) generate pseudo-random bits from a pre-
shared key seed and a hash function; (b) XOR the pseudo-
random string from (a) and the reconciled key. We also
prove that the hashing matrix in (a) can be reused. Then,
Alice and Bob can generate pseudo-random bits o✏ine. For
real-time privacy amplification, they only need to perform
the XOR operation in a bitwise manner. In the spirit of
stream ciphers, the new scheme is conceptually di↵erent
from the existing block privacy amplification schemes. Such
an essential di↵erence guarantees the new scheme with the
following practical features: 1. it can output final key bits
in a stream way; 2. it will not spread the errors of the in-
put bit stings; 3. it can be carried out before information
reconciliation.

II. SKETCH OF THE NEW REDUCTION

Our new reduction is based on the security proof for QKD
using quantum error correction [3], in which the two com-
munication parties, Alice and Bob, can apply the quantum
circuit shown in Figure 1 to do the quantum bit and phase
error correction and get information-theoretic secure key
strings. We can further reduce the procedure to a prepare-
and-measure one by moving the final measurement to the
front of quantum error correction following the spirit of

⇤ xma@tsinghua.edu.cn

Shor-Preskill’s security proof [4]. Then, bit error correc-
tion becomes classical bilateral error correction and phase
error correction becomes privacy amplification. Due to the
joint measurement introduced in the security proof, each fi-
nal key bit depends on the measurement results from all the
n qubits. Hence, for privacy amplification, Alice and Bob
need to wait for all the quantum states to be transmitted
and measured in a QKD session. We call it block privacy
amplification.
Here, to render stream privacy amplification, we rearrange

the reduction of the phase error correcting gates and keep
the individual Z-basis measurements in the quantum phase
error correction. The key idea of our new reduction is to
cancel all the Hadamard gates in quantum phase error cor-
rection, shown in Figure 1. The CNOT gate in the circuit
always appears in pairs on Alice’s and Bob’s sides. We focus
on one pair of CNOT gates in quantum phase error correc-
tion part, as depicted in Figure 2(a). The main steps of
reduction are as follows:

1. Noticing H2 = I, we add two consecutive Hadamard
gates after each output qubits of the CNOT gate.

2. The four Hadamard gates before and after each CNOT
gate exchange the roles of control and target qubits,
H⌦2C↵�H⌦2 = C�↵, where C↵� denotes a CNOT gate
with control qubit ↵ and target qubit � and C�↵ is the
other way around.

3. For Bob’s data qubit, the phase-error correcting oper-
ator I/�x becomes I/�z since �z = H�xH, as shown
in Figure 2(b).

4. Since the new phase-error correcting operator I/�z
does not a↵ect the Z-basis measurement, it can be
skipped along with the error syndrome measurements
on the ancillary qubits. The rest operations commute
with the dephasing operation, �Z⌦n . Alice and Bob
can add Z-basis measurements on ancillary qubits af-
ter the CNOT gates, since they are irrelevant at that
point.

5. Finally, Alice and Bob can move the final measurement
before quantum error correction, as shown in Figure
2(c).

So far, we only consider one CNOT gate. The hash opera-
tion in phase error correction shown in Figure 1 is composed
of many CNOT gates. This reduction also works for the gen-
eral hash operation case. With this argument, by inserting
consecutive Hadamard gates H2 = I after each CNOT gate
of phase error correction part in Figure 1, we can reduce the
whole quantum error correction circuit to the “measurement
+ postprocessing” case, as shown in Figure 2(d).
With the new reduction, the final key is determined by

single-qubit measurements plus bit flips. The Z-basis mea-
surement on the ancillary EPR pairs would provide Alice
and Bob with a secure key seed. The bit flips are controlled
by the seed and the hashing matrix. Then, the ith final key
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FIG. 1. (a) Quantum bit and phase error correction. The measurements in all the figures are Z-basis measurements by default. “CC”
is short for classical communication. The � operation means XOR operations on classical bit strings. H represents the Hadamard
gate applied to each of the involved qubits. I/�x represents identity or �x operation on the qubits depending on the error syndrome.
(b) In the linear case, the hash functions can be represented by matrices and realized by a series of CNOT gates between data (as
control) and ancillary (as target) qubits. The measurement outcomes of ancillary qubits would give the parity information of the data
qubits.

FIG. 2. Circuit (a) is derived from the quantum phase error correction step in Figure 1 by adding Hadamard gates in dashed boxes
which form identity operations. We take one pair of CONT operations for illustration. Circuit (b) is equivalent to Circuit (a) by
considering the following facts: H

⌦2
C↵�H

⌦2 = C�↵; H
2 = I; H�xH = �z. Since neither the identity nor the �z gate a↵ects the

Z-basis measurement, the operations in the dashed box of Circuit (b) are redundant and can be removed. Then by moving the Z-basis
measurement on ancillary qubits before hash operation and changing quantum-control-flips to classical-control-flips, Circuit (b) turns
into Circuit (c), a “measurement + postprocessing” case. Circuit (d) shows the case of multiple CNOT pairs taking the hashing
circuit in Figure 1 (b) as an example. In the end, both Alice and Bob employ Circuit (d) to get final key strings.

bit, extracted from the ith data qubit, is independent of the
other data qubits. Hence, the new procedure can output the
final key in a stream, i.e., the users can get a secure key bit
once a pair of raw key bits is reconciled successfully between
Alice and Bob. Following the name of stream cipher in clas-
sical cryptography, we call it stream privacy amplification,
as presented in Box 1. The hashing matrix M in Step 1
is the transpose of the original hashing matrix used in the
quantum phase error correction phase of Figure 1, because
the original hashing matrix acts on X basis while M acts on
Z basis.

Box 1: Stream privacy amplification

After information reconciliation, denote Alice and
Bob’s reconciled key as ~a 2 {0, 1}n.

1. Alice and Bob randomly choose a hashing ma-
trix M of size nh(ep)⇥ n.

2. Alice and Bob use an nh(ep)-bit seed, ~d 2
{0, 1}nh(ep), to generate a pseudo-random

string, ~d·M , where the dot product between the
row vector and the matrix need to take modulo
2 addition.

3. The final key is given by ~k = ~d ·M � ~a.

Note that in Step 1, Alice and Bob can generate an iden-
tical random hashing matrix locally with a pre-shared key

and never reveal it to public. Then, they can prepare this
matrix and the pseudo-random string (Step 2) before quan-
tum transmission. A naive implementation of this approach,
in which Alice and Bob generate M and ~d in each run of the
privacy amplification, could consume too many pre-shared
secure bits, as for most of the universal hashing matrices,
the number of random bits required to generate the matrix
is larger than the data size n. Fortunately, with the follow-
ing theorem, Alice and Bob can reuse the private hashing
matrix in multiple QKD sessions with a failure probability
increasing linearly, satisfying the composable security defini-
tion [7, 8]. Since the failure probability can be exponentially
small, the same hashing matrix can be used for many QKD
sessions. Therefore, the cost of generating this hashing ma-
trix is shared with these sessions, making the average cost
negligible.

Theorem 1 (Reuse of hashing matrix in privacy amplifi-
cation). Given a QKD session, the failure probability of a
randomly chosen hashing matrix for privacy amplification is
upper bounded by ". Then, for m QKD sessions, if Alice
and Bob applies the same randomly chosen matrix for each
session, the probability that privacy amplification fails in at
least one session is upper bounded by m".
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III. POSSIBLE APPLICATIONS AND
ADVANTAGES

Firstly, our new scheme can work for any block size in both
QKD and quantum random number generator (QRNG) im-
plementations. In order to make privacy amplification e�-
cient, Alice and Bob can employ a large data size without
causing delays in real-time key generation. Compared with
the previous ones, the unique feature of the new scheme —
stream output — can make QKD more practical in scenarios
like the satellite-to-ground link [9].
Besides, Alice and Bob can perform Steps 1 and 2 in Box

1 and prepare the pseudo-random string in advance before
running QKD/QRNG sessions. They only need to run Step
3 in privacy amplification during real-time QKD, which is
essentially composed of simple XOR operations and much
faster than hash operations. In block privacy amplification,
the computational complexity of the matrix multiplication
with Toeplitz hashing is O(n log n) with the fast Fourier
transform algorithm, where n is the length of reconciled key
string [10, 11]. In contrast, the computational complexity of
Step 3 is n and hence stream privacy amplification is faster
in real-time QKD and QRNG, especially when the data size
is large. At this point, we also do a numerical experiment
of quantum random number extraction using 131Mb raw
data [12]. The results show that, our stream scheme only
takes less than 0.38s in real-time processing, while the con-
ventional block scheme takes more than 380s.
Moreover, the bit-error locations in the input string will

remain the same after stream privacy amplification since the
final key bit is only decided by the pseudo-random bit and
the raw key bit at the same location. As a result, the er-
rors will not spread out, and then privacy amplification can
even be performed before information reconciliation. This
feature increases flexibility of data postprocessing. For ex-
ample, privacy amplification and information reconciliation
can be performed in parallel. The recently proposed scenario
of distributed private randomness distillation [13] is also a
potential application of our scheme.
Our stream privacy amplification scheme can also be com-

bined with with delayed privacy amplification to further re-
duce the trustworthiness of intermediate relays [14, 15]. Af-
ter information reconciliation, all relays swap the keys by
announcing the XOR results of two neighboring keys. Then,
Alice and Bob would share a reconciled key string ~a, which is
also known to relays. Notice that Alice and Bob perform the
steps in Box 1 locally. In particular, in Step 2, they generate
the pseudo-random string ~d ·M privately. Hence, the relays
cannot know the final key without ~d·M . If the relays want to
learn the final key, they need to figure out ~d andM . The seed
~d is private and changes in every QKD session. The hashing

matrix M , on the other hand, is reused for many sessions
in stream privacy amplification, so the relays might figure
it out from final and reconciled key strings in past sessions
by methods like di↵erential cryptanalysis. These analysis
methods often consume a lot of computational resources.
For an even higher security level with fewer assumptions on
the relays, we can add another layer of security based on the
computational complexity on intermediate nodes. In prac-
tice, this combined scheme further reduces the requirement
of the trustworthiness of relays and enhances the security of
trusted-relay QKD networks.

IV. CONCLUSION AND OUTLOOK.

In this work, we propose a stream privacy amplification
scheme, where Alice and Bob locally generate a pseudo-
random bit string and XOR it with the reconciled key to
get the final key. This scheme has a stream output feature
and hence can prevent unpleasant delay and error spreading
in practice. We need to emphasize that although we reduce
the stream privacy amplification from the Lo-Chau security
proof, the technique is independent of security proofs. Other
security proof methods, such as Koashi’s complementarity
approach [16], can also be easily extended to the stream
privacy amplification case. Moreover, the concept is rather
generic and can be applied to other QKD schemes. The
practical issues would also a↵ect the parameter settings of
stream privacy amplification, especially the length of the
seed string and the size of the hashing matrix. One can
combine the new scheme with existing analysis methods to
deal with these practical issues, such as the Gottesman-Lo-
Lütkenhaus-Preskill framework [17]. The further applica-
tions of stream privacy amplification in other quantum cryp-
tography tasks like quantum oblivious transfer [18, 19] are
also worth studying.
Here, our proof is mainly based on phase-error correction.

According to [20], this approach is equivalent to the one
based on the quantum leftover hashing lemma [21] in gen-
eral. It is an interesting direction to reconsider our scheme
from the entropic point of view.
Due to the similarity between our security analysis and

stream cipher in classical cryptography, our new scheme also
inspires a new perspective to examine classical encryption
algorithms information theoretically through quantum in-
formation theories. Rigorous assessment of classical encryp-
tion algorithms, such as AES and lattice-based encryption,
is often a formidable challenge. To our best knowledge, lit-
tle consideration has been put forward in the context of the
information-theoretic study of these encryption algorithms.
The related work is published in [22].
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Mode-pairing quantum key distribution
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Abstract. In the last two decades, quantum key distribution networks based on telecom fibers
have been implemented at metropolitan and intercity scales. However, a major hurdle is the ex-
ponential decay of the key rate with increasing transmission distance. Recently proposed schemes
aim to overcome this limitation by utilizing long-arm single-photon interferometers between com-
munication parties. However, the technical challenge of achieving phase-locking between indepen-
dent lasers remains. To address this challenge, we propose a mode-pairing measurement-device-
independent quantum key distribution scheme. This scheme determines the encoded key bits and
bases during post-processing, eliminating the need for global phase-locking. By employing two
o↵-the-shelf lasers, we achieve a quadratic improvement in key-rate performance compared to con-
ventional measurement-device-independent schemes for metropolitan and intercity distances. Ad-
ditionally, for longer distances, we significantly enhance the key rate by three orders of magnitude
using 304 km commercial fiber and 407 km ultra-low-loss fiber. We expect this ready-to-implement
high-performance scheme to be widely used in future intercity quantum communication networks.
The MP scheme and its experimental demonstration presented here are elaborated upon in our
associated publications [1, 2].

Quantum key distribution (QKD) [3, 4], as a building
block of quantum networks, allows remote communica-
tion parties to establish a secure key based on the laws of
quantum physics [5, 6]. Currently, many QKD networks
of various sizes have been implemented worldwide, such
as metropolitan and intercity scales. For a metropolitan
network, the loss budget between two nodes is around 10
dB. Usually, the network users are connected to trusted
nodes as service providers. For an intercity network, the
single-link loss is typically 20 dB. Often, we need to set
up trusted relays outside of cities. In practice, when one
of the trusted nodes is compromised, the network secu-
rity can be severely damaged. Also, it is di�cult and
expensive to ensure the security of relay nodes outside
cities. Moreover, due to the complicated construction
of single-photon detectors, imperfect detection devices
would introduce security loopholes.

To close the detection loopholes and reduce the num-
ber and cost of trusted nodes, Lo et al. proposed
measurement-device-independent quantum key distribu-
tion (MDI-QKD) [7]. In a generic MDI-QKD setup, the
two communication parties, Alice and Bob, emit encoded

⇤ xma@tsinghua.edu.cn
† tychen@ustc.edu.cn
‡ pan@ustc.edu.cn

laser pulses to a detection site, owned by an untrusted
party, Charlie. Charlie employs an interferometer as a
quantum relay to correlate the received quantum sig-
nals. Charlie announces interference measurement re-
sults, based on which Alice and Bob can extract se-
cure key bits. The security of MDI-QKD requires no
assumption on how Charlie performs measurement and
announcement, making it naturally immune to all the
detection attacks.

The main bottleneck of the practical implementation
of QKD networks lies in the exponential decay of the key
rate with respect to the transmission distance. In the
conventional MDI-QKD schemes, Alice and Bob encode
information into two optical modes, such as two adja-
cent pulses [8]. This type of encoding, namely two-mode
encoding, is relatively simple to implement since it does
not require additional devices and modulation. However,
the performance of two-mode encoding schemes is lim-
ited by the overall channel transmittance ⌘. Another
type of MDI-QKD, twin-field QKD [9], can achieve a
quadratic improvement in the key rate. We refer to this
as one-mode encoding. In one-mode encoding schemes,
Alice and Bob encode information into a single optical
pulse, and then Charlie performs a single-photon inter-
ference to correlate pulses from two users. This type of
encoding, however, is highly sensitive to environmental
noise. Thus, one has to stabilize the phases between the
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lasers at the two user ends using global phase-locking
techniques to realize these QKD schemes [10–12], which
remains challenging and impractical for large-scale ap-
plications. From the comparison of the existing MDI-
QKD schemes above, it seems that we cannot simulta-
neously enjoy the advantages of one-mode schemes (i.e.,
quadratic improvement in successful detection) and two-
mode schemes (i.e., stable optical interference), due to
an intrinsic trade-o↵ between the information-encoding
e�ciency and robustness.

To achieve both high performance and simple imple-
mentation, we propose a mode-pairing (MP) MDI-QKD
scheme, which a hybrid encoding method. We give a
detailed description of the MP scheme in Box 1.

Box 1: Mode-pairing scheme

1. State preparation: In the i-th round (i =
1, 2, ..., N), Alice prepares coherent state��pµa

i exp(i�
a
i )
↵
on the optical mode Ai with

intensity µ
a
i chosen from {0, µ} randomly

and phase �a
i uniformly chosen from [0, 2⇡).

Similarly, Bob randomly chooses µb
i ,�

b
i and

prepares
���
p
µb
i exp

�
i�b

i

�E
on mode Bi.

2. State transmission and measurement:
Alice and Bob send the pulses on modes Ai

and Bi, respectively, to Charlie, who is sup-
posed to perform the single-photon interfer-
ence measurement and announces the clicks
of detectors L and/or R.
Alice and Bob repeat the above two steps
for N rounds. Then, they postprocess the
data as follows.

3. Mode pairing: For all rounds with suc-
cessful detection, in which one and only one
of the two detectors clicks, Alice and Bob
apply a strategy of grouping two clicked
rounds as a pair. The encoded phases and
intensities in these two rounds form a data
pair. The detailed pairing strategy can be
found in [1].

4. Basis assignment:Based on the intensities
of the two paired rounds indexed by i and j,
Alice labels the ‘basis’ of the data pair as Z
if the intensities are (0, µ) or (µ, 0), as X if
the intensities are (µ, µ), or as ‘0’ if the in-
tensities are (0, 0). Bob sets the basis using
the same method. Alice and Bob announce
the basis of each data pair. If they both
announce the basis X or Z, they maintain
the data pairs, whereas otherwise, the data
pairs are discarded.

5. Key mapping: For each Z-pair on loca-
tion i, j, Alice sets her key to �a = 0 if

the intensity of the i-th pulse is µa
i = 0 and

�a = 1 if µa
j = 0. For each X-pair on lo-

cation i, j, the key is extracted from the
relative phase, �a = b(�a

j � �
a
i )/⇡ mod 2c

and Alice announces ✓a = (�a
j��

a
i ) mod ⇡.

Bob also assigns his raw key bits �b and an-
nounces ✓b. The only di↵erence is that, for
Z-pairs Bob sets the raw key bit �b to be
1 if µb

i = 0 and �b = 0 if µb
j = 0. As an

extra step on the X-pairs, if Charlie’s de-
tection announcement is (L,L) or (R,R),
Bob keeps the bit �b; otherwise, if Charlie’s
announcement is (L,R) or (R,L), Bob flips
�b. For the X-pairs, if ✓a = ✓b, Alice and
Bob keep the key; otherwise, they discard
it.

6. Parameter estimation: Alice and Bob
use Z-pairs with di↵erent intensity settings
to estimate the number of clicked single-
photon pairs M

Z
11 using the decoy-state

method. The X-pairs are used to estimate
the single-photon phase error rate e

Z,ph
11 .

They also record the total number and the
quantum bit error rate of the Z-pairs, de-
noted as Mµµ and Eµµ, respectively.

7. Key distillation: Alice and Bob use the
(µ, µ)-pairs to generate key bits. They per-
form error correction and privacy amplifica-
tion according to the key rate formula eval-
uated by M

Z
11, e

Z,ph
11 , Mµµ and Eµµ.

The core observation of the MP scheme is that the two
optical modes used to encode the relative information
can be determined after Charlie’s announcement. At the
encoding and detecting stage, Alice and Bob only con-
sider a single mode and do not require coincidence detec-
tion in predetermined locations. At the postprocessing
stage, they generate the raw key bits from two pulses
and avoid the global phase-locking requirement. There-
fore, the users can achieve a quadratic improvement in
key rate with simple hardware implementation.
The final key length of the MP scheme is given by,

K = M
Z
11

h
1� h

⇣
e
Z,ph
11

⌘i
� fMµµh (Eµµ) , (1)

where h(x) = �x log2 x � (1 � x) log2(1 � x) is binary
entropy function and f is the error correction e�ciency.
The single-photon component of the Z-basis pairs, MZ

11,
and the corresponding phase error rate, e

Z,ph
11 , can be

estimated by the decoy-state method. The number of
pairs used to distill final key bits, Mµµ, and the bit error
rate, Eµµ, can be directly obtained from the experiment.
By adopting two o↵-the-shelf lasers, we realize this

high-performance MDI-QKD without global phase lock-
ing. To this end, we adjust the original MP-QKD proto-
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col and introduce phase reference estimation techniques
to deal with the frequency fluctuation of two indepen-
dent lasers. The experimental setup is shown in Fig. 1.
Alice and Bob employ the o↵-the-shelf continuous-wave
lasers whose linewidth is 2 kHz and center wavelength is
1550.12 nm. An intensity modulator chops the emitted
light into pulses of width 400 ps at 625 MHz. Then, the
key and basis information is encoded into these pulses by
two Sagnac rings and three phase modulators for di↵erent
intensities and phases. Afterward, pulses are attenuated
to the single-photon level by an electrical variable opti-
cal attenuator and transmitted to Charlie for interference
detection. We consider the experimental settings under
the scenario of metropolitan and intercity quantum net-
works. Hence, we perform the experiment via 101, 202,
304 km standard and 407 km ultra-low-loss optical fibers.
The detailed experiment parameters can be found in [2].

FIG. 1. Experimental setup. Alice’s and Bob’s setups are
identical, but their encoding modulations are independent.
The continuous-wave laser is chopped into discrete pulses by
an intensity modulator (IM). Then these pulses are randomly
modulated into one of the four intensities — strong, signal,
decoy, and vacuum pulses — with the aid of two Sagnac rings
(SR1, SR2). Three phase modulators (PM1, PM2, PM3) are
used for phase encoding and active phase randomization. The
encoded pulses are attenuated to the single-photon level by an
electrical variable optical attenuator (EVOA) and transmitted
to Charlie. Before interference measurements, the pulse polar-
isation is aligned by an electric polarization controller (EPC)
and a polarization beamsplitter (PBS). Finally, the signals
are detected by superconducting nanowire single-photon de-
tectors (SNSPDs). SNSPD1 and SNSPD2 are used for in-
terference detection, and SNSPD3 and SNSPD4 are used for
polarization feedback and arriving time feedback. Note that
we do not carry out any phase-locking operations in the setup.
Note that we do not carry out any phase-locking operations
in the setup.

The key rates for di↵erent transmission distances are
presented in Fig. 2. Here, the Z-basis error rate is in the
order of 10�4 with the two Sagnac rings and the inten-
sity modulator, giving over 40 dB of extinction ratio for

the signal and vacuum states. We also compare the ex-
perimental results with numerical simulations along with
previous experiments. As shown in the key-rate figure,
under the intercity communication distances (101 km and
202 km), the key rate-transmittance relation of our sys-
tem follows R = O(

p
⌘) rather than O(⌘), indicating a

quadratic improvement in the key rate.
For longer communication distances, even with higher

X-basis error rates caused by larger phase fluctuations,
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FIG. 2. Key-rate performance. The experimental
rate–distance performance of MP-QKD, compared with the
theoretical simulations, along with the existing two-mode
MDI-QKD experimental results [14–16] and the linear key
rate bound. Data points marked by red and blue stars are
key rates of our system using commercial fibers and ultra-low
loss (ULL) fibers, respectively. We also show the key rate
for the 304 km asymptotic case based on the experimental
results, which is marked by the white star.

the system can still maintain a key rate-transmittance
relationship well above R = O(⌘). Our system realizes
key rates of 19.2 and 0.769 bits per second, respectively,
via 304 km and 407 km fibers, three orders of magnitude
higher than those of the existing MDI-QKD experiments
[16]. Besides, we give the key rate of the 304km asymp-
totic case based on the experimental data in the figure
and show that our system has the potential to break the
linear bound [17].
Our experiment shows that the MP-QKD scheme owns

clear advantages over the existing MDI-QKD implemen-
tations, especially in the regime of metropolitan and in-
tercity distances. We anticipate the MP-QKD system
and similar designs to improve the performance of quan-
tum communication networks. Also, we expect that the
design of the MP-QKD experiment will be helpful for the
construction of quantum repeaters, as well as extending
the reach of the quantum internet.
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Abstract. Finding the transient and steady-state properties of open quantum systems is a central prob-
lem in various fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine
the steady states of open system dynamics. By reformulating the problem of finding the fixed point of
Lindblad dynamics as a feasibility semidefinite program, we bypass several well known issues with varia-
tional quantum approaches to solving for steady states. We demonstrate that our hybrid approach allows
us to estimate the steady states of higher dimensional open quantum systems and discuss how our method
can find multiple steady states for systems with symmetries.

Keywords: Quantum Algorithms, Open Quantum Systems

• arXiv link: https://arxiv.org/abs/2204.03203

• Link to PRL version:
https://journals.aps.org/prl/accepted/
89070Y9fG231e080555b71d3129c75799282760bc

Introduction.— Understanding open system evolu-
tion is central to modern quantum technologies such
as computing, thermodynamics [1, 2, 3], chemistry [4],
and quantum transport [5]. Since such evolution maps
initial quantum states to future states, both transient
and steady state properties are available in the struc-
ture of the evolution operator. Sparing few analytically
tractable systems, generic open system evolution has to
be solved numerically to understand both transient and
steady state dynamics of the system. Such classical sim-
ulation techniques are limited due to the exponential
growth of Hilbert space. Some specific sampling prob-
lems can be simulated classically [6, 7, 8, 9] and tensor
networks can be deployed for scenarios with limited en-
tanglement growth [10, 11, 12, 13, 14, 15, 16, 17]. For
generic open system evolution by contrast, such a clas-
sical simulation is limited to few dozen qubits in the
presence of symmetries. Usually, such problems are ei-
ther simplified by the presence of strong local dissipators
which reduce the amount of entanglement generated or
by low dimensionality of the problem. Outside of these
special cases, the issue of generic open system evolution
has remained unsolved.
Open system dynamics under Born, Markov and sec-

ular approximations are often described by a time-local
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master equation given by ⇢̇ = L[⇢] where

L[⇢] = �i[H, ⇢] +
X

n

�n

✓
An⇢A

†
n �

1

2
{A

†
nAn, ⇢}

◆
.

Such an evolution preserves conditions for valid den-
sity matrices. The transient and steady states of this
evolution are characterized by the spectrum of the Li-
ouville superoperator [5], defined by the vectorization
B⇢C ! C

⇤
⌦ B |⇢i. Steady states are understood to

satisfy L[⇢] = 0 or equivalently L |⇢i = 0, where L is
the Liouville superoperator that arises from the vectori-
sation of L. Since these steady states do not usually
correspond to a thermal equilibrium, they are referred
to as non-equilibrium steady states (NESS). We refer to
the problem of obtaining the steady state(s) of a given
Liouville evolution as the NESS problem, which is solved
classically by matrix diagonalization. However, due to
the increase in dimensionality, diagonalization of the full
spectrum is usually unfeasible. Furthermore, the evolu-
tion of n-dimensional density matrices in Liouville space
are represented by n

2
⇥n

2 matrices. This squared dimen-
sionality implies that numerical techniques can find the
entire spectrum of only modest open quantum systems,
usually relying on Arnoldi type methods [18, 19, 20, 21],
which become quite cumbersome for many-body systems
of moderate size.

In this paper, we propose a hybrid algorithm for
the determination of NESS. Through our approach, the
steady state problem can be recast as solving a feasibility
semidefinite program (SDP) [22, 23, 24]. We show that
such an approach to find the NESS is viable on a NISQ
device. Our first contribution is to restate the NESS
problem as a feasibility SDP, which is an SDP where
the goal is to find a feasible solution satisfying the posi-
tive semidefinite and linear constraints [22, 23, 24]. Our
second contribution is that we do not use a variational
quantum state/circuit as the ansatz [25, 26, 27, 28]. By
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doing so, we bypass the problems [29, 30, 31, 32] associ-
ated with training variational quantum algorithms with
their non-convex landscape, which is known to be non-
deterministic polynomial-time (NP) hard [33, 34, 35].
We show that our algorithm naturally enforces positiv-
ity constraint of a physical density matrix and provides
methods to enforce additional constraints systematically
while retaining the advantages of quantum-assisted meth-
ods [36, 37, 30, 38, 32], like providing a method to system-
atically gain a more expressible, problem aware ansatz.

Quantum Feasibility SDP Approach.— We cir-
cumvent the non-convex optimization problem in the Li-
ouville space by optimizing over the convex set of density
matrices. This allows us to directly apply a feasibility
SDP, one consequence of which is that we can now sys-
tematically enforce the positive semidefinite condition. A
feasibility SDP admits the following form: Find X, X 2

S
l
+, such that Tr(CkX) = vk, 8k 2 1, 2, . . . c. Here, Sl

+

represents the set of l⇥ l symmetric PSD matrices. This
is the problem of determining if it is possible to find a
matrix X subject to the PSD constraint and the other
given constraints. The matrices Ck belong to the set
of symmetric matrices S

l for k 2 {1, 2, · · · c}. The k-th
element of vector v 2 Rc is denoted by vk. SDPs can
be formulated for complex-valued matrices via a cone of
Hermitian positive semidefinite matrices i.e. X 2 H

l
+.

Since SDPs for real valued matrices are a special case of
SDPs for complex-valued matrices, we will consider the
latter case in this paper. Since ⇢̇ = L[⇢] is linear in ⇢,
the NESS problem is a feasibility SDP.
We consider a state ansatz of the form

⇢ =
X

i,j

�ij |�ii h�j | . (1)

Here, �ij are matrix elements of a positive semidefi-
nite matrix �, whereas |�ii states can be from any set of
quantum states. We see that � being positive semidefi-
nite is both a necessary and su�cient condition for ⇢ to
be positive semidefinite. The condition Tr (⇢) = 1 be-
comes Tr (�E) = 1, where E is a matrix with matrix
elements Eij = h�i|�ji.
With the chosen ansatz, the NESS problem becomes

Find � s.t.� i(D�E � E�D)

+
X

n

�n

✓
Rn�R

†
n �

1

2
Fn�E �

1

2
E�Fn

◆
= 0, (2)

� < 0, (3)

Tr(�E) = 1, (4)

where �n are the strengths of the dissipators, D,R, F

are matrices defined as Dij = h�i|H|�ji, (Rn)ij =

h�i|An|�ji and (Fn)ij = h�i|A
†
nAn|�ji. This reduction

of the NESS problem to a feasibility SDP [23] defined
over � is motivated by the idea that a judicious choice
of the states |�ii in some problem-aware manner could
possibly allow us to do an optimisation over a smaller
dimensional convex landscape (compared to ⇢). Further-
more, the positive semidefiniteness condition of ⇢. can

Figure 1: Expectation values for two qubit transverse
field Ising model. �s set at 1. Fidelity is equal to 1 for
all values of g. Our method gives strong agreement with
the theoretical results.

be enforced naturally. We utilize CVX [39], that relies
on a disciplined convex programming algorithm [40, 41].

We can also easily enforce additional linear constraints
of the form Tr(�X) = x, whereX and x are arbitrary ma-
trices and values respectively. This feature of our scheme
is absent in the existing algorithms for solving NESS on
NISQ devices and is further discussed below.

The overlap values for the matrix elements of the
E,D,R, F matrices can be measured on a NISQ quantum
computer [42]. In general, how we choose the |�ii states
to form our ansatz will contribute strongly to how our al-
gorithm scales. For a general Hamiltonian, absent of ex-
ploitable symmetries, the size of the optimal ansatz will
grow exponentially with the size of the problem. Even
in the worst case where we require exponentially large
numbers of |�ii states in our ansatz, we do not map the
problem to an equivalent one in Liouville space and avoid
the aforementioned squared dimensionality that comes
from doing optimization in Liouville space. Hence in the
worst case, our method is at least quadratically better
than analogous variational algorithms.

The algorithm can hence be summarised as (a) choose a
hybrid ansatz for ⇢ using a set of chosen quantum states
{|�ii} (b) calculate the entries of the overlap matrices
on the quantum computer, (c) we use the matrices in a
SDP optimization routine run on a classical computer to
obtain the approximate NESS.

Examples.— We demonstrate our algorithm with
some examples. Consider a two qubit transverse field
Ising model with the Hamiltonian H2 = (1/2)�1

Z�
2
Z +

g�
1
X + g�

2
X , together with local dissipators A1 = �

1
Z ,

A2 = (1/2)(�1
X � i�

1
Y ), A3 = �

2
Z and A4 = (1/2)(�2

X �

i�
2
Y ). For all instances presented in Fig. 1, our hybrid

algorithm outputs a density matrix ⇢ that is unit trace,
Hermitian, positive semidefinite and that fulfils the NESS
condition ⇢̇ = 0. To study the robustness of the algorithm
for larger chains, in Fig. 2 we show simulation results for
the transverse field Ising model up to eight qubits.

We note that for the model chosen, as g increases, the
exact NESS solution has larger rank and is less sparse.
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Figure 2: Results for the transverse field Ising model with
local dissipators described in the main text. The corre-
sponding fidelity value between the state obtained and
the theoretical state, for CSK ansatz of di↵erent ansatz
sizes K, are compared. a) Results for 5 qubits. b) Re-
sults for 8 qubits. For larger g, we note that the exact
NESS becomes much less sparse. To continue to obtain
good fidelities in this regime, we require larger number
of states in our ansatz.

We find that for such situations, a larger ansatz size is
needed to obtain an approximate NESS with similar fi-
delity. We also note that the CSK ansatz performs e�-
ciently when the steady states are low rank. When this
is not the case, it is expected that any NISQ algorithm
based on such ansatzes will underperform.

Strong symmetries.— One additional complication
with the NESS problem is that systems with symmetries
can exhibit multiple NESS [5]. Our algorithm can also
be extended to certain cases where multiple NESSs are
expected.

Generalization of our method for multiple
NESS.— We can systematically obtain all the physi-
cal steady states that exist in all the symmetry subspaces
for quantum systems with multiple steady states, if we
have knowledge of the full Lindbladian. The simplest
way would be to directly construct an ansatz that lies in
the desired symmetry subspace. If we have the capacity
on the quantum computer to generate such states, which
has been demonstrated for Dicke states [43] and states
that conserve total magnetization in the XXZ Heisenberg

chain [44], we can simply generate such a set of states
and use that to construct our hybrid ansatz for our algo-
rithm. This method has the added advantage of reducing
the size of the ansatz, due to the reduction of the pos-
sible solution space. For example, we use the quantum
circuit proposed in [44] for the eight qubit XXZ Heisen-
berg chain with dephasing noise and obtained a fidelity
of nearly 1 to the theoretical NESS in the m = 4 symme-
try subspace with only 28 states in our ansatz. Here, m
is the eigenvalue of the total magnetization operator M .
However, this method is limited due to di�culty in devis-
ing circuits that conserve a general symmetry. Thus, we
also propose two general methods to find multiple NESS.

The first method utilizes the SDP structure of the op-
timization. For each operator Nk that corresponds to the
kth strong symmetry in our system, a NESS is found that
is in the symmetry subspace corresponding to a particu-
lar eigenvalue nk of Nk, by including the linear constraint
Tr(�Ñk) = nk in the SDP, where (Ñk)ij = h�i|Nk |�ji.
These additional linear constraints are additional, ef-
ficiently implementable, hyperplanes in the parameter
space that the optimizer needs to fulfil.

As an example, we consider a XXZ Heisenberg chain
on a system with n qubits, HXXZ =

Pn�1
j=1 �

j
X�

j+1
X +

�
j
Y �

j+1
Y +��

j
Z�

j+1
Z , and dephasing noise, defined by the

n jump operators Li = �
i
Z . The total magnetization

M =
Pn

i=1 �
i
Z commutes with the Hamiltonian and all

jump operators Li, generating a strong symmetry given
by Sz = e

i�M . This gives rise to n + 1 magnetization
blocks, each associated with an eigenvalue of M and has
its own unique NESS.

Considering the additional constraint Tr(�M̃) = m,
where M̃ij = h�i|M |�ji, our first method is able to ob-
tain a solution which is in themmagnetization symmetry
sector of M that agrees with the exact results. We em-
phasize that the usage of the quantum computer scales
linearly with the number of constraints, as we do not
need to measure the D,E, F,R matrices several times.

The second method does not require us to add addi-
tional constraints into the SDP, which allows our classical
post processing to be more numerically stable. It utilizes
the structure of a Vandermonde matrix to systematically
remove the contributions from unwanted subspaces by
applying the symmetry operator to the state.
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Theoretical Guarantees for Permutation-Equivariant Quantum Neural
Networks
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Abstract. Despite the potential of quantum machine learning models, numerous obstacles
need to be surmounted, including loss landscapes riddled with barren plateaus and a✏icted by
numerous local minima. Recently, the nascent field of geometric quantum machine learning
(GQML) has emerged as a potential solution to some of those issues. The key insight of GQML
is that one should design architectures exploiting the symmetries of the problem at hand. Here,
we focus on problems with permutation symmetry and derive a series of remarkable performance
results for permutation-equivariant quantum neural networks: absence of barren plateaus, e�-
cient overparametrization, and generalization from few data.

Keywords: Quantum Machine Learning, Geometric Deep Learning, Representation Theory

Introduction. Quantum Machine Learning
(QML) holds great potential to accelerate data anal-
ysis [1, 2, 3, 4]. Despite its promise, there are several
fundamental challenges to overcome, such as design-
ing models which do not incur issues such as barren
plateaus [5, 6, 7, 8]. To tackle this challenge, the
field of Geometric QML (GQML) has been recently
developed [9, 10, 11, 12]. GQML is inspired by
the tremendous success of geometric deep learning
in classical machine learning [13, 14, 15, 16], and it
provides us with guidelines to create so-called equiv-
ariant Quantum Neural Networks (QNNs) which en-
code as inductive biases the underlying symmetries
of the problem at hand.
Scope. In this work we argue that Sn-equivariant

QNNs do not su↵er from most of the issues haunting
general QNNs: they do not exhibit barren plateaus,
can be e�ciently overparametrized, and generalize
well with few training points. We argue that the rea-
son behind these gracious features is that the vast
geometric priors greatly reduce the circuit expres-
siveness to the right search space. Taken together,
our results provide the first theoretical guarantees
for equivariant QNNs and the potential of GQML.
Supervised QML. Here we consider a super-

vised learning task where we are given repeated
access to a training set S = {⇢i, yi}Ni=1, where ⇢i
are n-qubit quantum states and yi labels produced
by some unknown function yi = f(⇢i). We make

⇤larocca@lanl.gov
†cerezo@lanl.gov

no assumptions regarding the origins of ⇢i, mean-
ing that these can correspond to classical data em-
bedded in quantum states [17, 18], or to quantum
data, i.e., data obtained from some quantum me-
chanical process [19, 20, 21]. Our goal is to train a
model h to produce labels that closely match those
of f over the training set (low training error), but
also over new data instances (low generalization er-
ror). In particular, we parameterize h through a
quantum neural network (QNN), i.e., a unitary map
U✓(⇢) = U(✓)⇢U(✓)† composed of M layers as

U✓ = U
M

✓M
�· · ·�U

1
✓1
, where U

l

✓l
(⇢) = e�i✓lHl⇢ei✓lHl .

Here, the layers of the QNN are obtained from
some set of Hermitian generators {Hl}, so that
U(✓) =

Q
M

l=1 e
�i✓lHl . We assume that h depends

on some loss function L(✓; ⇢i) = Tr[U✓(⇢i)O] with
O a Hermitian observable. We train the param-
eters ✓ by minimizing an empirical loss function
L̂(✓) =

P
N

i=1 ciL(✓; ⇢i).
GQML and label symmetries. As previously

mentioned, GQML provides guidelines to incorpo-
rates symmetries from the data into h [12]. In par-
ticular, we are interested in considering label sym-
metries. Given a compact group G and some uni-
tary representation R acting on quantum states, we
say that the label-producing function f has a label
symmetry if f(R(g)⇢R(g)†) = f(⇢) for all g 2 G.
Evidently, when searching for models h to predict
outputs of f , it is natural to restrict our search to
the space of models that respect such label symme-
tries. In this context, GQML provides a construc-
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Figure 1: Quantum circuit for an Sn-equivariant
QNN. Color represents parameter sharing.

tive approach to create G-invariant models, resting
on the concept of equivariance [12].
Invariance from equivariance. We say an op-

erator O is G-equivariant i↵ for all elements g 2 G,
[O,R(g)] = 0. A unitary layer U is G-equivariant i↵
it is generated by a G-equivariant Hermitian opera-
tor. By the previous definition, G-equivariant uni-
taries are maps that commute with the action of the
group U

l

✓l
(R(g)⇢R(g)†) = R(g)U l

✓l
(⇢)R(g)† . Finally,

we say an M -layered QNN is G-equivariant if each
of its layers is equivariant. The previous then pro-
vides a recipe to build models whose outputs remain
invariant under the action of the group:
Proposition: Models with equivariant QNNs and
measurement operators give rise to invariant models
L(✓;R(g)⇢R(g)†) = L(✓; ⇢) for all ✓ and ⇢.
Permutation symmetry. One of the most

widespread symmetries are permutation symme-
tries. Examples include: learning over a set of el-
ements, problems defined on graphs (such as con-
densed matter systems), dealing with molecular sys-
tems, and evaluating genuine multipartite entangle-
ment. For these problems it is natural to ask the
model to be independent of the way we choose to
label the individual units.
Sn-equivariant QNNs. We focus on the spe-

cial case where G is the symmetric group Sn and R
is the qubit-defining representation that permutes
qubits via R(⇡ 2 Sn)

N
n

i=1 | ii =
N

n

i=1 | ⇡�1(i)i.
The following set of generators can be shown to be
Sn-equivariant (see Fig. 1)

G =

8
<

:
1

n

nX

j=1

Xj ,
1

n

nX

j=1

Yj ,
2

n(n� 1)

X

k<j

ZjZk

9
=

; . (1)

Representation theory interlude. A notable
result from representation theory is that given a rep-
resentation of a group, it decomposes into an or-
thogonal direct sum of fundamental building-blocks
known as irreducible representations (irreps). The
qubit-defining representation of Sn and the equiv-
ariant unitaries take, under some appropriate global

change of basis, the block-diagonal form:

R(⇡ 2 Sn) ⇠=
M

�

d�M

µ=1

r�(⇡) =
M

�

r�(⇡)⌦ 1d� , (2)

U(✓) ⇠=
M

�

1m� ⌦ U�(✓) .

Here r� are m�-dimensional irreps of Sn, each of
which appears d� times. Crucially, the only irreps
appearing correspond to two-row Young diagrams
and can be parametrized by a single integer m, as
� ⌘ �(m) = (n�m,m), where m = 0, 1, . . . , bn2 c. It
can be shown that d� = n � 2m + 1 and m� =

n!(n�2m+1)!
(n�m+1)!m!(n�2m)! . Since d� is in O(n), whereas
some m� grow exponentially with the number of
qubits, equivariant operators are composed of linear-
sized blocks repeated a (potentially) exponential
number of times. This hints at the reason why Sn-
equivariant models train and generalize well: fully
parametrizing them only requires

P
�
d2
�
2 O(n3)

real-valued parameters, as opposed to the 4n re-
quired in the universal case.
Barren Plateaus. Barren plateaus are one of

the main challenges to the success of QML mod-
els using QNNs [1]. When a model exhibits a bar-
ren plateau, the loss landscape becomes, on aver-
age, exponentially flat and featureless (indicated by
Var✓[@µL̂(✓)] vanishing exponentially with the prob-
lem size) [5, 6, 22, 23, 7, 24, 25, 26, 27, 28, 29, 30, 31].
While a great deal of e↵ort has been put forward to-
wards creating strategies capable of mitigating the
e↵ect of barren plateaus [32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43], the “holy grail” in QML is
identifying architectures which are immune to bar-
ren plateaus altogether, and thus enjoy trainability
guarantees. Examples of such architectures are shal-
low hardware e�cient ansatzes [6], quantum convo-
lutional neural networks [8], and Ising model varia-
tional Hamiltonian ansatzes [31, 29]. Here we prove
that a new architecture can be added to this list:
Sn-equivariant QNNs.
Before continuing, we introduce some notation.

Let B⌫

�
be the restriction of an operator B to the

copy of an irrep � indexed by ⌫. In particular, if B is
an equivariant operator one can see that B⌫

�
= B⌫

0
�
.

Our first main result is

Theorem 1 Assuming enough circuit depth M the
loss L̂(✓) for an Sn-equivariant QNN and measure-
ment has h@µL̂(✓)i✓ = 0 and

Var✓[@µL̂(✓)]=
X

�

2d�
(d2� � 1)2

�(Hµ,�)�(O�)�(
m�X

⌫=1

�⌫
�) ,

(3)
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where �(B) = Tr[B2]� Tr[B]2

dim(B) and � =
P

i
ci⇢i.

We use representation theory to find exact expres-
sions for the terms in Eq. (3).

Theorem 2 Let A be a Sn-equivariant operator.
Then for any � = X,Y, Z, we have
8
><

>:

If A =
P

n

j=1 �j , then �(A�) = 2
�
d�+1
3

�
,

If A =
P

k<j
�j�k , then �(A�) =

8
3

�
d�+2
5

�
,

If A =
Q

n

j=1 �j then �(A�) =
d
2
��1+nmod2

d�
.
(4)

Here we highlight the crucial fact that when us-
ing Sn-equivariant QNNs one can measure global ob-
servables, i.e., operators acting non-trivially on all
qubits such as

Q
n

j=1Xj , without incurring barren
plateaus. This is in stark contrast to other QNN
architectures, where global measurements lead to
barren plateaus and only local measurements avoid
them [6]. From Theorem 1 we then find

Corollary 3 An equivariant QNN with generators
from G and a measurement from M will not have
barren plateaus if there exists at least one irrep �
such that �(

P
m�
⌫=1 �

⌫

�
) 2 ⌦(1/ poly(n)), as then

Var✓[@µL̂] 2 ⌦
⇣

1
poly(n)

⌘
.

Note that Corollary 3 holds i↵ �(
P

m�
⌫=1 �

⌫

�
) 2

⌦(1/ poly(n)). This condition is expected as we do
not expect trainability for any dataset. In fact sim-
ilar terms always appear when proving absence of
barren plateaus (see [6, 8, 29]). Below we identify
scenarios where the Sn-equivariant QNN is trainable
but also when it is untrainable.
Overparametrization and generalization.

Recently, Ref. [44] proposed a study of over-
parametrization in the context of QML models,
showing that there exists a clear phase transition
in the trainability of under- and overparametrized
QNNs. Namely, it was shown that below some
critical number of parameters (underparametrized)
the optimizer greatly struggled to minimize the loss
function, whereas beyond that number of param-
eters (overparametrized) it converged exponentially
fast to solutions. A model is overparametrized when
the number of parameters M satisfies M ⇠ dim(g).
Here g is the Dynamical Lie Algebra (DLA) given
by g = span(hiGiLie), i.e., the Lie algebra gener-
ated by taking all nested commutators of the circuit
generators. Intuitively, the DLA controls the ex-
pressibility of an ansatz. While most ansatzes have
a dim(g) 2 O(2n) [44], and thus require an exponen-
tial number of parameters to be overparametrized,

we show that this is not the case for Sn-equivariant
QNNs. In fact, only a polynomial number of param-
eters are required to reach overparametrization:

Theorem 4 An Sn-equivariant QNN can be over-
parametrized with ⇥(n3) parameters.

Lastly, we also show that Sn-equivariant QNNs
should generalize well via a covering net argument.
We define the generalization error of a model with
parameters ✓ as gen(✓) = |L(✓) � L̂(✓)|., where
L(✓) = E⇢⇠P [c(y)L✓(⇢)] is the true loss of the
model.

Theorem 5 With probability at least 1 � �, for ✓⇤

some trained set of parameters, we have

gen(✓⇤)  O

 r
Ten+1

M
+

r
log(1/�)

M

!
. (5)

Outlook– Ref. [45] recently proposed an algo-
rithm for simulating certain Sn-equivariant circuits.
However, we note that the claims of this manuscript
to not reduce the impact of our work. For instance,
the methods in Ref. [45] only work when we can
have e�cient access to a classical description of both
the initial states (data) and measurements (a re-
quirement not needed for our theorems). For exam-
ple, in the case of graph state encoding, this would
amount to some sort of tomography (e.g., we need
quantum resources such as the application of a not-
near-term Schur-transform circuit) to express the
encoded graph state in terms of a basis of the DLA
which can be later propagated using the structure
constants they derive [46]. Moreover, even in this
case the scaling of the ’classical’ algorithm is pro-
hibitively expensive (e.g., computing the structure
constants is in O(n15)). As such, it is not clear what
are the relevant, near-term, and realistic cases where
the results of [46] hold, but where one could not use
an equivariant QNN.
Moreover, we remark that the authors in [46]

claim: Small groups of symmetry leave too large of
an e↵ective dimension for the problem to be tractable
via quantum computation. On the contrary, very
restrictive symmetries render a problem classically
tractable. Between these two regions lies an area of
promise where quantum computers may o↵er an ad-
vantage. We want to note that we do not think there
is enough evidence to substantiate such a state-
ment, and more work is needed to asses whether
Sn-equivariant learning tasks do not hold room for
advantage.
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Abstract. Deep neural networks are a powerful tool for characterizing quantum states. Existing networks
are typically trained with experimental data gathered from the quantum state that needs to be characterized.
But is it possible to train a neural network offline, on a different set of states? Here we introduce a network
that can be trained with classically simulated data from a fiducial set of states and measurements, and can
later be used to characterize quantum states that share structural similarities with the fiducial states. With
little guidance of quantum physics, the network builds its own data-driven representation of quantum states,
and then uses it to predict the outcome statistics of quantum measurements that have not been performed
yet. The state representation produced by the network can also be used for tasks beyond the prediction of
outcome statistics, including clustering of quantum states and identification of different phases of matter.

The full paper is available at https://www.nature.com/articles/s41467-022-33928-z.

Keywords: Quantum state learning, Generative query network, Representation learning of quantum
states, Many-body ground states, Continuous-variable states, Clustering

1 Introduction
The dramatic development of artificial intelligence in-

spired new methods of quantum state characterization,
in which techniques from the field of machine learning [5]
are used to learn descriptions of quantum states from ex-
perimental data [20, 18, 17, 6, 9, 16, 3, 2, 13, 12, 11, 15].
In the existing quantum applications, neural networks are
typically trained using experimental data generated from
the specific quantum state that needs to be characterized.
As a consequence, the information learnt in the training
phase cannot be directly transferred to other states: for
a new quantum state, a new training must be carried
out. This limitation affects the efficiency of the network
in scenarios where multiple quantum states need to be
characterized.

In this paper, we develop a flexible model of neural net-
work that can be trained offline using simulated data from
a fiducial set of states and measurements, and is capable of
learning multiple quantum states, provided that the states
to be learnt share structural similarities with the fiducial
states, such as being ground states in the same phase of
a quantum manybody system. Our model, called genera-
tive query network for quantum state learning (GQNQ),
takes advantage of a technique originally developed in
classical image processing for learning 3D scenes from 2D
snapshots taken from different viewpoints [7]. The key
idea is to use a representation network [4] to construct a
lower-dimensional representation of quantum states, and
then to feed this representation into a generation net-
work [8] that predicts the outcome statistics of quantum

⇤yadongwu@hku.hk
†giulio@cs.hku.hk

measurements that have not been performed yet. The
state representation produced by GQNQ enables applica-
tions where multiple states have to be compared, such as
state clustering or the identification of different phases of
matter.

2 Framework
In this work we adopt a learning framework inspired by

the task of “pretty good tomography” [1]. An experimenter
has a source that produces quantum systems in some
unknown quantum state ⇢. The experimenter’s goal is to
characterize ⇢, becoming able to make predictions on the
outcome statistics of a set of measurements of interest,
denoted by M. Each measurement M 2 M corresponds
to a positive operator-valued measure (POVM), that is,
a set of positive operators M := (Mj)

k
j=1 acting on the

system’s Hilbert space and satisfying the normalization
condition

Pk
j=1 Mj = 1.

To characterize the state ⇢, the experimenter performs a
finite number of measurements Mi, i 2 {1, . . . , s}, picked
at random from M. This random subset of measurements
will be denoted by S = {Mi}si=1. Each measurement in S
is performed multiple times on independent copies of the
quantum state ⇢, obtaining a vector of experimental fre-
quencies pi. Note that in general S is not informationally
complete.

The goal of the experimenter is to predict the out-
come statistics of a new, randomly chosen measurement
M 0 2 M \ S. For this purpose, the experimenter uses
the assistance of an automated learning system (e.g. a
neural network), hereafter called the learner. For each
measurement Mi 2 S, the experimenter provides the
learner with a pair (mi,pi), where mi is a parametriza-
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Figure 1: The neural network stucture of GQNQ

tion of the measurement Mi, and pi is the vector of
experimental frequencies for the measurement Mi. To
obtain a prediction for a new, randomly chosen measure-
ment M 0 2 M\S, the experimenter provides the learner
with its parametrization m0. The learner’s goal is to
predict the correct outcome probabilities
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3 Neural Network Structure
Our model of learner, GQNQ, is a neural network com-

posed of two main parts: a representation network and
a generation network, whose combination is called a gen-
erative query network [7]. This type of neural network
was originally developed for learning 3D scenes from 2D
snapshots taken from different viewpoints. The intuition
for adapting this model to the quantum domain is that
the statistics of a fixed quantum measurement can be
regarded as a lower-dimensional projection of a higher-
dimensional object (the quantum state), similar to a 2D
projection of a 3D scene.

The structure of GQNQ is illustrated in Fig. 1. Con-
sider a given set of s POVM measurements m1, . . . ,ms,
and its corresponding outcome statistics p1, . . . ,ps with
respect to an unknown quantum state ⇢. For each pair of
input (mi,pi), the representation network f⇠ outputs a
representation ri := f⇠(mi,pi). Using the set of {ri}si=1,
an aggregate function outputs a representation r of state
⇢. GQNQ is not constrained to a specific choice of repre-
sentation, like a density matrix. This additional freedom
enables the network to construct a lower-dimensional rep-
resentation of quantum states with sufficiently regular
structure, such as ground states in well-defined phases of
matter.

Once a state representation has been produced, the
next step is to predict the outcome statistics for a new
quantum measurement on the state ⇢. Receiving the
representation r and a random query m0, the generation
network g⌘ produces prediction p0 = g⌘(r,m0). When
GQNQ is used to characterize multiple quantum states
⇢
(j), j 2 {1, . . . ,K}, the above procedure is repeated for

each state ⇢
(j).

4 Results
4.1 Quantum State Learning: Numerical Experi-

ments
We test GQNQ using the ground states of a one-

dimensional transverse-field Ising model and the ground
states of a one-dimensional XXZ model. These two models

correspond to the Hamiltonians

H = �

0

@
L�2X

i=0

Ji�
z
i �

z
i+1 +

L�1X

j=0

�
x
j

1

A , (1)

and

H = �
"
L�2X

i=0

�i(�
x
i �

x
i+1 + �

y
i �

y
i+1) + �

z
i �

z
i+1

#
, (2)

respectively. In the Ising Hamiltonian (1), positive (nega-
tive) coupling parameters Ji correspond to ferromagnetic
(antiferromagnetic) interactions. For the XXZ Hamilto-
nian (2), the ferromagnetic phase corresponds to coupling
parameters �i in the interval (�1, 1). If instead the cou-
pling parameters fall in the region (�1,�1) [ (1,1),
the Hamiltonian is said to be in the XY phase [21]. For
the ground states of the Ising model (1), we choose each
coupling parameter Ji at random following a Gaussian
distribution with standard deviation � = 0.1 and mean J .
Similarly, for the ground states of the XXZ model (2), we
choose each parameter �i at random following a Gaussian
distribution with standard deviation 0.1 and mean value
�.

We first consider the six-qubit scenario where M is
the set of 729 six-qubit measurements consisting of local
Pauli measurements on each qubit. GQNQ is trained
using measurement data from measurements in M on
states of the above types. We consider both the scenario
where all training data come from states of the same
type, and where states of different types are used. Given
raw measurement data (either true ourtomce probability
distribution or finite statistics obtained by sampling the
true probability distribution a finite number of times)
on only s = 30 random Pauli bases, GQNQ predicts the
outcome probabilities of all the other possible Pauli basis
measurements, whose classical fidelities are summarized
in Table 1. The dimension of state representation r is set
to be 32, which is half of the Hilbert space dimension.

We then investigate the second scenario for ground
states of XXZ model where the number of qubits is 10,
20 and 50, and the measurement settings include only
Pauli basis measurements on nearest-neighbour qubits.
The results are illustrated in Fig. 2. For XXZ model, the
average classical fidelities in the XY phase are lower than
those in the ferromagnetic interaction region, which is
reasonable due to higher quantum fluctuations in the XY
phase [14]. At the phase transition points � = ±1, the
average classical fidelities drop more significantly, partly
because the abrupt changes of ground state properties at
the critical points make the quantum state less predictable,
and partly because the states at phase transition points
are less represented in the training data set. Here the
dimension of state representation r is chosen to be 24,
which guarantees a good performance in our numerical
experiments.

GQNQ can also be applied to online learning of quan-
tum states. In each round of online learning, newly col-
lected measurement data are fed into the representation
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Table 1: Average classical fidelities between the predictions of GQNQs and the ground truths with respect to different
types of six-qubit states.

Types of states for training and test noiseless 50 shots 10 shots
(i) Ising ground states with ferromagnetic bias 0.9870 0.9869 0.9862

(ii) Ising ground states with antiferromagnetic bias 0.9869 0.9867 0.9849
(iii) Ising ground states with no bias 0.9895 0.9894 0.9894

(iv) XXZ ground states with ferromagnetic bias 0.9809 0.9802 0.9787
(v) XXZ ground states with XY phase bias 0.9601 0.9548 0.9516

(vi) (i)-(v) together 0.9567 0.9547 0.9429

Figure 2: The figure shows the performances of three GQNQs for ten-, twenty- or fifty-qubit ground states of XXZ
model (2), respectively, with respect to different values of � 2 {�1.5,�1.4, . . . , 1.5} by boxplots [19]. Given outcome
probability distributions for all m 2 S, each box shows the average classical fidelities of predicted outcome probabilities,
averaged over all measurements in M\ S, for ten instances.

network to update the state representation, and the up-
dated representation is fed into the generation network
to update the predictions.

Figure 3: The figure shows two-dimensional embeddings
of representations of Ising model (ferromagnetic and anti-
ferromagnetic) ground state, XXZ model (ferromagnetic
and XY phase) ground state, GHZ state with local rota-
tions and W state with local rotations.

4.2 Interpretable State Representations
The state representation r constructed in the last sec-

tion contains key information about the associated quan-
tum state ⇢, and can be used to perform other downstream
tasks beyond the prediction of outcome probability distri-
butions for unmeasured POVMs. We show that clusters
naturally emerge from the state representations produced

by GQNQ. To visualize the clusters, we feed the state
representation vectors constructed from noiseless input
data into a t-SNE algorithm [10], which produces a map-
ping of the representation vectors into a two-dimensional
plane, according to their similarities. We performed nu-
merical experiments using the types of six-qubit states
in Table 1 together with locally rotated GHZ states and
locally rotated W states. The figure shows that states
with significantly different physical properties correspond
to distant points in the two-dimensional embedding, while
states with similar properties naturally appear in clusters.
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Abstract. The set of correlations between measurement outcomes observed by separated parties in a Bell test is of
vital importance in Device-Independent (DI) information processing. However, characterising this set of quantum
correlations is a hard problem, with a number of open questions. Here, we present families of quantum Bell inequal-
ities that approximate this set in Bell scenarios with an arbitrary number of players, settings and outcomes, and study
their applications to device-independent information processing. Firstly, in the Bell scenario of two players with two
k-outcome measurements, we derive inequalities that show a separation of the quantum boundary from classes of
non-local faces of the non-signaling polytope of dimension  4k� 4, extending previous results from nonlocality
distillation and the collapse of communication complexity. Secondly, in the scenario of two players with m binary
measurements, we derive a weighted chained Bell inequality that serves to self-test the maximally entangled state
of two qubits. Finally, in Bell scenarios of two players with binary outcomes, we derive a low-dimensional region
of the quantum boundary that coincides with the boundary of the set of classical correlations in these scenarios. In
[26], we introduce a family of tilted Hardy paradoxes that allow to self-test general pure two-qubit entangled states,
as well as certify up to 1 bit of local randomness with arbitrarily limited measurement independence. We then use
these tilted Hardy tests to obtain an improvement in the generation rate in the state-of-art randomness amplification
protocols against adversaries holding quantum as well as non-signaling side information. Other than that, we pro-
pose a family of Hardy tests for maximally entangled states of local dimension 4,8 that allow to certify up to the
maximum possible 2 logd bits of global randomness.

Keywords: Quantum Boundary, Device-independent cryptography applications, self-test, randomness extraction.

In this manuscript, we introduce our two recent works, both
of which are aimed at advancing the field of quantum foun-
dation and quantum cryptography research. The first study
delves into the exploration of quantum boundaries, with the
complete text provided in the Appendix for reference. The
second study focuses on device-independent randomness ex-
traction with arbitrarily limited measurement independence,
employing a family of tilted Hardy paradoxes to achieve this
goal [26]. The latter work is currently processed in the journal
Quantum.

1 Part I: Investigations of the Quantum
Boundary

One of the most striking features of quantum mechanics is
non-locality, the phenomenon of violation of Bell inequalities
by separated physical systems. The correlations between lo-
cal measurement outcomes on such systems show, in a fully
device-independent manner, that quantum theory differs fun-
damentally from all classical theories that are constrained by
the principle of local causality [1, 2]. Besides their founda-
tional interest, in recent years, the quantum correlations have
been shown to be a vital resource in device-independent (DI)
information processing applications, such as quantum key dis-
tribution [3, 4], randomness extraction and expansion [5, 6],
self-testing of quantum states and measurements [7, 8], and
reduction of communication complexity [9].

The Bell inequalities delineate the boundary of the set of
classical correlations, and any violation of a Bell inequality in-
dicates that the observed distribution of conditional measure-

⇤ravi@cs.hku.hk

ment outcomes is nonlocal. Moreover, the verification of non-
local correlations (and the correct execution of DI tasks built
upon these) can be performed by simple statistical tests of the
measurement devices and a fundamental rule of nature, viz.
the no-superluminal signaling principle of relativity. While
the classification of the entire set of Bell inequalities for arbi-
trary number of measurement systems, inputs and outputs is a
challenge, at least a systematic method for the identification of
novel Bell inequalities is known since the work by Pitowsky
[10].

On the other hand, the set of behaviors (conditional proba-
bility distributions for outcomes conditioned on the different
inputs) obtainable in quantum theory, denoted Q, is known to
lie in between the classical set L and the general no-signaling
set NS [11]. The set Q is convex but is in general not a poly-
tope unlike L and NS. The characterisation of the boundary
of Q via the derivation of (in general, non-linear) quantum
Bell inequalities has proven to be a much more challenging
task [12] and only a few examples have been found so far
[15, 16, 14, 17, 13, 18]. For fundamental reasons as well as to
identify the optimal quantum correlations for different appli-
cations, it is of importance to characterize the set of quantum
correlations, and understand how it fits in between the poly-
topes of classical and general non-signaling correlations.

Specific DI applications demand quantum correlations that
exhibit particular properties. For instance, the task of random-
ness amplification [19, 20, 21, 22, 23, 24, 26, 25] requires
the use of quantum correlations that lie on the no-signaling
boundary to allow extraction of randomness from arbitrarily
weak seeds. As such, the quantum correlations exhibiting
pseudo-telepathy [27, 28] or demonstrating the Hardy para-
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Figure 1: Relationship of the quantum set Q, classical set L
and no-signaling set NS. Classical set L and no-signaling set
NS are convex polytopes. Quantum set Q is a convex set, it
may saturate the no-signaling boundaries with (≠) or without
(¨) a local deterministic vertex on the no-signaling bound-
aries, and it may also coincide the classical boundaries with
(Ø) or without (Æ) a non-local no-signaling vertex on the clas-
sical boundaries.

dox [29, 30] have found use in this task. Similarly, another
important task that has gained prominence in recent years
is self-testing, namely the unique identification (up to local
isometries) of a quantum state and measurements, solely from
the observed correlations in a Bell test. As such, this task
requires the identification of quantum correlations that can
be generated in such a unique manner. Finally, the study of
the boundary of the quantum set is also important from a
fundamental viewpoint in the problem of identifying appro-
priate information-theoretic principles that single out the set
of quantum correlations from amongst general no-signaling
ones. Of particular importance are the principle of informa-
tion causality [31], macroscopic locality [32], local orthogo-
nality [33], no advantage in non-local computation [18], and
the collapse of communication complexity [34], all of which
have been shown to lead to non-trivial bounds on the set
of quantum correlations. The identification of non-local no-
signaling boxes that are excluded from the quantum set serves
as a useful testing ground and pointers towards the ultimate
principle picking out the quantum set. Other fundamental
questions regarding the boundary of the quantum set include
2 out of the 29 open problems in quantum information listed
in [35].

In this work, we explore the boundary of the quantum set
with specific regard to regions coinciding with a no-signaling
or a local boundary, and non-trivial regions leading to self-

testing. To do this, we expand on a class of (non-linear) in-
equalities defining the boundary of the Almost Quantum Set
[36]. Such inequalities were used to exclude all non-local ver-
tices of the no-signaling polytope (for arbitrary number of par-
ties, inputs and outputs) by one of us in [37]. Here, we explore
these inequalities to exclude further non-trivial regions of the
no-signaling polytope. Specifically, in the (2,2,k) Bell sce-
nario (with two players performing two measurements with k
outcomes each), we derive optimal inequalities that show the
exclusion of all non-local faces of the no-signaling polytope
of dimension up to 4k � 4. This extends the known region
of excluded boxes from the no-signaling boundary obtained
in [16], and through the procedure of non-locality distilla-
tion [15, 38] and the collapse of communication complexity
[39]. Secondly, we derive a class of tight quantum Bell in-
equalities in the (2,m,2) Bell scenario (with two players per-
forming m binary measurements) and show their usefulness
in self-testing the two-qubit singlet state. In this regard, we
generalise the results regarding the self-testings of the singlet
in the (2,2,2) scenario obtained in [40] and the self-testing of
the correlations leading to the optimal violation of the chained
Bell inequality in [41]. Finally, we study the faces of the cor-
relation set (excluding the local marginals), and identify low-
dimensional regions in which the quantum correlation set co-
incides with the classical correlation polytope. In this regard,
we generalise the results obtained by Linden et al. in [18].

2 Part II: Device-independent Applications
One of the most fundamental features of quantum mechan-

ics is the presence of correlations that cannot be explained by
any local hidden variable theory [42, 43]. Apart from being
of fundamental interest, this phenomenon of Bell non-locality
has led to the powerful idea of device-independent (DI) quan-
tum key distribution [3, 4], randomness generation [5, 6] and
certification of quantum systems [7, 44].

The strength of the device-independent paradigm is that no
assumption on the nature of the systems subject to measure-
ment needs to be made. Indeed, one may simply consider
the systems participating in the Bell experiment to be (two or
more) black boxes that parties provide an input to and obtain
an outcome from, not taking into account the complex details
of the physical implementation at all. The observation of a
Bell inequality violation then allows one to make nontrivial
deductions about the nature of the systems under study, such
as the presence of entanglement, or a lower bound on the sys-
tem dimension, or the non-determinism of the measurement
outputs. In the extreme case, observation of maximum vi-
olation of certain Bell inequalities even permits the device-
independent certification (self-testing) [44] of the quantum
state and measurements performed on the system, i.e., their
uniqueness up to irrelevant local equivalences.

Such self-testing has obvious advantages over traditional
certification methods such as those based on quantum tomog-
raphy [45], and a lot of attention has therefore been devoted
recently to designing Bell inequalities suited for self-testing
different entangled quantum states. However, DI certification
based on the violation of Bell inequalities nevertheless still re-
lies upon some assumptions, the foremost being the require-
ments of no-signaling between the local systems (typically en-
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forced by space-like separation), and that the measurements
on the local systems are chosen freely and randomly.

This latter requirement known as measurement indepen-
dence is typically justified by the assumption that the parties
hold independent and trusted random number generators (i.e.,
trusted and private random seeds). However, this assumption
is clearly incongruous with the very framework of device-
independence, wherein all devices held by the honest parties
may have been tampered with, or even provided by, an adver-
sary. To elaborate, consider the adversarial scenario wherein
an adversary Eve has had access to the very devices used by
the honest parties in the protocol. If such an adversary was
able to influence the local random number generators held by
the parties, then she would be able to ensure that the parties
only hold imperfect seeds (about which Eve has some side in-
formation). In the extreme case, Eve may even be able to pre-
pare devices that only operate according to local hidden vari-
able behaviors, and yet appear non-local to the parties due to
the imperfection of their seeds. Indeed, when no measurement
independence at all is available, one cannot demonstrate any
non-locality. It is therefore of vital importance to extend the
studies on device-independent certification (as well as other
tasks such as key distribution and random number generation)
to the scenario in which only limited (arbitrarily small) mea-
surement independence is available [19, 20, 21, 22, 23, 24].

As a model of an imperfect seed, one may consider the e-
SV source [46], a model of a biased coin where the individual
coin tosses are not independent but rather the bits Ri produced
by the source obey 1

2 �e  P(Ri = 0|Ri�1, . . . ,R1,W ) 1
2 +e .

The parameter 0  e < 1
2 described the reliability of the

source, with e = 0 being the ideal random seed and W de-
notes any side information, possibly held by an adversary. It
is worth remarking that more general ‘min-entropy’ sources
are also possible, wherein only a lower bound on the min-
entropy (the negative logarithm of the maximum probability
of any output string) produced by the source is assumed.

With regards to the task of self-testing, an important re-
sult was the formulation of a general class of Bell inequalities
known as the tilted-CHSH inequalities suitable for self-testing
general pure two-qubit entangled states. Specifically, in the
simplest bipartite Bell scenario with two binary observables
A0,A1 for Alice and two binary observables B0,B1 for Bob,
the following family of tilted CHSH operators was introduced
in [47]

Ia = aA0 +A0B0 +A0B1 +A1B0 �A1B1, (1)

where a 2 [0,2) is a parameter with a = 0 corresponding to
the well-known CHSH operator. The maximum value of this
tilted CHSH quantity in classical theories is easily seen to be
2+a . In [48], it was shown that the optimal quantum value
of Imax

a =
p

8+2a2 can only be achieved when specific ref-
erence observables Ax,By are measured on the state |yq i =
cosq |00i+ sinq |11i with q = 1

2 arctan
q

2
a2 � 1

2 . Specifi-
cally, it was shown that the observation of the expectation
value hIai � Imax

a �e for the tilted CHSH operator by measur-
ing a physical state |ỹi with observables Ãx and B̃y implies the
existence of an isometry F = FA ⌦FB and a state |junki such
that kF

�
Ãx ⌦ B̃y|ỹi

�
� |junki ⌦ (Ax ⌦ By)|yik  e 0, where

x,y 2 {�1,0,1} (with subscript �1 indicating the identity op-

erator) and where e 0 = O
�p

e
�
. The family of tilted CHSH

inequalities has since played a crucial role in several aspects,
including (a) showing the quantitative inequivalence between
the amount of non-locality and the amount of certified ran-
domness [47], (b) being the building block that enabled the
self-testing of all bipartite pure (two-qudit) entangled states
[49], (c) enabling the formulation of a device-independent
quantum random number generation (DIQRNG) protocol that
only requires a sublinear amount of quantum communica-
tion [50] (i.e., produces n bits of output randomness with a
total of nS(q) = W(nk logn) with 7/8 < k < 1 ebits where
S(q) = h2(sin2 q) is the entropy of entanglement of |yq i ex-
pressed in terms of the binary entropy h2, and (d) unbounded
randomness certification from a single pair of entangled qubits
using a sequence of measurements [51].

A natural question is whether a corresponding family of
inequalities can be formulated in the scenario of (arbitrarily)
limited measurement independence so that the above (and fur-
ther such DI) results can be achieved in the setting when the
parties are not assumed to possess perfect random seeds. In
[26], we answer this question in the positive by formulating a
class of tilted Hardy paradoxes that allow to self-test general
pure two-qubit entangled states (except the maximally entan-
gled state). As shown in [52], tests of Hardy paradoxes (in an
equivalent formulation as ‘measurement-dependent’ locality
inequalities) allow for arbitrary small measurement indepen-
dence making them ideal candidates for device-independent
tasks when only weak seeds are available. We derive expres-
sions for the amount of randomness that can be certified from
the maximum violation of the tilted Hardy tests in terms of the
guessing probability by an adversary holding a quantum sys-
tem that is potentially correlated to the devices involved in the
test. We compute the guessing probability in the noisy sce-
nario of non-maximal violation, here distinguishing between
two cases: (a) a scenario of colored noise where the ‘zero’
constraints in the tilted Hardy paradox are satisfied but the
non-zero Hardy probability is non-maximal, and (b) a scenario
of white noise where we consider the non-maximal violation
of a Bell expression derived from the tilted Hardy paradox.
While an amount of local randomness up to the maximum
possible value of 1 bit can be certified by the tilted Hardy
tests, the amount of global randomness is limited to a value
of approximately 1.6806 bits. Nevertheless, we show that the
derived results present an improvement in generation rate over
the state-of-art protocols of randomness amplification against
quantum adversaries. We present a class of Hardy paradoxes
with more inputs and outputs that potentially allows to certify
the maximal amount of global randomness of 2 logd bits for
dimensions d = 4,8. To do this, we exploit a recently discov-
ered connection between Hardy paradoxes and substructures
of Kochen Specker proofs termed 01-gadgets [53]. Finally,
we derive the analytical expression for the guessing probabil-
ity in the scenario of an adversary that is allowed to prepare
bipartite devices for the honest parties constrained only by the
no-signaling principle, a result that also finds application in
the state-of-art protocols for randomness amplification against
no-signaling adversaries [23].
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Principle of information causality, proposed as a generalization of no signaling principle, can

outcast beyond quantum nonlocal correlations as unphysical [Nature 461, 1101 (2009)]. Here we

show that this principle provides physical rationale towards Hilbert space composition of multipartite

quantum systems. In accordance with no signaling condition, state and effect spaces of a composite

system can allow different possible mathematical descriptions even when the individual systems are

assumed to be quantum. While in one extreme the state space becomes quite exotic and permits

composite states that are not allowed in quantum theory, in the other extreme it contains only sep-

arable states and the resulting theory becomes local. As we show, none of these compositions does

commensurate with information causality, and hence get invalidated to be the bona-fide description

of nature. Information causality, therefore, promises physical ground towards self-duality of state

and effect cones for composite quantum systems.

Keyword - Information Causality Principle, Generalized Probability Theory, Composition of Lo-

cal Quantum System

Reference - Phys. Rev. Lett. 130, 110202

Introduction.– Quantum mechanics is the most

effective theory to describe almost all the natural

phenomena. However, the theory, starting from its

inception, engenders huge debates regarding its in-

terpretation [1–8] that persists till date [9, 10]. Quan-

tum formalism starts with abstract mathematical de-

scription of Hilbert space and cries for its physi-

cal justification. The celebrated no-signaling (NS)

principle, that prohibits instantaneous communica-

tion between distant parties, cannot serve the pur-

pose alone. It allows a broad variety of mathemat-

ical models as the possible candidate of the the-

ory of nature. Interestingly, inspired by the stud-

ies in quantum information theory, during the recent

past, several novel principles have been proposed to

circumvent the limitation of NS principle [11–16].

These new principles quite efficiently identify some

beyond quantum NS correlations as unphysical and

thus adduce physical justification(s) to quantum cor-

relations.

In this work we analyze one of the intriguing

principles called information causality (IC), pro-

posed nearly a decade back [13]. IC can be envis-

aged as a generalization of the NS condition. It lim-
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its the information gain that a receiver (say Bob) can

reach about a previously unknown to him data set of

a sender (say Alice), by using two types of resources:

(i) all his local resources that might be correlated

with the sender, and (ii) some physical system car-

rying bounded amount of information from Alice to

Bob. Both these resources can further be of differ-

ent kinds – classical, quantum, and beyond quantum;

and IC principle provides a way to test their physi-

cality. Although the correlated resources by them-

selves have no communication utility, as shown in

the seminal superdense coding paper [17], a quan-

tum correlation viz. entanglement can double up the

communication capacity of a quantum channel. The

power of entanglement, however, is limited in a way

as it cannot enhance communication capacity of a

classical channel. Principle of IC generalizes this

no-go by limiting Bob’s information gain to be at

most m bits when m classical bits are communicated

by Alice to him and he is allowed to use any of his

local resources that might be correlated with Alice.

Quite interestingly several NS correlations violate

this principle and thus considered as unphysical [18–

21]. In essence, restricting the type-(ii) resources to

be classical, the IC principle discards some of the

type-(i) resources as unphysical.

Here we study the reverse scenario, i.e., restrict-

ing the type-(i) resources to be classical we show that

some type-(ii) resources are not compatible with IC

and hence deem unphysical. We consider the sce-

nario where individual systems are assumed to be

quantum, but their composition can be modelled by

any theory that satisfy the NS condition. Even for

two quantum systems several consistent composi-

tions are possible among which quantum theory is

one of the examples. The state space of the result-

ing system lies in between two extremes – maximal

tensor product state space and minimal tensor prod-

uct state space [22]. While the maximal one grants

exotic joint states that are not allowed in quantum

theory, the minimal one allows only separable states.

It turns out that the system obtained through maxi-

mal tensor product of two elementary quantum vio-

lates the IC principle. This is quite remarkable as all

the NS correlations obtained from beyond quantum

states are in fact quantum simulable and hence can-

not yield beyond quantum nonlocal correlation [23].

We then show that minimal tensor product composi-

tion of two elementary quantum also violates the IC

principle. This is even more striking as the resulting

theory is local by construction.

IC discards extreme compositions of elemen-

tary quantum.– We consider the scenario where Al-

ice can communicate some abstract physical system

to Bob with whom she can share pre-shared random-

ness. Within the mathematical framework of gener-

alized probability theory (GPT) [24–28] such an el-

ementary system S can be specified by the tuple of

normalized state and effect spaces, i.e. S ⌘ (⌦, E).

Sometime it is convenient to deal with unnormalized

states and effects that form convex cones embedded

in some Rn. A GPT also captures the description

of the composite system S
AB

⌘ (⌦AB, EAB) con-

sisting of component subsystems S
A

⌘ (⌦A, EA)

and S
B

⌘ (⌦B, EB). Under the restriction of NS

and local tomography [29] the composite state space
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⌦AB lies in between two extremes – (i) the maximal

tensor product state space and (ii) the minimal ten-

sor product state space [22]. For instance, the state

cone of a quantum system associated with a Hilbert

space H is the set of positive semidefinite operators

P(H) ⇢ L(H) acting on H, whereas the normalized

states are the set of density operators D(H); Here

L(H) denotes the set of all linear operators acting on

H. For two quantum systems associated with Hilbert

spaces H
A and H

B respectively, the state cone for

maximal tensor product system is given by

⌦AB
+[max] :=

{W 2 L(HA
⌦H

B)|Tr[W(⇡A ⌦ ⇡B)] � 0

8⇡A 2 P(HA) and 8⇡B 2 P(HB)}.

Clearly, ⌦AB
+ [max] contains all the quantum states

P(HA
⌦H

B), and furthermore it encompasses states

that are not allowed in quantum theory. For example,

entanglement witness that are not bona-fide quantum

states [30] are valid states in this composite model.

The effect cone is constructed in accordance with the

no-restriction hypothesis that allows all mathemati-

cally consistent effects in the theory:

E
AB
+ [max] := {⇡ | ⇡ =

X

i

⇡A
i ⌦ ⇡B

i ; ⇡
A
i 2 P(HA)

⇡B
i 2 P(HB)}.

E
AB
+ [max] also forms a cone which is dual to the

state cone ⌦AB
+ [max]. In the other extreme, minimal

tensor product contains only separable states, but the

effect space gets enlarged here. More particularly,

the role of state and effect cones of maximal tensor

product are interchanged in the minimal case,

⌦AB
+ [min] := E

AB
+ [max] & E

AB
+ [min] := ⌦AB

+ [max].

Quantum composition lies in between and the state

and effect cones becomes self dual in this case, i.e.,

⌦AB
+ [Q] = P(HA

⌦H
B) = E

AB
+ [Q]. Contributions

of the present work are the following two theorems:

Theorem 1. Maximal tensor product of two elemen-

tary quantum violates the IC principle.

Theorem 2. Minimal tensor product of two elemen-

tary quantum violates the IC principle.

Discussion.– The notion of composition is one of

the guiding tools to fabricate our worldview – while

complex objects are composed of elementary parts,

some compositions deem implausible [31]. The idea

becomes important even while constructing theories

in Physics [32–34]. In this work we study this par-

ticular aspect while considering multiple quantum

systems. Interestingly, we show that the principle

of Information Causality [13] plays crucial role in

selecting the quantum composition among different

mathematical possibilities. In the process it discards

even a local theory as unphysical, which might make

IC champion over the other principles [14–16]. As

IC can derive some structural aspect of quantum the-

ory it thus brings some physical ground justifying

Hilbert space formulation of the theory. The poten-

tiality arises from the communication aspect of IC

principle which invokes preparations (for encoding)

and measurements (for decoding) of the involved

systems and thus becomes more structure sensitive.

As for future it would be quite interesting to see
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what other structural aspects of multipartite quantum

systems can be rationalized with IC as the study in

the present work is limited to bipartite compositions

only.
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Mutually unbiased measurements
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Spain

Abstract. We introduce mutually unbiased measurements (MUMs), a generalisation of mutually unbi-
ased bases (MUBs). The MUM definition naturally arises as the unique maximisier of a family of Bell
inequalities, as well as a dimension-independent generalisation of the complementarity property of MUBs.
We develop an algebraic characterisation of MUMs and show that—while exhibiting many similarities—
MUMs are strictly more general than MUBs, and that the number of MUMs with a fixed number of
outcomes is unbounded. We then extend the family of Bell inequalities from a pair of MUMs to an arbi-
trary number of them, and tackle the long-standing open problem of the number of MUBs in composite
dimensions through numerical optimisation of Bell inequalities.

Keywords: quantum measurements, mutually unbiased bases, Bell inequalities, device-independence
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Mutually unbiased bases (MUBs) [1] are highly sym-
metric pairs of orthonormal bases in complex Hilbert
spaces: the magnitude of the overlap between any two
vectors from the two different bases is uniform. That is,
two orthonormal bases {|pai}da=1 and {|qbi}db=1 on Cd are
MUBs if

|hpa|qbi| = 1/
p
d 8a, b.

A pair of MUBs can also be described by a complex
Hadamard matrix (H such that HH

† = dI and |Hab| =
1) containing all the phases, Hab =

p
dhpa|qbi. For later

convenience, it is worth noting that such a Hadamard ma-
trix can be brought to a dephased form (H1b = Ha1 = 1
for all a, b) by a suitable unitary transformation and by
attaching phases to the MUB vectors.

MUBs are ubiquitous in various areas of quantum in-
formation theory through the corresponding rank-1 pro-
jective measurements {Pa = |paihpa|}da=1 and {Qb =
|qbihqb|}db=1. Among other tasks, they are optimal for
state determination [2], highly useful in quantum cryp-
tography [3, 4, 5] and in quantum communication proto-
cols [6, 7]. Their usefulness in these tasks can be traced
back to their complementarity property, which can also
be thought of as an alternative definition of MUBs: if a
rank-1 projective measurement yields a definite outcome
on some quantum state, then a rank-1 projective mea-
surement unbiased to it will yield a uniformly random
outcome on the same state.

Due to their highly symmetric structure and extensive
use in quantum information, significant research effort
has been invested into studying MUBs in both the math-
ematics and the physics community. However, despite all
these efforts, there are still open questions regarding the
structure of MUBs. Most notably, the number of bases
that are pairwise unbiased (in the following, “the number
of MUBs”) is unknown in composite dimensions. This

⇤mate.farkas@icfo.eu

problem was mentioned in Zauner’s PhD thesis in 1999,
in which he conjectured that there are no more than three
MUBs in dimension six [8]. Up to date, we only know
that there are at least three and at most seven MUBs in
dimension six, and it is commonly believed that Zauner’s
conjecture holds.

In this work, we study the structure of MUBs through
the lens of Bell scenarios [9], which will also lead to a
natural generalisation of MUBs. In a Bell scenario, two
distant parties—Alice and Bob—perform repeated mea-
surements on a shared physical system. The experiment
is described by the conditional probability distribution
p(a, b|x, y) specifying the probability of Alice (Bob) ob-
taining the measurement outcome a (b) upon selecting
the measurement x (y). These distributions are often
called correlations or behaviours.

Sharing a quantum state and performing local quan-
tum measurements on it in a Bell scenario can lead to
nonlocal correlations. These are correlations that do not
have a local realist explanation—that is, they cannot be
thought of as a probabilistic mixture of correlations in
which the local outcomes only depend on the local mea-
surement choices. These local correlations form a con-
vex polytope, and the hyperplanes separating this poly-
tope from more general quantum correlations are called
Bell inequalities (a Bell inequality essentially specifies a
bound on the value of a linear functional—Bell func-
tional—over all local correlations). While the original
interest in Bell inequalities lies in the fact that they wit-
ness nonlocality, their maximal quantum violation is also
of fundamental interest, since these characterise the cor-
relations achievable in quantum theory.

In this work, we first devise a family of Bell inequali-
ties, parametrised by an integer d � 2, which are max-
imally violated by MUBs in dimension d. In the nonlo-
cal scenario where our Bell inequalities are defined (see
Fig. 1), Bob has access to two measurements with d out-
comes each, {Pb}db=1 and {Qb}db=1: these will be the MUB
measurements in the optimal realisation that gives rise
to the maximal violation. Alice, on the other hand, has
access to d

2 measurements (indexed by x1x2 such that
x1, x2 2 {1, . . . , d} ⌘ [d]) with three outcomes each. The
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Figure 1: Bell scenario for two MUBs of dimension d.
Alice receives one of d

2 inputs and produces a ternary
output while Bob receives a binary input and produces a
d-valued output.

idea is that in the optimal realisation, the first two out-
comes of the measurement indexed by x1x2 correspond to
the projections onto the two eigenstates of the rank-two
operator Px1 � Qx2 . The third outcome projects onto
the kernel of Px1 � Qx2 , which is non-empty whenever
d > 2. In the inequality, we enforce the use of this third
outcome by introducing a penalty term whenever Alice
outputs one of the first two outcomes.

We prove the maximal value of our Bell inequalities for
every d, and that the maximal quantum violation certifies
(self-tests) the maximally entangled state of dimension d,
|�+

d i ⌘ 1/
p
d
Pd

j=1 |jji. Furthermore, the maximal vio-
lation certifies the following algebraic relations of Bob’s
measurement operators:

dPaQbPa = Pa, dQbPaQb = Qb 8a, b.

We call a pair of measurements satisfying these relations
mutually unbiased measurements (MUMs). In particular,
it is easy to see that any pair of MUBs are also MUMs.
In fact, the MUM definition is equivalent to the MUB
definition if we require all the operators to be rank-1 (or
equivalently, if we restrict the dimension to be the same
as the outcome number).

Crucially, the MUM definition is equivalent to comple-
mentarity without the rank-1 constraint: the statement
that a pair of measurements are MUMs is equivalent to
the statement that they are projective, and that if one of
them yields a definite outcome on a quantum state then
the other one yields a uniformly random outcome on the
same state. Hence, one can think of MUMs as an op-
erational definition of MUB-ness: MUMs perfectly cap-
ture complementarity, but do not require specifying the
Hilbert space dimension (that is, the definition is “device-
independent”). There are further operational properties
that link MUMs to MUBs: in particular, any pair of d-
outcome MUMs satisfies the same entropic uncertainty
relations and admits the same generalised incompatibil-
ity robustness as an arbitrary pair of MUBs in dimension
d. Moreover, MUMs are among the most incompatible
pairs of measurements for a fixed outcome number (sim-
ilarly to MUBs, which are among the most incompatible
pairs of measurements in a given dimension).

Regarding the mathematical description, a pair of
MUMs is described by a Hadamard matrix of unitaries.
This is a block matrix H such that HH

† = dI, with

unitary blocks, where the block size equals the rank of
each projection in the MUMs. Clearly, Hadamard ma-
trices of unitaries with block size one are just complex
Hadamard matrices, and we recover the MUB definition.
Similarly to dephasing a complex Hadamard matrix, one
can also bring a Hadamard matrix of unitaries to a canon-
ical form, in which the first row and the first column of
the unitary blocks are identity operators.

This characterisation of MUMs allows us to formally
study the MUB-MUM correspondence. In particular,
while we saw that every pair of MUBs is also a pair of
MUMs, the converse turns out not to be true, and MUMs
are more general than MUBs. The simplest class of mea-
surement pairs that satisfy the MUM conditions but that
are not MUBs is simply direct sums of MUBs. That is,
measurements acting on a direct sum Hilbert space with
d-dimensional summands, such that restricted to any of
these summands, the measurements are MUBs. We prove
a simple characterisation of direct sums of MUBs: they
correspond to MUMs such that all the unitary opera-
tors commute in the canonical form of the corresponding
Hadamard matrix of unitaries.

Using this characterisation, we provide examples of
MUMs that are not direct sums of MUBs for outcome
numbers four, five and six. Furthermore, we construct
an isomorphism between Hadamard matrices of unitaries
of block size two, and quaternionic Hadamard matrices.
This isomorphism allows us to systematically construct
MUMs that are not direct sums of MUBs from dephased
quaternionic Hadamard matrices with non-commuting
entries. We construct such examples for many small
prime outcome numbers, and construct an infinite family
for outcome number four. Last, we show an even stronger
difference between MUMs and MUBs: using the Choi iso-
morphism and a semidefinite programming (SDP) char-
acterisation, we show that there exist MUM pairs that
cannot be mapped to a pair of MUBs by any completely
positive unital map.

Another crucial difference arises when one looks at the
number of MUMs for a fixed number of outcomes: in
stark contrast to the number of MUBs in a fixed dimen-
sion, we show that there exist an unbounded number of
MUMs for any fixed number of outcomes. We prove this
by an explicit construction using Hilbert spaces of un-
bounded dimension.

With this understanding of the structure of MUMs,
we attempt to tackle Zauner’s conjecture through Bell
inequalities. Namely, we are looking to find Bell in-
equalities that are maximally violated if and only if n

MUBs exist in dimension d. Given our Bell inequali-
ties for MUMs and the above results, there are two main
challenges that we are facing: first, we need to extend our
Bell inequalities to an arbitrary number of MUMs, and
then we need to restrict the dimension of the measure-
ments (since there exist an arbitrary number of MUMs
for a fixed outcome number, but restricting the dimen-
sion recovers MUBs).

To extend our Bell inequalities to n MUMs with d

outcomes each, we give n measurement settings to Bob
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instead of just two. Then, to each pair of Bob’s mea-
surements, we associate d

2 measurements for Alice, with
three outcomes each. We then define the final Bell in-
equality as a sum of the original Bell inequalities for ev-
ery pair of Bob’s measurements and the corresponding d

2

measurements of Alice. It is then clear that the maximal
violation is achieved if and only if Bob’s measurements
are n MUMs with d outcomes each. In particular, the
maximal violation is reached by any set of n MUBs in di-
mension d. Thus, we conclude that n MUBs in dimension
d exist if and only if the maximum quantum violation of
the corresponding Bell inequality is reached in dimension
d. Hence, we turned the problem of finding MUBs into
the optimisation problem of finding the maximum value
of a Bell inequality in a fixed dimension.

In order to perform this optimisation, we employed
three numerical methods. First, we notice that by fixing
the state in the Bell scenario to the maximally entangled
state in dimension d, the optimisation becomes a bilinear
optimisation problem in terms of Alice’s and Bob’s mea-
surement operators. Fixing Alice’s measurements, find-
ing the optimal measurements for Bob is a standard SDP,
and vice versa. Thus, successively optimising over either
Alice’s or Bob’s measurement operators, the see-saw al-
gorithm eventually converges to a (local) maximum.

Second, by further requiring Alice’s operators to be the
optimal ones for any fixed selection of Bob’s operators, we
eliminate Alice’s operators from the optimisation. This
comes at the cost of the objective function becoming non-
linear in Bob’s operators. We employ a general non-linear
SDP optimisation technique—with a guarantee of con-
verging to a generalised stationary point—to perform this
maximisation [10].

The third technique that we apply is another non-
linear optimisation technique inspired by simulated an-
nealing [11]. In an iterative fashion, we update Bob’s
measurement bases via a small perturbation. We ac-
cept the new bases if they lead to an improved Bell vi-
olation, but only accept with a certain (“temperature”-
dependent) probability if they lead to a smaller Bell vio-
lation. Accepting updates in the “wrong” direction allows
the algorithm to escape local maxima. By successively
decreasing the temperature parameter, we end up with
more stringent update conditions, and eventually the al-
gorithm converges to a local maximum.

All three methods correctly identify known cases in
low dimensions, that is, find MUBs in cases where it is
known that they exist, and do not find MUBs in cases
where it is known that they do not exist. Moreover, in
the cases where MUBs do not exist, all three methods
converge to (numerically) the same set of bases. We fi-
nally apply our techniques to some unknown cases, most
notably to four bases in dimension six, where the three
methods converge to the same set of bases, which are
not MUBs. These results (see Table 1) provide further
numerical evidence to Zauner’s conjecture. Furthermore,
the simulated annealing methods also suggest that there
are no more then three MUBs in dimension ten.

Since the above methods provide lower bounds on

Table 1: Normalised difference between the maximal
quantum value of the Bell inequality for n MUBs in di-
mension d and the maximal value found in dimension d

using our numerical tools. Zero indicates that we found
MUBs, while non-zero values indicate that we did not.
H

H
H

H
H

n

d 2 3 4 5 6

2 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.01440 0.00000 0.00000 0.00000 0.00004
5 - 0.00391 0.00000 0.00000 -
6 - - 0.00161 0.00000 -
7 - - - 0.00091 -

the Bell violation by explicit measurement constructions,
they can only be used to prove the existence of MUBs.
In order to prove non-existence (i.e., to prove Zauner’s
conjecture), upper bounds are necessary. One method
for upper bounding Bell inequality violations in a given
dimension was provided by Navascués and Vértesi [12].
This method allows us to numerically rule out four MUBs
in dimension two (a known result). However, applying
this method to higher dimensions is computationally very
costly. Furthermore, it is difficult to derive analytic re-
sults with this method, as it requires random sampling
of so-called moment matrices until these matrices span
the space of matrices that can be generated in a fixed
dimension.

An alternative technique for upper bounding Bell vio-
lations in a fixed dimension is the SDP hierarchy of Mo-
roder et al. [13]. Every level of the hierarchy is a standard
SDP, providing increasingly tighter bounds on a Bell in-
equality violation with a restriction on the entanglement
negativity of the shared state. Since the entanglement
negativity is bounded in a fixed dimension, this restric-
tion effectively restricts the dimension. In order to obtain
an analytic bound, one may look at the dual of the SDP.
In particular, any feasible point of the dual SDP pro-
vides a valid analytic bound on the Bell violation. We
may make an educated guess on the optimal solution to
the dual SDP by first noting that the Moroder hierarchy
is a modification of the so-called NPA hierarchy, which
provides upper bounds on Bell violations without the en-
tanglement restriction [14]. Then, we note that the dual
SDP of the NPA hierarchy is a so-called sum-of-squares
(SOS) decomposition, and we can find an SOS decompo-
sition for our MUB inequalities already on the first level
of the NPA hierarchy. In a future work, we plan to in-
vestigate the dual of the Moroder hierarchy, and adapt
this SOS decomposition in order to find analytic upper
bounds for our (and other) Bell inequalities in a fixed
dimension. Apart from the prospect of analytically prov-
ing Zauner’s conjecture, this technique would provide us
a tool to analytically bound Bell violations in fixed di-
mensions.
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Abstract. How to remotely prepare and manipulate quantum states between remote users is one of the
core issues in constructing quantum networks. Quantum entanglement can provide an e�cient means to
solve this problem. For some continuous-variable (CV) states, the Wigner function can reach negative
values. This Wigner negativity can ensure superior metrological power in quantum metrology tasks, and
o↵ers insight into studying fundamental quantum mechanics, such as the classical-quantum boundary. In
recent two years, we has made some progress on this topic, including proposing a series of novel theoretical
schemes for remote generation and manipulation of non-Gaussian states based on quantum steering, and
then collaborated with experimental groups to implement them. These results pave the way for exploiting
Wigner negativity as a valuable resource for numerous quantum information protocols.

Keywords: EPR steering, Non-Gaussian states, Remote state preparation

As the core resource of quantum communication, quan-
tum computation, and sensing technologies, quantum en-
tanglement has become the focus of research in the in-
ternational scientific and technological community. Ir-
respective of the physical implementation, quantum in-
formation processing can be divided into two types ac-
cording to the degree of freedom used to encode in-
formation: the use of discrete variables (e.g., qubit)
and that of high-dimensional, continuous-variable (CV)
states (e.g., Gaussian state). As the CV system can gen-
erate quantum entanglement deterministically and keep
high long-range transmission e�ciency, it acts as an im-
portant resource for quantum communication, quantum
cryptography, and other applications, while related theo-
retical and experimental research has developed rapidly.
Compared with the widely studied CV Gaussian sys-
tems, continuous-variable (CV) complex (non-Gaussian)
states have attracted much attention as indispensable re-
sources for universal quantum computing. As two typi-
cal classes of non-Gaussian states, Schrödinger’s cat state
and Wigner-negative state have become popular research
subjects.
It has been recently proved that quantum steering [1,

2, 3] proves a necessary requirement to remotely prepare
a Wigner-negative state [4]. In multi-mode CV systems,
we quantitatively studied the remote preparation and dis-
tribution of Wigner negativity that is remotely created
via multipartite EPR steering, in which non-Gaussian
operations performed on one steered node of quantum
network produce Wigner negativity in di↵erent distant
nodes, as shown in Fig. 1. By constructing Co↵man-
Kundu-Wootters (CKW) type monogamy constraint, it
has been revealed that the generated Wigner negativity

⇤xiangy.phy@pku.edu.cn

Figure 1: Scheme of the remote generation of Wigner neg-
ativity through EPR steering in a multipartite scenario.
(a) The initial Gaussian steerable system; (b) After some
appropriate local operations on the steered mode hold by
Alice, the steering subsystem hold by Bob becomes non-
Gaussian with Wigner negativity.

cannot be freely distributed among users, which reads as

NB1B2...Bn(LA|B1B2...Bn
) �

nX

i=1

NBi(LA|Bi
), (1)

where NBj ...Bk denotes the Wigner negativity created in
the set of modes (Bj . . . Bk) by performing some appro-
priate operations LA|Bj ...Bk

on subsystem A. This indi-
cates that the sum of the Wigner negativities generated
in the individual modes cannot exceed their intergroup
negativity.

Additionally, for one of the commonly used non-
Gaussian operations, photon subtraction S, we derive the
amount of generated Wigner negativity can be fully char-
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Figure 2: The principle and experimental setup. (a)
Schematic of the remote preparation of Wigner negativ-
ity. We first prepare a Gaussian EPR entangled state and
then transmit two entangled optical fields to two distant
nodes controlled by Alice and Bob, where the lossy chan-
nels are characterized by ⌘A and ⌘B , respectively. Then
once Alice successfully performs a single-photon subtrac-
tion from her mode, the remote Bob’s mode collapses to
a Wigner-negative state. (b) Experimental setup. Two
acousto-optic modulators (AOM) controlled by the pe-
riodically signals are used to chop the seed beam. The
NOPA is composed of a type-II KTP crystal and a con-
cave mirror with 50 mm radius. Lossy channel is sim-
ulated by the combination of a half wave plate (HWP)
and a polarization beamsplitter (PBS). The optical iso-
lators are used to avoid the back scattered light to the
NOPA cavity. SNSPD: superconducting nanowire single-
photon detector, LO: local oscillator, MC: mode cleaner,
OI: optical isolator, LS: laser shutter, IF: interference fil-
ter, FPC: Fabry-Perot cavity.

acterized by the purity of the initial states, i.e.,

NB(SA|B) = 2

2

4e
µAµB�µABµA
µAB�µAµB (µAµB � µAB)

µAB(µA � 1)
� 1

3

5 .

(2)
Hence, EPR steering provides a necessary bridge to in-
duce Wigner negativity, but it is insu�cient to unam-
biguously quantify the created Wigner negativity. This
work has been published in npj Quantum Information [5].
After making this theoretical progress, we collaborated

with the group of Prof. Xiaolong Su at Shanxi University
and realized the remote preparation of Wigner-negative
states between space-separated stations for the first time.
Based on two-mode EPR entangled optical fields, the
qualitative and quantitative relationship between quan-
tum steering and generated Wigner negativity have been
verified. The principle and experimental setup are shown
in Fig. 2. In this scheme, two optical modes of a CV

EPR entangled state are sent to Alice and Bob, respec-
tively. Through quantum tomography and homodyne de-
tection on each mode, the covariance matrix of the ini-
tial Gaussian system can be reconstructed, hence, the
Gaussian entanglement can be fully analyzed. Alice then
performs single-photon subtraction by splitting her mode
with a beam splitter with around 4% reflectivity and im-
plementing single-photon detection on it. When a pho-
ton is detected by the superconducting nanowire single-
photon detector, which means the photon is successfully
subtracted, Wigner negativity is immediately generated
in Bob’s mode. By adjusting the channel transmission ef-
ficiency on Bob’s side, it was experimentally verified that
Bob can only obtain a non-Gaussian state with Wigner
negativity when Bob can steer Alice’s state. Moreover, it
is also demonstrated that the remotely generated Wigner
negativity has superior metrological power in quantum
precision measurement. This work has been published in
Physical Review Letters [6].
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