
Posters

August 31, 2023 (Thu.) [Poster Session III]
1. Donghoon Ha and Jeong San Kim

Entanglement witness and multipartite quantum state discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Tatsuki Odake, Hlér Kristjánsson, Akihito Soeda and Mio Murao

Higher-order quantum transformations of Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Sangjin Lee, Seong-yeop Lee and Seung-Woo Lee

Higher-order Trotterization against total errors in digitial quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Varun Narasimhachar

The coherent measurement cost of coherence distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

5. Wooyeong Song, Nuri Kang, Yong-Su Kim and Seung-Woo Lee

Encoded-Fusion based Quantum Computation with photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6. Jeongsoo Kang, Chanpyo Kim, Younghun Kim and Younghun Kwon

Design of three-qubit system with three transmons and single resonator in a transmon-based quantum computer . . . . . . . . 19

7. Mi-Jung So, Dongni Chen and Mahn-Soo Choi

Generic Decoherence Free subspace of Non-Interacting Open Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

8. Youngrong Lim, Minki Hhan and Hyukjoon Kwon

Non-destructive quantum state discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9. Sewon Jeong, Hyang-Tag Lim, Yong-Su Kim and Seung-Woo Lee

Recovery of entanglement distributed via entanglement swapping over noisy quantum channel . . . . . . . . . . . . . . . . . . . . . . . . 29

10. Byeongseon Go and Hyunseok Jeong

Exploring Shallow-Depth Boson Sampling for Scalable Quantum Supremacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11. Binke Xia, Jingzheng Huang and Guihua Zeng

Toward Incompatible Quantum Limits on Multiparameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12. Kwang-Jun Choi and Seung-Woo Lee

Resource-efficient probabilistic detection of GHZ entanglement with conditional witness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13. Yaswitha Gujju, Rong-Yang Sun, Tomonori Shirakawa and Seiji Yunoki

Exploring Toric Code Model: Comparative Performance Analysis of the Parameterized Loop Gas Circuit in Noisy Quantum
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



14. Changhao Yi and Milad Marvian

Analysis of Higher Order Dynamical Decoupling by Relative Integral Action Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

15.Hyoengjun Jeon, Kyungmin Lee, Dongkyu Lee, Bongsang Kim and Taehyun Kim

Optimal Qubit Permutation Search for Matrix Product State Encoding with Minimal Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

16. Arindam Mitra, Himanshu Badhani and Sibasish Ghosh

Improvement in quantum communication using quantum switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

17. Seongwook Shin, Yong Siah Teo and Hyunseok Jeong

Analyzing quantum machine learning using tensor network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

18. Seok-Hyung Lee and Hyunseok Jeong

Graph-theoretical optimization of fusion-based graph state generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

19. Youngchul Kim, Soo-Cheol Oh, Sangmin Lee, Ki-Sung Jin and Gyuil Cha

Implementation of lattice surgery-based logical operations in a fault-tolerant quantum software framework . . . . . . . . . . . . .64

20. Nuri Kang, Jaehak Lee and Seung-Woo Lee

Fault-tolerance analysis of photonic hybrid quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

21. Bohdan Bilash, Youngrong Lim, Hyukjoon Kwon, Yosep Kim, Hyang-Tag Lim, Wooyeong Song and Yong-Su Kim

Nondestructive Bell state discrimination between distant particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

22. Mingrui Jing, Geng Liu, Hongbin Ren and Xin Wang

Quantum sequential scattering model for quantum state learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

23. Takuya Hatomura

The first-order Trotter decomposition in the dynamical-invariant basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

24. Shintaro Minagawa, Kenta Sakai, Kohtaro Kato and Francesco Buscemi

The work associated with quantum information processing driven by the assistance of a controller . . . . . . . . . . . . . . . . . . . . .82

25. Clive Aw, Valerio Scarani, Kelvin Onggadinata and Dagomir Kaszlikowski

Quantum Bayesian Inference in Quasiprobability Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

26. Kyunghyun Baek, Junghee Ryu and Jinhyoung Lee

Robustness measures for quantifying nonlocality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

27. Jeonghyeon Shin and Seung-Woo Lee

Chracterizing genuine nonlocality in the square network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

28. Kaiwei Qiu, Yu Cai, Nelly Ng and Jing Yan Haw

Building a certifiable source device independent quantum random number generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ii



29. Junseo Lee, Kibum Bae, Chang-Nyoung Song and Hyunchul Jung

Optimizing Quantum Integer Factorization Performance: A Scalable Evaluation Approach with Parameter Pre-Selection
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

30. Su-Yong Lee, Dong Hwan Kim, Yonggi Jo, Zaeil Kim and Duk Y. Kim

Quantum target detection under single-mode Gaussian channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

31. Theodoros Kapourniotis, Elham Kashefi, Dominik Leichtle, Luka Music and Harold Ollivier

Asymmetric Quantum Secure Multi-Party Computation With Weak Clients Against Dishonest Majority . . . . . . . . . . . . . . . . 105
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Entanglement witness and multipartite quantum state discrimination
Donghoon Ha

1
Jeong San Kim

1 ⇤

1 Department of Applied Mathematics and Institute of Natural Sciences,
Kyung Hee University, Yongin 17104, Republic of Korea

Abstract. We consider multipartite quantum state discrimination and show that the minimum-error
discrimination by separable measurements is closely related to the concept of entanglement witness. Based
on the properties of entanglement witness, we establish some necessary and/or su�cient conditions on
minimum-error discrimination by separable measurements. We also provide some conditions on the upper
bound of the maximum success probability over all possible separable measurements. Our results are
illustrated by examples of multidimensional multipartite quantum states. Finally, we provide a systematic
way in terms of the entanglement witness to construct multipartite quantum state ensembles showing
nonlocality in state discrimination.

Keywords: minimum-error discrimination, separable measurement, entanglement witness

Quantum state discrimination is one of the fundamen-
tal concepts used in various quantum information and
computation theory [1–4]. In general, we can always per-
fectly discriminate orthogonal quantum states using ap-
propriate measurement. However, nonorthogonal quan-
tum states cannot be perfectly discriminated by means
of any measurement. For this reason, various state dis-
crimination strategies have been studied for optimal dis-
crimination of nonorthogonal quantum states, such as
minimum-error discrimination, unambiguous discrimina-
tion and maximum-confidence discrimination [5–9].
Entanglement witness(EW) is an important tool to de-

tect the existence of entanglement inherent in a multi-
partite quantum state [10–13]. Mathematically, EW is a
Hermitian operator having non-negative mean value for
every separable state, but negative for some entangled
states. As EW provides an useful methodology to detect
entanglement that is an important quantum nonlocal-
ity, it is natural to ask whether EW can also be used to
characterize other nonlocal phenomenon of multipartite
quantum states.
Quantum nonlocal phenomenon also arises in discrim-

inating multipartite quantum states; quantum nonlocal-
ity occurs when optimal state discrimination cannot be
realized only by local operations and classical commu-
nication(LOCC) [14–17]. However, characterizing local
discrimination of quantum states is a hard task and very
little is known due to the lack of good mathematical
structure for LOCC.
Here, we establish a specific relation between the prop-

erties of EW and separable measurements, a mathemat-
ically well-structured set of measurements having LOCC
measurements as a special case [18]. We show that the
minimum-error discrimination of multipartite quantum
states using separable measurements strongly depends on
the existence of EW. More precisely, we establish condi-
tions on minimum-error discrimination by separable mea-
surements in terms of EW. We also provide conditions
on the upper bound of the maximum success probability
over all possible separable measurements. We illustrate

⇤freddie1@khu.ac.kr

our results using examples of multidimensional multipar-
tite quantum states. Finally, we provide a systematic
way in terms of EW to construct multipartite quantum
state ensembles showing nonlocality in state discrimina-
tion [18].

Let us consider the situation of discriminating n mul-
tipartite quantum states ⇢1, . . . , ⇢n in which the state ⇢i

is prepared with the probability ⌘i. We denote this situ-
ation as an ensemble,

E = {⌘i, ⇢i}ni=1
. (1)

We use pG(E) to denote the optimal success probability
in the minimum-error discrimination of E , that is,

pG(E) = max
Measurement

nX

i=1

⌘iTr(⇢iMi). (2)

When the available measurements are limited to sep-
arable measurements, we denote the maximum success
probability by

pSEP(E) = max
Separable

measurement

nX

i=1

⌘iTr(⇢iMi). (3)

Similarly, we denote

pL(E) = max
LOCC

measurement

nX

i=1

⌘iTr(⇢iMi). (4)

From the definitions, we trivially have

pL(E) 6 pSEP(E) 6 pG(E). (5)

For a multipartite quantum state ensemble E , we define
HSEP(E) as

HSEP(E) = {H 2 H |

H � ⌘i⇢i 2 SEP
⇤ 8i = 1, . . . , n},

(6)

where H is the set of all Hermitian operators and SEP
⇤ is

the set of all block-positive operators. We further define

HEW(E) = {H 2 HSEP(E) |

H � ⌘j⇢j is a EW for some j 2 {1, . . . , n}}.
(7)
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Now, let us consider the minimum quantity

qSEP(E) = min
H2HSEP(E)

TrH, (8)

which is an upper bound of pSEP(E) [19], that is,

pSEP(E) 6 qSEP(E). (9)

Theorem 1 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

,

pSEP(E) = qSEP(E). (10)

For a given ensemble E , the following theorem provides
a necessary and su�cient condition for a separable mea-
surement {Mi}ni=1

and H 2 HSEP(E) to realize pSEP(E)
and qSEP(E), respectively.

Theorem 2 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

, a separable measurement {Mi}ni=1
and

H 2 HSEP(E), {Mi}ni=1
realizes pSEP(E) and H provides

qSEP(E) if and only if

Tr[Mi(H � ⌘i⇢i)] = 0 8i = 1, . . . , n. (11)

We note that H 2 HSEP(E) providing qSEP(E) is gen-
erally not unique. However, the following corollary states
the case that H 2 HSEP(E) providing qSEP(E) is unique.

Corollary 3 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

, we have

pSEP(E) = ⌘1, (12)

if and only if

⌘1⇢1 � ⌘i⇢i 2 SEP
⇤ 8i = 2, . . . , n. (13)

In this case, ⌘1⇢1 is the only element of HSEP(E) provid-
ing qSEP(E).

When Eq. (12) of Corollary 3 holds, the maximum suc-
cess probability pSEP(E) can be achieved without the help
of measurement, simply by guessing ⇢1 is prepared. The
choice of ⇢1 in Corollary 3 can be arbitrary. That is, any
of {⇢i}ni=1

can be used to play the role of ⇢1 in Corol-
lary 3.
For a given ensemble E , the minimum-error discrimi-

nation can be realized by separable measurements if and
only if

pSEP(E) = pG(E). (14)

Theorem 4 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

, if there exists separable measurement
{Mi}ni=1

satisfying

nX

i=1

⌘i⇢iMi 2 HEW(E), (15)

then

pSEP(E) =
nX

i=1

⌘iTr(⇢iMi) < pG(E). (16)

Thus, non-existence of such separable measurement
{Mi}ni=1

satisfying Condition (15) is a necessary condi-
tion for pSEP(E) = pG(E).

Example 1 For any integers m, d > 2, let us consider
the m-qudit state ensemble E = {⌘i, ⇢i}d+2

i=1
consisting of

d+ 2 states,

⌘i =
1

dm + d
, ⇢i = |i� 1ihi� 1|⌦m

, i = 1, . . . , d,

⌘d+1 =
d
m � d

dm + d
, ⇢d+1 =

1

dm � d

⇣
�

d�1X

j=0

|jihj|⌦m

⌘
,

⌘d+2 =
d

dm + d
, ⇢d+2 = |�ih�| , (17)

where

|�i = 1p
d

d�1X

i=0

|ii⌦m
. (18)

For a separable measurement {Mi}d+2

i=1
with

Mi = |i� 1ihi� 1|⌦m
, i = 1, . . . , d,

Md+1 = �
d�1X

j=0

|jihj|⌦m
, Md+2 = 0H, (19)

we show that Condition (15) holds with respect to the
ensemble in Eq. (17). It is straightforward to verify that

d+2X

j=1

⌘j⇢jMj � ⌘i⇢i ⌫ 0, i = 1, . . . , d+ 1,

d+2X

j=1

⌘j⇢jMj � ⌘d+2⇢d+2 =
1

dm + d

�
� d |�ih�|

�
(20)

2 SEP
⇤
.

Furthermore, a straightforward calculation leads us to

h�|
⇣ d+2X

j=1

⌘j⇢jMj � ⌘d+2⇢d+2

⌘
|�i < 0. (21)

Thus, Theorem 4 leads us to

pSEP(E) =
d+2X

i=1

⌘iTr(⇢iMi) =
d
m

dm + d
< pG(E). (22)

Theorem 5 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

, pSEP(E) = pG(E) if and only if there
exists H 2 HSEP(E) such that it provides qSEP(E) but
does not satisfy

H 2 HEW(E). (23)

If pSEP(E) = pG(E), Theorem 5 implies that there must
exist H 2 HSEP(E) \HEW(E) providing qSEP(E). In this
case, there possibly exists another Hermitian operatorH 0

satisfying H
0 2 HEW(E) and TrH 0 = qSEP(E).

Corollary 6 For a multipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

with Condition (13), pSEP(E) < pG(E) if
and only if there exists an EW in {⌘1⇢1 � ⌘i⇢i}ni=2

.
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Example 2 For any integers m, d > 2, let us consider
the m-qudit state ensemble E = {⌘i, ⇢i}d+1

i=1
consisting of

d+ 1 states,

⌘1 =
1

2
, ⇢1 =

1

dm
,

⌘i =
1

2d
, ⇢i =

d
2 � d

dm � d
|�iih�i|+

d
m � d

2

dm(dm � d)
, (24)

i = 2, . . . , d+ 1,

where

|�ji =
1p
d

d�1X

k=0

exp
⇣ i2⇡jk

d

⌘
|ki⌦m

. (25)

For each i = 2, . . . , d+1, a straightforward calculation
leads us to

⌘1⇢1 � ⌘i⇢i =
d� 1

2d(dm � d)
( � d |�iih�i|) 2 SEP

⇤
. (26)

Furthermore, a straightforward calculation leads us to

h�i|
⇣
⌘1⇢1 � ⌘i⇢i

⌘
|�ii < 0 8i = 2, . . . , d+ 1. (27)

From Eqs. (26) and (27), ⌘1⇢1 � ⌘i⇢i is an EW for any
i = 2, . . . , d+ 1. Thus, Corollary 6 leads us to

pSEP(E) =
1

2
< pG(E). (28)

Now, we provide a systematic way in terms of EW to
construct multipartite quantum state ensembles show-
ing nonlocality in state discrimination, that is, pL(E) <
pG(E). For a given EW W , let us consider the multipar-
tite quantum state ensemble E = {⌘i, ⇢i}2i=1

where

⌘1 =
Tr(P +W )

Tr(2P +W )
, ⇢1 =

P +W

Tr(P +W )
,

⌘2 =
TrP

Tr(2P +W )
, ⇢2 =

P

TrP
, (29)

with any positive-semidefinite operator P ⌫ 0 satisfying

P +W ⌫ 0. (30)

Since ⌘1⇢1 � ⌘2⇢2 is proportional to the EW W ,
pSEP(E) < pG(E) holds from Corollary 6. Thus, Inequal-
ity (5) leads us to pL(E) < pG(E).
Corollary 6 can also be used to construct a multipar-

tite quantum state ensemble E = {⌘i, ⇢i}ni=1
with n > 2

showing nonlocality in quantum state discrimination. For
a set of EWs {Wi}ni=2

, let us consider the multipartite
quantum state ensemble E = {⌘i, ⇢i}ni=1

where

⌘1 =
Tr

Tr(n �
P

n

j=2
�jWj)

, ⇢1 =
Tr

,

⌘i =
Tr( � �iWi)

Tr(n �
P

n

j=2
�jWj)

, ⇢i =
� �iWi

Tr( � �iWi)
, (31)

i = 2, . . . , n,

with any set of positive real numbers {�i}ni=2
satisfying

� �iWi ⌫ 0 8i = 2, . . . , n. (32)

Because ⌘1⇢1 � ⌘i⇢i is proportional to Wi for any i 2
{2, . . . , n}, pSEP(E) < pG(E) holds from Corollary 6.
Thus, Inequality (5) leads us to pL(E) < pG(E).

Quantum nonlocality is a key ingredient making quan-
tum states outperform the classical ones in various quan-
tum information processing tasks such as quantum tele-
portation and quantum cryptography [20, 21]. It is also
known that quantum nonlocality plays an important role
in quantum algorithms which are more powerful than any
classical ones [22, 23]. As the violation of the conditions
in Theorem 5 implies pSEP(E) < pG(E), which conse-
quently means pL(E) < pG(E), our results provides a
useful methodology to guarantee the occurrence of non-
locality in state discrimination.

Our results establish a specific relation between the
properties of EW and minimum-error discrimination by
separable measurements, therefore it is natural to inves-
tigate the relationship between EW and other measure-
ments. It is also an interesting future work to construct
good conditions, in terms of EW, for optimal state dis-
crimination in other state discrimination strategies.
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Higher-order quantum transformations of Hamiltonian dynamics
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Abstract. We present a quantum algorithm to achieve higher-order transformations of Hamiltonian
dynamics. Namely, the algorithm takes as input a finite number of queries to a black-box seed Hamiltonian
dynamics to simulate a desired Hamiltonian. Our algorithm e�ciently simulates linear transformations
of any local seed Hamiltonian, making use of only controlled-Pauli gates and time-correlated randomness.
This algorithm is an instance of quantum functional programming, where the desired function is specified
as a concatenation of higher-order quantum transformations. By way of example, we demonstrate the
simulation of negative time-evolution and time-reversal, and perform a Hamiltonian learning task. This
contribution is based on arXiv:2303.09788.

Keywords: Higher-order transformation, Hamiltonian dynamics, functional programming, qDRIFT

1 Introduction and Summary

E�ciently simulating the dynamics of complex quan-
tum systems is often stated as one of the main motiva-
tions of quantum computing. While such simulation is
considered hard on classical computers, a range of e�-
cient quantum algorithms have been developed for sim-
ulating Hamiltonian dynamics [1, 2, 3, 4, 5, 6, 7]. The
core principle behind the standard Hamiltonian simula-
tion algorithms is that the desired Hamiltonian dynam-
ics can be well-approximated by a series of (arguably)
simpler quantum operations. These algorithms rely on
having a classical description of the desired Hamiltonian,
which can often be used for obtaining a decomposition
into a sum of easily implementable terms. This limits
the way we can develop large-scale, complex quantum
programs for dynamics simulation. Quantum algorithms
which do not require detailed descriptions of quantum
resources have a higher flexibility in quantum software
development. This issue also touches on a fundamental
problem in quantum algorithms as to how much quantum
algorithms rely on classical descriptions of their input to
achieve quantum advantages in information processing.
In this work, we study which Hamiltonian dynamics

can be implemented given a seed HamiltonianH, without
using a classical description of H. We present a quantum
algorithm that simulates the dynamics of f(H) where f
is any physically realizable linear function of H, given a
description of f and using a classically unknown H as
the seed. This algorithm is an instance of a higher-order
quantum transformation on the unitary operation real-
ized by the seed Hamiltonian dynamics. The functions
that the algorithm can implement include both the nega-
tive time-evolution and the time-reversal of an unknown
Hamiltonian evolution by considering f(H) = �H and
f(H) = HT (transposition of H in terms of the com-
putational basis), respectively. Such general transforma-
tions have applications ranging from fundamental physics

⇤tatsuki.odake@phys.s.u-tokyo.ac.jp
†hler.kristjansson@outlook.com
‡soeda@nii.ac.jp
§murao@phys.s.u-tokyo.ac.jp

simulations to potential improvements in state-of-the-art
algorithms, such as the Hamiltonian singular value trans-
formation [8]. We also show an application of our algo-
rithm for Hamiltonian learning [9], in particular, a task
of e�ciently estimating a parameter of a multi-parameter
Hamiltonian using Hamiltonian dynamics by appropri-
ately choosing f(H).

Our work constitutes the first systematic study of
higher-order quantum transformations in the context of
Hamiltonian dynamics. Higher-order quantum transfor-
mations have attracted significant attention in recent
years in the context of quantum circuit transformations,
and are also known as superchannels, supermaps, quan-
tum combs and process matrices [10, 11, 12, 13, 14, 15].
Higher-order algorithms for quantum computation can
be seen as an analogue of functional programming in
classical computing, where the possible inputs to an al-
gorithm are quantum channels (for example, unitaries)
specified “operationally” by their input-output descrip-
tion only (i.e. as black boxes).

Previous works on this topic have focused on the possi-
ble transformations that can be achieved when the input
channels are taken to be a finite sequence of quantum
gates [10, 16, 17, 18, 19, 20, 21, 22, 23, 15, 24]. Yet, the
resources available in a given computation are not always
best described by a finite sequence of gates, but rather
by a continuously parameterized Hamiltonian evolution.
In fact, it is known that certain functions such as con-
trollization, which cannot be implemented on black box
unitaries [25, 26, 27, 28], can in fact be implemented if
access to the underlying Hamiltonian evolution is given
[29, 17]. This is because it is possible to apply an arbi-
trary fractional power of an unknown Hamiltonian evo-
lution by changing the evolution time, whereas applying
a fractional power is not possible for black box unitaries.

Our algorithm is a starting point of the emerging field
of black box Hamiltonian simulation. One possible future
direction is to extend higher-order quantum transforma-
tions of Hamiltonian dynamics to the Hamiltonian trans-
formations beyond hermitian-preserving linear transfor-
mations.

5



e�iHt�/N

{pj , j}

⇥N

|0i

V †
f,j

Vf,j

| i e�if(H)t | i⇠

Figure 1: A circuit representation of Algorithm 1 im-
plementing the transformation e�iH⌧

7! e�if(H)t for an
arbitrary hermitian-preserving linear map f : L(H) 7!
L(H) satisfying f(I) / I. The unitary e�if(H)t is sim-
ulated deterministically and approximately, for an arbi-
trary input state | i 2 H and the auxiliary qubit initial-
ized in the state |0i 2 Hc. The numberN on the top-right
of the bracket refers to the number of iterations while
t�/N is the Hamiltonian evolution time of each iteration.
For each iteration, an index j = (~v,~v0, ~u, ~w) is randomly

chosen from the probability distribution pj = p(1)
~v,~v0p

(2)
~u,~w

,
to perform the j-dependent circuit inside the square
brackets.

2 Algorithm

We now present our algorithm (see Algorithm 1). We
represent Hilbert spaces of an n-qubit quantum system
and a single-qubit auxiliary system by H and Hc, respec-
tively. We assume that we can invoke the Hamiltonian
evolution e�iH⌧ of a seed Hamiltonian H 2 L(H) for any
time ⌧ > 0. Given a hermitian-preserving linear map
f : L(H)! L(H) represented in terms of the Pauli trans-
fer matrices � [30] as in Eq. (1), our algorithm simulates
the Hamiltonian evolution e�if(H)t for any t > 0 repre-
senting the time for the transformed Hamiltonian dynam-
ics up to an error ✏ > 0 and variance 8✏. For convenience,
we make two assumptions without loss of generality. (a)
We assume that H is normalized as ||H||op = 1, which
can be satisfied by appropriately adjusting the timescale
⌧ . (b) We impose that f(I) / I, which ensures that the
resulting evolution e�if(H)t preserves the invariance un-
der the global phase of e�iH⌧ . This class of f covers all
physically realizable linear transformations of H.
In Algorithm 1, the gate sequence Vf,j is constructed

only from Cli↵ord gates. The only element which may
be non-Cli↵ord is the black box dynamics e�iH⌧ . Depen-
dence on the transformation f is specified only through

the probability distribution p(2)
~u,~w

in choosing (~u, ~w) in
Step 4 and through the gateXsf in Step 5. The total run-
time O(�2t2n/✏) is calculated by multiplying the number
of iterations N with the runtime O(n) for implement-
ing the controlled-Pauli gates in Vf,j using CNOT gates
and single-qubit Cli↵ord gates. The procedure of Algo-
rithm 1 is summarized in Figure 1. The gate sequence
of

P
~v,~v0 Vf,j(I ⌦ e�iHt�/N )V †

f,j
can be viewed as con-

structed in a functional programming approach, namely,
by concatenations of a series of higher-order transforma-
tions (see the accompanied paper).

Algorithm 1 Simulating e�if(H)t

Input:

• A finite number of queries to a black box Hamil-
tonian dynamics e�iH⌧ of a seed Hamiltonian H
with ⌧ > 0 on an n-qubit system H

• Hermitian-preserving linear map f : L(H) !
L(H) satisfying f(I) / I, which can always
be represented by the Pauli transfer matrix ele-
ments �~w,~u as

f =
X

~w2{0,1,2,3}n

~u2{0,1,2,3}n\(0,...,0)

�~w,~u f~w,~u , (1)

for some �~w,~u 2 R and functions f~w,~u defined
by f~w,~u(�~v) := �~v,~u�~w , for any tensor products
of Pauli operators �~v := �v1 ⌦ · · · ⌦ �vn , where
�0 = I, �1 =X, �2 = Y, �3 =Z and ~u, ~v, ~w 2
{0, 1, 2, 3}n are the Pauli index vectors.

• Input state | i 2 H

• Allowed error ✏ > 0

• Time t > 0

Output: A state approximating e�if(H)t
| i with an

error less than ✏ (measured by the 1-norm)

Runtime: O(�2t2n/✏) for � := 2
P

~w,~u
|�~w,~u|

Used Resources:

System: H and one auxiliary qubit Hc

Gates: e�iH⌧ (⌧ > 0) and Cli↵ord gates on Hc⌦H

Procedure:

1: Compute N := ceil
h
max

⇣
5�2

t
2

✏
, 5
2�t

⌘i

2: Initialize:
|currenti  |0i ⌦ | i

3: for m = 1, . . . , N do

4: Randomly choose

• (~v,~v0) 2 ({0, 1, 2, 3}n)2 with prob. p(1)
~v,~v0 := 1

16n

• (~u, ~w) 2 ({0, 1, 2, 3}n)2 with prob. p(2)
~u,~w

:=
2|�~u,~w|

�

5: Prepare the gate sequence [with j = (~v,~v0, ~u, ~w)]

�~v

HAD

�~u �~v0 �~w

HAD XsfHc

H

:=Vf,j

where sf := 1�sgn(�~u,~w)
2 (all gates other than

Xsf are independent of f) and HAD refers to
the Hadamard gate

6: |currenti  Vf,j(I ⌦ e�iHt�/N )V †
f,j

|currenti
7: end for

8: Trace out Hc of |currenti
9: Return |currenti
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3 Applications of the algorithm

We describe three applications of our algorithm:
the negative time-evolution of Hamiltonian dynamics
e�iH⌧

7! eiHt (⌧, t > 0), the time-reversal of Hamiltonian

dynamics e�iH⌧
7! e�iH

T
t (⌧, t > 0), and a Hamiltonian

learning task of estimating a parameter represented by a
Pauli coe�cient c~v (|c~v|  1 ,~v 2 {0, 1, 2, 3}n) of a Hamil-
tonian H =

P
~u
c~u�~u with Heisenberg-limited precision

scaling using its dynamics e�iH⌧ (⌧ > 0). The operator
norm kHkop of the first two applications are assumed to
be 1, while kHkop can be of an arbitrary value but its
upper bound should be known in advance for Hamilto-
nian learning. In general, all three applications can be
performed even if the dynamics e�iH⌧ is given as a black
box apart from knowledge of kHkop. However, given the
knowledge thatH belongs to a subspace of L(H) spanned
by the set {�~v}~v2J for some J ⇢ {0, 1, 2, 3}n, negative
time-evolution and time-reversal can be performed in a
runtime of O(poly(|J |)). This property is useful when
the Hamiltonian is known to be k-local for some k ⌧ n,
in which case J = {~w : ||~w||0  k} satisfies |J | ⇠ O(nk),
which is polynomial in n.

In quantum algorithms that make direct use of Hamil-
tonian dynamics, both the positive and negative time-
evolution are often assumed to be readily accessible. For
example, this is required in the recent Hamiltonian sin-
gular value transformation [8]. However, in practice, a
Hamiltonian evolution being native to a given hardware
does not automatically guarantee that the same is true
for the corresponding negative time-evolution. There-
fore, the ability to e�ciently simulate the negative time-
evolution of any Hamiltonian given as a black box can
decrease the resources required for such algorithms. On
the more foundational side, given access to a black box
Hamiltonian evolution, one might be interested in sim-
ulating the corresponding time-reversed evolution. For
example, the evolution of an antiparticle is described by
the time-reversal of the corresponding particle evolution.

The simulations of both negative time-evolution and
time-reversal are performed by choosing the function f
as fneg(H) := �H and f rev(H) := HT , respectively,
which are specified by

�neg
~w,~u

:= ��~w,~u

�rev
~w,~u

:= (�1)s~w�~w,~u, (2)

where s(w1,...,wn) := |{j 2 {1, . . . , n} | wj = 2}|. In
the definition of �rev

~w,~u
, the fact that IT = I, XT = X,

Y T = �Y , and ZT = Z are used.
In both of these cases, � = 2

P
~w,~u

|�~w,~u| = 2(4n � 1),

thus the runtime O(�2t2n/✏) is exponential in n in gen-
eral. However, when H is in a subspace of L(H) spanned
by the set {�~v}~v2J , we can define

�neg
~w,~u

:=

(
��~w,~u (~u 2 J)

0 (otherwise)
(3)

�rev
~w,~u

:=

(
(�1)s~w�~w,~u (~u 2 J)

0 (otherwise) ,
(4)

since f(H) does not depend on values of �~w,~u for ~u /2
J . In this case, � is calculated as � = 2|J | and the
runtime O(�2t2n/✏) can be reduced depending on the
size of J . We note that the runtime scales as t2, meaning
that in order to perform the time-reversal or negative
time-evolution by this algorithm, the dynamics is slowed
down quadratically.

Finally, we consider an application of our algorithm
to Hamiltonian learning [9]. Estimation techniques of
parameters of unknown Hamiltonians for Hamiltonian
learning have many applications in quantum sensing [31],
analyzing properties of quantum many-body physics [32],
and quantum device calibration [33]. Recently, an es-
timation technique achieving the Heisenberg limit for
the precision scaling in the estimation of parameters of
a low-interaction Hamiltonian has been proposed [34].
Our algorithm can be used to extend this technique to a
more general class of n-qubit Hamiltonians. In particu-
lar, given access to the dynamics e�iH⌧ with an arbitrary
time ⌧ > 0 of any Hamiltonian H =

P
~v2{0,1,2,3}n c~v�~v

where each coe�cient satisfies |c~v|  1, but is not neces-
sarily positive as in the case of [34], and an upper bound
of its operator norm kHkop is known, we can find an es-
timate ĉ~v of a single parameter represented by a Pauli
coe�cient c~v for a chosen ~v 2 {0, 1, 2, 3}n with a stan-
dard deviation smaller than or equal to s > 0 in a total
evolution time O(1/s). According to the Chebyshev in-
equality, the task of this protocol can be regarded as an
estimation of c~v with an error smaller than or equal to
✏ = ks with the failure probability smaller than or equal
to 1/k2 for an arbitrary k > 0.

Our estimation algorithm consists of two steps. The
first step simulates e�if~v(H)t (t > 0) using the Hamilto-
nian dynamics e�iH⌧ (⌧ > 0) where ~v specifies c~v that we
want to estimate and f~v is a hermitian preserving linear
map chosen as f~v(H) = c~vY ⌦ I ⌦ · · ·⌦ I. This function
f~v “filters” to keep only the coe�cient c~v and changes
all other coe�cients to be zero and then sends the coef-
ficient c~v to the coe�cient of Y ⌦ I ⌦ · · · ⌦ I, which is
chosen for the convenience of the second step. The cor-
responding � is given by �~w~u := �~w,(2,0,...,0)�~u,~v. The
second step performs robust phase estimation [35] using
e�if~v(H)t similarly to the technique in [34] to obtain an
estimate for c~v, by measuring only the first qubit in our
algorithm.
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Higher-order Trotterization against total errors in digitial quantum

simulation
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Abstract. Trotter errors are unavoidable in digital quantum simulations (DQS) due to the decomposition
of the unitary evolution of the Hamiltonian into finite number of Trotter steps. Decoherence also causes
additional errors which may significantly harms the performance of DQS. In this work, we introduce and
analyze a higher-order Trotterization scheme for digital quantum simulations to suppress both errors from
the Trotterization and decoherence. Motivated from the advanced schemes of dynamical decoupling for
higher-order error suppression, we design the sequences of operations for Trotterization to reduce both the
Trotter errors and the physical errors simultaneously. We expect that our scheme provides an e�cient tool
to develop practical digital quantum simulators.

Keywords: Digital quantum simulations, Trotterization, Dynamical decoupling

1 Introduction

A quantum simulation is a natural-born tool for an
exploration to complex and many-body physics in which
conventional computation techniques such as an exact
diagonalization su↵ers from exponentially large Hilbert
space. Concerning large Hilbert space, a numbers of con-
structed quantum simulators even with small number of
qubits already start to benchmark standard known re-
sults: energy levels of molecules, phase diagram of lat-
tice gauge theories[1, 2]. Even though many quantum
simulations already done, we still need an e�cient algo-
rithm to be implemented to existing quantum simulation
platforms because of restricted resources and practical
errors.

Regarding to quantum simulations, there are two types
of quantum simulations: analog and digital quantum sim-
ulations (DQS). Those two types of quantum simulations
have pros and cons respectively. In spite of its advantage
in controllability, DQS is inevitably contaminated by so
called Trotter errors. The Trotter errors in principle can
be arbitrary reduced if the number of Trotter steps is
su�ciently large. However, in the presence of physical
errors caused by decoherence or gating errors the perfor-
mance of DQS is also significantly reduced. Therefore, in
the realistic implementation of DQS, an e�cient strategy
to suppress both the Trotter errors and physical errors is
essential.

A Suzuki formula [3] provides a way to achieve arbi-
trary precisions with the cost of exponential precisions
of gate-timing and exponentially many number of gates.
While such a scheme provides a way to suppress arbitrary
high-order Trotter errors, a more systematic approach of
the Trotterization is required in realistic situations re-
garding the gate-timing and operation cost. Moreover,
in order to e�ciently mitigate nontrivial errors induced
by the correlation between the Trotter and physical er-
rors, a sophisticated design of higher-order Trotterization
would be necessary. In this work, we introduce and an-
alyze schemes to suppress both the Trotter and physical

⇤swleego@gmail.com

errors simultaneously up to higher-order. Based on the
analysis of the total errors in Trotterization including
both Trotter and physical errors as well as their correla-
tions [4], we apply a higher-order scheme to suppress the
total errors. Motivated from the advanced schemes of
dynamical decoupling for higher-order error suppression
[5], we design the sequences of operations for Trotteri-
zation to reduce the total errors e�ciently up to higher
order. We expect that our work provides an e�cient tool
to design the Trotterization in developing practical digi-
tal quantum simulators.

2 Total errors in Trotterization

The system Hamiltonian H to simulate can be de-
composed into L elements as H =

PL
j=1 Hj , while the

total Hamiltonian evolution time, t, is divided into r
steps. Each evolution of the segmented Hamiltonian for
the time interval t/r, i.e., {e�iHjt/r

}j , is implemented in
terms of gate operations. The simulation is then repre-
sented through the evolution of the e↵ective Hamiltonian
H̃ which is defined as

e�iH̃t/r =
LY

j=1

e�iHjt/r. (1)

The form of the e↵ective Hamiltonian can be recasted by
using Baker-Campbell-Hausdor↵(BCH) formula into

H̃ = H �
i

2

LX

⌫=µ+1

LX

µ=1

[H⌫ , Hµ](t/r) + O(t2/r2). (2)

The Trotter error can be then obtained by expanding the
Hamiltonian time evolution operator and is bounded as

���e�iHt
� e�iH̃t

��� 

������
it2

2r

LX

µ<⌫

[H⌫ , Hµ] + O(t3/r2)

�����.

(3)

Physical errors also harms DQS during the evolution
in realistic situations. First, we can assume the physical
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errors that are not correlated with the Trotter errors.
The total simulating channel is then given as

E = �
r
j=1E

0
� V , (4)

where V indicates one Trotter step evolution, E
0 is a noisy

quantum channel in Trotter step and � denotes the con-
catenation of channels and E

0. For example, we can con-
sider the depolarization quantum channel E

DEPOL(⇢) =
(1 � p)⇢ + (p/d)I. Then, the total error can be obtained
as [6]

DDEPOL  (1 � p)A
t2

2r
+ rp(2 �

2

d2
), (5)

where

A /

�����
X

µ<⌫

[H⌫ , Hµ]

�����. (6)

In the assumption that physical error is uncorrelated with
the Trotter error, the total error can be given as the form

C

r
+ Dr, (7)

with constants C and D which characterize the physi-
cal error model. We can then find the optimal Trotter
number as ropt =

p
C/D. On the other hand, if any cor-

relation exists between physical and Trotter errors, we
arrive at

C(r)

r
+ D(r)r, (8)

including nontrivial higher-order terms of the Trotter
number r.

3 Higher-order Trotterization

Let us consider the second-order Trotterization, i.e.,
symmetrized Trotterization. It has been proved that
through the design of the symmetrized sequence of op-
erations in Trotter steps the bound of Trotter errors can
be recasted into the form as [7]

" ⌘

���
���

rY

k=1

C
†
kS�tCk � e�iHt

���
���

<
���
���
1

2

✓
t

r

◆2
 
X

k

X

µ<⌫

C
†
k[Hµ, H⌫ ]Ck

!
+ O

 
H3

µ

✓
t

r

◆3
!���
���,

(9)

where H =
P

µ=1 Hµ and S�t =
Q

µ e�iHµ�t with �t =
t/r. Here, Ck is an arbitrary member of symmetry group
of the Hamiltonian, i .e., [Ck, H] = 0, at the k-th quan-
tum gate operation. The performance of proposed error
bound is also numerically analyzed in Ref. [7].

In this work, we try to propose that systematic se-
quences to tighten ". We will exploit the symmetries of
Hamiltonian to tame errors from quantum simulations.
Our result can be sketched as [8]
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U(t)

Figure 1: Schematic sequence of symmetry operations
for a digital quantum simulation. The simulation time
elapses by a designed sequence of S�ti=1···n . In the middle
of idle time between S�ti=1···n operations, symmetry oper-
ations Ci is applied to manage errors, which ,in principle,
has to preserve initially conserved quantities of simulat-
ing Hamiltonian.

Theorem 1 If target Hamiltonian posses a symmetry

group with order 2, then one can design a symmetry oper-

ation sequence which gives " = O

⇣
H3

µ

�
t
r

�3⌘
in Eq. (9).

This claim can be rephrased as there is a symmetry op-
eration sequence that removes the O

�
t2/r2

�
errors. The

basic idea is along the same line with the first-order dy-
namical decoupling which essentially uses destructive in-
terferences of two wavefunctions with ⇡ phase di↵erence.

We note that a symmetry group with order 2 com-
monly appears over the broad fields of physics such as
a parity symmetry in high energy physics and reflection
symmetry or continuous U(1) symmetry include order 2
symmetry group as a subgroup which is also symmetry
of Hamiltonian.

To go one step further, we focus on symmetries, Cn

with following properties

Cn : Hµ ! HC(µ), (10)

where H =
P

µ Hµ and (Cn)n = 1. This implies that
this operation permutes terms composing of the target
Hamiltonian and it can be used to systematically decom-
pose the Hamiltonian up to minimal choice of a set that
generates the Hamiltonian.

Armed with this symmetry operations, we design a se-
quence of symmetry operations, U(t) in a systematic way
(See Fig. 1 for schemes),

U(t) =
nY

i=1

C
†
i S�tiCi, (11)

✏ ⌘

���
���U(t) � e�iHt

���
��� = O

 
Hpoly(n)

µ

✓
t

r

◆poly(n)
!���
���,

(12)

where poly(n) is a polynomial function of total number
of trotter steps n.
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It is expected that as the number of symmetry opera-
tion increases, a precision of simulations can be improved.
Motivated from the advanced schemes of dynamical de-
coupling for higher-order error suppression [5], we can
design the sequence of operations to further suppress the
higher-order total errors [8]. Our result will be useful to
establish an optimal strategy of Trotterization in DQS
for a given target Hamiltonian to simulate under deco-
herence.
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The coherent measurement cost of coherence distillation
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Abstract. Quantum coherence is distillable using coherence–non-creating operations. But distillation’s
coherent measurement cost has not previously been estimated. We show that this cost (quantified in
Hadamard measurements) is no smaller than the di↵erence between the input’s coherence of formation and
distillable coherence (the bound achievable in the asymptotic limit). This cost applies to any application
whereof coherence distillation is an incidental outcome (e.g. assisted randomness extraction), but the
implications are more dramatic if coherence is the only desired outcome: the measurement cost is often
higher than the yield, in which case coherence should rather be prepared afresh than distilled.

Keywords: Coherence, resource, distillation, measurement cost, irreversibility

1 Introduction: resource theories of co-
herence

Coherence—or superposition in wavefunctions—is a
cornerstone of quantum mechanics, as well as a valuable
resource powering transformative quantum technologies.
Various formalizations of the concept of coherence have
been explored under the broad umbrella of resource the-
ories [1]. A resource theory formalizes the study of a
quantum resource by identifying the operational capabil-
ities required to prepare or proliferate it and axiomati-
cally forbidding these. The theory then endeavours to
chart out what can and cannot be done using only the
remaining, “free” operations. In the resource theories we
will consider, the resource is coherence relative to a fixed
orthogonal basis (“the incoherent basis”) of the Hilbert
space of a given quantum system, with composite sys-
tems inheriting the tensor product of their subsystems’
incoherent bases—a form of speakable coherence [2]. It
is operationally relevant for, e.g., gate-based quantum
computing, where every elementary system has a “com-
putational basis”.
The free states in these coherence resource theories are

density matrices diagonal in the incoherent basis, and
the free operations are constrained to be incapable of
creating or increasing coherence. There are diverse ways
to obey this constraint [1], amongst which we will focus
on incoherent operations (IO): quantum processes that
can be implemented using components that may detect
coherence (i.e., measure relative to coherent bases) but
must not create coherence on incoherent inputs [3].

2 Distillation of coherence-resource

Resource distillation—converting an arbitrary resource
state to a standard form—is an essential part of applica-
tions. For example, coherence distillation is crucial to the
task of incoherent or assisted randomness extraction [4].
The standard form of coherence-resource is a pure state
containing a uniform superposition of some number of in-
coherent basis elements, e.g. | M i := M�1/2

PM�1
m=0 |mi.

⇤varun.achar@gmail.com

In the asymptotic or independent and identically-dis-
tributed (i.i.d.) limit of the resource theory, where the free
operations act on large numbers of independent copies of
identical states, the standard coherent states of di↵erent
M values admit reversible (to leading order) exchange
at a rate proportional to log2 M , which is the equivalent
number of standard coherent bits (or cobits) | 2i.

The IO resource theory is asymptotically univer-
sally distillable: copies of any coherent state—pure or
mixed—can be converted (albeit not reversibly—more on
this later) by IO to cobits at a rate that is maximal in a
resource-theoretic sense [5].

3 What powers coherence distillation?

Strictly incoherent operations (SIO) are the sub-class
of IO that use only components that cannot even de-
tect coherence [6]. This restriction ends up breaking
the asymptotic universal distillability of IO. Indeed, SIO
exhibit a particularly severe form of non-distillable, or
“bound”, coherence [7]. In summary, the unbounded co-
herence-detecting power of IO enables universal distilla-
tion, while the strictly coherence–non-detecting SIO are
too constrained to distill universally. But what lies be-
tween these two extremes? Our paper is an attempt
to understand this intervening operational landscape, by
answering questions such as:

1. How much coherence-detecting power (quantified
in a way that will be discussed later) is necessary
to recover the full extent of asymptotic distillabil-
ity a↵orded by IO—i.e., to distill at the maximal
asymptotic rate? How much is su�cient?

2. Given a coherent measurement budget less than the
cost of maximal distillation, what (non-maximal)
distillation rate can be attained?

3. How does this coherent measurement cost behave
away from the asymptotic limit?
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4 Irretrievable coherence

Given a state ⇢, its relative entropy of coherence is
defined as

Cr(⇢) = min {S (⇢k�) : �[�] = �} , (1)

where �(·) denotes the diagonal part (in the incoherent-
basis representation) of the argument. Thus, the mini-
mization is over all free states �. Meanwhile, ⇢’s coher-
ence of formation Cf (⇢) is the convex-roof extension of
Cr. Operationally, Cr(⇢) is the asymptotic (regularized,
per-copy) distillable coherence under IO, defined as the
maximum asymptotic rate at which cobits can be distilled
from copies of ⇢ by IO. Likewise, Cf (⇢) is the asymptotic
coherence cost under IO: the minimum asymptotic rate
at which cobits must be consumed to prepare copies of
⇢ by IO, in the task of resource dilution. For almost
all states ⇢ (in a measure-theoretic sense), Cf is strictly
larger than Cr [3]. Hence, the coherence distillable by
IO from a given input is generically smaller than that
required to prepare the same input—an instance of irre-
versibility [8, 9].

In our main results, these two coherence measures fea-
ture in the form of their di↵erence `(⇢) := Cf (⇢)�Cr(⇢).
Because of its connection with irreversibility, we chris-
ten it the irretrievable coherence. It has, in fact, been
encountered (though not named) in the literature in a
di↵erent operational context: it quantifies the di↵erence
between the quantum and the classical intrinsic random-
ness of a state [10, 11].

5 Clues in the literature

Winter and Yang [3] constructed an IO protocol
achieving the maximal asymptotic distillation rate r =
Cr(⇢). A high-level examination of the protocol already
hints at connections between asymptotic irreversibility
and the coherent measurement cost. Crucially, the pro-
tocol consists (apart from asymptotically-inconsequential
measurements) of just a unitary transformation of the in-
put followed by a partial trace. Considering the purity
required of the output, the e↵ect of the protocol before

the final partial trace is approximately ⇢⌦n ⌘ %An
U7�!

⌧S ⌦  M
M , where A labels the input system, M the out-

put system, and S the part that will be traced out. The
coherent measurement cost translates to how coherently
this unitary U must act. Since no additional systems are
involved, the systems’ dimensionalities satisfy A = SM .
Let us now make some heuristic estimates for these num-
bers, appealing to (a crude form of) asymptotic typicality
[12]; qualifiers like “approximate” and “typical part” are
implicit in the following.

Firstly, consider the input %n ⌘ ⇢⌦n: its rank (by
unitarity, also the rank of ⌧) is S0 := exp2 [nS(⇢)].
Considering the diagonal part � (%n), which is in fact
[�(⇢)]⌦n, the relevant dimensionality (covering all the
incoherent basis labels with nonzero amplitudes) is A =
exp2 [nS (�[⇢])]. Finally, the size of the distillate is
M = exp2 [nCr(⇢)] = exp2 [n (S [�(⇢)]� S[⇢])]. Notice
that M = A/S0, and therefore, S0 = S. Noting that the

input’s spectrum must be flat, we conclude that ⌧ must
be maximally mixed.

In particular, this means that S is discarded in an in-
coherent state, uncorrelated with M. Now let us view the
protocol in reverse: we take  M , append to it an aux-
iliary system S in the incoherent state ⌧ , and apply the
unitary U † to map the composite SM to %A⌘SM

n . How
much coherence must U† generate for this? Considering
that it has the  M to begin with, it still needs to account
for the rest of %n’s coherence—a hint at irreversibility.

To be sure, the Winter–Yang IO protocol’s reversal is
not in IO or any of the other classes of incoherent opera-
tions defined in the literature. Besides, their protocol is
but one possibility; in general, a protocol may use aux-
iliary systems. A further di�culty is that there is not
yet an operational understanding of IO in terms of their
dilations, unlike SIO [6]. These complications notwith-
standing, the hint inspires us to consider a non-asymp-
totic idealization of the above “crudely-typicalized” case
of maximal distillation, yielding a result (Theorem 1 be-
low) that leaves us within sni�ng distance of the corre-
sponding asymptotic result (Theorem 2).

6 Summary of main results

As mentioned above, we approach the problem of es-
timating the coherent measurement cost of asymptotic
distillation by first considering a certain single-shot (i.e.,
finite-sized and non-asymptotic) variant containing ide-
alized versions of the typicality-related features encoun-
tered in maximal asymptotic distillation:

Theorem 1 Any incoherent operation (IO) that deter-
ministically maps an input state ⇢ with rank S and in-
coherent alphabet size A to a standard coherent resource
 M with M = A/S must involve coherent measurements
over at least M�1 exp2 [Cf (⌧⇢)] � exp2 ` (⌧⇢) elements of
the input’s classical basis, where ⌧⇢ := supp⇢/S.

We also establish approximate and non-maximal versions
of the above result, but omit these from this summary.
Next, we look at distillation in the asymptotic limit. Here
the irretrievable coherence `(·) plays an even more essen-
tial role, as the lower bound of the foregoing results turns
out also to be achievable in the asymptotic limit:

Theorem 2 A sequence En of incoherent operation (IO)
channels that respectively distill (with asymptotically van-
ishing error) from %n ⌘ ⇢⌦n at the maximal asymp-
totic rate of Cr(⇢) must involve coherent measurements
over at least Ln elements of the input’s classical basis,
with log2 Ln 2 ⌦ [n ` (⇢)]. Conversely, for any given ⇢
there exists a sequence of maximally-distilling IO chan-
nels achieving this scaling.

The proof of the necessity of the Ln cost in this case pro-
ceeds very similarly to the approximate single-shot case,
with the approximation threshold dictated by n-depen-
dent parameters associated with asymptotic equiparti-
tion. Essentially, we show that with increasing n the task
gets closer to the idealized maximal instance of Theorem
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1—a formalization of the observations we made in Sec-
tion 5. The achievability direction turns out to be more
involved, requiring putting together several pieces:

1. A construction for a decomposition of %n that

• asymptotically approaches the defining bound
of the coherence of formation and

• possesses some symmetries (thanks to the
asymptotic typicality properties of %n)
whereby the coherence of each component
in the decomposition approaches the over-
all average value (i.e. %n’s coherence of
formation).

2. A sequence of maximally-distilling IO subchannels
Fn based on

• filtering the above decomposition to further
“typicalize” or “flatten” the coherence in each
pure component,

• truncating parts that are more coherent
than a threshold that asymptotically scales
favourably, and

• adapting from Winter and Yang’s IO distil-
lation protocol [3] a certain “pooling” of the
classical labels that (we prove) maps any de-
composition of %n to an asymptotically maxi-
mally-distilling IO.

By virtue of the above truncation, the result-
ing subchannels Fn use measurement coherence
bounded by the claimed scaling.

3. Showing that, despite the above filtering and trun-
cation, the IO subchannel sequence Fn asymptoti-
cally converges towards trace preservation, so that
the maximal distillate it produces is asymptotically
deterministic.

4. Finally, showing that the (asymptotically negligible
but nonzero) trace deficit remaining can be fulfilled
by completing each Fn to a full channel En = Fn+
Gn using a subchannel Gn that, like Fn,

• is also IO and

• can also be implemented with measurement
coherence suitably bounded.

Turning to non-maximal distillation in the asymptotic
limit, we adapt our achievability result from the maximal
case to put an upper bound on the requisite coherent
measurement cost (we do not reproduce this result here,
since it involves cumbersome technical detail). Based on
the symmetries that emerge in the asymptotic limit, we
conjecture that this upper bound is optimal; settling the
conjecture is left for future work.
Apart from the results summarized above, we make

some observations on the connection between coherence
distillation and certain linear-algebraic structures that
we call decoupling schemes. We explore this connection

Figure 1: Di↵erence between the asymptotic coher-
ent measurement cost `(⇢) and the distillable coherence
Cr(⇢) for a section of the qubit Bloch ball: notice that
the cost exceeds the yield for a nonzero measure of states.

insofar as it proves useful in deriving the above results
(and some variants with nonuniformly-superposed out-
puts). But decoupling schemes could be of independent
interest for future research, with possible connections to
established notions of decoupling [13, 14].

7 Discussion

We showed that distilling all of the coherence in a given
resource costs a number of Hadamard-like measurements
no smaller than the resource’s irretrievable coherence:
the di↵erence between its distillable coherence and co-
herence of formation. This cost is also achievable in the
asymptotic limit. Our results imply that for a nonzero
measure of instances (see Fig. 1 for an illustration in the
qubit case), the cost of coherence distillation in terms
of coherent gates is higher owing to the requisite mea-
surements than the final distilled yield itself! In such
instances, it is more prudent to use the available coher-
ent gates to simply prepare fresh coherent states, rather
than to distill from the given noisy resource. Open prob-
lems for the future include similar cost estimation for
non-maximal distillation and other variants (including
multipartite tasks like assisted randomness extraction [4]
and entanglement distillation under local coherence con-
straints [15]). An open question of possible wider re-
source-theoretic significance is: Is the appearance of the
irretrievable coherence (a measure of distillation–dilution
irreversibility) in our results a coincidence, or does it indi-
cate a systematic connection between irreversibility and
ancillary (or otherwise hidden) costs of resource distilla-
tion?

References

[1] Alexander Streltsov, Gerardo Adesso, and Martin B
Plenio. Colloquium: Quantum coherence as a re-
source. Reviews of Modern Physics, 89(4):041003,
2017.

15



[2] Iman Marvian and Robert W Spekkens. How
to quantify coherence: Distinguishing speakable
and unspeakable notions. Physical Review A,
94(5):052324, 2016.

[3] Andreas Winter and Dong Yang. Operational re-
source theory of coherence. Physical review letters,
116(12):120404, 2016.

[4] Masahito Hayashi, Kun Fang, and Kun Wang.
Finite block length analysis on quantum coher-
ence distillation and incoherent randomness extrac-
tion. IEEE Transactions on Information Theory,
67(6):3926–3944, 2021.

[5] Fernando GSL Brandao and Gilad Gour. Reversible
framework for quantum resource theories. Physical
review letters, 115(7):070503, 2015.

[6] Benjamin Yadin, Jiajun Ma, Davide Girolami,
Mile Gu, and Vlatko Vedral. Quantum processes
which do not use coherence. Physical Review X,
6(4):041028, 2016.

[7] Ludovico Lami, Bartosz Regula, and Gerardo
Adesso. Generic Bound Coherence under Strictly In-
coherent Operations. Phys. Rev. Lett., 122:150402,
2019.

[8] Ludovico Lami and Bartosz Regula. No second
law of entanglement manipulation after all. Nature
Physics, 19(2):184–189, 2023.

[9] Ludovico Lami, Bartosz Regula, and Alexander
Streltsov. Catalysis cannot overcome bound entan-
glement. arXiv preprint arXiv:2305.03489, 2023.

[10] Xiao Yuan, Hongyi Zhou, Zhu Cao, and Xiongfeng
Ma. Intrinsic randomness as a measure of quantum
coherence. Physical Review A, 92(2):022124, 2015.

[11] Xiao Yuan, Qi Zhao, Davide Girolami, and
Xiongfeng Ma. Quantum coherence and intrin-
sic randomness. Advanced Quantum Technologies,
2(11):1900053, 2019.

[12] Claude E Shannon. A mathematical theory of
communication. The Bell system technical journal,
27(3):379–423, 1948.

[13] Francesco Buscemi. Private quantum decoupling
and secure disposal of information. New Journal of
Physics, 11(12):123002, 2009.

[14] Frédéric Dupuis, Mario Berta, Jürg Wullschleger,
and Renato Renner. One-shot decoupling. Commu-
nications in Mathematical Physics, 328(1):251–284,
2014.

[15] Eric Chitambar and Min-Hsiu Hsieh. Relating the
resource theories of entanglement and quantum co-
herence. Physical review letters, 117(2):020402,
2016.

16



Encoded-fusion based quantum computation with photons
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Abstract. Fusion-based quantum computing (FBQC) is a promising new paradigm for quantum com-
puting based on the use of photonic quantum systems. Fusion is a projective entangling measurement for
multiple qubits. In FBQC, quantum computation is performed by repeatedly applying fusion on small
fixed-sized entangled states, called resource states. Fusion acts as a quintessence of FBQC by generating
larger quantum correlations necessary for universal quantum computing. However, fusion is intrinsically
non-deterministic, and can be significantly affected by photon loss that is the most detrimental obstacle
for scalable photonic quantum computation. Here we propose encoded-qubit based resource states and
an encoded-fusion protocol as a solution to overcome both the non-deterministic fusion and the effect of
photon loss. We show that FBQC with encoded-fusion is tolerant to loss and can boost the fusion success
probability, leading to better fault-tolerance of quantum computation.

Keywords: Photonic quantum computation, Encoded-Fusion, Fusion-based quantum computation

1 Introduction

Fusion-based quantum computing, a recently proposed
universal quantum computing scheme, is drawing atten-
tion as a model appropriate to be realized by photonic
quantum system [1, 2]. FBQC consists of two primitive
components: modules that generate small constant-sized
entangled resource states (known as resource state gener-
ators), and projective entangling measurements (referred
to as fusion). Fusion, the core of FBQC, creates larger
entanglement by applied on multiple qubits, and it was
initially proposed as a method for generating extensive
entanglement required for measurement-based quantum
computation (MBQC) [3, 4]. Resource state generators
(RSGs) and fusion devices are specifically connected to
each other to create a network configuration, which is
called a fusion network. This configuration of network,
together with the modifications of the fusion basis and
some single-qubit measurements, implements logical op-
erations for quantum computation.
Both FBQC and MBQC perform computation using

quantum entanglements and measurements, but in case
of MBQC, the preparation of large entanglements and
the measurement process for computation are separated.
In contrast, FBQC performs computation while generat-
ing extensive entanglement through entangling measure-
ments applied between finite-sized entangled states. Ad-
ditionally, MBQC considers the resource consumptions
due to non-deterministic fusion or fusion error that can
occur during the generation process of cluster state as an
offline resource (i.e., post-select a successfully generated
cluster state prior to computation process). In contrast,
FBQC applies quantum operations including all effects
of non-deterministic fusion or fusion error, and handles
errors resulting from such things together with logical
errors at a higher-level encoding. These differences re-
veal that implementing universal quantum computing us-
ing a photonic platform is more suitable through FBQC

∗swleego@gmail.com

than MBQC. Although fusing two photonic qubits is non-
deterministic, it is relatively easy to implement using ele-
mentary linear optics. And there is no need for extensive
entanglement to be maintained stable during the com-
putation. The performance of FBQC based on photonic
platform is significantly affected by the success probabil-
ity for fusions and the fact that photons can easily be
lost. There is a well-known method for increasing the
fusion success probability by using additional ancillary
photons [5], however, an increase in the number of pho-
tons used leads to an increased risk of photon loss in the
system, which might be more harmful than fusion fail-
ure. Therefore, it is crucial to boost the fusion success
probability while suppressing the detrimental effects of
photon loss. We propose a scheme that achieves better
tolerance for qubit loss by using additional photons in an
apt way, the parity encoding [6], and a higher fusion suc-
cess probability from an appropriate fusion protocol for
the parity-encoded qubits [7, 8]. This will enable us to
build an efficient fusion-based quantum computing with
a better fault-tolerant threshold.

2 Results

We use encoded resource states in FBQC, which are
loaded on the quantum parity code [6]. In specific, it can
be written as follows:

|0〉(m,n)
L = |+(m)〉⊗n and |1〉(m,n)

L = |−(m)〉⊗n

Here, |±(m)〉 = (|H〉⊗m+|V 〉⊗m)/
√
2. The parity code

has photon loss tolerance, as the loss of any one photon
consisting the encoded-state only reduces the encoding
level by 1. And it can be recovered through fusion with an
additional resource. The success probability of the fusion
between parity encoded-resource states can be boosted
by raising the encoding level. In specific, we utilize a
protocol to fuse encoded-resource states in an efficient
way [7, 8]. Differing from the scheme that uses addi-
tional photon pairs to boost the fusion success rate [1],
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Figure 1: Photon loss threshold for the fusion networks:
4-star (blue) and 6-ring cases (orange) [9]. Here, pfail
denotes probabilities to individual fusion fails, and ploss

means photon loss threshold derived from the fusion era-
sure threshold, which is obtained by fusion network sim-
ulation [1]. The dim curves show reproduced results from
previous work [1], and our result is shown in the curve,
6-ring CBSM (2,2). Our result achieves better loss toler-
ance than the case using same resource states, (2,2)-Shor,
with the fusion boosting using additional photon pairs [5].
For direct comparison, the fusion boosting scheme [5] is
considered also in our scheme, but the best result is re-
vealed in pfail = 0.5, the case with no boosting.

our scheme has a photon loss tolerance. Even if some
photons participating in the fusion are lost, it still has a
non-zero success probability. It resolves the issue of the
increasing risk of photon loss that occurs with using more
photons to boost the fusion success probability.
We replace the existing FBQC architectures (which are

based on 4-star resource states and 6-ring resource states)
with an encoded-resource state-based one. Then, as in
Figure 1, we demonstrate that it achieves better photon
loss-tolerance than the structure with the resource states
not loaded onto the code [9].

3 Remarks

Fusion-based quantum computation is a method more
appropriate for realizing quantum computing using pho-
tonic system. This does not require static qubits, instead,
it utilizes tools that generate small-entangled state se-
quentially, and fusion can be leveraged to create larger
entanglement necessary for universal quantum comput-
ing. Though this is intriguing scheme for the realization
of quantum computation based on photonics, the suc-
cess of FBQC heavily relies on the performance of fu-
sion, which is intrinsically non-deterministic and vulner-
able to photon loss. To solve these problems, our work
employs the error correction encoding for qubits partici-
pating in fusion that are tolerant to errors and qubit loss.
Our scheme requires the generation of encoded-resource

states, which may be most challenging in the realization
of photonic quantum computation as additional resource
states. For this, building sub-networks generate encoded-
resource state from elementary photonic resource states,
such as 3-GHZ states can be considered. Then it allows
to construct a fault-tolerant fusion network for compu-
tation based on the sub-networks, as resource state gen-
erators. We expect that our work paves an efficient way
towards fault-tolerant quantum computing based on pho-
tonic FBQC architectures.
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Design of three-qubit system with three transmons and single resonator
in a transmon-based quantum computer
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Abstract. The transmon-based quantum computer is known as one of the best promising quantum
computer architectures. In this work, we propose a new building block for a transmon-based quantum
computer, a three-qubit system consisting of three transmons and a single resonator. The building block
di↵ers from the architecture of Google and IBM quantum computers. Using the simulator we constructed,
we show that the two-qubit gate fidelities, such as CNOT in the three-qubit system consisting of three
transmons and a single resonator, can be larger than 0.96.
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1 Introduction

The superconducting circuit is one of promising ingre-
dients for quantum computing. Specially, the transmon-
based quantum computer is known as one of the best
promising ingredients for quantum computing[1, 2].
When one uses transmons for building a quantum com-
puter, there can be di↵erent architectures. In this work,
we propose a new building bolck to the architecture for a
quantum computer. The new building block is composed
of three transmon and single resonator, which implies
three qubit system. We show that by obtaing the suit-
able pulse parameters, the average fidelities of the three
qubit system are above 0.96.

2 Method

2.1 Hamiltonian

Figure 1: Three qubit system with three transmons
and single resonator. Here R, T , and Gri denote res-
onator, transmon, and connection energy, respectively.
The blue(red) color indicates a tranmon(resonator).

In this work, we consider three-qubit system with
three-transmon(NT = 3) and single resonator(NR = 1)

⇤jskang1202@hanyang.ac.kr
†freezeticket@hanyang.ac.kr
‡hpoqh@hanyang.ac.kr
§yyhkwon@hanyang.ac.kr

(a) (b) (c)

Figure 2: (a) Six-transmon system consisting of our build-
ing block. (b) Google machine(transmon system in the
lattice structure[12]). (c) IBM machine(transmon system
in T-shape[13]).

Table 1: The specification of hardware in three-transmon
system. The unit of energy is GHz.

R0 T0 T1 T2

!/2⇡ 7.0 - - -
EC,i/2⇡ - 0.30783 0.30902 0.31040
EJ,i/2⇡ - 11.914 11.412 10.993
G0i/2⇡ - 0.07 0.07 0.07

in transmon-based quantum computer(Fig. 1). Here we
call this system three-transmon system. In the three-
transmon system, every transmon is connected and
CNOT gate between any two transmons can be possi-
ble. And two transmons are connected indirectly through
a resonator. The three-transmon system with three-
transmon and single resonator can be used a new build-
ing block for transmon-based quantum computer. Fig. 2
shows the di↵erence among our system, Google system
and IBM system.

The hamiltonian H of the system consists of the res-
onator hamiltonian HR, the transmon hamiltonian HR,
and the interaction hamiltonian as follows:

H(t) = HR +
2X

i=0

HT,i(t) +HI (1)

HT,i denotes the hamiltonian of i-th transmon. The en-
ergy gap of the resonator is determined by the resonator
frequency !.

HR = !a
†
a (2)
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Here we use ~ = 1. And time and energy is expressed
in terms of the unit of ns and GHz, respectively. a(a†)
denotes the annihilation(creation) operator of the res-
onator. The energy level and anharmonicity of transmon
are determined by EC and EJ,i[1, 2].

HT,i(t) = 4EC,i(ni � ng,i(t))
2 � EJ,i cos�i (3)

n is a number operator to extra Cooper pair in the island
of transmon. � is the operator to the phase di↵erence of
two Cooper pair between Josepson junctions. ng(t) is the
gate o↵set number, which is a function to denote the
pulse driving a transmon. The interaction hamiltonian
is expressed by the exchange between transmon and res-
onator.

HI =
X

i

Gi(a+ a
†)ni (4)

Here Gi is the interaction energy between transmon and
resonator.
The operator to transmon and resonator are expressed

by matrices of 4 ⇥ 4. This implies that higher energy
levels should be included. It is known that the higher
energy levels are important in implementing two qubit
gates such as CNOT[3].

2.2 Pulse Design

To drive transmon-resonator system, the voltage pulse
is applied to transmon. The voltage pulse is expressed by
a gate o↵set number of transmon.

ng(t) =
X

j

⌦j(t) cos(2⇡fjt� �j) (5)

Here ⌦j and fj denote a envelope and a frequency of the
pulse, which are important elements in performance of
gate. �j is the initial phase which determines the axis of
rotation of transmon.
For the envelope of the pulse, we consider ⌦G(t) and

⌦S(t) as follows:

⌦G(t) = ⌦X

e
�(t�TX/2)2/2�2 � e

�T
2
X/8�2

1� e
�T

2
X/8�2 (6)

⌦S(t) =

8
><

>:

⌦SS(t) (0  t < Trise)

⌦S (Trise  t < Trise + TS)

⌦SS(t� TS) (Trise + TS  t < 2Trise + TS)
(7)

⌦G(t) is a function of pulse time TX , amplitude ⌦X , and
thickness � = TX/4. Meanwhile, ⌦S(t) is a function of
pulse time TS , amplitude ⌦S , and the ratio of increasing
period % = Trise/TS . S(t) is a function given as S1(t) =
sin(⇡t/2Trise) or S2(t) = sin2(⇡t/2Trise).

2.3 Quantum Gate Optimization

The quantum gates U in this work can be obtained by
applying pulse to total Hamiltonian.

U = T exp

 
�i

Z
T

0
dtH(t)

!
= T

NY

n=1

e
(�i⌧H((n+1/2)⌧))

(8)

Here ⌧ = T/N is a time interval for numerical approach.
The total hamiltonian can be expressed as H(t) =
H0 +H1(t), where H0(H1(t)) denotes the diagonal(non-
diagonal) matrx, respectively. And e

(�i⌧H((n+1/2)⌧)) is
evaluated by Suzuki-Trotter algorithm[4].

e
(�i⌧H((n+1/2)⌧)) ' e

(�i⌧H0/2)V e
(�i⌧⇤(t))

V
†
e
(�i⌧H0/2)

(9)
A diagonalized matrix ⇤(t) and a symmetric marix V

satisfy the relation of H1(t) = V ⇤(t)V †. The final stage
to obtain the quantum gate is to apply VZ gate Z[5].

Z =
NTO

i=0

RZ(✓i) (10)

The performance to quantum gate U is evaluated by the
average fidelity F . The fidelity to pure state | i is given
as follows:

F = h |U†U| i (11)

Here, U denotes the ideal quantum gate. In this work, we
obtain the average fidelity by using M -number of di↵er-
ent | i[11].

F =
1

M

MX

m=1

F ,m (12)

By minimizing the infidelity 1 � F ,the quantum gate
U(f, T,⌦, �, ...) can be optimized. Here, we use Nelder-
Mead algorithm as optimizer[6].

3 Result

In this section we explain the result of design of three-
qubit system made of three transmons and single res-
onator. The specification of hardware is listed in the Ta-
ble 1. In the case of single qubit gates, we can easily ob-
tain the best parameters of pulses for the single qubit
gates. The most important gate to two-qubit gates is
CNOT. To build CNOT gate, cross-resonance(CR) pulses
are used[7, 3, 10]. CR pulse is the pulse applying the qubit
frequency of target qubit to control qubit. And according
to the state of the control qubit, the resonance responce
to target qubit varies. The completion of CNOT gate is
obtained by CR pulse and adding pulse to target qubit.

ng,C(t) = ⌦S(t) cos(2⇡f1t� �1) (13)

ng,T (t) = ⌦G(t� TS) cos(2⇡f2(t� TS)� �2) (14)

Here C(T ) denotes a control(target) qubit. And f1,2 is in
general the qubit frequency of target qubit. To improve
the performance of the gate, f1,2 can be detuned. The
adding pulse starts at the end of CR pulse. Therefore,
CNOT gate can be expressed by two unitary gates UCR

and Ua.
CNOTij = ZUa,jUCR,i (15)

Here, i(j) denotes the number of control(target) qubit. In
the design of a quantum gate, the most important process
is to find the vector of pulse parameters. The vector of
pulse parameters can be expressed by 12-dimensional real
vector as follows:

(f1, f2, TX , TS ,⌦X ,⌦S , %, �1, �2, ✓1, ✓2, ✓3)
T (16)
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Table 2: The pulse parameters of CNOT gate and the average fidelity in three-transmon system.

Gate f1 f2 TX TS ⌦X S, ⌦S

CNOT01 4.9783 4.9783 10 130 0.0055 S2, 0.07
CNOT12 4.8895 4.8895 10 120 0.01 S1, 0.05
CNOT20 5.0851 5.0841 8.5 190 0.035 S1, 0.08
CNOT21 4.9783 4.9783 10 170 0.025 S1, 0.05

% �1 �2 ✓1 ✓2 ✓3 F

0.25 0 2.2007 0.6959 0 0.1001 0.9956
0.3 0 -1.5708 0 3.1416 0 0.9619
0.2 0 -1.2566 0.1571 0 2.6704 0.9938
0.3 0 -1.8850 0 0 1.5708 0.9867

(a) (b) (c) (d)

Figure 3: The success probability of CNOT gate of three qubit system in computational basis. (a) The gate success
probability of CNOT01. (b)The gate success probability of CNOT12. (c)The gate success probability of CNOT20.
(d)The gate success probability of CNOT21.

The first step to design UCR is to select a suitable S(t).
Atfer the process, we need to find f1, TS , ⌦S , %, and �1.
Then to design Ua, we select a suitable value for f2, TX ,
⌦X , �2. Table 2 shows the pulse parameters for perform-
ing CNOT01, CNOT12, CNOT20, and CNOT21. And Fig.
2 shows the success probabilities of them in the compu-
tational basis. The average fidelities for them are above
0.96. Specially, in the case of CNOT01 and CNOT21 the
average fidelities are beyond 0.99.

4 Conclusion

Many promising quantum computer architectures are
based on transmon quantum computer. In this work, we
proposed a new building block which consists of three
transmons and a single resonator. Using the new build-
ing block, we can build a quantum computer with the
new structure. We showed that the average success prob-
abilities of CNOT gates are beyond 0.96.
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Abstract. We consider a non-interacting open quantum system that has permutation symmetry, and

found the decoherence free subspace that the relative capacity asymptotically approaches one.
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1 Introduction

Decoherence free subspace(DFS)[1] approach is a pow-

erful method to avoid specific decoherence mechanism.

It is identified by the symmetry of the interaction be-

tween system and the environment. The approach is

used in quantum communication without shared refer-

ence frame[2], where the transmission process is collective

and the operators form a unitary group, so that it has

exchange symmetry. In the open Heisenberg XXZ spin

1/2 chain they expanded to the symmetry of Liouvillian

superoperator[3]. However they consider specific symme-

try that is the commutation of only one superoperator.

In our case we combine the exchange symmetry feature

and the symmetry of Liouvillian superoperator.

In this paper, we consider open quantum system with

exchange symmetry and non-interacting Hamiltonian.

We present the systematic way to find the optimal DFS

to encode quantum information by the structure of Liou-

villian superoperator of the quantum master equation.

2 General model

Quantum master equation is a quantum operation as

a di↵erential equation.

˙̂⇢ = L⇢̂(t) ⌘ �i[Ĥ, ⇢̂(t)]

+

X

µ

⇣
L̂
µ
⇢̂(t)L̂

µ†
�

1

2
{L̂

µ†
L̂
µ
, ⇢̂(t)}

⌘
.

(1)

Here the ˆ⇢(t) is the system density operator, the super

operator L is called the Liouvillian. The Hermitian oper-

ator Ĥ is e↵ective Hamiltonian and the L̂
µ
are quantum

jump operators.

For the non-interacting Hamiltonian, the Hamilto-

nian becomes sum of identical single qubit Hamiltonians,

therefore the total Liouvillian L of n qubit system can

be expressed as the sum of single qubit Liouvillian Lj for

jth qubit as,

˙̂⇢ = L⇢̂ =

⇣ nX

j=1

Lj

⌘
⇢̂, (2)

where the ⇢ is the density operator for total system. This

Liouvillian has the weak permutation symmetry, which

is defined as the commutation between the Liouvillian of

⇤username3@domainname3

number of n qudits and the permutation superoperators

Sk given by

SkL = LSk, Sk(x̂) ⌘ ⇡̂kx̂⇡̂
†
k, k = 1, 2, ..., n!, (3)

where the ⇡̂k are the operator representation of the n

permutation group. From the next section we introduce

how to calculate the decoherence free subspace or subsys-

tem of the total Liouvillian by the structure of the single

qubit Liouvillian matrix representation.

3 Non-degenerate case

Here is a case of single qubit Liouvillian with the Pauli

operator �̂z for the Hermitian part and �̂+, �̂�, �̂z for

the jump operators.

Lj ⇢̂(t) =� i
⇥
h
z
�̂
z
j , ⇢̂

⇤

+ �
+

✓
�̂
+
j ⇢̂�̂

+†
j �

1

2
�̂
+,†
j �̂

+
j ⇢̂�

1

2
⇢̂�̂

+,†
j �̂

+
j

◆

+ �
�
✓
�̂
�
j ⇢̂�̂

�,†
j �

1

2
�̂
�,†
j �̂

�
j ⇢̂�

1

2
⇢̂�̂

�,†
j �̂

�
j

◆

+ �
z

✓
�̂
z
j ⇢̂�̂

z,†
j �

1

2
�̂
z,†
j �̂

z
j ⇢̂�

1

2
⇢̂�̂

z,†
j �̂

z
j

◆

(4)

All coe�cients h
z
, �

+
, �

�
,�

z
are real and �

+
, �

�
,�

z

are positive.

There are four Eigenvalues of the Liouvillian as,

n
0, �2�̃, ��̃� 2�

z
� 2ih

z
, ��̃� 2�

z
+ 2ih

z
o
, (5)

where �̃ ⌘
�++��

2 .

For the number of n qubits, the eigenvalues of the Li-

ouvillian are summation of the eigenvalues of single qubit

Liouvillian. There are degenerate eigenvalues and the su-

perposition between the degenerate states of the Liouvil-

lian conserves during time evolution so that the subspace

of the degenerate states is decoherence free subspace.

For the general non-degenerate single qubit Liouvillian,

the eigenvalue �(n+ �
z
)�̃ has the maximum number of

degenerate corresponding eigenstates and we denote the

number as D
(n)

.

D
(n)

=
n!2

n
2

n
4 !

n
4 !

n
2 !
. (6)
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To represent general 1 qubit information, we need 4

operator basis to encode 1 qubit quantum information

to include the superposition. Therefore, total log4 D
(n)

qubits of information can be stored in the DFS. The rela-

tive capacity of the DFS
1
n log4 D

(n)
is represented in the

figure 1. The relative capacity asymptotically approaches

1 as 1�
3
2n log4 n+O(

1
n ) for large n.

4 Without �z transition

For the Liouvillian in equation (4), if the �
z
= 0, the

eigenvalues are,

n
0, �2�̃, ��̃� 2ih

z
, ��̃+ 2ih

z
o
. (7)

These eigenvalues are still non-degenerate however for

the n qubit Liouvillian there is a additional degeneracy

that the sum of first two eigenvalues are same as the sum

of the rest. Therefore the maximum number of degen-

erate corresponding eigenstates D
(n)
�z=0 is the number of

eigenstates with eigenvalue �n�̃,

D
(n)
�z=0 =

✓
n

n
2

◆2

(8)

By the structure of the single qubit eigenstates, D
(n)
�z=0 �

D
(n)

. The relative capacity of the DFS
1
n log4 D

(n)
�z=0 is

represented in figure 1. The relative capacity asymptot-

ically approach 1 as 1�
1
n log4 n+O(

1
n ).

5 degenerate case

For the case when the single qubit Liouvillian in equa-

tion (4) has degenerate energy levels, that is h
z
= 0, two

eigenvalues are degenerate.

n
0, �2�̃, ��̃� 2�

z
, ��̃� 2�

z
o
. (9)

In this case, for the number of N qubits, also the eigen-

value �N(�̃+�
z
) has the maximum number of degener-

ate corresponding eigenstates which is denoted as D
(n)
hz=0,

D
(n)
hz=0 =

n!2
n
2

n
4 !

n
4 !

n
2 !

(10)

Degenerate Liouvillian has larger DFS than the non-

degenerate cases, D
(n)
hz=0 � D

(n)
�z=0. The relative capac-

ity of the DFS
1
n log4 D

(n)
hz=0 is represented in figure 1.

The relative capacity also asymptotically approach 1 as

1�
1
n log4 n+O(

1
n ).

6 Degenerate case without �z

For the case when the single qubit Liouvillian in equa-

tion (4) has degenerate energy levels, that is h
z
= 0, and

also without �
z
term, the two eigenvalues are degenerate.

n
0, �2�̃, ��̃, ��̃

o
. (11)

There is a similar structure as in section 4, that the sum

of the first two eigenvalues are same as the sum of the

rest. In this case, for the number of N qubits, also the

eigenvalue �N �̃ has the maximum number of degenerate

corresponding eigenstates which is denoted as D
(n)
hz,�z=0,

D
(n)
hz,�z=0 =

4
n
(n�

1
2 )!

p
⇡n!

(12)

This case has larger DFS than other cases, D
(n)
hz,�z=0 �

D
(n)
hn=0. The relative capacity of the DFS

1
n log4 D

(n)
hz,�z=0

is represented in figure 1. The relative capacity also

asymptotically approach 1 as 1�
1
2n log4 n+O(

1
n ).

Figure 1:

7 Conclusion

We have considered a non interacting open quantum

system with exchange symmetry and showed the sys-

tematic way to find the optimal decoherence free sub-

space(DFS). Here we have taken a specific model with

Pauli Z Hamiltonian, and we give exact formulas of the

dimension of the DFS and the eigenvalue that the states

are correlated.
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Abstract. In conventional state discrimination, the local distinguishability of a set of states might not be
directly connected to entanglement. We propose a non-destructive quantum state discrimination to reveal
a such connection. Remarkably, for any set of orthogonal maximally entangled states, our scheme shows
that any classical strategy cannot beat random guessing. Furthermore, we suggest a fully non-destructive
discrimination scheme for a set of maximally entangled stabilizer states and compute the entanglement cost
for perfect discrimination. We find a set of maximally entangled stabilizer states exhibiting entanglement
earning, where one can gain a positive net entanglement via the discrimination task.
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1 Introduction

Quantum state discrimination is a task distinguishing
a set of quantum states, which is related to the founda-
tion of quantum theory and has various applications in
quantum communications and cryptography [1, 2]. Basi-
cally, a set of orthogonal quantum states can be perfectly
distinguished without any restriction on measurements.
When distant parties can only perform local operations
and classical communications (LOCC), however, the task
becomes highly nontrivial and has been extensively stud-
ied. For example, one can construct a set of orthogonal
product states that cannot be perfectly distinguished us-
ing LOCC, so-called nonlocality without entanglement [3].
On the other hand, any two pure orthogonal states can
be perfectly discriminated via local measurements [4],
whether the states are entangled or not. These results
imply that entanglement in a set of quantum states might
not be directly related to their local distinguishability.
In this work, we propose a non-destructive quantum

state discrimination (NDSD) task to reveal a connection
between entanglement in a set of quantum states and
their local distinguishability. In this setup, the task suc-
ceeds when the classical answer indicating the right state
and the quantum answer confirming the non-disturbance
of the initial state are both correct. Consequently, it also
demands not destroying the entanglement in the initial
state, which can restrict the power of local discrimina-
tion. This modification leads to a drastic change in the
success probability of the discrimination between classi-
cal and quantum strategies. Especially for a set of maxi-
mally entangled states (MESs), we show that the success
probability of the strategy with no shared entanglement
cannot be higher than random guessing, which is not
guaranteed in the conventional state discrimination task
without non-disturbance condition [5].
We also investigate entanglement cost to perform per-

fect NDSD. While a näıve approach is applying con-
ventional discrimination via teleportation followed by
repreparation of the initial state, we find a more e�-
cient scheme for maximally entangled stabilizer states
(MESSs) by implementing a syndrome measurement us-

⇤hjkwon@kias.re.kr

Figure 1: Schematic of conventional state discrimination
task (red dashed box) and NDSD task (red dashed +
blue dashed boxes). (a) Charlie chooses a state from the
ensemble {pz, | zi} and distributes it to Alice and Bob.
(b) Alice and Bob perform (local) operations including
measurements. (c) A classical answer z0 is determined
from the measurement outcomes. If z0 = z, the task suc-
ceeds. (d) For NDSD, Alice and Bob output the classical
answer z0 and the quantum state ⇢(z

0) after performing
their operations. The nondisturbance of the state can be
checked by Charlie, and the NDSD succeeds when both
z0 = z and h z|⇢(z

0) | zi = 1 are satisfied.

ing pre-shared entanglement. We demonstrate that the
entanglement cost of the proposed scheme is always equal
or less than the teleportation-and-repreparation strat-
egy and provide explicit cases that yield a strict gap
between two strategies. Interestingly, we find a set of
MESSs exhibiting entanglement earning, where one can
possess more entanglement after the discrimination than
consumed in the task. This phenomenon is certainly
distinct from the result in which one can distinguish a
set of MESSs using entanglement as a catalyst by the
teleportation-and-repreparation method, where the net
change of entanglement is zero [6].
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Figure 2: Circuit diagram for determining the sign in-
formation of the stabilizer PP . Using additional MES
1/
p
2(|00i + |11i), one can perform controlled Pauli op-

erations in the local parties Alice (red horizontal lines)
and Bob (black horizontal lines). If the outcomes of the
local measurements in the basis |±i match, the measure-
ment e↵ect is I4+PP

2 . If it does not match, I4�PP
2 is

acted.

2 Results

2.1 Non-destructive state discrimination

Our non-destructive state discrimination scheme is de-
picted in Fig. 1. In a conventional state discrimination,
Alice and Bob produce a classical answer z0, and Charlie
check whether z0 = z. On the other hands, in the pro-
posed scheme, they send the final quantum state ⇢(z

0) to
Charlie for confirming non-destructiveness. This modifi-
cation leads an interesting results as follows:

Theorem 1 Suppose there are k bipartite MESs with
equal probability. Then any classical strategy (separable
operation) for local NDSD has no advantage over random
guessing.

Note that this result holds for separable operations,
which strictly include LOCC, so it is also valid for LOCC.
We highlight that the success probability does not depend
on the local dimension. Therefore, even two MESs in
any dimension cannot be locally discriminated in a non-
destructive way, and the optimal success probability of a
classical strategy is 1/2. Since any two orthogonal pure
states can be perfectly distinguished with LOCC [4], the
condition of non-destructiveness makes a large discrep-
ancy between quantum and classical strategies. In com-
parison, for a conventional (destructive) state discrimina-
tion, the upper bound of the classical success probability
can reach d/k, which scales by the local dimension d [5].

2.2 Entanglement cost for non-destructive state
discrimination

We propose a totally non-destructive method for a per-
fect NDSD using stabilizer formalism and syndrome mea-
surement [7] and compute the entanglement cost for a
perfect NDSD. First, we consider a subset of MESs called
MESSs constructed as

⇢MESS =
1

4n

nY

i=1

�
I4n ± (ZZ)i

� �
I4n ± (XX)i

�
AiBi

, (1)

where (PP )i = I14 ⌦ · · ·⌦ (PP )i ⌦ · · ·⌦ In4 are two-qubit
Pauli operators acting on AiBi qubits. Then we can
obtain 4n MESSs by choosing the signs of (ZZ)i and
(XX)i. In other words, we have a representation for 4n

MESSs by a set of 2n sign elements {+,�}2n. Next,
we introduce a method of determining the signs of the
MESSs non-destructively. Namely, since four Bell states
are considered as those that have undergone local bit flip
X error or phase error Z on the �0, we can detect the
errors by syndrome measurements. This can be done by
consuming an additional 1 ebit, �0 (Fig. 2). Specifically,
the state after controlled-P operations is given by

1p
2
(|00iA0B0 | ziAB + |11iA0B0 P ⌦ P | ziAB) , (2)

where | zi is one of four Bell states. If the outcomes
of the local measurements in the basis |±i coincide, the
measurement e↵ect is I4+PP

2 , and if not, I4�PP
2 . There-

fore we can decide the sign of PP as + for matched
outcomes and � for unmatched ones, without destruc-
ting | zi. In fact, our method is at least as good as the
teleportation-and-repreparation for NDSD of MESSs.

Theorem 2 For an NDSD task for a given set of
MESSs, the teleportation-and-repreparation method can
be simulated by the stabilizer method with the same en-
tanglement cost.

Our interest then moves to find an example showing a
strict gap between two strategies. The following exam-
ples demonstrate such gaps.

2.3 Examples

We provide explicit examples, where the stabilizer
method is strictly better than the teleportation scheme
in a perfect NDSD of MESSs. The first example is
the discrimination of three Bell states. Let us con-
sider uniformly distributed three Bell states {

���0
↵

=

1/
p
2(|00i + |11i),

���1
↵

= 1/
p
2(|00i � |11i),

���2
↵

=

1/
p
2(|01i + |10i)}. Since the optimal entanglement

cost of the perfect conventional state discrimination is
1 ebit [8], the cost of the teleportation-and-repreparation
method is 2 ebit. For exploiting the stabilizer method,
let us represent the three Bell states as a sign table such
that

ZZ XX���0
↵

+ +���1
↵

+ ����2
↵

� +

If we measure the sign of the first generator, ZZ, � comes
out with probability 1/3 and + with 2/3. In the former
case, we can determine the received state as

�� 2
↵
, thus

the procedure is terminated. In the latter case, we need
to obtain the sign of the second generator, XX, by using
another ebit. Thus the average entanglement cost is given
by 1

3 ⇥ 1+ 2
3 ⇥ 2 = 5

3 (ebits). In fact, this cost is optimal
for the sign table because for distinguishing them, we can
minimally assign one bit to

�� 2
↵
as 0, and two bits for the
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others,
�� 0

↵
with 10 and

�� 1
↵
with 01. We can interpret

the correspondence between the quantum states and the
strings as a uniquely decodable code or prefix code. The
optimality of this scheme among the stabilizer method is
ensured by the Kraft-McMillan inequality from the cod-
ing theory [9, 10]. We call this cost {1, 2, 2}, and then
the entanglement cost is {2, 2, 2} for the teleportation-
and-repreparation method. In other words, the stabilizer
method can use the sign information of each column in
the sign table, but the teleportation method has to read
the signs of two columns at once, so there exists a gap
in average entanglement cost between the two strategies,
1/3 ebits. The next example shows a more interesting sit-
uation even considering the LOCC equivalence, in which
a positive net entanglement remains on average after the
discrimination task. Suppose we have a set of 6 MESSs
such that

{�0�1�2,�0�2�1,�1�0�2,�1�2�0,�2�0�1,�2�1�0},
(3)

where each state is a product of three Bell states (n = 3),
and we omit the ket notation. First, let us compute
the cost of the teleportation-and-repreparation scheme.
Since all states consist of permutation of three Bell states
{
���0

↵
,
���1

↵
,
���2

↵
}, we can choose the first qubit for

the teleportation. Then one can determine the first
qubit among the three Bell states with 2 ebits non-
destructively, and for each result, there are two possi-
bilities. Thus by using another ebit, one can measure
the second qubit to determine the state between the two
remaining Bell states, so the total cost is 3 ebits. This
cost, i.e., {3, 3, 3, 3, 3, 3}, is not optimal for the set, how-
ever, the optimal one is 16/6 ebits, {2, 2, 3, 3, 3, 3}. We
can show that the stabilizer method can render the op-
timal entanglement cost, thus the gap is 1/3 ebits. We
emphasize that this gap holds even if we allow LOCC
for the set of states. Interestingly, we can gain extra 1/3
ebits on average per round of the discrimination task,
entanglement earning. This is a unique feature of the
stabilizer method because the qubit teleportation-and-
repreparation scheme cannot get a positive net entan-
glement. Note that in Ref. [6], a set of 4 ⇥ 4 MESSs
is introduced, i.e., {�0�0,�1�1,�1�2,�1�3}. Although
the set of MESSs cannot be locally distinguishable, the
teleportation-and-repreparation scheme gives the opti-
mal cost of 2 ebits ({2, 2, 2, 2}), owing to the four Bell
basis in the second qubit. Consequently, both strategies
can achieve the optimal cost, and e↵ectively zero entan-
glement is consumed as a catalyst. Our example high-
lights a crucial di↵erence between the two strategies and
entanglement gain in the discrimination task.

Moreover, we can find generic sets of MESSs having
gaps between the two schemes.

Theorem 3 Let us construct a set of MESSs as follows.
The first qubit is uniformly picked from three Bell states
{�i}2i=0, and from the second qubit to n-th qubit, each
qubit is uniformly picked from two Bell states {�i}1i=0.
This produces a set of 3 ⇥ 2n�1 MESSs. Then for the

perfect NDSD, the stabilizer method can reach the opti-
mal entanglement cost, n+ 2/3 ebits, but the cost of the
teleportation-and-repreparation is n+ 1 ebits.

This result includes the previous examples as special
cases when n = 1 and n = 2. Note that we can
find generic sets of MESSs exhibiting the constant gap
1/3 ebits between two strategies with considering LOCC
equivalence. Moreover, our method can be applied in a
more general situation involving a mixed state, where a
MESS | i and its orthogonal complement. In this case,
we can check the non-destructive condition by applying
the projector of the input state | i h |, which should give
1 for the input state | i and 0 for its orthogonal comple-
ment. Although any two pure orthogonal states can be
distinguished by LOCC, this is not the case because one
of them is a mixed state.

Theorem 4 For a MESS ⇢1 = | i h | and its orthog-

onal complement ⇢2 = I�| ih |
22n�1 , the entanglement cost

in ebits of the stabilizer method for the perfect NDSD is
given by

n+ 1� n

22n � 1
,

and of the teleportation method follows as

n+
4

3
� n

22n � 1
.

We can figure out that the gap between the two strategies
is 1/3 ebits, regardless of the dimension. It has been
known that the optimal entanglement cost for standard
discrimination of those states for n = 1 is 1 ebit [11].
This matches our result of the teleportation scheme, i.e.,
2 ebits, where an additional ebit is needed to reconstruct
the initial state. For n � 2, if ⇢1⌦ |↵i and ⇢2⌦ |↵i can be
unambiguously discriminated, then the Schmidt number
of the ancillary state is Sch(|↵i) � 2n for a conventional
discrimination task [11].

3 Discussion

We emphasize that our method can be applied to more
general cases, for example, high-dimensional systems us-
ing qudit stabilizers. A more interesting case is a quan-
tum network involving multipartite entanglement. Since
a set of MESSs consists of a target stabilizer state and
error-occurred states, NDSD can be a task of detecting
and modified the error in the network. In that case, the
teleportation and repreparation method is seemingly in-
e�cient. Using our scheme, however, we can locally de-
tect and modify the errors in a quantum network with
a low cost of additional entanglement. For instance, if
there exists n-party GHZ state in the quantum network
as entanglement resource, i.e., 1/

p
2(|0 · · · 0i + |1 · · · 1i),

one can decide the sign of n-qubit stabilizer P · · ·P using
the GHZ state as our scheme in Fig. 2. Moreover, a re-
source entanglement can be a lossy GHZ state or W state
for more general situations. Studies in those directions
are attractive future works.
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Abstract. We propose a scheme to recover the degree of entanglement of the photonic quantum state
distributed by entanglement swapping under noise. We define and employ the reversing operation in each
qubit mode to reverse the e↵ect of noise and recover the entanglement. We first consider the e↵ect of
damping noise with various di↵erent scenarios by changing the noise and reversing strength. We found
that the optimal reversing operation allows us to recover and increase the distributed entanglement under
noisy quantum channel to some extent. We also apply our scheme to recover entanglement against photon
loss in entanglement swapping by using the noiseless linear amplification (NLA). We observe the recovery
of the entanglement distributed by entanglement swapping over lossy channel. We expect that our scheme
can be used as a tool to develop long distance quantum communication via noisy quantum channel.

Keywords: Entanglement swapping, Reversing operation, Noiseless linear amplification, Quantum com-
munication

1 Introduction

Entanglement swapping is essential for realizing long
distance quantum communication. However, noises and
losses reducing the degree of entanglement inevitably and
significantly are the major obstacle towards practical and
scalable quantum network.
In this work, we study the e↵ect of noise on the entan-

glement of photonic states distributed via noisy entan-
glement swapping, and propose a scheme to recover the
degree of entanglement of the state by reversing opera-
tion [1]. We define and employ the reversing operation
in each qubit mode to reverse the e↵ect of noise. We first
consider the e↵ect of damping noise with various di↵er-
ent scenarios of entanglement swapping. We change the
strength of the damping noise and the reversing opera-
tion accordingly. We use the concurrence as a measure of
the distributed entanglement. We found that reversing
operation allows us to recover and increase the entangle-
ment degree of the quantum states distributed by noisy
entanglement swapping to some extent. We also ana-
lyze the optimal reversing operation under given noise
strength in various di↵erent scenarios.
We then also consider the reversal of photon loss, which

is the most detrimental factor for building long distance
quantum communication channel by entanglement swap-
ping. The noiseless linear amplification (NLA)[2, 3] is
one type of experimental scheme for reversing operation
against the e↵ect of loss in each photonic qubit modes.
We found that the entanglement of photonic qubit states
distributed by entanglement swapping over lossy channel
can be recovered by applying NLA to some extent and
discuss on the optimal NLA operation for a given lossy
channel. We expect that our scheme provide an e�cient
scheme for realizing long distance quantum communica-
tion toward scalable quantum network with photons.

⇤swleego@gmail.com

Figure 1: Entanglement swapping

2 Model

We consider the entanglement swapping of two entan-
gled states (A-B) and (C-D) as illustrated in the Figure
1. Bell state measurement applying on B and C qubits
from two entangled pairs (A-B and C-D) serves as the
connector between two entangled pairs resulting in an en-
tangled state between A and D. In this work we consider
the amplitude damping noise that degrades the degree of
entanglement of the final state (A-D). The damping noise
can be represented by an operator |0ih0|+

p
1�D|1ih1|,

where D is the strength of amplitude damping.
We then consider two di↵erent cases: One is O-D-D-

O case, in which the node B and C experience ampli-
tude damping, while the other O-D-O-D case in which
the node B and D experience amplitude damping. We
investigate and compare the e↵ect of damping noise in
two cases on the entanglement shared between A and D
nodes after the entanglement swapping. In both cases,
we observe the degradation of the entanglement, which
become significant as increasing the strength of ampli-
tude damping (D), as shown by dotted lines in Figure
2.

3 Reversing the e↵ect of damping noise

Let us apply a reversing operation of quantum mea-
surement [4] to reverse the damping noises on the quan-
tum state. The reversing operation for a given damp-
ing noise can be defined by two measurement operators
R1 =

p
1�R|0ih0|+ |1ih1| and R2 =

p
R|1ih0|, where R

is the revering strength.
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Figure 2: Entanglement distributed between A and D
nodes: dotted lines show the concurrence against deco-
herence strength D, while solid lines are obtained by ap-
plying reversing operation with the same strength R = D

Figure 3: Entanglement recover by reversion operation
with di↵erent strength R under noise with strength D

We also consider two cases: O-D-D-O and O-D-O-D.
We first apply the same strength of reversing operation
with the strength of the damping noise on the same node
that noise occurs, i.e. R = D. The result is given in
Figure 2. In both cases, we observe entanglement re-
covery which becomes more e↵ective when the damping
noise strength increases. We also investigate the amount
of entanglement recovery by changing the strength of re-
versing operation R for a fixed strength of damping noise
D as shown in the Figure 3. We found that the maximum
recovery can be achieved when the the reversing strength
is slightly larger than damping strength R > D [6].

4 Reversing the e↵ect of photon loss

We now apply noiseless linear amplification (NLA) as a
reversing operation of the e↵ect of photon loss, which can
be experimentally realized by a scheme named “Quantum
scissor” as illustrated in Figure 4. The output state then
can be written as

T̂1| i =

s
1

2(g2 + 1)
(c0|0i+ gc1|1i), (1)

where g = (1 � ⌘)/⌘ is the gain of the amplification [5].
This process can be understood as a teleportation process

Figure 4: Schematic of the quantum scissor scheme

Figure 5: The changes of entanglement of |�+i (a) loss
and NLA on one arm, and (b) both arms

via a single photon entangled state 1p
2
(|01i+|10i) so that

the output state is in the truncated space up to the Fock
basis n = 1.

We found that the entanglement can be recovered by
NLA on the state experiencing when photon loss occurs
(a) on the one arm or (b) two arms as shown in Figure
5. We investigate the recovery tendency by changing the
transmitivity ⌘ of the experimental setup in Figure 4.
Based on the result, we can optimize the experimental
setup for a given di↵erent loss rate L [6].

5 Summary

We have proposed a scheme to recover entanglement
of photonic qubits distributed by entanglement swapping
over noisy quantum channel [6]. By applying the revers-
ing operation, we have observed significant recovery of
entanglement both for the e↵ect of damping noise and
losses. Based on our investigations, the reversing op-
eration for a given noisy channel can be optimized to
recover the maximum degree of entanglement. We ex-
pect that our scheme can be used as an e�cient tool to
realize long distance quantum communication via noisy
quantum channel.
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Abstract. Boson sampling is a sampling task proven to be hard to classically simulate under plausible
assumptions, which makes it an appealing candidate for quantum supremacy. Due to a large noise rate for
near-term quantum devices, it is still unclear whether those noisy devices maintain the quantum advantage
for much larger quantum systems, and the alternative to evade the issue is to find evidence of hardness at
the shallow-depth quantum circuit. We examine the limitation of the hardness argument at this shallow-
depth regime for geometrically local architectures. We also propose a shallow-depth linear optical circuit
architecture that can resolve those problems.
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1 Introduction

Boson sampling [1] is a prominent candidate for
demonstrating quantum advantage with near-term quan-
tum devices. It is a sampling problem from the ran-
dom linear-optical circuit instances, which has been
complexity-theoretically proven to be hard to e�ciently
simulate with classical computers under plausible as-
sumptions [1–3]. Ever since the theoretical foundation,
there have been plenty of experimental results claiming
the first realization of quantum advantage with boson
sampling [4–6].
However, it remains unclear whether the quantum ad-

vantage can be maintained for larger quantum systems.
The major obstacle to the scalability of the quantum
advantage is the uncorrected noise on near-term quan-
tum devices. There have been many results about e�-
cient classical algorithms to simulate noisy boson sam-
pling with various noise models, such as photon loss and
partial distinguishability of photons [7–16]. Those results
suggest that circuits with super-logarithmic circuit depth
are vulnerable to noise and thus hinder the scalable quan-
tum advantage. Hence, an obvious way to suppress the
e↵ect of noise is to consider shallow-depth circuits and
investigate if we can still maintain hardness in shallow-
depth circuits.
A crucial factor in proving the classical hardness of bo-

son sampling, using the state-of-the-art technique, is the
average-case hardness of output probability approxima-
tion within additive imprecision [1–3, 17]. Specifically, to
get simulation hardness, most of the output probability
instances of most of the linear optical circuits should be
hard to approximate. We prove that for geometrically
local circuit architectures, there is no average case hard-
ness in the shallow-depth regime, as most of the proba-
bility instances are easy to estimate, regardless of circuit
ensembles. Besides, if we employ local random circuit
ensembles, a typical setup for recent experimental re-
sults [4, 5], their di↵usive properties make the situation
even worse, requiring additional circuit depth to get out

⇤gbs1997@snu.ac.kr
†jeongh@snu.ac.kr

the easiness regime.
Following the above examination, we find a linear-

optical circuit architecture that can resolve the issues in
the shallow-depth regime, using geometrically non-local
gates. We numerically examine that the corresponding
circuit architecture with each gate drawn from the lo-
cal random unitary shows a fast convergence toward the
global Haar random unitary, the requirement to achieve
evidence of the average-case hardness [1], where the rate
of convergence is insensitive to increasing system size.
Those results demonstrate the potential of the circuit
architecture to achieve the average-case hardness in the
shallow-depth regime.

2 Limitations of Geometrically Local Ar-

chitectures

A typical way to construct a random linear-optical net-
work using local interactions is a local parallel circuit
architecture, a parallel array of geometrically local beam
splitters [18]. More formally, the d-dimensional local par-
allel circuit with depth D consists of D/2d rounds, where
a single round consists of 2d steps, 2 steps of the parallel
application of local gates for each dimension. We also de-
fine the d-dimensional local parallel random circuit as a
d-dimensional local parallel circuit with each gate drawn
from the Haar measure on U(2) independently, where the
configuration is motivated by recent experimental setups.

We consider both Fock-state boson sampling (FBS)
and Gaussian boson sampling (GBS) schemes, and we
consider the FBS scheme first. Let total mode number
M , and the input state is N product of the single-photon
state. M and N are polynomially related by M = c0N� .
Using this convention, we prove the following theorem.

Theorem 1 (Any circuit ensemble) For d-dimensional

local parallel circuit of depth D  O(N
��1
d ) and arbi-

trarily chosen input mode configuration, most of the out-

comes of FBS have zero output probability.

The theorem implies that for circuits with a depth be-
low a certain threshold, most output instances have zero
probabilities, which are easy to approximate, for any in-
put configuration and circuit instance.
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Figure 1: Probability density function for output probabilities of (a) FBS and (b) GBS with M = 64 and N = 8,
for random NLHS circuit with di↵erent repetition numbers and 2d local parallel random circuit with di↵erent depths.
The distribution corresponding to the global Haar unitary circuit is also displayed as an ideal case.

Furthermore, if we choose the local random circuit en-
sembles, which correspond to the d-dimensional local par-
allel random circuit, we find that additional circuit depth
is required to get out of the easiness regime.

Theorem 2 (Local random ensemble) For d-
dimensional local parallel random circuit of depth

D  O(N
2(��1)

d ��) for any � > 0, 0 < � < 1 and input

mode configuration, it is easy to estimate the output prob-

abilities of FBS within additive error ✏ = poly(N)�1 N !
MN ,

for 1 � ⇠ portion of output instances with probability

1 � � over the random circuit instances, where ⇠ and �
are exponentially small with system size.

For the GBS scheme, we get similar results to the FBS
case. Let total mode number M , and now the input state
is K product of the single-mode squeezed vacuum states
with equal squeezing. We focus on fixed output photon
number 2n, which we will set as mean photon number,
and M and n are polynomially related as M = c1n� .
Using these notations, we prove the following theorem.

Theorem 3 (Any circuit ensemble) For d-dimensional

local parallel circuit of depth D  O(n
��1
d ), arbitrary K

within n  K  M and arbitrarily chosen input mode

configuration, most of the outcomes of GBS have zero

output probability.

Theorem 3 states that regardless of the number of in-
put single-mode squeezed vacuum states and their con-
figuration, most of the outcomes of GBS have zero prob-
abilities which are easy to approximate under a certain
degree of polynomial depth, for any circuit instances.
Moreover, for the case of the local random circuit en-

sembles, we find that the argument from the proof of
Theorem 2 also holds for the GBS scheme.

Theorem 4 (Local random ensemble) For d-
dimensional local parallel random circuit of depth

D  O(n
2(��1)

d ��) for any � > 0,0 < � < 1, n  K  M

and input mode configuration, it is easy to estimate

the output probabilities of GBS within additive error

✏ = poly(n)�1 (2n)!
M2n for 1 � ⇠ portion of output instances

with probability 1 � � over the random circuit instances,

where ⇠ and � are exponentially small with system size.

3 Geometrically Non-Local Architec-

ture: Hypercubic Structure

Figure 2: A Schematic of a one-cycle of NLHS circuit for
total mode numberM = 24. In this case, the architecture
of the circuit can be interpreted as a 4d hypercube, also
known as a tesseract.

An obvious way to resolve the problems we addressed
previously is to consider non-local interactions along
modes, i.e., geometrically non-local unitary gates are
available. In this case, we find a circuit that can mitigate
the problems within logarithmic circuit depth, where the
architecture of the circuit was first introduced in [19] in
order to implement Fourier matrices. Throughout this
section, we refer to the circuit as a non-local hypercubic
structure (NLHS) circuit.

A single round of the NLHS circuit is a one-cycle of
a hypercubic sequence of parallel applications of unitary
gates, and an example of the single round for M = 24

is illustrated in Figure 2. For random circuit instances,
we employ a conventional setup such that all unitary
gates composing the NLHS circuit as independently cho-
sen random beam splitters, each drawn from Haar mea-
sure on U(2).

We investigate the output probability distribution of
FBS and GBS over the random NLHS circuit, with in-
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Figure 3: Probability density function for (a-b) FBS and (c-d) GBS, with M = 128, 256 and N = 12, 16 each.

creasing depth (i.e., repeating a single round of the ran-
dom NLHS circuit). For the investigation, we employ the
probability density function, which is a modified version
of the histogram [1].
First, we compare output probability distribution from

the random NLHS circuit with 2d local parallel random
circuit, for mode number M = 64 and output photon
number N = 8, both for FBS and GBS schemes. We
sample 10000 unitary matrices for each depth of random
NLHS circuits, 2d local circuits, and global Haar random
circuit as an ideal case. For each unitary matrix, we cal-
culate output probability values (unnormalized for the
GBS case) for randomly chosen input/output, and using
those values we draw a probability density function (Fig-
ure 1). The result shows that an iteration of the random
NLHS circuit makes quick convergence to the distribu-
tion of the Haar random unitary, compared to the 2d
local circuit.
Next, we examine how the convergence behavior varies

as system size scales. We increase the mode number as
M = 128, 256 and sample 10000 unitary matrices for
each repetition of the random NLHS circuit and from
the global Haar measure. We calculate output probabil-
ity values for randomly chosen input/output for output
photon N = 12, 16 respectively, and we draw a proba-
bility density function (Figure 3). The result shows that
the number of repetitions required to imitate the distri-
bution from the global Haar random unitary is insensitive
to system size.
We also investigate how entanglement along the modes

varies with the repetition of the NLHS circuit. Specifi-
cally, we focus on Rényi-2 entropy of reduced states of
output states of GBS [20], each evolved by di↵erent rep-
etitions of random NLHS circuits or global Haar random
unitary. For M = 256, we prepare M product of single-
mode squeezed vacuum states evolved by randomly sam-
pled 10000 unitary matrices for each circuit, and calcu-
late the average of Rényi-2 entropy with respect to di↵er-
ent subsystem sizes (Figure 4). The result shows the en-
tanglement generation with an increasing stacking num-
ber, where the distribution converges to the distribution
from the global Haar random unitary. It is notable that
the required number of repetitions for the convergence is
comparably small, similar to the previous results.

Figure 4: The average of Rényi-2 entropy with respect to
di↵erent subsystem sizes, for mode number M = 256.

4 Conclusion

We examined that for local circuit architectures, there
is no average-case hardness below a certain polynomial
depth, which implies the limitation for achieving sam-
pling hardness at the shallow depth regime. We proposed
geometrically non-local circuit architecture which can re-
strain the issues we addressed within the shallow depth
regime. The corresponding architecture shows quick con-
vergence behavior toward the global Haar random uni-
tary circuit, insensitive to system size. Hence, it has the
potential to be used as an approximate Haar measure
with shallow depth random circuit and be utilized as an
architecture for scalable quantum advantage with boson
sampling.
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Abstract. Achieving the ultimate precisions for multiple parameters simultaneously is a challenging
task in quantum physics. Due to the Heisenberg uncertainty principle, the joint optimal measurements for
incompatible parameters is prohibited. In this study[1], we propose a criterion to surpass this constraint
by simultaneously increasing the variances of the parameter generators, enabling improved precision. For
demonstration, we utilize the high-order Hermite-Gaussian beams for simultaneous estimation of spatial
displacement and angular tilt of light. Experimental results achieve precisions of 1.45 nm and 4.08 nrad.
Our findings deepen understanding of the Heisenberg uncertainty principle in multiparameter estimation
and contribute to quantum metrology applications.

Keywords: Multiparameter estimation, Heisenberg uncertainty relation, Hermite-Gaussian beams

1 Background

Heisenberg’s uncertainty principle serves as a funda-
mental pillar of quantum physics. Due to distinct physi-
cal parameters necessitate distinct optimal measurement
operators, this principle prohibits the simultaneous exe-
cution of optimal measurements for parameters if these
measurements are non-commutative[2]. Consequently,
one parameter’s measurement precision deviates consid-
erably from its theoretical limits when the other param-
eter approaches its theoretical limits, giving rise to the
incompatibility of quantum precision limits in multipa-
rameter estimation. Alleviating this incompatibility en-
ables the simultaneous e↵ective enhancement of overall
measurement precisions for the two parameters. This
issue has emerged as a central concern in the realm
of quantum physics and quantum precision measure-
ment, with the synchronization of measurement preci-
sions for incompatible parameters to quantum limits pos-
ing the most formidable challenge. Addressing this chal-
lenge holds practical significance in the domains of quan-
tum sensing[3], quantum communication[4], and quan-
tum computing[5].

2 Results

This study addresses the issue of incompatible pre-
cision limits in quantum multiparameter estimation
and presents theoretical and experimental investigations.
The key accomplishments are outlined as follows.
Despite the inability to achieve simultaneous quantum

limits for incompatible parameters, a trade-o↵ relation
exists, which provides a practical attainable lower bound
of precisions for these parameters[6]. Through an analy-
sis of the trade-o↵ relation in the context of incompatible
parameters, we establish a theoretical criterion for quan-
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†jzhuang1983@sjtu.edu.cn
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Figure 1: Precision limits of estimating parameters gi and
gj simultaneously. The x-axis and y-axis are separately
the normalized estimation errors of parameters gi and gj .
The gray dashed lines are the quantum precision limits
for parameters gi and gj , respectively. The cross point
(red triangle in figure) of gray dashed lines is the quan-
tum limit point where both parameters achieve the the-
oretical ultimate precision. The green solid curve stands
for the trade-o↵ bound of parameters gi and gj with
Sij = 1, which corresponds to the minimum-uncertainty
probe state. The blue and purple solid curves are sepa-
rately the trade-o↵ bounds with Sij = 2 and Sij = 4.

tifying the level of incompatibility, which is given as

Sij =
4h�Ĥ

2
i ih�Ĥ

2
j i���h[Ĥi, Ĥj ]i
���
2 , (1)

where Ĥi, Ĥj are the generators of unknown parame-
ters gi, gj , respectively. This criterion highlights that
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the incompatibility of precision limits can be mitigated
by concurrently increasing the uncertainty of the probe
with respect to the generators of incompatible parame-
ters during simultaneous estimation of two parameters
in a multi-parameter quantum estimation task. Addi-
tionally, this approach enables the enhancement of the
overall measurement accuracy for these two parameters.
The highlights of this result are illustrated in Fig. 1.

BS

Laser

PD

APD

To Spectrum Analyzer

To Lock-in Amplifier 

SLM

PZT

Iris

PBS

Figure 2: Diagram of experimental setup. The n-order
HG beam is converted from a expanded Gaussian beam
by a spatial light modulator(SLM) and a spatial filter
system. The incompatible parameters (position displace-
ment and momentum kick) are introduced by a piezoelec-
tric driven mirror in the Mach-Zehnder interferometer.
The other SLM is used to perform the projective mea-
surements to demodulate the parameters.

In practice, the transverse displacement and angular
tilt of light are a pair of typical incompatible parame-
ters. By utilizing the Hermitian-Gaussian mode probe,
the measurement precisions of the transverse displace-
ment and angular tilt parameters for a single beam can ef-
fectively converge towards their respective quantum lim-
its simultaneously. The experimental setup is depicted
in Fig. 2. As a result, we achieve a precision of 1.45 nm
for the transverse displacement parameter and a preci-
sion of 4.08 nrad for the angular tilt parameter in experi-
ments. The experiments employ the post-selection weak
measurement technique to mitigate technical noise. Fur-
thermore, this study demonstrates that increasing the
number of Hermite-Gaussian probe modes concurrently
enhances the measurement precisions of both parameters.
The experimental results are illustrated in Fig. 3, where
g1 and g2 are the parameters associated with the trans-
verse displacement and the angular tilt of light beams,
respectively.

3 Significance

This work holds significant importance as it estab-
lishes a comprehensive theoretical criterion to quantify
the degree of incompatibility between quantum parame-
ters. This criterion serves as a foundational tool in ad-
dressing the challenge of incompatibility in precision lim-
its during quantum multiparameter estimation. Further-
more, this study successfully achieves practical measure-
ments of incompatible parameters for a light beam, at-
taining simultaneous quantum precision limits that are at
the forefront. These results have vast potential in various

Figure 3: Experimental results of minimum detectable
parameters g1 and g2, which are illustrated by the yellow
points with error bar. The trade-o↵ bounds of parame-
ters g1 and g2 with di↵erent HG modes are represented by
the blue solid curves. a Experimental results of HG1 to
HG5 modes. The di↵erent HG regions are distinguished
by the gray levels. The gray dashed lines are the quan-
tum precision limits of parameters g1 and g2 with di↵er-
ent HG modes, and the cross points (red triangles) are
the corresponding quantum limit points. b-f Specific ex-
perimental results of HG1 to HG5 modes. The purple
cross marks are the theoretical predictions of experimen-
tal results.

applications such as polarization measurement, vibration
sensing, magnetic field detection, quantum communica-
tion, quantum imaging, and quantum computing, etc..
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Abstract. We propose a resource-e�cient scheme for detecting GHZ entanglement by hybridizing ex-
isting probabilistic and conditional methods. Our scheme improves the resource e�ciency by eliminating
the need for a projection operator and reducing the required number of measurement settings compared to
previous conditional witness and few-copy method. We derive a new confidence bound based on conditional
witness measurements, allowing us to consider all conditional outcomes. We demonstrate that our scheme
outperforms previous methods regarding the resource e�ciency, which becomes further pronounced when
detecting the genuine multipartite entanglement among larger numbers of qubits.
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1 Introduction

Genuine multipartite entanglement (GME) is crucial
for the development of scalable quantum computing and
quantum network architectures. Traditional approaches
to verify GME, such as state tomography and entangle-
ment witness, require a large number of resource states
and measurement setups. As the number of qubits in-
creases, these requirements grow exponentially. Hence,
it is essential to develop a resource-e�cient and reli-
able method to detect GME for developing large-scale
quantum architectures. Recently, some noise-robust and
resource-e�cient schemes to detect GME have been pro-
posed such as conditional [1] and few-copy detection
schemes [4]. However, these have certain limitations,
such as the need to use a projection operator [1] or a di-
vergence of the number of resources near the noise bound
[4]. In this work, we propose a hybrid scheme that com-
bines the advantages of the conditional witness and few-
copy detection methods. Our scheme exhibits resource
e�ciency even with a larger number of qubits, which is
crucial for entanglement verification in large-scale quan-
tum systems.

2 Conditional witness

The localizable entanglement (LE) of a multipartite
entangled state is the maximal amount of entanglement
that can be concentrated between two subsystems by per-
forming local measurements on the other systems [2]. In
other words, it quantifies the ability to concentrate global
entanglement to a specific local subsystem. The LE of the
bipartition (x|y) for a n-qubit state ⇢ is given by

LEx|y(⇢) = sup
M

X

i

piE(⇢x|y:i) (1)

Here, M represents a local measurement on (x, y)c, i rep-
resents the corresponding outcome, and ⇢x|y:i is the post-
measurement state.
From the fact that entanglement cannot increase via

local operations and classical communication (LOCC),

⇤swleego@gmail.com

LEx|y > 0 implies the presence of entanglement in all
bipartitions where one partition contains x, another par-
tition contains y, and all possible distributions of the
remaining subsystems. Using this, a conditional entan-
glement witness can be constructed [1]:

W[x|y] = |�+ih�+|
O

[x,y]c

|+ih+|, (2)

which outperforms the standard witness with respect to
noise-robustness and required measurement settings [1].
However, it relies on localizable entanglement, which de-
pends on 2n�2 conditional outcomes, obtaining the ex-
pected value Tr(W[x|y]) for a fixed conditional outcome
requires the use of the projection operator

N
[x,y]c |+ih+|.

This projection operator necessitates the use of addi-
tional ancillary qubits or post-selection, which is inef-
ficient in terms of resource utilization. To post-selectN

[x,y]c |+ih+| from X-basis measurements, it is neces-

sary to discard resources (copies) sampled from 2n�2 � 1
outcomes.

3 Few-copy entanglement detection

A few-copy entanglement detection scheme can be ex-
plained as follows: A sequence of random binary local
measurements Mi with i = 1, . . . , N is sampled from
a measurement set, where N is the number of copies
and each measurement is performed sequentially on the
copies. Each binary measurement has outcomes {0, 1}.
The ratio of obtaining a positive outcome (1) for each
measurement has an upper bound ps for all biseparable
states ⇢s. The success rate of the test in experiments
denoted as pe, is given by S/N , where S is the number
of positive outputs in the measurement sequence. If pe is
greater than ps, the test is considered successful. The fig-
ure of merit is the confidence of the test, C(�) = 1�P (�),
where P (�) is the probability of success of the test for any
biseparable state, and � is the di↵erence between the suc-
cess rate of the test, � = pe � ps. The upper bound on
P (�) for all biseparable states ⇢s is given by:

P (�)  eD(ps+�|ps)N , (3)
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whereD(x|y) represents the Kullback-Leibler divergence.
In other words, the confidence is lower bounded as:

C(�) � 1� eD(ps+�|ps)N (4)

and, the maximum number of copies required to get the
confidence is given by:

Nmax =
ln(1� C(�))

D(ps + �|ps)
(5)

The crucial aspect of this protocol is determining the
values of {Mi}, pe, and ps. In [4], the entanglement wit-
ness method was employed for a 6-qubit H-shaped clus-
ter state, whose stabilizer witness is local-decomposable.
Separable bounds were derived, specifically:

2nX

i=1

1

2n
Tr(M1

i ⇢s) 
3

4
= ps (6)

where M1
i = (1+Si)/2. In the noiseless condition, Nmax

for achieving 99% confidence is obtained as 16 copies,
while 132 copies are required in an actual experiment.
This is a dramatic reduction of resource costs compared
to standard approach in which 2n observables and many
copies of states are necessary for obtaining the expecta-
tion values. However, if the level of noise approaches the
witness bound, pe turns out to be getting close to ps so
that the required number of copies suddenly diverges [5].

4 Hybrid scheme

We propose a hybrid scheme that combines aforemen-
tioned two methods. It does not require the use of a
projection operator, unlike the conditional witness [1],
and uses fewer measurement settings compared to the
few-copy method [4]. We choose n-qubit GHZ state for
the target state. We derive a new confidence bound for
the few-copy entanglement detection method using a con-
ditional witness. This bound allows us to consider all
conditional outcomes, making our scheme more resource-
e�cient compared to the trivial conditional witness.
Suppose j is the eigenvalue of the conditional measure-

ments. If we measure the other qubits using the Pauli X-
basis, except for the two qubits being tested, the n-qubit
GHZ state collapses to two possible states:

|�±i =
( |00i+|11ip

2
when j = 1

|00i�|11ip
2

otherwise
(7)

Based on the work [6], the stabilizer witness W± for these
states is given by:

W± =
1

2
I � |�±ih�±| = 1

2
I � 1

22

4X

k=1

S±
k (8)

where S±
k is the stabilizer of |�±i. Using (6) and the fact

that S±
4 = I and Tr(I⇢) = 1 for any quantum state ⇢,

we have:
3X

i=1

1

3
Tr(M±

i ⇢s) 
2

3
= p±s (9)

where M±
i =

1+S±
i

2 . This leads to the derivation of the
confidence bound for our work.

Theorem 1 If we measure conditional qubits as X-basis
and sample a random measurement operator from sets
derived from (8) and process the test, we obtain the same
bound as (3).

Proof. Most of the proof is similar to that of [3]. The dif-
ference lies in dividing the sum of binary outcomes into
sums based on the 2n�2 conditional outcomes. Let X
be the sum of binary outcomes Ek from randomly sam-
pled measurement operator Mk. Then, we have X =PN

k=1 Ek =
P2n�2

i=1

PNi

k=1 E
i±

k , where N =
P2n�2

i=1 Ni,

and each Ei±

k is the binary outcome from M±
k corre-

sponding to the i-th conditional outcome among the 2n�2

outcomes. For any t > 0, Psep(�) = Psep(X � peN) =

Psep(etX � etpeN )  <etX>
etpeN , where � = {�i±} and peN =

P2n�2

i=1 (p±s + �i
±
)Ni =

P2n�2

i=1 pi
±

e Ni. Thus, <etX>
etpeN =

Q2n�2

i=1

QNi

k=1
<etE

i±
k >

etp
i±
e

=
Q2n�2

i=1

QNi

k=1
1�<Ei±

k >+<Ei±
k >et

etp
i±
e

.

Since all < Ei±

k > are  p±s for all 1  i  2n�2, we

have Psep(�)  ( 1�p±
s +p±

s et

etpe )
P2n�2

i=1 Ni = ( 1�p±
s +p±

s et

etp
i±
e

)N .

Let f(t) = 1�p±
s +p±

s et

etpe . This function has a minimum at

tm = log (1�p±
s )pe

(1�pe)p
±
s
. Thus, Psep(�)  eD(pe||p±

s )N , where

D(x||y) is the Kullback-Leibler divergence. ⇤

We can use the same measurement settings for both
collided states since their stabilizer generators are the
same. The only di↵erence lies in the phase of g1, where
g±1 = ±�⌦k

x . Therefore, it is su�cient to consider the
eigenvalue of the conditional outcomes on the other sys-
tems and manipulate the phase of M±

i . The summary of
the process for our work is as follows:

1. Generate an n-qubit GHZ state.

2. Define conditional bipartitions [1, 2], [2, 3], ..., [n-1,
n] based on conditional witness.

3. Measure the qubits outside the bipartitions in the
Pauli X-basis and record the results.

4. Measure the qubits in the target bipartitions in the
basis sampled from M±

i based on each conditional
outcome.

5. Determine the bound using 1.

6. Repeat steps 1-5 for multiple trials to obtain sta-
tistical data.

To simulate our method, we utilized the open-source
Python library Qiskit [7]. We constructed noise models
following the same approach as [1], which involved incor-
porating a two-qubit depolarizing error after each CNOT
gate and a single-qubit measurement bit-flip error for all
qubits. Through simulations, we observed a significant
advantage in resource utilization using our method across
both noise models. Moreover, this advantage was further
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amplified with an increasing number of qubits. The cor-
responding results are depicted in Figure 1, and 2

Figure 1: 5-qubit GHZ state in the two noise models

Figure 2: 10-qubit GHZ state in the two noise models

Our results validate the resource e�ciency of our hy-
brid scheme under di↵erent noise conditions. Our scheme
outperforms existing approaches, especially as the num-
ber of qubits increases, regarding resource e�ciency and
noise robustness. The reduction of the required mea-
surement settings and the elimination of the need for a
projection operator make our method more practical and
scalable for real-world applications.
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Abstract. In recent years, the interest in topologically ordered states has surged due to their distinct
properties and potential applications in quantum computing. The toric code, a variant of the surface
code, shows promise for quantum error correction. However, experimental realization of topologically
ordered states remains challenging, requiring the generation of long-range entanglement. A recent study
successfully implemented a quantum circuit on a superconducting processor to prepare the toric code’s
ground state [5]. Building upon this, a novel ansatz called the Parameterized Loop Gas Circuit (PLGC)
was introduced to accurately represent the ground state and explore its properties[1]. We evaluate the
PLGC ansatz’s performance in noisy conditions using simulation and a real quantum device, comparing it
to a hardware-e�cient ansatz. The PLGC ansatz exhibits faster convergence and improved optimal values,
highlighting its robustness and scalability potential.

Keywords: Toric code, Variational Eigen Solver, Parameterized loop gas circuit (PLGC), Hardware-
e�cient ansatz, Noisy quantum systems

1 Introduction

The increasing fascination with topologically ordered
states, which exhibit long-range entanglement, has
gained considerable momentum in recent years owing to
their distinct properties and their impact in quantum
computing. The toric code, a variant of the surface code,
has emerged as a promising stabilizer code for quantum
error correction. The experimental realization of topolog-
ically ordered states can be accomplished by identifying
quantum systems with preexisting topologically ordered
ground states or by engineering a topologically ordered
state in a controlled quantum system. The toric code
is a fundamental example of a two-dimensional lattice
model with topological properties, showcasing what is
known as Z2 topological order. The work in [5] first im-
plemented an e�cient quantum circuit on a supercon-
ducting quantum processor to prepare the ground state
of the toric code ground state on a lattice of 31 super-
conducting qubits.
Recently, [1] proposed a novel ansatz called the Pa-

rameterized Loop Gas Circuit (PLGC) that has shown
to o↵er adequate expressibility for the ground state of
non-exactly solvable correlated Hamiltonians while be-
ing faithfully evaluable on NISQ devices. It encodes the
quantum loop gas state with adjustable loop configura-
tions into an optimized-depth quantum circuit.
The authors note precise reproduction of the ground

state of the toric code model in an external magnetic
field, encompassing both topologically ordered and fer-
romagnetically ordered phases. They additionally note
that their PQC achieves energy accuracy better than
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10�2 for the toric code model. This e�cient represen-
tation of the ground state facilitates the exploration of
topologically ordered states and provides valuable in-
sights into their properties. Their work contributes to the
advancement of utilizing quantum computers for study-
ing topologically ordered systems, bridging the gap be-
tween theory and experimental exploration.

Variational Quantum Eigensolver (VQE) have been
widely used to solve the non-exactly solvable quantum
many-body problems and are characterized by the us-
age of a parametrized quantum circuit (PQC) where the
parameters are generally optimized using a classical op-
timizer to minimize a cost function. The choice of the
ansatz, cost function, gradient, etc., dictates the overall
e�ciency of the VQE.

In this work, we study the performance of the PLGC
ansatz in the noisy setting using both simulator and the
real device provided by [11] using error mitigation tech-
niques. The lattices considered here are 2 ⇥ 1, 3 ⇥ 2,
and 3⇥ 3. We further compare the performance with an
hardware e�cient ansatz and see that the PLGC ansatz
shows faster convergence rates and better optimal val-
ues. This result is consistent under noisy environmant
and finite sampling error and shows the robustness of
the PLGC ansatz. We also note that the number of pa-
rameters that need to be optimized in the Hardware ef-
ficient ansatz increases exponentially when compared to
the PLGC ansatz thereby showing scope for the scala-
bility of the PLGC ansatz to bigger lattice structures.
Nevertheless, the e�cacy of these quantum algorithms
is contingent upon the classical optimization of a chal-
lenging cost function. It is essential to thoroughly eval-
uate the performance of the various optimizers available
through comprehensive benchmarking. Consequently, we
compare the performance of di↵erent optimizers to gain
a deeper understanding of the training process.
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2 Toric code

The toric code model [8] is characterized by qubits
positioned at the bond centers of a square lattice with
dimensions Lx ⇥Ly and a total of N bonds. The Hamil-
tonian is defined as:

HTC = �
X

s

As �
X

p

Bp,

where As =
Q

i2s �
z
i and Bp =

Q
i2p �

x
i . The ground

state of the above Hamiltonian is a topological quantum
spin liquid characterized by a Z2 topological order [8, 7]
with the characteristic that HTC is exactly solvable.
In the representation below, each ’o’ represents a qubit

located at the bond centers of a square lattice while the
lines represent the bonds between them.

o---o---o
| | |
o---o---o
| | |
o---o---o

Recently, Satzinger et al. [5] demonstrated the con-
struction of the unique ground state of the toric code
model with open boundary conditions (OBCs). Building
upon this work, Sun et al. [1] used it as a motivation to
develop an e�cient ansatz for the Hamiltonian HTM . In
addition, they explored the topological quantum phase
transition [4, 3], which occurs when the toric code model
deviates from its exactly solvable point due to the appli-
cation of an external magnetic field along the z direction.
The corresponding Hamiltonian HTCM (x) is defined as

HTCM (x) = (1� x)HTC � x

NX

i=1

�
z
i .

where the parameter x determines the influence of the
magnetic component on the Hamiltonian. Notably, when
x = 1, the exact ground state of the system is given by
|00 . . . 0i.

3 PLGC ansatz

The groundbreaking research conducted by [5] estab-
lished a significant milestone in implementing the toric
code circuit on current NISQ (Noisy Intermediate-Scale
Quantum) devices with remarkable precision. Their work
introduced a method to generate the state | 0i by utiliz-
ing the Hadamard gate (H) on a specific qubit associated
with a plaquette. Subsequently, CNOT gates were ap-
plied to the remaining qubits within the same plaquette,
with these designated qubits serving as the control in-
puts. The circuit construction employed in this approach
results in a linear growth in circuit depth with increasing
Ly.

Figure 1: Illustration of the PLGC ansatz for the 1 Pla-
quette case

The PLGC ansatz replaces the the Hadamard gates with
rotation-y gates in the construction of | 0i. This helps
in the creation of an imbalanced superposition state,
cos( ✓2 )|0i+ sin( ✓2 )|1i.

4 Experiments

In this section, we compare the performance of two
di↵erent ansatzes, the Parameterized Loop Gas Circuit
(PLGC) and the Hardware-e�cient ansatz, for lattice
structures of sizes 2⇥1, 3⇥2, and 3⇥3 with 4, 7, and 12
qubits, respectively. We employ the Variational Quan-
tum Eigensolver (VQE) approach to optimize the Hamil-
tonian HTCM (x) for x ranging from 0 to 1 under open
boundary conditions. The simulations are performed us-
ing the Qiskit framework [11], utilizing both the noise-
free statevector simulator and the QASM simulator with
finite shots.

For the hardware-e�cient ansatz, we utilize the circu-
lar entanglement structure with Ry gates and 2 repeti-
tions. The initial parameters for both ansatzes are set
to |00 . . . 0i. We choose this as the initial state to com-
pare the performance of both the ansatz without any
bias. We compare the performance across di↵erent op-
timization algorithms such as COBYLA, SPSA, Sequen-
tial Least Squares Programming (SLSP), and Limited-
memory BFGS Bound.

To evaluate the performance under realistic conditions,
we conduct experiments using the QASM simulator with
noise models obtained from the IBM Quantum devices
ibmq belem and ibmq jakarta. Furthermore, we run the
1 Plaquette case on the actual IBM Quantum device
ibmq belem, specifically for the case without magnetic
settings (i.e., x = 0). In all cases, the circuit optimiza-
tion level is set to 3. For the experiments on the real
device, we apply di↵erent error mitigation techniques,
such as Zero Noise Extrapolation and Twirled Readout
Error Extinction, to the results obtained.
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Figure 2: Plot illustrating the energy convergence with
the number of iterations in a single plaquette configura-
tion consisting of 4 qubits (top) and two plaquette con-
figuration consisting of 7 qubits (bottom), specifically in
the case where x = 0 using the PLGC and Hardware ef-
ficient ansatz. The simulations are conducted using the
statevector simulator, QASM simulator (both with and
without a noise model), and with the inclusion of error
mitigation techniques.

5 Conclusion and Discussion

From the energy convergence plots, we see that the
PLGC ansatz takes lesser number of iterations compared
to the hardware e�cient ansatz (Figure 2). The PLGC
ansatz demonstrates superior performance when com-
bined with the simultaneous perturbation stochastic ap-
proximation (SPSA) optimizer [6] in both the 4 and 7
qubit case, while the hardware-e�cient ansatz performs
best with SPSA in the 4 qubit case and COBYLA [10]
in the 7 qubit case. This behavior is consistent across
all the lattices considered. Due to the presence of shot
noise in the case of the QASM simulator, gradient based
optimizers such as SLSQP and L BFGS performed worse
likely due to the noise.
Another advantage o↵ered by the PLGC ansatz over

the Hardware e�cient ansatz is the number of parame-
ters that need to be optimized in the PQC. In the case
of the Hardware e�cient ansatz, the number scales ex-
ponentially with the size of the lattice. For example,
in the case of 4 ⇥ 4 lattice, the PLGC ansatz needs 9
parameters while the Hardware e�cient ansatz needs 72
parameters. Additionally, we compare the performance
using error noise models and note that the performance
of the PLGC ansatz remains consistent in comparison to
the Hardware E�cient ansatz. The results after applying
error mitigation also suggest that the PLGC performance
remains consistent.

When running the case of x = 0 for the 1 Plaquette (4
qubit) case on the actual quantum device with Twirled
Readout Error extinction, the obtained expectation value
exhibit an average of �4.529±0.3180 (Figure 3) while the
expectation value (as obtained on the statevector simu-
lator) is around -5. This outcome is based on the exe-
cution of 152 independent VQE trials, utilizing readout
mitigation shots calibration set to 8192 and 4000 shots.
In contrast, when zero error mitigation is employed, the
achieved results yield an expectation of �4.3305±0.0467.
These results were obtained from 100 circuits with 4000
shots, employing a linear extrapolator. The di↵erence in
the results obtained between the quantum hardware and
that of the error mitigated QASM simulator results are
more evident.

Figure 3: Energy convergence with iterations for VQE
using the PLGC ansatz on the real device ibm belem us-
ing 4 qubits for the case when x = 0 in the 1 Plaquette
case using error mitigation.

Examining the scalability of the PLGC ansatz to larger
lattice structures becomes crucial due to the feasibility
of training given the parameter space. Such an inves-
tigation could demonstrate its advantageous potential.
Subsequently, the next objective would involve compar-
ing the PLGC ansatz with other approaches, such as the
Hamiltonian variational ansatz.
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Abstract. In this work we provide rigorous error bounds for di↵erent types of dynamical decoupling
protocols without resorting to Magnus expansion. Instead, by exploiting and generalizing the relative
integral action method, we propose the concept of higher order integral condition and use it as a framework
to describe and analyze the higher order protocols. Finally, we show two applications of our results: higher
order quantum Zeno dynamics and higher-order symmetry protection Hamiltonian simulation.
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Dynamical decoupling (DD) is a common scheme of
suppressing non-Markovian noise [1, 2, 3, 4, 5, 6], it has
many applications in quantum information technologies.
Using fast-driven periodical pulses, we are able to enforce
the system to possess a certain type of symmetry. In
DD, the pulses are designed to commute with the system
Hamiltonian, while the interaction between the system
and the environment is suppressed.

Here is a quick example: when the sys-
tem Hamiltonian is a Heisenberg model HS =
�
P

j(JxXjXj+1 + JyYjYj+1 + JzZjZj+1), we can
set the pulses to be the repetitive conjugation of
{I⌦N , X⌦N , Y ⌦N , Z⌦N

}. It is easy to verify that
[HS , P⌦N ] = 0, P 2 {I,X, Y, Z} so the pulse does not
influence HS , and any general single Pauli error � is
eliminated on the average of

P
P P⌦N�P⌦N = 0. In

this way, we decouple the Pauli error � from HS using
dynamical controls.

The e↵ect of dynamical decoupling can be strength-
ened by designing more delicate pulses. Concatenated
DD [7, 8] and Uhrig’s DD [9, 10, 11, 12] are two famous
examples. In concatenated DD, we repetitively apply the
same sequence of operator conjugations on the evolution
of a single period; in Uhrig’s DD, we give freedom to the
intervals between pulses in a single period. Furthermore,
the two methods can be combined to generate more
e�cient protocols [10, 12, 13]. We call them higher order

DD protocols.

A common method to analyze the performance
of higher order DD is to use the first few orders of
Magnus expansion [14]. However, the convergence
condition of Magnus expansion causes problems to
the rigorous analysis. Recently, the relative integral

action (RIA) method proposed in [15] (similar to the
method in [16]) provides a rigorous way to analyze a
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list of problems, including the lowest order DD. But one
big drawback of the current RIA method is it cannot
provide proper upper bounds for higher order DD pulses.

In this work we provide rigorous error bounds for
di↵erent types of DD protocols without resorting to
Magnus expansion. Instead, by exploiting and general-
izing the RIA method, we propose a new framework to
describe and analyze the higher order protocols.

Here is an intuitive explanation of our method. In
the error analysis of DD, we deal with a time-dependent
perturbation problem: given a Hamiltonian H0 and a
time-dependent perturbation term V (t) (the noise term
in the interaction picture), the purpose is to quantify
the distance between the free evolution and the evolution
generated by the full Hamiltonian. We find that in DD
protocols, all V (t) can be described by the higher order

integral conditions. If 9t0 such that

V (t) = V (t+ t0),
Z t0

0

dt1

Z t1

0

dt2 · · ·

Z tK�1

0

dtKV (tK) = 0,

then we say V (t) satisfies the K-th order integral
condition. For instance, the time reflection symmetry
V (t) = V (t0 � t) is a special case of second order
integral condition. The larger K is, the more e�cient
the DD pulses are. Using the special properties of higher
order integral conditions, we e�ciently incorporate
higher order DD with the RIA method. Eventually, the
question of quantifying error bounds can be reduced to
analyzing di↵erent orders of integrals.

Finally, we provide rigorous bounds for several higher
order DD protocols using this method. Our new results
reveals features of DD that were not emphasized before.
For example, in general concatenated DD, there exists
an error term that does not decay with the order of
concatenation. The application of our analytic tool is
not limited to analyzing existing methods. We also show
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two applications of our results: higher order quantum
Zeno dynamics [17] and higher-order symmetry protec-
tion Hamiltonian simulation [18]. The idea is similar to
higher order DD: using more delicate protocols, we are
able to suppress the unwanted part of the Hamiltonian
in a more e�cient way.

In conclusion, our main contributions in this work in-
clude:

• a convenient notation for the higher order DD
pulses, which might also be useful in dynamical
Hamiltonian engineering [6];

• a generalized version of RIA method;

• rigorous bounds for several di↵erent types of DD;

• higher order quantum Zeno dynamic inspired by
higher order DD;

• higher order symmetry protected Hamiltonian sim-
ulation inspired by higher order DD.

The technical version of this work is written in ap-
pendix.
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Abstract. Matrix product state (MPS) o↵ers a framework for encoding classical data into quantum
states, enabling the e�cient utilization of quantum resources for data representation and processing. This
research paper investigates techniques to enhance the e�ciency and accuracy of MPS representations
specifically designed for encoding classical data. Based on the observations that MPS truncation error
depends on the pattern of the classical data, we utilized qubit permutations, which reorganize the qubits
in the system, thereby improving the e�ciency and fidelity of the MPS representation. Furthermore, we
also evaluate the performance of the optimized MPS representations in the context of quantum classifiers,
demonstrating their enhanced performance compared to the standard MPS.
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1 Introduction

Various quantum algorithms are suggested that can
solve computational tasks exponentially faster than their
classical counterpart. These algorithms include quan-
tum Fourier transform [1], factoring algorithm [2], solving
systems of linear equations [3], quantum support vector
machine [4], quantum principal component analysis [5],
and quantum convolutional neural network [6]. Among
these, except so-called Shor’s algorithm which prepares
the quantum state using a mathematical relation, those
algorithms usually come with an assumption of black
boxes for quantum state preparation [7]. In most re-
search, it is assumed that these black boxes have polyno-
mial computational complexity with respect to the num-
ber of qubits.
However, it is well-known that preparing arbitrary n-

qubit quantum states requires exponential overhead [8].
For example, Araujo et al. [9] proposed a quantum cir-
cuit for state preparation that requires exponential depth
[10] while Zhang et al. suggested a polynomial-depth
circuit, but only with exponential number of auxiliary
qubits. Note these quantum circuits prepare exact quan-
tum states.
On the other hand, real-world data often contain cor-

relations or patterns. In classical information processing,
redundancies play a crucial role in the e�cient encod-
ing of data, as they are commonly utilized to achieve
e�cient compression by discarding some of the redun-
dancies, while maintaining the essential features.
In the context of quantum mechanics, matrix product
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state (MPS) is a mathematical framework used to repre-
sent quantum states with local entanglement character-
ized by low-rank matrices [11]. A parameter called bond
dimension � determines the capability of MPS in repre-
senting quantum states. Previous research showed that
images such as modified National Institute of Standards
and Technology database (MNIST) [12] and Fashion-
MNIST [13] can be encoded into MPS with low bond
dimensions [14, 15].

Similar to the classical compression, it is conceivable
that a method exists to transform quantum data into
a more compressed format for encoding purposes. This
would involve finding a way to represent the data using a
smaller number of quantum gates, without losing crucial
information about the original data. This study intro-
duces a novel technique aimed at improving the fidelity
of the MPS. Specifically, we propose a method that in-
volves permuting the qubits used by encoding circuits.
To verify the e↵ectiveness of the our method, we apply
this approach to the encoding of data: the MNIST and
Fashion-MNIST datasets. Our approach leads to an im-
provement in accuracy of state encoding, which also en-
hances the test accuracy of quantum classifiers, thereby
demonstrating the overall utility of the proposed method.

2 Algorithm

For a given quantum state, there exists an e�cient
algorithm called MPS-SVD[16] that constructs an MPS
with the smallest distance in terms of Frobenius norm
for a given bond dimension. However, the accuracy of
the MPS depends heavily on the entanglement structure
of the state being encoded [16]. It is known that MPS
with low bond dimension corresponds to states with local
entanglement. Therefore, by permuting the order of the
qubits to change the entanglement structure to be more
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local, we can anticipate a reduction in the truncation
error. In this context, the truncation error can be utilized
as a cost, and graph search algorithms [17, 18] can be
employed to search for the optimal permutation of qubits.

Algorithm 1: MPS-SVD with permutation
Input:

n-qubit quantum state
a � (a1, a2, ..., a2n)

number of qubits n
bond dimension �

Output:

Optimal qubit permutation with the lowest truncation
error
Initialize:

min-heap  � empty heap
x � blog2xc

1: for l in combination(n, x)) do
error  � partial truncation error(l)

min-heap.push((error,l))

2: end
3: loop do

(error, l)  � min-heap.pop()
if len(l) = n-x then

return l

end

for index in not used by l do

l2  � copy(l)

append index to l2

error  � error + truncation error(l2)

min-heap.push((error,l2))

end

4: end

It can be also shown that there is a mathematical sym-
metry in the permutation space, which generally leads to
a reduction of the search space significantly.

3 Result

A. Image encoding optimization To verify the ef-
fectiveness of the our algorithm compared to the standard
MPS-SVD algorithm, we applied both algorithms to two
types of datasets: the MNIST and Fashion-MNIST. Fig-
ure 1 shows the comparison of those two approaches when
they are applied to MNIST dataset.
Figure 2 shows the same type of comparison between

two MPS representations with Fashion-MNIST dataset
where similar performance improvement is observed.
As the results indicate, our proposed algorithm has led

to a consistent improvement in both the numerical value
of the Frobenius distance and the visual appearance of
the output images especially for the low bond dimension.

B. Benchmark with quantum classifiers To assess
the e↵ect of input state quality on quantum information
processing tasks, we trained two quantum classifiers - a
variational quantum circuit (VQC) classifier and an MPS
classifier - using both algorithms. Our results showed a

Figure 1: Comparison of the permuted MPS method and
the MPS without permutation for MNIST dataset. (a)
Plot of Frobenius distance between the input data and
MPS representations with and without permutation as a
function of bond dimension. (c), (d) Visual comparison of
the MPS states for bond dimensions 2, 4, 6, and 8 with
and without permutation corresponding to the original
MNIST image data shown in (b).

Figure 2: Comparison of the permuted MPS method
and the MPS without permutation for Fashion-MNIST
dataset.
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Table 1: Test accuracies of VQC classifiers trained
by quantum states prepared with di↵erent encoding
schemes.

Train
Test

MPS w/
perm

MPS w/o
perm

Exact

MPS w/
perm

95.8±2.3% - 94.6±2.6%

MPS w/o
perm

- 93.8±9.0% 89.5±11.6%

Exact - - 94.6±2.2%

significant increase in the test accuracy of both quantum
classifiers when they were trained using our scheme.
For benchmarking with a VQC classifier, we opted to

train our models on a binary classification task using the
MNIST dataset [19] and attached a quantum convolu-
tional neural network (QCNN) structure [6] to the output
of the MPS encoding circuit and the expectation value
of measurement is used as a probability. To estimate the
maximum achievable test accuracy, in addition to both
MPS encoding schemes, we included amplitude-encoded
states with exact image data in the comparison summa-
rized in Table 1.
It is worth mentioning that when testing classifiers

trained with MPS images, their accuracy surpasses that
of classifiers trained with exact input images, but only
if the test set is given in MPS form. This suggests that
the classifiers trained with the MPS encoded by both
algorithms may have overfitted to the corresponding en-
coding schemes. To avoid over-estimation of the power of
MPS encoding scheme, we will only consider amplitude-
encoded states with exact image data as the test dataset
for the subsequent classifiers.

We also tested a di↵erent type of quantum classifiers
based on MPS structure with two classification tasks:
MNIST and Fashion-MNIST dataset.
Figure 3 shows that the classifiers trained with our

scheme outperform the classifiers trained with the stan-
dard MPS. The improvement in performance is the max-
imum at low bond dimension, which is consistent with
the large Frobenius distance gap observed in the Fig. 1
and Fig. 2

4 Discussion

Our study suggests that the proposed encoding scheme
improved the image fidelity in terms of Frobenius dis-
tance as well as the classification accuracy compared to
the standard MPS encoding when it is applied to two
types of image datasets. The improvement is pronounced
at low bond dimensions, which means that the new
scheme will be most useful for the noisy intermediate-
scale quantum computer [20].
While the permutation search space might seem to ap-

pear to grow exponentially with the number of qubits,
we reduced the search space significantly by utilizing the

Figure 3: Test accuracies of MPS classifiers with (a)
MNIST and (b) Fashion-MNIST

symmetry of the MPS structure under certain permuta-
tion, combined with the uniform-cost search. Moreover,
our experiments have shown that there exist specific per-
mutations that result in low truncation errors, where only
a small portion of the entire permutation space had to
be explored while leading to a fast termination.
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Improvement in quantum communication using quantum switch
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Abstract. It is well known that quantum switch is an example of indefinite causal order. Recently, application
of quantum switch on quantum channels, became a hot topic of discussion. It is possible to achieve significant
improvement in communication, when a quantum switch is applied on quantum channels. Though above-said
improvement is not possible for all quantum channels. For some quantum channels, improvement can be very
high. One such example has been discussed in [New J. of Phys. 23, 033039 (2021)] where perfect communication
can be achieved. But incidentally that example of channel is unique up to unitary transformations. Therefore, it
is important to study the application of quantum switch on other quantum channels where improvement may not
be ultimate but significant. Here, we study the application of quantum switch on various quantum channels. In
particular we show that if it is not possible to achieve improvement deterministically, it may be possible to achieve
improvement probabilistically. It is known that if a quantum channel is useless for some information theoretic task,
concatenation of quantum channels generally does not provide any advantage whenever that channel is used. But we
show that if a quantum channel is useless even after use of quantum switch, concatenation of quantum channel can
make it useful. We also show that quantum switch can help to get quantum advantage in quantum random access
code when only useless channels are available for communication. Then we show that quantum switch can be useful
to prevent the loss of coherence in a quantum system. We also discuss the fact that if noise is introduced in the
switch, then improvement can significantly be decreased.

Keywords: Quantum Channels, Entanglement Breaking channels, Quantum Switch
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Extended Abstract

Introduction

Quantum channels (except for identity channel) introduces
noise in the quantum state. Practically it very di�cult to
implement identity channel, since it is di�cult to avoid the
interaction from the environment. There are some quantum
channels which are too bad to transfer some quantum features.
For example, entanglement breaking channels can not be used
to transfer the entanglement. Recently, it has been proposed
that quantum switch can improve the communication through
these quantum channels.

Preliminaries

In this section, we discuss the preliminaries.

Entanglement breaking channels: An entanglement
breaking channel (EBC), is a quantum channel which
provides the output as a separable state while given
maximally entangled state as the input [5]. These channels
can not transfer the entanglement. in transferring the
entanglement. Therefore, as entanglement is a resource in
di↵erent information theoretic task, these channels are useless
⇤arindammitra143@gmail.com
†himanshub@imsc.res.in
‡sibasish@imsc.res.in

in the context of those contexts.

Incompatibility breaking channels: A quantum channel
which breaks the incompatibility of any set of arbitrary n
observables (a particular n 2 N) is known as n-incompatibility
breaking channel(n-IBC). If a quantum hannel which breaks
the incompatibility of any set of arbitrary n observables for
any n 2 N) is known as incompatibility breaking channel
(IBC). It is well known that IBC ✓ ..... ✓ (n + 1) � IBC ✓
n � IBC ✓ ..... ✓ 2 � IBC. The set of all EBCs is a subset of
the set of all IBCs.

Indefinite causal order: Process matrices are the
generalisation of density matrices. It has been mentioned in
[4] that not all process matrices are causally non-separable
i.e., the time ordering between two events are not well
defined. This is known as indefinite causal order.

Quantum switch: An example to indefinite causal order is
a quantum switch which does not violate the causal inequality.
Quantum switch was introduced as a quantum circuit that
simulates the indefinite causal order between two di↵erent
operations. This is done by coupling two operations with
two orthogonal quantum states a control qubit and keeping
the state of the control qubit in the superposition of those two
states.
Let the Krauss operators of channels ⇤A and ⇤B are {Ax}

and {Bx} respectively. The Krauss operators for the Switch
is given by [1]:

Sx,y = AxBy ⌦ |0i h0| + ByAx ⌦ |1i h1| (1)

52

https://iopscience.iop.org/article/10.1088/1402-4896/acbcf7
https://iopscience.iop.org/article/10.1088/1402-4896/acbcf7
https://arxiv.org/abs/2108.14001


Using |0i h0| = (�z + I)/2 and |1i h1| = (I � �z)/2, the above
Krauss operators take the following form

Sx,y =
1
2

(AxBy + ByAx) ⌦ I +
1
2

(AxBy � ByAx) ⌦ �z (2)

If we input identical channels into the switch, that is⇤A = ⇤B,
the resultant channel has the following form [1]:

S⇤A,⇤A,!(⇢)

=
1
4

X

x,y

⇣
{Ax,Ay}⇢{Ax,Ay}

†
⌦ !

+ [Ax,Ay]⇢[Ax,Ay]† ⌦ �z!�z
⌘

⌘ C+,⇤A,⇤A (⇢) ⌦ ! +C�,⇤A,⇤A (⇢) ⌦ �z!�z (3)

where ! is the initial state of control qubit. Therefore,
switch operation creates two branches of CP maps C+,⇤A,⇤A

and C�,⇤A,⇤A . If original channel is a Pauli channel then both
branches are multiple of quantum channels (in that case, we
denote these quantum channels as C+ and C�).

Perfect communication through zero capacity channels:

It has been shown in [1] that using a quantum switch, one
can achieve perfect communication using the entanglement
breaking channel ⇤per f ect(⇢) = 1

2�x⇢�x +
1
2�y⇢�y . But

unfortunately, this example of quantum channel is essentially
unique upto the unitary equivalence, i.e., there is no other
quantum channel which provides perfect communication
under the action of quantum switch. Therefore, unless this
channel is available, the perfect communication is impossible
even using quantum switch.

Main results

In this section, we discuss our main result. We want to
mention here that throughout the paper we will repeatedly
use the term ”useless channels” which is context dependent
e.g., EBCs are useless in the context of entanglement transfer
and IBcs are useless in the context of QRAC or quantum
steering (it will be discussed later in the relevant sections).
The channels which are not useless depending on the context,
are useful. Subsections under this section are similar to the
full manuscript.

Transfer of entanglement through EBC using quantum

switch: In this subsection, we discuss the possibility
of deterministic transfer and probabilistic transfer of
entanglement. We write the first theorem-
Theorem 1: If Alice is using the channel ⇤A and the quantum
switch to send a quantum state ⇢, then

(a) If both the branches C+,⇤A,⇤A (⇢) and C�,⇤A,⇤A (⇢) are EB
CP maps, there does not exist any quantum measurement
based control operation which can make the final channel
(after tracing out the control qubit part) a non-EBC.

(b) If both branches (In case of Pauli channels) are the
multiples of arbitrary quantum channels C+(⇢) and C�(⇢)
and both C+(⇢) and C�(⇢) are IBC, there does not exist any

quantum measurement based controlled operation which can
make the final channel (after tracing out the switch part) a
non-IBC.
Therefore, if at least one of the branch is non-EBCP, at
least probabilistic transfer of entanglement can be done by
the selective measurement on the control qubit part. We
have studied the case for depolarising channel as an example
(Please check the full manuscript (Sec. III A) on arxiv (for
free access) for the graph and details). Then for the Pauli
channels, we have studied whether C+ or C� branch become
useful under he quantum switch (Several graphs and details
are provided in the full manuscript (Sec. III A) on arxiv).

Concatenation of quantum channels and the quantum

Switch: It is well known that if ⇤ is EBC (or IBC) then
��⇤ is also EBC (or IBC) for any channel �. Therefore, if ⇤
is unavoidable for communication, concatenation of quantum
channels will not help in the transfer entangled states (or
steerable states). Below, we show that if one uses quantum
switch, concatenation of quantum channels may provide a
advantage in quantum communication. We start with our next
observation.

Observation 1: There exist quantum channels which do not
provide any advantage under the action of quantum switch,
but such a channel may become useful under the action of
quantum switch if it is concatenated with another quantum
channel.

The results of the concatenation are more interesting if � is
also an EBC as we show in the next observation:

Observation 2: There exist quantum channels which do not
provide any advantage under the action of quantum switch,
but such a channel may become useful under the action of
quantum switch if it is concatenated with another EBC.

Then for Pauli channels and 3-parameter non-unital
channels we study the e↵ect of concatenation of useless
channels on switch operation (Sec: III B in the full
manuscript). We provide some Venn diagram (Please check
Sec: III B in the full manuscript) which dictates the possibility
that a useless channel (under the action of a quantum switch)
will be useful (under the action of a quantum switch) under
concatenation. We call the channel completely useless if
under both C+ and C� it remains useless. The Venn diagrams
suggests us to give following conjecture-

Conjecture 1: Concatenation of two completely useless
channels is always completely useless.

Advantages in di↵erent information theoretic tasks:

1. Advantage in quantum random access code

Let, Alice has n-dits denoted by ~x = (x1, ....., xn) at her
disposal. She encodes a particular n-dit string in the qudit and
then transfers this qudit to Bob. In addition, Bob receives a
random number j. Now, Bob’s task is to guess the jth dit x j.
He does this by doing a measurement on the qudits sent by
Alice. He has n choices of measurements with d outcomes.
After obtaining the random number j, he performs the j-th
measurement on the qudit sent by Alice. Depending on the
outcome of the measurement, Bob guesses the dit. Let, his
guess is y. The game will be successful if y = x j. This is
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known as (n, d)�quantum random access code(QRAC). It has
a classical counterpart, known as (n, d)�random access code
(RAC), where Alice is allowed to send a dit to Bob instead
of a qudit. The maximum average success probability of
random access code is P(2,d),max

rac = 1
2 (1+ 1

d ). But the maximum
average success probability of quantum random access code
is P(2,d),max

qrac = 1
2 (1 + 1

p
d
). Therefore, P(2,d),max

rac < P(2,d),max
qrac . We

will call a particular encoding of Alice and a particular set of
measurements performed by Bob to guess the desired qudit
as a “useful strategy” if it can achieve quantum advantage
in the average success probability i.e., the average success
probability P(2,d)

qrac > P(2,d),max
rac .

Now suppose only the noisy channel ⇤ is available to Alice
to transfer the qudit to Bob. In this case the achievable success
probability decreases. Depending on ⇤, this decrement of
probability can be drastic. Noting that we have the following
theoremThere exist quantum channels which do not provide
any advantage under the action of quantum switch, but such
a channel may become useful under the action of quantum
switch if it is concatenated with another EBC.-

Theorem 2: If Alice has only 2 � IBC channels to transfer
the qudit to Bob in a (2, d)�QRAC game, there does not exist
any measurement strategy to Bob and any qudit encoding to
Alice which can be useful i.e., can get quantum advantage.

Therefore, if Alice has only 2 � IBC to communicate with
Bob, it will be useless in this context. Then through an
example we have shown that if Alice has quantum switch,
she can get rid of the situation (even if she has only an IBC
to communicate with Bob) and improve the communication
(Please check Sec: III C 1 in the full manuscript).

2. Advantage in quantum steering

Suppose, Alice and Bob shares a bipartite quantum state ⇢AB
2

S(HA ⌦HB) and Alice has a measurement assemblageMA =
{Mx}. Each Mx has the outcome set ⌦x. Now state ⇢AB is
called unsteerable from Alice to Bob i.e., from A to B with
MA if there exist a probability distribution ⇡�, a set of states
{��} and a set of probability distributions PA(ax|x, �) for all
ax 2 ⌦x and for all x such that

⇢B
ax |x = TrA[(Max |x ⌦ IB)⇢AB] =

X

�

⇡�PA(ax|x, �)�� (4)

holds. A state ⇢AB is called unsteerable from A to B if it is
unsteerable from A to B with any measurement assemblage
MA. A state ⇢AB is called unsteerable if it is unsteerable from
both A to B and from B to A. Otherwise it is called steerable.

Now suppose, Bob is preparing a bipartite entangled state
⇢AB and sending the part A to Alice. This shared bipartite
entangled quantum state, they will use in di↵erent information
theoretic tasks which can be performed with the help of A to
B steering. Now, we write the following theorem-

Theorem 3: Suppose Bob is sending A part of a bipartite
state ⇢AB to Alice (i.e., from B to A) through an n-
incompatibility breaking channel ⇤ then ⇢0AB = (⇤ ⌦ I)(⇢AB)
is not steerable from A to B with any measurement assemblage
MA = {Mx}

n
x=1 where I is an identity channel.

Now, we write the following corollary-

Corollary 4: Suppose Bob is sending A part of a
bipartite state ⇢AB to Alice (i.e., from B to A) through an
incompatibility breaking channel ⇤ then ⇢0AB = (⇤ ⌦ I)(⇢AB)
is not steerable from A to B where I is a identity channel.

The Corollary 4 is also proved in the Theorem 1 of [7]. A
Corollary similar, but not exactly same with the Corollary 4,
has been derived using channel state duality in [6].

Therefore, if Alice has only IBC to communicate with Bob,
it will be useless in this context. Then through an example we
have shown that if Alice has quantum switch, she can get rid
of the situation (even if she has only an IBC to communicate
with Bob) and improve the communication (Please check Sec:
III C 2 in the full manuscript).

3. Prevention of the loss of coherence

Suppose Alice is preparing quantum states for Bob who
uses the coherence of these states w.r.t. some basis as
a resource to get the advantage in di↵erent information-
theoretic and thermodynamic tasks. But if Alice has only
coherence-breaking channels to communicate with Bob, she
will be unable to transfer the coherence of the state. Whereas
if she has incoherent channels, the coherence of state which
Alice sends for Bob, will decrease when the state will reach
to Bob.
In these types of cases, if she has a quantum switch, she
will be able to perform better communication, as states in the
following theorem.

Theorem 5: A coherence breaking qubit channel may be
converted to a non-coherence breaking qubit channel with the
help of a quantum switch along with a measurement-based
controlled incoherent unitary operation..

Therefore, action of quantum switch can prevent the loss
of coherence. For more details on this, please check full
manuscript (Sec. III C 3) .

Communication using noisy quantum switch: Till now,
we have discussed only noiseless control qubit state. But in
practice due to the interaction of environment in the switch
state. We show through an example that if depolarising noise
is acted on switch, improvement in communication can be
significantly decreased. For more details on this, please check
full manuscript (Sec. III D) .

Conclusions

We have shown that in case deterministic improvement in
communication is not possible using quantum, probabilistic
improvement may be possible using it. We discuss the
communication improvement for several quantum channels.
We show that if a channel is useless even after using
quantum switch, concatenation of it with some other channels
may provide communication improvement under action of
quantum switch. In particular, we have studied the conversion
of useful channels into useful channel through concatenation
which will be useful in quantum communication technology
in future. We have shown that communication improvement
due to action of quantum switch helps to get advantage
in Quantum Random Access Codes as well as helps to
demonstrate quantum steering when only useless channels are
available for communication, preventing the loss of coherence
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etc. We show that the noise introduced in the switch may
hamper the communication improvement. Our research
opens up several research avenues. It is open problem to
find out necessary su�cient condition for quantum channel
which provides improvement under action of quantum switch.
Though we have shown that that if a channel is useless even
after using quantum switch, concatenation of it with some
other channels may provide communication improvement
under action of quantum switch, the necessary and su�cient
condition for improvement in this case, is not known. It
may also be interesting to compare with the e↵ectiveness
of noisy quantum switch in achieving improvements in
di↵erent quantum information processing (or, quantum
communication) tasks.

This work may have many practical significances in
quantum communication technology and therefore, we think
that this work will be interesting for the participants of AQIS
2023.

Note

This paper is already submitted to a journal for review.
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Zhou, K. Lemr, N. Lambert, A. Miranowicz, S. L. Chen,
F. Nori, and Y. N. Chen, Detecting quantum non-breaking
channels without entanglement, arXiv:2106.15784v2
[quant-ph].

55



Analyzing quantum machine learning using tensor network
S. Shin

1 ⇤
Y. S. Teo

1 †
H. Jeong

1 ‡

1 Department of Physics and Astronomy, Seoul National University, 08826 Seoul, South Korea

Abstract. Our work presents a unified framework using tensor networks (TN) to compare classical and
quantum machine learning (QML) models. By representing QML models as TN models, we identify the
model as a featured linear model with a constrained coe�cient and a computationally e�cient feature map.
Using this, we can generate classical TN machine learning models having the same feature map as QML
models e�ciently. By analyzing the coe�cient components of the models using matrix product states, we
could fairly compare the function classes of the two feature-equivalent models and performances in the
context of kernel method.
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1 Introduction

Quantum Machine Learning (QML) garners a huge in-
terest among various communities and industries for the
past few years as a prominent candidate for practical ap-
plications for quantum computers in the NISQ era. Usu-
ally, QML uses a variational quantum circuit as a data
processor, and the variational parameters in the quan-
tum circuit are optimized with the help of classical op-
timization algorithms such as gradient descent methods.
Variational QML (VQML) aims to achieve a more pow-
erful machine learning model by exploiting the power of a
quantum computer. In other words, quantum advantage
in the machine learning (ML) area.
While there are theoretical proofs that demonstrate

the possibility of achieving a quantum advantage in ML
tasks through fully quantum settings [1, 2], arguably
the most interesting applications of ML employ classical
data. Moreover, if one does not have access to coherent
quantum memory and quantum channel, then even if the
VQML uses a ’quantum state’ as its input, one cannot
avoid using classical data to generate the quantum state
onto the quantum circuit. Therefore in the near-term
quantum era, it is important and worthwhile to investi-
gate the power of using VQML with classical data as in-
put. When dealing with classical data, one cannot avoid
comparing VQML and classical ML, which have inher-
ently di↵erent structures. Consequently, establishing a
fair comparative framework remains a challenge.
In this study, we propose a unified tensor network (TN)

formalism to systematically investigate between classical
TNML models and given VQML models. This approach
is based on the ability to transform a given generally-
encoded VQML model into a TN structure, subsequently
separating it into two components: the basis part (or the
feature map), which formulates the basis functions for the
linear model, and the coe�cient part, which generates
the coe�cient on these basis functions. A number of lin-
early independent basis functions can possibly scale ex-
ponentially with the number of encoding gates [3]. How-
ever, by utilizing the knowledge of data pre-processing
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prior to implementing VQML, we can simply observe that
the basis part is an easily manageable tensor-product
form. A tensor product feature map can generate an
exponential number of basis functions utilizing only poly-
nomial calls of pre-processing functions and polynomial
memory. This allows us to construct a classical TN
model having a computationally e�cient classical fea-
ture map that produces the same set of basis functions
as the provided VQML model, thereby ensuring a co-
hesive comparative analysis. Setting the two models to
be basis-equivalent, we characterize their function classes
as constrained-coe�cient linear models within the shared
function space, so that the comparison can be conducted
in the context of coe�cient expressivity. To analyze and
compare the coe�cient components of these models, we
utilize a special one-dimensional TN structure, known as
the matrix product states (MPS). MPS admits system-
atic analysis of expressivity and computational e�ciency
in the context of entanglement. With numerical simula-
tions and use of dimensional arguments of the function
spaces, identify conditions under which VQML models
can be easily approximated by the classical MPS model.

Finally, we compare the performance of VQML and
classical ML models in ML tasks. We do function re-
gressions using the kernel method, which is an important
facet of machine learning that finds the optimal function
in the linear model within the feature space in terms of
the basis kernel functions. There exists a Hilbert space
spanned by these kernel functions and the optimal func-
tion minimizing the loss function from the given train-
ing data resides in that space. This Hilbert space is the
Reproducing Kernel Hilbert Space (RKHS). We observe
that the e�cient classical kernel from the basis-equivalent
classical MPS model has an RKHS that covers the RKHS
from the quantum kernel. We compare the performance
of the classically hard-to-simulate quantum kerenel and
classical MPS kernel in ML tasks.

2 Main results

Preparing the VQML For any VQML employing the
classical data as input, one cannot avoid using data-
encoding circuits. These encoding circuits can contain
general multi-qubit gates that depend on the classical
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Figure 1: (a) Graphical depiction of the transformation of a simple parallel VQML model, fQ(xxx;✓✓✓), into an FLM
form. The � denotes the Hadamard product (element-wise product). The dependence on ✓✓✓ of O0 and ⇢

T has been
omitted for simplicity. (b) The model is then reshaped into an MPS model form that incorporates the feature map B.
By transforming O

0 � ⇢T into the MPO, vectorizing the matrix, and applying additional tensors, we achieve the MPS
form. (c) The final result is an FLM, where the feature map is the product of N of T(↵)(xxx)’s and the coe�cient part
is the MPS Cq(✓✓✓1,✓✓✓2), which is the contracted form of (O0 � ⇢T ) ·R ·Q. All tensors are real-valued. (d) Each block’s
description is provided. The site index is denoted by ↵.

data xxx 2 Rd. However, to implement any general en-
coding strategy in a near-term quantum circuit, one
should decompose all the multi-qubit gates into single-
qubit gates and non-parametrized 2-qubit gates (such as
CNOT gates). This decomposition results in N single-
qubit Pauli-Z rotation encoding gates, {e�i�↵(xxx)Z/2}↵
where �↵ : Rd ! R is the pre-processing functions that
depend on the encoding strategy.

VQML models as featured linear model We focus
on the VQML models with N qubits having all encoding
gates positioned parallel between two trainable unitaries
W1(✓✓✓1),W2(✓✓✓2). Any general-structure quantum models
can be transformed into this parallel form (See appendix
A in [4]), so no generality is loss. This parallel VQML
generates the function

fQ(xxx;✓✓✓) = h0|W †
1 (✓✓✓1)S

†(xxx)W †
2 (✓✓✓2)O · · ·

W2(✓✓✓2)S(xxx)W1(✓✓✓1) |0i ,
(1)

where O is the observable, and S(xxx) represents the paral-
lel data-encoding circuit composed of Pauli-Z rotations.
fQ(xxx;✓✓✓) can be represented as TN, and following the
graphical description in the Fig. 1, we can identify the
VQML model as a featured linear model (FLM),

fQ(xxx;✓✓✓) = Cq(✓✓✓1,✓✓✓2, O) ·T(xxx) (2)

where the feature map is defined as

T : xxx 7!
NO

↵=1

0

@
1

cos (�↵(xxx))
sin (�↵(xxx))

1

A . (3)

Here the coe�cient part Cq(✓✓✓1,✓✓✓2, O) is constructed by
the variational part of the quantum circuit, so it is con-
strained in general.

Basis-equivalent classical MPS model and ap-
proximability of VQML Owing to the fact that
the basis component in the VQML model can be ex-
pressed as a product of vectors, and by using our knowl-
edge of the pre-processing functions, {�↵}↵ from the
preparation stage of VQML, we can construct a basis-
equivalent linear model (an equivalent feature map) ef-
ficiently by utilizing the TN method. We have repre-
sented the coe�cient part in the VQML model to an
MPS form, so we choose a classical MPS, denoted as
Cc(✓✓✓), as the structure for the trainable coe�cients (see
Fig 2). The constructed classical MPS (cMPS) model
fc(xxx;✓✓✓) = Cc(✓✓✓) · T(xxx) has a computaional complexity
of O(N�

2), where N is the length of T (the number of
single-qubit encoding gates) and � is the maximum bond
dimension of Cc(✓✓✓). Therefore, by controlling the bond
dimension of Cc(✓✓✓), one can create an e�cient cMPS
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Figure 2: We approximate the given VQML model using the basis-equivalent cMPS model. The coe�cients are
structured as an MPS, enabling us to employ metrics like bond dimension or entanglement entropy to analyze the
inherent properties of the coe�cient spaces, including e�ciency, expressiveness, and the capacity for approximation.
✓q represents the variable parameters in the quantum circuit, while ✓c represents the parameters in the classical MPS.

model. This e�cient model requires only a computa-
tional cost that scales polynomially with the number of
qubits in the corresponding quantum model, but gener-
ates basis functions that are identical to those produced
by the VQML model. Since an MPS with small entan-
glement can be approximated by an MPS with a smaller
bond dimension, it is possible for e�cient cMPS model
to closely approximate quantum models.
We numerically examined the Renyi-2 entropy of

Cq(✓✓✓, O) derived from various VQML models, discov-
ering that noiseless poly-depth circuit VQMLs are dif-
ficult to approximate, while noisy and more constrained
circuits such as data re-uploading circuits are easier for
classical approximation. Additionally, feature spaces of
small dimensions render VQML models susceptible to ef-
ficient classical approximations. All numerical results can
be found in Sec .V and VI of [4]

Kernel method Every feature map in the FLM yields
a kernel, which evaluates the inner product between
feature-mapped data. Utilizing the kernel method, the
optimal function that minimizes empirical risk can be an-
alytically determined. Kernel method posits full and free
control over the coe�cients in the linear model. Given
that all VQML models are the FLM with feature map T
and constrained coe�cients, the optimal function derived
from the quantum kernel method falls within the function
class of the cMPS model with the same feature map. The
kernel from the feature map of a basis-equivalent cMPS
model is Kc(xxxi,xxxj) = hT(xxxi)|T(xxxj)i, which is e�cient to
compute (only linearly scaling with the number of encod-
ing gates). Kc explores the function space beyond the
quantum kernel. In this work, we compare the perfor-
mance of the classically hard-to-simulate quantum ker-
nel [5] with the corresponding basis-equivalent Kc. We
discover that Kc can fit the data as accurately as the
quantum kernel, surpassing the performance of any clas-
sical method covered in prior research [6]. Nevertheless,
its generalizability, a crucial attribute of ML, falls short
of the quantum kernel for the small size of the circuit,
while becomes comparable when the size increases.

3 Conclusion

We presented a general methodology to explicitly con-
vert any VQML model into an MPS ML model. By lever-
aging this technique, we identify VQML models as FLMs
with an e�cient feature map T(xxx) and constrained co-
e�cient Cq(✓✓✓, O). This finding illustrates that the fun-
damental disparity between classical and quantum ML
models does not lie in the exponentially large feature
space, but rather in the structure of the coe�cient they
each possess. Through analyzing the coe�cient of the
VQML model using MPS, we were able to determine the
conditions under which VQML models can be approx-
imated by cMPS models and contrast their expressiv-
ity within the context of entanglement. Additionally, we
identified an e�cient kernel capable of generating a func-
tion space that encompasses the space from the quantum
kernel. Numerically, we demonstrated that this classical
kernel is as expressive as its quantum counterpart. This
research proposes a unified approach to compare quan-
tum and classical machine learning models, and suggests
potent classical ML model that may exhibit comparable
performance to the VQML models in certain situations.
Our work strengthens the connection among interdisci-
plinary communities such as quantum machine learning,
classical machine learning, and tensor network commu-
nities.
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Abstract. Graph states are versatile resources for various quantum information processing tasks, includ-
ing measurement-based quantum computing. Although fusion gates enable all-optical generation of graph
states by combining small graph states, its nondeterministic nature hinders e�cient generation of large
graph states. Here, we present a graph-theoretical strategy to e↵ectively optimize fusion-based generation
of any given graph state. Our strategy comprises three stages: simplifying the target graph state, building
a fusion network, and determining the order of fusions. We expect that our strategy and software will assist
researchers in developing and assessing experimentally viable schemes that use photonic graph states.

Keywords: Graph state, Photonic quantum computing, Measurement-based quantum computing,
Fusion-based quantum computing

1 Introduction

Graph states represent a family of multi-qubit states
where qubits are entangled following a specific struc-
ture determined by an associated graph. Owing to their
highly entangled nature [1], graph states find applications
in various quantum information processing domains, such
as measurement-based quantum computing (MBQC) [2–
5], fusion-based quantum computing (FBQC) [6], quan-
tum error correction [7, 8], quantum secret sharing [9, 10],
quantum repeaters [11–14], and quantum metrology [15].
All-optical methods for constructing photonic graph

states are commonly processed by merging multiple
smaller graph states into a larger one using type-II fu-
sion operations [16]. A severe problem is that fusions are
non-deterministic; for example, when employing dual-
rail-encoded qubits and restricting the setup to linear-
optical devices and photodetectors, the success proba-
bility of a fusion is limited to 50% without ancillary re-
sources [17]. Therefore, resource overhead remains a sig-
nificant challenge for generating large-scale graph states.
It is thus essential to carefully design a procedure for gen-
erating a desired graph state from basic resource states
to minimize resource overhead as much as possible.
In this work, we introduce a graph-theoretical strat-

egy to e↵ectively identify a resource-e�cient method for
fusion-based generation of any given graph state. Tech-
nical description of our work is presented in Ref. [18].
Moreover, our strategy is implemented in an open-source
Python package, OptGraphState, which is publicly avail-
able on Github: https://github.com/seokhyung-lee/
OptGraphState.
For a given graph G, the corresponding graph state

|Gi can be generated by placing a qubit with the state
|+i := (|0i+ |1i)/

p
2 on each vertex of G and applying a

controlled-Z (cz) gate on each pair of qubits connected by
an edge. Local complementation with respect to a vertex
v is a graph operation that, for every pair of adjacent
vertices of v, connect them if they are disconnected and
disconnect them if they are connected. It is known that,
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for a vertex v, Cli↵ord gates exp
h
�i(⇡/4)X̂

i
on v and

exp
h
i(⇡/4)Ẑ

i
on its neighbors transform the graph state

|Gi by a local complementation with respect to v [19].
The type-II fusion operation [16] indicates a destruc-

tive measurement of two Pauli operators X̂⌦Ẑ and Ẑ⌦X̂
on a pair of qubits. By applying a fusion on an uncon-
nected pair (v1, v2) of vertices in a graph state, we can
connect (disconnect) every adjacent vertex of v1 with ev-
ery adjacent vertex of v2 up to several Pauli-Z operators
if they are unconnected (connected). For single-photon
polarization qubits, a fusion can be done with linear opti-
cal devices and photodetectors [20], which succeeds with
the probability of psucc(⌘) = (1 � ⌘)2/2 when each pho-
ton su↵ers loss with probability ⌘ and the input state is
maximally mixed.

2 Results

2.1 Strategy

Our basic resource state is the three-qubit star graph

state
���G(3)

⇤

E
:= (|+0+i + |�1�i)/

p
2. Hence, our goal

is to find an e�cient way to build a desired graph state

|Gi by performing fusions on multiple
���G(3)

⇤

E
states. The

resource e�ciency is quantified by the average number Q

of
���G(3)

⇤

E
’s required to successfully generate one |Gi state

through post-selection.
The strategy is summarized as follows: (i) Simplifying

the graph of the desired graph state by unraveling sub-
graphs of specific types. (ii) Constructing a fusion net-

work from the simplified graph. (iii) Determining the fu-
sion order with the min-weight-maximum-matching-first

method. (iv) Iterating the above steps (which contain
randomness) a su�cient number of times and select the
best one.

2.1.1 Simplification of graph by unraveling

If the graph G = (V,E) of the desired graph state
|Gi contains specific types of subgraphs, it is posible to
generate |Gi by applying single-qubit Cli↵ord operations
and/or fusions (called external fusions) on the graph
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Figure 1: Unraveling processes of (a) a bipartitely-
complete graph and (b) a clique.

(a) Fusion network

(b) External fusion

Fusion

Figure 2: Constructing fusion networks for (a) a five-
qubit star graph state and (b) a general graph state.

state of a simplified graph. Unraveling means the process
to build such a simplified graph Gunrv (referred to as an
unraveled graph) and specify the information necessary to
recover |Gi from |Gunrvi. We currently have unraveling
schemes for two types of subgraphs: bipartitely-complete

subgraphs (BCSs) and cliques.
A BCS of a graph means a subgraph where the vertices

can be grouped into two disjoint subsets such that every
vertex in the first subset is connected with every vertex
in the other subset. A BCS can be unraveled by adding
two vertices and one fusion; see Fig. 1(a) for an example.
A clique of a graph, which is a fully-connected subgraph,
can be unraveled by adding two vertices that undergo a
fusion and applying a local complementation, as shown
in Fig. 1(b). In our strategy, we repeat the cycle of find-
ing non-overlapping BCSs and cliques (that do not share
any vertices) and unraveling them as above until no new
BCSs and cliques are found.

2.1.2 Construction of fusion network

A fusion network is a graph where vertices correspond

to individual
���G(3)

⇤

E
states and edges indicate fusions be-

4

1

411

1

1 11

1

1

22 1064

1
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Figure 3: Determining the fusion order with the min-
weight-maximum-matching-first method. Each step is an
intermediate fusion network after contracting links (or-
ange bold lines) in the previous step. The numbers inside
the nodes indicate their weights. We assume psucc = 1/2.

tween them required to generate the target graph state
|Gi. An m-qubit star graph state can be constructed

by conducting fusions on m � 2 copies of
���G(3)

⇤

E
, which

leads to a linear fusion network with m � 2 nodes; see
Fig. 2(a) for an example. A general graph state can be
decomposed into multiple star graph states with fusions
as shown in Fig. 2(b), thus its fusion network can be con-
structed by connecting the fusion networks of these star
graphs. Note that the above process contains ambiguity,
which needs to be optimized.

2.1.3 Determination of fusion order

We can regard a fusion network as a weighted graph
where each node indicates a group of entangled qubits
and each link represents a fusion between these groups
that needs to be done. The weight of each node w(n) is
defined as the resource overhead of the process of gen-
erating the corresponding entangled states. Upon the
above setting, the action of a fusion can be treated as
the contraction of a link with a suitable update rule of
weight values. Hence, if the order of the fusions is given,
the resource overhead Q of the entire process can be ob-
tained from the weights of the last remaining nodes after
contracting all the edges in the order.

Our strategy to determine the order of fusions is based
on the following two intuitions: (i) It is preferred to con-
tract links with small weights first, where the weight
of a link l is defined as the weight of the merged ver-
tex when the link is contracted. (ii) Links that do not
share endpoints can be contracted simultaneously and
it is preferred to contract links as parallelly as possi-
ble. Based on these intuitions, we use the min-weight-

maximum-matching-first method to determine the fusion
order, which is done by identifying a maximum match-
ing of the subgraph of each intermediate fusion network
induced by the set of links with the smallest weight. We
illustrate an example in Fig. 3.

2.2 Numerical results

Figure 4 visualizes the distributions of the obtained
resource overheads of random graphs optimized by our
strategy for various values of |V | and |E| when psucc =
0.5 or 0.75. To sample random graphs, we use the

61



Figure 4: Distribution of the optimized resource over-
head Qopt for random graphs sampled with fixed num-
bers of vertices (|V |) and edges (|E|) by the Erdős–Rényi
model [21]. Two di↵erent fusion success rates are con-
sidered: psucc 2 {0.5, 0.75}. |E|max = |V |(|V | � 1)/2
is the maximal possible number of edges for the given
vertex number. For each combination of (psucc, |V |, |E|),
100 random graphs are sampled [18]. The median of the
distribution is indicated as a dot and its total range is
shown as a shaded region.

Erdős–Rényi model [21], where all graphs that contain
given fixed values of |V | and |E| have an equal probabil-
ity. Here, we sample 100 random graphs for each com-
bination (psucc, |V |, |E|) and use the adaptive iteration
method of minit = 600 [18]. We note several observa-
tions from the results: (i) Qopt increases exponentially
(or super-exponentially) as |V | grows when |E|/|E|max
is fixed. (ii) For a fixed value of |V |, Qopt is maximal
when |E| ⇡ 0.6|E|max. Qopt is inversely correlated with
|E| for large values of |E| since bipartitely-complete sub-
graphs and cliques are more likely to appear for when
|E| is large. (iii) The fusion scheme with psucc = 0.75
may greatly reduce the order of Qopt, compared to the
one with psucc = 0.5, especially when |V | is large. Note
that, to achieve psucc = 0.75 with linear optics, we require
an ancillary two-photon Bell state [22] or four ancillary
unentangled photons [23] per fusion and photon-number
resolving detectors that can discriminate at least four
photons. On the other hand, the scheme with psucc = 0.5
requires only on-o↵ detectors and no ancillary photons.
We now show that our strategy is indeed e↵ective by

comparing it with two “deficient” strategies in which a
certain stage is missing from the original “full” strategy.
In detail, we consider the following two alternative strate-
gies:

(s1) The strategy without the unraveling process, where
the original graph is directly used for generating a
fusion network. The other steps are the same as
the full strategy.

(s2) The strategy where the fusion order is randomly
selected without using the min-weight-maximum-
matching-first method. The other steps are the
same as the full strategy.

In Fig. 5, the distributions of Qopt optimized by these
three strategies for random graphs are presented as box

Figure 5: Comparison of the distributions ofQopt for dif-
ferent optimization strategies. Three strategies are con-
sidered: the strategy without unraveling (s1), the strat-
egy with random selection of the fusion order (s2), and
our full strategy. The distribution of Qopt is visualized
as a box plot, where the red line indicates the median,
the box extends from the first quartile (Q1) to the third
quartile (Q3), and the whisker covers the entire range of
the values.

plots. Each box extends from the first quartile (Q1) to
the third quartile (Q3) and the corresponding whisker
covers the entire range of the values. It clearly shows that
the full strategy is significantly more powerful than the
deficient ones, especially when there exist many vertices
and edges. In other words, each step in the full strategy
contributes to reducing the resource overhead.

3 Conclusion

In this work, we proposed a graph-theoretical strategy
to construct a resource-e�cient method for generating
an arbitrary graph state with the type-II fusion opera-
tion. The strategy is composed of multiple trials to find
the optimal one, where each round contains three stages:
unraveling the graph, constructing a fusion network, and
determining the fusion order. We applied the strategy to
random graph states and verified numerically that each
step of the strategy is indeed necessary to achieve high
resource e�ciency.

We anticipate that our strategy and software will
aid researchers in designing experimentally feasible ap-
proaches utilizing photonic graph states and in evaluat-
ing the practicality of their proposed schemes. For exam-
ple, the basic resource states of MBQC and FBQC can
be logically-encoded star or cycle graph states [6, 24].
Employing larger or more complex codes may improve
the fault-tolerance of these schemes; however, generating
such resource states could become a bottleneck in their
implementation. Our strategy can contribute to evalu-
ating such a trade-o↵ relation and identifying the most
practical sweet spot.
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Abstract. We present a quantum software framework that supports fault-tolerant quantum computing.
Using the lattice surgery technique, this framework encodes logical qubits in surface codes and implements
logical Cli↵ord and T gates. By interfacing the QPlayer simulator with the framework, we have configured
six two-dimensional logical qubits with a distance of three and have evaluated the lattice surgery-based
logical operations, which have been presented theoretically by simulating quantum circuits composed of
universal quantum gates. In conclusion, we have shown that the proposed framework can e↵ectively
perform Cli↵ord and T gates in fault-tolerant quantum computing based on surface code logical qubits.
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1 Introduction

Developing quantum computers from current noisy
quantum devices requires fault tolerance using quan-
tum error correction(QEC)[1]. There is much research
on QEC to support fault tolerance with topological
codes, especially surface codes[2, 4, 5]. Surface code
is considered the most prominent QEC method due
to its high error threshold (up to 1%)[2] and sim-
ple two-dimensional(2D) structure with only nearest-
neighbor(NN) interactions. However, encoding logical
qubits with surface codes requires many physical qubits,
and it is necessary to scale to larger surface codes to sup-
press the error rate of logical qubits. Surface code with
a distance of three can correct single-qubit or, at most
two-qubit errors with the smallest number of qubits. Im-
plementing and performing quantum circuits with surface
code logical qubits fault-tolerantly, surface code needs to
be encoded with a distance of at least 3.
Surface code performs logical operations by interact-

ing between locally adjacent lattices in a 2D structure.
Various techniques, such as transversal gates and tele-
ported gates[3], have been studied to perform logical op-
erations, but they are costly and complex. The lattice
surgery(LS)[4, 5, 6, 7, 8] method can alleviate these prob-
lems.
In practice, we need to provide a quantum computer

that supports universal quantum gates to reap the ben-
efits of quantum computing. To do this end, we have
to support Cli↵ord and non-Cli↵ord gates. Cli↵ord
gates, generated by CNOT, H, and S gates, can be ef-
fectively simulated on a classical computer[9] and im-
plemented via the LS. However, it is not easy to im-
plement non-Cli↵ord gates, typically T gate, which re-
quires magic state distillation[10] that needs many re-
sources and time. Therefore, in previous studies, LS-
based logical Cli↵ord+T operations have been theoreti-
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cally analyzed[4, 5] or experimentally implemented with
small surface codes[8].

We have implemented a quantum software framework
to support a fault-tolerant universal quantum computer.
This framework provides LS-based logical Cli↵ord+T
gates. This paper uses QPlayer[11, 12] to simulate quan-
tum circuits composed of Cli↵ord+T gates and verify the
computational results. For this purpose, the quantum
circuits are translated into LS-based logical operations
and converted into physical operations to perform on the
simulator.

2 Fault-tolerant quantum software
framework

The fault-tolerant quantum software framework has
been implemented in a layered architecture[13]. Qubits
are accessed at logical, virtual, and physical levels at each
layer. A quantum program is written with a quantum
programming language, and a quantum compiler trans-
lates it into LS-based logical operations defined in Table
1, which are processed in this framework. The fault-
tolerant software framework is outlined in Fig. 1, and

Figure 1: Fault-tolerant quantum software framework.
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Table 1: LS-based logical operations.

Operation types Operations

Init. & Pauli Init X(Z), X(Z)

Measurement Measure X(Z)

Merge Mxx(Mzz), Split Mxx(Mzz)

Lattice CNOT Post Mxx(Mzz)

Surgery Move Post Mxx(Mzz)

Hadamard, Deform

Flip Expand(Contract, Shift)

Inject Y(A), S(T, T Dag) Post

the features of each layer are as follows:
Execution layer performs logical qubit mapping and

logical operation translation through the Fault-tolerant
layer. After executing the translated logical operations, it
does post-logical operations according to the qubit mea-
surement outcomes or returns the qubit measurement
outcomes to the quantum program.
Fault-tolerant layer encodes logical qubits in rotated

surface code using virtual qubits and arranges a 2D logi-
cal qubit architecture into a checkerboard form, as shown
in Fig. 2. It maps logical qubits to virtual qubits and con-
verts logical operations to virtual operations. A logical
qubit is made up of virtual qubits, and a logical opera-
tion is composed of operations on the virtual qubits that
make up the logical qubit. It performs logical operations
after mapping the qubits and converting the operations.
Each time it does, it performs error syndrome measure-
ment(ESM) for the logical qubit. After ESM execution,
error detection and correction are performed according
to the measurement outcomes. Among the logical oper-
ations, Pauli operations are handled in software through
the logical Pauli frame[14].
Virtual layer maps virtual qubits to physical qubits

and converts virtual operations to the corresponding
physical operations. It can perform virtual operations
in parallel and schedule according to the physical op-
eration properties provided by the quantum simulator.
In this paper, physical qubits and operations are emu-
lated by the QPlayer simulator. The QPlayer simula-
tor processes the virtual operations through the Virtual-
Physical qubit/gate interface and returns the execution
results. Within the virtual operations, Pauli opera-

Figure 2: Logical qubit architecture. (a) shows the logi-
cal connectivity of the logical qubits. LQ1D, LQ3D, and
LQ5D indicate logical data qubits. LQ2A, LQ4A, and
LQ6A indicate logical ancilla qubits. (b) shows rotated
surface codes constructed from physical qubits.

tions are handled in software through the physical Pauli
frame[14].

Quantum simulator supports simulations of physical
qubit operations. It provides the properties of physical
operations and the connectivity between physical qubits.
A physical two-qubit operation can only be performed
between NN qubits connected to each other. QPlayer is a
quantum simulator that provides more qubits and faster
quantum operations with smaller memory. It selectively
tracks realized quantum states using a reduced quantum
state representation scheme instead of loading the entire
quantum states into memory.

3 Implementation of LS-based logical
operations

The LS is a fault-tolerant protocol that can perform
state teleportation or gate teleportation between logi-
cal qubits encoded in a surface code. It is performed in
two steps: merging and splitting. Merging and splitting
perform the logical joint measurements along the X(Z)-
boundaries, MZZ(MXX), on which they operate. Fig. 3
shows circuits of logical operations using LS, such as state
teleportation, CNOT, S, and T. In particular, the logical
S and T operations require the magic state that can be
prepared with the state injection process. However, since
state injection is not fault-tolerant, the injected magic
state has low fidelity and needs to be distilled. Magic
state distillation procedures are not easy to implement
because it costs a lot of resources and time to obtain
a higher-fidelity magic state from multiple lower-fidelity
states[2, 5, 16]. In this work, we prepare the magic state
through the injection process without the magic state
distillation and assume it has high fidelity.

We have implemented the Cli↵ord+T gates, such as
H, CNOT, S/S†, and T/T † using LS in the rotated sur-
face code. The logical CNOT operation performs a logi-
cal joint measurement, MZZ(MXX), along the boundary
with the adjacent ancilla qubit according to the logical
connectivity of the control and target qubits in the log-
ical qubit architecture. It then performs Pauli correc-
tions on the measurement outcomes. The logical S/S†

operation performs a logical joint measurement on the
X-boundary, MZZ , with the neighboring ancilla qubit in-
jected magic state |Y i = 1p

2
(|0i+ i |1i). It then performs

a Pauli correction based on the joint measurement out-
come and the ancilla qubit measurement outcome. The
Pauli correction operation is processed in software using
the Pauli frame. The logical T/T † operation requires the
magic state |Ai = 1p

2
(|0i+ ei

⇡
4 |1i). It performs a logical

joint measurement on the X-boundary, MZZ , with the
neighboring ancilla qubit injected magic state. Then,
depending on the joint measurement outcome and the
ancilla qubit measurement outcome, Cli↵ord correction,
S/S† operation, is applied, or Pauli correction is per-
formed in software using the Pauli frame. In addition,
the SWAP gate, which three consecutive CNOT gates
can implement, can be performed using LS-based logical
state teleportations.
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Table 2: Evaluation of quantum circuits composed of Cli↵ord+T gates.

Original circuits LS-based circuits

Circuit Qubits X H CX S/S† T/T† QubitsLD
QubitsLA

QubitsP Op.L Op.V Op.P

deutsch n2 2 1 3 1 0 0 2 2 70 26 1894 1608

grover n2 2 4 10 2 0 0 2 2 70 70 5245 4416

iswap n2 2 1 4 2 2 0 2 2 70 45 3465 2972

teleportation n3 3 0 4 2 1 1 3 3 106 50 3817 3307

to↵oli n3 3 0 2 6 1 7 3 3 106 128 10209 8985

We have simulated some quantum circuits in
QASMBench[17] and identified the expected results by
changing the input states in the quantum circuits. Ta-
ble 2 shows the count of qubits and gates that make up
the benchmark quantum circuits. The table also shows
the count of logical data and ancilla qubits when these
circuits are translated to LS-based circuits. The physi-
cal qubit counts include the physical qubits encoding the
distance-3 rotated surface code and the syndrome physi-
cal qubits of the stabilizers newly added between the two
logical qubits in the merging operation. The operation
counts indicate the count of logical, virtual, and physical
operations as LS-based circuits are transformed and ex-
ecuted through the layers in our framework. Due to the
Pauli frames, the physical operation counts performed in
the simulator are less than the virtual operation counts.
The T gate is a typical non-Cli↵ord gate with signifi-

cant overhead to implement fault-tolerant. For example,
Fig. 4 shows a To↵oli gate decomposed using H, CNOT,
T, T †, and S gates. The decomposed circuit of a To↵oli
gate contains nine Cli↵ord gates and seven non-Cli↵ord
gates. Therefore, it requires multiple LS operations and
Cli↵ord corrections based on the joint measurement out-
comes and ancilla qubit measurement outcomes. We have
performed simulations of the LS-based To↵oli operation
with eight input states, |000i, |001i, . . . , |111i, and iden-
tified that the measurement outcomes are the same as
the truth table of To↵oli gate.

Figure 3: LS-based logical operations. (a) logical state
teleportation. (b) logical CNOT operation. (c) logical S
operation. (d) logical T operation

Figure 4: (a) Truth table and quantum circuit of To↵oli
gate. (b) To↵oli gate decomposition using Cli↵ord+T
gates.

4 Conclusion

We have presented a quantum software framework for
fault-tolerant universal quantum computers. It imple-
ments LS-based logical Cli↵ord+T gates using rotated
surface code on logical qubit architecture. We have sim-
ulated quantum circuits with Cli↵ord+T gates in the
framework and evaluated LS-based logical operations.
The quantum software framework can be extended to
architectures arranged with more logical qubits, and the
LS-based logical operations implemented in this work can
serve as a primary reference model. As a next step, we
will apply various quantum error models to verify the
LS-based logical operations.
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Abstract. To realize practical quantum computation, logical errors should not be increased when accu-
mulating all components of quantum computing architecture. To achieve this, a physical error rate should
be achieved to be below a certain threshold called the fault-tolerance threshold. Analyzing the fault-
tolerance threshold as well as the resource overhead for a given certain quantum error correction scheme is
essential for implementing and designing scalable fault-tolerance quantum computing architectures. Here
we develop a tool to simulate fault-tolerance threshold for a given quantum error correction code and error
model. We then analyze the fault-tolerance threshold of photonic quantum computing protocols including
the hybrid qubit schemes with cat code proposed recently by authors, and show that it outperforms other
previous protocols.

Keywords: Photonic hybrid quantum computation, Quantum error correction, Fault-tolerance analysis

1 Introduction

To realize universal quantum computation, the fault-
tolerance implies that errors are not accumulated as in-
creasing the size of the system including all the com-
ponents of quantum computing architecture. For this,
a physical error of each component should be below a
certain value called the fault-tolerance threshold. In ad-
dition, the resource cost to achieve the fault-tolerance
is also an important parameter for practical realization
of quantum computers. Therefore. analyzing the fault-
tolerance threshold and the resource overhead for a given
certain quantum error correction scheme and quantum
computing platform is essential for designing scalable
quantum computing architectures.
Meanwhile, various photonic quantum computation

schemes have been proposed so far toward fault-tolerant
quantum computation. In linear optical approach, two-
qubit gate operation typically require the Bell state mea-
surement (BSM) for gate teleportation instead of direct
coupling because of the non-interactive nature of pho-
tons. However, the success probability of BSM based
on linear optics is at most 1/2 [1], and due to the ef-
fect of photon loss, the success probability in practice
is even worse. To solve these problems, various BSM
schemes using ancillary photons and BSM scheme with
discrete-variable (DV) error correction code [2] have been
prooseded. Improved BSMs can make the measurement
process itself more resistant to photon loss, but the pho-
tonic qubits are still vulnerable to photon loss for the full
fault-tolerance of photonic quantum computation.
Recently, authors have proposed a scheme for pho-

tonic hybrid quantum computation with single photon
and cat code [3]. Cat-code is a bosonic error correc-
tion code [4, 5] encoding logical qubits against photon
loss in even-parity cat states

�
|C+

↵
i, |C+

i↵
i
 
. However,

nonorthogonality between logical basis states makes it
di�cult to implement gate operations such as Z gate. We
address this problem by introducing hybrid qubits that

⇤swleego@gmail.com

combine discrete-variable (DV) qubits and continuous-
variable (CV) qubits [3]. In previous studies [6], polar-
ization states {|Di, |Ai} and coherent states have been
used as DV and CV qubits, respectively. On the other
hand, in this work we incorporate the error correcting
feature of cat codes into the CV part of the hybrid qubit,
so the logical basis is

�
|0Li = |Di|C+

↵
i, |1Li = |Ai|C+

i↵
i
 
.

This allows us to improve the resilience to photon loss,
while also making it possible to implement gate oper-
ations. Recently, linear optical implementation of cat
codes has been developed in Refs.[7] and [8], by which
we define a hybrid BSM (HBSM) by incorporating to-
gether with the standard polarization qubit BSM [1].

We here develop a tool to simulate fault-tolerance
threshold for a given quantum error correction code
and error model. Based on this, we analyze the fault-
tolerance of photonic quantum computing protocols in-
cluding the previous [6] and recent hybrid quantum com-
puting scheme [3] and compare their performances. We
employ HBSM as a logical BSM to analyze the fault-
tolerance and resource overhead of concatenated codes
quantum low-depth parity check (qLDPC) codes as an
outer logical code. We devise a gate teleportation scheme
for universal quantum computation to demonstrate con-
catenated codes and a measurement-based quantum com-
putation (MBQC) scheme to qLDPC codes. In MBQC,
HBSM is used to create a cluster state from unit resource
states. A HBSM can achieve an arbitrary high success
probability, which allows to perform near-deterministic
logical BSM without the need for any other improved
BSM techniques. Our results show that the photonic
hybrid quantum computation using single photon and
cat code outperforms other previous proposals in fault-
tolerance analysis.

2 Error model

In optical systems, photon loss is the most common er-
ror. Other errors, such as coherent errors and dephasing
errors, are much less common. Therefore, we only con-

68



sider photon loss in fault-tolerance analysis. Photon loss
a↵ects both the failure probability of HBSM and the log-
ical error rate. We use the result of Ref. [7] to calculate
the failure probability of HBSM. Since the photon-photon
coupling strength � is very small, we can assume that the
process is Markovian. we calculated the logical errors by
solving the Lindblad master equation

d⇢

dt
= �

✓
â⇢â

† � 1

2
{â†â, ⇢}

◆
. (1)

The photon loss probability is defined as ⌘ = 1 �
exp(��t). The HBSM failure and logical Z error are
both functions probability of ⌘ and encoding amplitude
↵. We assumed that each photon has a probability ⌘ of
being lost between two consecutive HBSMs. Therefore,
⌘ s the average photon loss probability per step in both
gate teleportation and MBQC. We also assumed that the
unit resource states are already prepared by a heralding
resource preparation process. This means that the fail-
ure of HBSMs and photon loss in this process only a↵ect
the resource overhead. In both gate teleportation and
MBQC, we estimate the photon loss threshold for each
encoding amplitude ↵ using Monte-Carlo method.

3 Fault-tolerance analyses

We first consider the STEANE code as an outer logical
code and estimate the fault-tolerance with several con-
catenation levels. Since CSS codes including STEANE code
only use the Hadamard gate (HL), the controlled-Z gate
(CZL), the preparation of the |+Li state, and the mea-
surement in the XL basis, we only need to consider these
operations. The state preparation and measurement are
trivial, but applying HL and CZL requires the gate tele-
portation. Both gates can be performed using the unit
resource state |�Hi / |0L, 0Li + |0L, 1Li + |1L, 0Li �
|1L, 1Li and |�CZi / |0L, 0L, 0L, 0Li+ |0L, 0L, 1L, 1Li+
|1L, 1L, 0L, 0Li � |1L, 1L, 1L, 1Li, respectively. In the
physical level, resource states can be created by com-
bining two types of entangled states: DV entangled pairs
and hybrid entangled states. A hybrid entangled state
can be generated by a cross-Kerr interaction between a
single photon and an even cat state. In logical levels, we
prepare the transversal |�Hi and |�CZi and apply the
syndrome projection measurement to prepare the logical
states. We use the Knill-type error correction circuit pro-
posed in Ref. [9] for both the physical and logical levels.

In MBQC, we used the surface code, which is the most
well-known and widely used qLDPC code. The cluster
state used in MBQC scheme for the surface code is the
Raussendorf-Harrington-Goyal (RHG) lattice graph
state [10]. Typically assume that cluster states are pre-
pared o↵-line using a heralding process. This means that
errors caused by photon loss or the failure of a BSM used
in o↵-line process are not considered. This makes the
presented schemes more robust to errors, but it also re-
quires exponentially more resources. In this work, we as-
sumed that only unit resource states were prepared. The
unit resource states we used are the central micro cluster
|CC

3 i = 1p
2
(|0L0L0Li + |1L1L1Li) and side micro cluster

Figure 1: Loss threshold for STEANE code. Logical basis
for each curve is shown at upper right corner. Circles
represent the highest loss threshold with the optimal en-
coding amplitude.

Figure 2: Loss threshold for RHG lattice.

|CS

3 i = 1
2 (|0L0L0Li + |1L1L0Li + |0L0L1Li � |1L1L1Li).

These states can be created in a similar manner with gate
teleportation. We first create a star cluster state |C⇤i us-
ing HBSM. This state has one central vertex qubit and
four side vertex qubits connected to it by edges. Next, we
apply the HBSM to the closest side qubits of two neigh-
boring star cluster states. This generates a RHG lattice
state.

For Monte-Carlo simulation, we used the percola-
tion model for HBSM failure with adaptive measure-
ment scheme [11] and weighted minimum-weight perfect
matching decoder via PyMatching package [12].

4 Results

We have evaluated the fault-tolerance threshold for
photonic quantum computation schemes using coherent
state qubits, hybrid qubits with single photon and coher-
ent states [13], and hybrid qubits with single photon and
cat code [3] by changing the encoded amplitude ↵. Fig-
ure 1 and Figure 2 shows the results for the STEANE code
and RHG lattice, respectively. When using the STEANE
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code error correction, the hybrid qubit with cat code
achieves a much higher loss threshold of 0.116% than all
the previous proposals, which is about four times greater
with a slightly larger amplitude ↵ than the loss threshold
of 0.029% achieved by hybrid qubit with coherent states
[13].
In the case of the RHG lattice, we found that the thresh-

old for the hybrid qubit with cat code is improved by
almost an order of magnitude compared to the hybrid
qubit with coherent states. The optimal threshold is ob-
served to be 2.21% at ↵ ⇡ 3.45, which is, to the best of
our knowledge, the highest threshold for CV encoding of
optical qubits [14].
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Abstract. We propose a scheme to nondestructively discriminate all four Bell states between distant
parties. Without pre-shared entanglement, the successful nondestructive discrimination probability is
limited to p = 1/4 which is equivalent to random guessing. Here, we show that harnessing two pairs
of pre-shared entanglement, one can achieve a complete nondestructive Bell state discrimination between
distant parties. Using IonQ quantum computer simulation, we also demonstrate that our scheme surpass
the classical limit of 1/4 on a present quantum processor.

Keywords: Quantum Entanglement, Discrimination, Non-demolition, Bell state

Quantum state discrimination is crucial for various ap-
plications, including quantum key distribution [1, 2]. One
of possible methods to share information are Bell states.
However, typical Bell state discrimination schemes de-
stroy the quantum state. To preserve the state, ancillary
qubits can interact with system qubits, enabling nonde-
structive discrimination of Bell states [3, 4].
In quantum networks, shared entangled particles

among distant parties face security challenges due to po-
tential threats from malicious third parties or insecure
quantum channels. Nondestructive verification of shared
entanglement is desirable but limited by the implement-
ing interaction with both distant system qubits. Local
operation and classical communication (LOCC) is insuf-
ficient for discriminating shared entanglement. Recent
investigations highlight the importance of entangled an-
cillary qubits for nondestructive quantum state discrim-
ination [5].
Here, we focus on nondestructive discrimination of all

four Bell states between distant parties. Theoretical
analysis establishes upper bounds of success probability
with LOCC, and a scheme which can nondestructively
distinguish all four Bell states using pre-shared ancillary
entangled qubits is proposed. Experimental results on
an IonQ quantum computer validate the protocol’s e↵ec-
tiveness by surpassing the classical limit.
Consider two distant parties, Alice and Bob, aim to

determine any of four possible Bell states | iAB without
destroying it. Let probability to succesfully determine
given Bell state is PD and probability that Bell state
will not be changed after interaction is PF . In the case
of perfect discrimination (when PD = 1, PF = 1), the
overall success probability Pcl = PDPF is 1. However,
with random guessing without measurement (when PD =
1/4, PF = 1), Pcl is 1/4 since there are equal chances to
choose randomly one of four possible Bell states.

⇤bohdan@kist.re.kr
†wysong@kist.re.kr
‡yong-su.kim@kist.re.kr

On the other hand Alice and Bob can employ simple
projection measurements to discriminate the Bell state.
By measuring their qubits in the Z basis, they can ob-
tain information about the state. If both obtain |0i, it
indicates the state was either |�+i or |��i Bell states,
resulting in a success probability of PD = 1/2. However,
since they are separated, they cannot recover the en-
tangled state. The nondestructive probability PF (state
overlap) with the original state, assuming they prepare
|00i based on their outcomes, is 1/2. Hence, the over-
all success probability of nondestructive quantum state
discrimination is Pcl = 1/4. This winning probability
is actually the classical upper bound without ancillary
entanglements [5].

We propose a pre-shared entanglement-assisted scheme
for nondestructive discrimination of Bell states between
distant parties. With the assistance of pre-shared entan-
glement, the parties can discriminate the Bell states using
local operations and classical communication (LOCC)
without the need for additional global operations. The
scheme in Figure 1 involves two ancillary entangled states
shared between Alice and Bob, along with the system
qubits representing the Bell states.

It starts with two ancillary entangled states between
Alice and Bob along with the system qubits as follow.

| iint = |�+ia1b1 ⌦ |�+ia2b2 ⌦ | isAsB (1)

where the system qubits are in one of four possible Bell
states, | isAsB 2 {|�±i, | ±i} and two ancillary entan-
gled qubits are prepared in |�+i. After state evolution,
showed on Figure 1 system qubits will not be changed
and ancillary qubits will change depending on which Bell
state was prepared. Thus, proposed scheme lets to com-
pletely discriminated unknown Bell state.

We repeated experiment 10,000 times for each possi-
ble Bell state. Result of experiment is shown on Fig-
ure 2. There, TT means that Alice and Bob succesfully
determined system state without destroying it; TF means
that Alice and Bob succesfully determined system state,

71



Alice

Bob

H

H

     Classic bits  

     analysis

Discriminated  

Bell states

a1

a2

sA

sB

b2

b1

Figure 1: Nondestructive Bell state discrimination be-
tween distant parties using two ancillary entangled pairs
|�+ia1b1 and |�+ia2b2 with system qubits sA and sB .

but system qubits were changed; FT means, that Al-
ice and Bob wrongly determined system state, but sys-
tem state did not destroyed; FF means that Alice and
Bob wrongly determined system state and system qubits
were changed. For success probability we are interested
in TT cases. The average probability of nondestructive
quantum state discrimination for all Bell states is aver-
age value of all TT cases from Figure 2 and its value is
Psucc = 0.736 ± 0.012. Notably, this success probability
exceeds the upper bound of Pcl = 1/4 for entanglement
discrimination without shared entanglement.
We have demonstrated the importance of verifying pre-

shared entanglement for nondestructive quantum com-
munication protocols. We showed that nondestructive
entanglement discrimination between distant parties can-
not be achieved without additional pre-shared entangle-
ment pairs. Our proposed scheme utilizes two ancillary
entangled qubit pairs to achieve nondestructive Bell state
discrimination. We verified the feasibility of our proto-
col through a proof-of-principle experiment on an IonQ
quantum computer.
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Abstract. Quantum state learning is central to quantum machine learning as it provides numerous ap-
plications and characterizes quantum nature. However, given many copies of an unknown quantum state,
how to learn and prepare the state is challenging and the method via quantum neural networks is severely
limited due to barren plateaus (BP). In this work, we introduce the quantum sequential scattering model
to e�ciently and accurately learn and prepare quantum states. The model’s e↵ectiveness is demonstrated
through theoretical analysis and numerical simulations involving noise. A truncated version is also pre-
sented, showing well performances for learning low-entangled states e.g., GHZ and W states. Our method
could avoid BP in the cases where the targets carry polynomial-scaled reduced states’ ranks and provide
at least a square root advantage on gradient magnitude for mitigating BP in the worst case. Our results
imply more entanglement between subsystems of the target state leads to more resources required for
purification, which brings down the e�ciency of QSSM state learning. Note that the technical version is
attached.

Keywords: quantum machine learning, quantum neural networks, quantum state learning, barren
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Introduction: Quantum computing is a promising
field that has spurred advancements in various disci-
plines [1, 2, 3, 4]. To establish a near-term quan-
tum advantage, quantum machine learning (QML) has
been developed using noisy intermediate-scale quan-
tum (NISQ) devices [5]. Quantum neural networks
(QNNs) [6, 7], based on the principles of quantum me-
chanics, have emerged as a potential solution for clas-
sically hard problems. Several QNN models have been
studied and demonstrate advantages over classical mod-
els [8, 9, 10, 11].

Learning unknown probability distributions is impor-
tant in classical machine learning [12]. As a quan-
tum analog, learning or preparing an arbitrary quantum
state is a fundamental task that impacts quantum algo-
rithm design, data encoding, physical estimations, and
Hamiltonian simulation [13, 14, 15, 16]. The task in-
volves constructing an accessible description of a target
state with unexplored representations, which can be re-
implemented on real near-term devices for further com-
putational tasks.

Many attempts have been made to reproduce the quan-
tum circuit representation of the target state, for ex-
ample, the e�cient decomposition [17, 18] or relying on
powerful QML models [19, 20, 21]. However, trainabil-
ity has become a critical challenge for the practical us-
age of QNNs. Specifically, training deep QNNs will en-
counter severe barren plateaus (BP) phenomenon [22] as
the system scales up. Although there have been sev-
eral strategies proposed to overcome the problem includ-
ing clever initialization strategy [23, 24], adaptive al-
gorithms [25, 26, 27, 28], parameterization generaliza-
tion [29], di↵erent cost functions [30, 31] and di↵erent
circuit structures [32, 33]. Learning quantum states scal-
ably without BP and defining which kind of quantum
states can be e�ciently learnt remain to be open and
challenging problems in quantum machine learning.

Overview of results: In this work, we introduce a
quantum neural network model to learn and prepare ar-

bitrary quantum states e�ciently on near-term devices.
In particular, we establish the following:

(i) We propose the quantum sequential scattering
model (QSSM), motivated by the freedom in state
purification, which could build up a quantum state
from local to global by hierarchically training the
scattering layers. We show that QSSM requires
a shallower circuit and fewer parameters for each
step, making quantum state learning more e�cient
on near-term quantum devices.

(ii) We prove that the gradient magnitude is propor-
tional to the maximum layer width of QSSM. We
show that QSSM could avoid BP with constant-
or polynomial-scaled gradient magnitudes for rank-
bounded quantum states. It could mitigate BP by
providing a square root advantage on gradient mag-
nitude over the global QNN at worst.

(iii) We showcase the e�ciency and accuracy of the
QSSM in the numerical simulation and noisy sim-
ulation of preparing di↵erent quantum states. We
also confirm its robustness to BP by demonstrat-
ing a constant scaling of gradient magnitude in the
number of qubits in experiments as shown in Fig. 2.

Quantum sequential scattering model. Our first
contribution is proposing a new QNN model that can
be e�cient in quantum state learning. The fundamental
idea of QSSM is to generate local interactions on par-
tial systems and gradually increase the dimensionalities
to construct a global quantum state. In contrast, tra-
ditional QNNs process from a global viewpoint handling
the entire system at a time.

Given a n-qubit quantum state ⇢ represented by cer-
tainly ordered qubits, we can define a k-th partition of ⇢
(1  k  n) separating the state into subsystems Ak and
Āk covering the first k qubits and the remaining, respec-
tively. For k = n, Āk = ; and Ak = H⌦n. We denote ⇢k
as the partial state on system Ak, i.e., ⇢k = trĀk

[⇢] and
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Figure 1: A conceptual diagram of QSSM state learning. Starting with a fully tensor product state (e.g., |0i⌦n)
initially, each QSSM layer Uk produces a purification | ki of the reduced density ⇢k of |�i. At each step, the cost
Ck(✓k) can be estimated via swap-test [34] shown in the diagram. After all n training steps, the entire trained model
produces a complete circuit representation | i approximating the target |�i. The state | i, therefore carries almost
the same stochastic behaviors as |�i and can be used conveniently for further computational assignments.

define a (Schmidt) rank sequence R⇢ of ⇢ as,

R⇢ = {r1, r2, · · · , rn�1, rn} (1)

where rk indicates the rank of ⇢k. Our QSSM could find
a set of local unitary {Uk} which generate purification
of ⇢k based on previous learning steps. Each layer acts
on wk qubits, called the layer width, and is trained by
optimizing an adaptive k-th step cost function as,

Ck(✓k) = tr[(�k(✓k)� ⇢k)(�k(✓k)� ⇢k)†] (2)

where �k indicates the k-th partition of the layer output
state | ki.

Algorithm 1 QSSM for state learning

Require: Copies of the n-qubit target state ⇢ = |�ih�|,
layer depth D.

Ensure: Input a state |0i⌦n with qubit labels
q1, q2, · · · , qn.

1: Initialize step index k  1.
2: Pre-determine a set of widths {wk}nk=1.
3: while k  n do

4: Random initialize Uk(✓k) acting on qubits qk ⇠
qk+wk�1.

5: Minimize Ck(✓k) via classical optimizations.
6: k  k + 1.
7: end while

8: Store all ✓1, · · · ,✓n in the classical memory.
9: Prepare the target | i = Un · · ·U1|0i⌦n ⇡ |�i.

The state learning algorithm is summarized in Algo-
rithm 1 driven via both gradient-free and -based opti-
mizers. The model also applies to the mixed target state
by considering its purification. The layer width wk can
be pre-determined according to the rank rk of ⇢k. We
usually set wk = k + 1 or n � k + 1 to cover any state
of rk = 2min{k,n�k} based on Uhlmann’s theorem and

freedom in purification. It is also worth noting that we
can restrict the maximum width wmax to get a truncated
version of QSSM, which can gain advantages in e�ciency
and use fewer parameters while maintaining relatively
high performance in learning some low-entangled state.

We choose the cost (2) involving terms of tr[⇢2] and
tr[⇢�], which can be e�ciently estimated via swap-

test [34]. Besides, the parameter shift rule [35, 36] applies
to our QSSM for obtaining analytic gradient as we em-
ploy hardware-e�cient ansatz [37] for scattering layers.

Trainability of QSSM Our second contribution is to
show that QSSM will not exhibit BP for a large class of
quantum states by establishing an explicit relation be-
tween the trainability of QSSM and its rank sequence.
The rigorous analysis of the variance of the cost gradient
@µCk of QSSM is given in the following Proposition 1.

Proposition 1 For a n-qubit target state ⇢ with fixed-

order representation, we suppose its rank sequence is

R⇢ = {r1, r2, · · · rn�1, rn}. Then for learning the tar-

get state ⇢ with QSSM, if the circuit used for each step

is su�ciently random that forms a local 4-design, the ex-

pectation of the k-th step E[@µCk] = 0 and the variance

of the cost gradient scales with rk as,

Var[@µCk] 2 O(
1

rk
). (3)

Remark 1 For a class of states whose all the Schmidt

ranks in their rank sequence are smaller than a constant

C that is not scaling with the number of qubits, for ex-

ample, R⇢ = {rk|rk  C, 8k}, the gradient magnitude

for learning them scales as

Var[@µCk] 2 O(
1

rk
) = O(1), (4)

which means they can be learned without BP via QSSM.

More specifically, for learning GHZ state and W state,

we can choose C being 2, thus there is no BP learning

GHZ state and W state.
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Global QNN QSSM

Maximum layer widths – 2 5 7

Physical States

XXX model ground state (GS) 0.533 0.523 0.956 0.926

XXZ model GS 0.523 0.750 0.952 0.948

LiH molecule GS 0.531 0.978 0.978 0.973

Algorithmic States

GHZ state 0.535 0.994 0.989 0.971

W state 0.527 0.990 0.985 0.958

Gaussian distribution 0.561 0.969 0.981 0.978

MNIST data encoding 0.330 0.517 0.903 0.867
Random state 0.317 0.318 0.871 0.834

Figure 2: Comparison of the fidelity performance and gradient magnitude between QSSM and global

QNN. Panel (a) correspond to the experiment results of learning di↵erent quantum states via QSSM and global QNN.
Maximum layer widths denote the max width wmax applied in each step of QSSM. For n = 12 states, wmax = 7 is
equivalent to the worst case of doubling the dimensionality. Panel (b) illustrates the comparison of gradient magnitude
between di↵erent steps in QSSM and global QNN of learning GHZ state. The red, black and blue lines represent the
gradient magnitude of the first step, n

2 -th step and the last step respectively. The yellow line represents the gradient
magnitude of using the randomly initialized global circuit.

This proposition notably implies that the gradient
magnitude is greatly determined by the largest Schmidt
rank in the rank sequence. In other words, the gradi-
ent magnitude scales with the width of each scattering
layer as O(2�wk), which accords with our knowledge of
BP. In the worst case, if the rank sequence of the target
state is R⇢ = {21, 22, · · · 2bn/2c, · · · , 2, 1}, the gradient
magnitudes are at least O(2�bn/2c). It is worth noting
that even though the gradient magnitude experiences an
exponential decay concerning wk, the vanishing speed of
the gradient is quadratically lower than it is of the tra-
ditional global case, leading to a square root advantage
compared with the global QNN.

In fact, the maximum width wmax does not need to
reach d(n+1)/2e as the total number of qubits increases
in most cases. For some particular states, like GHZ state
and W state, the maximum width wk can have a constant
upper bound, making gradients magnitude also constant.
Moreover, for many other low-entangled states such as
the slightly entangled state introduced by Vidal [38], we
can learn them via QSSM with limited width, leading to
the constant or polynomially scaling of gradient magni-
tude. In fact, slightly entangled states only take a small
portion of quantum states that will not experience bar-
ren plateau using QSSM. Instead, all the quantum states
that have at most polynomially growing Schmidt ranks
in any one of its rank sequences R with possible ordered
representations will not exhibit barren plateaus in the
learning procedure using QSSM.

Experimental demonstration. Our third contri-
bution is to investigate the e�ciency and trainability of
QSSM state learning via ideal and noisy numerical simu-
lations, as shown in Fig. 2. We choose both physical and
algorithmic meaningful 12-qubit target quantum states
and perform learning procedures using QSSM and tra-
ditional global QNN with results recorded in Fig. (2a).

The advantages in state learning performance from noise-
free experiments are clear when comparing QSSM to
the global QNN. Unlike global QNN whose training is
blocked due to BP, QSSM could achieve high fidelity in
preparing these quantum states. Besides, in most cases,
wmax need not approach the worst d(n+ 1)/2e to obtain
> 0.9 fidelity. We particularly perform noisy simulation
for QSSM to learn a 4-qubit GHZ state and achieve a
final fidelity of 0.91.

Trainability is demonstrated by gradient-test simula-
tions on di↵erent scattering layers as shown in Fig. (2b).
Specifically, we show the gradient magnitude of learning
the GHZ states with di↵erent numbers of qubits. The
global QNN derives an exponential vanishing gradient by
the yellow line. Our QSSM demonstrates a constant scal-
ing of gradient magnitude instead, being consistent with
Proposition 1. Above all, experiments have showcased
QSSM’s superior performance in state learning compared
to conventional QNNs, and in some cases, training of
QSSM could indeed avoid BP.

Concluding remark We propose QSSM, for the
quantum state learning task. With the freedom in purifi-
cation, our algorithm adopts a sequential learning strat-
egy for preparing quantum states by splitting this chal-
lenging task into easier sub-tasks. Moreover, the trun-
cated version of QSSM by fixing the max layer width,
together with its ability to avoid the barren plateaus for
a large class of quantum states, makes QSSM a prac-
tical strategy for near-term quantum devices. Our algo-
rithm provides a reliable and e�cient way to learn circuit
representations of unknown quantum states, promoting
further research and development progress on quantum
states. Our study also reveals an underline relationship
between state entanglement and learning hardness de-
serving detailed discussions.
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The first-order Trotter decomposition in the dynamical-invariant basis
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Abstract. The Trotter decomposition is a basic approach to Hamiltonian simulation (digital quantum
simulation). The first-order Trotter decomposition is the simplest one, whose deviations from target
dynamics are of the first order of a small coe�cient in terms of the infidelity. In this paper, we consider the
first-order Trotter decomposition in the dynamical-invariant basis. By using a state-dependent inequality,
we point out that deviations of this decomposition are of the second order of a small coe�cient. Moreover,
we also show that this decomposition includes a useful example, i.e., digital implementation of shortcuts
to adiabaticity by counterdiabatic driving.

Keywords: Hamiltonian simulation, Trotter decomposition, dynamical invariant

1 Introduction

Quantum simulation, which is also referred as Hamil-
tonian simulation, is one of the most promising quantum
technologies. In quantum simulation (Hamiltonian
simulation), we simulate (Hamiltonians of) target
quantum systems by using other programable quantum
systems [1]. Since degrees of freedom in quantum
systems increase in an exponential way as their compo-
nents increase, quantum simulation has clear advantage
against classical simulation.

The Trotter formulae [2,3] are often used to decompose
time-evolution operators of target quantum systems
into sequences of simulatable unitary operators [4]. The
high-order Trotter formulae [3] give precise simulation,
but the depth of quantum circuits tend to be deep.
Other approaches to Hamiltonian simulation, e.g., the
Taylor series expansion and the linear combination of
unitaries [5], quantum signal processing [6], etc., have
also been proposed for realizing precise simulation with
relatively shallow quantum circuits.

In this paper, we revisit the simplest matrix exponen-
tial formula, i.e., the fist-order Trotter decomposition [2].
First, as a preliminary, we introduce the dynamical in-
variant and the Lewis-Riesenfeld theory [7]. Next, we
introduce a state-depdendent inequality which enables
us to precisely evaluate digitization errors [8]. Then,
we consider the first-order Trotter decomposition in the
dynamical-invariant basis. We will find that dominant
errors vanish in this decomposition and the scaling of
digitization errors is better than the conventional one
which arises from the first-order Trotter decomposi-
tion [4]. Finally, we show that this specific decomposition
includes a useful example, i.e., digitized counterdiabatic
driving [9–12].

⇤takuya.hatomura@ntt.com

2 Preliminary

Suppose that a given quantum system is governed by
the Schrödinger equation

i~ @
@t

| (t)i = Ĥ(t)| (t)i, (1)

where | (t)i is its dynamics and Ĥ(t) is its Hamiltonian.

Dynamical invariant. A dynamical invariant F̂ (t) is
an Hermitian operator which satisfies the von Neumann
equation

i~ @
@t

F̂ (t)� [Ĥ(t), F̂ (t)] = 0. (2)

Note that the density operator is a trivial example, but
there are infinite dynamical invariants. We can easily
confirm that eigenvalues of dynamical invariants are inde-
pendent of time, i.e., their time-dependence comes from
their eigenvectors.

In the dynamical-invariant basis {|�n(t)i}, which is
the set of the eigenvectors of a dynamical invariant, o↵-
diagonal elements of the Hamiltonian is given by

h�m(t)|Ĥ(t)|�n(t)i = i~h�m(t)|@t�n(t)i, for m 6= n,

(3)
where |@t�n(t)i = (@/@t)|�n(t)i [7]. Then, the Hamilto-
nian can be expressed as

Ĥ(t) =
X

n

h�n(t)|Ĥ(t)|�n(t)i|�n(t)ih�n(t)|

+ i~
X

m,n
(m 6=n)

|�m(t)ih�m(t)|@t�n(t)ih�n(t)|,
(4)

where the first term is diagonal and the second term is
o↵-diagonal in the dynamical-invariant basis [13, 14].

Lewis-Riesenfeld theory [7]. By using the
dynamical-invariant basis, the solution of the Schrödinger
equation (1) is given by

| (t)i =
X

n

cn(0)e
in(t)|�n(t)i,

n(t) =
1

~

Z t

0
dt

0
h�n(t

0)|

✓
i~ @

@t0
� Ĥ(t0)

◆
|�n(t

0)i,

(5)
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where the coe�cient cn(0) determines the initial state
and n(t) is the Lewis-Riesenfeld phase. We can easily
confirm this fact by considering the time derivative of the
state (5) and by using Eq. (3).

3 Results

3.1 State-dependent inequality for Hamiltonian

simulation

In this section, we introduce a state-dependent inequal-
ity for precisely evaluating digitization errors [8]. For this
purpose, we introduce the Fubini-Study angle.

Fubini-Study angle. For given two quantum states,
| i and |�i, the Fubini-Study angle (see, e.g., Ref. [15])
is defined by

L(| i, |�i) = arccos |h |�i|. (6)

The Fubini-Study angle is distance, i.e., it satisfies (i) the
identity of indiscernibles, L(| i, |�i) = 0 , | i = |�i

except for a grobal phase factor; (ii) symmetry,
L(| i, |�i) = L(|�i, | i); and (iii) subadditivity,
L(| i, |�i)  L(| i, |�i) + L(|�i, |�i) for any quantum
state |�i. It also satisfies (iv) unitary invariance,
L(| i, |�i) = L(Û | i, Û |�i) for any unitary operator Û .

Now, we consider the dynamics | (t)i governed by
the Schrödinger equation and its digitized dynamics
| d(mT/M)i, where T is the final time, M is the num-
ber of time steps, and m is an integer, m = 0, 1, 2, . . . ,M ,
and discuss the overlap between these two dynamics at
the final time, |h (T )| d(T )i|.

State-dependent error bound [8]. By using the uni-
tary invariance and the subadditivity of the Fubini-Study
angle, we find the following inequality

|h (T )| d(T )i| � cos

 
MX

n=1

Ln

!
, for

MX

n=1

Ln 
⇡

2
,

(7)
where

Ln = arccos|h (nT/M)|Ûd(nT/M, (n� 1)T/M)

⇥ [Û(nT/M, (n� 1)T/M)]†| (nT/M)i|.
(8)

Here, Û(nT/M, (n�1)T/M) and Ûd(nT/M, (n�1)T/M)

are time-evolution operators which transform
| ((n�1)T/M)i and | d((n�1)T/M)i into | (nT/M)i
and | d(nT/M)i, respectively. Note that the identical
initial states, | (0)i = | d(0)i, are assumed.

Now we assume that the Hamiltonian is given by
Ĥ(t) =

P
k Ĥk(t) and consider the first-order Trot-

ter decomposition for digitization. That is, the time-
evolution operator for the digitized dynamics is given by
Ûd(nT/M, (n� 1)T/M) =

Q
k exp(�

i
~

T
M Ĥk(nT/M)).

Dominant errors [8]. When T/M ⌧ 1 holds, we can
apply the Taylor expansion to Eq. (8) and it gives

Ln ⇡
T

2

2~2M2
|h (nT/M)|Â(nT/M)| (nT/M)i|,

Â(nT/M) =
X

k,l

[Ĥk(nT/M), Ĥl(nT/M)].
(9)

Here, we assume Ĥ(nT/M) ⇡ Ĥ((n � 1)T/M) and dis-
cretize the time-evolution operator for the reference dy-
namics.

Infidelity. The state-dependent inequality for the over-
lap (7) gives inequality for the infidelity

p
1� |h (T )| d(T )i|2 

vuut1� cos2

 
MX

n=1

Ln

!

⇡

MX

n=1

Ln, for small
MX

n=1

Ln.

(10)
Since each Ln is O(M�2) as one can find in Eq. (9), the
infidelity is O(M�1). Note that this scaling of the digi-
tization errors is identical with the well-known result [4],
but this inequality can reveal true scaling for specific de-
composition as discussed below.

3.2 Trotter decomposition in the dynamical-

invariant basis

Now we consider dynamics described by the sin-
gle eigenvector of the dynamical invariant, | (t)i =
e
ik(t)|�k(t)i, and the first-order Trotter decomposition
which devide the Hamiltonian into the diagonal part
and the o↵-diagonal part in the dynamical-invariant ba-
sis, i.e., we devide the Hamiltonian into the first term
and the second term in Eq. (4). Then, we find that
the dominant errors (9) vanish because Â(nT/M) is o↵-
diagonal in the dynamical-invariant basis and the state is
given by the single eigenvector of the dynamical invariant
| (t)i = e

ik(t)|�k(t)i.

Dominant errors. By considering higher-order expan-
sion, we find that dominant errors of the first-order Trot-
ter decomposition in the dynamical-invariant basis are
given by

Ln ⇡
T

3

6~3M3
|h�k(nT/M)|B̂(nT/M)|�k(nT/M)i|,

B̂(nT/M) = [Ĥnd(nT/M), [Ĥnd(nT/M), Ĥd(nT/M)]],
(11)

where Ĥd(nT/M) and Ĥnd(nT/M) are the diagonal part
and the o↵-diagonal part of the Hamiltonian, i.e., the
first term and the second term in Eq. (4), respectively.
That is, the infidelity scales as O(M�2) which is better
than the conventional predictionO(M�1). Note that this
result is a generalization of the result in Ref. [12].
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3.3 Application to digitized counterdiabatic

driving

Finally, we show a useful example, i.e., digitized coun-
terdiabatic driving [9–12].

Counterdiabatic driving. In shortcuts to adiabatic-
ity by counterdiabatic driving [16, 17], we consider the
following Hamiltonian

Ĥ(t) = Ĥref(t) + Ĥcd(t),

Ĥref(t) =
X

n

En(t)|n(t)ihn(t)|,

Ĥcd(t) = i~
X

m,n
(m 6=n)

|m(t)ihm(t)|@tn(t)ihn(t)|,

(12)

where Ĥref(t) is the reference Hamiltonian and Ĥcd(t)
is the counterdiabatic Hamiltonian. The counterdiabatic
Hamiltonian cancels out diabatic changes and we can re-
alize adiabatic time evolution of the reference Hamilto-
nian within arbitrary time. It is obvious from the deriva-
tion [16,17], but we can also confirm this fact as follows.

Dynamical invariant in counterdiabatic driving.

For the Hamiltonian (12), the following Hermitian oper-
ator

F̂ (t) =
X

n

fn|n(t)ihn(t)|, (13)

is the dynamical invariant, where fn is an arbitrary con-
stant. That is, the set of eigenvectors of the reference
Hamiltonian {|n(t)i} is that of the dynamical invariant
in this system. Then, Eq. (5) gives the adiabatic state of
the reference Hamiltonian, i.e.,

| ad(t)i =
X

n

cn(0)e
� i

~
R t
0 dt0En(t

0)
e
�

R t
0 dt0hn(t0)|@t0n(t

0)i
|n(t)i.

(14)

Digitized counterdiabatic driving. In digitized
counterdiabatic driving [9–12], we devide the time-
evolution operator with the Hamiltonian (12) into that
of the reference Hamiltonian and that of the counterdia-
batic Hamiltonian by using the first-order Trotter decom-
position. Since the reference Hamiltonian and the coun-
terdiabatic Hamiltonian are the diagonal part and the
o↵-diagonal part of the total Hamiltonian (12), the dom-
inant errors of this decomposition is given by Eq. (11). It
means that the scaling of digitization errors is O(M�2)
in terms of the infidelity.

4 Summary

In this paper, we considered the first-order Trotter de-
composition in the dynamical-invariant basis. By using
the state-depdendent inequality [8], we found that the
infidelity scales as O(M�2), whereas conventional ap-
proaches predict O(M�1). We also pointed out that this
decomposition includes digitized counterdiabatic driv-
ing [9–12].

In addition to digitized counterdiabatic driving, there
are other possible applications. For example, there is
a quantum computation approach based on the Lewis-
Riesenfeld theory [18]. Moreover, there is another
method of shortcuts to adiabaticity based on the Lewis-
Riesenfeld theory, i.e., invariant-based inverse engineer-
ing [19]. The present result also gives digital implemen-
tation of these applications with the infidelity O(M�2).
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The work associated with quantum information processing driven by
the assistance of a controller
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Abstract. We deal with quantum information processing driven by a controller and derive
formulas about the work needed for the controller and net extractable work from the system
and controller. We apply these formulas to quantum feedback control and erasure protocol
considered by Sagawa and Ueda as a model of Maxwell’s demon. We show that among several
assumptions they imposed, one that the demon’s measurement is projective is su�cient to derive
an inequality, what they call the second law of thermodynamics, that bounds the net extractable
work from the system and demon by the decrease in the system’s free energy.

Keywords: Information thermodynamics, Maxwell’s demon, Quantum feedback control

1 Introduction

The resource theory of quantum thermodynamics
(see, e.g., [12]) has revealed the existence of the sec-
ond law of thermodynamics in quantum information
processing [16, 8, 1]. However, concerning informa-
tion processing driven by the assistance of another
system called the controller, thermodynamics of in-
formation processing becomes more complicated as
represented by the problem of Maxwell’s demon [9].
It is a device that can decrease the system’s entropy,
which has been the focus of many works exploring
the relationship between the second law and infor-
mation processing for example, Refs. [17, 3, 2, 7].
Sagawa and Ueda showed that the amount of ex-

tractable work from the system can be beyond the
second law by quantum feedback control [13]. The
work needed for the measurement and erasure pro-
cess of the demon compensates for the excess so that
the extractable work from both the system and the
demon has the free energy decreasing of the sys-
tem as an upper bound, what they say, the second
law [14]. However, this result is based on several as-
sumptions about the demon’s measurement process.
We deal with the process where the system and

controller evolve by interacting with each other adi-
abatically and after that, only the controller inter-
acts with the thermal bath. We provide the formulas
for the work required by the controller and the ex-
tractable work from both the system and controller.

⇤minagawa.shintaro@nagoya-u.jp
†sakai.kenta 32@nagoya-u.jp
‡kokato@i.nagoya-u.ac.jp
§buscemi@i.nagoya-u.ac.jp

Sagawa–Ueda’s quantum feedback control and
erasure protocol [14] is a special case of our general
formalism by regarding the controller as a demon.
Therefore, by applying the to Sagawa–Ueda’s pro-
tocol, we immediately derive the work needed by
the demon and the extractable work from both the
system and the demon. Furthermore, we show that
the assumption that the demon performs projection
measurements is su�cient to derive the second law,
even though the protocol is more general in that it
does not satisfy all the assumptions imposed by the
Sagawa–Ueda protocol.

2 Notations

Consider a quantum system A with a finite-
dimensional Hilbert space H

A, the states corre-
spond to a positive semidefinite operator ⇢

A with
Tr ⇢A = 1. The formula of von Neumann en-

tropy [19] of a state ⇢
A is H(A)⇢ := �Tr[⇢A ln ⇢A].

For a composite system A+B, quantum mutual in-

formation of a bipartite states ⇢
AB is defined by

I(A : B)⇢ := H(A)⇢ +H(B)⇢ �H(AB)⇢.
Given a Hamiltonian H

A and an inverse temper-
ature �, the corresponding thermal state or Gibbs

state is defined as �A := ZA
�1

e
��HA

, where ZA :=
Tr[e��HA

] is the partition function. The nonequilib-
rium free energy [4] of a quantum state ⇢A is defined
as F (⇢A;HA) := Feq(HA) + �

�1
D(⇢Ak�A), where

Feq(HA) := ��
�1 lnZA is the equilibrium free en-

ergy and D(⇢k�) := Tr[⇢ ln ⇢�⇢ ln �] is the Umegaki

quantum relative entropy between ⇢ and � [18]. We
frequently use the following relationship [4]:

F (⇢A;HA) = E(⇢A;HA)� �
�1

H(A)⇢ (1)
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where E(⇢A;HA) := Tr[⇢AHA] is the expectation
value energy of system A. In the following, we omit
Hamiltonians in the energy and nonequilibrium free
energy in principle.

3 The setup

Suppose that a quantum system S and C, which
we call the system and controller, respectively, are
initialized in state ⇢

S
0
and �

C
0
. The Hamiltonian on

the system is H
S
0
at time t = t0. The controller’s

Hamiltonian H
C is invariant throughout time. Also,

we have a thermal bath B with inverse temperature
� and the invariant Hamiltonian H

B and we call
such a bath (HB

,�)-bath.
First, the system S and controller C, initially in

a product state ⇢
S
0
⌦ �

C
0
, interact with each other

and evolve in time following a CPTP map D be-
coming ⌧

SC
1

at t = t1. The Hamiltonian of the
system becomes H

S
1

at t = t1, which is not nec-
essarily the same as the Hamiltonian H

S
0
at t = t0.

The assumption that the process D happens without
any exchange of heat means that the average work
we can extract from this transition exactly matches
��E

SC
D

, that is, the energy decrease in S and C

caused by D where �E
SC
D

:= E(⇢S
0
⌦�

C
0
)�E(⌧SC

1
).

After that, only C interacts with B by unitary
interaction W := W (·)W † and we obtain the final
state !

SCB
2

at t = t2. We assume that at t = t2,
the system’s Hamiltonian H

S
2
is equal to H

S
1
. Also,

we assume that there is no interaction Hamiltonian
at t = t0, t1, and t2. As shown in Ref. [8], any
unitary interaction between the system and the bath
can be realized with a work cost equal to �E

CB
W

:=
E(!CB

2
)� E(⌧C

1
⌦ �

B
1
).

In this setup, the work cost for the controller is
W

C
in

:= �E
C
D

+ �E
CB
W

where �E
C
D

:= E(⌧C
1
) �

E(�C
0
). Let E denote the CPTP map correspond-

ing to overall process of S, C and B from t = t0

to t = t2 (Fig. 1). The total average work ex-
tracted from S and C during the overall process E

is W
SC
ext := ��E

SC
D

� �E
CB
W

= ��E
SCB where

�E
SCB := E(!SCB

2
)� E(⇢S

0
⌦ �

C
0
⌦ �

B
0
).

4 Main results

The extractable work from the system is WS
ext :=

��E
S
D

where �E
S
D

:= E(⌧S
1
) � E(⇢S

0
). By using

Eq.(1), one can easily verify

W
S
ext = ��F

S
D � �

�1�H
S
D (2)

where �F
S
D

:= F (⌧S
1
) � F (⇢S

0
) and �H

S
D

:=
H(S)⌧1 �H(S)⇢0 .

Figure 1: A CPTP map E consists of an adiabatic
process D of the system S and controller C, and a
subsequent unitary interaction W between the con-
troller C and bath B.

Now we derive the general formula of the work
cost of the controller WSC

in
and net extractable work

from both the system and controller W
SC
ext (for the

proof is in Appendix A):

Theorem 1 The work cost for the controller is

W
C
in = �F

C +�
�1[�H

C
D + I(C : B)!2

+D(!B
2 k�

B
2 )]
(3)

where �F
C := F (!C

2
) � F (�C

0
) and �H

C
D

:=
H(C)⌧1 � H(C)�0

. The net extractable work from

both the system and controller is equal to

W
SC
ext = ��F

S
D ��F

C
� �

�1[�H
S
D +�H

C
D

+ I(C : B)!2
+D(!B

2 ||�
B
2 )] .

(4)

5 An application to quantum feedback
control and erasure protocols

We analyze the quantum feedback control and era-

sure protocol (Fig. 2) considered in Ref. [13] based
on our framework given in the previous section.
First, we prepare the initial state of the system S,

memory M , classical register K and bath B at the
time t0 as ⇢S

0
⌦ ⇢

M
0

⌦ |0ih0|K
0
⌦ �

B
0

where ⇢
S
0
and ⇢

M
0

are arbitrary states on H
S and H

M .
Considering the role of M and K, which will be

explained below, we refer to them collectively as
a demon. The system and demon’s process from
t = t0 to t = t2 is the measurement process and
their state becomes

P
k pk⇢

SM
2(k) ⌦ |kihk|

K
2

where k

is the measurement outcome, pk is the probabil-
ity of obtaining the outcome k, and ⇢

SM
2(k) is the

post-measurement state corresponding the outcome
k, and |kihk|

K
2

means that the classical register K

records the outcome k.
After the measurement, feedback control as con-

trolled unitary based on the measurement outcome
acts on the system from t = t2 to t = t3. Then
the system and demon’s state becomes

P
k pk⇢

SM
3(k)⌦
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⇢
S
0

⇢
M
0

|0ih0|K0

�
B
0

U

D measurement

M

Uk

V

t
t0 t1 t2 t3 t4

Figure 2: The quantum feedback and erasure proto-
col. Interaction stage (t0 ! t1): system S and de-
mon’s memory M interact according to a unitary U .
Probe stage (t1 ! t2): a measurement M is done
on M and the outcome k is written on the classical
register K. Feedback control stage (t2 ! t3): a
controlled unitary Uk is applied on S depending on
the outcome k. Erasure stage (t3 ! t4): a unitary
V between M , K, and the bath B erase the infor-
mation of the demon’s memory and register.

|kihk|
K
3
. Let D denote the system and demon’s pro-

cess from t = t0 to t = t3 as a CPTP linear map.
The erasure process is a unitary V := V (·)V † be-

tween the demon and the (HB,�)-bath B such that
(idS⌦V)(

P
k pk⇢

SM
3(k)⌦|kihk|

K
3
⌦�

B
3
) = ⇢

SMB
4

⌦|0ih0|K
4

where ⇢
M
4

= ⇢
M
0
, which means that the unitary V

erases the memory. Here we assume the existence of
such a unitary process.
For any time step tj (j = 0, 1, 2, 3, 4), we assume

that the Hamiltonian of the demon and bath are in-
variant and denote those Hamiltonian by HMK , and
HB, respectively. We denote the system’s Hamilto-
nian as H

S
j (j = 0, 1, 2, 3, 4) and assume H

S
3
= H

S
4
.

Also, we assume that for any time step, the interac-
tion Hamiltonians between S,M,K, and B are zero.
We introduce Groenewold-Ozawa information

gain [5, 11] defined as IGO(S;K) := H(S)⇢0 �

H(S|K)⇢3 where H(S|K)⇢3 :=
P

k pkH(S|k)⇢3 is
the conditional quantum entropy. Here we use the
notation H(S|k)⇢3 := �Tr{⇢S

3(k) ln ⇢
S
3(k)}.

Now we derive the work associated with the quan-
tum feedback control and erasure protocol. From
the concavity of von Neumann entropy (e.g., [20])
and Eq. (2), one can obtain W

S
ext = ��F

S
D

�

�
�1�H

S
D
6 ��F

S
D
+ �

�1
IGO(S;K) 1.

By replacing C in Eq.(3) and (4) with MK and
setting �F

MK = 0 because of the erasure, we

1
This inequality implies Sagawa–Ueda’s inequality WS

ext 6
��FS

eq +��1I [13]. Here �FS
eq is the equilibrium free energy

change of the system and I is equal to IGO(S;K) in their

setting. Note that �FS
D > �FS

eq holds.

have the following theorem (for the proof, see Ap-
pendix B):

Theorem 2 The work cost of the demon’s measure-

ment and erasure process W
MK
in

is equal to

W
MK
in = �

�1[�H
MK
D + I(MK : B)⇢4 +D(⇢B4 k�

B
4 )].

(5)

The extractable work from both the system and de-

mon W
SMK
ext is equal to

W
SMK
ext = ��F

S
D � �

�1[�H
S
D +�H

MK
D

+ I(MK : B)⇢4 +D(⇢B4 ||�
B
4 )].

(6)

If the entropy change during the measurement pro-

cess �H
SMK
meas := H(SMK)⇢2 �H(SMK)⇢0 is non-

negative, we have W
SMK
ext 6 ��F

S
D
.

Sagawa–Ueda [14] showed W
SMK
ext = W

S
ext �

W
MK
in

6 ��F
S
eq they call the second law by show-

ing W
MK
in

> �
�1

I based on the several assumptions
listed in Appendix C. However, as a matter of fact,

Assumption 1 (A1). The measurement process
of the demon is projective and the post-
measurement states ⇢

M
2(k) and ⇢

M
2(k0) are mu-

tually orthogonal when k 6= k
0.

is su�cient in obtaining W
SMK
ext 6 ��F

S
D

and
this immediately leads to an inequality W

MK
in

>
��

�1�H
S
D
. By imposing

Assumption 2 (A2). At t = t2, the system and
demon’s state is a product state, i.e., ⇢S

2(k) ⌦

⇢
M
2(k) for each outcome k.

in addition to A1, we obtain a more refined inequal-
ity of WMK

in
given in the following proposition (for

the proof, see Appendix D):

Proposition 3 Assume A1. We have W
SMK
ext 6

��F
S
D

and W
MK
in

> ��
�1�H

S
D
. Assume A1 and

A2. We have W
MK
in

> �
�1[IGO(S;K) + I(MK :

B)⇢4 +D(⇢B
4
k�

B
4
)].

6 Summary

We consider the general information processing
driven by the assistance of the controller as depicted
in Fig.1. Then we derive general formulas of the
work cost for the controller Eq.(3), the extractable
work from the system Eq.(2), and the extractable
work both from the system and controller Eq.(4).
We adapt these formulas to Sagawa–Ueda’s quan-

tum feedback control and erasure protocol [13, 14]
and show that WSMK

ext 6 ��F
S
D
holds even for more

general protocols than those they analyzed, e.g.,
without A2, as long as it satisfies A1.
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Abstract. Bayesian inference plays a crucial role in information and physical sciences alike. Classical
Bayesian inversion is expressed naturally as stochastic matrix acting on probability vectors. Meanwhile
the quantum informational Baye’s rule, the Petz Recovery channel, has been formulated in the context
of Hilbert spaces. In this paper, we derive the expression of the Petz channel within quasiprobability
representations. By putting quantum Bayesian inference in the same formal context as its classical coun-
terpart, in (quasi-)stochastic matrices acting on (quasi-)stochastic vector, the core di↵erences between the
two regimes is found in the processing of reference priors rather than channel representation.

Keywords: bayesian inference, foundations, reversibility, quasiprobabilistic representations

This extended abstract for the IPS Meeting 2023 covers
key points found in [1].

1 The Task

Inference is a logical necessity in every science. This
fundamentality is particularly overt in notions of process
reversibility and state recovery. Here, the most empiri-
cally applied and canonical approach is Bayes’ rule:

Ẽ�(a|a0) = E(a0|a) �(a)
�̃(a0)

. (1)

This relation gives us a recipe for obtaining various
probability-theoretic objects [2, 3, 4, 5]. Of particular
note, we may use it to obtain the “reverse” transition
Ẽ� for any given (i) the forward process or transforma-
tion E , and (ii) the reference prior � on the input of said
process. The posterior, �̃(a0) =

P
a E(a0|a)�(a), emerges

from these two objects.

Now, moving to the quantum regime, the channel which
has garnered a reputation for being the “quantum Bayes’
rule” [6, 7] , is the Petz recovery map [8, 9, 10]:

Ê� [•] =
p
� E†

"
1p
E [�]

• 1p
E [�]

#
p
�, (2)

This recovery channel is defined for any CPTP map E and
a reference density operator �. Notably, when reference
priors, input states and the channel share the same eigen-
bases, the Petz map reduces to the classical Bayes rule
[10, 11, 12, 13]. It also appears naturally in the definition
of fluctuation theorems in thermodynamics [14, 15, 16]
and has vindicated its reputation recently through some
axiomatic approaches [7, 13].

⇤e0006371@u.nus.edu
†e0546277@u.nus.edu
‡phykd@nus.edu.sg
§physv@nus.edu.sg

Now the Petz map has thus far only been understood
in terms of CPTP maps and density operators, living
in a Hilbert space. Meanwhile, the classical Bayes rule
exists as a stochastic matrix mapping stochastic vectors,
living in a real vector space. Thus a formal comparison,
between these two kinds of Bayesian inference, is di�cult
due to this di↵erence in mathematical habitat.

2 The Approach

Thus, we seek to close this gap by formalizing the Petz
map in quasiprobability representations (QPRs) [17, 18].
These provide a theoretically isomorphic description of
quantum theories while sharing the familiar mathemati-
cal equipment found in classical probability theory: chan-
nels E map to matrices SE and density operators ⇢ map
to vectors v⇢. Details captured in Table 1. The distinc-
tion is that quasiprobabilities (that is, negativities) are
generally necessary in the quantum case [19].

Object Quasiprobability Formalism

Density Operator, ⇢ v⇢ : v⇢a = Tr[⇢Fa]

POVM, Em v̄m : v̄ma0 = Tr[Em Ga0 ]

Unitary, U SU : SU
a0a = Tr

⇥
Fa0UGaU †⇤

CP Maps, E [•] SE : SE
a0a = Tr[Fa0E [Ga]]

Born Rule, Tr[⇢Em] v⇢ · v̄m 2 [0, 1]

Dimensionality, d dim[Rd ⌦ Rd] = d2

Table 1: Dictionary of relationships between the Hilbert
space and quasiprobability formalisms. vpa = p(a) indi-
cates the a-th entry in a p-distribution. SE

a0a = E(a0|a)
indicates the entry on the a0-column and a-row of a ma-
trix SE . Thus, SEv⇢ = vE[⇢] etc.

Every QPR is defined by choices of frame and dual op-
erators Fi, Gj , which must adhere to some formal condi-
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tions and features. We simply note in passing that there
are two key canonical choices of QPRs in the literature:
“normal QPRs” (in particular, the “discrete Wigner rep-
resentation”) and “SIC-POVM representations” (as in
symmetric, informationally complete positive operator-
valued measures). For the technical details of these and
other generalities, we refer the reader to the fuller treat-
ment [1].

The crucial point is that QPRs give us the avenue to
situate the Petz map in the same formal habitat as its
classical counterpart and in an expression comparable to
it. Importantly, we want to do this in such a way that re-
quires nothing but formal equipment in QPR. That is, for
some forward, quasistochastic transformation SE (corre-
sponding to a quantum channel) and a quasistochastic
reference prior v� (corresponding to a quantum state)

only, how does one construct S
Ê�

QM, the relevant Bayesian
inversion? See Figure 1.

E , � SE , v�

Ê� SÊ�

QPR

PETZ ?

QPR

Figure 1: A commutativity diagram illustrating the main
task of this work: the protocol “?”, that is to be exe-
cutable solely within the QPR framework.

From there we discuss similarities, di↵erences and in-
terpretations wherever appropriate. This makes a formal
step in understanding the essential distinctions between
classical and quantum inference.

3 Results

3.1 Quantum Bayesian Inference in QPR

We skip over the proof (see [1] for details) and go to
our result right away:

Main Result The Petz map in any QPR reads

S
Ê�

QM = M1/2
�

�
SE†�

M�1/2
E[�] , (3)

where

(M�)a0a =
X

xy

v�xv
�
y ⇠a0xay,

�
ME[�]

�
a0a

=
X

xy

(SEv�)x(S
Ev�)y ⇠a0xay.

and ⇠pqrs = Tr[FpGqGrGs] are structure coe�cients de-
termined by the specific QPR via the frames and duals it
is defined by. Everything is expressed exclusively in the
quasiprobabilistic formalism: no knowledge of Hilbert

space renditions of the quantum channel or reference
state is required.

For the two canonical choices of QPR mentioned above,
we also proved in [1] that

NORMAL QPR : SE†

NQ = (SE)T, (4)

SIC-POVM QPR : SE†

SP = (SE)T + JE , (5)

where (JE)ij =
1
d (
P

a E(j|a)� 1); whence explicitly

S
Ê�

NQ = M1/2
� (SE)TM�1/2

E[�] , (6)

S
Ê�

SP = M1/2
�

⇥
(SE)T + JE

⇤
M�1/2

E[�] . (7)

3.2 Comparing Inference Across Regimes

We discuss similarities and di↵erences between classical
and quantum Bayesian inference, captured by (1) and (3)
respectively. See Table 2 for a summary.

3.2.1 Similarities

Firstly, we note that while (1) gives individual transi-
tions a ! a0, the mapping of entire distributions is best
expressed by writing Bayes’ rule as a stochastic matrix:

S
Ẽ�

CL = D�(S
E)TD�1

E[�]. (8)

Here, SE is a stochastic matrix for which the entry on the
a0-column and a-row of a matrix SE

a0a is E(a0|a), and Dp

is a diagonal matrix with entries corresponding to some
distribution p. Now, this can be rewritten as:

S
Ẽ�

CL = (D2
�)

1/2
�
SE†�

(D2
E[�])

�1/2 (9)

because (SE)T = SE†
for classical channels (see [1] for

details) and (D�)ij = v�i �ij . In other words, classical
Bayesian inference hides the fact that the central matrix
is an adjoint, and that the left and right matrices should
be seen as square roots of more fundamental matrices X�

and XE[�]. This is the common form of classical and
quantum Bayesian inference via QPRs.

3.2.2 Di↵erences

Let us now study the di↵erences between the two the-
ories. Crucially, the formal di↵erences between the ma-
trices X� (D2

� for classical, M� for quantum). Both can
be written

(X�)ij =
d2X

x,y=1

v�xv
�
y ⇠ixjy ; (10)

but while the M� of quantum theory has ⇠ixjy =
Tr[FiGxGjGy], the D2

� of classical theory is such that
(D2

�)ij = (v�i )
2�ij i.e.

⇠ixjy = �ix�jy�ij [Classical] . (11)
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This comparison is summarized in Table 2. In these
structure coe�cients, lie the fundamental di↵erence be-
tween quantum and classical Bayesian inference. On this,
we make some remarks before concluding.

Bayesian Inference in Theory T

S
Ē�

T = X1/2
�

�
SE†�

X�1/2
E[�]

(X�)j =
P

xy v
�
xv

�
y ⇠ixjy

Object T : Quantum T : Classical

SE† NQ : (SE)T

SP : (SE)T + JE
(SE)T

⇠ixjy Tr[FiGxGjGy] �ix�jy�ij

Table 2: Retrodiction maps for classical probabilities

[S
Ē�

T ! S
Ẽ�

CL, Eq. (8) or (9)] and quantum quasiproba-

bilities [S
Ē�

T ! S
Ê�

QM, Eq. (3)].

4 Discussion & Conclusion

The di↵erence between the structure coe�cients high-
lights features in quantum theory that are simply not
present in classical probability theory.

Bayesian inference in both theories involve a similar

structure (see S
Ē�

T in Table 2). Given that the transpose
of a classical channel is also its adjoint, the key di↵erence

between S
Ẽ�

CL and S
Ê�

QM lies not in the central matrix SE†
,

but in the right and left matrices XE[�], X� that capture
the description of the priors. This a�rms the fact that
what separates quantum theory from classical theory is
not so much in its dynamics (which is in many ways con-
ceptually similar), but in the description of states.

Mathematically, the di↵erence is captured by the form
of the structure coe�cients ⇠ixjy. In classical theory, the
structure coe�cients render the matrices diagonal. By
contrast, in a QPR of quantum theory, the structure co-
e�cients introduce weighted products v↵x v

↵
y of every pair

of entries of the distribution v↵. This is fundamentally
due to complementarity, which is being embedded in the
frames of the QPR.

Finally, we note how if we set Fi = Gi = |ii hi| for all
i, then Tr[FiGxGjGy] and �ix�jy�ij become equivalent.
To do this, however, renders the representation invalid as
QPR. Such a frame fails to meet the criteria for a valid
QPR framework for quantum theory. Indeed, it can be
proven that no frame exists for which this equivalence
holds (see [1]). These observations about inference cap-
ture a larger point: any attempt to formalize quantum
theory as a classical probability framework ultimately
loses tomographic completeness, rendering it inconsistent
and invalid.
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Abstract. In this work, we suggest general robustness for quantifying nonlocality and investigate all types
of robustness measures, i.e., white-noise, standard, and general robustness measures. As a result, we show
that white-noise robustness does not fulfill monotonicity under local operation and shared randomness,
while others obey it. To compare monotones, we introduce the concept of inequivalence, indicating a
behavior in which the order relationship is reversed according to the choice of monotones. From the
operational point of view, the inequivalence of monotones for quantum objects implies no existence of
free operations connecting them. By applying this concept, we find that standard and general robustness
measures are inequivalent between even and odd dimensional systems up to eight when we share the
maximally entangled state and randomly perform the optimal, so-called CGLMP measurement settings.

Keywords: AQIS, template

1 Introduction

Robustness measures have been used to quantify non-
locality by the minimal noises that nonlocal correlations
can withstand before becoming local. According to the
type of noises, robustness measures are classified into so-
called white-noise and standard [1] robustness measures
that quantify the tolerance to the addition of white and
local noises, respectively. These robustness measures pro-
vide operational meanings, i.e., how long the nonlocal
correlations withstand in realistic noises such as detector
e�ciencies.
In this work, we suggest general robustness that quan-

tifies the tolerance to adding no-signaling noises, and
we investigate all types of robustness measures, i.e.,
white-noise, standard, and general robustness measures,
for quantifying nonlocality from the resource-theoretical
point of view. The standard and the general robust-
ness measures fulfill the monotonicity, which is a required
property such that a quantifier monotonically decreases
under free operations. However, we show that the white-
noise robustness does not fulfill the monotonicity by pre-
senting counter-examples in which it increases under lo-
cal operations and shared randomness. This behavior
occurs due to the dependence of the white-noise model
on the dimension because LOSRs allow increasing the
number of outcomes in post-processing.
We also introduce the concept of inequivalence to

compare the standard and general robustness measures
systematically. We define inequivalence as a behavior
such that two monotones provide di↵erent order rela-
tions when we compare two quantum objects by them.
Namely, one of two monotones tells us that a quantum
object has larger resources than another, while another
one tells us that another quantum object is larger than
the one. Additionally, we show that an inequivalent be-
havior implies no existence of free operations connecting
quantum objects. This concept can provide a systematic

⇤hyoung@hanyang.ac.kr

method to numerically investigate di↵erent behaviors of
monotones, while monotones have been studied from the
axiomatic point of view. Applying it to our framework,
we find that the standard and the general robustness
measures are inequivalent for cases where sharing the
maximally entangled state and randomly performing the
optimal CGLMP measurement settings up to dimension
8. We further extensively investigate inequivalent behav-
iors for 2- and 3-dimensional cases for arbitrary states.

2 Robustness measures

2.1 Previous robustness measures

Various robustness measures were adopted to investi-
gate nonlocal correlations a↵ected by specific noises from
an operational point of view. First of all, white-noise ro-

bustness was introduced to investigate the e↵ects of de-
phasing noises, defined as the minimal white-noise that
nonlocal correlations disappea. It can be formulated as
follows,

Rwn(~p) = min
n
r � 0

���
~p+ rwn~pwn

1 + rwn

2 L

for ~pwn =

✓
1

mAmB

, ...,
1

mAmB

◆T o
,

where mA (mB) is the number of outcomes for Alice’s
(Bob’s) measurement settings. The uniform vector ~pwn

is a 4mAmB-dimensional vector corresponding to a joint
probability distribution such that possible outcomes are
measured with equal probability because of the white-
noise e↵ect.

More strictly, another robustness is defined as the min-
imal addition of local noises that vanish nonlocal corre-
lations [1]. This type of robustness can be understood
as a standard robustness in the framework of the general
resource theory [2], which is defined as a minimal ad-
dition of free (local) objects to a resourceful (nonlocal)
object before vanishing its resource (nonlocality). It is
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formulated as

RS(~p) = min

⇢
rs � 0

���
~p+ rs~pl
1 + rs

2 L for ~pl 2 L
�
.

The minimal value rs is related to the maximal possible
violation ⌫ = 2r + 1 by ~p of a Bell inequality, defined as

⌫ = max
~s

|~s · ~p|
max~q2L |~s · ~q| .

This relationship corresponds to the one found in general
convex resource theories in which the standard robust-
ness has an operational meaning as the exact quantifier
of maximum advantage in discrimination tasks [2].

2.2 General robustness

Together with the standard robustness, general robust-
ness is widely used in resource theoretical frameworks,
defined as the minimal addition of general objects to a
resourceful object. Applying it to the resource theory
of nonlocality, we define the general robustness in the
following way,

RG(~p) = min

⇢
rg � 0

���
~p+ rg~pns
1 + rg

2 L for ~pns 2 NS
�
.

These robustness measures are selectively adopted ac-
cording to their properties in specific resource theories.
For instance, in the resource theory of entanglement,
standard robustness was suggested first and then ex-
tended to general robustness. On the other hand, in
the resource theory of coherence, the general robustness
is only studied intensively because the standard robust-
ness always gives infinite values for resourceful (coherent)
states [2].
We reformulate all robustness measures mentioned

above to canonical form of linear programming.

3 Non-monotonicity of white-noise ro-
bustness

From the resource theoretical point of view, a quanti-
fier should satisfy (i) faithfulness, i.e., a quantifier should
vanish if and only if the object is free, and (ii) mono-
tonicity, i.e., a quantifier should monotonically decrease
under any free operations (LOSRs in our framework).
By definition, it is straightforward to see that all robust-
ness measures hold the faithfulness. Furthermore, it was
shown that standard and general robustness measures
fulfill the monotonicity in any convex resource theories.
[2] However, the monotonicity of white-noise robustness
is not guaranteed in general.
To examine the monotonicity of Rwn, we find counter-

examples that exhibit the increase of Rwn under LOSRs.
Let us consider so-called output operations as a class of
LOSRs that allow one to artificially merge or enlarge pos-
sible measurement outcomes as described in [3]. Output
operations cannot generate a nonlocal correlation from a
correlation admitting LHV model. As a particular case,
we assume that Ek is an output operation that adds k

Figure 1: Non-monotonicity of white-noise robustness
under LOSRs.

more outcomes to each measurement setting and assigns
zero probability to added outcomes, such that

pk(ax, by|x, y)

=

(
p(ax, by|x, y) for ax  mA and by  mB

0 for k � ax > mA or k � by > mB

where pk(ax, by|x, y) is the joint probability consisting of
Ek(~p).

In this case, the uniform vector ~pwn should be modified
accordingly because the white-noise is assumed to a↵ect
all possible outcomes uniformly. Namely, the white-noise
e↵ect can be broadened to enlarged outcomes, and as a
result, nonlocal correlations can be more robust against
white-noise. For instance, let us apply the above op-
erations to ~pCHSH

max
giving the maximal violation of the

CHSH inequality for mA = mB = 2. Then, applying Ek
to it, we find out that the white-noise robustness strictly
increases according to the number of added possible out-
comes k. In contrast, the standard and general robust-
ness measures are invariant, as shown in Fig. 1.

4 Inequivalence of robustness measures

In this section, we will define the inequivalence of
monotones and provide extensive numerical investiga-
tions for inequivalence between the standard and general
robustness measures.

4.1 Inequivalence of monotones

One of the main reasons we quantify resources is to in-
vestigate and compare the amount of resources quantita-
tively. However, even if quantifiers satisfy both faithful-
ness and monotonicity, they can show di↵erent behaviors
when we compare the resourcefulness of objects.

Definition 1 (Inequivalence) Quantifiers Q1 and Q2

are said to be inequivalent for objects o1 and o2, if there
exists some objects o1 and o2 showing Q1(o1) > Q1(o2)
and Q2(o1) < Q1(o2).

Quantifiers satisfying the faithfulness and monotonic-
ity are called monotones that decrease monotonically un-
der free operations. This fact implies the following theo-
rem.
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Figure 2: Standard and general robustness measures for
sharing maximally entangled states and performing the
optimal measurement setting for dimensions from D = 2
to 25. Inequivalence between standard and general ro-
bustness measures is observed between even and odd di-
mensions up to D = 8.

Theorem 2 If some monotone Q1 and Q2 are inequiv-

alent for objects o1 and o2, then no free operation can

transform one into another.

Proof. Any monotones are equivalent for objects that
can be transformed by free operations from one to an-
other. That is because if one can generate an object o1
from o2 via a free operation F , i.e., o1 = F(o2), then any
monotones Q should provide equivalent relations such
that Q(o1) � Q(o2) according to the monotonicity. As
we take the contraposition of the statement, the theorem
is proved. ⇤ In general, it is not straightforward to prove

whether it is possible to transform an object into another
by a free operation. According to the theorem, however,
the inequivalence of two objects allows one to confirm no
existence of free operations connecting given objects. In
our framework, if monotones such as the standard and
general robustness measures are inequivalent for vectors
~p1 and ~p2, then there is no LOSR E satisfying E(~p1) = ~p2
or E(~p2) = ~p1. However, we note that equivalence for ~p1
and ~p2 does not imply the existence of a LOSR connect-
ing them.
To examine the inequivalence of monotones Q1 and Q2

for many objects simultaneously, one can plot Q1 against
Q2. Then, on the basis of the interested object o0, any
objects located on the upper right- and lower left-hand
corners are equivalent, while objects located on the up-
per left- and lower right-hand corners are inequivalent.
We will apply this method to investigate the inequiva-
lence of standard and general robustness measures in the
following.

4.2 Inequivalence of robustness measures

We would like to explore the di↵erence between ro-
bustness measures RS , RG as investigating their inequiv-
alence in specific examples. Let us assume that Alice and

Bob share a maximally entangled state

| diAB =
1p
d

X

i=,0,...,d�1

|iiiAB .

Then Alice and Bob randomly perform measurements Ax

for x = 1, 2 and By for y = 1, 2 having the nondegenerate
eigenstates in D-dimensional Hilbert space, respectively,

|kiA,x = (1)
(

1p
deff

P
deff�1
j=0 exp

⇣
i 2⇡
deff

j(k + ↵x)
⌘
|jiA for k < de↵

|kiA for de↵  k < D

|liB,y =
(

1p
deff

P
deff�1
j=0 exp

⇣
i 2⇡
deff

j(�l + �y)
⌘
|jiB for l < de↵

|liB for de↵  l < D

with e↵ective dimension de↵, where ↵1 = 0,↵2 = 1/2,
�1 = 1/4, and �2 = �1/4. The above measurement set-
tings for de↵ = D are used in as optimal measurements
for the maximal Bell violation obtained from numerical
investigations. We introduce the e↵ective dimension to
consider more general cases such that the optimal mea-
surements are performed on the partial space while eigen-
states in another partial space are the same.

In the above settings, d and de↵ correspond to the
amount of entanglement of | diAB and incompatibil-
ity of measurement settings, respectively. Intuitively,
one can expect that higher entanglement and incom-
patibility may lead to more nonlocality due to this sce-
nario. The general robustness increases monotonically
for d = de↵ = D from 2 to 25. However, the standard
robustness is invariant at 0.207107 for even dimensions
up to D = 8, while it increases for odd dimensions from
0.145489 to 0.198678 up to D = 7 as shown in Fig. 2.
Thus, they show inequivalence with the increase of di-
mensions up to eight. As a result, one can confirm that
no LOSR operation transforms probability vectors from
odd to even dimensional cases and vice versa. This result
is a counter-intuitive behavior, compared to the case that
entangled state can be transformed from | di to | d0i for
d > d0 via local operations and classical communications.
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Abstract. Bell nonlocality is a fundamental concept in quantum mechanics, highlighting the distinction
between the classical and quantum worlds. While the standard Bell scenario assumes a single source to
distribute particles to multiple parties, the network nonlocality considers independent multiple sources
based on the network configuration. The correlations in such network scenarios fundamentally di↵er from
the standard Bell scenario. Without relying on the standard Bell scenario, a quantum distribution that
does not admit the trilocal model can be shown to exist in the triangle network. Based on the token-
counting strategy, such distribution can be extended to a larger class of networks beyond the triangle
network. In this work, we investigate the distribution in the square network by the token counting strategy
and compare its characteristics with the triangle distribution in network.
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1 Introduction

Bell nonlocality is one of the most fundamental dis-
covery in quantum mechanics [1], which reveals a sep-
aration between the classical and quantum world. The
nonlocal correlation violates a Bell inequality formulated
under the local hidden variable model. In the standard
Bell experiment, a single source is assumed to distribute
particles to multiple parties and then each party mea-
sures the respective system of the particle independently
depending on their inputs. It is known that the set of
correlations compatible with local hidden variable model
becomes convex set and can be characterized in terms
of a polytope structure [2]. Consequently, in the stan-
dard Bell scenario, we can bound local correlations using
linear inequalities, commonly known as Bell inequalities.
However, in practical applications of quantum nonlocal

correlations in network, more than one source are nor-
mally necessary to distribute the correlation over long
distance, e.g., by using entanglement swapping [3]. This
inspires the study of totally di↵erent concept of nonlo-
cal correlation in network scenario with more than one
independent source. Unlike standard Bell scenario, the
correlations in a network compatible with local hidden
variable model does not correspond to a convex set, so
it is di�cult to characterize the correlation generated in
the network scenario.
Various attempts have been made on simple quantum

network where there are three parties. An one of the in-
teresting networks is triangle network where all three par-
ties are connected by three independent sources. While
an early study on the nonlocality in the triangle net-
work turned out to be fundamentally compatible with
standard Bell nonlocality, a recent work by Renou et al.

demonstrated the genuine triangle network nonlocality
[4]. In this scenario, three parties performs fixed mea-
surements without inputs, to yield a fundamentally dif-
ferent form of nonlocality from the standard Bell scenar-
ios. The nonlocality in the trangle network was proved
without tracing back to the standard Bell inequality vi-
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olation.
In this work, we will review several methods to inves-

tigate the genuine nonlocality in the triangle network,
and employ them to extend the genuine nonlocality to
the square network. Especially, we will investigate the
distribution in the square network by the token counting
strategy and compare its characteristics with the triangle
distribution in network for further generalization.

2 Genuine quantum nonlocality in the
triangle network

We first review the method to demonstrate the genuine
network nonlocality in the triangle scenario in Ref. [4].
In the triangle network, three separate parties are con-
nected by three independent bipartite sources in pairwise
yielding outputs a, b and c without inputs. Since there
are no inputs, the distribution is given by the joint prob-
ability distribution P (a, b, c). We call the distribution as
trilocal correlation if it admits the form

P (a, b, c) =

Z
d↵d�d�PA(a|�, �)PB(b|�,↵)PC(c|↵,�),

(1)
where ↵ 2 X,� 2 Y and z 2 Z are the three local vari-
ables distributed by each source and PA, PB , PC repre-
sent probability distribution from each party conditioned
on their suitable choice of local variables.

The family of distributions analyzed in Ref. [4] can be
obtained by the following quantum protocol. Each in-
dependent source distributes maximally entangled Bell
state | +i = 1p

2
(|01i+ |10i)) between two parties. Each

party then performs a projective measurement on their
own system in the same basis yielding possible four out-
comes, labled by {", #,�0,�1}. The basis is given by

|#i = |00i , |"i = |11i ,
|�0i = u0 |01i+ v0 |10i , |�1i = u1 |01i+ v1 |10i (2)

with real number cos ✓ = u0 = �v1, sin ✓ = u1 = v0.
For symmetry reason, ✓ is in the range (0, ⇡

4 ] without loss
of generality.
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The idea of distribution can be generally understood
as the token counting strategies as the state |01i rep-
resents a token being sent to right and the state |10i
represents a token being sent to be left. Thus, the out-
come #, " and � = {�0,�1} can be interpreted that a
party receives no token, one token and two tokens re-
spectively. It is known that the classical token counting
strategies in the triangle is rigid, meaning that there is
essentially a unique classical strategy to simulate classical
token counting strategies. Based on this, it was proved
that the resulting quantum distribution does not admit
trilocal model for 0.8860 / cos ✓ < 1 in Ref. [4].
More recently, it was shown in Ref. [5] that the dis-

tribution does not admit the trilocal model in an addi-
tional range, 0.7504  cos ✓  0.81001, extending the
abovementioned result. Their approach consists of find-
ing equivalent condition for four outcome distribution in
the triangle network to admit trilocal model and then
apply inflation technique [6], which is state-of-the-art
method in network nonlocality field.

3 Token counting distribution in square
network

Figure 1: Setting of the square network. Ai denotes the
four parties and ai 2 {", #,�0,�1} is outcome of each
party. The set Xi denotes the local hidden variable
source set connecting two parties as in the figure. For
token counting distribution, we exploit four independent
Bell states | +i = 1p

2
(|01i+ |10i).

The token counting strategy also holds in generic net-
works [7, 8]. One of the main results in Ref. [7] states
that for no-double-common-source network, any classical
strategy that simulates a token counting distribution in
the given network is essentially a token counting strategy.
In essence, they proved the existence of nonlocal distribu-
tion in the square network, token counting distributions,
via the rigidity of the token counting strategy.
This motivates us to characterize the family of net-

work nonlocal quantum distributions in the square sce-
nario without violation of standard Bell inequality. We
generate our token-counting distribution in the square
network as described in Figure 1. Basically, the square
scenario is an extension of the triangle scenario, where
an additional person and one source are connected in a

square structure.
The token counting distribution in square network is

obtained as follows. First, four independent sources | +i
distribute each system to the connected parties. Then
the global state is

| A1,A2,A3,A4i =
1

24
(|01i+ |10i)⌦4 .

Next, each party performs the same projective measure-
ment in Eq. (2) to their own systems. We denote the re-
sult joint distribution as PQ(a1, a2, a3, a4) and there are
several properties that the distribution PQ(a1, a2, a3, a4)
satisfies. Our goal is to find the range of the measurement
parameter ✓ that makes the corresponding probability
distribution PQ(a1, a2, a3, a4) is network nonlocal in the
square scenario. To do so, we characterize the constraints
for the 4-local correlation to satisfy the properties of the
PQ(a1, a2, a3, a4).

4 4-local model in the square network

The 4-local model in the square network can be defined
in a similar manner to the trilocal model. The 4-local
model in the square network takes the form

P (a1, a2, a3, a4) =

Z
d↵1 · · ·

Z
d↵4

⇥ PA1(a1|↵4,↵1) · · ·PA4(a4|↵3,↵4) .
(3)

where ↵i 2 Xi, i = 1, . . . , 4 denote the
four local variables distributed by each source and
PA1(a1|↵4,↵1), PA2(a2|↵1,↵2), PA3(a3|↵2,↵3) and
PA4(a4|↵3,↵4) represent arbitrary deterministic output
functions from A1, A2, A3 and A4 respectively.

If we consider the coarse graining output set {", #,� =
{�0,�1}}, we observe the following lemma for the 4-local
model compatible with PQ(a1, a2, a3, a4).

Lemma 1 We consider the coarse graining of the output

set {", #,� = {�0,�1}}. The sources sets can be parti-

tioned in two subsets of equal weight

X1 = X1
0 [· X1

1 , (4)

such that the sets from which the local variable ↵1 is

taken determine all outputs. More precisely, the follow-

ings hold.

8
><

>:

a1 =" , ,↵4 2 X4
0 ↵1 2 X1

1

a1 =# , ↵4 2 X4
1 , ↵1 2 X1

0

a1 = � otherwise.

(5)

Similarly, the same holds for other remained parties with

a direct orientation of the cycle.

From this fact, we can obtain the necessary condition
for the PQ(a1, a2, a3, a4) admits the 4-local model. In de-
tail, we obtain 5 parties distribution with binary outcome
satisfying several conditions from ✓ depended probability
distribution that admits 4-local model.
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Lemma 2 Let us introduce

q(i1, i2,i3, i4, t) := 23⇥ (6)

p(ak = �ik , (↵1, . . . ,↵4) 2 (X1
t ⇥ · · ·⇥X4

t )).

If 4-local model simulates the PQ(a1, . . . , a4), then

q(i1, i2, i3, i4, t) is a probability distribution. Moreover,

the following marginal distributions of q(i1, i2, i3, i4, t)
satisfy:

q(i1, i2, i3, i4) =
X

t

q(i1, i2, i3, i4, t)

=
(ui1ui2ui3ui4 + vi1vi2vi3vi4)

2

2
, (7)

q(ik, ik+1, t = 0) =
(uikuik+1)

2

2
,

q(ik, ik+1, t = 1) =
(vikvik+1)

2

2
. (8)

Thus, our problem can be reduced to check when the
q(i1, i2, i3, i4, t) is not well defined. The well-definedness
of the distribution q that is compatible with the 4-local
model distribution pQ imposes several constraints. The
remaining part is to calculate the range of the parameter
✓ not satisfying such constraints. We present an approach
that utilizes the inflation technique as a possible method.
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Abstract. Randomness, in particular trusted private randomness is an important resource for appli-
cations in cryptography. Quantum physics provides some natural ways to generate genuine randomness,
however, the generation of certifiable randomness still meets various theoretical and technical challenges.
Here, we experimentally implement a certifiable quantum random number generator, built with o↵-the-
shelf optical and electronic components. The resulting device is compact and portable. Furthermore, its
security makes no assumptions about the input light source, while its performance is constantly monitored
by an integrated certification test.

1 Introduction

While physicists aim to predict the evolution of phys-
ical systems, quantum physics does not allow us to do
so with infinite precision, due to the uncertainty prin-
ciple. This unpredictability – randomness – lies at the
core of quantum physics. Randomness is not something
we always avoid, as it has its value in applications such as
Monte Carlo simulation and cryptography. While pseudo
randomness is su�cient for simulation purposes, it is not
desirable in cryptography as it is generated in a deter-
ministic manner. To achieve stronger security for such
applications, we need to consider true randomness gen-
erators (TRNGs). In particular, studies [1, 2] have been
devoted to the development of quantum random number
generators (QRNGs), where the randomness is derived
from quantum origin.
One advantage of QRNG is that it is certifiably pri-

vate and secure, i.e. upon passing certain tests, one can
be assured that the generated randomness is close to be-
ing uniformly random and independent from other sys-
tems. Depending on the assumptions based on which
the security is derived, QRNGs can be categorised as de-
vice independent (DI) or device dependent (DD). The
security of DI-QRNG [3, 4, 5, 6] is shown with mini-
mum assumptions, nonetheless it requires more sophis-
ticated (and therefore often costly), while achieving sig-
nificantly lower key rates compared to device dependent
ones. On the other hand, the fully DD regime relies on
the ability to be sure that one maintains a high stability
of the full experimental setup, which is also unwished-
for. A way to overcome these challenges is to consider
the intermediate regime of semi-DI, where one limits the
amount of assumptions on the device. This often enables
the usage of a simpler setup, while maintaining high key
rates [7, 8, 9, 10, 11, 12, 13, 14], conditioned on the device
passing the certification tests.
Semi-DI protocols often limit their device-

dependencies either on the light source, or on the
measurement setup. Recently, a notable source device

⇤yu.cai@ntu.edu.sg

independent (SDI) scheme was proposed in [15], where
the measurement apparatus is fully trusted and no
assumption about the incoming light source is made.
In our work, following the scheme of [15], we built
an optical SDI-QRNG with o↵-the-shelf components,
and extended the security analysis to account for a
more general setting of using unbalanced beamsplitters.
We first present the detailed scheme with the main
security claim in Section 2. Then Section 3 will cover
the experimental setup and its performance. Finally, we
conclude in Section 4.

2 Theory of certifiable randomness gen-

eration

Figure 1: A schematic of the optical SDI-QRNG setup.

The source device independent quantum random num-
ber generator (SDI-QRNG) that we study and implement
consists of two stages: a quantum randomness generation
stage, and a classical randomness extraction stage. The
randomness generation has three components: an input
source, a certification measurement and a randomness
measurement. Fig. 1 shows a schematic drawing of the
setup, which can be described as follows [15]:

1. Light is emitted from an untrusted light source, en-
ters mode E. This light is fully untrusted, hence in
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principle, Eve has full control over how she would
engineer the input state ⇢E such that she obtains as
much information as possible about the final ran-
domness generation.

2. The light reflected by BS1 in mode C is subjected
to the certification measurement. It passes if the
photon number detected falls in a predetermined
range nc 2 [n�

c
, n

+
c
].

3. The transmitted light in mode R is then subjected
to the di↵erence measurement at detector A and B.
The di↵erence x = nA � nB is converted to a raw
binary string X and sent for post-processing.

4. A final binary string is extracted from the raw
string X, if the certification test is passed.

The generated randomness is quantified by the condi-
tional min-entropy Hmin(X|E) [16], which is the amount
of private randomness present the string X given any
external agent Eve’s information:

Hmin(X|E) = � log

 
max
{Êx}

x

X

x

px tr
⇣
Êx⇢̂

x

E

⌘!
(1)

Now we are ready to state the definition of a random-
ness generation protocol:
Definition 1: An (m,, ✏fail,m, ✏C)-certified randomness
generation protocol produces an output X made of m

measurement results such that

• Security: Either the certification test P fails, or

Hmin(X | E) � ,

except with probability ✏fail,m  m✏fail.

• Completeness: There exists an honest implementa-
tion such that the test will be passed with proba-
bility 1� ✏C .

where ✏fail is the upper bound probability over all possible
input state ⇢̂E such that the photons in mode R falls
outside the range [n�

R
, n

+
R
] given that the photons in mode

C passed the certification test P with probability 1� ✏C .
By modelling the photodetectors as number measure-

ment converting to voltage, smearing with noise, finite
dynamic range and finite bin size, a realistic and practi-
cal source-independent protocol can be defined, requiring
only an optical setup consisting of

• Two trusted vacuum modes,

• Two beamsplitters of reflectivity r0 and r1,

• Two noisy photodetectors used to make a di↵erence
measurement, and

• A third noisy photodetector used to make a certi-
fication measurement which passes the test P if vi
falls in a chosen range

h
v
�
i�
, v

+
i+

i
.

These optical elements can be used as a certified
(m,, ✏fail,m , ✏C)-randomness generation protocol as per
the Definition 1 without making any assumptions about
the input source. The analysis of Ref. [15] shows how one
may derive the lower bound on min-entropy, , as a func-
tion of the reflectivity r0, and parameters n

�
R
, n

+
R
. The

parameters n
�
R
, n

+
R

are intricately tied to various inter-
mediate parameters, ultimately giving rise to bounds on
the total completeness and security error. These techni-
cal details are omitted from this extended abstract. We
extend the lower bound on  derived from Ref. [15] to
the case where r0 in Fig. 1, i.e. the reflectivity of the
beamsplitter used in the di↵erence measurement is also
unbalanced in general.

3 The experiment and results

3.1 Experimental Implementation

In our setup, a Koheron LPD100 board consists of a
laser source (Koheron LD101), operating at � = 1550nm,
and a balanced photodetector (Koheron PD100B-AC),
which used for the randomness generation measurement
(detector A & B in Fig. 1). At the certification measure-
ment, Detector C is a single photodetector that is DC
coupled (Koheron PD100). The reflectivity for the certi-
fication and the randomness generation measurement are
r1 = 0.109 (89.1:10.9) and r0 = 0.51 (51:49) respectively.
Note that as compared to [15], we have considered a case
of non-perfect 50:50 beamsplitter, i.e. r0 6= 0.5, which is
a realistic and practical scenario. Signals from the detec-
tors are acquired and processed by a compact software
defined instrument, RedPitaya (STEMlab 125-14).

An honest implementation using coherent light passes
the certification test with probability 1 � ✏C = 99.5%,
with the voltage thresholds vi chosen accordingly. To
achieve a string of random numbers with a security pa-
rameter ✏ = 5 ⇥ 10�10, the relevant parameters, such as
block size and hashing failure probability, have to be care-
fully chosen by considering the experimental realisation,
for instance the sampling speed and FPGA memory size.
This results in a certified min-entropy of /m = 1.41 bits
per sample.

In our proof-of-concept implementation, 11.41Mb of
certified raw random bits was acquired in ⇡ 49.8 sec-
onds, translating to an experimental randomness genera-
tion rate of⇡ 229kb/s. We further tested the randomness
extraction over the RedPitaya board, whereby a total of
⇡ 875.6kb certified random bits were extracted at a rate
of 1.21kb/s. We remark that this is due to the limitations
and not utilising the FPGA feature, since the hashing was
performed by Python programming, which is left as the
future work. The resulting random numbers successfully
passed the NIST tests as demonstrated in Table 1.

3.2 Using untrusted light

To test if our implementation fulfills its intended pur-
pose, we further execute the protocol by changing the in-
put to a di↵erent, untrusted light source, with the same
optical power as input and keeping the rest of the setting
as before. The protocol is executed successfully, where
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Table 1: NIST statistical test suite results
NIST Test

Test Name p-value Result
Freq. Test (Monobit) 0.56225 Random

Freq. Test within a Block 0.09076 Random
Run Test 0.80878 Random

Longest Run of 1’s in a Block 0.57095 Random
DFT (Spectral) Test 0.26461 Random

Cummul. Sums (Forward) Test 0.69203 Random
Cummul. Sums (Reverse) Test 0.45584 Random

the collected samples passed the test P with a proba-
bility of 99.4%. By running the protocol with real-time
extraction, a total of 874.8 kb of certified real-time ran-
dom numbers are extracted at a rate of 1.20 kb/s. These
random numbers also successfully passed the NIST tests
in Table 1.

3.3 Light injection attack

To verify the robustness of the protocol under an eaves-
dropper attack, we also implemented the situation where
the SDI-QRNG is under attack by Eve, who tampers
with the original light source, ⇢̂H by injecting an addi-
tional light source, ⇢̂E alongside the original incoming
beam. This is similar to the injection attack of QKD
devices [19]. With a beamsplitter BSE with reflectivity
rE = 0.0097, ⇢̂H and ⇢̂E were mixed at ⇡ 99 : 1 and sent
into mode E as the input to the QRNG.
As shown in Fig. 2, when Eve’s optical power (that

governs ⇢̂E) increases, we observe that the certification
responds to the attack by showing a decrease in the
length of the random bits extracted. This decrease in
response starts slowly, but becomes rapid when Eve’s in-
put is around 0.0050mW, and the number of extracted
bits reaches zero after 0.0125mW of optical power from
Eve’s attack. This shows that the protocol responds well
to such light injection attacks, by producing lesser certi-
fied random numbers as the malicious party increasingly
tampers with the light source.

4 Discussion and Outlook

In this work, we showed that a full SDI-QRNG de-
vice, consisting of the light source, measurement devices
and real-time extraction, can be built solely from cost-
e↵ective, o↵-the-shelves components. Remarkably, the
protocol does not require any trust on the light source
and certifiable, thus allowing for easy integration as a
subsystem in an (optical) quantum technological plat-
forms. This source-agnostic feature is well verified and
demonstrated concretely in our experiments, where a di-
rect swap of the light source and an explicit attack via
light injection are carried out. A further optimization
of our implementation would pave the way in creating
a cost-e↵ective, high-bitrate, portable SDI-QRNG, serv-
ing e.g. as a local randomness beacon for purposes of
cryptography and quantum communication protocols.

Figure 2: SDI protocol with externally injected, un-
trusted light source.
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Abstract. As quantum technologies continue to advance, the performance of quantum computing simu-
lators has reached a mature stage. However, the potential threat posed by quantum computing to cyber-
security necessitates a thorough assessment of its practical implications. This research presents a scalable
evaluation approach for measuring the time required for integer factorization using Shor’s algorithm [1] in
a gate-based quantum computing simulator called simulator mps. Furthermore, the study investigates the
impact of parameter pre-selection in Shor’s algorithm. Specifically, the pre-selection technique ensures a
higher success rate of integer factorization with a reduced number of iterations, enabling e�cient perfor-
mance measurement under fixed conditions. A comparative analysis against random parameter selection
demonstrates that the pre-selection of parameters enables scalable evaluation of integer factorization with
improved e�ciency.

Keywords: Quantum technologies, Quantum computing simulators, Integer factorization, Shor’s algo-
rithm, Parameter pre-selection

1 Introduction

Advancements in quantum computing have sparked
interest in quantum information theory and the poten-
tial for solving complex problems. However, there are
concerns about the impact of quantum technologies on
cybersecurity, as traditional cryptographic algorithms
are vulnerable to attacks using quantum algorithms like
Shor’s algorithm for factorization. Previous research has
focused on evaluating quantum algorithms in specific sce-
narios using simulations, limiting the understanding of
the threat posed by quantum computing. This study ad-
dresses these limitations by evaluating Shor’s algorithm
in a gate-based quantum computing environment, us-
ing an IBM platform and a pre-selection technique for
random parameters. This scalable evaluation approach
provides insights into the performance of the algorithm
across a wide range of input values, contributing to the
development of quantum information science and enhanc-
ing our understanding of quantum phenomena.
Overall, this research aims to assess the practical im-

plications of quantum computing on cybersecurity and
explores the potential of gate-based quantum computing
systems. By evaluating the performance of Shor’s al-
gorithm for factorization and considering the scalability
of the evaluations, this study contributes to the advance-
ment of quantum information science and enables reliable
simulations of large-scale quantum systems.

2 Integer Factorization using Selected

Parameter

2.1 Simulator Selection

The IBM quantum computing simulators are software
tools that allow users to simulate the behavior of quan-
tum computers on classical computers. These simulators
are designed to provide accurate and e�cient simulations

⇤js lee@norma.co.kr

IBM Simulator Type Q �

simulator statevector 32 7
simulator stabilizer 5000 1249

simulator extended stabilizer 63 15
simulator mps 100 24

ibmq qasm simulator 32 7

Table 1: Types of IBM simulators and theoretically
breakable bits � depending on their supported qubits Q

of quantum circuits, enabling researchers and develop-
ers to test and refine their algorithms before running
them on real quantum hardware. Table 1 summarizes
the currently supported IBM simulators and the number
of qubits they can handle, along with the theoretically
breakable bits in the RSA scheme using Shor’s algorithm.

This study specifically utilized the Matrix Product
State (MPS) simulator provided by IBM for simulating
quantum circuits. The MPS simulator represents quan-
tum states using matrix products, enabling e�cient sim-
ulation of circuits with a small number of qubits but
many gates. With support for up to 100 qubits, it fa-
cilitated the evaluation of Shor’s algorithm for integer
factorization of numbers up to 24 bits. Notably, the sim-
ulator mps tool also allowed for simulating noise and er-
rors in quantum circuits, enabling analysis of their im-
pact and the development of error mitigation strategies.
In comparison, the simulator stabilizer, which supports
the most qubits, was limited to simulating Cli↵ord gates
and lacked support for non-Cli↵ord gates essential to im-
plementing Shor’s algorithm e↵ectively. Consequently,
the simulator mps proved to be the most suitable choice
for the study’s objectives.

2.2 Pre-selection of Parameters in Shor’s Algo-
rithm

The selection of random parameters plays a crucial role
in the success of Shor’s algorithm. Specifically, the choice
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(a) N = 93, a = 80, r = 30, s = 8192 (b) N = 93, a = 91, r = 10, s = 8192

(c) N = 93, a = 88, r = 6, s = 8192 (d) N = 93, a = 32, r = 2, s = 8192

Figure 1: Simulation results of the quantum period-finding subroutine in Shor’s algorithm when varying N, a, r

of a random parameter a in step 1 is of utmost impor-
tance for the algorithm to work e�ciently. If we happen
to select a random number that shares a common factor
with the number N we want to factorize, then the great-
est common divisor (GCD) computed in step 2 will be
greater than 1. In this case, we can directly obtain a non-
trivial factor of N . On the other hand, if we choose a ran-
dom number that is coprime toN , the GCD will be 1, and
we will rely on the quantum period-finding subroutine to
determine the period r of the function f(x) = ax mod N .
Therefore, the success of the algorithm depends on the
random selection of parameters and the probabilistic na-
ture of quantum measurement.
The results obtained from the quantum period-finding

subroutine in Shor’s algorithm are represented as prob-
ability distributions based on measurement outcomes.
Figure 1 illustrates these distributions. In an ideal noise-
less quantum computer, the number of bars in the his-
togram would precisely correspond to the value of r.
However, when using a noisy quantum simulator or quan-
tum computer, errors are introduced, as depicted in the
figures. Interpreting the experimental results can be chal-
lenging if an insu�cient number of iterations is employed.
It can be anticipated that larger values of r will require
more iterations. For instance, when r = 2, the histogram
will consist of only two bars, making it feasible to obtain
the result of the quantum period-finding subroutine with
a small number of iterations. Figures 1a to 1d demon-
strate the factoring results of the value N = 93, with
chosen values of a (80, 91, 88, and 32) that yield values
of r equal to 30, 10, 6, and 2, respectively. Here, s rep-
resents the number of iterations, also referred to as the
number of shots for the quantum circuit.
To facilitate scalable testing of Shor’s algorithm, we

N 15 129 335 687 7617 9997
a 4 44 66 230 2540 768

Table 2: Examples values of a where r = 2.

pre-select a value of a that yields the minimum possible
value of r (r = 2) instead of randomly choosing a. This
approach helps maintain consistency in the testing pro-
cess. To compare the time required for factorization using
a quantum simulator as N increases while restricting a
to the same value of r, Table 2 provides several values of
a that result in r = 2 for actual semiprime N values. In
order to measure the performance of the simulator under
standardized conditions, the (N, a) pairs listed in the ta-
ble are executed together instead of selecting a random
a.

3 Performance of Shor’s Algorithm at

Scale

In this section, we present the time required for in-
teger factorization using Shor’s algorithm on the IBM
quantum computing simulator under two scenarios: pre-
selection of parameter a and random selection of param-
eter a. The factorization times mentioned refer specif-
ically to the time taken by the quantum period-finding
subroutine.

3.1 Pre-selection of Parameter

Figure 2 illustrates the performance of Shor’s algo-
rithm in terms of the time required for integer factor-
ization for various input values of N , when the parame-
ter a is pre-selected. The graph shows a linear trend on
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Figure 2: The result of quantum period-finding subroutine time of N using Shor’s algorithm using IBM simulator.
We successfully factorized all N values up to 15 bits when parameter a is pre-selected and depicted in line. In case of
a is randomly selected, we partially succeed to factorize N up to 8 bits.

a log-log scale, indicating that the integer factorization
time increases exponentially with the value of N . Al-
though Shor’s algorithm is theoretically expected to have
a polynomial time complexity with respect to logN , the
simulation results on a quantum computer deviate from
this prediction. However, the pattern remains consis-
tent within the same number of bits, and a significant
increase in the required time is observed as the number
of bits increases. Figure 2 summarizes the results of our
experimental findings.
One notable feature of the graph is that the perfor-

mance measurement of integer factorization is scalable
with respect to N . This means that the measurements
were not limited to specific numbers but are applicable
to all possible values of N , enabling the prediction of
the time required for integer factorization for any given
N . This scalability is highly significant as it allows for
the assessment of the feasibility and time requirements
of integer factorization for all possible values of N . Ad-
ditionally, it is worth mentioning that all experimental
results were obtained with a fixed number of shots (8
shots). When a is pre-selected with a minimum period
of r = 2, 8 shots were su�cient to factorize all the given
input numbers.

3.1.1 Random Selection of Parameter

When parameters are randomly chosen, the results
show that the value of r (the period of the function) varies
and may not always be su�cient for successful factoriza-
tion. Even when successful, it often requires more itera-
tions in the continued fraction algorithm. As a result, the

performance of integer factorization varies across exper-
iments. In contrast, when a is pre-selected, all N values
were successfully factorized without any failures and with
consistent performance.

3.1.2 Main Takeaway

Based on the comparative evaluation of integer factor-
ization performance between pre-selection and random
selection of parameters, it is concluded that pre-selecting
a facilitates the measurement of quantum computing per-
formance at scale. The choice of a significantly impacts
the performance of Shor’s algorithm as it determines the
period of the function being evaluated. Therefore, careful
selection of a is crucial, especially for input numbers with
a large number of bits, where the function’s period can
be very large and the classical computation part becomes
computationally expensive.
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Abstract. Quantum target detection using entangled states is on the purpose of taking quantum ad-
vantage over the classical counterparts. When the target reflectivity is extremely smaller than 1, it is
interesting to figure out if there exists the target or not. In a laboratory, a low-reflectivity target is sim-
ply replaced by a low-reflectivity beam splitter. Since environmental noise is unavoidable in the target
detection protocol, it makes sense to consider vacuum noise in optical wave range and thermal noise in
microwave range, together with loss. Here we investigate how single-mode Gaussian channel a↵ects the
performance of quantum target detection.

Keywords: Single-mode Gaussian channel, Quantum target detection, Quantum advantage

1 Introduction

Target detection is to shed a light on a spot and de-
tect if a target exists or not. Quantum target detection
was proposed with input entangled light, while beating
the performance of input un-entangled light [1]. Since
we are interested in figuring out if the target exists or
not in a fixed range, it is quite similar to other quantum
information topics, such as quantum channel discrimi-
nation and quantum state discrimination. They utilize
the same performance evaluation methods as quantum
Cherno↵ bound (QCB) and Helstrom bound. In a sense
of figuring out a small di↵erence of a physical parame-
ter, it is close to quantum parameter sensing whose per-
formance limit is given by quantum Cramer Rao bound
using quantum Fisher information.
According to a target range, it is better to emit op-

tical waves in a short range and microwaves in a long
range. It is known that optical waves are dominantly
a↵ected by photon loss and microwaves are dominantly
a↵ected by thermal noise. At room temperature, there
is about 10�7 of the mean photon number of thermal
noise in the infrared regime(e.g.,400THz) and 600 of the
mean photon number of thermal noise in the micrwave
regime(e.g.,10GHz). In particular, due to thermal noise,
there is no entanglement in the output state after inter-
acting an input entangled state with the target. How-
ever the output states contain quantum correlation that
includes quantum discord and beats classical correlation.

2 Results and Method

We consider single-mode Gaussian channels on signal
and idler modes in quantum target detection, as shown in
Fig. 1. The single-mode Gaussian channel consists of dis-
placement and single-mode squeezing operations as well
as loss and thermal noise. Since a two-mode squeezed
vacuum (TMSV) state is a nearly optimal input state
in the quantum target detection, we apply the Gaussian
channels to the TMSV state.
First, we obtain that displacement operation provides

better performance than single-mode squeezing opera-

⇤suyong2@add.re.kr

Figure 1: Quantum target detection with single-mode
Gaussian channels on both modes. G represents a Gaus-
sian channel, and  is a target reflectivity. We assume
that the mean photon number of thermal noise is much
larger than one, i.e., NB � 1. All the processes are in
Gaussian regime.

tion in signal mode, irrespective of the signal mean pho-
ton number of the TMSV state and thermal noise [2].
For the idler mode, we ignore displacement and single-
mode squeezing operations that are included in measure-
ment step. The displacement operation is useful to boost
the performance when we cannot increase a two-mode
squeezing parameter in the initial TMSV state.

Second, we obtain that single-mode squeezing opera-
tion on the idler mode can be useful to compensate loss
and thermal noise in the ldler mode. However the overall
performance is worse than the performance of the clas-
sical counterpart, i.e., coherent state. The result is in-
dependent of displacement operation before the loss and
noise channels in the idler mode. Thus, it is the best to
keep the idler mode without loss and noise.

Third, given a TMSV state as an input, we find the
limit of an idler memory that takes quantum advantage
over the coherent state. Let us assume that the idler
memory consists of loss and thermal noise channels. Ac-
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cording to the mean photon number of thermal noise in
the idler mode, we obtain the minimum transmittivity of
the idler memory to observe quantum advantage. In a
low signal mean photon number regime, it is allowed for
more range in the transmittivity of the idler memory to
have quantum advantage.
The performance is quantified with the detection error

probability that is a sum of miss detection probability
P (o↵|on) and false alarm probability P (on|o↵). Given
a positive operator valued measure, we obtain the up-
per bound of the minimum error probability by QCB.
A coherent state attains its QCB by homodyne detec-
tion, and a classically correlated (thermal) state attains
its QCB [3] by photon number di↵erence measurement
after a 50 : 50 beam splitting operation. Both states
achieve the bounds by local measurement. However a
TMSV state approaches its QCB asymptotically by col-
lective measurements [4]. Based on the QCB, quantum
target detection using the TMSV state improves the er-
ror probability exponent by a factor of 4 over the classical
counterparts [5]. Our results are based on the exponent
of the QCB that represents the decay constant. We also
develop that the decay constant is analytically calculated
by using the covariance matric components and the first-
order moments [2].
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Abstract. Secure multi-party computation (SMPC) protocols allow several parties that distrust each
other to collectively compute a function on their inputs. In this paper, we introduce a protocol that
lifts classical SMPC to quantum SMPC in a composably and statistically secure way, even for a single
honest party. Unlike previous quantum SMPC protocols, our proposal only requires very limited quantum
resources from all but one party; it suffices that the weak parties, i.e. the clients, are able to prepare
single-qubit states in the X − Y plane.

The novel quantum SMPC protocol is constructed in a naturally modular way, and relies on a new
technique for quantum verification that is of independent interest. This verification technique requires
the remote preparation of states only in a single plane of the Bloch sphere. In the course of proving the
security of the new verification protocol, we also uncover a fundamental invariance that is inherent to
measurement-based quantum computing.

Keywords: Quantum Verification, Delegated Computation, Secure Multi-Party Computation, Dis-
tributed Quantum Computing.

1 Motivation

Secure Multi-Party Computation (SMPC) protocols
allow several parties who do not trust one another to
collectively compute a function on their inputs. This
question was first considered by Yao [36] and has been
developed extensively in various settings (see [6] and ref-
erences therein). Several security guarantees can be pro-
vided by such protocols depending on the setting: all
parties can be on an equal footing, doing each their share
of the computation, or one can handle the brunt of the
computation while all others provide the data. In the
first case, the security goal is to maximise the privacy of
the data, while in the latter it extends to the privacy of
the computation which is delegated to the server.
Practical computationally-secure protocols have been

developed and implemented in commercial solutions for
protecting classical multi-party computations. In the
quantum case, several concrete protocols have been pro-
posed (see § 2). In the circuit model, the state-of-the-art
protocol [9] provides an information theoretic upgrade of
classical SMPC that can withstand a dishonest majority.
In the measurement-based model, where weakly quantum
clients delegate their computation to a powerful server,
the best protocol [25] does not provide verification of the
computation and settles instead for blindness (i.e. pri-
vacy) of the data when there is no client-server collusion.
In this work, we show that this difference is not due

to the asymmetry of the clients-server setting. We intro-

∗t.kapourniotis@warwick.ac.uk
†ekashefi@inf.ed.ac.uk
‡dominik.leichtle@lip6.fr
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¶harold.ollivier@inria.fr

duce for this specific situation a statistically secure lift
of a classical SMPC protocol to a quantum one that pro-
vides blindness and verification for BQP computations.
It remains secure so long as a single client is honest,
thus withstanding possible collusions between dishonest
clients and the server. Building on the techniques in-
troduced in [22], its security is proved in the Abstract
Cryptography (AC) framework. The protocol is highly
modular and can tolerate a fixed amount of global noise
during the quantum computation without aborting nor
compromising statistical security. Additionally, it has no
space overhead compared to an unprotected delegated
computation, thereby allowing clients to use the server’s
full power to perform their desired computation, while
security comes only at the price of a polynomial number
of repetitions.

2 Related Work

Quantum SMPC is a long standing research topic in
quantum cryptography, with several directions being ex-
plored in the past two decades. The first one started
with [7]. Along with the introduction of the concept it-
self, it provided a concrete protocol for performing such
computations in the quantum circuit model. This work
has been later extended in [4], lowering the minimum
number of honest players required for security to a strict
majority.
The second focuses on the interesting edge case of two-

party quantum computations. Several constructive re-
sults have been proposed in the circuit model. In [12], a
protocol was introduced and proven secure for quantum
honest-but-curious adversaries. This restriction on the
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adversaries was removed in [13] which proved security
in the fully malicious setting and with negligible secu-
rity bounds. The measurement-based model of quantum
computation has also been considered for constructing
secure two-party quantum computations as it provides a
different set of tools than the circuit model. Verifiable
Blind Quantum Computation (VBQC) first was intro-
duced in [16] in this model, followed by optimised pro-
tocols [27, 21]. In [26] a protocol was proposed in this
setting and proven secure against honest-but-curious ad-
versaries. In [24] this result was extended to fully ma-
licious adversaries with inverse-polynomial security us-
ing the Quantum Cut-and-Choose technique. More re-
cently, a round-optimal protocol was given in [3] based
on Oblivious Transfer and LWE, showing that two-party
quantum computation tasks can be performed in as little
as three rounds in the CRS model, and two if quantum
pre-processing is allowed.
A third set of results focuses on the composability

of such protocols, as earlier results didn’t satisfy this
property. Bit commitment was shown to be complete in
the Quantum Universal Composability framework of [35],
meaning that it is sufficient for constructing quantum
or classical SMPC if parties have access to quantum
channels and operations. This result was later extended
in [14, 11].
More recently, building on these previous works, new

concrete protocols have been proposed to decrease the
restrictions on adversaries while also providing compos-
able security. In the circuit model, a composably-secure
protocol has been introduced in [9]. It is an extension
of [13] that is able to cope with a dishonest majority, but
which relies on a complete graph for quantum communi-
cation and on a large number of quantum communication
rounds together with powerful quantum participants. In
the MBQC model, [25] describes a protocol that is com-
posable, can tolerate a dishonest majority and allows the
clients to delegate the quantum computation to a pow-
erful server. Its security is an information-theoretic up-
grade of the classical SMPC primitive used for construct-
ing the protocol. It is however limited by the absence
of verifiability of outputs and the impossibility to toler-
ate client-server collusions. Other protocols have been
proposed in alternative models or with different trust as-
sumptions such as [20, 29]. Finally, recent protocols for
secure delegated quantum computations can be run even
by purely classical clients. These have been lifted to a
multi-client setting in [2] while at the same time opti-
mising the number of classical rounds of communication.
This is however at the cost of a larger computation space
on the server’s device, which needs to be able to per-
form QFHE computations of functions large enough to
be computationally-secure.
A subset of the authors proposed an earlier protocol for

QSMPC [23] which comprised a blind pre-computation
step meant to produce a resource state that could then
be used to perform VBQC. This pre-computation turned
out to be vulnerable to an attack that can be applied
blindly by the server while having an effect only on some

specific types of qubits thereby compromising security of
the whole protocol. While the present work is a com-
plete redesign of the protocol that shows improved per-
formance, we include in § C of the full paper an in-depth
analysis of the shortcommings of the previous construc-
tion. This might be a useful tool to revisit earlier work
where a similar blind pre-computation step is used.

3 Overview of the Protocol and Results

In this paper, we consider the setting where several
weakly quantum clients want to securely delegate their
quantum computation to a powerful server. The pro-
posed construction turns a single-client MBQC-based
protocol into a multi-party one. More precisely, we
use single-client Secure Delegated Quantum Computing
(SDQC) protocols obtained through the techniques pre-
sented in [22]. Such protocols interleave several com-
putation rounds and test rounds, the latter of which
correspond to stabiliser measurements of the MBQC re-
source graph-state used to perform the computations. In
such a protocol, the client must perform two different
tasks. First, it has to prepare encrypted single-qubit
states and send them to the server. This prevents the
server from distinguishing computation and test rounds
and also hides the client’s data. Then, the client uses
the classical encryption key as well as the measurement
outcomes reported by the server to classically drive the
computations and tests performed by the server on these
encrypted qubits. Hence, turning this protocol into a
multi-party one amounts to finding (i) an appropriate
single-client SDQC protocol that will (ii) be composed
with a secure collaborative remote state preparation for
the single qubit encrypted states and that will (iii) be
driven collaboratively to perform and verify the desired
computation.
In § 2 of the full paper, we describe a single-client

SDQC Protocol using only |+θ〉 = (|0〉 + eiθ |1〉)/
√
2

states, based on the generic single-client SDQC Proto-
col of [22]. This was an open question in the field as all
previous SDQC protocols in the MBQC framework with
a formal security analysis use computational basis states
(called dummies) to isolate single qubits in the compu-
tation graph. These remain unchanged if the server is
honest and can be used as traps to detect deviations. To
overcome this restriction, we must ideally find a gener-
ating set of stabilisers of the graph state for the client’s
computation that can be written with I, X and Y Paulis
only. However, while it is possible to construct N − 1
independent stabilisers of this form – where N denotes
the number of vertices of the graph – it seems that the
stabiliser which consists of Z operators on odd-degree
vertices of the graph cannot be generated. This there-
fore corresponds to a server’s deviation which cannot
be caught by our tests on graphs containing odd degree
nodes. If this attack would corrupt the client’s computa-
tion, the whole protocol would be insecure. Fortunately,
this is not the case for classical input/output computa-
tions. Indeed, we prove that this deviation corresponds
to a server which has chosen a different orientation of the
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Z axis compared to the client. Because inputs are pre-
pared in the X−Y plane and outputs are projected onto
it, we show that this has no effect on the outcome of the
computation. As a consequence, it is not necessary to
detect this specific deviation by the server to verify the
computation. This proves that the generic single-client
SDQC Protocol of [22] can be used to produce secure
dummyless protocols.1

Theorem 1 (Informal) For any graph G, there exists
a single-client statistically secure SDQC protocol in the
Abstract Cryptography framework that requires the client
to only prepare states in the X − Y plane.

We then focus on turning this new single-client pro-
tocol into a multi-party one. In § 3 of the full paper,
we introduce a Collaborative Remote State Preparation
(CRSP) protocol. We show that this gadget (Proto-
col 2) securely implements Remote State Preparation
(Resource 2), which allows a classical party request any
|+θ〉 state to be prepared on the server’s device with the
help of clients preparing single qubit states in the X −Y
plane.

Theorem 2 (Informal) The CRSP gadget is a statis-
tically secure implementation of the Remote State Prepa-
ration Resource in the Abstract Cryptography framework.

The second set of tasks in the single-client protocol,
i.e. choosing the measurement angles of the various com-
putation and test rounds according to the states prepared
using CRSP, only involve classical computations. These
can be performed using a composably secure classical
SMPC.2

In § 4 of the full paper, we compose the CRSP gadget,
classical SMPC, and the dummyless SDQC protocol into
a complete quantum SMPC protocol (Protocol 3). Its
outline is:

1. The clients use the CRSP gadget to prepare |+θ〉
states on the server’s side.

2. They use the classical SMPC together to drive and
verify the single-client SDQC protocol.

3. Upon acceptance, the results and decryption keys
are sent by the classical SMPC to each client.

The security proof relies on the composable security of
all three ingredients. Because the CRSP gadget and the
dummyless protocol are statistically secure, this is a di-
rect upgrade of classical to quantum SMPC.

Theorem 3 (Informal) Composable classical SMPC
can be lifted to perform robust quantum SMPC for BQP

computations in a statistically secure way, such that all
parties but one are restricted to singe-qubit preparations.

1Note that here has been a previous protocol for dummyless ver-
ification [15], whose security analysis didn’t take into account the
above deviation. Our proof of invariance of MBQC to this specific
error shows that this deviation does not constitute a security threat
to the protocol in [15].

2The Abstract Cryptography framework used in this work is
equivalent to the Quantum Universal Composability (Q-UC) Model
of [35] if a single Adversary controls all corrupted parties – which
is the case here. Therefore any Classical SMPC protocol which is
secure in the Q-UC model can be used to instantiate this function-
ality.

We note that this protocol requires no additional re-
sources in terms of hardware or quantum communication
from the client’s side compared to the single-client pro-
tocol. The server only needs to be able to perform the
CRSP gadget in addition to the operations required by
the single-client protocol.

4 Discussion

In the course of constructing our protocol, we have
built two new ingredients that we believe are of indepen-
dent interest.
The first one is the Collaborative Remote State Prepa-

ration gadget. Its main feature is to provide some pri-
vacy amplification for the classical-quantum correlations
that clients share with the server. Interestingly, we give
evidence that it is hard to construct a generic gadget
that would have similar features for correlations outside
of a single plane of the Bloch sphere, while retaining
its usefulness for cryptographic purposes. We leave it
as an open question to prove a full no-go theorem in
the Abstract Cryptography framework to further explore
what seems to be a deep difference between classical and
quantum input-output computations. Note also that this
work supersedes a previous effort to construct a quantum
SMPC protocol in the clients-server setting with quan-
tum input and outputs. The proposed construction was
similar in spirit with a collaborative remote state prepa-
ration gadget that allowed to prepare encrypted X − Y
plane states but also dummies. However, we give an at-
tack on multiple approaches which were explored to per-
form this task, further strengthening the belief that such
cryptographic protocols are hard if not impossible to con-
struct.
The second new ingredient of our proof is the first dum-

myless SDQC protocol. Outside of the specific purpose of
quantum SMPC, it exemplifies the usefulness of the gen-
eral tests that were introduced in [22]. By reducing the
requirements on the client side, it also possibly decreases
a source of errors in physical implementations as it is
not uncommon that rotations around one specific axis
of the Bloch sphere are notably easier to perform than
others. We also strongly believe that similar approaches,
where traps are tailored to specific settings, will find ap-
plications in the future. Additionally, we show that while
dummyless tests were not enough to detect all deviations,
it is possible to nonetheless verify computations thanks to
an as of now unknown invariance in MBQC. This raises
the question of whether it is possible to do this on pur-
pose, and engineer an invariance in order to lighten the
constraints on the error-detection scheme that the traps
implement.
Finally, note that because all SDQC protocols con-

structed from the generic protocol of [22] are robust to a
fixed amount of global noise, so is our new multi-party
protocol. While not being enough to scale to large quan-
tum computations, it opens the possibility to implement
experimental proof-of-concepts without resorting to error
correction on near term devices.
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Ge Bai1 ⇤ Dominik Šafránek2 Joseph Schindler3 Francesco Buscemi4

Valerio Scarani1 5

1
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

2
Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of

Korea
3
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Abstract. We observe that the di↵erence between the quantum observational entropy and von Neumann

entropy can be interpreted as, and quantitatively equal to, the expected entropy production of the mea-

surement process. Based on this observation, we provide a generalization of quantum observational entropy

that includes a reference prior state that need not commute with the measured state. Such generalization

is justified by its agreement with the quantum generalization of entropy production, which is related to

the quantum generalization of the Bayesian retrodiction defined with the Petz recovery map.

Keywords: Observational entropy, entropy production, relative entropy, Bayesian inference, Petz recov-

ery map

Originally defined by von Neumann, observational en-

tropy has been the object of renewed interest [1, 2, 3, 4,

5, 6]. The original definition reads

SM(⇢) = �
X

i

ri ln
ri
Vi

(1)

where M = {⇧i} is a POVM, ri = Tr[⇢⇧i] and Vi =

Tr[⇧i]. The observational entropy interpolates between

the von Neumann entropy S(⇢) ⌘ �Tr[⇢ ln ⇢] and the

Boltzmann entropy SB(i) ⌘ lnVi, where Vi is interpreted

as the number of microstates compatible with outcome i.
At one extreme, if Vi = 1 for all i, SM(⇢) = �

P
i ri ln ri

is a Shannon entropy, which coincides with S(⇢) if the

measurement is projective in the eigenstates of ⇢. At

the other extreme, if one of the ⇧i is the identity on the

support of ⇢, SM(⇢) = lnVi is of the Boltzmann type.

In general, S(⇢) is a lower bound of SM(⇢) [2] and it is

natural to interpret their di↵erence

�M(⇢) ⌘ SM(⇢)� S(⇢) (2)

as observational entropy generation, since it quantifies

the entropy generated by the measurement. This aligns

with the intuition that a “precise” measurement in the

eigenstates of ⇢ produces no additional uncertainty other

than the internal uncertainty of ⇢, while a “weak” mea-

surement such as ⇧i being identity is more uncertain.

The observational entropy generation turns out to be

related to the entropy production arising in classical

stochastic thermodynamics. There, the physical (“for-

ward”) process is described by the joint probability dis-

tribution PF (x, y) of the input x 2 X and the output

y 2 Y . The entropy production by the transition x ! y
is s(x, y) = ln

PF (x,y)
P�

R(x,y) , where P �
R(x, y) is the so-called re-

verse process, whose definition generically requires a ref-

erence prior distribution �(x) [7, 8]. This reverse process

⇤baige@nus.edu.sg

describes the retrodiction of the initial state based on the

observations on the final state. With this definition, the

expectation of entropy production in the physical pro-

cess is captured by the relative entropy (a.k.a. Kullback-

Leibler pseudodistance) between the forward and the re-

verse probability distributions:

hsiF =

X

x,y

PF (x, y)s(x, y) ⌘ D(PF ||P �
R) . (3)

The observational entropy generation and the entropy

production turn out to be di↵erent stories about the same

quantity – their values are equal for a classical process.

Let ⇢ =
P

x �x|xihx| be the eigendecomposition of ⇢,
and define PF (x, y) as the distribution of measurement

outcomes of each eigenstate weighted by their eigenvalues

PF (x, y) ⌘ �x hx|⇧y |xi . (4)

We observe that

D(PF ||Pu
R) = SM(⇢)� S(⇢) = �M(⇢), (5)

where Pu
R is the reverse process with reference prior be-

ing the uniform prior distribution u, and �M(⇢) is the

observational entropy generation (2).

Eq. (5) indicates a retrodictive interpretation of obser-

vational entropy – it measures the entropy production of

the observer’s measurement with a uniform prior, which

is the relative entropy between the forward and reverse

processes related by Bayesian retrodiction. It is then nat-

ural to generalize it to a non-uniform prior � as in the case

of retrodiction. Furthermore, we show that, with proper

generalization of the relative entropy, the input ⇢ and the

reference prior � are allowed to be non-commuting oper-

ators, achieving a quantumization of Eq. (5) for quantum

measurements with the forward and reverse processes re-

lated by the Petz map [6, 9, 10].
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To show this, we propose a fully quantum definition of

observational entropy production �
�
M(⇢), that takes count

in a reference state �, defined as following:

�
�
M(⇢) ⌘ DBS(⇢k�)�DM(⇢k�) (6)

where DBS is the Belavkin-Staszewski relative entropy

[11], defined as

DBS(⇢k�) ⌘ Tr[⇢ ln ⇢��1
], (7)

and DM is the measured relative entropy, defined as

DM(⇢k�) ⌘ D(M(⇢)kM(�)) =
X

y

Tr[⇢⇧y] ln
Tr[⇢⇧y]

Tr[�⇧y]
(8)

whereM(⇢)(y) ⌘ Tr[⇢⇧y] andM(�)(y) ⌘ Tr[�⇧y] are the

outcome probability distributions of the measurement M
on ⇢ and �, respectively.
We justify this definition of �

�
M(⇢) by showing that it

satisfies the following properties:

1. The definition recovers the original definition of ob-

servational entropy when the prior � is equal to the

uniform distribution u ⌘ 1/d:

�
u
M(⇢) = SM(⇢)� S(⇢) = �M(⇢) . (9)

2. If ⇢ and � commute, for any M, the entropy gener-

ated by the measurement can be directly matched

to the entropy production of classical stochastic

thermodynamics. Namely, for [⇢, �] = 0,

�
�
M(⇢) = D(PF kP �

R) (10)

where the classical process PF is constructed as

PF (x, y) ⌘ �x hx|⇧y |xi (11)

where ⇢ =
P

x �x|xihx| is the eigendecomposition of

⇢, and P �
R is the reverse process of PF with reference

�.

3. In the general case where ⇢ and � may not com-

mute, our definition is new. We arrived at it by

requesting that the logical form of classical entropy

production (5) is preserved: a statistical compar-

ison between the process and its reverse. Indeed,

one can express our observational entropy genera-

tion as the quantum relative entropy

�
�
M(⇢) = DBS

⇣
Q†

FQF

���(Q�
R)

†Q�
R

⌘
, (12)

where Q�
R is related to QF by the Petz recovery

map. More specifically, QF and Q�
R are so de-

fined that they resemble the joint distributions PF

and P �
R in the sense that the marginal operators of

QFQ
†
F and Q�

R(Q
�
R)

†
produce the inputs and out-

puts of the forward and reverse processes.
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Abstract. The Commercializing Quantum Key Distribution (QKD) for secure communication in the quantum computer 
era has garnered interest. Plug-and-play (PnP) QKD is a stable system, but to avoid backscatter noise generated in the 
round-trip structure, it has evolved into a structure with a storage line (SL) that is tens of kilometers long to transmit 
and store signals for a specific time (pulse train). did. This results in slow key distribution and also challenges the 
miniaturization of the system. In this study, we propose a method using an optical pulse train generator (OPTG) 
structure to remove SL. It is expected that this method can overcome the miniaturization limitation of PnP QKD and the 
slow security key speed. 

Keywords: PnP QKD, self-optical pulse train generator 

1 Introduction 
Quantum key distribution (QKD) allows two distant 

users (Alice and Bob) to share a secure key. QKD 
guarantees unconditional security via the laws of 
quantum physics [1]. Since its first proposal in 1984 [2], it 
has become the most rapidly developed quantum 
technology, as its first commercial products appeared in 
the 2000s [3]. For expanding a market, the technologies 
have been consistently developed such as QKD network, 
long distance, higher secure key rate, miniaturization, long 
term stable operation, and so on [4-8]. Furthermore, 
verifications via several testbeds have been 
conducted  [9-14].  

Among the various structures of QKD, plug-and-play 
(PnP) QKD is stable and innovative enough to enable the 
development of commercial products with a control 
system that can be minimized [15]. However, there are 
some structural drawbacks. The presence of a storage line 
(SL) in the reciprocal signal structure, designed to prevent 
backscattering noise, leads to slower encryption key 
generation compared to one-way QKD systems, and the 
bulky SL hinders miniaturization. In this study, we 
propose and experimentally demonstrate a novel 
structure using an optical pulse train generator (OPTG) to 
overcome these limitations. With OPTG, Alice duplicates 
Bob's seed pulse, eliminating the need for an SL, and Bob 
doesn't have to send multiple pulse trains, enabling 
miniaturization and faster cryptographic key generation.  

2 Theorems and Proofs 
The main cause of the disadvantages of PnP QKD is the 

storage line (SL) used for removing backscattering noise. 
This not only slows down key generation but also hinders 
miniaturization. In response, we have implemented an 
optical pulse train generator (OPTG) to replace the SL. 
Figure 1 illustrates the overall QKD system implementing 
this OPTG in Alice.  

The proposed OPTG is based on a reciprocating optical 
cavity consisting of two Faraday mirrors (FM). A beam 
splitter (BS) is inserted between these components to 
facilitate signal input and output. When a seed signal 
enters the BS, it reflects off the optical cavity, completes a 
round trip, and a portion of it is then outputted. Within 
this setup, a solid-state optical amplifier (SOA) is 
positioned to amplify the signal and compensate for losses 
caused by output, optics, and other factors. Additionally, a 
polarization modulator (PM) is placed in the middle to 
perform polarization modulation for the BB84 protocol. 

 When using the implemented OPTG to generate signals, 
the signal transmission with the pulse train and SL is 
depicted in Figure 2. By employing OPTG, the signal 
transmission efficiency is higher compared to 
conventional PnP QKD, as there is no time delay associated 
with passing through the SL. Ideally, assuming the 
operation time of OPTG approaches infinity, the signal 
transmission efficiency becomes equivalent to that of 
conventional one-way QKD. With OPTG implemented, 
Alice also has the potential for miniaturization. The 
advantage of miniaturization arises from the absence of 
the previously used SL, which typically spanned tens of 
kilometers. Additionally, it is anticipated that the design 

Fig. 1 PnP QKD system where Alice’s SL is substituted by an 
OPTG. (FM: Faraday mirror, PM: phase modulator, BPF: Bandpass 
filter, SOA: semiconductor optical amplifier, BS: beam splitter, 
PD: photodiode, VOA: variable optical attenuator, QC: quantum 
channel, PBS: polarization beam splitter, DL: delay line, CIR: 
circulator, SPD: single photon detector, LD: laser diode) 
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could be integrated into a chip due to the presence of 
standard components. 

We successfully implemented this structure in practice, 
generating 10 pulses using a single seed pulse. 
Furthermore, by interfering these 10 pulses, we observed 
the interference results as shown in Figure 3. When 
measured using phase modulation (0, π/2, π, 3π/2) 
employed in the BB84 protocol, the error rate in each case 
did not exceed 5%. This demonstrates the feasibility of 
implementing PnP QKD using the proposed method. 

3 Theorems and Proofs 
Our research proposes an optical pulse train generator 

(OPTG) as a substitute for the storage line (SL), which 
serves as the biggest obstacle in miniaturizing existing 
PnP QKD systems due to its physical volume limitation. We 
experimentally validate the new PnP QKD architecture 
utilizing OPTG. With OPTG, Alice can replicate Bob's seed 
pulse to generate pulse trains, enabling system 
implementation without the need for a storage line. 
Experimental results demonstrate that Alice generates 10 
signals using OPTG and applies phase modulation (0, π/2, 
π, 3π/2) for the BB84 protocol. This showcases the 
successful integration of our proposed architecture into 
practical PnP QKD systems, enabling normal operation. 
Furthermore, these results demonstrate the potential for 

miniaturizing PnP QKD systems without the requirement 
of a storage line, and if implemented on a chip, it can 
further increase the pulse generation rate, leading to a 
higher secure key generation rate. 
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Strategies to Mitigate Decoherence in Superconducting Qubits

Abstract

A key advantage of using a superconducting circuit as a qubit is the flexibility in engineering
its dynamics. In particular, the flexibility to design the circuit and its environment to make the
qubit become resilient against environmental noise has led to significant improvements in the
coherence time of the qubit over the years. In this work, we present experimental implementa-
tions of some of the current techniques and characterization of the qubit performance. We also
theoretically explore the dynamics of a two-mode circuit, which belongs in the family of more
recently proposed multi-mode circuit designs that may o↵er simultaneous protection against
depolarization and dephasing. These designs currently face challenges in being experimentally
realized, often due to their stringent fabrication requirements. By systematically exploring
few-mode circuit designs such as the one presented in this work, we anticipate a better under-
standing on the required conditions for noise-protected qubit designs that are within fabrication
feasibility.
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Extended Abstract

Introduction

Since the first realization of superconducting qubit as a single-Cooper-pair box [1], the lifetime
of the qubit has gone through significant improvements over the years [2]. There have been two
main types of breakthroughs that have resulted in dramatic leaps: (1) improvements in circuit
topology or parameters, and (2) embedding of qubit in a 3D cavity. In the former, the lifetime
of the qubit is improved by engineering the circuits to be insensitive to various mechanisms that
contribute to decoherence. The latter technique improves the coherence time by placing the
superconducting qubit chip in a 3D microwave cavity with a high quality factor.

In this work, we present experimental implementations of these techniques and characteri-
zation of the qubit performance. We also analyze the limitations of the current approach and
propose a direction to further improve the performance of the device.

Transmon in 3D Cavity

We fabricate the transmon qubit by depositing on a high resistivity silicon wafer an Al/AlOx/Al
Josephson junction between aluminium capacitor pads. The qubit chip is then embedded in a
3D aluminium cavity which has input and ouput coaxial ports.

Figure 1: A transmon qubit (left) and a 3D cavity containing the chip (center and right).

The transmon qubit couples to the electromagnetic field of the cavity, such that we can
control the qubit states by sending microwave pulses into the cavity and readout the states by
measuring the transmission through the cavity.

The coherence performance of the qubit is typically charaterized by two figures of merit: (1)
T1 which characterizes the rate of depolarization, and (2) T2 which characterizes a combination
of depolarization and dephasing rates.

Figure 2: Measurements of qubit coherence time, T1 (left) and TR
2 (right).

In the experiments, T1 denotes the time constant in the decay of the |1i state to the |0i
state, while TR

2 and TE
2 denote the decay time constants in Ramsey spectroscopy and spin echo

2
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experiment respectively. The median values of the coherence times across our qubit samples in
3D cavity were measured to be T1 = (8.8± 0.4) µs, TR

2 = (9.1± 0.7) µs, and TE
2 = (15± 2) µs.

Transmons on a 2D Chip

While the 3D cavity architecture provides a conducive environment for high qubit coherence
times, feasibility to scale up the system to large numbers of qubits is not yet clear. In order to
increase the number of qubits and thus the processing power of the quantum processing unit,
we design a 2D chip that accommodates more qubits. Our design contains four transmons, each
of which is coupled to a charge drive line for qubit control and a coplanar waveguide resonator
for readout.

Figure 3: A 2D chip design with four transmon qubits.

The median values of the coherence times across our qubit samples were measured to be
T1 = (14± 2) µs and TR

2 = (15± 3) µs.

Moving Beyond Transmon

Two of the notable examples of innovations in circuit design are transmon [3] and fluxonium
[4]. Transmon is designed to be protected against dephasing, by rendering the qubit energy
dispersion to become small with respect to charge noise. Fluxonium on the other hand is
designed to be protected against depolarization, by localizing the qubit wavefunctions in distinct
regions of the potential.

A limitation in these designs however is that they are single-mode qubits, and are intrinsically
unable to attain simultaneous protection against both depolarization and dephasing noises [5].
More recent studies have proposed circuit designs that o↵er such simultaneous protection, by
designing multi-mode circuits [6][7][8][9]. The main challenge in experimentally implementing
these designs is the stringent requirements on the circuit parameters.

Here, we explore the dynamics and noise-protection properties of a two-mode circuit. Our
circuit has the transmon-type and fluxonium-type parts joined by a superinductor. The circuit
topology creates two inductive loops, through which external fluxes �0 and �2 thread. The
dynamics of this circuit is specified with the Lagrangian L = T � V , where

T =
EC1

2
�̇2
1 +

EC2

2
�̇2
2 +

EC0

2
(�̇1 � �̇2)

2

V = �EJ1 cos�1 � EJ2 cos�2 +
EL0

2
(�0 + �2 � �1)

2 +
EL2

2
(�2 � �2)

2
(1)

in terms of the phase variables of the two ungrounded nodes, �1 and �2.
In order to protect the qubit against depolarization, the wavefunctions of the computational

states need to be localized in distinct regions in their domains, spanned by �1 and �2. However,

3
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Figure 4: Lumped element model of our two-mode superconducting qubit. the circuit consists of
a transmon-type sub-circuit (red part), and a fluxonium-type sub-circuit (blue part), which are
joined together by a superinductor (magenta part).

the wavefunctions need to be delocalized in the directions to which the external fluxes couple,
in order to be protected against dephasing. Because the two external fluxes couple to two
linearly independent directions, (�2��1) and �2 respectively, in the two-dimensional space, this
circuit design is insu�cient to achieve exponential protection against both depolarization and
dephasing simultaneously. Nevertheless, it may be possible to achieve partial protection against
both, by delocalizing the wavefunctions in the A(�2 � �1) +B(�2) direction for positive A and
B, while localizing them in the orthogonal direction. The circuit parameters can then be chosen
to tune between o↵ering more protection toward either decoherence mechanism. Furthermore,
this circuit has the advantage of absent spurious modes which are present in some of the other
multi-mode circuits such as 0-⇡ qubit [9].
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Abstract. Using equatorial stabilizer POVM(esPOVM), we introduce classes of n-qubit randomized
shadow tomography algorithms that require only at most [n2 + O(log(n))]-depth Cli↵ord bases and Pauli
measurements. Also, with only neighboring gates, we can achieve this algorithm with 2n-depth which
enables us to have a circuit with a more a↵ordable error threshold and simpler structure than previously
known ones. Furthermore, we introduce an even smaller subset of esPOVM that performs shadow to-
mography on real observables. Polynomial sampling-copy numbers are preserved with these low-depth
algorithms.
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1 Introduction

Quantum algorithms, which are algorithms based on
quantum mechanical principles, have been shown to out-
perform the classical algorithms for many computational
tasks [1, 2]. To implement such algorithms, including
quantum state preparation and quantum communication,
certifying the structure of a given quantum state is an im-
portant task. Quantum tomography is a representative
method to search the all matrix elements of an unknown
n-qubit quantum state ⇢. However, as the n increases,
we need exponentially many samples of ⇢ for an accurate
reconstruction.
On the other hand, if we are to estimate the physi-

cal properties of unknown states within additive ✏-error,
shadow tomography [3] enables us to require only a poly-
sized number of samples depending on the structure of
observables. Furthermore, Ref.[4] proposes two algo-
rithms. The first is randomized Pauli tomography, which
is useful for estimating the expectation of Hamiltonian
with low locality. This algorithm has a very simple circuit
structure because we do not need an intermediate quan-
tum operation but just randomized Pauli measurements.
The second algorithm, randomized Cli↵ord tomography

is better for estimating fidelity between unknown input
and target states. However, this algorithm includes long-
ranged Cli↵ord gates with depth n+O(log(n)) [5, 6], and
for large n, it is very hard to implement experimentally
since operations with long depth accumulate physical er-
rors so large.
Therefore, reducing the depth of randomized circuits

while preserving the e�ciency of fidelity estimation is
crucial for practical implementations. General measure-
ments [7, 8, 9] over the Pauli measurements will optimize
the depth but these are believed to be hard to implement
fault tolerantly. Ref.[10] shows that for observables that
are matrix product state(MPS) with low bond dimension,
and MPS input states, e�cient fidelity estimation is pos-
sible with only two-qubit neighboring Cli↵ord gates of

⇤rbeh7336@snu.ac.kr
†yong.siah.teo@gmail.com
‡jeongh@snu.ac.kr

O(log(n))-depth. However, for arbitrary input and tar-
get states, we need general Cli↵ord operations and hence
5n depth neighboring Cli↵ord gates [6, 11] and the most
optimal depth bound of this problem is still not known.

In this paper, we propose new schemes of randomized
Cli↵ord tomography for fidelity estimation which employ
shallower depth. The main point is that it is not nec-
essary to utilize the whole stabilizer POVM (sPOVM)

[12] comprising all Cli↵ord-rotated bases. Instead, our
schemes employ a smaller stabilizer subset, equatorial

stabilizer POVM (esPOVM) [13] together with the com-
putational basis. Additionally, we give a more spe-
cific subset real equatorial stabilizer POVM (resPOVM),
which still gives a tomography scheme for the target state
with real coe�cient with respect to computational basis.
Next, we give a theoretical upper bound for the estima-
tion variance, which is directly related to the shadow

norm [4]. Both esPOVM and resPOVM tomography
require at most Cli↵ord bases of depth n

2 + O(log(n)).
Moreover, if we have only neighboring Cli↵ord bases, we
can achieve the same algorithms with depth 2n. Our
algorithms need a larger sample overhead than Ref.[4].
However, we highlight that these are, to the best of our
knowledge, the most depth-optimized tomography with
Cli↵ord gates, and both variances have the same scaling
with the shadow norms of Ref.[4] for the fidelity estima-
tion.

2 Main results

First, we define two classes of states which will be used
throughout this paper.

Definition 1. For the n qubit system,

|�
eq
A
i ⌘

1
p
2n

X

x2Zn
2

i
xAx

T

|xi , (1)

|�
req
A

i ⌘
1

p
2n

X

x2Zn
2

(�1)xAx
T

|xi , (2)

where in Eq. (1), A = (aij)i,j2[n], aij 2

{0, 1, 2, 3} if i = j, and aij = aji 2 {0, 1} if i 6= j.
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Figure 1: Diagrammatic blueprint of 6-qubit esPOVM
tomography. The unknown state is ⇢ and the target ob-
servable is O. The task is to estimate Tr(O⇢). Detailed
expression of the algorithm is written in the main text.

Also in Eq. (2), A = (aij)i,j2[n], aij 2 {0, 1} if i 

j, aij = 0 if i > j. x is a binary row vector. Equation (1)
is called equatorial stabilizer [13] and Eq. (2) is called
real equatorial stabilizer We define (real resp.)equatorial

stabilizer set S
(r)eq
n as the set of n qubit (real)equatorial

stabilizers. We note that both sets are proper subsets of
stabilizer set Sn. Now, we o↵er our important lemma.

Lemma 1. For unknown n qubit quantum state ⇢ and

hermitian operator O,

(i)
X

|�eq
A i2Seq

n

22n

|S
eq
n |

h�
eq
A
| ⇢ |�

eq
A
i h�

eq
A
|O |�

eq
A
i

+
X

x2Zn
2

hx| ⇢ |xi hx|O |xi � tr(O) = tr(O⇢). (3)

Now, if O is a real matrix with respect to computational

basis,

(ii)
X

|�req
A i2Sreq

N

22n�1

|S
req
n |

h�
req
A

| ⇢ |�
req
A

i h�
req
A

|O |�
req
A

i

+
X

x2ZN
2

hx| ⇢ |xi hx|O |xi �
1

2
tr(O) = tr(O⇢). (4)

We can write an algorithm for new quantum tomog-
raphy with an equatorial stabilizer set from this. We
only show esPOVM tomography based on Eq, (3) for
convenience. Given the unknown n qubit quantum
state ⇢ and hermitian operator O, the task is to es-
timate Tr(O⇢). We fix the sampling-copy number N 2 N.

esPOVM tomography algorithm

For k 2 [N ], do,

1. Prepare the state ⇢ as an input. Uniformly ran-
domly choose |�

eq
A
i in S

eq
n
. This is possible by ran-

domly choosing the matrix A = (aij) of |�
eq
A
i.

2. For i, j 2 [n] satisfying i 6= j and i < j, ai,j = 1,
act CZi,j to ⇢.

3. For i 2 [n], if aii = 0 (mod 2), then measure the i-
th qubit with a Pauli X measurement. Otherwise,
do a Pauli Y measurement. After the measurement,
obtain the outcome p 2 Zn

2 .

4. Take the measured stabilizer, |�
eq
A0i where A

0 =
(a0

ij
) satisfies that a

0
ij

= aij for i 6= j but a
0
ii

=
aii + 2pi (mod 4).

5. Prepare another fresh state ⇢ as an input. Measure
in Pauli Z-basis to get an outcome p

0
2 Zn

2 .

6. Calculate mk = 2n h�eq
A0 |O |�

eq
A0i + hp

0
|O |p

0
i �

tr(O).

Finally, desired estimation is m = 1
N

P
N

k=1 mk.
Figure 1 briefly describes the above algorithm. We

note that we need one another Z-basis measurement step
and hence two fresh inputs for a single trial. The reason
is that esPOVM solely does not make Informationally
Complete(IC) POVM which is a necessary property for
tomography [15]. With the aid of a computational basis,
it becomes truly IC. We note that the above algorithm
only requires CZ gates and Pauli measurements in the
last section. Even in the resPOVM case where O is real,
circuit architecture does not change but we only do X

and Z-basis measurements.
We summarize these as a theorem.

Theorem 1. In the n-qubit system, suppose we are capa-

ble of e�ciently initializing n-qubit state ⇢. Implemen-

tation of n-qubit esPOVM tomography to ⇢ requires at

most CZ gates of depth n + 1, and n number of single

qubit Pauli(X,Y,Z) measurements. For resPOVM, the Y

basis is not needed.

The depth bound of CZ gates can be obtained by Viz-
ing’s theorem [16]. With the aid of other Cli↵ord basis,
we can reduce the depth to n

2 + O(log(n)) [5]. Further-
more, we can implement CZ gates followed by measure-
ments with only two-qubit neighboring gates with depth
2n [11].

Now we want to make our objective more sharper. We
want to make sure that our estimation is accurate such
that additive error is lower than ✏ > 0. How many are
samples needed to achieve this accuracy? This can be
solved by inspecting the variance of the estimator.

We define, Ô(r)eq
A

⌘ 2n(�1 for req)
h�

(r)eq
A

|O |�
(r)eq
A

i and

Ô
bin
x

⌘ hx|O |xi. These are estimators of each circuit
board. The estimation variance V ar(O) is,

V ar(O) = V ar(Ô(r)eq
A

) + V ar(Ôbin
x

). (5)

Each variance term on the right side is equivalent with
shadow norm [4] of esPOVM measurement and Z-basis
measurement respectively. Now, we introduce our second
main result.

121



(a) (b) (c)

Figure 2: Sampling-copy number N to achieve the Mean Squared Error(MSE) ✏. For each number of qubits from 1 to
11, we increased N from 1 to 2000, and take the N at which the average value of squared errors (between true value
and estimation) from 800 experiments hit 0.1, 0.01, and 0.001. For graph (a), we used uniformly randomly chosen
complex input states and target states. For (b) and (c), we uniformly randomly chose the complex input state and
real target states. Red lines are theoretical asymptotic values of MSE = 0.001. (a): Result for esPOVM tomography
for complex target states. (b): Results for esPOVM tomography for real target states. (c) Results for resPOVM
tomography for real target states.

Theorem 2. Suppose an unknown quantum state ⇢ and

we have the ability to prepare ⇢ as input as much as pos-

sible. Also, suppose we are given an observable O(for

S
req
N

, take O as real). With (r)esPOVM tomography

scheme, we can estimate tr(O⇢) within additive ✏-error

with 1�� success probability if we repeat that scheme over

O(V ar(O)
✏2

log( 1
�
)), where

V ar(O)  76(19 for Sreq
N

)max
���(tr(O))2

�� ,
��tr(O2)

�� ,
|tr(O)| kOk1, kOO

T
k1, kO

T
Ok1

 
,

(6)

where kOk1 ⌘ max| i |h |O | i|.

Our second main theorem shows that for many cases,
estimation variance is very reasonable so that the
sampling-copy number is not exponentially large by in-
creasing n. For example, if O is also a state �, then
the right side of Eq. (6) becomes constant hence required
sampling-copy number is independent of the number of
qubits. This V ar(O) has a very rough bound, which
means the exact value is far less than this bound.
Furthermore, we can see that variance of resPOVM has

a much lower bound. It means that for real observables,
using the resPOVM tomography is better than esPOVM.

3 Numerical results

In this section, we numerically show the accuracy of
our tomography algorithms and reasonable sampling-
copy numbers. See Figure 2. Throughout this section, we
consider the target is the state, hence the main task is to
estimate fidelity between input and target. We examined
three cases. The first one is esPOVM for uniformly ran-
domly chosen input states and target states. The second
is for uniformly randomly chosen input states and real
target states. The last one is resPOVM, random choice
was done in the same manner as the second one. For
each experiment, with the number of qubits from 1 to

11, we record the sampling-copy number at which Mean
Squared Error (MSE) over 800 experiments reaches the
designated value, 0.1,0.01, and 0.001.

From the above graphs, we observed that averaged
sampling-copy number is proportional with 1

✏
(Here, ✏ is

not exactly an error, but the target MSE). This is a natu-
ral phenomenon from Hoe↵ding’s inequality. The impor-
tant point is that sampling-copy numbers are bounded
by a constant, which is much lower than bound in
Eq. (6). These overheads are not increasing by the num-
ber of qubits. Also, the deviation of these values will
be bounded because as in the Theorem 2, estimation
variance is bounded by a constant when the target is
a quantum state. Even though we recorded up to 11
qubits, we expect the tendency will be continued over 11
qubits. Another interesting point is that from Figure 2
(b) and (c), the saturated value of resPOVM is twice less
than esPOVM. Surprisingly, we can analytically prove
that averaged values of estimation variances of two cases
asymptotically di↵er by factor 2.

For large n, for e�cient estimation, we must assume
that we can e�ciently calculate the trace between the ar-
bitrary equatorial stabilizer and a given observable. From
this perspective, we believe that our algorithms will en-
compass a larger region of target states than previous
Cli↵ord tomography [4] because esPOVM and resPOVM
are much smaller subsets of sPOVM.
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Abstract. To use entanglement as a resource, we need an entanglement measure that can compare
the usefulness of quantum states in some quantum information processing. We here define new tripartite
entanglement measures based on the capability of three-qubit teleportation, and hence we can explain the
relationship between the teleportation capability and tripartite entanglement through our measures. Our
measures distinguish between biseparable and genuinely multipartite entangled states and do not increase
under local operations and classical communications, which are essential requirements for quantifying
entanglement.

Keywords: genuine multipartite entanglement, multipartite entanglement measure, multi-party telepor-
tation capability

1 Three-qubit teleportation capability

Three-qubit teleportation proceeds as follows. Sup-
pose that three parties, Alice, Bob, and Charlie, share
a three-qubit state. After one performs an orthogonal
measurement on his/her system, the rest carry out the
standard teleportation over the resulting state with the
measurement outcome.
Let Fij be the maximal fidelity of teleportation over

the resulting state in the systems i and j after measuring
the system k, where i, j, and k are distinct systems in
{A,B,C}. Then we have [1];

Fij =
2fij + 1

3
, (1)

where

fij = max
Uk

1X

t=0

ht|Uk⇢kUk
† |ti f

⇣
⇢Uk,t
ij

⌘
. (2)

Here, Uk is a unitary operator, that is, Uk
† |0i h0|Uk �

Uk
† |1i h1|Uk describes a one-qubit orthogonal measure-

ment on the system k, ⇢Uk,t
ij is the resulting state with the

outcome t, and f is the fully entangled fraction, which is
given by

f (⇢) = max he| ⇢ |ei , (3)

where the maximum is over all maximally entangled
states |ei of two qubits. We say that a given state
is useful for three-qubit teleportation if and only if
min{FAB , FBC , FCA} > 2/3.
We note that the maximal fidelity Fij on pure states

can be written as a combination of other entanglement
measures. For three-qubit pure states, it has been shown
that the following equation holds [1]:

Fij =

q
⌧ + C2

ij + 2

3
, (4)
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where ⌧ is the three-tangle [2] and Cij is the concur-
rence [3, 4] for the reduced density operator ⇢ij .

By using Eq. (4), we have the following lemmas.

Lemma 1 Let |�iABC be a three-qubit pure state. Then

for any distinct i, j, and k in {A,B,C}, Fij = 2
3 if and

only if |�iABC 2 SEP (i : jk) or |�iABC 2 SEP (j : ik).
Moreover, if Fij >

2
3 and Fik > 2

3 , then Fjk > 2
3 .

Lemma 2 The fidelities FAB, FBC , and FCA do not

increase on average under local operations and classical

communication.

2 Entanglement measures based on
three-qubit teleportation capability

Note that minimal conditions for being a good entan-
glement measure have been suggested as follows [5]:

(i) E(⇢) > 0 if and only if ⇢ is a nonbiseparable state.

(ii) E is invariant under local unitary transformations.

(iii) E is not increasing on average under LOCC. That
is, if we have states {⇢k} with probabilities {pk}
after applying a LOCC transformation to ⇢, thenP

k pkE(⇢k)  E(⇢).

(iv) E fulfills convexity.

If a multipartite entanglement measure satisfies these
conditions, then we call it a genuine multipartite entan-
glement (GME) measure.

Let us now define entanglement measures based on the
three-qubit teleportation capability.

Definition 3 Let Tij = 3Fij � 2, where Fij is the fi-

delity in Eq. (1). For three-qubit pure states, we define

multipartite entanglement measures Tmin and TGM as

Tmin ⌘ min{TAB , TBC , TCA},
TGM ⌘ 3

p
TABTBCTCA, (5)
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respectively. For three-qubit mixed states, we generalize

them via the convex roof extension

E(⇢) = min
{pl, l}

X

l

plE (| li) , (6)

where the minimum is over all possible decompositions

⇢ =
P

l pl | li h l|.

It directly follows from Lemma 1 that Tmin and TGM

distinguish biseparable and genuinely multipartite en-
tangled states. We know that they are invariant under
local transformations from the definition of Fij . From
Lemma 2, we can also prove that they do not increase
under local operations and classical communication. The
convexity is guaranteed by the convex roof extension.
Therefore, we have the following theorem.

Theorem 4 Entanglement measures Tmin and TGM are

GME measures.

In Lemma 1, we also showed that for any distinct i, j,
and k in {A,B,C}, if Fij >

2
3 and Fik > 2

3 , then Fjk > 2
3 .

Therefore, only two quantities Tij and Tik are enough to
define a GME measure.

Definition 5 For any distinct i, j, and k in {A,B,C},
we define multipartite entanglement measures T (i)

min and

T (i)
GM as

T (i)
min ⌘ min{Tij , Tik},

T (i)
GM ⌘

p
TijTik (7)

on three-qubit pure states. For three-qubit mixed states,

we generalize them through the convex roof extension.

By applying the same proof method in Theorem 4, we
have the following theorem.

Theorem 6 Entanglement measures T (i)
min and T (i)

GM are

GME measures for i 2 {A,B,C}.

3 Example

The following example shows that our GME measures
are more suitable to capture the usefulness of a given
state for three-qubit teleportation. We note that GME
measure Cmin is given by

Cmin ⌘ min{CA(BC), CB(CA), CC(AB)}

on three-qubit pure states [5].
For 0  r  1, let

| (r)iABC = r |000iABC +

p
1� r2

2
|101iABC

+

p
1� r2p

2
|110iABC +

p
1� r2

2
|111iABC , (8)

|⇠(r)i =
p
1� r2p

2
|001i+

p
1� r2p

2
|010i+ r |100i . (9)

Then we can see that for 0.7 < r < 0.9,

Cmin (⇠(r)) > Cmin ( (r)) ,

Tmin (⇠(r)) < Tmin ( (r)) . (10)

The GME measure Tmin is defined based on three-qubit
teleportation capability. Thus, we can say that if | i is
more entangled than |⇠i with respect to Tmin, then | i
is more useful than |⇠i in three-qubit teleportation. In
other words, although | (r)i is more valuable for three-
qubit teleportation than |⇠(r)i in this case, Cmin does not
catch this fact. Similar examples can be readily found for
other GME measures as well.

Figure 1: If we calculate GME measures Cmin and Tmin

for the states | (r)i in Eq. (8) and |⇠(r)i in Eq. (9), then
Cmin (⇠(r)) > Cmin ( (r)) but Tmin (⇠(r)) < Tmin ( (r))
for 0.7  r  0.9. Hence, we can say that Cmin is not
appropriate for comparing teleportation capabilites.
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Abstract. We present quantum algorithms for parallel-in-time simulations inspired by the
Page and Wooters formalism. By introducing clock qubits entangled with system qubits, our
algorithms can use only log2(N) “clocks” to compute averages over N di↵erent times of quantities
such as the dynamical structure factors, and Loschmidt echos. In addition, we prove that the
entanglement created between the system qubits and the clock qubits has operational meaning,
as it encodes valuable information about the system’s dynamics. The latter indicates that our
algorithms does not only achieve an exponential trade-o↵ between time and spatial complexities,
but also enable a new dimension for studying temporal properties.

Keywords: Quantum algorithm, Dynamical-in-time properties, Quantum Simulations

1 Introduction

Quantum foundations studies the fundamental
principles of quantum theory, such as the nature of
quantum states, the interpretation of measurements
and the emergence of classicallity [1, 2, 3, 4]. Re-
cently, the incorporation of time in a fully quantum
framework has also raised much attention within
this field. Notably, several proposals have appeared
in the literature to “extend” quantum mechanics in
order to treat time in symmetry with other observ-
ables [5, 6, 7, 8, 9, 10], some of which take into ac-
count the relativistic regime [11, 12, 10] and quan-
tum information aspects [13, 14].
Another interesting and not very explored feature

of these proposals is their use for finding new al-
gorithms involving time-related quantities. For in-
stance, in the so-called Page and Wooters (PaW)
formalism [5, 6, 15, 16, 13, 14, 17, 11, 12] one as-
sumes a stationary “universe” composed by a quan-
tum system of interest plus an ancillary “clock” (see
Fig. 1(a-b)). This framework is particularly inter-
esting from the quantum computational perspective
as the conventional unitary evolution of the system
emerges from its entanglement with the clock and
is recovered by measuring and conditioning over the
latter. This suggests quantum algorithms in which
part of the qubits have the role of “clock qubits”.
In this work, we will borrow inspiration from the

PaW mechanism to develop quantum algorithms
for studying temporal averages of several dynami-

⇤nldiaz@iflp.edu.ar
†cerezo@lanl.gov

cal properties of a quantum system (see Fig. 1(c)).
Specifically, given a time-independent Hamiltonian
H acting on n-qubits, and its associated time evolu-
tion operator U(t) = e�iHt, we consider the problem
of estimating general quantities of the form

F (O1, O2,!) = lim
T!1

Z
T

0

dt

T
e�i!thO1(t)O2i⇢ (1)

= lim
T!1

Z
T

0

dt

T
e�i!tTr[⇢O1(t)O2] ,

where O1(t) = U †(t)O1U(t). Here, ⇢ is an n-qubit
state acting on the d-dimensional Hilbert space HS

(with d = 2n), O1 and O2 are two operators, and
! 2 R. F (O1, O2,!) contains as a special case infi-
nite temporal average of an observable, infinite-time
averages of Loschmidt echos, two-point correlation,
as well as their Fourier transforms [18, 19, 20, 21].
While the importance of Eq. (1) is clear, its com-

putation might not be straightforward (as it involves
an infinite time limit). As such, one often times
wants to compute the discrete-time approximation

eF (O1, O2,!) =
1

N

N�1X

t=0

e�i!"thO1("t)O2i⇢ , (2)

where we have " = T/N (for simplicity, we will
henceforth assume that N is a power of 2). That
is, for a given (finite) time window T , we are com-
puting the average over N points separated by a
spacing ".
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Figure 1: In Hamiltonian classical mechanics, dynamical variables are functions of the phase space coordi-
nates position x and momentum p. a) In standard quantum mechanics, one promotes x and p to quantum
operators, but the time variable t is treated as a classical parameter that is external to the quantum system
being studied. This creates an asymmetry between position (a fully quantum variable), and time (a clas-
sical variable). b) In the PaW formalism, time is treated as a quantum variable, with its own associated
Hilbert space. c) In this work we borrow inspiration from the PaW framework to develop algorithms for
parallel-in-time-simulations.

2 Main results

When considering the task of evaluating Eq. (2),
one can readily find an algorithm where each expec-
tation value hO1("t)O2i⇢ is sequentially evaluated
and the measurement outcomes are combined with
classical post-processing. Evidently, here we have:

Proposition 1 There exists an algorithm for

sequential-in-time simulations that requires (n+1)-
qubits, and estimates the quantity eF (O1, O2,!) up

to � accuracy with O(N/�2) experiments.

In our work, we aim to improve on the experiment
complexity in Proposition 1. For this purpose, we
leverage the basic ingredient of the PaW formalism:
The so-called “history” states, defined as

| i = 1p
N

N�1X

t=0

|ti| ("t)i . (3)

Here, | ("t)i = U("t)| 0i. Notably, | i can be pre-
pared with log2(N) ancillary qubits, and one can
see it is an equal superposition of the (discrete)
time evolution of a quantum system for all times
t = 0, . . . , N . From here, we can prove our first
main result.

Theorem 1 The circuit in Fig. 2, which requires

(n+log2(N)+1)-qubits, can be used to estimate the

quantity eF (O1, O2,!) of Eq. (2) up to � accuracy

with O(1/�2) experiments.

This theorem shows that using the history state al-
lows us to push the complexity of running multi-
ple experiments onto ancillary clock-qubit require-
ments. More importantly, we show that the entan-
glement present between the time and system qubits
in the history state has operational meaning and

Figure 2: Algorithm for parallel-in-time estimation
of the quantity eF (O1, O2,!) up to precision �. In the
figure, P denotes a !" phase gate. This algorithm
contains as a sub-routine the circuit for preparing
the history state. The colored dashed gate is re-
placed with an identity (an S† gate) to compute the
real (imaginary) part of eF (O1, O2,!).

contains information that we can use to learn about
the system’s dynamics.
Let us study the special case when eF (O1, O2,!)

and eF (O1, O2,!) respectively corresponds to the
infinite-time average Loschmidt’s echo L̄( 0), and
its discrete time approximation eL( 0) (i.e., L̄( 0) ⌘
F (| 0ih 0|, I, 0)). We prove that

Theorem 2 Let | i be the discrete history-state in

Eq. (3), and let E2 be the linear entropy of the

system-time partition. Then, for any T and N we

have

E2  (1� L̄( 0)) . (4)

Theorem 2 has several important implications.
First, it bounds the amount of entanglement be-
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Figure 3: We show for di↵erent values of � in the
XX Hamiltonian the infinite-time Loschmidt echo,
L̄( 0) (black curve), as well as its discrete time ap-
proximation eL( 0) (grey dotted curve), and the lin-
ear entropy (blue dotted curve). We see than the en-
tropy curve approximates L̄( 0) better than eL( 0).
Results are for N = 64 and a chain of n = 14 spins.

tween the system and the clock qubits. In partic-
ular, it shows that the system-time entanglement
can only be large if the infinite time average of the
Loschmidt echo value is small. Conversely, if L̄( 0)
is large, E2 has to be small. Second, let us remark
that Eq. (4) is valid for all values of T , but most
notably, also for all values of N . For large N and T
the equality is reached asymptotically, and we have
that Eq. (4) becomes Tr[⇢2

T
] ⌘ L̄( 0) (with ⇢T the

reduced state of the | i on the clock qubits). More
surprisingly, as shown in Fig. 3, we numerically find
that that E2 is a better approximation of L̄( 0) than
eL( 0). Since E2 is easy to compute (see for instance
Fig. 4), we can readily use the History state to study
the infinite-time Loschmidt echo. Moreover, we can
extend Theorem 2 to show that E2 also bounds the
temporal fluctuations of observables.

Corollary 1 Let O be an observable, and let �O2

denote its temporal variance. The system-clock en-

tanglement provides bound on temporal fluctuations

as �Ō2  ||O||2 (1� E2).

It is clear that implementing the circuit in Fig. 2
might require prohibitively deep circuits due to the
need of controlling the log2N gates U(2j�1") =
U(")2

j�1
(for j = 1, . . . , log2N). Hence, to make

our algorithm more near-term we present in our
work a near-term version of this circuit where one
achieves depth-reduction via variational Hamilto-
nian diagonalization [22, 23] and Cartan decomposi-
tion [24, 25, 26]. As an explicit test of these ideas, we
also develop a numerical analysis of the XX Hamil-
tonian

H =
J

4

X

j

(XjXj+1 + YjYj+1) +
�

4

X

j

cos(2⇡↵j)(Zj + 2) ,

Figure 4: In this circuit, we leverage classical shad-
ows [28] to estimate Tr[⇢2

T
] up to � precision with

a quantum device with (n + log2(N))-qubits and
O(N/�2) di↵erent experiments.

where Xj , Yj and Zj respectively denote the Pauli
gates acting on the j-th qubits. This model ex-
hibits an Anderson localization-delocalization tran-
sition [27], which we can be detect through the use
of the system-time entanglement entropy and/or by
time-discrete approximations of the Loshmidt echo
(computable with the previous circuit). In this case,
we can reduce the depth of the circuit as follows.

Theorem 2 Let H be an XY Hamiltonian, we can

implement the circuits used in Theorem 1 with cir-

cuit depths in O(log2(N)n).

3 Conclusions and Outlook

We present algorithms that can compute averages
over N di↵erent times by only using log2(N) clock
qubits. As such, we achieve an exponential trade-o↵
between time and spatial complexities. In addition,
we rigorously prove that the entanglement created
between the n system qubits and the log2(N) clock
qubits has operational meaning, as it encodes valu-
able information about the system’s dynamics.
Since our algorithms were inspired by the PaW

formalism, we envision that our work will inspire
others to borrow tools from foundations of quantum
mechanics (an often-times untapped source of inspi-
ration) to develop novel quantum algorithms.
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Abstract. We propose a new method for controlling the bias of a Mach-Zehnder modulator (MZM) in
a quantum key distribution (QKD) system using N diagnostic pulses. The method does not require addi-
tional hardware and does not significantly reduce the key rate. The proposed method was experimentally
demonstrated in a field-deployed QKD network, showing that it can maintain the MZM extinction ratio
stably over 20 dB with a bit error rate of  1%.

Keywords: quantum key distribution, Mach-Zehnder modulator, auto-bias control

1 Introduction

Quantum cryptography has gained significant atten-
tion due to the development of quantum computing tech-
nology. Quantum key distribution (QKD) systems are of
particular interest as they allow secure key sharing be-
tween distant parties [1]. However, practical QKD sys-
tems are sensitive to environmental noise, which has led
to e↵orts [2, 3] to design noise-tolerant optical architec-
ture and stabilize optical devices such as lasers, detectors,
and modulators. Nevertheless, a Mach-Zehnder modula-
tor (MZM) bias control method for QKD systems has not
been developed yet, which is critical for implementing a
decoy-state protocol to prevent photon number splitting
attacks. Previous MZM bias control methods utilizing
optical power monitoring or dither signals are not suit-
able for QKD systems due to optical crosstalk noise and
additional optical devices.
In this study, we propose an MZM bias control method

[4] based on a software modification that adds diagnos-
tic pulses to estimate bias drift, allowing e�cient MZM
bias control without additional devices. The proposed
method has advantages in terms of system miniaturiza-
tion, key rate maintenance, parallel implementation, and
faster convergence rate compared to conventional PID
control. We experimentally demonstrate the feasibility
of the proposed method in a field test, showing its po-
tential for QKD network systems.

2 Method

The proposed method for the MZM bias control is as
follows (Figure 1). Here, the transmitter and receiver

⇤originalpch@kist.re.kr
†025160@kist.re.kr
‡pbk2324@naver.com
§sw jeon@kist.re.kr
¶hojoong.jung@kist.re.kr
ksangin@ajou.ac.kr
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are indicated as Alice and Bob, respectively, similar to
conventional QKD systems.

1. During the conventional QKD protocol, Alice
transmits N (� 2) types of diagnostic pulses mod-
ulated [5] by ✓imod = 2⇡

N (i � 1) for i = {1, . . . , N}
as substitutes for some decoy pulses.

2. Bob measures the incoming pulses and publicly an-
nounces the time indexes. Then, Alice and Bob
perform the rest of the protocol.

3. Simultaneously, Alice accumulates the click results
of the diagnostic pulses unless no significant phase
drift occurs inside the MZM.

4. Then, Alice calculates pi = N
2 ⇥ CiP

Ci
and

Err(✓Tdrift) =
P

[pi � pTi(✓
T
drift)]

2, where Ci is the
count for the i-th diagnostic pulse, and pTi(✓

T
drift)

is the theoretical detection probability for the i-
th diagnostic pulse with the theoretical phase drift
✓Tdrift = [0�, 360�).

5. Alice finds ✓Tdrift minimizing Err(✓Tdrift) and esti-
mates the found value as the practical phase drift
✓drift.

6. Alice compensates for the phase drift by applying
✓mod = ✓mod � ✓drift.

Alice repeats the above calibration steps at specific in-
tervals or when a phase drift higher than a predefined
threshold is detected.

3 Experimental Results

The control method was tested on a 1 ⇥ 3 QKD net-
work system [6, 7] installed in a secure communication
system of a smart factory in South Korea (Figure 2).
The control system was implemented using a personal
computer and an FPGA board equipped with multiple
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(a) (b)

Figure 1: (a) Transfer function of the MZM (b) Block
diagram of the proposed method.

Figure 2: (a) Field deployment and (b) experimental
setup of the 1⇥ 3 quantum key distribution (QKD) net-
work system. Map data: Google, © 2021 Maxar Tech-
nologies, TerraMetrics.

Figure 3: Experimental results of the field test: (a) Sifted
key rates; (b) Quantum bit error rates (QBERs); (c) Ex-
tinction ratios (ERs) of the MZMs. The red, black, and
blue solid lines are the results of Alice 1–3, respectively.

16-bit digital-to-analog converters, and each transmitter
had an individual control system.

The field test was conducted over a 4-5 day period, dur-
ing which the extinction ratios (ERs) of the MZMs and
QKD performance parameters were measured. The re-
sults (Figure 3) showed that all the ERs were maintained
over 20 dB, and satisfactory QKD performances were
achieved, indicating that the proposed method could
maintain MZM stability in an actual network environ-
ment.

4 Conclusion

In this study, we proposed and experimentally demon-
strated an e�cient MZM bias control method for QKD
systems. Our experimental results showed that the pro-
posed method can handle temperature changes and main-
tain the ERs over 20 dB (bit error rate  1%) for several
days in a 1⇥ 3 QKD network testbed installed in the se-
curity facility of a smart factory in South Korea. These
results demonstrate the potential of the proposed method
as a cost-e↵ective and e�cient way to implement MZM
bias control in QKD systems.

In future work, we plan to further improve the con-
trol performance through parameter optimization and
develop an advanced method for multiple MZMs.

5 Acknowledgment

This work was supported by the National Re-
search Foundation of Korea (NRF) under grants
2021M1A2A2043892 and 2022M3K4A1097119, the In-
stitute for Information and Communications Technol-
ogy Promotion (IITP) under grant 2020-0-00890, the
Commercializations Promotion Agency for R&D Out-
comes under grant 2022SCPO B 0210, the KREONET
Advanced Research Program Grant from KISTI, and
the KIST research program under grants 2E31531 and
2E32801.

References

[1] Bennett, C. H. & Brassard, G., ”Quantum Cryptog-
raphy: Public Key Distribution and Coin Tossing,”
Proceedings of the IEEE International Conference
on Computers, Systems and Signal Processing, 175-
179 (1984).

[2] Park, B. K. et al., ”QKD system with fast active
optical path length compensation.” Sci. China Phys.
Mech. Astron. 60, 060311 (2017).

[3] Wang, D. et al., ”Real-Time Phase Tracking Scheme
With Mismatched-Basis Data for Phase-Coding
Quantum Key Distribution.” IEEE Photonics Jour-
nal 12, 1-7 (2020).

[4] Park, C.-H. et al., ”Experimental Demonstration of
an E�cient Mach-Zehnder Modulator Bias Control
for Quantum Key Distribution Systems.” Electron-
ics 11 (2022).

131



[5] Hofer, L. R. et al., ”Bias Voltage Control in Pulsed
Applications for Mach-Zehnder Electrooptic Inten-
sity Modulators.” IEEE Trans. Control Syst. Tech-
nol. 25, 1890-1895 (2017).

[6] Park, B. K. et al., ”User-independent optical path
length compensation scheme with sub-nanosecond
timing resolution for a 1xN quantum key distribu-
tion network system.” Photonics Res. 8, 296-302
(2020).

[7] Woo, M. K. et al., ”One to Many QKD Network Sys-
tem Using Polarization-Wavelength Division Multi-
plexing.” IEEE Access 8, 194007-194014 (2020).

132



Universal quantum optical classifier on a silicon chip
Wojciech Roga

1 ⇤
Takafumi Ono

2 3 †
Baptiste Chevalier

1 4 ‡
Masahiro Takeoka

1 §

1 Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi,
Kanagawa, 223-8522 Japan

2 Program in Advanced Materials Science Faculty of Engineering and Design, Kagawa University, 2217-20
Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan

3 JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
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Abstract. The idea of data re-uploading in a qubit circuit was proposed in [1] to show that even a
single qubit system can compute complicated functions of parameters of the circuit. The universality of
such quantum classifier was proven. In the presented research [2] we extend these ideas to bosonic systems
with even a single photon. Moreover, we experimentally demonstrate the classification using integrated
photonics silicon chip. The technique applied a supervised machine learning with hybrid quantum-classical
training. For training we use a novel sequential minimum optimization technique. We also discuss a fully
quantum version with quantum algorithms used for training.

Keywords: Quantum Classifier, Quantum Machine Learning, Integrated Photonics

1 Context and motivation

(This submission is mostly based on arXiv:2207.06614
[2].)
In the modern data driven society data classification is

a fundamental task involving the most advanced technol-
ogy with big impact on everyday life and on the economy.
It is predicted that the data classification market value
will reach globally 5,197.92 million USD by 2028 with
predicted growth by 24.29% every year [3]. Among the
challenges there are the volumes of unstructured data
produced today, privacy and security, as well as risks
related to wrong decisions based on imprecise or false
classifications by automated algorithms. Therefore, the
research in the field of machine learning based classifiers
is intense today. The researchers also explore possibilities
o↵ered by nowadays and future quantum technology hop-
ing that quantum features such as: exponential scaling of
the dimensionality of quantum states with the number of
elementary systems, parallelism of quantum superposi-
tion, non-classical correlations provided by quantum en-
tanglement, computational speed-up o↵ered by quantum
algorithms, and hardware developed on many platforms
today, can appear useful for data handling [4]. Indeed
the volume of research papers on the ”quantum classi-
fier” topic as well as the number of citations sharply in-
creases [5] within the last ten years, see figure 1, with no
sign of saturation yet. For a review see, e.g., [6].

2 Quantum classifier with data re-
uploading

One of the challenges of quantum technology applied to
machine learning tasks including classifiers is the intrinsic
linearity of quantum physics. The non-linearity which
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Figure 1: Clarivate Web of Science Citation Report chart
for the number of publications and citations related to
”quantum classifier” from 2013, as for May 2023. It
shows strong interest of the community in the topic.

is used in machine learning, for example, in activation
functions of neural networks, here can be introduced by
measurements, many copies of data dependent quanutm
states input to the system, or other tricks.

Figure 2: Scheme of deta re-uploading circuit. Train-
ing data xi is introduced many times as a parameter of
unitary transformations. Other unitary transformations
contain tunable parameters used for training. The clas-
sification is based on the value of the probability pi(|1i).

In [1] the authors proposed to use the so-called data
re-uploading technique to introduce nonlinearites of pa-
rameters of a signle-qubit circuit. The classical data is
encoded in a classically tuned parameters of gates of the
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circuit, see figure 2. The nonlinearity of data is obtained
when the values characterising a data point are intro-
duced several times in di↵erent parts of the circuit (re-
uploaded). The circuit contains also free parameters that
allow for training the circuit such that the finally mea-
sured probability of a chosen state can be used as an
indicator of a classification task. The probability is used
to construct an appropriate cost function which is min-
imized during training. In this solution the training is
classical that makes the setup a hybrid quantum-classical
classifier.
The authors of [1] provided the arguments of the

universality of such classifier, i.e., an analogue of the
universal approximation theory in a single layer neural
network. This demonstrates that even a single qubit
system can compute complicated functions of parameters
of the circuit if it is long enough and is appropriately
trained.

In the present research we extend these ideas to bosonic
systems with even a single photon as is shown in figure 3.
Moreover, we experimentally demonstrate a classification
using integrated photonics silicon chip.

Figure 3: Two mode circuit scheme of a bosonic clas-
sifier with data re-uploading. Two 50:50 beamsplitters
and three phase shifters realize an arbitrary SU(2) uni-
tary transformation of the modes creation operators. The
concatenation of such elements can realize a universal
function of data x to be classified which is repeatedly
uploaded together with appropriate weights w and bi-
ases ✓ in the arguments of the specific phase shifters.

To experimentally demonstrate the performance of
the classifier we have used a chip of integrated silicon
wires with total 220 photonic elements which can re-
alize arbitrary unitary 4 mode circuit and operates in
the room temperature [2]. The optical quantum circuits
were fabricated using lithographic techniques on stan-
dard SOI wafers using a commercially available Multi
Project Wafer service. In our proof of principle experi-
ments, we have used two modes of this circuit to demon-
strate computational abilities of even small systems when
the data re-uploading method is applied similarly to the
single qubit classifier of [1]. An input state in our case
was a data independent two photon state. The value of
features of points to be classified were input in the phases
of a few phase shifters at once together with appropriate
tunable weights and biases in each phase shifter. That
allows us to obtain a classifier with universality feature
[1, 2] schematically shown in figure 3.

3 Training

During training of the classifier in our experiment,
we have used a novel method of adjusting tunable pa-
rameters. It is called Sequential Minimal Optimization
method. It was proposed in [7] and was further adapted
to a bosonic classifier by us [2] and adapted to estima-
tors based on small number of measurements also by us
[8]. In this method we sequentially fix all but one pa-
rameter, find the cost function as a function of this pa-
rameter, where the coe�cients of the function are mea-
sured in the same circuit, and update the parameter with
the value in which the cost function directly achieves the
minimum. This approach o↵ers several advantages in-
cluding fast convergence to the global minimum of the
cost function and robustness against the impact of bar-
ren plateaus. The condition for the method to work is
that one has an easy access to exact functional depen-
dence of the cost function on a chosen parameter while
other parameters are fixed. This assumption is naturally
satisfied in our system with phase shifters as the only
elements with tunable parameters.

The classifying problem we considered was to correctly
recognize two classes of points on the 2D surface sep-
arated by a curved line based on training data chosen
randomly, figure 4 (a). In our proof of principle exper-
iment involving 6 tunable parameters we achieved 94%
accuracy of classification of points separated by an el-
liptical curve, figure 4 (b). The universality argument
implies that more complicated problems can be solved if
longer circuits are applied, which can be further tested
on our circuit. We can also involve the other modes of
our chip to study the influence of more complex quantum
states on the classification process.

Figure 4: (a) Training point and the area to be classified
by the optical quantum circuit. Red line denotes the
boundary of two classes. (b) Classification results by our
experiment.

As the silicon photonics systems are relatively easily
extendable we conclude that this is natural and promis-
ing platform for quantum machine learning tasks. Our
experiment is the first quantum optical realization of the
data re-uploading based quantum classifier.

The preprint with the results discussed above is pub-
lished in [2].

Although the goal of this work was to experimentally
demonstrate that low dimensional quantum optical sys-
tem can achieve the universal features such as classical
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neural network and we did not intend to show any quan-
tum advantage, in the next section we provide some argu-
ments that shows that some quantum advantage is pos-
sible for example in the parallelised version of the data
re-uploading classifier.

4 Quantum Training

As the number of parameters in the classifier consid-
ered by us can quickly grow the training of the circuit be-
comes challenging. We explored the possibility of a par-
allel version of the qubit based classifier in which we in-
troduce the dependence of the tunable parameters which
we assume now to be binary on additional qubits, figure
5. This trick allows us to create a quantum superposi-
tion with the amplitudes related to di↵erent values of a
specifically chosen cost function. We propose to perform
the quantum maximization algorithms [9] and nonlinear
transformations of quantum amplitudes [10] to maximize
the cost function and train the classifier. We analyzed
the complexity of this scenario and observe that under
specific conditions the fully quantum training can be ad-
vantageous with respect to classical maximum search al-
gorithms achieving at most quadratic speed up.

Figure 5: A parallelised version of the qubit based quan-
tum classifier with data re-uploading in which quantum
search algorithms can be used for training. Parameters
x denote training data, parameters � adjustable param-
eters which we assume here to be binary.

At the moment of the abstract submission this scenario
has not been published yet.
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Abstract. In this work, we give a procedure to robustly convert any inflated graph state to a state
locally isomorphic to the original graph state using correlations only the inflated graph state can achieve
up to unitary operations on the chain vertices. We measure the correlations with local quantum devices
even permitting them to communicate classically with each other up to some restricted distance along the
graph’s edges. Thus, we provide a self-test for connected graph states when allowing for bounded classical
communication. We also provide a self-test for any graph state, but the graph states from an underlying
triangle graph or a pair of vertices, inflated or not.
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Self-testing involves the utilization of non-local cor-
relations to validate multi-partite states using local de-
vices whose precise actions are unknown or untrusted. In
the research by McKague in [1], a robust self-testing ap-
proach is presented for any connected graph state, where
the local units correspond to the vertices of the graph.
This method assumes no communication between the lo-
cal quantum devices employed to measure the correla-
tions.
In the paper by Barrett et al. discussed in [2], cor-

relations within a graph state are presented, which can-
not be reproduced by any local hidden variable (LHV)
model, even with the assistance of restricted classical
communication. This result has implications in various
areas such as distributed computation [4], randomness
extraction [5], and establishing a depth complexity sep-
aration between classical and quantum circuits [7], [3].
This prompts the question of extending the concept of
self-testing to graph states that allow communication
between the quantum devices, relaxing the previous as-
sumption.
In [6], we further extend the findings of Barrett et al.

[2] to encompass any graph state by introducing a notion
called ”inflated graph states.” For any connected graph
G = (V,E), an inflated graph G0 = (V 0, E0) is formed by
replacing each initial edge with a chain of 2d vertices (see
Fig.1 for an example). We refer to the additional vertices
as chain vertices and to the ones originating from the old
graph as main vertices. The inflated graph states then
exhibit correlations that no distance-d-communication-
assisted LHV model can achieve.
Our work outlines a robust procedure to convert any

inflated graph state into a state that is locally isomor-
phic to the original graph state, using correlations exclu-
sive to the inflated graph state, up to unitary operations
on the chain vertices. The correlations are archive by
measurements with local quantum devices, with the pro-
vision of limited classical communication between them,
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Figure 1: Example of an inflated graph for d = 2 from a
graph with 7 (large) vertices with two induced odd cycles
(vertices 1, 2, 4, 6, 3 and vertices 2, 5, 4). The thickened
circles highlight the vertices that measure a non-trivial
operator when measuring the inflated vertex stabilizer el-
ement for the main vertex 4. Main vertex 4 and all high-
lighted chain vertices measure Pauli operator �x while
the power vertices 2, 5, 6 measure Pauli operator �z.
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up to a restricted distance along the edges of the graph.
Consequently, we establish a self-testing mechanism for
connected graph states that allows for bounded classical
communication. Additionally, we present a self-test for
any graph state containing a line with three vertices (ex-
cluding the triangle), regardless of inflation, thus adding
to the work of [1].
Our methodologies draw inspiration from the tech-

niques employed in [1]. In that work, McKague presents
two reference experiments, which consist of measurement
settings and a state representing the expected behavior of
the devices. By ensuring that the reference experiments
possess the same number of measurement settings as the
actual quantum devices, one can certify the devices’ ac-
tion and the given state if the measurement outcomes
align with the predictions of the reference experiment.
The first reference experiment can be applied to a

graph that contains an induced odd cycle, represented
by a subgraph specified by a subset of vertices, includ-
ing the subset of edges formed by tuples of the subset of
vertices (see Fig. 1 for an example). The measurement
settings contain all vertex stabilizer elements, generators
of the graph states’ stabilizer group,

g(0)u |G(0)i = |G(0)i , 8u 2 V (0) , (1)

with g(0)u = �x
u

N
(u,v)2E(0) �z

v and the Pauli opera-
tors �x,z. Using both reference experiments, and as-
suming that the devices’ measurement outcomes match
those of the reference experiments, [1] deduce two anti-
commuting variables on each vertex of the respective sub-
graphs based on the measurement settings. By measur-
ing the vertex stabilizer elements on the remaining ver-
tices, they extend the existence of two anti-commuting
variables to all vertices of the connected graph. These
anti-commuting variables correspond to SWAP gates on
each vertex, establishing a local isometry [10] that maps
the given state to the reference graph state.
In our work, we introduce three reference experiments

with the measurement settings incorporate what we term
inflated vertex stabilizer elements on the inflated graph
state,

f 0
u = g0u

Y

|u�v|%2=0 ,
|u�v|%22d

g0v = �x
u

O

|u�v|%2=0 ,
|u�v|%22d

�x
v

O

|u�w|=2d+1

�z
w ,

(2)
where g0u are vertex stabilizer elements of the inflated
graph state g0u|G0i = |G0i for all u 2 V 0 and |u� v| mea-
sures the distance of vertices u, v along the graph’s edges.
Consequently, the f 0

u represent stabilizer elements on the
inflated graph state for every main vertex u 2 V , emu-
lating the vertex stabilizer elements of the original graph
state on the main vertices (see Fig. 1 for an example).
It is worth noting that the chain vertices either perform
no measurement or measure in the Pauli �x basis.
The first reference experiment considers an induced

odd cycle subgraph. Apart from the inflated vertex stabi-
lizer element, we include the product of all inflated vertex
stabilizer elements in the list of measurement settings.
Additionally, we add two more stabilizer elements from

the d-inflated graph state for every vertex in the induced
odd cycle to protect the non-local correlations against
distance-d classical communication along the edges of the
inflated graph.

The second reference experiment self-tests a (inflated)
graph state with an induced (inflated) star graph, which
consists of a central vertex and at least two adjacent ver-
tices that share no edges amongst themselves. The mea-
surement settings for this experiment comprise all (in-
flated) vertex stabilizer elements, including the stabilizer
element obtained by multiplying all (inflated) vertex sta-
bilizer elements on the induced (inflated) star graph.

When an inflated graph state from a pair of vertices,
we resort to Cli↵ord measurements for the third reference
experiment. Cli↵ord operators can be decomposed into
products of Pauli operators, which are either stabilizer
elements or not. Therefore, the constituent stabilizer el-
ements of the Cli↵ord operators are products of inflated
vertex stabilizer elements.

We demonstrate that for all three reference experi-
ments, the measurement settings on all chain vertices
commute. As a result, we establish the same anti-
commutation relations for the two variables on each main
vertex, similar to the approach in [1] applied to the orig-
inal graph’s vertices. By utilizing SWAP gates on every
main vertex, we construct a local isometry that maps the
given state to the original graph state, up to unitary op-
erators in the Pauli �x basis on the chain vertices. By
measuring the chain vertices in the Pauli �x basis, the
unitary operators are eliminated, thereby completing the
procedure. To gain intuition regarding the procedure,
[8] describe the e↵ects of a Pauli �x measurement on a
vertex of a graph with two nearest neighbors. After the
measurement, the resulting state is locally isomorphic to
a graph state with the vertex removed and the nearest
neighbors sharing a new edge. By solely considering the
chain vertices in the Pauli �x basis, one can perceive our
procedure as ”inflating” a graph by a factor of d in order
to self-test it using local devices that can communicate
up to a distance of d, while simultaneously ”deflating”
the inflated graph to a state isomorphic to the original
graph state.

To ensure robust self-testing, we bound the anti-
commutation relations and the distance between the iso-
morphism of the given state and the reference state by the
maximal deviation ✏ of the measurement outcomes. Our
tools and dependencies on ✏ are akin to those used in [1],
although our bounds are slightly looser due to the addi-
tional measurement settings in the reference experiments.
On the other hand, our second reference experiment for
(non-inflated) graph states from graph containing an in-
duced star subgraph allows for a more robust self-test.
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Abstract. We report that the RFI-QKD protocol can be extended to the multiparty sys-
tems using Greenberger-Horne-Zeilinger (GHZ) state. We derive the asymptotic key rate and
perform proof-of-principle experiments to verify the feasibility of a secure quantum network.
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1 Introduction

Entanglement provides a way to share the secu-
rity of random keys between remote parties, such
as quantum key distribution (QKD) [1]. In the
near future, larger scale entanglement will provide
us quantum networks enabling secure communica-
tion between multimode. As the number of nodes
in a quantum network increases, the complex-
ity and requirements for constructing the system
also increase. One significant issue is a reference-
frame mismatch among multiple parties. In typ-
ical two-party quantum key distribution (QKD)
protocols, e.g., BB84 protocol, the correlation be-
tween measurement results is used to check the ex-
istence of Eve, so secure key generation fails due
to this misalignment. To address this problem
in two-parties QKD protocol, Reference-Frame-
Independent QKD (RFI-QKD) utilizes frame rota-
tion invariant parameter to ensure the security of
quantum channel [2]. This presentation proposes a
multiparty RFI-QKD protocol usingN -qubit GHZ
state.

2 Theory

Figure 1 shows the schematic diagram of multi-
party RFI-QKD using GHZ state. To constructN -
parties QKD protocol, N -qubit GHZ state is trans-
mitted into N participants (P1, P2, · · · , PN�1, PN )
via quantum channels. Then, all participants ran-
domly perform projective measurement on a given
single qubit on a Pauli basis and announce some
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Figure 1: The schematic diagram of RFI-QKD us-
ing N -qubit GHZ state. Each participant Pi has
own reference-frame X,Y and Z. In RFI-QKD,
frame di↵erences �i occur between station prepa-
ration and projection bases.

outcomes and basic information to estimate pa-
rameters for key generation, such as quantum-
bit error rate Q. In order to describe the refer-
ence frame rotation situation, we set that N -qubit
GHZ state is prepared in Pauli basis {XS , YS , ZS}.
Moreover, participants Pi have their reference
frame of {Xi, Yi, Zi} so that projective measure-
ment is performed with relative reference frame
di↵erence of �i. This relation can be also written
as [2]

ZS = Zi,

XS = cos�iXi + sin�iYi, (1)

YS = cos�iYi � sin�iXi.

While Z basis of all the participants is invariant
under the reference frame rotation, X and Y bases
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depend on the uncontrollable frame rotation �i,
and thus, secret key generation can be failed be-
cause of varying QX values. The main purpose
of the RFI-QKD protocol is to use frame rota-
tion invariant parameter C, to prevent key gen-
eration failure due to reference frame di↵erence.
In the situation of Eq. 1, the projective measure-
ment with frame di↵erence �i can be regarded
as the occurrence of relative phase in the initial
GHZ state | (�̃)iN = 1p

2
(|0i⌦N+e

i�̃ |1i⌦N ) where

�̃ =
P

i �i. Thus, the measurement outcomes be-

long to the correlation of | (�̃)iN , and the expec-
tation value can be estimated as tr(⇢ �̃

M) where

⇢x = |xihx| and M is Pauli operator consisting of
{X,Y, Z}. In order to define frame rotation in-
variant parameters, we utilize expectation values,
especially the combination of security check basis,
{X,Y }. Thus, C parameter of N -qubit RFI QKD
protocol is given as

CN =
2NX

n=1

hMni2. (2)

2N corresponds to the number of possible Pauli
basis combinations in {X,Y }. We note that a si-
nusoidal relation between expectation value and �̃

is expected [3], so that the ideal parameter value
is CN = 2N�1. Now, we can use the C parameter
instead of QX for secret key generation. In mul-
tiparty RFI-QKD, the asymptotic secret key rate
rN is given as [4]

rN = 1�H[QZ ]� IE [QZ , CN ]� h(max[�j ]),

(3)

where H(x) and h(x) are Shannon and
binary Shannon entropy, respectively.
IE [QZ , CN ] is Eve’s information IE [QZ , CN ] =
QZH [(1 + v)/2] + (1 � QZ)H [(1 + u)/2],

where u = min
h
1/(1�QZ)

p
CN/2N�1, 1

i

and v = 1/QZ

p
CN/2N�1 � (1�QZ)2u2. �j .

3 Experiment

We have also experimentally demonstrated
a 4-parties RFI-QKD protocol using single-
photon states from spontaneous parametric down-
conversion. In order to investigate the e↵ect of ref-
erence frame rotating quantum channels, we have
performed 4-parties RFI-QKD protocol concern-
ing various �̃ cases, some of which are changed
while others are fixed. The first and second rows
of Fig. 2 present the experimental data of the es-
timated parameters and secure key rate. The first
row of Fig. 2 shows QZ (green line) and some ex-
pectation value hMni curves, respectively. The es-
timated C parameters (red) and secure key rate
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Figure 2: The experimental results of 4-party RFI-
QKD in respect of reference frame rotation of (a)
�̃ = {0, 0, 0,�D} and (b) �̃ = {�A,⇡/4,⇡/4,⇡/4},
respectively.

(blue) are presented in the second row of Fig. 2.
We have set two �̃ cases. Figure 2 (a) and (b)
correspond to the cases of rotating �D while oth-
ers are fixed at 0 and changing �A while others
are fixed at ⇡

4 , respectively. While QZ is invari-
ant under the varying �D (�A), expectation val-
ues show the sinusoidal oscillation with the visi-
bility of V = 0.791 ± 0.024 (V = 0.809 ± 0.028).

The average QZ value is Q
(a)
Z = � 0.093 ± 0.018

(Q(b)
Z = � 0.090 ± 0.020), respectively. The C

parameter corresponds to the left axis of the sec-
ond row in Fig. 2. It clearly shows that the C

parameters are invariant under the varying �̃. In
particular, we found that C(a) = 5.264±0.356 and
C

(b) = 5.521 ± 0.305. Finally, we have presented
the secret key rate as r

(a) = 0.339 ± 0.058 and
r
(b) = 0.395±0.051 corresponding to the right axis
of Fig. 2. All participants can generate the secret
keys through our multiparty RFI-QKD protocol.
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I. SUMMARY

In the quantum theory, matrix transposition has been known
to reverse the order of quantum processe representing time re-
versal transformations. However, recent discoveries regarding
the indefinite causal order of quantum processes propose that
there may be other, more general symmetry transformations
of time besides complete reversal. In this study, we intro-
duce an expanded concept of matrix transposition, the gener-
alized transposition, that takes into account general bipartite
unitary transformations of a quantum operation’s future and
past Hilbert spaces, allowing for the description of superpo-
sitions of the time axes. This approach treats time and space
equally and can be used in fields like quantum gravity, where
the spatio-temporal structure emerges from quantum mechan-
ics. We apply this generalized transposition to investigate a
continuous generalization of perfect tensors, a dynamic ver-
sion of tracing out a subsystem, and the compatibility of mul-
tiple time axes in bipartite quantum interactions. Notably, we
demonstrate that when a bipartite interaction is consistent with
more distinct local temporal axes, there is a reduced allowance
for information exchange between the two parties in order to
prevent causality violations.

II. MAIN RESULTS

Matrix transposition, when applied to a composition of ma-
trices, inverts the order of them, i.e.,

(NM)T = MTNT . (1)

From this fact, it is natural to model the inversion of time of
quantum system by applying the matrix transposition to quan-
tum operations on the system, or more precisely, on the Kraus
operators of them:

N T (⇢) :=
X

i

KT
i ⇢K

⇤
i , (2)

where N (⇢) =
P

i Ki⇢K
†
i is a quantum channel. Indeed,

in Ref. [1], it has been shown that the only order-reversing
transformation that works consistently even when it acts on
subsystem of joint system processes is the matrix transposi-
tion. However, by no means it should be the only symme-
try transformation of the temporal structure of quantum pro-
cesses, considering the recent development of nonclassical
causal structure within quantum theory [2, 3].

In this work, we construct a symmetry transformation that
generalizes the matrix transposition. The transpose operation

M 7! MT [1] can be understood as the rotation by 180� in
tensor diagram, i.e.

MT = M , (3)

whose action of quantum channels is given as (2). (Adjoint
operation †, on the other hand, is modelled by mirror reflec-
tion on tensor diagram.) Geometrically, one can interpret the
transpose operation as flipping the direction of time. However,
since there are ways to rotate a diagram other than the rotation
by 180�, one could naturally become curious after seeing (3)
if there is a way to express the general transformation of the
direction of the time axis itself, not just flipping the time di-
rection for a given time axis as in Ref. [1]. In this section, we
propose such a generalization.

The unitary operator is the complex generalization of the
orthogonal matrix, hence it generalizes the action of rotat-
ing to complex Hilbert spaces. First, we observe that we can
stretch and curve the wires in (3) to transform it into

:=MT

M

. (4)

Here, the crossing wires in the right hand side can be in-
terpreted as the swapping operator F :=

P
ij |iihj| ⌦ |jihi|,

which is a unitary operator.
On the other hand, we also have the following expression,

:=M
M

. (5)

Here, we can say that the swapping operator in (4) is replaced
by the identity operator. Comparing (4) and (5), one could
understand transpose operation as the exchange of future and
past Hilbert space. We can naturally guess that if we sub-
stitute them with a general bipartite unitary operator, we can
get a generalization of transpose operation. Therefore, we de-
fine the generalized transposition T [W ] for each bipartite uni-
tary operator W 2 U(A⌦2) which maps any M 2 B(A) to
MT [W ] defined in the following way,

:=
W

 

#

 

MT [W ]

M

, (6)

where the arrow next to each box indicates the flow of time,
or the direction from input to output. Concretely, MT [W ] is
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FIG. 1. Consider a unitary operation U0 : A0 ! B0. One can
interpret A0 and B0 as the past and the future Hilbert spaces of a
quantum system and U0 as its time evolution. However, If A0⌦B0 =
A1⌦B1 with W being the bipartite unitary operator connecting two
different tensor decompositions, then U0 can be interpreted as U1

from A1 to B1 if U1 = UT [W ]
0 .

defined as, with a fixed basis {|ii} of A,

MT [W ] :=
X

i,j

(1⌦ hj|)W (M |ii ⌦ |iihj|). (7)

Once we defined how generalized transposition acts on ma-
trices, we can define the corresponding action of generalized
transposition on quantum channels, or more generally, on lin-
ear maps. We can define the supermap T[W ] given as

T[W ](N )(�) := |A|2 TrBA0 [(1A⌦�+
BA0)(AdW (JN

AB)⌦�A0)],
(8)

for any � 2 B(A0) and N 2 L(A). For the sake of brevity, we
will use the notation N T [W ] := T[W ](N ) interchangeably.
This seemingly complicated definition of superchannel T[W ]
is given in this way so that (AdM )T [W ] = AdMT [W ] . From
this, one can easily see that if

N (⇢) =
X

n

cnKn⇢K
†
n, (9)

with complex numbers cn 2 C, then

N T [W ](⇢) =
X

n

cnK
T [W ]
n ⇢KT [W ]†

n . (10)

Now we have a tool for describing symmetry transforma-
tions of the temporal structure of quantum processes, we de-
fine the compatibility of a quantum process with multiple tem-
poral structures in terms of the generalized transposition as
follows. It is a direct generalization of bidirectional opera-

tions for the conventional transposition considered in Ref. [1].

Definition 1. A quantum channel N is compatible with a gen-
eralized transposition T [W ] when N T [W ] is also a channel.

A particularly important case is when the generalized tran-
position acts on a subsystem of bipartite quantum process.

Definition 2. A quantum channel N 2 C(AB) is com-
patible with a generalized transposition TB [W ] on B when
N TB [W ] := (idA ⌦ TB [W ])(N ) is also a channel.

This definition enables us to study the meaning of multiple
systems sharing the same direction of time by altering the lo-
cal temporal structure through the generalized transposition.

However, the definition of the generalized transposition could
be too general for representing the symmetry transformation
of purely temporal structure of quantum processes. We thus
restrict out attention to a smaller class of generalized trans-
positions that are unital, i.e. 1T [W ] = 1. Interestingly, a
generalized transposition is unital if and only if it is trace-
preserving. A generalized transposition T[W ] being unital is
also equivalent to the corresponding bipartite unitary operator
W preserving the maximally entangled state d�1/2

P
i |ii |ii.

Since this class of generalized transposition preserves the triv-
ial event, i.e., the identity channel, it is rational to assume that
they are a good candidate of pure manipulation of temporal
structure.

A naturally following question is if it is possible to clas-
sify all the generalized transposition according to their locally
unitarily similar unital transposition. Proving or disproving
it is equivalent to the open problem of showing if every bi-
partite d2-dimensional unitary operator has at least one max-
imally entangled state as its eigenvector [4, 5]. If a bipartite
unitary operator U has this property, we say that U preserves
ME (maximally entangled state). It has been shown to be true
for the case of d = 2 [6, 7], but the problem is not so clear for
higher dimensions. In this work, we showed that this is indeed
true for a large class of bipartite unitary operators, namely, for
controlled unitary operators.

Theorem 3. Every qudit-qudit controlled unitary operator W
preserves ME.

It has the following implication for generalized transposi-
tions. In other words, for a large class of generalized transpo-
sitions, there is actually at least one unitary operation compat-
ible with them.

Corollary 4. For every qudit-qudit controlled unitary opera-
tor W , there exists a unitary channel that is compatible with
the generalized transposition T [W ].

Moreover, in many scenarios, quantum processes do not ex-
ist in isolation but are embedded in a context, i.e., superchan-
nels. For example, state preparation and measurement can be
interpreted as the surrounding superchannel, too. Say, a quan-
tum channel � is fed into a superchannel F. If � is compati-
ble with a generalized transposition T[W ], then the supermap
F � T[W †] should also a superchannel for the whole picture
including the superchannel F to be consistent, because

F � T[W †] (T[W ](�)) = F(�). (11)

This restricts which state preparation is consistent with a
given generalized transposition. Especially, not every quan-
tum state can be fed into as a local input of a bipartite quantum
interaction that has multiple consistent local temporal struc-
tures. This is natural considering that allowing for arbitrary
input could violate the causality when two systems do not
share a common direction of time.

Proposition 5. A state preparation superchannel given as
P�(N ) := N (�) is compatible with a generalized transpo-
sition T [W ] of its input channel, i.e., P� � T[W †] is a su-
perchannel, if and only if there exists a quantum state ⌧ such
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that

W (1A ⌦ �T
A0) = (1A ⌦ ⌧TA0)W. (12)

Our work also includes an extensive discussion on tensor
network picture of universe, continuous generalization of per-
fect tensors and the supertrace with its relation with factoriz-
able maps. Please refer to the technical manuscript for more
information and concrete definition of terms used above.
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Abstract. We characterize a bipartite entanglement in a realistic silicon double quantum dot platform.
Arbitrary two-qubit entangled states are generated by conducting a single-qubit rotation and a controlled-
NOT operation. To quantify the entanglement, we employ a marginal operational quasiprobability (OQ)
function, which serves as a reliable entanglement witness even in the presence of significant noise. We here
discuss how the entanglement characteristic of the Si DQD structure are a↵ected by charge noises which
is omnipresent in semiconductor devices.

Keywords: Entanglement, Silicon quantum dot, Operational quasiprobability

1 Introduction

Quantum correlations, such as entanglement, play a
crucial role in quantum information technologies, pro-
viding advantages over classical counterparts in quantum
computing, quantum communication, quantum metrol-
ogy, and so on. Thus, the quantification of the quantum
correlations is important as it can be used to explore the
potential practicality in information processing e.g., suit-
able states of certain quantum circuits. Especially, we
here study the characterization of the quantum entan-
glement. To this end, we employ a marginal operational
quasiprobability (OQ) function that allows negative val-
ues of the function if a given state is entangled [1]. We ap-
ply the marginal OQ method to the electron-spin qubits
in a silicon (Si) double quantum dot (DQD) platform,
where a single-qubit rotation and a two-qubit controlled-
NOT operation are conducted sequentially in time to gen-
erate arbitrary two-qubit entangled states.

2 Method

We use a newly defined quasiprobability function for
discrete systems, which is linked to experimental situ-
ations in which incompatible observables are measured
consecutively. It turns out that the OQ function method
identifies the nonclassicality of quantum systems in an
operational way. Furthermore, for multipartite systems
the marginal OQ function can be used as an entangle-
ment witness. In principle, the OQ approach is advan-
tageous over the entanglement verifications involving the
full state tomography process in a sense that our method
can be calculated with directly measurable quantities in
laboratory and requires less number of measurements to
characterize the entanglement.

The N -qubit OQ function is defined by applying a
discrete Fourier transform on the composite expectation

⇤elec1020@kisti.re.kr

value C(n1, . . . ,nN ) ⌘ C(n1) ⌦ · · · ⌦ C(nN ) as

W(a1, . . . ,aN ) ⌘ 1

2NK

X

n1,...,nN

(�1)�a1·n1···�aN ·nN

⇥ C(n1, . . . ,nN ), (1)

where a tuple ni = (ni
1, n

i
2, . . . , n

i
K) represents possible

measurement configurations for i-th subsystem having K
measurement operators and ai · ni =

P
k ai

kn
i
k. The ex-

pectation value C(n1, . . . ,nN ) represents the measure-
ment configurations that are implemented in a laboratory
(see Ref. [2] for more details). We consider the following
formula to quantity the entanglement

N ⌘ 1

2

X

a

(|W(a)| � W(a)) . (2)

The value N indicates the sum of the negative compo-
nents of the OQ function, thus the case of N > 0 can be
regarded as the indicator of the entanglement for given
quantum systems.

Our working example is the two-qubit time responses
that are generated from a Si DQD system. A 2D simu-
lation domain of DQD structure reported in [3] encodes
qubits to electron spins that are created with quantum
confinement driven by biases imposed on top electrodes,
see Figure 1(a). The DQD system is initialized to a |##i
state by filling the ground down-spin state of the left and
right quantum dot with a single electron. To this end,
we set the left (VL) and right gate bias (VR) to 555mV.
For the middle gate bias (VM), we consider two cases:
(a) 400mV with an exchange energy (J) of 76KHz (weak
interaction) and (b) 407.5mV with 18.4MHz (strong in-
teraction) respectively, as shown in Figure 1(b). A spatial
distribution of the static magnetic field that is generated
by a horseshoe-shaped cobalt micro-magnet in the real
case [3] is utilized as an input of simulations. The result-
ing Zeeman-splitting energy of the left (EZL) and right
spin (EZR) turn out to be 18.31GHz and 18.45GHz re-
spectively. All these conditions imply that we are able to
implement a single-qubit rotation and a two-qubit gate
operation to the initial state by controlling the middle
gate bias (VM).
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Figure 1: (a) A 2D simulation domain for our case. The real DQD structure [3] is long along the Z([001])-direction,
thus it is described in a 2D manner with a periodic boundary condition along the Z-direction. (b) J given as a function
VM for VR = VL = 555mV. In our case, J ⇠ 76KHz and 18.4MHz when VM = 400mV and 407.5mV, respectively.
(c) (i) For the strong interaction (VM = 407.5mV), the fastest CNOT operation can be achieved in ⇠1.05⇥10�7 (�)
seconds upon the system intialization. The gate fidelity of the CNOT operation becomes 98.35%. (ii) For the weak
interaction (VM = 400mV), we can make only the right spin oscillate by setting the frequency of AC pulse equal to
the Zeeman-splitting energy of the right spin. (iii) A conceptual illustration for time-dependent control of VM and
resulting two-qubit unitary gate that generates the entangled states. (d, e) The fidelity of the two-qubit unitary and
the corresponding output state at ⌧ = 4.99⇥10�8 seconds (the time spot when the output state is maximally entangled)
are shown as a function of �J , which represents the unintentional variation of J with respect to its noise-free value.

3 Results

In order to characterize the entanglement, we em-
ploy the marginal OQ method with the two measure-
ment operators. In general, the OQ function can be
constructed by using the positive operator-valued mea-
sure (POVM) measurements, but we here consider only
two projective measurements defined by the Pauli ma-
trices for cost-e�cient calculations [1]. By calculating
the negative values of the marginal OQ function, we can
quantify the entanglement. The states are generated by
the sequential application of a Rx(↵) and a CNOT op-
eration, thus the output can be expressed by | (↵)i =
cos(↵/2) |00i � i sin(↵/2) |11i. The noise-driven charac-
teristic of entanglement is also investigated by changing
the noise-free exchange interaction J to J⇥(1+�J) as we
treated to simulate the fidelity shown in Figure 1(c) and
Figure 1(d).

Figure 2(a) shows the results of the noise-free case
(�J = 0) as a function of the time ⌧ . The blue (nor-
malized) and green (raw) lines indicate the entangle-
ment strength calculated with the marginal OQ method,
and the red line is the one obtained with the negativity

method. The maximal strength reads 0.2348 (green line)
at ⌧ = 4.99⇥10�8 seconds. Note that there exist the in-
tervals of ⌧ where our method cannot characterize the en-
tanglement precisely, which is because the marginal OQ
function is constructed by using only two measurement
operators for the cost-e�cient calculations.

We also explore the behavior of the entanglement char-
acteristic when the Si DQD platform su↵ers from the
charge noises (�J 6= 0), which is omnipresent in semicon-
ductor devices. Figure 2(b) shows the results of the noise-
driven degradation in fidelity and in the marginal OQ
method. The noise-driven pattern of entanglement char-
acterization does not necessarily follow that of fidelity,
and the output state of the noisy two-qubit operation
still has meaningful strength of entanglement. We find
that while the charge noise causes huge degradation in
the state fidelity, it has a weaker e↵ect on the entan-
glement resource. In a highly noisy environment, the
state fidelity drops to around 20%, but more than 70%
of the resource can be retained for maximally entangled
Bell states. It should be noted that as shown in Figure
1(d) and 1(e), the gate and state fidelity are sensitive to
charge noises, and are sharply reduced as �J increases.
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Figure 2: (a) The results of the noise-free case (�J = 0)
as a function of the time ⌧ . (b) The results of the noise-
driven degradation in state fidelity and OQ method.

However, Figure 2(b) clearly shows that when the noise
is too strong the results we present can be still fairly solid
enough to claim the utility of the marginal OQ method as
a cost-e�cient indicator of entanglement strength, where
the cost-e�ciency of our method against the negativity
method will sharply increase as the size (in qubits) of
targeted quantum states increases.
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Abstract In order to implement quantum cryptography that can provide the same functions as modern cryptography, 
research on quantum public key cryptography is essential. In this paper, we introduce a quantum trapdoor one-way 
function using the conditions of quantum evolutions, such as cyclic and dynamic evolution of quantum states. 
Subsequently, we propose a quantum public key cryptography using it. 
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1. Introduction  
Recently, in the field of quantum cryptography, various 

research has been conducted on quantum authentication, 
quantum digital signature, and quantum direct 
communication, in addition to quantum key distribution, 
which has entered the commercialization step thorough 
quantum network [1-2]. However, most quantum protocols 
have been proposed based on symmetric key cryptography 
because there has not been notarized quantum public key 
cryptography so far [3-4]. These quantum protocols have 
disadvantages of using classical information or 
implementing through complex methods in order to 
overcome the limitations of symmetric key cryptography 
[5-6]. In this paper, we introduce quantum trapdoor one-
way function using single qubit rotation operators to 
overcome the limitations of quantum protocols based on 
symmetric key cryptography. Subsequently, we propose a 
quantum public key cryptography using proposed quantum 
trapdoor one-way function. 

2. Quantum trapdoor one-way function 
We explain the quantum evolution conditions of 

quantum states, before introducing the quantum trapdoor 
one-way function. First, we assume that the arbitrary 
quantum state satisfies eigen value equation as follows. 

|Ψ⟩ = 𝑅ො
ற(𝜃)𝑅ෝ

ற (𝜑)𝑅ො(𝜃)𝑅ෝ (𝜑)|𝜓⟩  

= 𝜆|𝜓⟩,  (1) 

where 𝑅ො(𝜃)  and 𝑅ෝ (𝜑)  are the single qubit rotation 
operator with rotation axis 𝑛ො and 𝑚ෝ , respectively. 𝜆 is a 
complex number. If 𝜆 = 𝑒ఌ (≠ ±1), Eq. (1) satisfies the 
condition of cyclic evolution. Here, the additional global 
phase 𝑒ఌ means the geometric (Berry) phase. The fidelity 
𝐹(𝜌, 𝜎) of |𝜓⟩ and |Ψ⟩ is as follows.  

𝐹(𝜌, 𝜎) = |⟨𝜓|Ψ⟩| 

= ห⟨𝜓|𝑅ො
ற(𝜃)𝑅ෝ

ற (𝜑)𝑅ො(𝜃)𝑅ෝ (𝜑)|𝜓⟩ห.  (2) 

If 𝐹(𝜌, 𝜎) = 1, it means that |𝜓⟩ and |Ψ⟩ are identical 
except for the global phase. On the other hand, if 𝐹(𝜌, 𝜎) =
0, it means that the two quantum states are perpendicular to 
each other. For example, we consider 𝑛ො =
ቀsin𝜁cos గ

ସ
, sin𝜁sin గ

ସ
, cos𝜁ቁ , 𝑚ෝ = ቀsin గ

ସ
cos గ

ସ
, sin గ

ସ
sin గ

ସ
 

, cos గ
ସ

ቁ , and 𝜑 = ଷగ
ସ

 on the Bloch sphere. Figure 1 
represents 𝐹(𝜌, 𝜎)  according to 𝜁  and 𝜃  when |𝜓⟩ =
|0⟩. The case of 𝐹(𝜌, 𝜎) = 1 is satisfied corresponds to the 
green line, the black line, and the cyan point. In the case of 
the green line and the black line are satisfied commutation 
relation [𝑅ො(𝜃), 𝑅ෝ (𝜑)] = 0  and anti-commutation 
relation {𝑅ො(𝜃), 𝑅ෝ (𝜑)} = 0. The cyan point is the case of 
𝜁 ≈ 0.70𝜋 and 𝜃 ≈ 0.79𝜋 , and the additional geometric 
phase 𝜆 = 𝑒(ଵ.ଷଷగ)  is generated after cyclic evolution.  
Meanwhile, at the white points, |𝜓⟩  becomes a 
perpendicular quantum state |𝜓⟩ୄ after dynamic evolution, 
and an additional dynamic phase 𝜆 = 𝑒(ଵ.଼ଽగ)  or 
𝑒(ଵ.ଽగ) is generated. 

 

 
Figure 1. The fidelity  𝐹(𝜌, 𝜎) = ห⟨𝜓|𝑅ො

ற(𝜃)𝑅ෝ
ற (𝜑) 

𝑅ො(𝜃)𝑅ෝ (𝜑)|𝜓⟩| according to 𝜁  and 𝜃 when |𝜓⟩ =
|0⟩. 
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Next, we introduce the quantum trapdoor one-way 
function using single qubit rotation operators, which is a 
prerequisite for implementing a quantum public key 
cryptography. A trapdoor one-way function should provide a 
function that is easy to compute and difficult to invert without 
trapdoor information. A quantum trapdoor one-way function 
should also provide the same functionality. Figure 2 presents 
the quantum trapdoor one-way function using single qubit 
rotation operators. The proposed quantum trapdoor one-way 
function is single qubit rotation operators 
𝑅ෝ

ற (𝜑)𝑅ො(𝜃)𝑅ෝ (𝜑) that satisfies the conditions of cyclic or 
dynamic evolution in Eq. (1) , and 𝑅ො(𝜃)  is used as the 
trapdoor information. As shown in Figure 2, the process of 
|0⟩ → |Φ⟩ = 𝑅ෝ

ற (𝜑)𝑅ො(𝜃)𝑅ෝ (𝜑)|0⟩ is easy, but the process 
of 𝑅ො

ற(𝜃)|Φ⟩ = 𝑒ఌ|0⟩  or 𝑒ఌ|1⟩  (𝑒ఌ ≠ ±1)  is very 
difficult without trapdoor information 𝑅ො(𝜃) . In the 
proposed quantum trapdoor one-way function, an 
eavesdropper cannot estimate trapdoor 𝑅ො(𝜃)  through 
𝑅ෝ

ற (𝜑)𝑅ො(𝜃)𝑅ෝ (𝜑) . In addition, since the single qubit 
rotation operator 𝑅ො(𝜃) is used as trapdoor information, it is 
possible to provide the same functionality as modern 
cryptography and to secure the security of quantum 
cryptography.  

3. Quantum public key cryptography 
We propose a quantum public key cryptography using 

proposed quantum trapdoor one-way function. Figure 3 show 
a schematic representation of the quantum public key 
cryptography. 

Preparation step 

P1. Alice randomly selects the private key ⨂ୀଵ
ே 𝑅ෝ 

(𝜑) 
corresponding to the conditions of cyclic or dynamic 
evolutions of the quantum state |0⟩. 

P2. Alice determines the public key ⨂ୀଵ
ே 𝑅ො

ற (𝜃)𝑅ෝ 
(𝜑) 

𝑅ො
(𝜃)  corresponding to the private of P1 step. 

Subsequently, she announces the public key. 

Encryption step 

E1. Bob randomly generates message ⨂ୀଵ
ே ห𝑚ൿ ∈ {|0⟩, 

|1⟩} and decoy qubits ⨂ୀଵ
ெ |𝑑⟩ ∈ {|+⟩, |−⟩} randomly to 

send to Alice. 

 

E2. Bob encrypts |𝜓⟩ ∈ ൛ห𝑚ൿ, |𝑑⟩ൟ  using Alice’s public 
key as follows. 

|𝐸⟩ = ⨂ୀଵ
ேାெ𝑅ො

ற (𝜃)𝑅ෝ 
(𝜑)𝑅ො

(𝜃)|𝜓⟩.  (3) 

Then, Bob transmits |𝐸⟩ of Eq. (3) to Alice. 

Decryption step 
D1. Bob informs the information of decoy qubits, and Alice 
decrypts as follows. 

⨂ୀଵ
ெ 𝑅ො

ற (𝜃)𝑅ෝ 
ற (𝜑)𝑅ො

(𝜃)  
𝑅ො

ற (𝜃)𝑅ෝ 
(𝜑)𝑅ො

(𝜃)|𝜓⟩.  (4) 

Then, Alice measure decoy qubits using x-basis, and verifies 
the security of the quantum channel. 

D2. Alice generates a quantum state |𝐷⟩ = ⨂ୀଵ
ே 𝑅ෝ 

(𝜑) 
|0⟩ for decryption using the private key. Subsequently, she 
performs the decryption process using |𝐸⟩ as follows. 

|⟨𝐸|𝐷⟩|  
= ⨂ୀଵ

ே ቚ⟨𝑚|𝑅ො
ற (𝜃)𝑅ෝ 

ற (𝜑)𝑅ො
(𝜃)𝑅ෝ 

(𝜑)|0⟩ቚ.  (5) 

D3. In the case of Alice’s private key satisfies cyclic evolution, 
Eq. (4)  is ⨂ୀଵ

ே ห𝑒ఌห|⟨𝑚|0⟩| . If 𝐹(𝜌, 𝜎) = 1 , Bob’s 
message is |𝑚⟩ = |0⟩. Otherwise, if 𝐹(𝜌, 𝜎) = 0, |𝑚⟩ =
|1⟩. 

D4. In the case of Alice’s private key satisfies dynamic 
evolution, Eq. (4)  is ⨂ୀଵ

ே ห𝑒ఌห|⟨𝑚|1⟩| . If 𝐹(𝜌, 𝜎) = 1 , 
Bob’s message is |𝑚⟩ = |1⟩ . Otherwise, if 𝐹(𝜌, 𝜎) = 0 , 
|𝑚⟩ = |0⟩. 

4. Conclusion 
In this paper, we introduced a quantum trapdoor one-way 

function, which is a prerequisite for a quantum public key 
cryptography, using cyclic and dynamic evolution of quantum 
states. Since the quantum state encrypted using the proposed 
quantum trapdoor one-way function randomly, it is very 
difficult to generate the final quantum state without a single 
qubit rotation operator corresponding to trapdoor information. 
However, if trapdoor information is used, it is possible to 
generate final quantum state easily. The proposed encryption 
method guarantees safety by the principles of quantum 

 
Figure 2.  The quantum trapdoor one-way function 
using single qubit rotation operators 

 
Figure 3. A schematic representation of the quantum 
public key cryptography using single qubit rotation 
operators. 
 

148



mechanics. In addition, the quantum trapdoor one-way 
function has the advantage of being easy to implement 
because it uses single qubit operators and a single qubit 
instead of multi-dimensional quantum operator and entangled 
states. Finally, we propose a quantum public key 
cryptography using the quantum trapdoor one-way function. 
The proposed quantum public key cryptography uses single 
qubit rotation operators as public and private key, and uses 
them to encrypt and decrypt messages. It is possible to 
provide security of quantum cryptography and the same 
function as public key cryptography of modern cryptography. 
The proposed quantum public key cryptography is expected 
to enable efficient system design in the field of quantum 
cryptography where there is no alternative other than 
symmetric key cryptography. 
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Objectivity in a simple harmonic oscillator in spin environment
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Abstract. We investigate an objective quantum state for a system of a simple harmonic oscillator
interacting with the large collections of spin-1/2 environment, a so-called spectrum broadcast structure
(SBS). Spin dynamics is assumed to be e↵ectively described by a time-dependent e↵ective Hamiltonian
corresponding to a classical trajectory of a harmonic oscillator. The objectivity measures for the SBS, a
decoherence factor and a generalized overlap (fidelity), are calculated on the high frequency expansion in
the Floquet theory.

Keywords: spectrum broadcast structure, objectivity, decoherence factor, generalized overlap, fidelity,
high frequency expansion.

1 Introduction

Although quantum mechanics is believed to be the
most fundamental framework to describe any physical
systems, our daily perceived world seems to sharply
contrast with quantum mechanical predictions based on
counter-intuitive natures like superposition, interference,
disturbance, non-locality, etc. More concretely, this puz-
zle boils down to a so-called “measurement problem”.
However, it is not even clear whether it is a real, well-
posed problem in quantum theory or a reflection of our
misunderstanding of the theory. In this sense it is impor-
tant to attempt how much the problem can be explained
within the current framework of quantum mechanics.
One of the characteristics of classicality is “objectiv-

ity” [2], analogous to “invariance” of physics in relativ-
ity principle. It turned out that environmental interac-
tions, which were believed to be minimized, play a sig-
nificant role driving a quantum systems to have classi-
cality. This mechanism is called “Quantum Darwinism”
[1]. Furthermore, “Spectrum Broadcast Structure”(SBS)
is introduced for an objective quantum state [2].
In this presentation, we consider a simple harmonic

oscillator interacting with qubit enviroments to investi-
gate whether a simple harmonic oscillator evolves into a
classical objective state, the SBS structure. The Hamil-
tonian of the system is in a form of one for a system
of a photon-two-level atom, i.e. the Jaynes-Cummings
model [3]. The SBS structure is characterized by two
measures, a decoherence factor and a generalized overlap
(fidelity). These two quantities are calculated based on
high frequency expansion in the Floquet theory [4].

2 Dynamics of System

The Hamiltonian H for a composite system, where a
simple harmonic oscillator bilinearly interacts with indi-
vidual spin environment is given by

H = HS +
X

i

H(i)
E

+
X

i

H(i)
int

, (1)

⇤taehunee@cft.edu.pl
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where

HS =
P 2

2M
+

1

2
M⌦2X̂2,

H(i)
E

= ��i

2
�(i)
x
,

H(i)
int

= giX̂ ⌦ �(i)
z
, (2)

where M and ⌦ are a mass and an angular frequency
of an oscillator, respectively and gi is an interaction cou-
pling between an oscillator and ith spin-environment and
�i is a self-dynamic coupling. For interaction we con-

sider only a bilinear interaction H(i)
int

between the ith spin
and a harmonic oscillator without mutual interactions
among other spins. First, we approximate a dynamics
of qubits, based on classical influence of a harmonic os-
cillator (Born-Oppenheimer approximation) by using the
e↵ective Hamiltonian for qubits Heff ,

Heff =
X

i

✓
��i

2
�(i)
x

+ giX0�
(i)
z

cos⌦t

◆
, (3)

Then we put the e↵ective spin dynamics back into a total
state.

3 Objective Quantum State

Here we introduce an objective quantum state, a so-
called Spectrum Broadcast Structure (SBS) [2],

⇢S:fE =
X

i

pi|iiShi|⌦ ⇢E1 ⌦ · · ·⌦ ⇢EfN (4)

After unobserved degrees of freedom traced out, the SBS
structure of a total density matrix is an orthogonal con-
vex combination. The SBS structure is characterized by
a vanishing decoherence factor and a vanishing general-
ized overlap(fidelity).

4 Decoherence Factor and Generalized
Overlap

When our e↵ective description of spin environmental
systems is translated back into the density matrix for the
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total system, ⇢SE is e↵ectively written as

⇢SE(t) =

Z
dX0dX

0
0e

�iHSt/~|X0ihX 0
0|eiHSt/~ (5)

hX0|⇢S(0)|X 0
0i
O

k

Uk(X0, t)⇢
(k)
E

(0)U†
k
(X 0

0, t),

where Uk(X0, t) = Te�
i
~
R t
0 H

(k)
effdt

0
. After unobserved en-

vironmental degrees of freedom traced out, we wish see
two aspects of a total state, which characterize the SBS
structure. One is how much o↵-diagonal elements (co-
herence) decrease and the other is how much diagonal
elements are orthogonal to each other. the decoherence
factor is defined as,

�X0.X
0
0
= TruE [

O

k2uE

Uk(X0, t)⇢
(k)
E

(0)U†
k
(X 0

0, t)]

=
Y

k2uE

�(k)
X0.X

0
0
, (6)

where �(k)
X0.X

0
0
= Trk[⇢(k)(0)U

(k)
X0,X

0
0
] and with U (k)

X0,X
0
0
⌘

U†
k
(X 0

0)Uk(X0). A decoherence factor is responsible for
how o↵-diagonal elements in a total state change. The
diagonal elements in a total state Together with a deco-
herence factor, a so-called generalized overlap (fidelity)
B(⇢, ⇢0) is a measure to characterize the orthogonality
(distinguishability) of two states (⇢, ⇢0), which is required
for objectivity in the SBS structure, defined by

B(⇢, ⇢0) ⌘ Tr
qp

⇢⇢0
p
⇢. (7)

5 Representation

For a single spin in the Pauli matrix basis ⇢0 = ⇢(0) is
written with the Bloch vector parametrization,

⇢0 =
1

2

 
I+

X

i

ai�i

!
, (8)

where ai is a real number with |~a|  1 and

UX0,X
0
0
= u0I+ i

X

i

ui�i, (9)

where u0 and ui are a real number satisfying u2
0+|~u|2 = 1.

The magnitude of a decoherence factor is expressed by
|�X0.X

0
0
|2 is

|�X0,X
0
0
|2 = u2

0 + (~a · ~u)2  1. (10)

A generalized overlap B2
X0,X

0
0
is obtained as

B2
X0,X

0
0
= 1� |~a⇥ ~u|2  1. (11)

The relation between |�X0.X
0
0
|2 and B2

X0,X
0
0
is given by

B2
X0,X

0
0
= (1� |~a|2)(1� u2

0) + |�X0,X
0
0
|2. (12)

6 Complementarity

According to the relation Eq.(12), the relation between
|�X0,X

0
0
| and BX0,X

0
0
is hyperbolic,

B2
X0,X

0
0
� |�X0,X

0
0
|2 = (1� |~a|2)(1� u2

0). (13)

In order to make both a perfect decoherence and a perfect
distinguishability, i.e. |�X0,X

0
0
| = BX0,X

0
0
= 0, a particu-

lar condition i.e. an initial state is a pure state |~a| = 1
and u0 = 0 and ~a ? ~u must be satisfied.

7 Periodic Hamiltonian

Heff is periodic with period T = 2⇡/⌦. According to
the Floquet Theory, the corresponding a unitary evolu-
tion operator is split into periodic part and non-periodic
part [4],

U(t, t0) = e�iK(t)/~e�i(t�t0)He/~eiK(t0)/~, (14)

where He is a time-independent Hamiltonian responsi-
ble for slow dynamics while K(t) for fast dynamics and
has the same periodicity K(t) = K(t + T ) as the given
periodic Hamiltonian Heff .

8 Higher Frequency Expansion

In Eq.(14) the e↵ective Hamiltonian He and K(t)
are expanded in 1/⌦ for large frequency ⌦ � 1 up to
O(1/⌦2) [4],

He = H0 +
1

~⌦

1X

j=1

1

j
[V (j), V (�j)]

+
1

2~2⌦2

1X

j=1

1

j2
([[V (j), H0], V

(�j)] + h.c.) + · · ·

= ��̃(1� ⇠2)�x~⌦+ · · · (15)

and

K =
~

i~⌦

1X

j

1

j
(V (j)eij⌦t � V (�j)e�ij⌦t)

+
~

i~2⌦2

1X

j

1

j2
([V (j), H0]e

ij⌦t � h.c.) + · · ·

= ~(⇠�z sin⌦t� 2�̃⇠�y cos⌦t) (16)

where V (j) is a Fourier coe�cient of Heff as

Heff = H0 +
1X

j=1

(V (j)eij⌦t + V (�j)e�ij⌦t).

and ⇠ ⌘ gX0

~⌦ and �̃ ⌘ �
2~⌦ .

9 Numerical Results

The decoherence factor and the generalized overlap are
characterized by the parameters:

⌧ ⌘ ⌦t, ⇠i ⌘
giX0

~⌦ , ⇠0
i
⌘ giX 0

0

~⌦ , d⇠ ⌘ ⇠i � ⇠0
i
, �̃i ⌘

�i

2~⌦ .
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Figure 1: Decoherence increases as a self dynamics cou-
pling increases.

Figure 2: Decoherence increases as an interac-
tion/separation increases.

Figure 3: Orthogonality increases as a self dynamics cou-
pling increases.

Figure 4: Orthogonality increases as an interac-
tion/separation increases.

Figure 5: Total decoherence factor.

Figure 6: Total generalized overlap.

10 Summary

• Interaction/separation between two positions of a
harmonic oscillator (d⇠) increases decoherence and
distinguishability.

• A self-dynamics (�̃) also increase decoherence and
distinguishability.

• An emergent periodicity remains for an individual
qubit but thanks to the product rule it dies out for
a large qubit environment with di↵erent strength
of interactions.

• Purity |~a| = 1 leads to BX0,X
0
0
= |�X0,X

0
0
|.

• Both conditions purity |~a| = 1 and ~a ? ~u lead to
BX0,X

0
0
= |�X0,X

0
0
| = 0.
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Abstract. In this presentation, we introduce a novel quantum-secured single-pixel imaging method.
Based on non-classical correlations of a photon pair, our method can detect deceiving attempts, while
rejecting strong chaotic light through photon heralding. In our demonstration, we used polarization-
correlation for a security analysis. Mixture of true and false signal lowers the error rate below detection
threshold, which can be revealed by our method. Proof-of-principle demonstrations of our method and
trustworthy image reconstruction will be presented. The method can be developed using matured tech-
niques used in quantum secure communication, thus o↵ering a promising direction for practical applications
in secure imaging.

Keywords: secure imaging, ghost imaging, sinlge-pixel imaging, correlation

1 Introduction

In various quantum information protocols, non-
classical correlations between quantum systems played
key role in realizing quantum advantage. Quantum key
distribution exploits entanglement for security against
potential eavesdropping attacks. Quantum ghost imag-
ing uses correlations to enhance the signal-to-noise ratio
of an image beyond the classical limit. Applying security
analysis methods of quantum key distribution to quan-
tum imaging, various quantum-secured imaging protocols
were proposed [1, 2, 3]. Experimentally realized ones fo-
cused only on rudimentary attack methods. Moreover,
imaging and security check were performed sequentially.
However, it is possible to deceive the imaging system
with errors lower than detection threshold of rudimen-
tary attack. Moreover, sequential process loses the close
relationship between obtained images and security.
We present a novel quantum-secured single-pixel imag-

ing (QS-SPI) method that exploits non-classical correla-
tions of a photon pair for imaging and security checking,
simultaneously. Our imaging method is based on single-
pixel imaging (SPI), also known as computational ghost
imaging (CGI). Compared to the existing quantum-
secured imaging methods, our proposed method o↵ers
enhanced security against potential attacks. Based on
intercept-and-resend attack, we additionally considered
a partial deceiving attack that constructs a fraud image
by mixing genuine signals and false signals, resulting in
errors below detection threshold. Our method can expose
the presence of such attack. In addition, as obtained im-
ages are closely related to the security of the protocol,
extracting trustworthy information under the attack is
possible. Experimental demonstration of enhanced secu-
rity analysis method under deceiving attacks is presented.
We expect that advanced techniques used in quantum se-
cure communication can further improve the security of
QS-SPI. Detailed information can be found in [4].

⇤jayh@add.re.kr
†yonggi@add.re.kr

Figure 1: A schematic diagram of QS-SPI. Polarization-
entangled photons are generated as the source beam. The
signal photon is sent to an SLM to be filtered according to
an imaging pattern. Then, it interacts with a target and
detected by single photon counting modules (SPCMs) in
polarization discrimination manner. The idler photon,
the other entangled party, is also measured with polar-
ization discrimination. Correlation between imaging pat-
terns and corresponding detected intensities constructs
target image. Simultaneously, the time-correlation and
polarization-correlation of the two modes are analyzed.

2 Quantum-Secured Single-Pixel Imag-
ing

In SPI, the main purpose of an attack is to deceive
an imaging system to construct a fake image. In this
sense, precise extraction of signal information is not im-
portant for enemy. Rather, it is important to send false
signal containing fake image information to imaging sys-
tem within detection window for incurring construction
of a deceiving image. The meaningful attack of this pur-
pose is to modulate the intensity (photon number) of
the light for the formulation of a fake image. Under this
circumstance, an intercept-and-resend attack is the prob-
able attack strategy for image-deceiving attacks [2].

Typical error bound of intercept-and-resend attack is
25%. However, if partial deceiving attack is conducted,
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Figure 2: Images obtained by QS-SPI under a partial deceiving attack where true target profile has no overlap with
false target profile.

an attack of an enemy sending mixture of true and false
signal, error rate can be below 25% but still forming
deceiving images. Based on non-classical correlations,
QS-SPI can partially discriminates false signal. Under
intercept-and-resend attack, a quarter of it is discrimi-
nated. From this, threshold error rate under ideal attack
can be calculated [4],

eT =

P
i,j Gmask(i, j)P
i,j Gall(i, j)

, (1)

where Gmask is an image obtained by partially discrim-
inated false signal and Gall is the one by all incoming
signal. Partial deceiving attack can be exposed when the
error is beyond eT . When the attack is confirmed, trust-
worthy image can be reconstructed through

GA(i, j) = Gcor(i, j)� 3Gmask(i, j), (2)

where GA is an image of true target and Gcor is an image
obtained by coincidence counts heralded by non-classical
correlation of source beam.

3 Result and Discussion

Proof-of-principle demonstration of QS-SPI under a
partial deceiving attack is presented in Fig. 2. Ratio
of false signal to true signal intensity was controlled as
500, 1000, and 2000. Errors below 25% are obtained in
all cases and Gall shows deceived image of digital number
“8”. However, QS-SPI detects partial deceiving attack as
the error rates, er(d) for error rate in retilinear (diagonal)
basis, are over the threshold error rate eT . Gmask revealed
the false image, left-and-right inverse of alphabet letter
“L”. Following Eq. 2, trustworthy image is reconstructed,
alphabet letter “F”, indicating that digital number “8”
was not a true target but “F” was. Due to suppression
of true signal compared to false signal, degrade in image
quality can be observed as the false signal intenisty gets
stronger.

QS-SPI can further be applied to ghost imaging,
quantum-secured optical ranging protocol, and its se-
curity analysis can be enhanced by adopting hyper-
entangled states. Device-independent security can be
achieved by observing Bell parameter as a security check-
ing method.
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Abstract. Einstein-Podolsky-Rosen (EPR) steering, di↵erent from both entanglement and Bell nonlo-
cality, describes the ability of one observer to a↵ect another party’s state via local measurements. For
multipartite EPR steering, the monogamous situation, where two observers cannot simultaneously steer
states of the third party, limits the shareability of EPR steering in reduced subsystems. Here, in an optical
experiment, we observe the shareability of EPR steering in a three-qubit system without the monogamous
limitation. Moreover, based on reduced bipartite EPR steering detection results, we verify genuine three-
qubit entanglement results. This work provides a basis for an improved understanding of multipartite EPR
steering and has potential applications in many quantum information protocols.

Keywords: EPR steering, multipartite, shareability, monogamy

1 Introduction

Einstein-Podolsky-Rosen (EPR) steering, describing
the process in which one observer can steer another ob-
serve’s state through local measurements, was reformu-
lated by Wiseman et al. in 2007 with an operational defi-
nition stating that the assemblage of conditional states at
the steered party cannot be explained via a local hidden
state model [1]. Regarded as a term of quantum nonlocal
correlations, EPR steering lies between quantum entan-
glement and Bell nonlocality hierarchically. Due to its
unique directional property, EPR steering indicates an
asymmetric manifestation, which further leads to one-
way EPR steering meaning Alice can steer Bob but not
vice versa. Expanding the directional property to the
multipartite system, monogamous relations in EPR steer-
ing limits the quantum correlations shared arbitrarily [2].
Taking a three-qubit system (e.g., Alice, Bob, and Char-
lie) as an illustration, the monogamy of EPR steering
refers to the impossibility of Alice and Bob simultane-
ously steering the state of Charlie. As a significant prop-
erty in multipartite EPR steering, in continuous variable
optical systems, the monogamous relations of multipar-
tite EPR steering have been demonstrated in many ex-
periments [3, 4]. Beyond the monogamy of multipartite
EPR steering, the shareability of EPR steering in reduced
subsystems reveals that the shared correlations are not
monogamous, which means that Alice and Bob can s-
teer Charlie simultaneously with increasing the number
of observer measurement settings [5]. This illustration
allows us to observe di↵erent shareability configurations
of EPR steering in a multipartite system, which enrich
the scenarios of tasks based on multipartite steering.
Here, based on a three-qubit system constructed with

the three degrees of freedom (DOF) of a single pho-
ton, namely, the polarization, path, and orbital angu-
lar momentum, di↵erent configurations of shareability

⇤ksun678@ustc.edu.cn
†jsxu@ustc.edu.cn
‡cfli@ustc.edu.cn

for EPR steering are experimentally observed beyond the
constraint of monogamy [6]. Considering the direction-
al property of EPR steering, these relations are observed
by exploiting the uncertainty relation criterion with three
measurement settings. Moreover, the detection of EPR
steering shareability relations facilitates the verification
of genuine three-qubit entanglement. Our results can be
a significant step forward toward extending the under-
standing of multipartite relationships and have potential
applications in quantum information protocols.

2 Results

Alice can steer Bob if the inequality

PAB =
X

i

�
2 (↵iAi +Bi) � min

⇢B

X

i

�
2 (Bi) (1)

is violated, where � denotes the variance of the mea-
surement outcomes and ↵i = �C(Ai,Bi)

�2(Ai)
in which

C (Ai, Bi) = hAiBii � hAii hBii. For a three-qubit sys-
tem (Alice, Bob, and Charlie), in the case where the
number of measurement settings n = 2, the monog-
amous relation is valid. However, by increasing n to
3, the monogamy violations are possible, which mean-
s that more shareability configurations of EPR steer-
ing can be observed. Here, three measurement set-
tings are chosen as {�x, �y, �z}. We can confirm that

min⇢A

P
i �

2 (Ai) = min⇢A

P
i=x,y,z

⇣
1� h�ii2

⌘
= 2,

similarly, min⇢B

P
i �

2 (Bi) = min⇢C

P
i �

2 (Ci) = 2. The
parameter PAB < 2 violates the inequality (1) and indi-
cates that Bob can be steered by Alice.

Taking the W-like states as an illustration,

| ABCi =↵ |0i |0i |1i+ � |0i |1i |0i+ � |1i |0i |0i , (2)

where |↵|2 + |�|2 + |�|2 = 1. For the state
| ABCi = 0.2|001i + 0.4|010i +

p
0.8|100i, the param-

eters PBA, PAB , and PAC violate the steering inequality
(1), which means that monogamy can be observed when
no one can be steered by the others at the same time.
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Figure 1: Illustration of the process of preparation and
measurement of three-qubit states. a. A heralded single-
photon source generates a pair of photons via a PPKTP
crystal. b. The main optical system. The initial photon
is divided into two optical paths through the half wave
plate (HWP1) and the beam displacer (BD1). The first
spatial light modulator (SLM1) then generates an orbital
angular momentum (OAM) via the phase-only hologram.
The GHZ-like states can be prepared when the angle of
the HWP2 is set to 45�. The BD2 is positioned to gen-
erate W-like states and adjust their parameters in Eq.
(2) by changing HWP1 and HWP2. The measurement
apparatus is composed of three independent parts that
can achieve separate projective measurements of states
with di↵erent degrees of freedom (polarization, path, and
OAM).

For the state | ABCi = (|001i + |010i +
p
2|100i)/2, we

can obtain PBA = PCA < 2, which indicates that Alice
can be steered by Bob and Charlie simultaneously. In
this assessment, more EPR steering configurations can
be observed. For instance, the steering parameters of s-
tate | ABCi = (|001i + |010i + |100i)/

p
3 all have the

theoretical values of 16/9 < 2.
Experimental setup. As shown in Fig. 1a, the her-

alded single photons is generated from a 20 mm long
periodically poled KTiOPO4 (PPKTP) crystal which is
pumped by a 404-nm continuous-wave laser. The initial
photon polarization state is prepared to be µ |Hi+ ⌫ |V i
(|µ|2 + |⌫|2 = 1), in which |Hi and |V i correspond to
the horizontal and vertical polarization bases, respective-
ly. A half-wave plate (HWP1) is used to adjust µ and
⌫. Using a beam displacer (BD1), which can split the
input into two orthogonally polarized beams, the |Hi
and |V i states are separated into di↵erent paths, |Hi
for the down-path and |V i for the up-path. The first
DOF can then be represented by the orthogonal path-
basis |Ui (up-path) and |Di (down-path). After passing
through the BD1, the initial state becomes µ |Di+⌫ |Ui.
The second DOF is given by orbital angular momen-
tum (OAM) generated via the spatial light modulator
(SLM1). The upside hologram exhibits a |�li grating,
whereas the downside hologram generates a |+li grat-
ing, where |±li correspond to the Laguerre-Gaussian (L-
G) modes and represent the states with orbital angular
momentum ±l~. In this experiment, l is set to be 2. S-
ince the SLM only works for the |Hi polarization, a 45�

HWP is used in front of the SLM1 to turn the polar-

ization of the up-path into |Hi. After passing through
the SLM1, the state evolves to µ |Di |+li + ⌫ |Ui |�li.
The HWP2 after the SLM1 is then used to transfor-
m the down-path polarization into |V i. In this way, a
Greenberger-Horne-Zeilinger (GHZ) like state, namely,
|Gi = µ |V i |Di |+li + ⌫ |Hi |Ui |�li could be prepared
using the three DOF of the single photon which is e-
quivalent to the states generated with three photons. To
obtain the target W-like states, another beam displac-
er (BD2) is used to generate more components. After
passing through BD2, the path of the |Hi polarization
remains unchanged, and the path of the |V i polariza-
tion deviates into a higher path (|V i |Di ! |V i |Ui).
By rotating the angle ✓ of the HWP2, the state |V i |Di
could be prepared to be sin 2✓ |V i |Di + cos 2✓ |Hi |Di.
Thus, the state |V i |Di |+li becomes cos 2✓ |Hi |Di |+li+
sin 2✓ |V i |Ui |+li, whereas the states |Hi |Ui |�li does
not change. With encoding |Hi ! |0is, |V i ! |1is,
|Ui ! |0ip, |Di ! |1ip, |+li ! |0im, and |�li ! |1im,
the W-like states in Eq. (2) are prepared in which the
parameters ↵, �, and � are determined by the angles of
HWP1 and HWP2.

The measurement process can be divided into three
independent projective measurements, namely, polariza-
tion, path, and OAM analyzer. The unit of a polarization
analyzer is composed of a quarter-wave plate (QWP), an
HWP, and a polarization beam splitter (PBS). The path
measurement contains an HWP, a BD, and a polarization
analyzer, in which the HWP and the BD are used to con-
vert path information into polarization information. Af-
ter passing through the BD, the |Ui path changes into the
|Hi, and the |Di path is converted into |V i. Therefore,
the polarization analyzer is used after the BD to realize
a projective path measurement. The OAM measuremen-
t consists of an SLM loading phase-only hologram and
a single mode fiber (SMF). Di↵erent projective measure-
ments of the OAM qubit can be achieved by transforming
target states (like (|+li+ |�li)/

p
2) into the l = 0 mod-

e with di↵erent holograms generated by the SLM. The
SMF is then used to couple the l = 0 mode and filter out
the other modes. Before being detected by the single-
photon detectors, the photons in Fig. 1a and Fig. 1b are
filtered through interference filters with a bandwidth of 3
nm, and the resulting signals are then sent to coincidence
counting.

Experimental results. Seven W-like states are exper-
imentally prepared as in Eq. (2) with an average fi-
delity F = Tr

�pp
⇢th⇢ex

p
⇢th

�
of 0.960(3). Here, ⇢ex

is obtained through the experimental results, where-
as ⇢th represents the ideal theoretical state. The pa-
rameter PBA < 2 indicates that Alice can be steered
by Bob. The red dots in Fig. 2a demonstrate the
shareability of EPR steering without the constraint of
monogamy in cases with three measurement settings.
The shareability relations transcending the constraint
of EPR steering monogamy are verified via the uncer-
tain relation criterion. For state “3” with parameters
PBA = 1.99(3), PAB = 2.00(3), PCA = 1.60(4), PAC =
1.65(5), PCB = 1.61(5), and PBC = 1.64(4), violation of
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Figure 2: Experimental results. a. The horizontal and vertical coordinates are ↵ and � in Eq. (2). The background
of this figure is divided into di↵erent areas to indicate di↵erent relationships. The red experimental dots demonstrate
the EPR steering shareability relations existing beyond the monogamy constraint. The states exhibiting monogamous
relations are marked by blue dots. The experimentally prepared three-qubit states are distinguished by the numbers
marked beside them. b indicates the results obtained based on the uncertainty relation criterion. Di↵erent parameters
are labeled by di↵erent colors and shapes. Alice can steer Bob when the steering parameter PAB < 2, whereas PBA < 2
indicates that Bob can steer Alice. c. The di↵erent shareability relations of tripartite EPR steering correspond to the
states shown in a.

Table 1: Results of the detected of EPR steering share-
ability relations (SR) beyond the monogamous relation-
ship and witness detection. The “Y” and “N” of “SR”
indicate whether genuine entanglement has been detect-
ed by shareability relations. The negative values of the
witness represent a double confirmation of the genuine
entanglement.

state SR witness
1 Y -0.27(1)
2 N -0.23(1)
3 Y -0.26(1)
4 Y -0.14(1)
5 Y -0.21(1)
6 N -0.15(1)
7 Y -0.23(1)

the monogamy relation by the shareability of EPR steer-
ing can then be presented. The error bars in the figures
are handled by Poisson counting statistics. We also em-
ploy another criterion that can detect the shareability
of EPR steering via only the tomographic measurements
of reduced single-qubit states (RSQSs) [5]. Compared
to the uncertainty relation criterion, this method needs
fewer projectors but sacrifices some valid ranges.
Furthermore, the verification results of the EPR steer-

ing shareability relations are used to test whether the
states are genuinely entangled. As a comparison, the
three-qubit witness is employed for double verification.
The witness W = 2

3I�PW is used, where PW is the pro-

jector of |W i = (|001i+ |010i+ |100i)/
p
3, and I is the

identity matrix. The result that Tr(⇢W) < 0 indicates
a correlation of genuine entanglement. The experimen-
tal results are presented in Table 1, where conclusions
regarding the detection of EPR steering shareability re-

lations and witness detection are listed. All the states
have negative witness values, whereas only the states rep-
resented by red dots in Fig. 2a can be verified as being
genuinely entangled since they support the EPR steering
shared among the three observers. The criterion of E-
q. (1) leads to the fact that several W-like states, which
are genuinely three-qubit entangled states that have the
property of EPR steering being shared only between two
observers, such as states “2” and “6”, cannot be detected
by the proposed method. This indicates that the verifica-
tion of EPR steering shareability relations is a su�cient
and unnecessary method to test for genuine three-qubit
entanglement.

3 Discussions

Our results contribute to a significant step forward in
the study of multipartite systems. The exploitation of
multisetting scenarios provides a deeper understanding
of the steerability shared among reduced subsystems. It
would be interesting to extend the proposed method to
more complex multipartite systems and observe the EPR
steering shareability relations therein. The results of this
work provide a valuable method for realizing multipartite
genuine entanglement testing. Since monogamy implies
security limits on quantum cryptography [7], our results
may provide a basis for more applications of cryptograph-
ic protocols based on EPR steering. Furthermore, as this
work demonstrates the abundant configurations of EPR
steering shared in a multipartite system, we hope that
it can be helpful for building a future multipartite EPR
steering network.
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Quantum Error Correction (QEC) forms a crucial component of large-scale quantum computing systems [1, 2]. The difficulty
in fabricating ultra-low error rate qubits and quantum gates at scale necessitates active techniques to mitigate errors caused by
environmental decoherence, fabrication errors, measurement and control errors, and components that are always probabilistic
[3]. While there is currently a focus on the so called NISQ regime [4] - where it is hoped that a scientifically or commercially
valuable quantum algorithm can be found that is small enough to not require QEC on the current or next generation quantum
computing chipsets - most theoretical work suggests that the true value in quantum computing will lie with large simulation
algorithms that will unarguably require extensive error correction [5–7], unless we see a significant revolution in hardware
technology.

While work on QEC is extensive [8], the physical constraints on quantum hardware architectures has resulted in the
dominance of one type of QEC code, namely the surface code [9]. Defined over a 2D nearest neighbour array of physical
qubits, it is now the most studied QEC code and the preferred model for numerous architecture blueprints in multiple hardware
platforms [10–14]. However, the implementation of QEC for any quantum algorithm, large or small, comes with a significant
overhead in physical qubits and/or computational time [15]. This is not surprising as the goal of QEC is often to take a physical
error rate of the hardware of between p = 10�3 ! 10�4 and reduce it by many orders of magnitude, with large-scale quantum
simulation estimated to require error rates of 10�20 or even lower [6, 16].

Theoretical work in QEC, algorithmic design, compilation and resource optimisation has done a surprising job of figur-
ing out better and better ways to implement error corrected algorithms [17–19], with one of the most studied algorithms,
Shor’s algorithm, a useful example. Early compilation efforts, with the surface code, benchmarked Shor’s algorithm at
the beginning of the 2010’s, showing that upwards of 30 billion components would be required to implement Shor-2048
[20]. By focusing entirely on better ways to implement both the algorithm itself and the underlying QEC protocols, this has
been reduced to 20 Million qubits by the end of the 2010’s without changing any assumptions at the physical hardware level [15].

How much this can still be reduced depends on several factors - even when we still do not change the hardware as-
sumptions of the underlying micro-architecture. The first is just the raw qubit overhead to encode a logical qubit of information
up to some desired logical error rate. For a distance d error correction code, the logical error rate scales as pL ⇡ O(pb

d�1
2 c),

under a simple symmetric Pauli model. This assumes that the physical error rate of all parts of the hardware system (decoher-
ence, control, measurement etc...) is under the fault-tolerant threshold of the code, approximately p ⇡ 0.67% for the surface
code [21]. If we take a square, un-rotated, planar surface code, the total number of qubits (data + syndrome qubits) scales as
N = (2d � 1)2, hence pL ⇡ O(pb

p
N�1
4 c). This exponential scaling means that for a heavily error corrected code, a lattice of

N > 1000 is required [21]. How much this base level logical qubit overhead can be reduced, while still having a code that is
architecturally feasible is still an open question.

TRANSVERSAL INJECTION PROTOCOL

This work introduces a simple new way to produce encoded non-Pauli Eigenstates. This process we dub ‘Transversal
Injection’ modifies the way in which non-Clifford ancillary states are encoded. Transversal injection involves performing a
transversal rotation - a uniform single qubit rotation on all data qubits individually - initialising them in some non-Pauli state.
This is followed on by the standard stabiliser measurement procedure. During the encoding state, the stabilisers will either
commute or anti-commute and the encoded logical state will now be some non-Pauli eigenstate. The string of all stabiliser
measurements forms what we will call a stabiliser trajectory, and can be used to determine the resultant state. As we are no
longer in eigenstates of the logical Z operator of the surface code, we will be left with some non-trivial logically encoded state.
The probabilistic nature of the X and Z-type stabiliser measurements means that the resultant encoded state from transversal
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injection is probabilistic, but heralded.

Using the stabilisers of the surface code, the initial transversal rotation and the stabiliser trajectory, we use a classical
algorithm to calculate the encoded state that has been heralded by the protocol. This algorithm can be feasibly run on the fly for
code distances < 6 which allows us to do numerical simulations. When only syndromes with trivial X syndromes are observed,
the classical algorithm can be run efficiently at higher distances. We present this new technique in the context of the surface
code, but it should be stressed that it is applicable to all stabiliser based QEC codes. This new method can be looked at as the
qubit extension of what was found in the continuous variable context [22], where all-Gaussian universality was discovered in
the context of the GKP code.

We verify the protocol through numerical simulation under a balanced Pauli noise model. At a physical error rate p, a
Pauli X , Z or Y operator is applied with equal probability for a single qubit gate. For the two-qubit CNOT gate for syndrome
extraction and measurement, a random combination of I , X , Z and Y operators (excluding II) is applied. This generally
results in an encoded error rate greater than the physical error rate p. The relationship between physical error rate and logical
rate are linearly proportional, it appears that higher distance codes perform worse than lower distance codes, and logical
error rate always exceeds the physical error rate. For each distance and physical error rate, a second experiment was run
where a simple post-selection strategy was employed in an attempt to improve fidelity. Post-selection does appear to yield
improvements in fidelity by filtering out trajectories of simulated runs with a naive, pre-computed lookup table. Distance 4
with post-selection appears to yield a significant improvement in fidelity, dropping below the physical error rate to roughly 0.39p.

Transversal injection circumvents the Eastin-Knill no-go theorem [23] as it is a method for preparing non-Clifford re-
sources, such as a T-gate, to achieve universal quantum computation on the planar surface code. This new technique does
not violate the Eastin-Knill theorem and is in fact still limited by the implications of the theorem. A T-gate still can’t be
implemented transversally on the code and the encoding step in this technique has a diminished error detecting ability. The
first round of stabilisers themselves are not fault tolerant and this round is susceptible to two-qubit correlated errors without
a detection event. If these errors occur before the first stabiliser measurements are extracted, the initial state will be altered
without detection events. Single qubit errors on ancillary qubits are either detected in subsequent syndrome extractions or
change the logical state in a way that is heralded by its measurement (i.e. once the initial Pauli frame of an encoded state is
known, the encoded state is defined).

Current methods of magic state encoding similarly exhibit a linear scaling between the encoded state’s fidelity and physical
error rate[24]. Generally, the fidelity of output states from transversal injection is worse until a post-selection strategy is applied.
Once post selection is applied on our distance 4 simulations, the logical error rate is comparable with the lower bound of other
results even at much larger distances. To achieve the same fidelity, transversal injection has a much smaller qubit footprint and
only requires a moderate amount of post-selection. Further analysis is needed to evaluate this protocol at distance 5 and higher
to determine how fidelity scales beyond these results.

While a large number of states on the logical Bloch Sphere are available using this technique, the number of possible
stabiliser trajectories scales exponentially as a function of the number of qubits and hence code distance. In our preliminary
analysis, the probability of a particular state being prepared becomes exponentially unlikely as the code distance is scaled.
There are potential redundancies at higher distances, but so far we have not identified any exploitable patterns. This implies
that when a specific ancillary state is required for a teleported gate, it will need to be constructed through an effective random
walk over the Bloch sphere. The exponential number of states on the Bloch Sphere that are available implies that rather than
compiling to simply the non-Clifford T -gate in an error corrected system, we should be able to compile to any Z or X axis
rotation we want by producing random logical states and approximating the required ancillary state needed for a given Rz(✓)
or Rx(✓). Transversal injection can be used to produce magic states which we can then distil to an arbitrary accuracy, although
this is only a subset of the possible output states. Hence, there is motivation to research distillation methods that are effective on
other non-Pauli states. This has clear implications for circuit level compilation as the Clifford + T alphabet for a fault-tolerant
compatible circuit will no longer be a constraint.

There are various techniques developed in the literature in approximating single qubit gates via a random walk around
SU(2) that can be exploited to find a systematic solution to the gate compilation issue [25], but this is relegated to further work.
While a direct resource comparison to a compiled algorithm using magic state distillation, such as Shor-2048 [15] will require a
systematic solution to compiling arbitrary single qubit logical rotations, there is a potential for reduced qubit requirements for
any large-scale algorithm by utilising this new technique.
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Abstract. LUT-based synthesis methods have recently been proposed as a way to synthesize Quantum
Boolean Circuits in a qubit constrained environment. Other results have also shown that allowing a relative
phase when implementing Quantum Boolean Circuits yields an advantage in T-count without additional
ancilla qubits, which is advantageous in the fault-tolerant quantum computing paradigm. We propose
a method that utilizes both LUT-based synthesis and Relative Phase Quantum Boolean Circuits that
minimize the T-count while minimizing the ancilla required to implement them. We leverage recent results
regarding Relative Phase versions of Boolean functions and the Shannon decomposition to propose a novel
method to synthesize arbitrary Boolean functions up to a Relative Phase. We then utilize this method to
synthesize Boolean logic inside each LUT as a relative phase Quantum Boolean Circuit and show that the
resulting Quantum Circuit has a clear advantage in T-count to using it over more naive methods.

1 Introduction

Quantum Boolean circuits are a circuit model to im-
plement Boolean functions as quantum circuits. Toffoli
gates are an essential component in these; however, they
are composite from other, more fundamental gates [2] as
depicted in Fig 1. In the fault tolerant paradigm, the
Clifford+T set [4] is often used. However, T-gates incur
much higher cost to implement fault tolerantly than the
rest of that set, so we want to reduce their number as
much as possible

We observe that it is possible to reduce the T-count
if we implement Boolean functions, only up to a relative
phase i.e. a phase that is state dependent. By ignor-
ing any phase logic that is not dependent on the target,
the method can reduce the T-count of implementing a
Boolean map in quantum computing, but at the cost of a
relative phase. However, a relative phase poses problems
if the subsequent state were used in another quantum
state, as it induces a rotation especially in a linear com-
bination of state

Previous research has suggested that alternating pairs
of gates have the potential to greatly reduce the number
of T-gates, so generating logic that cascades into one out-
put maximizes such pairs. Our research seeks to lever-
age recent results in relative phase implementations of
Boolean functions [3] [1] and LUT-based quantum cir-
cuit synthesis [5] to generate such circuits in order to
reduce T-count in a a qubit constrained environment.
Our Contribution. We propose a method that reduces
the number of T-gates in a quantum Boolean circuit by
exploiting relative phase Boolean functions. Among our

⇤dizzy@ngc.is.ritsumei.ac.jp
†accel@ngc.is.ritsumei.ac.jp
‡ger@ngc.is.ritsumei.ac.jp

contributions:

• A novel method to synthesize a Boolean function
up to a relative phase by utilizing relative phase
constructions and Shannon Decomposition.

• A method to generate a Quantum Boolean Circuit
from a Boolean Logic Network representation lever-
aging the above method to reduce T-count.

Our methods are compared to a naive synthesis of each
LUT node that utilizes an ESOP-based method to syn-
thesize each Boolean function exactly as a Quantum
Boolean Circuit. While there remain a few exceptions
to its advantage, its advantage in the majority of cases
we have tested suggests that further research into this
area might turn fruitful.

The paper is structured as follows. Section 2 out-
lines preliminary information for understanding this pa-
per. Then Section 5 lays out some motivations for the
research we are going to conduct. Section 4 follows with
our proposed method, including our novel method to re-
alize functions up to a relative phase without any addi-
tional ancillae, and then its use with the LUT-based syn-
thesis. Then, our experimental results in Section 5 can
confirm that our method can indeed reduce the T-count
of quantum Boolean circuits. Finally Section 5 contains
our conclusions and future work.

2 Preliminary

2.1 Boolean Logic Network

A Boolean logic network is a simple dag whose vertices
are primary inputs, primary outputs, and nodes which
represent logic gates, whose arcs connect gates to inputs,
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Figure 2: An RTOF gate in Clifford+T basis
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Figure 4: The Quantum Circuit implementing Fig 3

outputs, and other gates. A logic function can be decom-
posed into such a Boolean logic network, and its nodes
subsequently implemented as LUTs or logic gates. We
see an example in Fig 3

3 Existing Research and Motivation

Facts we use from existing research are found below

• Replacing pairs of computing and uncomputing
gates with RTOF gate and its inverse will lead to
T gate savings in most cases.

• Using the above, it is possible to use clean-ancilla
to decompose an MCT with fewer T gates than the
known methods.

• A recursive procedure to generate MCT gates up
to a relative phase.

4 Proposed Method

4.1 Using Shannon Decomposition To Realize

Arbitrarily Controlled Single Target Gates

Recall the Shannon decomposition f(xn, ..., x1) = xn ·
f(xn = 1, xn�1, · · · , x0) + x̄n · f(xn = 0, xn�1, · · · , x0).
Because x · a + x̄ · b = x · a � x̄ · b, this means that we
can implement this function as a series of Relative Phase
U-controlled NOT gates (UCNOT).

First, from the Shannon decomposition f(xn, ..., x1) =

xn ·f(xn = 1, xn�1, · · · , x0)+x̄n ·f(xn = 0, xn�1, · · · , x0)

where we can take g = f(xn = 1, xn�1, · · · , x0) and
g0 = f(xn = 0, xn�1, · · · , x0). As with any Shannon de-
composition, we can decompose using an arbitrary vari-
able order. It is easy to see that this expression im-
plements the Sum of Products (SOP) expression of the

Shannon decomposition. We then take each of g and g0

and repeat the process recursively until we are left with
a simple CNOT as our U-controlled NOT expression.

If it is “False”, we have a False-controlled-NOT, mean-
ing an identity function. This means that if one side of
the Shannon decomposition evaluates to either “True” or
“False”, we can merely replace it with a CNOT gate or
an identity (meaning nothing at all), respectively, with-
out expending any additional T-gates to implement the
function. As we will see in the next example, we can
express the relative-phase Toffoli gate construction in [1]
as a special case of this construction

4.2 Shannon Decomposition Cost and BDD rep-

resentation

As is already apparent from the diagram, each vari-
able that the function is dependent on roughly doubles
the T-count, such that the total cost C / 2

n. This is in
line with Barenco et al [2], who posit that the T-count of
a gate is exponential with respect to the number of in-
puts in the absence of ancilla. As can also be seen from
the diagram, each level has a linear dependence on the
number of nodes at each level, so the relative complexity
of the function also factors into the cost. In an environ-
ment where dirty ancilla are assumed to be plentiful, it
is therefore desireable to limit these implementations to
smaller numbers of input qubits i.e. smaller LUT-sizes.

As can already be seen, the Shannon decomposition
method lends itself naturally to representation by Binary
Decision Diagrams (BDDs). Representing our Boolean
functions as BDDs gives us an easy way to traverse down
the Shannon decomposition tree merely by traversing the
BDD in the same direction and feeding the next node in
the traversal as your input function to the next iteration
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Figure 5: The circuit for Shannon Decomposition

of the recursive loop. As the cost is directly proportional
to the number of nodes in the BDD, we can merely choose
the variable order that minimizes the node count to min-
imize our generated quantum circuit

Knowing this, we are now ready to define our algorithm
to define an arbitrary Boolean function up to a relative
phase. First we convert the Boolean function to a BDD.
We then find a suitable variable order that minimizes
the number of nodes in the BDD (We leave the calcula-
tion up to the implementater depending on the scale of
the problem. We present a solution in 5 that works for
the problems we used in our experiments, but this is not
meant to be a part of the main algorithm). We then pro-
ceed with our Shannon decomposition recursively in the
variable order. However, we reevaluate the optimality of
the BDD order at every level and rearrange the variables
depending on which minimizes the function. The algo-
rithm terminates when all branches reach either leaves or
True/False.

4.3 Synthesizing A Boolean Function Using

LUT-networks and Shannon Decomposition

RTOF

Using the algorithm defined in the previous subsec-
tion, we are now ready to define our LUT-based synthe-
sis method. First, we take as input a LUT network syn-
thesized from a Boolean expression using existing LUT-
Network decomposition methods. Then this LUT net-
work is parsed by the algorithm to create a quantum
circuit of UCNOT gates. Any intermediate node is de-
composed as two UCNOTs: one to compute, and the
other to uncompute, acting on the same dirty ancilla.
Any node that acts only on output qubits (output node
i.e. an endpoint to the cascading logic) is given only one
UCNOT.An example of the result of this type of process-
ing is depicted in Fig 4.

This QC is then parsed by our algorithm, synthesizing
each UCNOT into relative phase versions of the partial
Boolean functions in each intermediate node (as well as
their inverse), and exact versions in each output node.
These are then recombined into a quantum circuit.

5 Experimental Results and Conclusion

We generated Boolean Logic Netowrks using the ABC
tool from the EPFL Combinational Benchmark Suite
benchmark functions and, with LUT-sizes of 3,4,5,6. We
then implemented them as quantum Boolean circuits
both using the proposed method, as well as an exact
synthesis using ESOP based methods and constructed
conventionally. We found that on average the proposed
method outperforms the ESOP methods by 22% with
high variation. We also found that decreasing both the
cost and the LUT-SIZE shows an average improvement
of 62% over the LUT6 ESOP generated circuit. Thus our
primary target of interest to improve this seems to be the
cost of the Shannon Decomposition
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Abstract. Energy consumption in solving computational problems has been gaining growing attention
as a part of the performance measures of computers. Quantum computation is known to o↵er advantages
over classical computation in terms of various computational resources; however, its advantage in energy
consumption has been challenging to analyze due to the lack of a theoretical foundation to relate the
physical notion of energy and the computer-scientific notion of complexity for quantum computation with
finite computational resources. To bridge this gap, we introduce a general framework for studying energy
consumption of quantum and classical computation based on a computational model with a black-box
oracle, as conventionally used for studying query complexity in computational complexity theory. With
this framework, we derive an upper bound of energy consumption of quantum computation with covering
all costs, including those of initialization, control, and quantum error correction; in particular, our analysis
shows an energy-consumption bound for a finite-step Landauer-erasure protocol, progressing beyond the
existing asymptotic bound. We also develop techniques for proving a lower bound of energy consumption
of classical computation based on the energy-conservation law and the Landauer-erasure bound; signifi-
cantly, our lower bound can be gapped away from zero no matter how energy-e�ciently we implement the
computation and is free from the computational hardness assumptions. Based on these general bounds, we
rigorously prove that quantum computation achieves an exponential energy-consumption advantage over
classical computation for Simon’s problem. These results provide a fundamental framework and techniques
to explore the physical meaning of quantum advantage in the query-complexity setting based on energy
consumption, opening an alternative way to study the advantages of quantum computation.

Keywords: quantum thermodynamics, energy consumption, exponential advantage of quantum compu-
tation, query complexity, Landauer’s principle

With growing interest in the sustainability of our soci-
ety, energy consumption is nowadays considered an im-
portant part of performance measures for benchmarking
computers. It is expected that quantum computation
will be no exception; its energy e�ciency will ultimately
be one of the deciding factors as to whether quantum
computers will be used on a large scale [2–4]. Originally,
quantum computers emerged as a promising platform to
solve certain computational problems that would other-
wise be unfeasible to solve on classical computers. The
advantage of quantum computation is generally exam-
ined in terms of computational complexity, which quan-
tifies computational resources required for solving the
problems, such as time complexity, communication com-
plexity, and query complexity [5]. Energy is, however,
a di↵erent computational resource from the above ones.
A priori, an advantage in some computational resource
does not necessarily imply that in another; for example,
quantum computation is believed to achieve an exponen-
tial advantage in time complexity over classical compu-
tation but does not provide such an advantage in the re-
quired amount of memory space [6]. Whether quantum
computation can o↵er a significant energy-consumption
advantage over classical computation is a fundamental
question but has not been explored rigorously as of now
due to the lack of theoretical foundation to relate the
known advantages of quantum computation and that in
its energy consumption.
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Challenges in studying energy-consumption ad-
vantage. To analyze the energy-consumption advan-
tage of quantum computation, there are two inequalities
to be shown: first, an upper bound of energy consump-
tion for performing a quantum algorithm, and secondly,
a lower bound of energy consumption for all classical al-
gorithms to solve the same problem.

As for the former, previous works mostly investigate
energy consumption in implementing a single quantum
gate [7–12], but the analysis of the quantum advantage
requires an upper bound of energy consumption of the
overall quantum computation composed of many quan-
tum operations. Such an analysis has been challenging
because, to account for the energy consumption of quan-
tum computation, we need to take into account all the
operations included in the computation, e.g., not only the
gates but also the cost of initializing qubits and perform-
ing quantum error correction. A challenge here arises
since, unlike quantum gates, some other quantum opera-
tions, such as measurements and initialization, may con-
sume an infinitely large amount of energy as we increase
the accuracy in their implementation [13, 14]. Thus, we
need to formulate the framework of quantum computa-
tion properly to avoid the operations requiring infinite
energy consumption and to establish finite achievability
results of energy consumption for all the operations used
for the quantum computation within the framework.

The latter is even more challenging since it is in gen-
eral hard to derive a lower bound of energy consump-
tion of overall computation from the lower bound of each
individual operation; after all, we may be able to per-
form multiple operations in the computation collectively
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Figure 1: Illustration of our thermodynamic model for
quantum and classical computation.

to save energy consumption. In the first place, the ener-
getic cost of performing reversible operations, be it on a
quantum or classical computer, can be either positive or
negative. For example, consider the cost of performing a
bit-flip gate on a two-level system with states 0 and 1 and
energies E0 < E1. If the bit initially starts in 0, then we
need to invest a positive amount of energy E1 � E0 > 0
to obtain 1 by the bit-flip gate. By contrast, if the bit
initially starts in the state 1 and is flipped into 0, one can
also gain energy E1�E0 from the bit-flip gate at best; in
other words, the energetic cost of performing a reversible
operation can be negative in general. Apart from this en-
ergetic cost, the implementation of the bit-flip gate may
also require an additional control cost arising from heat
dissipation, which is caused by, e.g., friction and electri-
cal resistance. The control cost may be positive in reality,
but in the limit of energy-e�cient implementation, it is
hard to rule out the possibility that the control cost may
be negligibly small; in particular, it is unknown whether
the infimum of the control cost over any possible im-
plementation of computation can still be lower bounded
by a strictly positive constant gapped away from zero.
Thus, the analysis requires a novel technique for deriv-
ing a nonzero lower bound of energy consumption of the
overall computation, which needs to be applied indepen-
dently of the detail of the implementation.

Summary of main results. We address the above
challenges by combining and developing techniques on
computational complexity theory [5], quantum informa-
tion theory [15], and quantum thermodynamics [16]. In
particular, our results are as follows.

1. We formulate a framework within which the energy
consumption of quantum and classical computation
can be rigorously studied (Sec. II of Technical Ver-
sion [1]). We will describe its core idea with Fig. 1
in the following.

2. We derive a general upper bound on the energy con-
sumption that is achievable by the quantum com-
putation in our framework (Sec. IIIA of Techni-
cal Version [1]). For this analysis, extending upon
the existing asymptotic results [14, 17, 18] on Lan-

dauer erasure [19], we show a novel result on the
achievability of finite-fidelity and finite-step Lan-
dauer erasure. Apart from the finite Landauer
erasure, we derive our achievability bound using
complexity-theoretic considerations and also taking
into account overheads from quantum error correc-
tion, so as to cover all the contributions to the en-
ergy consumption.

3. We further develop a technique for obtaining an
implementation-independent lower bound on the
energy consumption of the classical computation in
our framework (Sec. IIIB of Technical Version [1]).
The bound is derived using energy conservation and
the Landauer-erasure bound.

4. Lastly, we show an explicit example where the en-
ergy consumption of quantum and classical com-
putation for solving a computational problem is
exponentially separated (Sec. IV of Technical Ver-
sion [1]). To prove this rigorously, we apply the
above techniques to Simon’s problem [20, 21].

To establish the framework for studying energy con-
sumption, we view quantum and classical computations
as thermodynamic processes, as shown in Fig. 1. In
our computational model, the agent uses the computer
to carry out the computation to solve a decision prob-
lem. Performing operations on the computer comes at
a work cost for this external agent, which we summa-
rize as Wgates. This cost includes energetic costs arising
from the change of energy of the internal states of the
computer, and control costs caused by energetic losses in
implementing these operations due to heat dissipation.
As in a conventional setting of studying query complex-
ity [5, 15, 22], we use an oracle as an input model, which
provides the input to the computer via oracle queries.
In our model, the oracle is an irreversible black box
whose internals are unknown. Still, there is some transfer
of energy between the input and the computer, namely
�E

(in), due to the states the oracle generates and inputs
into the computer. On the other hand, working on deci-
sion problems means that the output is a two-level system
where the decision is stored as either 0 or 1. Generating
this single-bit output comes at an energy exchange of
�E

(out) = O(1) and is practically negligible compared
to the growing sizes of the computer, the input, and the
thermal environment surrounding around the computer.
Throughout the computation, the energy corresponding
to the control cost may flow into the environment, which
in parts contributes to the heat Q dissipated to the envi-
ronment. The other contribution to Q arises from reini-
tializing the internal state of the computer at the end
of the computation. In contrast to the control cost that
may approach zero in the limit of energy-e�cient imple-
mentation, nonzero energy consumption in reinitializing
the computer is inevitable in our framework due to Lan-
dauer’s principle [19]. All in all, we demand that the
reinitialization make the computation cyclic on the com-
puter so that this computer could be used for solving
another task after conducting the current computation.
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With this model, we define the energy consumption W
in computation as the sum of all the contributions of the
external agent, the input, and the output in Fig. 1, i.e.,

W := Wgates +�E
(in) ��E

(out)
. (1)

The demand of the computation being cyclic is critical
to energy conservation; i.e., in the limit of closing this
thermodynamic cycle ideally without error, the energy
conservation leads to W = Q. The energy consumption
W is the sum of he non-dissipative energy exchanges be-
tween external systems and the computer, which can be
understood as the work cost of performing the compu-
tation. The contributions to W are detailed further in
Sec. II of Technical Version [1].
With this framework, we analyze all contributions to

W to derive an upper bound of energy consumption for
quantum computation. Our analysis argues that the
work cost of performing unitary operations on the com-
puter scales at most with the size of the circuit for their
implementation. However, a challenge arises since the
computation in Fig. 1 is realized by a thermodynamic
cycle, and thus, the states of the computer have to be
reinitialized by the end of the computation. Protocols
for Landauer erasure [19] can be used for the reinitial-
ization in our framework, but the existing asymptotic
results [14, 17, 18] on the required cost of the Landauer-
erasure protocols are insu�cient for our analysis of finite
work cost. Problematically, it may require infinite time
steps to exactly reset a given state into a target pure
state by the Laudauer-erasure protocols, and the con-
trol cost required for the infinite time steps may also di-
verge; indeed, based on the third law of thermodynamics
(Nernst’s unattainability principle [23]), cooling a quan-
tum state to absolute zero and thereby erasing its pre-
vious state inevitably comes at divergent resource costs
in some form [14, 24–26]. By contrast, our main contri-
bution is to derive an upper bound of energy consump-
tion for the Laudauer-erasure protocol with finite step to
achieve finite infidelity to a target pure state. With this
bound, we also take into account the finite overhead of
quantum error correction by arguing that the infidelity
for this Laudauer erasure can be set as the threshold con-
stant for fault-tolerant quantum computation, leading to
the general upper bound of energy consumption.
On the other hand, we analyze the heat Q (= W due to

the energy conservation) to derive a lower bound on the
energy consumption for classical computation. The de-
composition of W in (1) into the respective contributions
(e.g., energetic cost and control cost) would not directly
help us in finding the lower bound since no fundamentally
positive lower bound is known for the cost of performing
a gate; after all, in the limit of energy-e�cient imple-
mentation, a single gate may be performed at as close to
zero control cost as possible. Moreover, without oracle,
any classical algorithm could be written in a reversible
way, but reversible computation would make it possible
to perform uncomputation after the result of the com-
putation has been output from the computer, where the
invested energy for the computation could be returned in
principle via the uncomputation [27, 28]. To avoid this

uncomputation, it is essential for our framework to as-
sume that the oracle is a black box whose inverse is inac-
cessible, guaranteeing that part of the computation may
not be inverted. The crucial assumption in our frame-
work is that the knowledge on the oracle obtained from
the queries during the computation remains in the com-
puter until erased with the thermodynamical cost in an
irreversible way. By analyzing the heat dissipation Q
required for the Laudauer erasure, we obtain a general
lower bound on the energy consumption of computation.

Using these general bounds, we prove that the energy
consumption of quantum computation can be exponen-
tially smaller than that of classical computation for solv-
ing Simon’s problem [20, 21]. Simon’s problem is an ex-
emplary case where the query complexity in quantum
computation is exponentially separated from any classi-
cal computation. The structure of the quantum algo-
rithm to solve Simon’s problem is closely related to the
ones to solve the non-oracle-based (i.e., non-relativized)
problems of the discrete logarithm and the integer fac-
torization [29]. The issue with the latter non-relativized
problems is that lower bounds on the complexity of classi-
cal algorithms to solve them are notoriously hard to show
in general because they mainly boil down to the open
question of whether there exists a classical polynomial-
time algorithm to solve the integer factorization. By
contrast, applying our energy-consumption bounds to
Simon’s problem, we rigorously prove the exponential
energy-consumption advantage of quantum computation,
where the bound for classical algorithms do not depend
on the conjectured hardness of a computational task.

Impact. Our study provides a fundamental framework
and techniques for exploring a novel quantum advantage
in terms of energy consumption. The framework is de-
signed so that a quantum advantage in query complex-
ity can be employed for proving the energy-consumption
advantage of quantum computation over classical com-
putation. These results clarify the physical meaning of
the quantum advantage in the query-complexity setting
in terms of energy consumption. Also from a broader
perspective, beyond solving decision problems, quantum
computers may have promising applications in learning
properties of physical dynamics described by an unknown
map within the law of quantum mechanics [30]. The
physical dynamics that are input to the learning algo-
rithms by themselves can be considered a black-box ora-
cle, and the framework and techniques developed here
are also expected to serve as a theoretical foundation
to realize the energy-consumption advantage of quan-
tum computation in such physically well-motivated ap-
plications. Finally, a potential drawback of our current
analysis would be that some part of our analysis ignores
constant factors of the bounds; thus, the actual energy
consumption required for experimental demonstration of
the energy-consumption quantum advantage may be still
unclear at a small scale. It would also be important in
practice to evaluate the constant factors more explicitly,
but our results have opened a route toward further stud-
ies in this direction with a solid theoretical foundation.
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Quantum Circuit Autoencoder
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Abstract. In this study, we introduce the concept of a quantum circuit autoencoder as a means to
compress and encode information within quantum circuits. This serves as a generalization of the quantum
state autoencoder. Our first step involves presenting a protocol for the quantum circuit autoencoder and
designing a variational quantum algorithm named QCAE that can implement it. We then explore the
conditions necessary for lossless compression and establish an upper bound on recovery fidelity of QCAE.
Furthermore, we identify how the lossless condition enables us to construct a loss function and avoid the
Barren Plateau problem. Following the classical autoencoder approach, we apply QCAE to dimension
reduction and anomaly detection for quantum circuits. Finally, we evaluate the effectiveness of our proposed
quantum circuit autoencoder through numerical simulations. Our results show that QCAE can efficiently
compress and recover quantum circuits with high fidelity while identifying circuit outliers precisely.

Keywords: quantum machine learning, variational quantum algorithms, autoencoder, quantum circuit
compression

1 Introduction
Quantum technologies have made significant progress

in the past several years, with notable examples includ-
ing quantum supremacy experiments [1, 2, 3] on Noisy
Intermediate-Scale Quantum (NISQ) devices [4]. How-
ever, NISQ devices suffered from severe noise and lim-
ited qubits. Therefore, in order to fully utilize NISQ
resources, it is essential to implement techniques for com-
pressing quantum information to reduce the number of
resources required for a particular task.

Autoencoder is an artificial neural network widely used
to compress and encode information [5]. The main idea
is to reduce the dimension of information through bottle-
neck while maintaining the reconstructed fidelity of the
data. Ref. [6] proposed a quantum autoencoder (QAE),
a quantum extension of autoencoder, to reduce the in-
put states’ dimension and widely investigated in quan-
tum machine learning and other areas [7, 8, 9]. QAE
reduces the state’s dimension by discarding the “trash”
system in the encoding step and then reconstructs the
state with the help of the “reference” state.

However, the reconstructed fidelity is limited when the
number of input states is large [10]. Moreover, quantum
information is often stored in quantum circuits instead
of quantum states due to the state store technologies are
not mature [11, 12]. In order to address these issues,
there is a need for an elaborate study on quantum circuit
autoencoder. Quantum circuit autoencoder can also as
a generalization of QAE, for example, it can subsume
QAE in some cases such as purified quantum query access
model.

Ref. [13] and Ref. [14] proposed a gate compression
model that uses two unitary operators to reduce the in-
put gate’s dimension and another two unitary operators

∗jun_wu@mail.ustc.edu.cn
†hflash@mail.ustc.edu.cn
‡zmzming@mail.ustc.edu.cn
§xxieww@ustc.edu.cn
¶xiangyangli@ustc.edu.cn

to reconstruct the original gate. This model can be seen
as a simple prototype of a quantum circuit autoencoder.
The authors also provided a method to achieve exponen-
tial reduction in dimension. However, this approach only
considers gates consisting of single-qubit gates in the IID
form, whereas general quantum circuits in practice con-
sist of multiple qubits and not just single-qubit gates.

In this work, we proposed a quantum circuit autoen-
coder model as depicted in Fig. 1. For a mixed quantum
channel E , which is a convex combination of a batch of
quantum circuits acting on D-qubits, we construct en-
coders U1 and V1 to obtain F = trtrash(V1 ◦ E ◦ U1) act-
ing on d-qubit system (d < D), where trtrash meaning
discarding the D − d system, i.e. the “trash” system.
The goal is to maximize the reconstruc fidelity between
Ẽ = V2 ◦ (F ⊗ id) ◦ U2 and E .Quantum circuit encoder

ℰ𝒰1 𝒱1
𝐷 𝐷

𝑑 𝑑

“trash”“trash”
encode

ℱ𝑑 𝑑𝒰2 𝒱2
𝐷 𝐷decode

Figure 1: the quantum circuit autoencoder encodes a 2D-
dimensional quantum circuit into a 2d-dimensional cir-
cuit and reconstructs the original 2D-dimensional quan-
tum circuit through the encoding process.

In order to implement a quantum circuit autoencoder
on NISQ devices, we have designed a variational quan-
tum algorithm [15] named QCAE. Specifically, we have
made use of parameterized quantum circuits (PQCs) [16]
to find the encoders and decoders required for the imple-
mentation of the quantum circuit autoencoder. We have
also utilized QCAE for some quantum circuit tasks, in-
cluding dimension reduction and anomaly detection on
quantum circuits.
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2 Method
2.1 Sketch of our method

We present the diagram of our quantum circuit autoen-
coder model. The goal is to find encoders and decoders
to encode E through a bottleneck and decode it to origi-
nal circuits as faithfully as possible. Our algorithm uses
the parameterized quantum circuit controlled by a set
of parameters to represent the encoders and decoders.
Therefore, QCAE aims to find the optimal control pa-
rameters to maximize the similarity between original and
reconstructed quantum circuits.

The typical quantum circuits autoencoder is shown in
Fig. 1 consists of two separated processes: encoding and
decoding. During the encoding process, the training data
set {Ei}Ntrain

i=1
is encoded as a mixed quantum channel E

on D-qubits system. Then, the encoders U(θ) and V (θ)
act on the channel E and get the reduced channel F by
partially tracing the last (D−d) qubits (i.e. “trash” sys-
tems). As a result, return the channel F on the d-qubit
system. In the reconstruction process, the decoders U(θ)†

and V (θ)† are applied to the channel F ⊗ id to yield a
new quantum circuit Ẽ . Finally, we feed the similarity
between E and Ẽ to the classical optimizer to update
parameters θ. Note that the decoders in the reconstruc-QCAE

ℰ𝒰1ሺɅሻ 𝒱1ሺɅሻ
ࣦଷሺɅሻ Classical

Optimizer

Ʌ

1ܥ 2ܥ

Ԣܣ BԢ
ܣ ܤ

Figure 2: The diagram of the QCAE.

tion process are the conjugate transpose of the encoders.
Therefore, we only consider the encoding process for con-
venience. And we use the product state between maxi-
mally mixed ω and maximally entangled state φ+ as the
initial state. Fig. 2 is the diagram of QCAE.

2.2 Loss Function
Given the data set D := {Em}Nm=1 and encoders U(θ)

and V (θ), we obtain the mixed quantum channel E =
1

N

∑
m Em, the loss function is designed as:

L1 := 1− y(E , Ẽ), (1)

here, the error function y(E , Ẽ) is defined as:

y(E , Ẽ) = F (JE , J Ẽ), (2)

where F (·) is the state fidelity function, Ẽ = V† ◦ (F ⊗
id) ◦ V† and F = trC1C2 [V ◦ E ◦ U ].

The error function in Eq. 2 is to calculate the fidelity
between two 4D quantum states, which is an unaffordable
computation cost. We propose Prop. 1 and given the loss
function:

L2(D, θ) := 1− [F (φ+

C1
,φ+

C2
)], (3)

(a) (2,1) (b) (3,1) (c) (4,1) (d) (5,1)

(e) (3,2) (f) (4,2) (g) (5,2) (h) (6,2)

Figure 3: The slice of loss landscape with respect to the
first two circuit parameters by changing the input chan-
nels’ size D and latent channel size d. Here, the binary
list represents (D, d).

where F (·) is also the state fidelity function and only
considers the state on the “trash” system,

F (φ+

C1
,φ+

C2
) =

tr(φ+ trB′ [(V(θ) ◦ E ◦ U(θ))(ωA′ ⊗ φ+

C1
)])).

(4)

Furthermore, to escape Barren Plateau (BP) [17], we
use the following loss function:

L3(D, θ) :=

1− [tr(O trB′ [(V(θ) ◦ E ◦ U(θ))(ωA′ ⊗ φ+

C1
)]))],

(5)

where O is a local observable and

O =
N−1∑

m=1

φ+

m,m+1
⊗ 1m,m+1

. (6)

Analytical Gradients and Barren Plateau: Given
the QCAE, we briefly discuss analytic gradient and the
barren plateau issues that the expectation gradient is ap-
proximate to zero exponentially. The ansatz we use is a
2-local parameterized quantum circuit deployed as the
sequence of single-qubit rotations and two-qubit gates.
Therefore, we can use the parameter-shift rule[18] to ob-
tain the partial derivative:

∂L3

∂θj
= L3(θ+)− L3(θ−), (7)

where θ+ and θ− are different from θ only at the j-th
parameter: θj → θj ± π

4
.

As for the Barren Plateau(BP) [17] from which many
variational quantum algorithms may suffer. We remark
on two points: First, our QCAE performs (D− d)-qubit
measurements and takes the result as the loss function.
Second, the observable of loss function in Eq. 5 is lo-
cal. These two points keep the loss function local, which
has been proved to have, at worst, a polynomially van-
ishing gradient with a shallow PQC [19]. In this sense,
our QCAE could release the barren plateau issue when
the number of layers L ∈ O(log(D)). Fig. 3 shows the
landscape of QCAE, where the target channel is a com-
bination of ten PQCs.
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3 Theoretical Analysis
In this section, we give two propositions. One is the

Faithful Compression Condition, which is essential in de-
signing the loss function in Eq. 3. Another provides an
upper bound on reconstructed fidelity of QCAE.

3.1 Faithful Compression Condition
Proposition 1. (Faithful compression condition) The
channel E can be recovered from F by recovery scheme if
and only if

trB′ Π(ωA′ ⊗ φ+
C1
) = φ+

C2
, (8)

where φ+ is the maximally entangled state, ω denotes the
maximally mixed state, and Π = V ◦ E ◦ U is the channel
after applying encoders to E.

Prop. 1 tells us that we can recover a quantum channel
after compression if the origin channel can be written
as a product of a compressed channel and an identity
channel. Prop. 1 implies that it is possible to accomplish
the learning task of finding the ideal U and V by training
only on the “trash” state.

3.2 Upper Bound on Recovery Fidelity of QCAE
Lemma 1. Let ρ and σ be the quantum state, and let r
be the rank of σ. Then the fidelity between ρ and σ is
upper bounded by the sum of the largest r eigenvalues of
ρ, and the bound is achieved if and only if ρ = σ.

Lemma 1 gives us an upper bound on the fidelity be-
tween any two quantum states, and it can be used to
prove the following proposition.

Proposition 2. Let Ẽ be the recovered quantum chan-
nel from V ◦ E ◦ U , the recovery fidelity F (Ẽ , E) is upper
bounded by the sum of the largest d2 eigenvalues of Choi
state of E, where d is the dimension of the reduced quan-
tum channel F = V ◦ E ◦ U .

Inspired by this proposition, we know that the recon-
struct fidelity via QCAE could be not good with a rank
larger than d2. For example, let us consider the com-
pletely depolarizing quantum channel ∆ whose input and
output dimensions are D and compress it to D/d dimen-
sion. The Choi state of ∆ is diag( 1

D2 , · · · , 1

D2 ). Based on
the above proposition, even for the best case of training,
the fidelity of reconstruction is always no larger than d2

D2 .

4 Numerical Results
This section presents some practical applications of

QCAE, such as dimension reduction and anomaly de-
tection for quantum circuits.

In the compression experiments, we choose a set of
PQCs with parameters generated by the same distribu-
tion, and using the reconstructed infidelity as the valida-
tion. We can achieved low reconstruct error rates of less
than 0.2, as show in Fig. 4 and Tab. 4.

In the anomaly detection experiments, we set the
PQCs with parameters generated by norm(0, 0.1) as nor-
mal data and the PQCs with parameters generated by

Figure 4: Training and validation processes of quantum
circuits compression.
Table 1: Compression performance of multiple parameter-
ized quantum circuits.

m∗ distribution n† d‡ L3 val_mean val_std
10 norm(0, 0.1) 4 3 0.016 0.031 0.019
10 norm(0, 0.2) 4 3 0.063 0.121 0.037
10 norm(0, 0.3) 4 3 0.104 0.194 0.086
20 norm(0, 0.1) 4 3 0.022 0.044 0.020
10 norm(0, 0.1) 4 2 0.027 0.048 0.011
10 norm(0, 0.1) 5 3 0.038 0.074 0.033
10 norm(0, 0.1) 6 4 0.051 0.099 0.030
∗ m is the number of circuits
† n is the number of qubits
‡ d is the number of latent qubits

Figure 5: The results of quantum circuits anomaly de-
tection.

norm(0, 0.5) as abnormal data. We use the reconstructed
fidelity as the anomalous scores to detect the outliers.
QCAE is proved to be highly effective in distinguishing
abnormal data from normal data, see Fig. 5.

5 Discussion
The reconstruct fidelity of QCAE is bounded in Propo-

sition 2. This limitation arises from the fact that the
rank of the mixed quantum channel increases as the num-
ber of circuits grows. To address this, we can use an
effective ansatz and pad a noise channel instead of an
identity channel when reconstructing the channel from
the reduced channel. An interesting research direction is
to estimate the performance of QCAE on random input
quantum channels. There is a lot of potential for fur-
ther progress in determining tasks that are suitable for
QCAE. For example, quantum circuit autoencoders have
applications in denoising, data generation, and feature
extraction for information in quantum circuits. In addi-
tion, finding more practical tasks beyond anomaly detec-
tion using Parameterized Quantum Circuits (PQCs) with
different parameters and distributions is also appealing.
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Abstract. Near-term quantum devices generally su↵er from shallow circuit depth and hence limited
expressivity due to noise and decoherence. To address this, we propose tensor network assisted parame-
terized quantum circuits, which concatenate a classical tensor network operator with a quantum circuit to
e↵ectively increase the circuit’s expressivity without requiring a physically deeper circuit. We present a
framework for tensor network-assisted variational quantum algorithms that can solve quantum many-body
problems using shallower quantum circuits. We demonstrate the e�ciency of this approach by considering
two examples of unitary matrix product operators and unitary tree tensor networks, showing that they can
both be implemented e�ciently. Through numerical simulations, we show that the expressivity of these
circuits is greatly enhanced with the assistance of tensor networks. We apply our method to 2D Ising
models and 1D time crystal Hamiltonian models with up to 16 qubits, and demonstrate that our approach
consistently outperforms conventional methods using shallow quantum circuits.

Keywords: tensor network, quantum circuit, variational quantum algorithm

1 Introduction

Tensor networks (TNs) and parameterized quantum
circuits (PQCs) are powerful tools for representing quan-
tummany-body states, respectively in classical and quan-
tum approaches. The density matrix renormalization
group (DMRG) algorithm, based on TNs, has achieved
great success in solving ground state properties for one-
dimensional systems [1, 2, 3]. However, the expressivity
of TNs is limited by the area law with limited bond di-
mensions. PQCs, on the other hand, o↵er a more natural
representation of quantum states on quantum computers,
and many quantum algorithms [4, 5] have been proposed
to take advantage of this. Nevertheless, near-term quan-
tum computers are inherently noisy, which could also
limit the circuit depth and expressivity of PQCs. There-
fore, solving systems with non-trivial entanglement struc-
tures, such as strongly correlated matters and molecules,
using either TNs or PQCs remains a challenging task.
TNs and PQCs are commonly considered as distinct

classical and quantum computation methods, each with
its own set of advantages and limitations. While TNs are
relatively easy to implement, they have limited expres-
sivity due to the area law, while PQCs o↵er much larger
expressivity but are limited by noise and shallow circuit
depth. Nevertheless, TNs and PQCs have been shown to
have close interactions with each other. PQCs, for exam-
ple, can be designed as classically unrealizable TNs with
exponentially large bond dimensions [6, 7, 8, 9, 10]. At
the same time, TNs that are classically realizable can rep-
resent special unitary operations and be used as a partic-
ular type of PQCs. This raises the question of whether we
can integrate these two methods under a unified frame-
work.

⇤jxhuang@stu.pku.edu.cn
†bujiaowu@gmail.com
‡xiaoyuan@pku.edu.cn

Here, we present a framework for tensor network as-
sisted variational quantum algorithms. Our proposal
involves tensor network-parametrized quantum circuits
(TN-PQC), which consist of a standard PQC with an ap-
pended TN unitary operator. By augmenting the PQC
with the TN unitary, which mainly performs classical ro-
tations of the Hamiltonian, the TN-PQC can significantly
enhance circuit depth and thereby improve expressive-
ness without requiring the physical implementation of
deeper circuits. We then proceed to examine three key
questions pertaining to our framework: (i) how to de-
sign the TN-PQC structure; (ii) optimization strategies
for TN-PQC; and (iii) the comparative benefits of this
hybrid architecture. To address (i), we present two ex-
amples of unitary matrix product operator (uMPO) and
unitary tree tensor network (uTTN) and demonstrate
their e�cacy. We address (ii) with various optimization
strategies and tackle (iii) through numerical experiments.
We implement our method to numerically estimate the
ground energy of the 2D Ising model with 16 qubits and
the 1D time crystal Hamiltonian with 11 to 16 qubits. We
compare the performance of TN-PQC (uMPO), TN-PQC
(uTTN), and VQE algorithms. Our numerical results
highlight the significant advantages of TN-PQC meth-
ods over conventional methods, with TN-PQC (uMPO)
exhibiting the best performance, suggesting the benefits
of uMPO integration.

2 Framework of TN-PQC

The problem of finding the ground state and ground
energy of the Hamiltonian H can be expressed as the
minimization problem:

argmin
 

h |H | i , (1)
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Figure 1: The TN-PQC framework: (a) A classical tensor network can represent part of the parameterized circuits and
the Hamiltonian U

†(✓)HU(✓). (b) The quantum processor measures the remaining parameterized circuits using an
e↵ective Hamiltonian represented by a TN. (c) The gradient descent method is employed to find classical and quantum
parameters corresponding to the lowest measurement results. (d) Contraction strategies for 1D uMPO and uTTN
when combined with the Hamiltonian in a TN form. (e) Two optimization strategies for di↵erent parameters. i) The
iteration of the quantum parameter �1 is obtained by computing the gradient from the previous classical and quantum
parameters ✓0 and �0, while the parameter ✓1 is obtained from ✓0 and �1. ii) The parameter updating process is
similar, but with the introduction of nC > 1 intermediate steps between the initial and final classical parameters ✓0
and ✓1 to update classical parameters. (f) 2D uMPO and uTTN combined with the Hamiltonian in a 2D TN form.

where di↵erent parametrizations of  result in di↵erent
methods. One example is to set | i = U(�) |0i, where
U(�) is a parameterized quantum circuit (PQC) with
tunable parameters �. This method is known as tra-
ditional VQE. In the framework of this article, we set
| i = U(✓)U(�) |0i, which transforms the minimization
problem into:

min
✓,�

h0|U†(�)U †(✓)HU(✓)U(�) |0i , (2)

where U(�) represents a quantum circuit with parame-
ters �, and U(✓) represents a unitary tensor network with
parameters ✓. By optimizing both classical and quan-
tum parameters, the limited circuit depth of U(�) can
be compensated by the higher expressive power of U(✓).
We aim to disentangle Hamiltonian H using the similar-
ity transformation U(✓) and make the VQE circuit more
e�cient.
When both U(✓) and H are expressed in TNs, the pa-

rameterized HamiltonianH(✓) := U
†(✓)HU(✓) in Eq.(2)

can be considered as a TN with some legs contracted.
The entire parameterized TN H(✓) is referred to as the
TN part in the following sections, while U(�) | 0i in
Eq.(2) is referred to as the VQE part. When parameter
✓ is fixed, Eq. (2) reduces to a traditional VQE method,
whereas when � is fixed, it becomes a classical param-
eter optimization method. The entire process described
above is illustrated in Fig. 1(a-c).
One issue to consider is how to choose the PQC U(�)

and the TN U(✓). In principle, the structure of PQC
U(�) can be arbitrary, and in this paper, we utilize some
existing VQE ansatzes [11]. However, designing the TN
requires more expertise to avoid the explosion of the Pauli
decomposition of the TN part H(✓), since VQE requires

measuring the Pauli basis. With the Pauli expansion
form of the TN part, the resulting energy can be ex-
pressed as a linear combination of expectation values:

E(✓,�) =
X

P

cP (✓)hP i�, (3)

where cP (✓) = Tr[PU
†(✓)HU(✓)] is the Pauli decompo-

sition coe�cient of the classical part, and the summation
iterates over all operators P with non-zero coe�cients.
The notation hP i� denotes the measurement results of
operator P on the PQC, with the subscript indicating
the parameter in PQC.

We propose three conditions for selecting an appropri-
ate TN U(✓) in the classical part:

(i) U
†(✓)HU(✓) must share the same ground state and

energy as H.

(ii) Either the number of Pauli decomposition terms re-
mains small, which is polynomial in terms of qubit
number, or the Pauli operators can be e↵ectively
sampled.

(iii) The coe�cients cP (✓) must be able to be computed
e�ciently.

Following these general principles, we could construct
several kinds of U(✓) e�ciently as shown in Figure 1(d).

3 Numerical Results

We test the e�cacy of TN-PQC for determining the
ground states of 2D spin-lattice systems with nearest-
neighbor interactions, specifically the Ising model. We
choose the Hamiltonian asH = �J

P
hiji ZiZj�g

P
j Xj ,
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Figure 2: The numerical results demonstrate the su-
perior accuracy and scalability of TN-PQC. (a) Perfor-
mance comparison of pure VQE, uTTN-assisted VQE,
and uMPO-assisted VQE on a (4 ⇥ 4)-qubit 2D trans-
verse field Ising model. (b) Lowest energy error achieved
by pure VQE, uTTN-assisted VQE, and uMPO-assisted
VQE as the time crystal model parameter J varies. (c)
Estimated ground state energy of a 16-qubit time crystal
model using di↵erent algorithms with an increasing num-
ber of layers of PQC. (d) Estimated energy after 1-100
optimization steps for the iterative experiment of pure
VQE, uTTN-assisted VQE, and uMPO-assisted VQE on
a noisy 16-qubit time crystal model.

which is the well-known transverse field Ising model,
where Zi and Xj are local Pauli operators, hiji de-
notes the summation over nearest neighbors and g rep-
resents the interaction strength between the system and
the external magnetic field. The parameter set we use
is {J = 0.1, g = 1}, and numerical experiments are per-
formed on a 4⇥ 4 qubit 2D Ising model. We experimen-
tally compare the performance of the VQE-only circuit,
TN-PQC with TN being a uTTN, and TN-PQC with TN
being a uMPO (2 layers), respectively, in determining the
ground state of these models, as shown in Fig. 2(a). All of
these algorithms have the same parameterized quantum
circuit, consisting of a layer of parameterized rotations in
Pauli Y -basis gates and n similar layers of CZ gates for
entanglement, as before.
We optimize these circuits using the gradient descent

algorithm and find that TN-PQC has a much better con-
vergence estimation value of the ground energy, and TN-
PQC with TN being a uMPO performs better than a
uTTN. This suggests that MPOs may be more appropri-
ate for the Hamiltonians with the spin-lattice model.
We compare the performance of VQE, TN-

PQC with an uTTN, and TN-PQC with an
MPO on various parameter models of the
time-crystal Hamiltonian, which is given by
H = �

P
k [JkZk�1XkZk+1 + VkXkXk+1 + hkXk].

In particular, we vary the parameter J from 0.7 to 1.3
with fixed V = 0.1 and h = 0.1, as shown in Fig. 2(b). To
handle this more complex Hamiltonian, we use a deeper

circuit consisting of 2 layers of parameterized rotation
in Pauli Y -basis gates and Pauli X-basis gates, and n

layers of CNOT gates (CNOTi,i+1 for 1  i  n � 1)
to induce more entanglement. The figure demonstrates
that TN-PQC maintains a distinct advantage as J

varies.
To better understand the capabilities of di↵erent

approaches in improving accuracy, we investigate the
achievable energy accuracy by increasing the number
of layers in a parameterized quantum circuit with re-
peating structures. We employ the 1D 16-qubit time
crystal Hamiltonian to compare the ability of di↵erent
methods in reducing the number of layers in parame-
terized quantum circuits. We set the parameter values
to {J = 1, V = 0.1, g = 0.1} and use a layer of rotation
in Y -basis gates, followed by n layers of CNOT gates
(CNOTi,i+1 for 1  i  n � 1) in our parametric quan-
tum circuit. Fig. 2(c) shows the estimated ground energy
for di↵erent algorithms as the number of layers increases.
Our results demonstrate that a pure VQE circuit with 7
repetitions of the original structure performs as well as
the uTTN-assisted VQE circuit with 5 repetitions and
the MPO-assisted original VQE circuit, with all three
approaches approaching the theoretical value of the time
crystal Hamiltonian ground state energy within an error
of 1⇥ 10�2.

We also assess the robustness of TN-PQC to noise by
introducing depolarization noise to the single-qubit and
two-qubit gates. Multiple fixed 100-step iterative exper-
iments are conducted on the same initial quantum state
to obtain the estimation and error bar. The error is es-

timated using the formula " = 3
qPS

i=1 (vi � v̄)2 /S2,
where vi denotes the ith estimate, v̄ denotes the mean,
and S denotes the total number of experiment times.

In practice, the depolarization noise probability for the
single-qubit and two-qubit gates (specifically, the rota-
tion Y and CNOT gate) is set at 2⇥10�5 and 5⇥10�5, re-
spectively. The same set of parameters is chosen, and the
experiment is repeated for S = 40 times. The mean val-
ues and error bars are calculated for each step. Fig. 2(d)
shows the estimation results with increasing optimization
steps. We observe that while the TN assistance ampli-
fies the noise fluctuation, TN-PQC still outperforms pure
VQE even when considering the e↵ect of the estimation
error bar.

4 Why AQIS?

We propose a hybrid framework that can take full ad-
vantage of the respective strengths of tensor networks
and quantum circuits, and present numerical simulations
which show that the TN-PQC consistently and signif-
icantly outperforms the VQE algorithm with shallow
depth of quantum circuits. We also numerically show
that the expressivity is greatly enhanced with the assis-
tance of tensor networks for the original shallow-depth
VQE algorithm. We believe our work would inspire the
AQIS audience to explore the possibility of more hybrid
frameworks.
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Abstract. Memory is the fundamental form of temporal complexity: when present but uncontrollable, it manifests
as non-Markovian noise; conversely, if memory can be controlled, it can provide a powerful resource for information
processing. Memory effects arise via interactions between a system and its environment; as such, they can be either
classical or quantum. From a practical standpoint, quantum processes with classical memory promise near-term
applicability: they are more powerful than their memoryless counterpart, yet at the same time can be sufficiently
controlled without being spoiled by decoherence. However, despite practical and foundational value, apart from
simple two-time scenarios, the distinction between quantum and classical memory remains unexplored. We first
analyse various physically-motivated candidates regarding a suitable definition for classical memory that lead to
remarkably distinct phenomena in the multi-time setting. Subsequently, we develop witnesses to determine the
exclusion of a process from each set, thereby systematically characterising the hierarchy multi-time memory effects.

Keywords: Quantum Information Theory; Quantum and Classical Memory; Multi-Time Quantum Phenomena.

1 Introduction
Memory is the fundamental form of temporal complex-

ity, appearing ubiquitously across natural and engineered pro-
cesses [1]. Most prominently, memory can be controlled to
reliably prepare states [2, 3], simulate non-Markovian phe-
nomena [4–6], enhance information processing [7, 8], and
control circuit architectures [9–12]. Such primitives are rou-
tinely used in classical computers to improve performance
and will be necessary for robust quantum devices [13]. Only
recently has a consistent understanding of memory in quan-
tum processes been developed via the “process tensor” for-
malism [14, 15]. The process tensor has been shown to cor-
rectly generalise classical stochastic processes to the quan-
tum realm [16–18] and encode key memory properties—
length [19], structure [20] and strength [21]—providing a
framework for analysing complex multi-time quantum dy-
namics [22, 23]. Such results have been tested experimen-
tally [12, 24], evidencing their immediate applicability.

Nonetheless, from a practical standpoint, control over
quantum memory might be out of reach (beyond laboratory
settings) since it requires delicate experimental setups. Ma-
nipulating quantum processes with classical memory seems
more manageable (yet still powerful) [25, 26]; however, the
resourcefulness of classical memory remains largely unex-
plored. Here we ask: What is truly quantum about quan-

tum memory, and what can be achieved with processes con-

trolled by only classical memory? Our interrogation is oper-
ational and inspired by the spatial setting, where genuinely
quantum correlations have been identified as a fundamental
resource [27, 28]. At the same time, there exist tasks that can
be performed optimally using only classical correlations, pro-
viding a simpler strategy in practice. Here, we develop a sys-
tematic understanding of quantum processes with both quan-
tum and classical memory, focusing on the ability of the latter
to demonstrate advantages in information processing tasks.

⇤philipguy.taranto@phys.s.u-tokyo.ac.jp

2 Results
We consider a system S that is sequentially interrogated

N times; in between the probings, the system interacts with
its environment E, together evolving unitarily (see Fig. 1).
An object that permits the computation of all possible multi-
time correlations—the “process tensor”—can be built up (in
the Choi representation 1) from these parts via the link product

? [10]. An N -time quantum process can then be defined via:

Definition 1 (Multi-time quantum process). An N -time quan-
tum process is represented by CN :1 � 0 that can be written as

CN :1 = ENiFN�1
j=1 U(ES)j+1ijo

? IEj ? ⇢(ES)1i
, (1)

with ⇢(ES)1i
a state, each U(ES)j+1ijo

a unitary channel, each
IEj an identity map, and ENi representing the partial trace.
We denote the set of such processes by QM.

The Choi state of an N -time process is a many-body state
CN :1 2 L(HSNi

NN�1
j=1 HSjo ⌦HSji

) which satisfies causal-
ity constraints that encode the impossibility of sending infor-
mation from the future to the past [10]. We will later use the
violation of similar no-signalling conditions to establish the
distinction between certain types of memory.

In this representation, correlations of the Choi state encode
temporal correlations of the process. Recent work has demon-
strated various features that arise from the interplay between
memory effects and sequential measurements in quantum the-
ory [17–21, 31–33]. Here, we examine meaningful ways
to characterise multi-time quantum processes with different
types of memory, particularly focusing on the case where
the memory is restricted to being classical. Starting from a
system-environment dynamics, there are various ways to im-
pose classicality on the memory, each justified within their
own right but which lead to distinct consequences that can be
determined by probing the system alone.

1Just as channels can be represented as bipartite states via the Choi-

Jamiołkowski isomorphism [29, 30], multi-time quantum processes can be
represented as multi-partite states [15], as we use throughout.
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<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="+Oe81+72V6fuqJ2nu9iLh4/hrEw=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBAEIeyGoDkGvHiMYB6QrGF2MpsMmZ1dZ3qFEPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFx08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rSeujYjVPY4T7kd0oEQoGEUrtbv1oXi47JV7haJbcucgq8TLSBEy1HuFr24/ZmnEFTJJjel4boL+hGoUTPJpvpsanlA2ogPesVTRiBt/Mr93Ss6t0idhrG0pJHP198SERsaMo8B2RhSHZtmbif95nRTDqj8RKkmRK7ZYFKaSYExmz5O+0JyhHFtCmRb2VsKGVFOGNqK8DcFbfnmVNMsl76pUuasUa9UsjhycwhlcgAfXUINbqEMDGEh4hld4cx6dF+fd+Vi0rjnZzAn8gfP5Aymxj2A=</latexit>

�+
2

<latexit sha1_base64="RfF04LPdty8qdhxJHMeqRBJRL5c=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMgCGFXguYY8OIxgnlAsobZSW8yZHZ2nZkVQshPePGgiFd/x5t/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmZ+6wmV5rG8N+ME/YgOJA85o8ZK7W59yB8uel6vWHLL7hxklXgZKUGGeq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+b1TcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5qw6k+4TFKDki0WhakgJiaz50mfK2RGjC2hTHF7K2FDqigzNqKCDcFbfnmVNC/L3lW5clcp1apZHHk4gVM4Bw+uoQa3UIcGMBDwDK/w5jw6L86787FozTnZzDH8gfP5Aygtj18=</latexit>

�+
1

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢ <latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="CU/Cn8kR19zGrlNejWBsMyfOCu4=">AAACA3icbVDLSsNAFL2pr1pfVZdugkVwVRIp2mVBBJcV7AOaUCbTSTt0ZhJmJkIJXfoLbnXvTtz6IW79EidpFrb1wIXDOfdyDyeIGVXacb6t0sbm1vZOebeyt39weFQ9PumqKJGYdHDEItkPkCKMCtLRVDPSjyVBPGCkF0xvM7/3RKSikXjUs5j4HI0FDSlG2kiex5GeqDC9G7rzYbXm1J0c9jpxC1KDAu1h9ccbRTjhRGjMkFID14m1nyKpKWZkXvESRWKEp2hMBoYKxIny0zzz3L4wysgOI2lGaDtX/16kiCs144HZzDOuepn4nzdIdNj0UyriRBOBF4/ChNk6srMC7BGVBGs2MwRhSU1WG0+QRFibmpa+BAHPSnFXK1gn3au6e11vPDRqrWZRTxnO4BwuwYUbaME9tKEDGGJ4gVd4s56td+vD+lyslqzi5hSWYH39ApPlmJs=</latexit>

E1
<latexit sha1_base64="7ynhO6aEOsYDnq9+MSA4BVICDN8=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiSlaJcFEVxWsA9oQplMJ+3QySTMTIQSuvQX3Orenbj1Q9z6JU7SLLT1wIXDOfdyD8ePOVPatr+s0sbm1vZOebeyt39weFQ9PumpKJGEdknEIznwsaKcCdrVTHM6iCXFoc9p35/dZH7/kUrFIvGg5zH1QjwRLGAEayO5boj1VAXp7aixGFVrdt3OgdaJU5AaFOiMqt/uOCJJSIUmHCs1dOxYeymWmhFOFxU3UTTGZIYndGiowCFVXppnXqALo4xREEkzQqNc/X2R4lCpeeibzTzjqpeJ/3nDRActL2UiTjQVZPkoSDjSEcoKQGMmKdF8bggmkpmsiEyxxESbmv588f0wK8VZrWCd9Bp156revG/W2q2injKcwTlcggPX0IY76EAXCMTwDC/waj1Zb9a79bFcLVnFzSn8gfX5A5V6mJw=</latexit>

E2
<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="HG9HCm0papx6iBQmjw/i4la35MQ=">AAACA3icbVDLSsNAFL3xWeur6tJNsAiuSlKKdllw47JCX9CEMplO2qEzkzAzEUro0l9wq3t34tYPceuXOEmzsK0HLhzOuZd7OEHMqNKO821tbe/s7u2XDsqHR8cnp5Wz856KEolJF0cskoMAKcKoIF1NNSODWBLEA0b6wew+8/tPRCoaiY6ex8TnaCJoSDHSRvI8jvRUhWlnVF+MKlWn5uSwN4lbkCoUaI8qP944wgknQmOGlBq6Tqz9FElNMSOLspcoEiM8QxMyNFQgTpSf5pkX9rVRxnYYSTNC27n69yJFXKk5D8xmnnHdy8T/vGGiw6afUhEnmgi8fBQmzNaRnRVgj6kkWLO5IQhLarLaeIokwtrUtPIlCHhWirtewSbp1Wvuba3x2Ki2mkU9JbiEK7gBF+6gBQ/Qhi5giOEFXuHNerberQ/rc7m6ZRU3F7AC6+sXrVOYqw==</latexit>

T2
<latexit sha1_base64="4u8wqDf0iG3d5ZKFOpRnYeU0omA=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiRStMuCG5cV+oImlMl00g6dScLMRCihS3/Bre7diVs/xK1f4iTNwrYeuHA4517u4fgxZ0rb9rdV2tre2d0r71cODo+OT6qnZz0VJZLQLol4JAc+VpSzkHY105wOYkmx8Dnt+7P7zO8/UalYFHb0PKaewJOQBYxgbSTXFVhPVZB2Rs5iVK3ZdTsH2iROQWpQoD2q/rjjiCSChppwrNTQsWPtpVhqRjhdVNxE0RiTGZ7QoaEhFlR5aZ55ga6MMkZBJM2EGuXq34sUC6XmwjebecZ1LxP/84aJDppeysI40TQky0dBwpGOUFYAGjNJieZzQzCRzGRFZIolJtrUtPLF90VWirNewSbp3dSd23rjsVFrNYt6ynABl3ANDtxBCx6gDV0gEMMLvMKb9Wy9Wx/W53K1ZBU357AC6+sXq76Yqg==</latexit>

T1

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="91VWtKtsVwaheqKFQkhrwZAlJQk=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiRS1GXBjcsK9gFNCJPppB06MwkzE6WE/oG/4Fb37sStP+HWL3GSZmFbD1w4nHMv93DChFGlHefbqmxsbm3vVHdre/sHh0d2/bin4lRi0sUxi+UgRIowKkhXU83IIJEE8ZCRfji9zf3+I5GKxuJBzxLiczQWNKIYaSMFdt3jSE9UlHmKjjkK3HlgN5ymUwCuE7ckDVCiE9g/3ijGKSdCY4aUGrpOov0MSU0xI/OalyqSIDxFYzI0VCBOlJ8V0efw3CgjGMXSjNCwUP9eZIgrNeOh2SyCrnq5+J83THV042dUJKkmAi8eRSmDOoZ5D3BEJcGazQxBWFKTFeIJkghr09bSlzDkeSnuagXrpHfZdK+arftWo90q66mCU3AGLoALrkEb3IEO6AIMnsALeAVv1rP1bn1Yn4vVilXenIAlWF+/So2bIg==</latexit>�1
<latexit sha1_base64="r2jANaKaSEeRduIwA4NS2wKQdsY=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiSlqMuCG5cV7AOaECbTSTt0ZhJmJkoJ/QN/wa3u3Ylbf8KtX+IkzUJbD1w4nHMv93DChFGlHefLqmxsbm3vVHdre/sHh0d2/biv4lRi0sMxi+UwRIowKkhPU83IMJEE8ZCRQTi7yf3BA5GKxuJezxPiczQRNKIYaSMFdt3jSE9VlHmKTjgKWovAbjhNpwBcJ25JGqBEN7C/vXGMU06ExgwpNXKdRPsZkppiRhY1L1UkQXiGJmRkqECcKD8roi/guVHGMIqlGaFhof6+yBBXas5Ds1kEXfVy8T9vlOro2s+oSFJNBF4+ilIGdQzzHuCYSoI1mxuCsKQmK8RTJBHWpq0/X8KQ56W4qxWsk36r6V4223ftRqdd1lMFp+AMXAAXXIEOuAVd0AMYPIJn8AJerSfrzXq3PparFau8OQF/YH3+AEwimyM=</latexit>�2

<latexit sha1_base64="hoz//OmUk/CswEeQLqzUXrm6rpU=">AAACDnicbVDLSsNAFJ3UV62vqLhyEyyCq5JI0S4LblxWsA9oY5hMJ+3QyYOZG7EM+Qd/wa3u3Ylbf8GtX+KkzcK2HrhwOOdezuX4CWcSbPvbKK2tb2xulbcrO7t7+wfm4VFHxqkgtE1iHouejyXlLKJtYMBpLxEUhz6nXX9yk/vdRyoki6N7mCbUDfEoYgEjGLTkmScDMY495TyoAdAnAFAsyzLPrNo1ewZrlTgFqaICLc/8GQxjkoY0AsKxlH3HTsBVWAAjnGaVQSppgskEj2hf0wiHVLpq9n5mnWtlaAWx0BOBNVP/XigcSjkNfb0ZYhjLZS8X//P6KQQNV7EoSYFGZB4UpNyC2Mq7sIZMUAJ8qgkmgulfLTLGAhPQjS2k+H6Yl+IsV7BKOpc156pWv6tXm42injI6RWfoAjnoGjXRLWqhNiJIoRf0it6MZ+Pd+DA+56slo7g5Rgswvn4BTdGdZw==</latexit>⇢1i
<latexit sha1_base64="0eyfDd8CHCOmhKUrRJ5iKU1yIeI=">AAACI3icbVDLSsNAFJ34rPUVdekmWARxUZJStLgquHHhooJ9QBPDZDpph04ezNyIJeQf/Al/wa3u3YkbF278EpM0oG09MHDuOfdy5x4n5EyCrn8qS8srq2vrpY3y5tb2zq66t9+RQSQIbZOAB6LnYEk582kbGHDaCwXFnsNp1xlfZn73ngrJAv8WJiG1PDz0mcsIhlSy1VPTwzCSbnyd2HHtLjaBPgBAzJLkwvgtgyRJbLWiV/Uc2iIxClJBBVq2+m0OAhJ51AfCsZR9Qw/BirEARjhNymYkaYjJGA9pP6U+9qi04vymRDtOlYHmBiJ9Pmi5+ncixp6UE89JO/ML5r1M/M/rR+A2rJj5YQTUJ9NFbsQ1CLQsIG3ABCXAJynBRLD0rxoZYYEJpDHObHEcLwvFmI9gkXRqVeOsWr+pV5qNIp4SOkRH6AQZ6Bw10RVqoTYi6BE9oxf0qjwpb8q78jFtXVKKmQM0A+XrBx+xpuk=</latexit>

L2i:1o
<latexit sha1_base64="0liKGm3qDTJtVNfKWvAeZ9ycTAk=">AAACI3icbVDLSsNAFJ3UV62vqEs3wSKIi5LUosVVwY0LFxXsA9oYJtNJO3TyYOZGLCH/4E/4C251707cuHDjl5ikAW3rgYFzz7mXO/fYAWcSdP1TKSwtr6yuFddLG5tb2zvq7l5b+qEgtEV87ouujSXlzKMtYMBpNxAUuzanHXt8mfqdeyok871bmATUdPHQYw4jGBLJUk/6LoaRdKLr2IpO76I+0AcAiFgcX1R/Sz+OY0st6xU9g7ZIjJyUUY6mpX73Bz4JXeoB4VjKnqEHYEZYACOcxqV+KGmAyRgPaS+hHnapNKPsplg7SpSB5vgieR5omfp3IsKulBPXTjqzC+a9VPzP64Xg1M2IeUEI1CPTRU7INfC1NCBtwAQlwCcJwUSw5K8aGWGBCSQxzmyxbTcNxZiPYJG0qxXjrFK7qZUb9TyeIjpAh+gYGegcNdAVaqIWIugRPaMX9Ko8KW/Ku/IxbS0o+cw+moHy9QMjBKbr</latexit>

L3i:2o

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="6ldcxJQ3INa9EUNPabr5LIIhKEM=">AAACFnicbVDLSsNAFJ34rPUVdSnCYBHqpiRStMuCG5cV7APaNEymk3bo5MHMjbSErPwJf8Gt7t2JW7du/RKTNgvbeuDC4Zx7ufceJxRcgWF8a2vrG5tb24Wd4u7e/sGhfnTcUkEkKWvSQASy4xDFBPdZEzgI1gklI54jWNsZ32Z++5FJxQP/AaYhszwy9LnLKYFUsvWznhwFdmz24x6wCQDEPEmSflye2OZlYuslo2LMgFeJmZMSytGw9Z/eIKCRx3yggijVNY0QrJhI4FSwpNiLFAsJHZMh66bUJx5TVjx7I8EXqTLAbiDT8gHP1L8TMfGUmnpO2ukRGKllLxP/87oRuDUr5n4YAfPpfJEbCQwBzjLBAy4ZBTFNCaGSp7diOiKSUEiTW9jiOF4WirkcwSppXVXM60r1vlqq1/J4CugUnaMyMtENqqM71EBNRNETekGv6E171t61D+1z3rqm5TMnaAHa1y8Fk6Bm</latexit>

⇢(x1)
1i

<latexit sha1_base64="axpsPm3T7l8z7Vc02b7txBgGk78="></latexit>

L(x2|x1)
2i:10

<latexit sha1_base64="pwbkfKoNqqehvNz8NqjieI77M7I="></latexit>

L(|x2x1)
3i:20

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="a3PUbmMjzognVfKfidDNgrrrkX4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQiWlwVunElFewD2hAm00k7dDIJM5NCCf0TNy4UceufuPNvnKZZaOuBgcM593LPnCDhTGnH+bZKG5tb2zvl3cre/sHhkX180lFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMGku/O6USsVi8aRnCfUiPBIsZARrI/m2PYiwHqswa8797OHOnft21ak5OdA6cQtShQIt3/4aDGOSRlRowrFSfddJtJdhqRnhdF4ZpIommEzwiPYNFTiiysvy5HN0YZQhCmNpntAoV39vZDhSahYFZjLPueotxP+8fqrDupcxkaSaCrI8FKYc6RgtakBDJinRfGYIJpKZrIiMscREm7IqpgR39cvrpHNVc29q14/X1Ua9qKMMZ3AOl+DCLTTgHlrQBgJTeIZXeLMy68V6tz6WoyWr2DmFP7A+fwBa15N0</latexit>

CN :1

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="WvpyrGGwdRrG2wP5c7fRqmFM8zM=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBVclZlS1GXBje4q2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3OZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM1Yiu58N6oNK1a25c6BV4hWkCgVag8qXP4xJKqg0hGOt+56bmCDDyjDC6azsp5ommEzwiPYtlVhQHWTzzDN0YZUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUtiV4y19eJZ16zbuqNR4a1eZ5UUcJTuEMLsGDa2jCHbSgDQQSeIZXeHNS58V5dz4Wo2tOsXMCf+B8/gABYpGU</latexit>

I2
<latexit sha1_base64="PsDYOCOZrXf13JtBTYbfW2CPTqw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBKvgqsxIUZcFN7qrYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uc397hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEdj8beINqza27c6BV4hWkBgVag+qXP4xJKqg0hGOt+56bmCDDyjDC6azip5ommEzwiPYtlVhQHWTzzDN0bpUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUsSV4y19eJZ3LundVbzw0as2zoo4ynMApXIAH19CEO2hBGwgk8Ayv8Oakzovz7nwsRktOsXMMf+B8/gD/z5GT</latexit>

I1

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E <latexit sha1_base64="+Gx3Ae2sbKt68NYmT2SNK0JqP80=">AAAB+3icbVDLSsNAFL2pr1pfsW4EN4NFqJuSSFGXBTduhAr2AW0sk+mkHTp5MDORlpBfceNCEbf+iDv/xmmahbYeGDiccy/3zHEjzqSyrG+jsLa+sblV3C7t7O7tH5iH5bYMY0Foi4Q8FF0XS8pZQFuKKU67kaDYdzntuJObud95okKyMHhQs4g6Ph4FzGMEKy0NzHLfx2osveQufUyq04F9ng7MilWzMqBVYuekAjmaA/OrPwxJ7NNAEY6l7NlWpJwEC8UIp2mpH0saYTLBI9rTNMA+lU6SZU/RmVaGyAuFfoFCmfp7I8G+lDPf1ZNZ0mVvLv7n9WLlXTsJC6JY0YAsDnkxRypE8yLQkAlKFJ9pgolgOisiYywwUbquki7BXv7yKmlf1OzLWv2+Xmkc53UU4QROoQo2XEEDbqEJLSAwhWd4hTcjNV6Md+NjMVow8p0j+APj8weoqpQR</latexit>

M(x1)

<latexit sha1_base64="N9jMqL9+MxWjYIaag930uJ+dqBM=">AAAB9XicbVBNSwMxEJ31s9avqhfBS7AI9VJ2pajHghePFewHtNuSTbNtaJJdkqxalv4PLx4U8ep/8ea/MW33oK0PBh7vzTAzL4g508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NBRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN1M/eYDVZpF8t6MY+oLPJAsZAQbK3U7mg0E7qalp553PukVim7ZnQEtEy8jRchQ6xW+Ov2IJIJKQzjWuu25sfFTrAwjnE7ynUTTGJMRHtC2pRILqv10dvUEnVmlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7x2YsJrP2UyTgyVZL4oTDgyEZpGgPpMUWL42BJMFLO3IjLEChNjg8rbELzFl5dJ46LsXZYrd5Vi9TiLIwcncAol8OAKqnALNagDAQXP8ApvzqPz4rw7H/PWFSebOYI/cD5/AOkGkgE=</latexit>

�(x1)
<latexit sha1_base64="CUGnMgmXGUCCvjbRtKGOHaAyCco=">AAAB/3icbVDLSsNAFJ3UV62vqCCCm8Ei1E1JSlGXBTduhAr2AW0Mk+mkHTqZhJmJtKRZ+CtuXCji1t9w5984TbvQ1gMDh3Pu5Z45XsSoVJb1beRWVtfWN/Kbha3tnd09c/+gKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veD31W49ESBryezWOiBOgPqc+xUhpyTWPugFSA+knt+lDUhq5lcnItc9T1yxaZSsDXCb2nBTBHHXX/Or2QhwHhCvMkJQd24qUkyChKGYkLXRjSSKEh6hPOppyFBDpJFn+FJ5ppQf9UOjHFczU3xsJCqQcB56ezNIuelPxP68TK//KSSiPYkU4nh3yYwZVCKdlwB4VBCs21gRhQXVWiAdIIKx0ZQVdgr345WXSrJTti3L1rlqsHc/ryIMTcApKwAaXoAZuQB00AAYT8AxewZvxZLwY78bHbDRnzHcOwR8Ynz+pkJW+</latexit>

M(x2|x1)

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="gI50RL7gTMuVwZhG7EOu7N+I9Es=">AAAB+3icbVDLSsNAFJ34rPUV60ZwM1iEuilJKeqy4MZlBfuANobJdNIOnZmEmYm0xPyKGxeKuPVH3Pk3TtsstPXAhcM593LvPUHMqNKO822trW9sbm0Xdoq7e/sHh/ZRqa2iRGLSwhGLZDdAijAqSEtTzUg3lgTxgJFOML6Z+Z1HIhWNxL2exsTjaChoSDHSRvLtUl/RIUcPaWXi154mvnuR+XbZqTpzwFXi5qQMcjR9+6s/iHDCidCYIaV6rhNrL0VSU8xIVuwnisQIj9GQ9AwViBPlpfPbM3hulAEMI2lKaDhXf0+kiCs15YHp5EiP1LI3E//zeokOr72UijjRRODFojBhUEdwFgQcUEmwZlNDEJbU3ArxCEmEtYmraEJwl19eJe1a1b2s1u/q5cZJHkcBnIIzUAEuuAINcAuaoAUwmIBn8ArerMx6sd6tj0XrmpXPHIM/sD5/AFqVk98=</latexit>

�(x2|x1)

<latexit sha1_base64="VuU6wWqZ8dqNrg7S76OqIK5cPLo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBixehgv3ANpTNdtMu3WzC7kQsof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJW9zhOuB/RgRKhYBSt9NBF/oSI2e2kV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42eziCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yd9oTlDObaEMi3srYQNqaYMbUglG4K3+PIyaZ5VvYvq+d15pebmcRThCI7hFDy4hBrcQB0awEDBM7zCm2OcF+fd+Zi3Fpx85hD+wPn8ARP7kSM=</latexit>

M

<latexit sha1_base64="Lg/4DZuVA/vPNI7ANEIHi6qNZco=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhHjxWsB/QhLLZbtulm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6SGS6F4EwVK3kk0p1EoeTsc12d++5FrI2L1gJOEBxEdKjEQjKKVfB/5EyJm9dv6tFeuuFV3DrJKvJxUIEejV/7y+zFLI66QSWpM13MTDDKqUTDJpyU/NTyhbEyHvGupohE3QTa/eUrOrNIng1jbUkjm6u+JjEbGTKLQdkYUR2bZm4n/ed0UBzdBJlSSIldssWiQSoIxmQVA+kJzhnJiCWVa2FsJG1FNGdqYSjYEb/nlVdK6qHpX1cv7y0rNzeMowgmcwjl4cA01uIMGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w8ju5G0</latexit>

CDC

<latexit sha1_base64="URw37ObeKUqPFXaki3zrclhRxNk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhFy9CBfsBbSib7aZdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreDcX3mtx+5NiJWDzhJuB/RoRKhYBSt1O0hf0LErH437ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/eUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms//JQGjOUE4soUwLeythI6opQ5tSyYbgLb+8SloXVe+qenl/Wam5eRxFOIFTOAcPrqEGt9CAJjCI4Rle4c1B58V5dz4WrQUnnzmGP3A+fwCih5Fw</latexit>

CM

<latexit sha1_base64="bFikSh3Hwuhfq0gXoQg4ghH1qao=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Qc0oWy223bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3gpH11O/9ci1EbF6wHHCg4gOlOgLRtFKvo/8CRGz+5v6pFuuuFV3BrJMvJxUIEe9W/7yezFLI66QSWpMx3MTDDKqUTDJJyU/NTyhbEQHvGOpohE3QTa7eUJOrNIj/VjbUkhm6u+JjEbGjKPQdkYUh2bRm4r/eZ0U+1dBJlSSIldsvqifSoIxmQZAekJzhnJsCWVa2FsJG1JNGdqYSjYEb/HlZdI8q3oX1fO780rNzeMowhEcwyl4cAk1uIU6NIBBAs/wCm9O6rw4787HvLXg5DOH8AfO5w9RcpHS</latexit>

SEP

<latexit sha1_base64="+MDiqwcp17+ibGLiuxCKq2dAjzU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPBixehBfsBbSib7aRdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONYcmj2WsOwEzIIWCJgqU0Ek0sCiQ0A7GtzO//QjaiFg94CQBP2JDJULBGVqp20N4QsSscT/tlytu1Z2DrhIvJxWSo94vf/UGMU8jUMglM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn85On9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphje+JlQSYqg+GJRmEqKMZ39TwdCA0c5sYRxLeytlI+YZhxtSiUbgrf88ippXVS9q+pl47JSc/M4iuSEnJJz4pFrUiN3pE6ahJOYPJNX8uag8+K8Ox+L1oKTzxyTP3A+fwC325F+</latexit>

QM
<latexit sha1_base64="e3qPAHzK1KY3Nuv8vBvfzrwNXmY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae2Q8mkd9rQTGZIMmIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz00IuoGekwe5r2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5omn5MwqAxLGyj5pyFz9vZHRSOtJFNjJecJlbyb+53VTE177GZdJalCyxUdhKoiJyex8MuAKmRETSyhT3GYlbEQVZcaWVLIleMsnr5LWRdW7rNbuapW6m9dRhBM4hXPw4ArqcAsNaAIDCc/wCm+Odl6cd+djMVpw8p1j+APn8wcU1JEk</latexit>x

<latexit sha1_base64="BbTXgmZPruzTZIlM+ZGrwBF3itY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzGdzkJbDwQO59xLzj1Rwpmxvv/tldbWNza3ytuVnd29/YPq4VHbqFQT2iKKK92NsKGcSdqyzHLaTTTFIuK0E01u537niWrDlHyw04SGAo8kixnB1kmPfYHt2MSZmg2qNb/u50CrJChIDQo0B9Wv/lCRVFBpCcfG9AI/sWGGtWWE01mlnxqaYDLBI9pzVGJBTZjliWfozClDFCvtnrQoV39vZFgYMxWRm8wTLntz8T+vl9r4JsyYTFJLJVl8FKccWYXm56Mh05RYPnUEE81cVkTGWGNiXUkVV0KwfPIqaV/Ug6v65f1lreEXdZThBE7hHAK4hgbcQRNaQEDCM7zCm2e8F+/d+1iMlrxi5xj+wPv8AQcnkRs=</latexit>o

Figure 1: Types of Memory. Quantum processes can have quantum memory (left; Def. 1), classical memory (middle; Def. 3), or no memory
(right; Def. 2). In the upper panels, we show the system-environment dilation. In the lower panels, we invoke the structure of the relevant
environment channels to deduce the process tensor form (yellow dashed outlines). The general case cannot be broken up; the classical memory
case leads to a sequence of conditional instruments [Eq. (5)], which is more general than convex mixtures of memoryless processes (Def. 4)
and a special case of separable processes (Def. 5); the memoryless case leads to a sequence of independent CPTP channels [Eq. (3)].

2.1 Types of Memory
We aim to delineate different types of memory, i.e., tem-

poral correlations. On the foundational side, similar hier-
archies have been developed in the spatial setting [27, 28];
hence, there is interest in extending such notions to the tem-
poral realm. From a practical perspective, different experi-
mental setups can generate distinct memory effects, and so it
is crucial to distinguish between them and figure out their re-
sourcefulness. To achieve such goals, meaningful definitions,
witnesses, and physical interpretations are necessary.

The memory effects that can be exhibited are contingent
upon what type of information the process can transmit in
time. This, in turn, depends upon what happens to the en-

vironment—the carrier of information about previous system
states—in between portions of global evolution. In general,
the environment evolves coherently, propagating quantum in-
formation forward in time. Mathematically, this is modelled
by evolving the environment trivially between times [IEj in
Eq. (1)]. By imposing different environment dynamics, one
can actively restrict the type of memory exhibited (see Fig. 1).

Memoryless Quantum Processes.—For instance, the envi-
ronment could be erased and prepared anew in between times,
thereby not transmitting any historic information. Such be-
haviour occurs whenever the environment completely rether-
malises between interrogations and is a key assumption lead-
ing to GKSL / Markovian master equations [34, 35]. Mathe-
matically, this physical situation corresponds to a trace-and-

replace map being applied to the environment between times.
Such maps are represented by uncorrelated Choi states, i.e.,
Toi = �o⌦ i, where �o is an arbitrary quantum state (which,
in the picture described above, could be the thermal state of
the environment). This leads to:

Definition 2. An N -time memoryless quantum process is rep-
resented by CM

N :1 � 0 that can be written as
CM

N :1 = ENiFN�1
j=1 U(ES)j+1ijo

? TEj ? ⇢(ES)1i
, (2)

with each TEj a trace-and-replace channel and the other ob-
jects as before. We denote the set of such processes by M.

By invoking the form of each trace-and-replace channel
TEj := �Ejo ⌦ Eji

, noting that Lj+1i:jo := Ej+1i
?

U(ES)j+1ijo
?�Ejo induces a channel on the system, and defin-

ing ⇢1i := ⇢(ES)1i
? E1i

(see Fig. 1), we have the equivalent
form of a memoryless quantum process as a sequence of inde-

pendent quantum channels [14, 36]:

CM
N :1 = LNi:N�1o ⌦ . . . ⌦ L2i:1o ⌦ ⇢1i . (3)

Here, each Lj+1i:jo represents a completely positive and trace

preserving (CPTP) channel evolving the system from tj to
tj+1; in the Choi representation, these properties are respec-
tively reflected by Lj+1i:jo � 0 and trj+1i

⇥
Lj+1i:jo

⇤
= edjo .

Memorylessness of the process is clear from this uncorrelated
structure, as all of the CPTP maps are mutually independent.

Classical Memory Quantum Processes.—In more general
scenarios, e.g., when the environment does not fully rether-
malise between times, some memory can be transported. De-
pending on the particularities of the environment and its in-
teractions with the system, said memory can be either clas-
sical or quantum. Here, we model classical memory ef-
fects by interpolating between the memoryless case (where
the environment rethermalises between times) and the quan-
tum memory case (where the environment coherently propa-
gates) by interspersing the global dynamics with channels that
transmit only classical information through the environment.
This scenario can be modelled by subjecting the environment
to an entanglement-breaking channel (EBC) between times.
In each run, any EBC can simply measure the system and
feed forward classical information pertaining to the outcome.
Mathematically, EBCs are described by measure-and-prepare
channels, i.e., Eoi =

P
x �(x)

o ⌦ M(x)
i where each �(x)

o is an
arbitrary state and {M(x)

i } forms a POVM [27]. This leads to:

Definition 3. An N -time classical memory quantum process

is represented by CCM
N :1 � 0 that can be written as

CCM
N :1 = ENiFN�1

j=1 U(ES)j+1ijo
? EEj ? ⇢(ES)1i

, (4)

with each EEj an EBC and the other objects as before. We
denote the set of such processes by CM.

By invoking the structure of EBCs, we yield the form [25]:

CCM
N :1 =

X
pxN:1L

(xN |xN�1:1)
Ni:N�1o ⌦ . . . ⌦ L(x2|x1)

2i:1o ⌦ ⇢(x1)
1i , (5)

where xk:j := {xj , . . . , xj}, p(xN :1) is a probability distri-
bution, {⇢(x1)

1i } forms a state ensemble, i.e., each ⇢(x1)
1i � 0

and ⇢1i :=
P

x1
⇢(x1)
1i has unit trace, and L

(xj+1|xj:1)
j+1i:jo :=

M
(xj+1)
Ej+1i

? U(ES)j+1ijo
? �

(xj:1)
Ejo

forms an instrument for each
conditioning argument, reflecting the fact that every outcome
observed can condition the choice of future EBCs.

Classical Direct Cause Quantum Processes.—The above
definition notwithstanding, other sets of processes could
meaningfully be considered to have classical memory. The
simplest such is that in which a coin toss determines which of
a different memoryless process ensues. This leads to:
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Definition 4. An N -time classical direct cause quantum pro-

cess is represented by CCDC
N :1 � 0 that can be written as

CCDC
N :1 =

X
pxL(x)

Ni:N�1o ⌦ . . . ⌦ L(x)
2i:1o ⌦ ⇢(x)

1i , (6)

where px is a probability distribution and each L(x)
j+1i:jo is a

CPTP channel. We denote the set of such processes by CDC.

The classical analogues of Defs. 3 and 4 are equivalent (due
to the fact that measurements are non-invasive), so it may be
surprising that they differ in the quantum realm.

Separable Quantum Processes.—Classical memory quan-
tum processes have been explored in Ref. [25]. Since charac-
terising the set CM is difficult, the authors relaxed the condi-
tion that each conditional dynamics must be trace preserving,
leading (not obviously) to a superset of CM [26]. Precisely,
they drop the demand that each L

(xj�1:1)
ji:j�1o :=

P
xj

L
(xj |xj�1:1)
ji:j�1o

is TP [see Eq. (5)], only retaining positivity of each element
and overall causality. This leads to:

Definition 5. An N -time separable quantum process is rep-
resented by CSEP

N :1 � 0 that can be written as

CSEP
N :1 =

X
pxL(x)

Ni:N�1o ⌦ . . . ⌦ L(x)
2i:1o ⌦ ⇢(x)

1i , (7)

where px is a probability distribution, each ⇢(x)
1i � 0 and

L(x)
j+1i:jo � 0. We denote the set of such processes by SEP.

Note the lack of constraints on the elements in this decompo-
sition compared to Defs. 3 and 4, where they must represent
conditional instruments or CPTP channels, respectively.

A priori, it is unclear if these sets of processes (Defs. 3–
5)—each representing a distinct physical situation—coincide
on the level of what is observable on the system; we now move
to demonstrate a clear distinction between them.

2.2 Strict Hierarchy for Multi-Time Processes
By imposing certain dynamics on the environment one can

“kill off” certain types of memory—be it erasing the history
(Def. 2) or destroying coherent information (Def. 3)—to yield
distinct memory classes (note, though, that the physical pic-
ture corresponding to SEP is unclear). However, from a prac-
tical perspective, one cannot access the environment; thus, we
develop methods to distinguish these sets by probing the sys-
tem alone, demonstrating the strict hierarchy (see Fig. 2):

M ( CDC ( CM ( SEP ( QM. (8)

It is straightforward to note that M ( CDC due to the non-
convexity of the set of memoryless processes. Similarly,
SEP ( QM holds since not all quantum processes are sepa-
rable in time [25, 37]. However, the relationship between the
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2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="HG9HCm0papx6iBQmjw/i4la35MQ=">AAACA3icbVDLSsNAFL3xWeur6tJNsAiuSlKKdllw47JCX9CEMplO2qEzkzAzEUro0l9wq3t34tYPceuXOEmzsK0HLhzOuZd7OEHMqNKO821tbe/s7u2XDsqHR8cnp5Wz856KEolJF0cskoMAKcKoIF1NNSODWBLEA0b6wew+8/tPRCoaiY6ex8TnaCJoSDHSRvI8jvRUhWlnVF+MKlWn5uSwN4lbkCoUaI8qP944wgknQmOGlBq6Tqz9FElNMSOLspcoEiM8QxMyNFQgTpSf5pkX9rVRxnYYSTNC27n69yJFXKk5D8xmnnHdy8T/vGGiw6afUhEnmgi8fBQmzNaRnRVgj6kkWLO5IQhLarLaeIokwtrUtPIlCHhWirtewSbp1Wvuba3x2Ki2mkU9JbiEK7gBF+6gBQ/Qhi5giOEFXuHNerberQ/rc7m6ZRU3F7AC6+sXrVOYqw==</latexit>

T2
<latexit sha1_base64="4u8wqDf0iG3d5ZKFOpRnYeU0omA=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiRStMuCG5cV+oImlMl00g6dScLMRCihS3/Bre7diVs/xK1f4iTNwrYeuHA4517u4fgxZ0rb9rdV2tre2d0r71cODo+OT6qnZz0VJZLQLol4JAc+VpSzkHY105wOYkmx8Dnt+7P7zO8/UalYFHb0PKaewJOQBYxgbSTXFVhPVZB2Rs5iVK3ZdTsH2iROQWpQoD2q/rjjiCSChppwrNTQsWPtpVhqRjhdVNxE0RiTGZ7QoaEhFlR5aZ55ga6MMkZBJM2EGuXq34sUC6XmwjebecZ1LxP/84aJDppeysI40TQky0dBwpGOUFYAGjNJieZzQzCRzGRFZIolJtrUtPLF90VWirNewSbp3dSd23rjsVFrNYt6ynABl3ANDtxBCx6gDV0gEMMLvMKb9Wy9Wx/W53K1ZBU357AC6+sXq76Yqg==</latexit>

T1

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="91VWtKtsVwaheqKFQkhrwZAlJQk=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiRS1GXBjcsK9gFNCJPppB06MwkzE6WE/oG/4Fb37sStP+HWL3GSZmFbD1w4nHMv93DChFGlHefbqmxsbm3vVHdre/sHh0d2/bin4lRi0sUxi+UgRIowKkhXU83IIJEE8ZCRfji9zf3+I5GKxuJBzxLiczQWNKIYaSMFdt3jSE9UlHmKjjkK3HlgN5ymUwCuE7ckDVCiE9g/3ijGKSdCY4aUGrpOov0MSU0xI/OalyqSIDxFYzI0VCBOlJ8V0efw3CgjGMXSjNCwUP9eZIgrNeOh2SyCrnq5+J83THV042dUJKkmAi8eRSmDOoZ5D3BEJcGazQxBWFKTFeIJkghr09bSlzDkeSnuagXrpHfZdK+arftWo90q66mCU3AGLoALrkEb3IEO6AIMnsALeAVv1rP1bn1Yn4vVilXenIAlWF+/So2bIg==</latexit>�1
<latexit sha1_base64="r2jANaKaSEeRduIwA4NS2wKQdsY=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiSlqMuCG5cV7AOaECbTSTt0ZhJmJkoJ/QN/wa3u3Ylbf8KtX+IkzUJbD1w4nHMv93DChFGlHefLqmxsbm3vVHdre/sHh0d2/biv4lRi0sMxi+UwRIowKkhPU83IMJEE8ZCRQTi7yf3BA5GKxuJezxPiczQRNKIYaSMFdt3jSE9VlHmKTjgKWovAbjhNpwBcJ25JGqBEN7C/vXGMU06ExgwpNXKdRPsZkppiRhY1L1UkQXiGJmRkqECcKD8roi/guVHGMIqlGaFhof6+yBBXas5Ds1kEXfVy8T9vlOro2s+oSFJNBF4+ilIGdQzzHuCYSoI1mxuCsKQmK8RTJBHWpq0/X8KQ56W4qxWsk36r6V4223ftRqdd1lMFp+AMXAAXXIEOuAVd0AMYPIJn8AJerSfrzXq3PparFau8OQF/YH3+AEwimyM=</latexit>�2

<latexit sha1_base64="hoz//OmUk/CswEeQLqzUXrm6rpU=">AAACDnicbVDLSsNAFJ3UV62vqLhyEyyCq5JI0S4LblxWsA9oY5hMJ+3QyYOZG7EM+Qd/wa3u3Ylbf8GtX+KkzcK2HrhwOOdezuX4CWcSbPvbKK2tb2xulbcrO7t7+wfm4VFHxqkgtE1iHouejyXlLKJtYMBpLxEUhz6nXX9yk/vdRyoki6N7mCbUDfEoYgEjGLTkmScDMY495TyoAdAnAFAsyzLPrNo1ewZrlTgFqaICLc/8GQxjkoY0AsKxlH3HTsBVWAAjnGaVQSppgskEj2hf0wiHVLpq9n5mnWtlaAWx0BOBNVP/XigcSjkNfb0ZYhjLZS8X//P6KQQNV7EoSYFGZB4UpNyC2Mq7sIZMUAJ8qgkmgulfLTLGAhPQjS2k+H6Yl+IsV7BKOpc156pWv6tXm42injI6RWfoAjnoGjXRLWqhNiJIoRf0it6MZ+Pd+DA+56slo7g5Rgswvn4BTdGdZw==</latexit>⇢1i
<latexit sha1_base64="0eyfDd8CHCOmhKUrRJ5iKU1yIeI=">AAACI3icbVDLSsNAFJ34rPUVdekmWARxUZJStLgquHHhooJ9QBPDZDpph04ezNyIJeQf/Al/wa3u3YkbF278EpM0oG09MHDuOfdy5x4n5EyCrn8qS8srq2vrpY3y5tb2zq66t9+RQSQIbZOAB6LnYEk582kbGHDaCwXFnsNp1xlfZn73ngrJAv8WJiG1PDz0mcsIhlSy1VPTwzCSbnyd2HHtLjaBPgBAzJLkwvgtgyRJbLWiV/Uc2iIxClJBBVq2+m0OAhJ51AfCsZR9Qw/BirEARjhNymYkaYjJGA9pP6U+9qi04vymRDtOlYHmBiJ9Pmi5+ncixp6UE89JO/ML5r1M/M/rR+A2rJj5YQTUJ9NFbsQ1CLQsIG3ABCXAJynBRLD0rxoZYYEJpDHObHEcLwvFmI9gkXRqVeOsWr+pV5qNIp4SOkRH6AQZ6Bw10RVqoTYi6BE9oxf0qjwpb8q78jFtXVKKmQM0A+XrBx+xpuk=</latexit>

L2i:1o
<latexit sha1_base64="0liKGm3qDTJtVNfKWvAeZ9ycTAk=">AAACI3icbVDLSsNAFJ3UV62vqEs3wSKIi5LUosVVwY0LFxXsA9oYJtNJO3TyYOZGLCH/4E/4C251707cuHDjl5ikAW3rgYFzz7mXO/fYAWcSdP1TKSwtr6yuFddLG5tb2zvq7l5b+qEgtEV87ouujSXlzKMtYMBpNxAUuzanHXt8mfqdeyok871bmATUdPHQYw4jGBLJUk/6LoaRdKLr2IpO76I+0AcAiFgcX1R/Sz+OY0st6xU9g7ZIjJyUUY6mpX73Bz4JXeoB4VjKnqEHYEZYACOcxqV+KGmAyRgPaS+hHnapNKPsplg7SpSB5vgieR5omfp3IsKulBPXTjqzC+a9VPzP64Xg1M2IeUEI1CPTRU7INfC1NCBtwAQlwCcJwUSw5K8aGWGBCSQxzmyxbTcNxZiPYJG0qxXjrFK7qZUb9TyeIjpAh+gYGegcNdAVaqIWIugRPaMX9Ko8KW/Ku/IxbS0o+cw+moHy9QMjBKbr</latexit>

L3i:2o

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="6ldcxJQ3INa9EUNPabr5LIIhKEM=">AAACFnicbVDLSsNAFJ34rPUVdSnCYBHqpiRStMuCG5cV7APaNEymk3bo5MHMjbSErPwJf8Gt7t2JW7du/RKTNgvbeuDC4Zx7ufceJxRcgWF8a2vrG5tb24Wd4u7e/sGhfnTcUkEkKWvSQASy4xDFBPdZEzgI1gklI54jWNsZ32Z++5FJxQP/AaYhszwy9LnLKYFUsvWznhwFdmz24x6wCQDEPEmSflye2OZlYuslo2LMgFeJmZMSytGw9Z/eIKCRx3yggijVNY0QrJhI4FSwpNiLFAsJHZMh66bUJx5TVjx7I8EXqTLAbiDT8gHP1L8TMfGUmnpO2ukRGKllLxP/87oRuDUr5n4YAfPpfJEbCQwBzjLBAy4ZBTFNCaGSp7diOiKSUEiTW9jiOF4WirkcwSppXVXM60r1vlqq1/J4CugUnaMyMtENqqM71EBNRNETekGv6E171t61D+1z3rqm5TMnaAHa1y8Fk6Bm</latexit>

⇢(x1)
1i

<latexit sha1_base64="axpsPm3T7l8z7Vc02b7txBgGk78="></latexit>

L(x2|x1)
2i:10

<latexit sha1_base64="pwbkfKoNqqehvNz8NqjieI77M7I="></latexit>

L(|x2x1)
3i:20

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="a3PUbmMjzognVfKfidDNgrrrkX4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQiWlwVunElFewD2hAm00k7dDIJM5NCCf0TNy4UceufuPNvnKZZaOuBgcM593LPnCDhTGnH+bZKG5tb2zvl3cre/sHhkX180lFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMGku/O6USsVi8aRnCfUiPBIsZARrI/m2PYiwHqswa8797OHOnft21ak5OdA6cQtShQIt3/4aDGOSRlRowrFSfddJtJdhqRnhdF4ZpIommEzwiPYNFTiiysvy5HN0YZQhCmNpntAoV39vZDhSahYFZjLPueotxP+8fqrDupcxkaSaCrI8FKYc6RgtakBDJinRfGYIJpKZrIiMscREm7IqpgR39cvrpHNVc29q14/X1Ua9qKMMZ3AOl+DCLTTgHlrQBgJTeIZXeLMy68V6tz6WoyWr2DmFP7A+fwBa15N0</latexit>

CN :1

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="WvpyrGGwdRrG2wP5c7fRqmFM8zM=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBVclZlS1GXBje4q2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3OZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM1Yiu58N6oNK1a25c6BV4hWkCgVag8qXP4xJKqg0hGOt+56bmCDDyjDC6azsp5ommEzwiPYtlVhQHWTzzDN0YZUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUtiV4y19eJZ16zbuqNR4a1eZ5UUcJTuEMLsGDa2jCHbSgDQQSeIZXeHNS58V5dz4Wo2tOsXMCf+B8/gABYpGU</latexit>

I2
<latexit sha1_base64="PsDYOCOZrXf13JtBTYbfW2CPTqw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBKvgqsxIUZcFN7qrYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uc397hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEdj8beINqza27c6BV4hWkBgVag+qXP4xJKqg0hGOt+56bmCDDyjDC6azip5ommEzwiPYtlVhQHWTzzDN0bpUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUsSV4y19eJZ3LundVbzw0as2zoo4ynMApXIAH19CEO2hBGwgk8Ayv8Oakzovz7nwsRktOsXMMf+B8/gD/z5GT</latexit>

I1

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E <latexit sha1_base64="+Gx3Ae2sbKt68NYmT2SNK0JqP80=">AAAB+3icbVDLSsNAFL2pr1pfsW4EN4NFqJuSSFGXBTduhAr2AW0sk+mkHTp5MDORlpBfceNCEbf+iDv/xmmahbYeGDiccy/3zHEjzqSyrG+jsLa+sblV3C7t7O7tH5iH5bYMY0Foi4Q8FF0XS8pZQFuKKU67kaDYdzntuJObud95okKyMHhQs4g6Ph4FzGMEKy0NzHLfx2osveQufUyq04F9ng7MilWzMqBVYuekAjmaA/OrPwxJ7NNAEY6l7NlWpJwEC8UIp2mpH0saYTLBI9rTNMA+lU6SZU/RmVaGyAuFfoFCmfp7I8G+lDPf1ZNZ0mVvLv7n9WLlXTsJC6JY0YAsDnkxRypE8yLQkAlKFJ9pgolgOisiYywwUbquki7BXv7yKmlf1OzLWv2+Xmkc53UU4QROoQo2XEEDbqEJLSAwhWd4hTcjNV6Md+NjMVow8p0j+APj8weoqpQR</latexit>

M(x1)

<latexit sha1_base64="N9jMqL9+MxWjYIaag930uJ+dqBM=">AAAB9XicbVBNSwMxEJ31s9avqhfBS7AI9VJ2pajHghePFewHtNuSTbNtaJJdkqxalv4PLx4U8ep/8ea/MW33oK0PBh7vzTAzL4g508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NBRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN1M/eYDVZpF8t6MY+oLPJAsZAQbK3U7mg0E7qalp553PukVim7ZnQEtEy8jRchQ6xW+Ov2IJIJKQzjWuu25sfFTrAwjnE7ynUTTGJMRHtC2pRILqv10dvUEnVmlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7x2YsJrP2UyTgyVZL4oTDgyEZpGgPpMUWL42BJMFLO3IjLEChNjg8rbELzFl5dJ46LsXZYrd5Vi9TiLIwcncAol8OAKqnALNagDAQXP8ApvzqPz4rw7H/PWFSebOYI/cD5/AOkGkgE=</latexit>

�(x1)
<latexit sha1_base64="CUGnMgmXGUCCvjbRtKGOHaAyCco=">AAAB/3icbVDLSsNAFJ3UV62vqCCCm8Ei1E1JSlGXBTduhAr2AW0Mk+mkHTqZhJmJtKRZ+CtuXCji1t9w5984TbvQ1gMDh3Pu5Z45XsSoVJb1beRWVtfWN/Kbha3tnd09c/+gKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veD31W49ESBryezWOiBOgPqc+xUhpyTWPugFSA+knt+lDUhq5lcnItc9T1yxaZSsDXCb2nBTBHHXX/Or2QhwHhCvMkJQd24qUkyChKGYkLXRjSSKEh6hPOppyFBDpJFn+FJ5ppQf9UOjHFczU3xsJCqQcB56ezNIuelPxP68TK//KSSiPYkU4nh3yYwZVCKdlwB4VBCs21gRhQXVWiAdIIKx0ZQVdgr345WXSrJTti3L1rlqsHc/ryIMTcApKwAaXoAZuQB00AAYT8AxewZvxZLwY78bHbDRnzHcOwR8Ynz+pkJW+</latexit>

M(x2|x1)

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="gI50RL7gTMuVwZhG7EOu7N+I9Es=">AAAB+3icbVDLSsNAFJ34rPUV60ZwM1iEuilJKeqy4MZlBfuANobJdNIOnZmEmYm0xPyKGxeKuPVH3Pk3TtsstPXAhcM593LvPUHMqNKO822trW9sbm0Xdoq7e/sHh/ZRqa2iRGLSwhGLZDdAijAqSEtTzUg3lgTxgJFOML6Z+Z1HIhWNxL2exsTjaChoSDHSRvLtUl/RIUcPaWXi154mvnuR+XbZqTpzwFXi5qQMcjR9+6s/iHDCidCYIaV6rhNrL0VSU8xIVuwnisQIj9GQ9AwViBPlpfPbM3hulAEMI2lKaDhXf0+kiCs15YHp5EiP1LI3E//zeokOr72UijjRRODFojBhUEdwFgQcUEmwZlNDEJbU3ArxCEmEtYmraEJwl19eJe1a1b2s1u/q5cZJHkcBnIIzUAEuuAINcAuaoAUwmIBn8ArerMx6sd6tj0XrmpXPHIM/sD5/AFqVk98=</latexit>

�(x2|x1)

<latexit sha1_base64="VuU6wWqZ8dqNrg7S76OqIK5cPLo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBixehgv3ANpTNdtMu3WzC7kQsof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJW9zhOuB/RgRKhYBSt9NBF/oSI2e2kV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42eziCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yd9oTlDObaEMi3srYQNqaYMbUglG4K3+PIyaZ5VvYvq+d15pebmcRThCI7hFDy4hBrcQB0awEDBM7zCm2OcF+fd+Zi3Fpx85hD+wPn8ARP7kSM=</latexit>

M

<latexit sha1_base64="Lg/4DZuVA/vPNI7ANEIHi6qNZco=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhHjxWsB/QhLLZbtulm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6SGS6F4EwVK3kk0p1EoeTsc12d++5FrI2L1gJOEBxEdKjEQjKKVfB/5EyJm9dv6tFeuuFV3DrJKvJxUIEejV/7y+zFLI66QSWpM13MTDDKqUTDJpyU/NTyhbEyHvGupohE3QTa/eUrOrNIng1jbUkjm6u+JjEbGTKLQdkYUR2bZm4n/ed0UBzdBJlSSIldssWiQSoIxmQVA+kJzhnJiCWVa2FsJG1FNGdqYSjYEb/nlVdK6qHpX1cv7y0rNzeMowgmcwjl4cA01uIMGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w8ju5G0</latexit>

CDC

<latexit sha1_base64="URw37ObeKUqPFXaki3zrclhRxNk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhFy9CBfsBbSib7aZdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreDcX3mtx+5NiJWDzhJuB/RoRKhYBSt1O0hf0LErH437ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/eUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms//JQGjOUE4soUwLeythI6opQ5tSyYbgLb+8SloXVe+qenl/Wam5eRxFOIFTOAcPrqEGt9CAJjCI4Rle4c1B58V5dz4WrQUnnzmGP3A+fwCih5Fw</latexit>

CM

<latexit sha1_base64="bFikSh3Hwuhfq0gXoQg4ghH1qao=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Qc0oWy223bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3gpH11O/9ci1EbF6wHHCg4gOlOgLRtFKvo/8CRGz+5v6pFuuuFV3BrJMvJxUIEe9W/7yezFLI66QSWpMx3MTDDKqUTDJJyU/NTyhbEQHvGOpohE3QTa7eUJOrNIj/VjbUkhm6u+JjEbGjKPQdkYUh2bRm4r/eZ0U+1dBJlSSIldsvqifSoIxmQZAekJzhnJsCWVa2FsJG1JNGdqYSjYEb/HlZdI8q3oX1fO780rNzeMowhEcwyl4cAk1uIU6NIBBAs/wCm9O6rw4787HvLXg5DOH8AfO5w9RcpHS</latexit>

SEP

<latexit sha1_base64="+MDiqwcp17+ibGLiuxCKq2dAjzU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPBixehBfsBbSib7aRdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONYcmj2WsOwEzIIWCJgqU0Ek0sCiQ0A7GtzO//QjaiFg94CQBP2JDJULBGVqp20N4QsSscT/tlytu1Z2DrhIvJxWSo94vf/UGMU8jUMglM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn85On9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphje+JlQSYqg+GJRmEqKMZ39TwdCA0c5sYRxLeytlI+YZhxtSiUbgrf88ippXVS9q+pl47JSc/M4iuSEnJJz4pFrUiN3pE6ahJOYPJNX8uag8+K8Ox+L1oKTzxyTP3A+fwC325F+</latexit>

QM
<latexit sha1_base64="e3qPAHzK1KY3Nuv8vBvfzrwNXmY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae2Q8mkd9rQTGZIMmIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz00IuoGekwe5r2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5omn5MwqAxLGyj5pyFz9vZHRSOtJFNjJecJlbyb+53VTE177GZdJalCyxUdhKoiJyex8MuAKmRETSyhT3GYlbEQVZcaWVLIleMsnr5LWRdW7rNbuapW6m9dRhBM4hXPw4ArqcAsNaAIDCc/wCm+Odl6cd+djMVpw8p1j+APn8wcU1JEk</latexit>x

<latexit sha1_base64="BbTXgmZPruzTZIlM+ZGrwBF3itY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzGdzkJbDwQO59xLzj1Rwpmxvv/tldbWNza3ytuVnd29/YPq4VHbqFQT2iKKK92NsKGcSdqyzHLaTTTFIuK0E01u537niWrDlHyw04SGAo8kixnB1kmPfYHt2MSZmg2qNb/u50CrJChIDQo0B9Wv/lCRVFBpCcfG9AI/sWGGtWWE01mlnxqaYDLBI9pzVGJBTZjliWfozClDFCvtnrQoV39vZFgYMxWRm8wTLntz8T+vl9r4JsyYTFJLJVl8FKccWYXm56Mh05RYPnUEE81cVkTGWGNiXUkVV0KwfPIqaV/Ug6v65f1lreEXdZThBE7hHAK4hgbcQRNaQEDCM7zCm2e8F+/d+1iMlrxi5xj+wPv8AQcnkRs=</latexit>o

Figure 2: Memory Hierarchy. We present a process in CM but outside
CDC (o). For two-time processes, CM and CDC coincide, making our
demonstration one of a genuinely multi-time phenomenon. Further-
more, a process that is in SEP but outside CM (x) was demonstrated in
Ref. [26]. We develop witnesses to systematically detect such pro-
cesses (which bypass previous entanglement-based criteria [25]).

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="+Oe81+72V6fuqJ2nu9iLh4/hrEw=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBAEIeyGoDkGvHiMYB6QrGF2MpsMmZ1dZ3qFEPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFx08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rSeujYjVPY4T7kd0oEQoGEUrtbv1oXi47JV7haJbcucgq8TLSBEy1HuFr24/ZmnEFTJJjel4boL+hGoUTPJpvpsanlA2ogPesVTRiBt/Mr93Ss6t0idhrG0pJHP198SERsaMo8B2RhSHZtmbif95nRTDqj8RKkmRK7ZYFKaSYExmz5O+0JyhHFtCmRb2VsKGVFOGNqK8DcFbfnmVNMsl76pUuasUa9UsjhycwhlcgAfXUINbqEMDGEh4hld4cx6dF+fd+Vi0rjnZzAn8gfP5Aymxj2A=</latexit>

�+
2

<latexit sha1_base64="RfF04LPdty8qdhxJHMeqRBJRL5c=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMgCGFXguYY8OIxgnlAsobZSW8yZHZ2nZkVQshPePGgiFd/x5t/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmZ+6wmV5rG8N+ME/YgOJA85o8ZK7W59yB8uel6vWHLL7hxklXgZKUGGeq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+b1TcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5qw6k+4TFKDki0WhakgJiaz50mfK2RGjC2hTHF7K2FDqigzNqKCDcFbfnmVNC/L3lW5clcp1apZHHk4gVM4Bw+uoQa3UIcGMBDwDK/w5jw6L86787FozTnZzDH8gfP5Aygtj18=</latexit>

�+
1

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢ <latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="CU/Cn8kR19zGrlNejWBsMyfOCu4=">AAACA3icbVDLSsNAFL2pr1pfVZdugkVwVRIp2mVBBJcV7AOaUCbTSTt0ZhJmJkIJXfoLbnXvTtz6IW79EidpFrb1wIXDOfdyDyeIGVXacb6t0sbm1vZOebeyt39weFQ9PumqKJGYdHDEItkPkCKMCtLRVDPSjyVBPGCkF0xvM7/3RKSikXjUs5j4HI0FDSlG2kiex5GeqDC9G7rzYbXm1J0c9jpxC1KDAu1h9ccbRTjhRGjMkFID14m1nyKpKWZkXvESRWKEp2hMBoYKxIny0zzz3L4wysgOI2lGaDtX/16kiCs144HZzDOuepn4nzdIdNj0UyriRBOBF4/ChNk6srMC7BGVBGs2MwRhSU1WG0+QRFibmpa+BAHPSnFXK1gn3au6e11vPDRqrWZRTxnO4BwuwYUbaME9tKEDGGJ4gVd4s56td+vD+lyslqzi5hSWYH39ApPlmJs=</latexit>

E1
<latexit sha1_base64="7ynhO6aEOsYDnq9+MSA4BVICDN8=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiSlaJcFEVxWsA9oQplMJ+3QySTMTIQSuvQX3Orenbj1Q9z6JU7SLLT1wIXDOfdyD8ePOVPatr+s0sbm1vZOebeyt39weFQ9PumpKJGEdknEIznwsaKcCdrVTHM6iCXFoc9p35/dZH7/kUrFIvGg5zH1QjwRLGAEayO5boj1VAXp7aixGFVrdt3OgdaJU5AaFOiMqt/uOCJJSIUmHCs1dOxYeymWmhFOFxU3UTTGZIYndGiowCFVXppnXqALo4xREEkzQqNc/X2R4lCpeeibzTzjqpeJ/3nDRActL2UiTjQVZPkoSDjSEcoKQGMmKdF8bggmkpmsiEyxxESbmv588f0wK8VZrWCd9Bp156revG/W2q2injKcwTlcggPX0IY76EAXCMTwDC/waj1Zb9a79bFcLVnFzSn8gfX5A5V6mJw=</latexit>

E2
<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="HG9HCm0papx6iBQmjw/i4la35MQ=">AAACA3icbVDLSsNAFL3xWeur6tJNsAiuSlKKdllw47JCX9CEMplO2qEzkzAzEUro0l9wq3t34tYPceuXOEmzsK0HLhzOuZd7OEHMqNKO821tbe/s7u2XDsqHR8cnp5Wz856KEolJF0cskoMAKcKoIF1NNSODWBLEA0b6wew+8/tPRCoaiY6ex8TnaCJoSDHSRvI8jvRUhWlnVF+MKlWn5uSwN4lbkCoUaI8qP944wgknQmOGlBq6Tqz9FElNMSOLspcoEiM8QxMyNFQgTpSf5pkX9rVRxnYYSTNC27n69yJFXKk5D8xmnnHdy8T/vGGiw6afUhEnmgi8fBQmzNaRnRVgj6kkWLO5IQhLarLaeIokwtrUtPIlCHhWirtewSbp1Wvuba3x2Ki2mkU9JbiEK7gBF+6gBQ/Qhi5giOEFXuHNerberQ/rc7m6ZRU3F7AC6+sXrVOYqw==</latexit>

T2
<latexit sha1_base64="4u8wqDf0iG3d5ZKFOpRnYeU0omA=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiRStMuCG5cV+oImlMl00g6dScLMRCihS3/Bre7diVs/xK1f4iTNwrYeuHA4517u4fgxZ0rb9rdV2tre2d0r71cODo+OT6qnZz0VJZLQLol4JAc+VpSzkHY105wOYkmx8Dnt+7P7zO8/UalYFHb0PKaewJOQBYxgbSTXFVhPVZB2Rs5iVK3ZdTsH2iROQWpQoD2q/rjjiCSChppwrNTQsWPtpVhqRjhdVNxE0RiTGZ7QoaEhFlR5aZ55ga6MMkZBJM2EGuXq34sUC6XmwjebecZ1LxP/84aJDppeysI40TQky0dBwpGOUFYAGjNJieZzQzCRzGRFZIolJtrUtPLF90VWirNewSbp3dSd23rjsVFrNYt6ynABl3ANDtxBCx6gDV0gEMMLvMKb9Wy9Wx/W53K1ZBU357AC6+sXq76Yqg==</latexit>

T1

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="91VWtKtsVwaheqKFQkhrwZAlJQk=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiRS1GXBjcsK9gFNCJPppB06MwkzE6WE/oG/4Fb37sStP+HWL3GSZmFbD1w4nHMv93DChFGlHefbqmxsbm3vVHdre/sHh0d2/bin4lRi0sUxi+UgRIowKkhXU83IIJEE8ZCRfji9zf3+I5GKxuJBzxLiczQWNKIYaSMFdt3jSE9UlHmKjjkK3HlgN5ymUwCuE7ckDVCiE9g/3ijGKSdCY4aUGrpOov0MSU0xI/OalyqSIDxFYzI0VCBOlJ8V0efw3CgjGMXSjNCwUP9eZIgrNeOh2SyCrnq5+J83THV042dUJKkmAi8eRSmDOoZ5D3BEJcGazQxBWFKTFeIJkghr09bSlzDkeSnuagXrpHfZdK+arftWo90q66mCU3AGLoALrkEb3IEO6AIMnsALeAVv1rP1bn1Yn4vVilXenIAlWF+/So2bIg==</latexit>�1
<latexit sha1_base64="r2jANaKaSEeRduIwA4NS2wKQdsY=">AAACCnicbVDLSsNAFJ3UV62vVJduBovgqiSlqMuCG5cV7AOaECbTSTt0ZhJmJkoJ/QN/wa3u3Ylbf8KtX+IkzUJbD1w4nHMv93DChFGlHefLqmxsbm3vVHdre/sHh0d2/biv4lRi0sMxi+UwRIowKkhPU83IMJEE8ZCRQTi7yf3BA5GKxuJezxPiczQRNKIYaSMFdt3jSE9VlHmKTjgKWovAbjhNpwBcJ25JGqBEN7C/vXGMU06ExgwpNXKdRPsZkppiRhY1L1UkQXiGJmRkqECcKD8roi/guVHGMIqlGaFhof6+yBBXas5Ds1kEXfVy8T9vlOro2s+oSFJNBF4+ilIGdQzzHuCYSoI1mxuCsKQmK8RTJBHWpq0/X8KQ56W4qxWsk36r6V4223ftRqdd1lMFp+AMXAAXXIEOuAVd0AMYPIJn8AJerSfrzXq3PparFau8OQF/YH3+AEwimyM=</latexit>�2

<latexit sha1_base64="hoz//OmUk/CswEeQLqzUXrm6rpU=">AAACDnicbVDLSsNAFJ3UV62vqLhyEyyCq5JI0S4LblxWsA9oY5hMJ+3QyYOZG7EM+Qd/wa3u3Ylbf8GtX+KkzcK2HrhwOOdezuX4CWcSbPvbKK2tb2xulbcrO7t7+wfm4VFHxqkgtE1iHouejyXlLKJtYMBpLxEUhz6nXX9yk/vdRyoki6N7mCbUDfEoYgEjGLTkmScDMY495TyoAdAnAFAsyzLPrNo1ewZrlTgFqaICLc/8GQxjkoY0AsKxlH3HTsBVWAAjnGaVQSppgskEj2hf0wiHVLpq9n5mnWtlaAWx0BOBNVP/XigcSjkNfb0ZYhjLZS8X//P6KQQNV7EoSYFGZB4UpNyC2Mq7sIZMUAJ8qgkmgulfLTLGAhPQjS2k+H6Yl+IsV7BKOpc156pWv6tXm42injI6RWfoAjnoGjXRLWqhNiJIoRf0it6MZ+Pd+DA+56slo7g5Rgswvn4BTdGdZw==</latexit>⇢1i
<latexit sha1_base64="0eyfDd8CHCOmhKUrRJ5iKU1yIeI=">AAACI3icbVDLSsNAFJ34rPUVdekmWARxUZJStLgquHHhooJ9QBPDZDpph04ezNyIJeQf/Al/wa3u3YkbF278EpM0oG09MHDuOfdy5x4n5EyCrn8qS8srq2vrpY3y5tb2zq66t9+RQSQIbZOAB6LnYEk582kbGHDaCwXFnsNp1xlfZn73ngrJAv8WJiG1PDz0mcsIhlSy1VPTwzCSbnyd2HHtLjaBPgBAzJLkwvgtgyRJbLWiV/Uc2iIxClJBBVq2+m0OAhJ51AfCsZR9Qw/BirEARjhNymYkaYjJGA9pP6U+9qi04vymRDtOlYHmBiJ9Pmi5+ncixp6UE89JO/ML5r1M/M/rR+A2rJj5YQTUJ9NFbsQ1CLQsIG3ABCXAJynBRLD0rxoZYYEJpDHObHEcLwvFmI9gkXRqVeOsWr+pV5qNIp4SOkRH6AQZ6Bw10RVqoTYi6BE9oxf0qjwpb8q78jFtXVKKmQM0A+XrBx+xpuk=</latexit>

L2i:1o
<latexit sha1_base64="0liKGm3qDTJtVNfKWvAeZ9ycTAk=">AAACI3icbVDLSsNAFJ3UV62vqEs3wSKIi5LUosVVwY0LFxXsA9oYJtNJO3TyYOZGLCH/4E/4C251707cuHDjl5ikAW3rgYFzz7mXO/fYAWcSdP1TKSwtr6yuFddLG5tb2zvq7l5b+qEgtEV87ouujSXlzKMtYMBpNxAUuzanHXt8mfqdeyok871bmATUdPHQYw4jGBLJUk/6LoaRdKLr2IpO76I+0AcAiFgcX1R/Sz+OY0st6xU9g7ZIjJyUUY6mpX73Bz4JXeoB4VjKnqEHYEZYACOcxqV+KGmAyRgPaS+hHnapNKPsplg7SpSB5vgieR5omfp3IsKulBPXTjqzC+a9VPzP64Xg1M2IeUEI1CPTRU7INfC1NCBtwAQlwCcJwUSw5K8aGWGBCSQxzmyxbTcNxZiPYJG0qxXjrFK7qZUb9TyeIjpAh+gYGegcNdAVaqIWIugRPaMX9Ko8KW/Ku/IxbS0o+cw+moHy9QMjBKbr</latexit>

L3i:2o

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="6ldcxJQ3INa9EUNPabr5LIIhKEM=">AAACFnicbVDLSsNAFJ34rPUVdSnCYBHqpiRStMuCG5cV7APaNEymk3bo5MHMjbSErPwJf8Gt7t2JW7du/RKTNgvbeuDC4Zx7ufceJxRcgWF8a2vrG5tb24Wd4u7e/sGhfnTcUkEkKWvSQASy4xDFBPdZEzgI1gklI54jWNsZ32Z++5FJxQP/AaYhszwy9LnLKYFUsvWznhwFdmz24x6wCQDEPEmSflye2OZlYuslo2LMgFeJmZMSytGw9Z/eIKCRx3yggijVNY0QrJhI4FSwpNiLFAsJHZMh66bUJx5TVjx7I8EXqTLAbiDT8gHP1L8TMfGUmnpO2ukRGKllLxP/87oRuDUr5n4YAfPpfJEbCQwBzjLBAy4ZBTFNCaGSp7diOiKSUEiTW9jiOF4WirkcwSppXVXM60r1vlqq1/J4CugUnaMyMtENqqM71EBNRNETekGv6E171t61D+1z3rqm5TMnaAHa1y8Fk6Bm</latexit>

⇢(x1)
1i

<latexit sha1_base64="axpsPm3T7l8z7Vc02b7txBgGk78="></latexit>

L(x2|x1)
2i:10

<latexit sha1_base64="pwbkfKoNqqehvNz8NqjieI77M7I="></latexit>

L(|x2x1)
3i:20

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="j0b9wdJ4USBu+FbotIDLO9ud+xI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hV0N6jHgxWME84BkE2YnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OmjhLFocEjGam2xzRIEUIDBUpoxwpY4EloeeObqd96AKVFFN7jJAY3YMNQ+IIzNFLvopd2EZ4QMRVZ1i+V7Yo9A10mTk7KJEe9X/rqDiKeBBAil0zrjmPH6KZMoeASsmI30RAzPmZD6BgasgC0m86uzuipUQbUj5SpEOlM/T2RskDrSeCZzoDhSC96U/E/r5Ogf+2mIowThJDPF/mJpBjRaQR0IBRwlBNDGFfC3Er5iCnG0QRVNCE4iy8vk+Z5xbmsVO+q5Zqdx1Egx+SEnBGHXJEauSV10iCcKPJMXsmb9Wi9WO/Wx7x1xcpnjsgfWJ8/Nu6S8A==</latexit>

3i
<latexit sha1_base64="lE09vn0Ks0bvjCwV/y/O2wuzmCs=">AAAB9XicbVBNSwMxEM36WetX1aOXYBE8ld1S1GPBi8cK9gPabcmm2TY0myzJrFqW/R9ePCji1f/izX9j2u5BWx8MPN6bYWZeEAtuwHW/nbX1jc2t7cJOcXdv/+CwdHTcMirRlDWpEkp3AmKY4JI1gYNgnVgzEgWCtYPJzcxvPzBtuJL3MI2ZH5GR5CGnBKzUr/bTHrAnAEhVlg1KZbfizoFXiZeTMsrRGJS+ekNFk4hJoIIY0/XcGPyUaOBUsKzYSwyLCZ2QEetaKknEjJ/Or87wuVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigijYEb/nlVdKqVrzLSu2uVq67eRwFdIrO0AXy0BWqo1vUQE1EkUbP6BW9OY/Oi/PufCxa15x85gT9gfP5Az6BkvU=</latexit>

2o
<latexit sha1_base64="w5C/xJEpzPxTx7QNlto4dX6J/gE=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBE8laQU9Vjw4rGC/YA2LZvtpl262YTdiVpC/ocXD4p49b9489+4bXPQ1gcDj/dmmJnnx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTm5nffmBK80je4zRmXkhGkgecEjRSv9pPe8ieEDHlWTYolZ2KM4e9StyclCFHY1D66g0jmoRMIhVE667rxOilRCGngmXFXqJZTOiEjFjXUElCpr10fnVmnxtlaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapoQnCXX14lrWrFvazU7mrlupPHUYBTOIMLcOEK6nALDWgCBQXP8Apv1qP1Yr1bH4vWNSufOYE/sD5/ADVdku8=</latexit>

2i
<latexit sha1_base64="JY+vs/FTj+/vVNspTsFLlXlg5i8=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPBi8cK9gPatGy2m3bpZhN2J2oJ+R9ePCji1f/izX/jts1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ShRlDVpJCLV8YlmgkvWRI6CdWLFSOgL1vYnNzO//cCU5pG8x2nMvJCMJA84JWikvttPe8ieEDHlWTYoV5yqM4e9StycVCBHY1D+6g0jmoRMIhVE667rxOilRCGngmWlXqJZTOiEjFjXUElCpr10fnVmnxllaAeRMiXRnqu/J1ISaj0NfdMZEhzrZW8m/ud1EwyuvZTLOEEm6WJRkAgbI3sWgT3kilEUU0MIVdzcatMxUYSiCapkQnCXX14lrYuqe1mt3dUqdSePowgncArn4MIV1OEWGtAECgqe4RXerEfrxXq3PhatBSufOYY/sD5/ADPMku4=</latexit>

1i
<latexit sha1_base64="LntYxxuD2T1ntDzDiRl+E5mZ118=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKUY8FLx4r2A9otyWbZtvQbLIks2pZ9n948aCIV/+LN/+NabsHbX0w8Hhvhpl5QSy4Adf9dgpr6xubW8Xt0s7u3v5B+fCoZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEaweTm5nffmDacCXvYRozPyIjyUNOCVip7/XTHrAnAEhVlg3KFbfqzoFXiZeTCsrRGJS/ekNFk4hJoIIY0/XcGPyUaOBUsKzUSwyLCZ2QEetaKknEjJ/Or87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+smEF77KZdxAkzSxaIwERgUnkWAh1wzCmJqCaGa21sxHRNNKNigSjYEb/nlVdK6qHqX1dpdrVJ38ziK6ASdonPkoStUR7eogZqIIo2e0St6cx6dF+fd+Vi0Fpx85hj9gfP5AzzwkvQ=</latexit>

1o

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="nyuu35H0pK9Gphts4DT79g68b24=">AAAB+XicbVBNS8NAFHzxs9avqEcvwSJ4KkktWjwVvHisYNpCG8Jmu2mXbjZhd1MoIf/EiwdFvPpPvPlv3KY5aOvAwjDzHm92goRRqWz729jY3Nre2a3sVfcPDo+OzZPTroxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71ger/wezMiJI35k5onxIvQmNOQYqS05JvmMEJqIsPMzf3s+q6R+2bNrtsFrHXilKQGJTq++TUcxTiNCFeYISkHjp0oL0NCUcxIXh2mkiQIT9GYDDTlKCLSy4rkuXWplZEVxkI/rqxC/b2RoUjKeRToySLnqrcQ//MGqQpbXkZ5kirC8fJQmDJLxdaiBmtEBcGKzTVBWFCd1cITJBBWuqyqLsFZ/fI66Tbqzk29+distVtlHRU4hwu4AgduoQ0P0AEXMMzgGV7hzciMF+Pd+FiObhjlzhn8gfH5A07lk2w=</latexit>

U3:2

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="a3PUbmMjzognVfKfidDNgrrrkX4=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQiWlwVunElFewD2hAm00k7dDIJM5NCCf0TNy4UceufuPNvnKZZaOuBgcM593LPnCDhTGnH+bZKG5tb2zvl3cre/sHhkX180lFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMGku/O6USsVi8aRnCfUiPBIsZARrI/m2PYiwHqswa8797OHOnft21ak5OdA6cQtShQIt3/4aDGOSRlRowrFSfddJtJdhqRnhdF4ZpIommEzwiPYNFTiiysvy5HN0YZQhCmNpntAoV39vZDhSahYFZjLPueotxP+8fqrDupcxkaSaCrI8FKYc6RgtakBDJinRfGYIJpKZrIiMscREm7IqpgR39cvrpHNVc29q14/X1Ua9qKMMZ3AOl+DCLTTgHlrQBgJTeIZXeLMy68V6tz6WoyWr2DmFP7A+fwBa15N0</latexit>

CN :1

<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1
<latexit sha1_base64="kL5vVf2TYJ4LVBiDsyPc1uaZGbM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiSlaHFVcOOygmkLbQiT6aQdOnkwMymUkD9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOpLKsb6Oytb2zu1fdrx0cHh2fmKdnPRmnglCHxDwWAx9LyllEHcUUp4NEUBz6nPb92f3S78+pkCyOntQioW6IJxELGMFKS55pjkKspjLInNzLmnd27pl1q2EVQJvELkkdSnQ982s0jkka0kgRjqUc2lai3AwLxQineW2USppgMsMTOtQ0wiGVblYkz9GVVsYoiIV+kUKF+nsjw6GUi9DXk0XOdW8p/ucNUxW03YxFSapoRFaHgpQjFaNlDWjMBCWKLzTBRDCdFZEpFpgoXVZNl2Cvf3mT9JoN+6bRemzVO+2yjipcwCVcgw230IEH6IIDBObwDK/wZmTGi/FufKxGK0a5cw5/YHz+AEvZk2o=</latexit>

U2:1

<latexit sha1_base64="WvpyrGGwdRrG2wP5c7fRqmFM8zM=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBVclZlS1GXBje4q2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3OZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM1Yiu58N6oNK1a25c6BV4hWkCgVag8qXP4xJKqg0hGOt+56bmCDDyjDC6azsp5ommEzwiPYtlVhQHWTzzDN0YZUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUtiV4y19eJZ16zbuqNR4a1eZ5UUcJTuEMLsGDa2jCHbSgDQQSeIZXeHNS58V5dz4Wo2tOsXMCf+B8/gABYpGU</latexit>

I2
<latexit sha1_base64="PsDYOCOZrXf13JtBTYbfW2CPTqw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBKvgqsxIUZcFN7qrYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uc397hNVmsXy0UwTGgg8kixiBBsr+b7AZqxEdj8beINqza27c6BV4hWkBgVag+qXP4xJKqg0hGOt+56bmCDDyjDC6azip5ommEzwiPYtlVhQHWTzzDN0bpUhimJlnzRorv7eyLDQeipCO5ln1MteLv7n9VMT3QQZk0lqqCSLQ1HKkYlRXgAaMkWJ4VNLMFHMZkVkjBUmxtZUsSV4y19eJZ3LundVbzw0as2zoo4ynMApXIAH19CEO2hBGwgk8Ayv8Oakzovz7nwsRktOsXMMf+B8/gD/z5GT</latexit>

I1

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E

<latexit sha1_base64="FLoRpzqSAJ07ryeP5QdTQEOjQso=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIpp4IruGqEcSLx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFulT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpdl76pcqVdK1bMsjjycwClcgAfXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AKgNjMI=</latexit>

S

<latexit sha1_base64="sD3A+fJmSlK0Ev+kgc6wqhnERwo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBqPgKexKUI8BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObdKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU1440+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/L3lW5Uq+UqmdZHHk4gVO4AA+uoQr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZLVjLQ=</latexit>

E <latexit sha1_base64="+Gx3Ae2sbKt68NYmT2SNK0JqP80=">AAAB+3icbVDLSsNAFL2pr1pfsW4EN4NFqJuSSFGXBTduhAr2AW0sk+mkHTp5MDORlpBfceNCEbf+iDv/xmmahbYeGDiccy/3zHEjzqSyrG+jsLa+sblV3C7t7O7tH5iH5bYMY0Foi4Q8FF0XS8pZQFuKKU67kaDYdzntuJObud95okKyMHhQs4g6Ph4FzGMEKy0NzHLfx2osveQufUyq04F9ng7MilWzMqBVYuekAjmaA/OrPwxJ7NNAEY6l7NlWpJwEC8UIp2mpH0saYTLBI9rTNMA+lU6SZU/RmVaGyAuFfoFCmfp7I8G+lDPf1ZNZ0mVvLv7n9WLlXTsJC6JY0YAsDnkxRypE8yLQkAlKFJ9pgolgOisiYywwUbquki7BXv7yKmlf1OzLWv2+Xmkc53UU4QROoQo2XEEDbqEJLSAwhWd4hTcjNV6Md+NjMVow8p0j+APj8weoqpQR</latexit>

M(x1)

<latexit sha1_base64="N9jMqL9+MxWjYIaag930uJ+dqBM=">AAAB9XicbVBNSwMxEJ31s9avqhfBS7AI9VJ2pajHghePFewHtNuSTbNtaJJdkqxalv4PLx4U8ep/8ea/MW33oK0PBh7vzTAzL4g508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NBRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN1M/eYDVZpF8t6MY+oLPJAsZAQbK3U7mg0E7qalp553PukVim7ZnQEtEy8jRchQ6xW+Ov2IJIJKQzjWuu25sfFTrAwjnE7ynUTTGJMRHtC2pRILqv10dvUEnVmlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7x2YsJrP2UyTgyVZL4oTDgyEZpGgPpMUWL42BJMFLO3IjLEChNjg8rbELzFl5dJ46LsXZYrd5Vi9TiLIwcncAol8OAKqnALNagDAQXP8ApvzqPz4rw7H/PWFSebOYI/cD5/AOkGkgE=</latexit>

�(x1)
<latexit sha1_base64="CUGnMgmXGUCCvjbRtKGOHaAyCco=">AAAB/3icbVDLSsNAFJ3UV62vqCCCm8Ei1E1JSlGXBTduhAr2AW0Mk+mkHTqZhJmJtKRZ+CtuXCji1t9w5984TbvQ1gMDh3Pu5Z45XsSoVJb1beRWVtfWN/Kbha3tnd09c/+gKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veD31W49ESBryezWOiBOgPqc+xUhpyTWPugFSA+knt+lDUhq5lcnItc9T1yxaZSsDXCb2nBTBHHXX/Or2QhwHhCvMkJQd24qUkyChKGYkLXRjSSKEh6hPOppyFBDpJFn+FJ5ppQf9UOjHFczU3xsJCqQcB56ezNIuelPxP68TK//KSSiPYkU4nh3yYwZVCKdlwB4VBCs21gRhQXVWiAdIIKx0ZQVdgr345WXSrJTti3L1rlqsHc/ryIMTcApKwAaXoAZuQB00AAYT8AxewZvxZLwY78bHbDRnzHcOwR8Ynz+pkJW+</latexit>

M(x2|x1)

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="gI50RL7gTMuVwZhG7EOu7N+I9Es=">AAAB+3icbVDLSsNAFJ34rPUV60ZwM1iEuilJKeqy4MZlBfuANobJdNIOnZmEmYm0xPyKGxeKuPVH3Pk3TtsstPXAhcM593LvPUHMqNKO822trW9sbm0Xdoq7e/sHh/ZRqa2iRGLSwhGLZDdAijAqSEtTzUg3lgTxgJFOML6Z+Z1HIhWNxL2exsTjaChoSDHSRvLtUl/RIUcPaWXi154mvnuR+XbZqTpzwFXi5qQMcjR9+6s/iHDCidCYIaV6rhNrL0VSU8xIVuwnisQIj9GQ9AwViBPlpfPbM3hulAEMI2lKaDhXf0+kiCs15YHp5EiP1LI3E//zeokOr72UijjRRODFojBhUEdwFgQcUEmwZlNDEJbU3ArxCEmEtYmraEJwl19eJe1a1b2s1u/q5cZJHkcBnIIzUAEuuAINcAuaoAUwmIBn8ArerMx6sd6tj0XrmpXPHIM/sD5/AFqVk98=</latexit>

�(x2|x1)

<latexit sha1_base64="VuU6wWqZ8dqNrg7S76OqIK5cPLo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBixehgv3ANpTNdtMu3WzC7kQsof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hrqtx65NiJW9zhOuB/RgRKhYBSt9NBF/oSI2e2kV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42eziCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yd9oTlDObaEMi3srYQNqaYMbUglG4K3+PIyaZ5VvYvq+d15pebmcRThCI7hFDy4hBrcQB0awEDBM7zCm2OcF+fd+Zi3Fpx85hD+wPn8ARP7kSM=</latexit>

M

<latexit sha1_base64="Lg/4DZuVA/vPNI7ANEIHi6qNZco=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhHjxWsB/QhLLZbtulm03YnYgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6SGS6F4EwVK3kk0p1EoeTsc12d++5FrI2L1gJOEBxEdKjEQjKKVfB/5EyJm9dv6tFeuuFV3DrJKvJxUIEejV/7y+zFLI66QSWpM13MTDDKqUTDJpyU/NTyhbEyHvGupohE3QTa/eUrOrNIng1jbUkjm6u+JjEbGTKLQdkYUR2bZm4n/ed0UBzdBJlSSIldssWiQSoIxmQVA+kJzhnJiCWVa2FsJG1FNGdqYSjYEb/nlVdK6qHpX1cv7y0rNzeMowgmcwjl4cA01uIMGNIFBAs/wCm9O6rw4787HorXg5DPH8AfO5w8ju5G0</latexit>

CDC

<latexit sha1_base64="URw37ObeKUqPFXaki3zrclhRxNk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOhFy9CBfsBbSib7aZdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreDcX3mtx+5NiJWDzhJuB/RoRKhYBSt1O0hf0LErH437ZcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/eUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms//JQGjOUE4soUwLeythI6opQ5tSyYbgLb+8SloXVe+qenl/Wam5eRxFOIFTOAcPrqEGt9CAJjCI4Rle4c1B58V5dz4WrQUnnzmGP3A+fwCih5Fw</latexit>

CM

<latexit sha1_base64="bFikSh3Hwuhfq0gXoQg4ghH1qao=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBBI8V7Qc0oWy223bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqnhUijeQIGStxPNaRRK3gpH11O/9ci1EbF6wHHCg4gOlOgLRtFKvo/8CRGz+5v6pFuuuFV3BrJMvJxUIEe9W/7yezFLI66QSWpMx3MTDDKqUTDJJyU/NTyhbEQHvGOpohE3QTa7eUJOrNIj/VjbUkhm6u+JjEbGjKPQdkYUh2bRm4r/eZ0U+1dBJlSSIldsvqifSoIxmQZAekJzhnJsCWVa2FsJG1JNGdqYSjYEb/HlZdI8q3oX1fO780rNzeMowhEcwyl4cAk1uIU6NIBBAs/wCm9O6rw4787HvLXg5DOH8AfO5w9RcpHS</latexit>

SEP

<latexit sha1_base64="+MDiqwcp17+ibGLiuxCKq2dAjzU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPBixehBfsBbSib7aRdutmE3YlYQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONYcmj2WsOwEzIIWCJgqU0Ek0sCiQ0A7GtzO//QjaiFg94CQBP2JDJULBGVqp20N4QsSscT/tlytu1Z2DrhIvJxWSo94vf/UGMU8jUMglM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn85On9MwqAxrG2pZCOld/T2QsMmYSBbYzYjgyy95M/M/rphje+JlQSYqg+GJRmEqKMZ39TwdCA0c5sYRxLeytlI+YZhxtSiUbgrf88ippXVS9q+pl47JSc/M4iuSEnJJz4pFrUiN3pE6ahJOYPJNX8uag8+K8Ox+L1oKTzxyTP3A+fwC325F+</latexit>

QM
<latexit sha1_base64="e3qPAHzK1KY3Nuv8vBvfzrwNXmY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae2Q8mkd9rQTGZIMmIZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz00IuoGekwe5r2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5omn5MwqAxLGyj5pyFz9vZHRSOtJFNjJecJlbyb+53VTE177GZdJalCyxUdhKoiJyex8MuAKmRETSyhT3GYlbEQVZcaWVLIleMsnr5LWRdW7rNbuapW6m9dRhBM4hXPw4ArqcAsNaAIDCc/wCm+Odl6cd+djMVpw8p1j+APn8wcU1JEk</latexit>x

<latexit sha1_base64="BbTXgmZPruzTZIlM+ZGrwBF3itY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzGdzkJbDwQO59xLzj1Rwpmxvv/tldbWNza3ytuVnd29/YPq4VHbqFQT2iKKK92NsKGcSdqyzHLaTTTFIuK0E01u537niWrDlHyw04SGAo8kixnB1kmPfYHt2MSZmg2qNb/u50CrJChIDQo0B9Wv/lCRVFBpCcfG9AI/sWGGtWWE01mlnxqaYDLBI9pzVGJBTZjliWfozClDFCvtnrQoV39vZFgYMxWRm8wTLntz8T+vl9r4JsyYTFJLJVl8FKccWYXm56Mh05RYPnUEE81cVkTGWGNiXUkVV0KwfPIqaV/Ug6v65f1lreEXdZThBE7hHAK4hgbcQRNaQEDCM7zCm2e8F+/d+1iMlrxi5xj+wPv8AQcnkRs=</latexit>o

<latexit sha1_base64="CU/Cn8kR19zGrlNejWBsMyfOCu4=">AAACA3icbVDLSsNAFL2pr1pfVZdugkVwVRIp2mVBBJcV7AOaUCbTSTt0ZhJmJkIJXfoLbnXvTtz6IW79EidpFrb1wIXDOfdyDyeIGVXacb6t0sbm1vZOebeyt39weFQ9PumqKJGYdHDEItkPkCKMCtLRVDPSjyVBPGCkF0xvM7/3RKSikXjUs5j4HI0FDSlG2kiex5GeqDC9G7rzYbXm1J0c9jpxC1KDAu1h9ccbRTjhRGjMkFID14m1nyKpKWZkXvESRWKEp2hMBoYKxIny0zzz3L4wysgOI2lGaDtX/16kiCs144HZzDOuepn4nzdIdNj0UyriRBOBF4/ChNk6srMC7BGVBGs2MwRhSU1WG0+QRFibmpa+BAHPSnFXK1gn3au6e11vPDRqrWZRTxnO4BwuwYUbaME9tKEDGGJ4gVd4s56td+vD+lyslqzi5hSWYH39ApPlmJs=</latexit>

E1

<latexit sha1_base64="MUibP1fifjbEwdMCyF1vpbphrmM=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKaI4BLx4jmAckS5idzCZD5rHMzAphyS948aCIV3/Im3/jbLIHTSxoKKq66e6KEs6M9f1vr7SxubW9U96t7O0fHB5Vj086RqWa0DZRXOlehA3lTNK2ZZbTXqIpFhGn3Wh6l/vdJ6oNU/LRzhIaCjyWLGYE21wa6IkaVmt+3V8ArZOgIDUo0BpWvwYjRVJBpSUcG9MP/MSGGdaWEU7nlUFqaILJFI9p31GJBTVhtrh1ji6cMkKx0q6kRQv190SGhTEzEblOge3ErHq5+J/XT23cCDMmk9RSSZaL4pQjq1D+OBoxTYnlM0cw0czdisgEa0ysi6fiQghWX14nnat6cFO/friuNRtFHGU4g3O4hABuoQn30II2EJjAM7zCmye8F+/d+1i2lrxi5hT+wPv8AR+YjkY=</latexit>⇢

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="aFCuvd3851Gvb0jYUwbxUff2qdI=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSp4KokU9Vjw4rGC/ZA2lM120i7dbMLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9PLldReVAYK9UdivuDGSZeDkpQ456r/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx28IScWaVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE177GZdJalCy+aIwFcTEZPo96XOFzIixJZQpbm8lbEgVZcZmVLQheIsvL5PmRcW7rFTvquXaaR5HAY7hBM7BgyuowS3UoQEMIniGV3hzlPPivDsf89YVJ585gj9wPn8ArxGQQA==</latexit>

|0�

<latexit sha1_base64="SDbN0Kk/ruvs8oEjOuAf51PDm6o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkqMeCF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5aCYJ8yMcSh5yisZKD9j3+uWKW3XnIKvEy0kFcjT65a/eIKZpxKShArXuem5i/AyV4VSwaamXapYgHeOQdS2VGDHtZ/NTp+TcKgMSxsqWNGSu/p7IMNJ6EgW2M0Iz0sveTPzP66YmvPEzLpPUMEkXi8JUEBOT2d9kwBWjRkwsQaq4vZXQESqkxqZTsiF4yy+vktZl1buq1u5rlfpZHkcRTuAULsCDa6jDHTSgCRSG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDif410</latexit>a1
<latexit sha1_base64="dLrbCRiaBC0YSSETv7yG67ae6e8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4Kkkp6rHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6oP1qv1R2K+4cZJV4OSlDjka/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7qlFxYZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT3vgZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1Vave1cv08j6MAp3AGl+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwDkA411</latexit>a2

<latexit sha1_base64="nbtU9fXqx9Sfhvipf6Nkzj2Zju0=">AAAB+HicbVDLSgNBEJz1GeMjqx69DEbBU9iVoOIp4sVjRPOAJITZSW8yZPbBTK8Yl3yJFw+KePVTvPk3TpI9aGJBQ1HVTXeXF0uh0XG+raXlldW19dxGfnNre6dg7+7VdZQoDjUeyUg1PaZBihBqKFBCM1bAAk9CwxteT/zGAygtovAeRzF0AtYPhS84QyN17cIlbSM8ImJ617iqjrt20Sk5U9BF4makSDJUu/ZXuxfxJIAQuWRat1wnxk7KFAouYZxvJxpixoesDy1DQxaA7qTTw8f02Cg96kfKVIh0qv6eSFmg9SjwTGfAcKDnvYn4n9dK0L/opCKME4SQzxb5iaQY0UkKtCcUcJQjQxhXwtxK+YApxtFklTchuPMvL5L6ack9K5Vvy8XKURZHjhyQQ3JCXHJOKuSGVEmNcJKQZ/JK3qwn68V6tz5mrUtWNrNP/sD6/AFEcZLC</latexit>

: SWAP

<latexit sha1_base64="fddgbDJ+u/pGLp/dLZZxVVlCPnA=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBQ8hV0J6jHgxZNGyAuyS5id9CZDZh/M9IphyW948aCIV3/Gm3/jJNmDJhY0FFXddHf5iRQabfvbWlldW9/YLGwVt3d29/ZLB4ctHaeKQ5PHMlYdn2mQIoImCpTQSRSw0JfQ9kc3U7/9CEqLOGrgOAEvZINIBIIzNJLrIjwhYnZ335j0SmW7Ys9Al4mTkzLJUe+Vvtx+zNMQIuSSad117AS9jCkUXMKk6KYaEsZHbABdQyMWgvay2c0TemaUPg1iZSpCOlN/T2Qs1Hoc+qYzZDjUi95U/M/rphhce5mIkhQh4vNFQSopxnQaAO0LBRzl2BDGlTC3Uj5kinE0MRVNCM7iy8ukdVFxLivVh2q5dprHUSDH5IScE4dckRq5JXXSJJwk5Jm8kjcrtV6sd+tj3rpi5TNH5A+szx9bg5HP</latexit>

NOT
<latexit sha1_base64="BKMKjOI6RLvF5gtNwF35vaeE95s=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBU8lV0t6rHgxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3U7Oqh6l32SmWv4s2Al4mfkzLkqPdKX92+omnMpKWCGNPxvcQGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ85pY8jpV1Ji2fq74mMxMaM49B1xsQOzaI3Ff/zOqmNboKMyyS1TNL5oigV2Co8fR33uWbUirEjhGrubsV0SDSh1gVUdCH4iy8vk+ZFxb+qVO+r5dppHkcBjuEEzsGHa6jBHdShARQe4Rle4Q0p9ILe0ce8dQXlM0fwB+jzB0Rqjtg=</latexit>⇢3

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

<latexit sha1_base64="KBk/ZMfgVbU+F2qfdt0z4eD+YTs=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIaJcFNy4r2AdMh5JJM21oMhmSjFCG7vwFt7p3J279Ebd+iZl2Frb1QOBwzr3ckxMmnGnjut9OaWNza3unvFvZ2z84PKoen3S0TBWhbSK5VL0Qa8pZTNuGGU57iaJYhJx2w8ld7nefqNJMxo9mmtBA4FHMIkawsZLfF9iMw1Bk3mxQrbl1dw60TryC1KBAa1D96Q8lSQWNDeFYa99zExNkWBlGOJ1V+qmmCSYTPKK+pTEWVAfZPPIMXVhliCKp7IsNmqt/NzIstJ6K0E7mEfWql4v/eX5qokaQsThJDY3J4lCUcmQkyv+PhkxRYvjUEkwUs1kRGWOFibEtLV2xteSleKsVrJPOVd27qV8/XNeajaKeMpzBOVyCB7fQhHtoQRsISHiBV3hznp1358P5XIyWnGLnFJbgfP0C8l6YRQ==</latexit>

Figure 3: A CM process with no CDC realisation. The process (green)
above can signal from t1 to t3, which can be tested by tracing out
the system at times t1 and t2, fixing a state a2, and feeding in an
arbitrary state a1 (red). For instance, ⇢3(a1 = |0i) = a2 whilst
⇢3(a1 = |1i) = NOT(a2). Such signalling is incompatible with a
CDC realisation, although the process is in CM by construction.

middle three sets—each of which positing a meaningful no-
tion of “classical memory quantum processes”—is more in-
tricate. Interestingly, for processes defined on only two times,
CDC and CM coincide [26]. However, in extending to more than
two times, we construct a process that is in CM but outside CDC
(see Fig. 3). The intuitive reason for this strict inclusion lies in
the fact that any CDC process cannot signal between times (ex-
cept between neighbours), since the choice of ‘what process’
is made at the very beginning; on the other hand, processes in
CM can signal arbitrarily far into the future by feeding forward
classical information. The witnesses we develop are based
upon violations of such signalling conditions. Lastly, note that
such a distinction does not exist in the classical realm, where
the analogues of CDC and CM coincide. This result thereby
constitutes a genuinely multi-time quantum effect.

Finally, CM ( SEP was conjectured in Ref. [25] and proven
in Ref. [26] (see Fig. 2). This distinction is akin to the ex-
istence of maps that preserve separable states but cannot be
implemented by LOCC [27]; although the former are easier
to characterise, the latter are more operationally meaningful.
Similarly here regarding multi-time processes: SEP is straight-
forward to characterise and exclusion from it can be deter-
mined via entanglement witnesses [25]. However, given a pro-
cess in SEP, there does not generally exist a realisation using
only classical memory. Here, we provide systematic criteria
to witness such processes—a distinction that cannot be made
by previous criteria based on entanglement detection. The in-
tuition behind our criteria comes from the fact that, although
a dynamics may lead to a separable process tensor once the
environment is traced out, some such dynamics nonetheless
require temporal entanglement, i.e., quantum memory; this
requirement can be witnessed on the level of the system alone.

3 Concluding Discussion & Outlook
Our results are of central importance in two ways. From

a foundational standpoint, they distinguish quantum and clas-
sical memory, outlining the ultimate limitations of quantum
information processing and providing a holistic characterisa-
tion of the hierarchy of possible memory structures in quan-
tum theory. On the practical side, since noise in quantum
devices—and thus the observed memory effects—will pre-
dominately be classical in the near future, our results provide
a methodological framework upon which efficient and reliable
quantum devices can be built. Accordingly, the concepts ex-
plored and results presented here should have immediate im-
pact on various fields of quantum science, including quantum
information theory, optimal control, open quantum systems,
and quantum foundations, to name but a few.
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Abstract. The original Grover’s algorithm has a success probability to output a correct solution, while

deterministic Grover’s algorithms improve the success probability to 100%. However, the success probabil-

ity of deterministic Grover’s algorithm decreases in noisy environment. Here we improve the deterministic

two-parameter (D2p) Grover’s algorithm to reach the upper bound for success probability under phase

noise. We prove that it is not possible to design any deterministic Grover’s algorithm whose success

probability is higher than our improved D2p protocol’s under phase noise.

Keywords: deterministic Grover’s algorithm, upper success probability bound, phase noise

Grover’s quantum search algorithm [1] provides a

quadratic speedup against classical search algorithms and

it outputs a correct result with success probability better

than 50%. Grover’s algorithm can be described as the it-

erations of two modules: the black box oracle which is

untunable [2] and the reflection operator with a tunable

phase �. The original Grover’s algorithm simply chooses

� = ⇡. Very recently, a novel result named as deter-

ministic two-parameter (D2p) Grover’s algorithm [3] is

presented. This D2p protocol can deterministically give

a correct solution by choosing two well-designed phases

�1, �2 for reflection operator. There is an important

problem that noise is inevitable for practical quantum

circuit. It is meaningful to find such a robust algorithm

with success probability as high as possible. In partic-

ular, phase noise �� is caused by implement’s imperfec-

tion and, to our knowledge, designing a quantum error

correction code for phase noise is still an open problem.

The e↵ect of phase noise [4] to the original Grover’s al-

gorithm has been investigated. However, the optimal re-

sult of Grover’s algorithm is unknown. Here we improve

the D2p algorithm to reach the upper bound for success

probability under phase noise: Firstly, we present a new

method to study noise e↵ect in Grover’s algorithm that

studying geometrical properties of noise on Bloch sphere.

Then we show our improved protocol for D2p Grover’s

algorithm. Finally, we prove that the success probability

of our improved D2p protocol is the highest among all

possible deterministic Grover’s algorithms, which cannot

be surpassed in principle. It is an important progress

for Grover’s algorithm working in practical environment,

especially in the cases such as high cost of system initial-

ization and quantum measurement.
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Here we illustrate the comparisons between original

Grover’s algorithm, D2p algorithm and our improved

D2p algorithm under phase noise. In Fig. 1 (a), we

show our improved D2p algorithm by a brief 3D image.

Define � = M/N where M and N are the amount of

target states and total states respectively. In Fig. 1

(b) and (c), we apply the Gaussian distributed phase

noise �� = N (µ,�2
) to the original Grover’s algorithm,

D2p protocol and our improved D2p algorithm, while the

mean value µ is di↵erent for Fig. 1 (b) and (c). Fig. 2

shows that how variation parameter �2
a↵ects the suc-

cess probability with fixed � when we apply the Gaussian

distributed phase noise �� = N (µ = 0.05,�2
). In Fig. 3,

we apply Poisson and uniform distributed noise instead

of Gaussian distribution. Simulation results support that

our algorithm has the best performance in phase noise

environment.
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Figure 1: (a) Illustration for our improved D2p Grover’s

algorithm. First, we follow the original Grover’s algo-

rithm to rotate initial state | 0i for k � 2 = dk0e � 2

steps. Then we design two particular steps to lead the

final state | f i to exactly coincide with target state, i.e.,

the success probability is 100% in noiseless environment.

(b) Define � = M/N where M and N are the amount

of target states and total states respectively. We apply

the same Gaussian distributed phase noise �� = N (µ =

0,�2
= 0.04) to original Grover’s algorithm, D2p protocol

and our improved D2p algorithm. Ten thousand samples

are averaged for the data. (c) All works are same to (b)

but with the distribution N (µ = 0.05,�2
= 0.04).

Figure 2: (a) Define � = M/N where M and N are

the amount of target states and total states respectively.

We apply the same Gaussian distributed phase noise

�� = N (µ = 0.05,�2
) to original Grover’s algorithm,

D2p protocol and our improved D2p algorithm with fixed

value � = 0.040. We collect their success probability un-

der di↵erent variation parameter �2
. Ten thousand sam-

ples are averaged for the data. (b) All are the same to

(a) but � = 0.027.

Figure 3: (a) Define � = M/N where M and N are

the amount of target states and total states respec-

tively. We apply the same Poisson distributed phase

noise �� = P(0.04) to original Grover’s algorithm, D2p

protocol and our improved D2p algorithm. We collect

their success probability with di↵erent �. Ten thousand

samples are averaged for the data. (b) The distribution

of noise is changed to uniform �� = U(�0.1, 0.2). All

other conditions are the same to (a).
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Abstract. Gaussian boson sampling (GBS) plays a central role in verifying quantum computing advan-
tage. Due to technical limitations, the outcomes of GBS devices are influenced severely by photon loss.
We present an e�cient and practical method to reduce the negative e↵ect caused by photon loss. With
no hardware modification, our method takes the data post-selection process that discards low-quality data
according to our criterion to improve the performance of the final computational results. Our post-selection
method can turn a GBS experiment that would otherwise fail in a “non-classicality test” into one that can
pass that test.

Keywords: Quantum advantage, Boson sampling, Error mitigation

The potential speed-up of quantum algorithms over
their classical counterparts makes quantum computation
a hot topic nowadays. In the past few years, people
have witnessed fast development of quantum computing
technologies. One of the central issues these years is to
demonstrate the quantum advantage. Towards this goal,
Gaussian Boson sampling (GBS) is proposed [1]. It is a
variant of boson sampling problem proposed by Aaron-
son and Arkhipov [2] and is designed to facilitate the
implementation of the original boson sampling problem
without changing the problem’s computational complex-
ity.
Recent years, great progress has been made in GBS

experiments [3, 4]. However, as the quantum devices are
imperfect, errors occur frequently which may ruin the
quantum advantage result.
In this work, we focus on error mitigation in the GBS

problem. In a GBS device, one of the main error sources
is photon loss. We present an e�cient method to mitigate
photon loss in GBS devices with no need for hardware
modification. The main idea of our method is to take
a classical data post-selection process, which follows an
insight into the similarity among di↵erent sets of input
quantum states. We first prove that a lossy GBS process
can be mapped to another lossy GBS process under cer-
tain conditions. Then we give our post-selection method
based on this relation. Some numerical results about the
performance of our method is given in figure 1. Those
numerical results are observed based on the analytical
formulas in our main test. Figure 1 shows that our post-
selection method is e�cient.
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We also use a “non-classicality test” [5] to test the
performance of our post-selection method. This “non-
classicality test” is widely used in GBS experiments as
a reference to check whether quantum advantage might
exist [3, 4]. Numerical results in figure 2 show that the
post-selection method can turn a GBS experiment that
would otherwise fail in the “non-classicality test” into
one that can pass that test. This example, i.e., the post-
selection method can help the GBS experiment to surpass
the “non-classicality test”, shows the potential value of
the post-selection method in enhancing the quantum ad-
vantage results of the GBS experiment. Besides, by im-
proving the transmission rate, the post-selection method
is also beneficial for increasing circuit depth, which is
another issue in recent GBS experiments [6].
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(a) r = 1.1, K = 216, ⌘ = 0.32, N0 = 219

(b) r = 1.4, K = 50, ⌘ = 0.5, N0 = 113

Figure 1: Performance of the post-selection method. r
is input squeezing strength. r0 is the target squeezing
strength to be simulated. K is the number of input
single-mode squeezed states. N0 is cut-o↵ photon num-
ber. ⌘ is the overall transmission rate. We use the results
of Gaussian boson sampling devices with input squeez-
ing strength r to simulate that of r0 by the post-selection
method of protocol 1. Red points correspond to ⌘0 which
is the e↵ective transmission rate in final samples. Or-
ange points correspond to yield which is the percentage
of preserved outputs.

(a) r = 1, r0 = 1.2, K = 70, qD = 0.0001, N0 = 40, y = 0.00017.

(b) r = 1.55, r0 = 1.8, K = 50, qD = 0.0001, N0 = 100, y =
0.00038.

Figure 2: Simulation errors of the classical algorithm
given in [5] for di↵erent experimental parameters. The
horizontal axis corresponds to the transmission rate ⌘
of the sampling process. The vertical axis corresponds
to the error upper bound "0 of the classical simulation
algorithm. When the error upper bound "0 on the ver-
tical axis exceeds 1 (dashed line in the figure), the clas-
sical simulation algorithm fails. The blue lines show the
simulation error upper bound of the classical algorithm
for corresponding lossy Gaussian boson sampling exper-
iments. The red lines show the simulation error upper
bound of the classical algorithm for corresponding lossy
Gaussian boson sampling sampling experiments after a
post-selection process. The input squeezing strength is
r. The target squeezing strength is r0. The number of
input single-mode squeezed states is K. The dark count
rate is qD. The e↵ective dark count rate after the post
selection process is q0D. The cut-o↵ photon number is N0.
The yield is y. The blue points correspond to the error
upper bound "0 of the classical simulation algorithm for
simulating Gaussian boson sampling experiments with
transmission rate ⌘. The red points correspond to the er-
ror upper bound "00 of the classical simulation algorithm
for simulating the GBS experiments after a post-selection
process

.

186



[5] Qi, Haoyu and Brod, Daniel J. and Quesada, Nicolás,
et, al. Regimes of Classical Simulability for Noisy
Gaussian Boson Sampling. Physical review letters,
124(10), 100502, 2020.

[6] Oh, Changhun and Lim, Youngrong and Fe↵erman,
Bill, et, al. Classical Simulation of Boson Sampling
Based on Graph Structure. Physical Review Letters,
128(19), 190501, 2022.

A Appendix

The technical version of this work will be present in
following pages.
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Abstract. Digital quantum simulation (DQS) allows to simulate the time evolution of any Hamiltonian
approximately, which finds wide applications for quantum chemistry, many-body and strongly correlated
systems and so on. For a long time simulation, the evolution can be divided into a finite number of Trotter
step, which unavoidably causes errors. While in an ideal case the Trotter error can be arbitrarily reduced
by su�ciently increasing the Trotter number, the total errors may increase by getting higher number of
the Trotter steps due to physical errors induced by the interaction between the system and environment
and control imperfections. In this work, we analyze the total errors of digital quantum simulation taking
into account both the e↵ect of number of trotter steps and physical errors. Our results will be useful to
optimize Trotterization and develop a mitigation strategy against the total error in implementing practical
digital quantum simulators.

Keywords: Digital quantum simulation, Trotter errors, Decoherence

1 Introduction

Deeper understanding of quantum dynamics can be
realized by simulating corresponding quantum systems.
However, simulating quantum dynamics with a classical
computer is di�cult because the number of parameters
and calculations to mimic the evolution of quantum sys-
tem grows exponentially with system size. One of the
best way to simulate quantum dynamics is to use quan-
tum device called a quantum simulator. Quantum sim-
ulation has been realized with several platforms such as
ultra-cold gases, superconducting circuits, trapped ions
and photons. It finds wide applications in various fields of
physics such as condensed matter physics, general quan-
tum gauge theory, quantum chemistry.
In digital quantum simulation (DQS), the time evo-

lution of Hamiltonian can be simulated by dividing the
evolution by Trotterization [1]. Since the e↵ective Hamil-
tonian is not exactly the same with the original Hamilto-
nian, digital quantum simulation by Trotterization yields
Hamiltonian error, called Trotter error. If there are no
physical errors, Trotter error can be arbitrary reduced
if the Trotter number r is getting larger enough. On
the other hand, in realistic simulations, physical errors
caused by decoherence and gating errors may also a↵ect
the performance significantly. The e↵ect of decoherence
grows as the simulating time increases. The gating errors
become larger as the number of gate grows. As the Trot-
ter steps determines both the total simulation time and
the number of implemented gates [2], increasing the num-
ber of Trotter steps would not be an optimal solution to
suppress errors in practical digital quantum simulations.
In this circumstance, we study and analyze the total er-
rors in digital quantum simulation taking into account
not only the Trotter steps but also realistic physical er-
rors. Our work will be useful to optimize the Trotteriza-
tion in digital quantum simulation and to devise a scheme
for mitigating both Trotter and Physical errors.

⇤swleego@gmail.com

2 Trotter error bound

The target system Hamiltonian H is decomposed into
L elements H =

PL
j=1 Hj , and total Hamiltonian evolu-

tion time, t, is divided into r steps. Each evolution of
a decomposed Hamiltonian for short time interval t/r,
{e�iHjt/r}j , are realized in terms of quantum gates de-
pending on simulation platforms. Then, the simulation
is governed by e↵ective Hamiltonian H̃ rather than the
original system Hamiltonian H and the e↵ective Hamil-
tonian H̃ is defined as

e�iH̃t/r =
LY

j=1

e�iHjt/r. (1)

The analytic form of the e↵ective Hamiltonian can be de-
rived by using Baker-Campbell-Hausdor↵(BCH) formula

H̃ = H � i

2

LX

⌫=µ+1

LX

µ=1

[H⌫ , Hµ](t/r) +O(t2/r2). (2)

By expanding the Hamiltonian time evolution operator,
a leading order term of the Trotter error is

���e�iHt � e�iH̃t
��� 

������
it2

2r

LX

µ<⌫

[H⌫ , Hµ] +O(t3/r2)

�����.

(3)

3 Physical error model

In practice, quantum simulators experience various ef-
fects of physical errors such as decoherence and imperfect
controls. We now intend to investigate the physical er-
rors in Trotterization and investigate their accumulation
by changing the Trotter number r.

Following a previous work by Knee et al. [3], we first
consider the physical errors that are not correlated with
the Trotter error. As a paradigmatic example of phys-
ical errors, we can consider the depolarization quantum
channel, which turns an arbitrary density matrix ⇢ into
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a totally mixed state with probability p, represented by

EDEPOL(⇢) = (1� p)⇢+ p
I

d
, (4)

where d is a dimension of the Hilbert space. Thus we can
write the total simulating channel as

E = �r
j=1EDEPOL � V , (5)

where V indicates one Trotter step evolution and � de-
notes the concatenation of channels. Note that it is as-
sumed here that there is no correlation between the Trot-
ter steps and the depolarization noise. Therefore, we can
find that the accumulated error from depolarizing chan-
nel grows linearly with the Trotter number r. A bound
of the total error DDEPOL can then be calculated as [3]

DDEPOL  (1� p)A t2

2r
+ rp(2� 2

d2
), (6)

where

A /

�����
X

µ<⌫

[H⌫ , Hµ]

�����. (7)

Likewise for all the other physical error model that is
uncorrelated with the Trotter error, one can find that the
total error has the form

C

r
+Dr, (8)

with constants C and D which characterize the physi-
cal error model. We can then find the optimal Trotter
number as ropt =

p
C/D.

4 Analysis of nontrivial correlated error

Now, let us consider a decoherence error model that are
correlated with the Trotter error. In such a model, the
form of the total error of DQS may di↵er from Eq.(5).
Under the assumption of time independent depolariza-
tion error model, the total error shows asymptotically
linear growth as r after a certain Trotter number ropt.
On the other hand, for a decoherence model that are
dependent on time, the corresponding quantum channel
is also dependent on time. We thus consider realistic
decoherence model correlated with the Trotter errors, re-
sulting in a total error model nontrivially dependent on
the Trotter numbers r as

C(r)

r
+D(r)r, (9)

where C(r) and D(r) are not constant anymore but non-
trivially vary with r. In such a complicated error model
including higher-order terms, the error bound can be also
calculated by numerical optimization with Eq. (9). We
consider some paradigmatic decoherence models. When
analyzing the noise, we consider characteristic properties
of decoherence models such as a spectral profile. When
calculating the bound of the total error, we also consider
interference of errors [4, 5] to get a more realistic result.

In this work, we establish a total error model account-
ing both the physical and Trotter errors as well as their
correlations. We can then arrive at the optimal Trotter
number ropt by numerical optimization with Eq. (9). We
expect that our result will be useful to optimize Trotter-
ization in DQS and develop an e�cient tools to mitigate
the total error in developing practical digital quantum
simulators.
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Abstract. Given a pair of stochastic processes, in general it is more e�cient, in terms of memory, to
employ one in order to produce the other than to reproduce the outputs of the processes from scratch.
In addition, causal asymmetry will be present, that is, the memory costs of mapping one process to the
other and vice versa will in general be di↵erent. We show that this causal asymmetry is often inconsistent
between classical and quantum models and in a certain sense this inconsistency can increase without a
bound. In other words, classical theory might suggest that it costs less to produce the first process given
the second while quantum theory might suggest the opposite.

Keywords: Causal asymmetry, stochastic processes, input-output processes, memory resources, quantum
models

1 Introduction

Stochastic processes are mathematical models to ex-
plain phenomena that vary in a random manner, and find
application in a wide range of areas including physics, bi-
ology, computer science, and economics. Given a pair of
such processes one can consider the memory cost of pro-
ducing one from the other. As an illustrative example,
let us consider two streams of data, dA = “...01010101...”
and dB = “...01230123...”, which may be obtained from
outcomes of measurements at discrete time steps on two
physical systems with a periodic structure. To produce
sequence dA and dB from scratch, we need to have access
to memories of 1 and 2 bits respectively: in both cases
we need to remember the previous output and the two
alphabets contain 2 and 4 symbols, respectively. On the
other hand, if we have access to one of the two sequences,
we could do better in reproducing the other. To obtain
sequence dB from dA we need only 1 bit of memory by
mapping every block of observed ”01” to either ”01” or
”23” sequentially and by remembering the last output.
Producing dA from dB is even easier without incurring a
memory cost: all we have to do is substitute every ob-
served ”2” with a ”0” and every ”3” with a ”1”. Thus,
producing dA from dB incurs no memory cost, sequence
dA comes for free given that we possess sequence dB.
The aforementioned scenario which involves input-

output processes or channels, maps between two stochas-
tic processes, indicates the presence of causal asymmetry :
when memory is viewed as a resource, it may be cheaper
to produce one of the processes given access to the other
than the other way around. Causal asymmetry has been
identified in a number of di↵erent contexts. For example,
in the context of outcomes from a single process, it was
shown that the cost of prediction and retrodiction are
in general di↵erent [1, 2]. That is, the memory cost of
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Figure 1: Mapping two processes A and B to each other
by emplying a memory and using one of them as input.

predicting future outputs or retrodicting past outputs are
not the same, even though this causal asymmetry appears
to be lifted when a quantum memory is employed [3]. In
the general setting of input-output processes, we also find
that the memory costs of producing B from A and vice
versa are not equal. What is, however, more surprising is
that causal asymmetry can not even be assigned a consis-
tent positive or negative value between di↵erent theories.
In other words, the classical and quantum memory costs
of the two maps may assume di↵erent ordering.

2 Preliminaries

The information theoretic study of minimal causal
models of stochastic processes as well as input-output
processes, is the focus of Computational Mechanics [4,
5, 6]. A major discovery of the field is that provably
memory-optimal descriptions of processes can be system-
atically constructed, from which information theoretic
quantities can be deduced.

Consider an input-output process that accepts as in-
put a stochastic processes over an input alphabet X
and outputs stochastic processes over an output alpha-
bet Y. By grouping joint pasts of inputs and out-
puts that lead to statistically indistinguishable future
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predictions, one can obtain the channel’s equivalence
classes of pasts, which are referred to as causal states.
Having obtained the causal states, transitions between
them are described through a set of transition matrices
T ⌘ {T (y|x)}x2X ,y2Y with elements explicitly given by

T
(y|x)
ij = Pr(Yt = y, St+1 = sj |Xt = x, St = si), repre-

senting the probability of transitioning from causal state
si to state sj while emitting the symbol y, upon receiving
input symbol x. Note that the transition matrices are la-
belled by conditional symbols, output for a given input.
The causal states and the transitions between them lead
to the minimal presentation of an input-output process,
referred to as the ✏-transducer, which is formally defined
as the tuple (X ,Y,S, T ) consisting of the input and out-
put alphabets, the set of causal states and the conditional
transitions probabilities. Given an input process A, the
✏-transducer’s causal states are driven to a unique dis-
tribution, the stationary distribution, which we denote
by ⇡A. For example, ⇡A,i denotes the probability of
being at state si when driven by the input process A.
The classical memory necessary on average to e↵ect the
given channel is given by the statistical complexity, de-
fined as the entropy of the distribution over causal states,
CA = H(⇡A) = �

P
i ⇡A,i log ⇡A,i.

By employing quantum mechanics, however, we can do
better. We can reduce the complexity by mapping the
causal states of the ✏-transducer to quantum states, de-
signing appropriate measurements that extract the emis-
sions and prepare the next state in a way that is indistin-
guishable from the classical model. The quantum causal
states can always be taken to be pure states [7], and
the quantum complexity is defined as the von Neumann
entropy QA = S(⇢A) of the average state of the quan-
tum memory, ⇢A =

P
i ⇡A,i|siihsi|, with |siihsi| denot-

ing the quantum state representing the classical causal
state si. A quantum model is at least as e�cient as the
best classical model, that is QA  CA [7, 8]. In the
limit where the quantum causal states become orthogo-
nal, we recover the classical complexity CA, while a strict
inequality QA < CA holds for quantum models whose
causal states have some non zero overlaps.

3 Results

Consider the following causation scenario. We have
two Markovian processesA and Bn and the minimal map-
ping, Tn, from A to Bn and analogously the minimal
mapping from processes Bn to process A, denoted by T̂n.
We show, by constructing an explicit example, that the
di↵erence of the classical complexities, CA!Bn �CBn!A,
of the two mappings can grow without bound, suggesting
that mapping A to Bn is classically increasingly harder
with n, while the di↵erence of the quantum complexities,
QA!Bn�QBn!A, is upper bounded by a certain negative
value, implying the opposite statement.
Specifically, let A denote the stochastic process that

is shown in Fig. 2. It consists of an alphabet of three
symbols and two internal states, r0 and r1, the first of
which is synchronised to whenever a 0 is emitted while

A

r0 r1

1 : 1/2
2 : 1/2

0 : 1/2

1 : 1/2

Figure 2: Process
A

B3

s0

s1

s2

0 : 1
2

2 : 1+p0,2

2

1 : p0,1

2

0 : 1
2

1 : p2,1

2

2 : p1,2

2

2 : p2,2

2

1 : p1,1

2

Figure 3: Process B3

the second whenever one observes a 1 or 2. Moreover,
at state r0, there is 50% chance that either a 1 or 2 is
emitted, while at state r1, there is 50% chance that either
a 0 or 1 is output.

Consider also the family of stochastic processes, Bn,
labeled by an index n 2 N with n � 3, each of which
consists of n causal states, s0 . . . , sn�1, and n outputs,
y 2 Y = {0, . . . , n � 1} with the following properties:
(i) an emission of symbol yj leads to a transition to the
state of the same index, sj , (ii) from states s1, . . . , sn�1,
a transition with output yj 6= 0 can occur with probabil-
ity psiyj/2, while with probability 1/2 if y = 0,(iii) from
state s0, a transition with output yj 6= 0, 2 can occur
with probability psiyj/2, while with outputs y = 0, 2 with
probability 0 and 1+ps0y2/2, respectively. Moreover, the
probabilities psi,yj of emitting a certain symbol are all
assumed to be numerically close to the value 1/n�1 but
di↵erent from each other. The case with n = 3 is shown
in Fig. 3.

A family of input-output processes that maps pro-
cess A to the family Bn with minimal classical com-
plexity is given by the ✏-transducers Tn that consist of
n states, ⌃ = {�i}i=0...n�1, accept a 3-symbol input al-
phabet X = 0, 1, 2 and output from an n symbol alpha-
bet Y = 0, . . . , n � 1. The ✏-transducers leave inputs 0
and 2 intact but modify input 1 so that it correctly re-
produces the probabilities of the target output Bn. The
✏-transducer with n = 3 is shown in Fig. 4. Similarly, the
channel that maps Bn to A keeps intact the emissions of
symbol 0 but has to erase all the probabilities associated
with the remaining n � 1 outputs. We denote this with
T̂n. The case with n = 3 is shown in Fig. 5.

Turning to the classical and quantum memory costs of
the two maps, we first derive the classical complexity of
the map from A to Bn and find that it grows logarithmi-
cally with n and thus it is unbounded. On the other hand,
the ✏-transducers that map Bn to A can be shown to have
a classical complexity of CBn!A = log(27/4)/ log(8) ⇡
0.918 independent of n. It follows that the di↵erence of
the two complexities CA!Bn � CBn!A ⇠ log n, that is,
it grows as the logarithm of n. In other words, mapping
process A to Bn is increasingly costly in terms of memory,
when a classical memory is employed.

We now turn to the quantum complexity, QA!Bn . We
explicitly construct the following quantum models [7, 3]
where the classical causal states are encoded to quantum
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Figure 4: The ✏-transducer T3 from the family Tn.

states as |sii = ⌦x|sxi i, with

|sxi i =
X

k

X

y

q
T

(y|x)
ik |yi|ki , (1)

The ✏-transducers Tn are such that for all inputs x 6= 1 we
have that |sxi i = |xi|xi independent of the state index i.
Meanwhile, it is easy to see that |s1i i =

P
j 6=0

p
pi,j |ji|ji .

As a result, the overlap between quantum causal states
is given by hsi|sji =

P
k 6=1

p
pi,k pj,k. The quantum

complexity is the von Neumann entropy of the average
state of the quantum memory, ⇢ =

P
i 'i|siihsi| where

'i denotes the i�th element of the stationary distri-
bution of the ✏-transducer Tn when driven by the in-
put A. It is known that state ⇢ and the Gram ma-
trix of overlaps, with elements Gi,j =

p
'i'jhsi|sji,

have the same non-zero eigenvalues [9]. Thus, they have
the same von Neuman entropy. From this fact and the
freedom to choose all probabilities pi,j to be arbitrar-
ily close to each other (but not equal), we have that
Gi,j ⇡ p

'i'j . Under this assumption, G ⇡ vv
>, where

we defined v
> = (

p
'1 , . . . ,

p
'n), and thus approxi-

mately the Gram matrix has one eigenvalue equal to 1
and all others equal to 0. It follows that the quantum
complexity in the limit where all the pi,j are the same
becomes 0. If they are not exactly equal but su�ciently
close, the quantum complexity can be made arbitrarily
small. A precise statement is that given a small pertur-
bation of the probabilities around the value 1/n�1 so that
pij = 1

n�1 + �ij , with |�ij |  � for some small � > 0, the
optimal quantum complexity is bounded as

Q
upper
A!Bn

(�) � QA!Bn � 0 , (2)

where Q
upper
A!Bn

(�) can be made arbitrarily small by an
appropriate choice of �.
Turning to the quantum complexity of the map from

Bn to A, the situation is more intricate. We have to con-
sider all possible classical maps and then show that the
complexity of all possible quantum models is bounded.
Specifically, we show that the optimal quantum complex-
ity is bounded from below and above according to the
inequality

Q
upper
Bn!A � QBn!A � 0.55 , (3)

where Q
upper
Bn!A depends on the value of n; it takes the

value 0.682 for n = 3 and approaches the classical com-
plexity of 0.918 with increasing values of n.

⌧0 ⌧10|0 : 1
1|1 : 1
1|2 : 1

1|1 : 1
2

2|1 : 1
2

1|2 : 1
2

2|2 : 1
2

0|0 : 1

Figure 5: The ✏-transducer T̂n that maps process Bn to
process A in the case of n = 3.

Using Eqs. (2), (3), we obtain the following bounds
on the di↵erence of the quantum complexities of optimal
quantum models

Q
upper
A!Bn

(�)� 0.55 � Q
opt
A!Bn

�Q
opt
Bn!A � �Q

upper
Bn!A .

(4)

On the left hand side and for any n, there always exists
a range of value of � that make this di↵erence negative.
This implies that mapping processes Bn to A is harder,
when a quantum memory is employed.

In Fig. 6 we have plotted the di↵erence of classical and
quantum complexities, CA!Bn � CBn!A and QA!Bn �
QBn!A, for n = 3, . . . , 200 and � = 10�4. We see that
the di↵erence of the quantum complexities approaches a
finite negative value while that of the classical ones grows
logarithmically with n.

In summary, given the minimal maps between two
stochastic processes, A and B, we have demonstrated
that not only causal asymmetry may be present, but it
can be also inconsistent between di↵erent theories. In
other words, the di↵erence is not only of quantitative na-
ture but also qualitative in that di↵erent theories may
assign di↵erent ordering of the complexities: classical
theory may suggest that is harder to map A to B and
at the same time quantum theory may suggest the oppo-
site, mapping B to A requires more memory resources.

0 50 100 150 200
n

-1

1

2

3

4

Figure 6: The di↵erence of classical and quantum com-
plexities of the ✏-transducers that map A to Bn and vice
versa. In blue we show the values of CA!Bn � CBn!A,
while the values of QA!Bn � QBn!A lie in-between the
green and orange curves.
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Abstract. Port-based teleportation(PBT) is a teleportation protocol that employs a number of Bell pairs
and a joint measurement to enact an approximate input-ouput identity channel. In this work, we fully
characterise the PBT protocol in terms of depolarising noise on resource states using the invariant of the
resource and measurement has. We extend our description to the amplitude damping noise. Finally, we
calculate the entanglement teleportation of PBT. We found that the measure of quantum entanglement
teleported by PBT increases inversely with the number of ports. This property holds even when the
resource states are a↵ected by the environment.

Keywords: Port based teleportation, entanglement teleportation, noisy channel

1 Introduction

Quantum teleportation, introduced by Bennett et
al. [1], is a seminal process for transmitting unknown
quantum states over long distances without physically
sending the quantum system itself. It relies on the
utilization of distributed entanglement to transfer quan-
tum information from a sender to a remote receiver. A
variant of quantum teleportation, known as port-based
teleportation (PBT), has been proposed as an e�cient
alternative approach [2, 3, 4]. In PBT, receiver is not
required to do recovery operation at the end of the
protocol, instead he selects a port based on classical
information associated with the sender’s measurement
outcome. The unique features of PBT enable its applica-
tions in various quantum information processing tasks,
such as instantaneous non-local quantum computation
[6], quantum-channel discrimination [7], and quantum
telecloning protocols [8, 9].

Entanglement in quantum information refers to the
phenomenon where two or more quantum systems
become correlated in such a way that the state of one
system cannot be described independently of the others,
contrasting with classical correlations where the state
of each system can be determined separately. In the
context of quantum networks, entanglement serves as
a crucial resource for enabling various quantum com-
munication protocols, including quantum teleportation,
which allows for the transfer of unknown quantum states
between distant network nodes, thereby facilitating the
distribution and manipulation of quantum information
in a scalable and secure manner.

Entanglement teleportation, introduced by Lee et al.
[5], is to transmit the entanglement initially prepared
over remote place. Research has been conducted to
investigate the e↵ects of noisy quantum channels on
entanglement teleportation, exploring strategies to
mitigate the detrimental impact of noise and enhance

⇤hekim007@korea.ac.kr
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the fidelity and reliability of entanglement transfer in
realistic quantum communication scenarios.

In this study, we aim to investigate the entanglement
teleportation using the PBT protocol under the influence
of a noisy quantum channel. We found that the measure
of quantum entanglement teleported by PBT increases
inversely with the number of ports. This result is
invariant under influences of a noisy qunatum channel
to resource state.

2 Port-based Teleportation Channel

In the PBT protocol, the sender and receiver share N
entangled resource states with each other. The sender
measures the partition of the resource states it holds
between the states it wants to send and the states of
the resource through the square-root measurement.
After the measurement, the sender communicates to the
receiver which port it should select. In this protocol,
the receiver does not need to perform any quantum
operations.

We investigate the PBT channel using the invariant
property that POVM measurement and resource state
have.

2.1 Maximally Entangled State

We investigate the property of the teleportation chan-
nel using invariant operation on maximally entangled
state. As the state is invariant under twirling by sin-
gle qubit arbitrary unitary operator and its conjugation
to the other qubit, this implies that the resource state
and POVM measurement, which are constructed by the
state, are also invariant under the twirling and the tele-
portation channel is a depolarizing channel. The channel
can be describe with the entanglement fidelity of PBT
F0 as

4

3
(1� F0)

Î

2
+

1

3
(4F0 � 1) ⇢̂, (1)
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where ⇢̂ is the state sender want to teleport and Î is
identity operator.

We also considered for the case when the resource
states are e↵ected by the noise. We assume that every
sites are separated each other and equally influenced by
the same environment.

2.2 Deporalized Resource State

We first analysed the teleportation channel when the
resource states are equivalently depolarized due to the
noise. This noise doesn’t break the invariant under the
twirling that resource states have. So The teleportation
channel can also be describe with the entanglement fi-
delity F0 as

4

3
(1� F0)

Î

2
+

1

3
(4F0 � 1) (D · D) (⇢̂) , (2)

where D is the depolarizing channel to a single site. The
limited number of port made the teleportation channel
be depolarizing channel independent to the depolarizing
noise on the resource states. The noise on the single site
of the resource states e↵ected to the state teleported to
be twice.

2.3 Amplitude Damped Resource State

We secondly investigated the case when the each
resource states site are e↵ected by amplitude damping.
Di↵erent with the maximally entangled resource state
and depolarized resource state, the invariant partially
broke down. Fortunately, the resource state is invariant
by the twirling of every z axis rotation operators. This
implies that the teleportation channel is a amplitude
damping channel.

This channel is depolarized with same order as
resource state we saw above. At the small amplitude
damping noise, We saw that the noise is approximately
doubly e↵ected at the teleported state as we saw for
teleportation with deporalized resource state.

3 Entanglement Teleportation

With the port-based teleportation channels we cal-
culated above section, we investigate the entanglement
teleportation on PBT.

Lee et al. [5] calculated the measure of entanglement
for the standard teleportation

max

"
0,�1

2
+

✓
1 + 2Ndep

3

◆2 ✓
M0 +

1

2

◆#
, (3)

where Ndep is the measure of entanglement for resource
state and M0 is the measure of entanglement for
prepared entangled state.

We investigate that the measure of entanglement for
PBT with maximally entangled preshared state is

max


0,�1

2
+

4F0 � 1

3

✓
M0 +

1

2

◆�
. (4)

The measure of entanglement for PBT with depolarized
preshared state is

max

"
0,�1

2
+

4F0 � 1

3

✓
1 + 2Ndep

3

◆2 ✓
M0 +

1

2

◆#
.

(5)

In the asymptotic limit of number of ports goes infinite,
same as F0 ! 1, equation (4) and (5) are same as (3).
As entanglement fidelity becomes

F0 ! 1� 3

4N
(6)

for N ! 1, the positive measure of entanglement can
be written as

�1

2
+

✓
1� 1

N

◆✓
1 + 2Ndep

3

◆2 ✓
M0 +

1

2

◆
(7)

using number of ports N . We conclude that the measure
of quantum entanglement teleported by PBT increases
inversely with the number of ports. This result consists
for weakly amplitude damped at the resource states.
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single photon and cat code
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Abstract. We introduce a scheme of discrete variable (DV) and continuous variable (CV) hybrid quantum
computation based on single photon and cat-code. We define the hybrid logical basis of qubits by taking the
advantages of both DV and CV photonic qubits. Near-deterministic Bell measurements on hybrid qubits
enable e�cient implementation of logical universal gate operations by employing the gate teleportation
scheme. Photon loss can be detected and corrected during the teleportation process due to the loss of
single photon or the parity change in the cat-code. Our scheme outperforms previous proposals of photonic
quantum computation in fault-tolerance analysis.

Keywords: Photonic hybrid quantum computation, Quantum error correction, Bosonic code

1 Hybrid quantum computation

In realistic situations, qubits encounter errors due to
imperfect operations and interaction with environments.
Quantum error correction (QEC) has been developed to
provide systematic ways for protecting encoded infor-
mation from unavoidable errors. Error correction codes
have been developed both for discrete-variable (DV) and
continuous-variable (CV) systems. In CV approach, var-
ious error correction codes have been proposed for a
bosonic system in an infinite-dimensional Hilbert space
such as GKP, binary and cat codes. The cat-code is de-
signed against photon loss by encoding a qubit in the cat
state with even parity [1, 2]. A single photon loss causes
the change of parity and thus can be detected by a parity
measurement. One of the major defects of the cat code
is additional errors originated from the non-orthogonality
between logical basis states. This also makes it di�cult
to implement gate operations such as Z gate with linear
optical elements.
To solve the problems, we define hybrid qubits by com-

bining DV and CV photonic qubits. While in the previ-
ous study of hybrid qubits [3] single photons and coherent
states are employed as DV and CV qubits, respectively,
we here incorporate the error-correcting feature of cat
codes into the CV part. The logical basis is given by [4]

�
|0Li = |+i|C+

↵
i, |1Li = |�i|C+

i↵
i
 
, (1)

where the first mode |±i represents the polarization of
single photon state and the second mode represents even
cat states |C+

↵
i = N+

C (|↵i+|�↵i) with the normalization

factor N+
C ⌘ 1/

p
2(1 + e�2↵2). The logical basis states

become orthogonal due to the DV qubit and single qubit
rotations can be done with simple linear optical elements.
The Pauli X operation can be implemented by applying
bit flip operations on both CV and DV qubits, using a
polarization rotator acting as |+i $ |�i and a ⇡

2 phase
shifter acting as |C+

↵
i $ |C+

i↵
i. The arbitrary rotation

⇤swleego@gmail.com

along Z axis, Z✓, can be implemented by a ✓ phase shifter
applied only on the DV qubit as |+i ! |+i, |�i ! e

i✓|�i.
Another technical challenge in the cat code is the re-

alization of parity measurement without disturbing the
information encoded in the qubit. Recently, schemes for
photon loss correction have been proposed in a telecorrec-
tion manner [5, 6]. A single photon loss is detected during
the Bell measurement and automatically corrected at the
output of teleportation. In our hybrid quantum computa-
tion, we devise a hybrid Bell-state measurement (HBSM)
which is performed by type II fusion operation of DV
qubits and cat-code Bell measurement of CV qubits. Be-
cause the success probability of HBSM is close to unity,
it enables near-deterministic gate teleportation of H and
CZ gates for universal quantum computation. Further,
due to the error-correcting feature of cat code, a photon
loss is automatically corrected during every teleporta-
tion.

We evaluate the performance of quantum computa-
tion based on our hybrid qubit. We analyze the fault-
tolerance using the simulation with the concatenation of
outer error correction codes and show that the perfor-
mance can be significantly improved [7].

2 Teleportation

The teleportation circuit for hybrid qubits is described
in Fig. 1. For HBSM, we perform Bell measurements
of DV qubits and CV qubits simultaneously. For DV
qubits, we employ type II fusion operation BII which dis-
tinguishes only two types of Bell states with success prob-
ability 1/2. For CV qubits, we employ the cat-code Bell
measurement BC introduced in Ref. [5]. BC is imple-
mented using linear optical elements and four photon-
number-resolving (PNR) detectors. Using the counting
statistics of PNR detectors, one can determine which of
four Bell states has been measured. In some cases, one
cannot perfectly distinguish Bell states, where the failure
probability is approximately given by pf (↵) ⇡ 2e�↵

2
/2.

HBSM succeeds if either BII or BC succeds, and thus the
total failure probability Pf = 1

2pf (↵), rapidly decays to
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Figure 1: The teleportation of hybrid qubits. Green cir-
cles and blue circles represent polarization qubits and
cat-code qubits, respectively. Bell measurements BII and
BC are performed on the input qubit and the one part of
entangled channel. Implementations of BII and BC are
shown in gray boxes. Measurement outcomes are used to
determine Pauli operations to be applied on the output
qubit as summarized in the table.

0 for large ↵. Once the measurement outcomes are de-
termined, the teleportation is accomplished by applying
Pauli operations on the output qubit, which is summa-
rized in the table of Fig. 1.
The gate teleportation can be accomplished by us-

ing appropriate entangled channel. For instance, the
Hadamard gate H can be performed using the resource
state |�Hi / |0L, 0Li+ |0L, 1Li+ |1L, 0Li � |1L, 1Li and
the CZ gate can be performed with two teleportation cir-
cuits using |�CZi / |0L, 0L, 0L, 0Li + |0L, 0L, 1L, 1Li +
|1L, 1L, 0L, 0Li� |1L, 1L, 1L, 1Li. The resource states can
be generated by merging DV entangled pairs |H,Hi +
|V, V i and hybrid entangled states |Hi|C+

↵
i + |V i|C+

i↵
i

using BC or type I fusion operation BI. A hybrid entan-
gled state can be generated by a cross-Kerr interaction
between a single photon and an even cat state.

3 Photon loss correction

In ideal case of BC , the total number detected by PNR
detectors should be even since the cat code is encoded
in the even photon-number space. If a photon is lost
from CV qubit, the state is changed to odd cat state,
modelled as â|C+

↵
i / |C�

↵
i. In this case, the total number

of photon detected by PNR detectors becoms odd, which
informs us that a photon loss has been occurred. Despite
that, one can determine the Bell state before loss from
the photon counting statistics. Since the output port
of the entangled channel is prepared in the logical code
space, the qubit is recovered to the original input state

(a) STEANE code

Logical encoding Optimal ↵ Loss threshold
DV+coherent [3] 1.24 0.00029

DV+cat [this work ] 2.97 0.00116

(b) Topological code

Logical encoding Optimal ↵ Loss threshold
DV+coherent [8] 1.66 0.0022

DV+cat [this work ] 3.45 0.0221

Table 1: Loss threshold for (a) STEANE and (b) topolog-
ical code. We find the optimal encoding amplitude ↵

which yields the highest loss threshold. Note that we re-
calculate the result of [8] under the same error model for
fair comparison.

once the teleportation succeeds. Remarkably, in every
teleportation, the photon loss correction is automatically
implemented.

If two or more photons are lost on CV qubit, a logical
Z error occurs because the teleportation can correct only
single photon loss. If DV photon is lost, it is considered
as a dephasing error. We denote q as the total Z error
rate due to photon loss.

4 Fault-tolerant quantum computation

In our error model, important parameters are the fail-
ure probability Pf of HBSM and the Z error rate q, which
are given as functions of the loss rate ⌘ and the encod-
ing amplitude ↵. The failure probability Pf is high for
small ↵ while q becomes high for large ↵. Therefore, it is
important to take appropriate value of ↵ to obtain high
loss threshold.

To investigate the loss threshold for our hybrid qubits,
we perform the simulation using two kinds of outer error
correction codes: STEANE and topological error correc-
tion code. The result is summarized in Table 1. It is
shown that the loss threshold is significantly improved
although the cat-code qubit requires twice larger encod-
ing amplitude than that of the coherent-state qubit. For
STEANE code, the loss threshold is improved by a factor of
4. In the topological error correction, the loss threshold
is improved almost by an order of magnitude by employ-
ing cat code. The loss threshold of 2.21% is, to the best
of our knowledge, the highest threshold for CV encoding
of optical qubits [7].
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qubit-atom hybrid system under the Born-Markov limit
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Abstract. In this extended abstract, we describe a dissipative dynamics of the charge qubit-atom hybrid
model in the Born-Markov limit. Specifically, we focus on the relation between the spectral density of
the Boson bath and the dissipation e↵ect on the charge qubit-atom hybrid model. We analytically show
that the relaxation and the dephasing noises a↵ects both Josephson junction and the gate capacitor of the
model when the spectral density is a genuine-nonlinear function. We further numerically show that the
nonlinearity of the spectral density results in the rapid destruction of the entanglement in the model.
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1 Introduction

For several decades, it has been shown that a quantum
computer is superior to a classical one in solving certain
computational tasks including data search [1, 2], inte-
ger factorization [3], and quantum chemistry simulation
[4]. For this reasons, realization of the quantum com-
puter is an important feature of the quantum technology.
Among several candidates for implementing the novel su-
per computer [5, 6, 7], superconducting circuit has been
considered as the most promising one [8]. The supercon-
ducting circuit-based quantum computer has advantage
of the high-speed computation ability. Also, since a qubit
composed of the superconducting circuit is a macroscopic
system, the quantum computer composed of the super-
conducting qubits is flexibly designed and easily tunable
[9].
However, the macroscopic scale implies the short co-

herence time of the superconducting qubit [13, 14]. One
way for improving the coherence time of the supercon-
ducting qubit is the hybridization with a two-level atom
qubit [9, 14, 15, 16]. The charge qubit-atom hybrid model
[9], which is composed of a charge qubit [10, 11, 12] and a
two-level Rydberg atom strongly coupled to each other, is
the one example of the hybrid model. It was shown that
this model can perform high-speed CNOT operation [9],
when it is not exposed to the noise.
In this extended abstract, we describe a dissipative dy-

namics of the charge qubit-atom hybrid model in terms of
the master equation [17, 18, 19, 20]. Specifically, we con-
sider that one Boson bath is interacting with the Joseph-
son junction of the charge qubit, and the other one is
interacting with the gate capacitor. In the Born-Markov
limit [17], we verify the relation between the spectral den-
sity and the dissipation e↵ect on the charge qubit-atom
hybrid model. We analytically show that, when the the
spectral density is a nearly linear function, we can leave
the first-order term of the master equation and neglect

⇤mnamkung@kist.re.kr
†js.kang1202@gmail.com
‡yyhkwon@hanyang.ac.kr

the high order terms. We note that each Boson bath is
separately interacting with the Josephson junction and
the gate capacitor, respectively. Meanwhile, in case that
the spectral density is a genuinely nonlinear function, we
need to leave the second-order term of the master equa-
tion. This means that both Boson baths are simulta-
neously interacting with the Josephson junction and the
gate capacitor. We further numerically show the depen-
dence of the spectral density and the entanglement. In
our case study, the concurrence [21] does not decrease
under the certain value in case the the spectral density is
nearly linear, but rapidly vanishes in case of the nonlinear
spectral density.

The technical details about this extended abstract are
presented in J. Opt. Soc. Am. B 39, pp. 2362-2377
(2022).

2 Structure of dissipative dynamics

Here, we propose the structure of the dissipative dy-
namics for describing noisy charge qubit-atom hybrid
model. We begin this by describing the charge qubit-
atom hybrid model interacting with Boson bath, and
then discuss the methodology to model the dissipative
dynamics in terms of the master equation under the
Born-Markov limit [17].

2.1 Description of noisy model

We first briefly review the structure of the ideal charge
qubit-atom hybrid model. In this model, a two-level Ry-
dberg atom is positioned inside the gate capacitor of the
charge qubit. Thus, the two-level Rydberg atom and
the charge qubit are interacting each other via the elec-
tric field generated inside the gate capacitor. This ideal
charge qubit-atom hybrid model is described as the sys-
tem Hamiltonian [9]

ĤS = ĤC + ĤA, (1)

where ĤC and ĤA are Hamiltonians of the charge qubit
and the two-level Rydberg atom, respectively. It is noted
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Figure 1: E↵ect of first- and second-order approximations
in charge qubit-atom hybrid model.

that the interaction terms are absorbed in ĤC and ĤA of
Eq. (1), which means that the charge qubit and the two-
level Rydberg atom are strongly interacting each other.
Thus, both ĤC and ĤA in Eq. (1) are defined on the
composite Hilbert space of the charge qubit and two-level
Rydberg atom systems.
In our model illustrated as Figure 1, we consider that

the Boson bath 1 is interacting with the Josephson junc-
tion and the Boson bath 2 is with the gate capacitor. We
first describe both two Boson baths as the environment
Hamiltonian

ĤS = ĤE1 ⌦ Î(e2) + Î(e1) ⌦ ĤE2, (2)

where ĤE1 and ĤE2 are Hamiltonians of the Boson bath
1 and 2, respectively, and Î(ei) is the identity operator on
the Hilbert space of the i-th Boson bath system. Now,
we describe the interaction between two Boson baths and
the charge qubit-atom hybrid model as the interaction
Hamiltonian

ĤI = �̂
(c)
x ⌦ Î(a)⌦X̂

(e1)⌦ Î(e2)+ �̂
(c)
z ⌦ Î(a)⌦ Î(e1)⌦X̂

(e2),

(3)
where Î(a) is the identity operator on the Hilbert space of
the two-level Rydberg atom, X̂(ei) is the operator com-
posed of position operators of particles in the i-th Boson

bath, and �̂
(c)
x and �̂

(c)
z are Pauli x and z operators on the

charge qubit, respectively. In Eq. (3), �̂(c)
x represents the

situation that the number of Cooper pairs accumulated
inside the island is changed due to the unexpected cur-
rent, which can be understood as the relaxation noise.

�̂
(c)
z represents the situation that the Cooper pairs are

unexpectedly accumulated between the Josephson capac-
itor, which can be understood as the dephasing noise.
Combining Eqs. (1), (2), and (3), we describe the

charge qubit-atom hybrid model interacting with two Bo-
son baths as the entire Hamiltonian

Ĥ = ĤS + ĤE + ĤI . (4)

We note that the dissipative dynamics of the charge
qubit-atom hybrid begins from describing time evolution
of the system and environment states in terms of the
Liouville-von Neumann equation with Eq. (4). This will
be further discussed in the next subsection.

2.2 Modeling dissipative dynamics

The dissipative dynamics of a quantum system is ex-
actly described in terms of the non-Markovian master

equation [23, 24]. However, without certain approxima-
tion, the master equation is not e�ciently solved because
of the convolution terms therein [18]. To avoid the inef-
ficiency, we consider the Born-Markov approximation in
which the environment is memoryless and has large scale
compared to the charge qubit-atom hybrid model.

We further assume that the density operator of the en-
vironment ⇢̂E is express as the thermal state because
of the thermal equilibrium [17]. Then, we can apply
the method in Ref. [22] to describe the noisy charge
qubit-atom hybrid model in terms of the master equa-
tion. Since the Hamiltonian in Eq. (4) has complicated

form, the interaction picture of �̂(c)
x and �̂

(c)
z in Eq. (3)

takes the form of infinite series. Thus, we describe the
dissipative dynamics as the Born-Markov master equa-
tion including infinite series,

d

dt
⇢̂S(t) = � i

~ [ĤS , ⇢̂S(t)]

+
iCj�1⌦

~

1X

n=0

n!

⌦n

h
Â1,

n
⇠n[Â1], ⇢̂S(t)

oi

� Cj�1!0

~

1X

n=0

n!

⌦n

h
Â1,

h
⇠n[Â1], ⇢̂S(t)

ii

+
iCg�2⌦

~

1X

n=0

n!

⌦n

h
Â2,

n
⇠n[Â2], ⇢̂S(t)

oi

� Cg�2!0

~

1X

n=0

n!

⌦n

h
Â2,

h
⇠n[Â2], ⇢̂S(t)

ii
, (5)

with the interaction strength �i with respect to the i-th
Boson bath, the resonant frequency of the charge qubit

!0 [20, 22], and Â1 = �̂
(c)
x ⌦ Î(a) and Â2 = �̂

(c)
z ⌦ Î(a). In

the above master equation, coe�cient ⇠[Âi] is the coe�-
cient in the interaction picture [17, 22] of Âi.

3 Analytical result

In this section, we discuss the analytical results about
the relation between the property of the spectral density
in Eq. (6) and the dissipative dynamics.

We note that the dissipation on the charge qubit-atom
hybrid model occurred by the infinite number of the par-
ticles in the i-th Boson bath can be e↵ectively described
in terms of the spectral density having the form of the
Lorentz-Drude cuto↵ function [17],

Ji(!) = �i
!⌦2

!2 + ⌦2
(6)

with the cuto↵ frequency ⌦. If ⌦ is su�ciently large
compared to !, then the spectral density in Eq. (6) is
approximated as

Ji(!) ⇡ �i!. (7)

In this case, we call the spectral density as nearly linear.
If ⌦ is not su�ciently large, Eq. (6) is not approximated
as a linear function. In this case, we call it as genuine-
nonlinear.

Now, we relate the property of the spectral density in
Eq. (6) discussed above and the dissipative dynamics
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Figure 2: Concurrence of charge qubit-atom hybrid model. Here, the cuto↵ frequency is considered as ⌦ = !0 or
⌦ = 10�6

!0 with the resonant frequency !0.

described in Eq. (5), with respect to the scale of ⌦. In
case of ⌦ � !, the high-order terms of ⌦�1 in Eq. (5)
can be neglected. Thus, Eq. (5) is approximated as

d

dt
⇢̂S(t) = � i

~ [ĤS , ⇢̂S(t)]

+
iCj�1⌦

~
X

n=0,1

n!

⌦n

h
Â1,

n
⇠n[Â1], ⇢̂S(t)

oi

� Cj�1!0

~
X

n=0,1

n!

⌦n

h
Â1,

h
⇠n[Â1], ⇢̂S(t)

ii

+
iCg�2⌦

~
X

n=0,1

n!

⌦n

h
Â2,

n
⇠n[Â2], ⇢̂S(t)

oi

� Cg�2!0

~
X

n=0,1

n!

⌦n

h
Â2,

h
⇠n[Â2], ⇢̂S(t)

ii
, (8)

From the form of the above approximated master equa-
tion, we observe that the Boson bath 1 and 2 a↵ect the
gate capacitor (or island, equivalently) and the Joseph-
son junction, respectively (see Figure 1). We further note
that the above master equation can be simplified by di-
agonalizing the two corresponding Kossakowski matrices
1 and 2. Since these matrices are degenerate, the mas-
ter equation in Eq. (8) has one approximated Lindblad
form [25]. This means that, as the spectral density in Eq.
(6) is linear, the dissipative dynamics described in terms
of the Lindblad form is stable.
When ⌦ is not su�ciently large compared with !, the

second-order term of ⌦�1 in Eq. (5) can a↵ect the dissi-
pative dynamics of the interested system [22]. In this
case, we observe that the Boson bath 1 and 2 simul-
taneously a↵ect the gate capacitor (or island, equiva-
lently) and the Josephson junction. Furthermore, the
Kossakowski matrices of the second-order master equa-
tion are degenerate. In other words, the approximated
Lindblad form is not unique. This means that the dissi-
pative dynamics is not stable.

4 Numerical result

We further numerally investigate the relation between
the spectral density and the entanglement dynamics.

Figure 3: Concurrence of charge qubit-atom hybrid
model. Here, the cuto↵ frequency is considered as ⌦ = !0

or ⌦ = 10�6
!0 with the resonant frequency !0.

Here, we consider the charge qubit-atom hybrid model
with parameters in Ref. [9]. We first solve the 1st-order
Lindblad equation [26] approximated from Eq. (5) using
4th Runge-Kutta method. Then, we evaluate the con-
currence for each time from the solution.

We illustrate the entanglement dynamics as Figure 2.
Here, we consider that the cuto↵ frequency ⌦ in the spec-
tral density of Eq. (6) is equal to the resonant frequency
!0 or 10�6

!0. We observe from Figure 2 that the con-
currence does not decrease below 0.5 when ⌦ = !0, but
rapidly decreases to zero when ⌦ = 10�6

!0.
We further illustrate the spectral density as Figure 3.

When ⌦ = !0, we observe that the spectral density is
approximated as a linear function. Meanwhile, when
⌦ = 10�6

!0, the spectral density is a genuine-nonlinear
function. From Figure 3 together with Figure 2, we ob-
serve that the entanglement is preserved against the dis-
sipation e↵ect of Figure 1 when the spectral density is
a nearly-linear function, but rapidly vanishes when the
spectral density is a genuine-nonlinear function.
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Abstract. We consider the optimal discrimination of bipartite quantum states and provide an upper
bound for the maximum success probability of optimal local discrimination. We also provide a necessary
and su�cient condition for a measurement to realize the upper bound. We further establish a necessary
and su�cient condition for this upper bound to be saturated. Finally, we illustrate our results using an
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Quantum state discrimination is one of the fundamen-
tal tasks in quantum information processing [1–3]. In
discriminating orthogonal quantum states, there is al-
ways a measurement of perfect discrimination. On the
other hand, non-orthogonal quantum states cannot be
perfectly discriminated by means of any measurement.
For this reason, there has been a huge amount of re-
search e↵ort focused on finding good state-discriminating
strategies [4].
In discriminating multiparty quantum states, it is

known that some optimal state discrimination cannot be
realized only by local operations and classical commu-
nication (LOCC) [5–8]. To characterize the limitation
of LOCC discrimination, many studies have been con-
tributed to optimal local discrimination of multiparty
quantum states [9–15]. Nevertheless, due to the di�-
culty of mathematical characterization for LOCC, it is
still a hard task to realize optimal local discrimination.
One e�cient way to handle this di�culty is to inves-

tigate possible upper bounds for the maximum success
probability of optimal local discrimination. Moreover,
establishing good conditions on measurements realizing
such upper bounds is also important for a better under-
standing of optimal local discrimination.
Here, we consider bipartite quantum state discrimi-

nation and provide an upper bound for the maximum
success probability of optimal local discrimination [16].
We also provide a necessary and su�cient condition for
a measurement to realize the upper bound. Moreover,
we establish a necessary and su�cient condition for this
upper bound to be saturated; it is equal to the maxi-
mum success probability of optimal local discrimination.
Finally, we illustrate our results using an example [16].
Let us consider the situation of discriminating n bipar-

tite quantum states ⇢1, . . . , ⇢n in which the state ⇢i is
prepared with the probability ⌘i. We denote this situa-
tion as an ensemble,

E = {⌘i, ⇢i}
n
i=1

. (1)

We use pG(E) to denote the optimal success probability

⇤freddie1@khu.ac.kr

in the minimum-error discrimination [17–19] of E .

pG(E) = max
Measurement

nX

i=1

⌘iTr(⇢iMi), (2)

where the maximum is taken over all possible measure-
ment. The measurements providing the optimal success
probability pG(E) can be verified from the following con-
ditions [18–21]:

nX

j=1

⌘j⇢jMj � ⌘i⇢i ⌫ 0 8i = 1, . . . , n, (3a)

Mi(⌘i⇢i � ⌘j⇢j)Mj = 0 8i, j = 1, . . . , n. (3b)

Note that Condition (3a) is a necessary and su�cient
condition for a measurement {Mi}

n
i=1

to realize pG(E),
whereas Condition (3b) is a necessary but not su�cient
condition for a measurement {Mi}

n
i=1

to provide pG(E).

Definition 1 A Hermitian operator E on H is called
positive-partial-transpose(PPT) if its partial transposi-
tion, denoted EPT, is positive semidefinite [22–24]. Sim-
ilarly, we say that a set of Hermitian operators {Ei}i is
PPT if Ei is PPT for all i.

When the available measurements are limited to PPT
measurements, we denote the maximum success proba-
bility by

pPPT(E) = max
PPT

measurement

nX

i=1

⌘iTr(⇢iMi). (4)

We denote by pL(E) the maximum of success probability
that can be obtained by using LOCC measurements; that
is,

pL(E) = max
LOCC

measurement

nX

i=1

⌘iTr(⇢iMi). (5)

From the definitions of pG(E) and pPPT(E), pG(E) is ob-
viously an upper bound of pPPT(E). Moreover, pL(E) is a
lower bound of pPPT(E) because all LOCC measurements
are PPT [25]. Thus, we have

pL(E) 6 pPPT(E) 6 pG(E). (6)
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We also note that pL(E) = pPPT(E) if and only if there
exists a LOCC measurement realizing pPPT(E) since both
pPPT(E) and pL(E) have the same objective function for
maximization.

Definition 2 For a given ensemble E = {⌘i, ⇢i}ni=1
, let

us consider the maximum quantity

qG(E) = max
Measurement

nX

i=1

⌘iTr(⇢
PT

i Mi) (7)

over all possible measurements.

The following lemma shows that qG(E) in Eq. (7) is an
upper bound of pPPT(E):

Lemma 3 For a bipartite quantum state ensemble E =
{⌘i, ⇢i}ni=1

,
pPPT(E) 6 qG(E), (8)

where the equality holds if and only if there exists a PPT
measurement providing qG(E).

Corollary 4 For a bipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

,
pL(E) = qG(E) (9)

if and only if there exists a LOCC measurement {Mi}
n
i=1

satisfying
nX

i=1

⌘i Tr(⇢iMi) = qG(E). (10)

For a given state ensemble E = {⌘i, ⇢i}ni=1
, the follow-

ing theorem provides a necessary and su�cient condition
on a measurement {Mi}

n
i=1

to realize qG(E) in Eq. (7).

Theorem 5 For a bipartite quantum state ensemble E =
{⌘i, ⇢i}ni=1

and a measurement {Mi}
n
i=1

,

nX

i=1

⌘i Tr(⇢
PT

i Mi) = qG(E) (11)

if and only if

nX

j=1

⌘j⇢
PT

j Mj � ⌘i⇢
PT

i ⌫ 0 8i = 1, . . . , n. (12)

Moreover, if Eq. (11) holds, then

Mi(⌘i⇢
PT

i � ⌘j⇢
PT

j )Mj = 0 8i, j = 1, . . . , n. (13)

From Corollary 4 and Theorem 5, we have the following
corollary.

Corollary 6 For a bipartite quantum state ensemble
E = {⌘i, ⇢i}ni=1

,
pL(E) = qG(E) (14)

if and only if there exists a LOCC measurement {Mi}
n
i=1

satisfying

nX

j=1

⌘j⇢
PT

j MPT

j � ⌘i⇢
PT

i ⌫ 0 8i = 1, . . . , n. (15)

In this case, Eq. (10) holds.

Example 1 For any integer d > 2, let us consider the

two-qudit state ensemble E = {⌘(k)i,j , ⇢
(k)
i,j }i,j,k consisting

of 2d(d� 1) states with equal prior probability,

⌘(k)i,j =
1

2d(d� 1)
, ⇢(k)i,j = �| (k)

i,j ih 
(k)
i,j |+ (1� �)�,

i, j 2 {0, 1, . . . , d� 1} with i < j, k = 1, 2, 3, 4, (16)

where 0 < � 6 1, � is an arbitrary two-qudit state, and

| (1)

i,j i =
1
p
2
(|ii ⌦ |ii+ |ji ⌦ |ji),

| (2)

i,j i =
1
p
2
(|ii ⌦ |ii � |ji ⌦ |ji),

| (3)

i,j i =
1
p
2
(|ii ⌦ |ji+ |ji ⌦ |ii),

| (4)

i,j i =
1
p
2
(|ii ⌦ |ji � |ji ⌦ |ii). (17)

For a measurement {M (k)
i,j }i,j,k with

M (1)

i,j =
1

d� 1
| (1)

i,j ih 
(1)

i,j |, M (3)

i,j = | (3)

i,j ih 
(3)

i,j |,

M (2)

i,j =
1

d� 1
| (2)

i,j ih 
(2)

i,j |, M (4)

i,j = | (4)

i,j ih 
(4)

i,j |, (18)

Condition (3a) holds, that is,
X

i0,j0,k0

⌘(k
0
)

i0,j0⇢
(k0

)

i0,j0M
(k0

)

i0,j0 � ⌘(k)i,j ⇢
(k)
i,j

=
�

2d(d� 1)

�
� | (k)

i,j ih 
(k)
i,j |

�
⌫ 0, 8i, j, k. (19)

Therefore, the optimal success probability pG(E) is

pG(E) =
X

i,j,k

⌘(k)i,j Tr(⇢
(k)
i,j M

(k)
i,j ) =

1 + �(d2 � 1)

2d(d� 1)
. (20)

For a measurement {M (k)
i,j }i,j,k with

M (1)

i,j =
1

d� 1
|iihi|⌦ |iihi|, M (3)

i,j = |iihi|⌦ |jihj|,

M (2)

i,j =
1

d� 1
|jihj|⌦ |jihj|, M (4)

i,j = |jihj|⌦ |iihi|. (21)

Condition (15) holds, that is,
X

i0,j0,k0

⌘(k
0
)

i0,j0⇢
(k0

) PT

i0,j0 M (k0
) PT

i0,j0 � ⌘(k)i,j ⇢
(k) PT

i,j (22)

=
�

4d(d� 1)

�
� i,j + 2| (5�k)

i,j ih (5�k)
i,j |

�
⌫ 0 8i, j, k,

where

i,j = (|iihi|+ |jihj|)⌦ (|iihi|+ |jihj|). (23)

Moreover, the measurement {M (k)
i,j }i,j,k in Eq. (21) is a

LOCC measurement since it can be implemented by per-
forming the same local measurement {|lihl|}d�1

l=0
on two

subsystems. Thus, Corollary 6 and Eq. (20) lead us to

pL(E) = qG(E) =
X

i,j,k

⌘(k)i,j Tr(⇢
(k)
i,j M

(k)
i,j )

=
2 + �(d2 � 2)

4d(d� 1)
= pG(E)�

�d

4(d� 1)
. (24)
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In the case of d = 2, Eqs. (20) and (24) coincide with the
existing results in Ref. [15].
We note that finding pG(E) or qG(E) in discriminat-

ing separable quantum states can be useful in studying
the nonlocal phenomenon of separable quantum states,
namely nonlocality without entanglement(NLWE) [5, 6].
For the minimum-error discrimination of a separable
state ensemble {⌘i, ⇢i}ni=1

, NLWE occurs if the guess-
ing probability pG(E) cannot be achieved only by LOCC,
that is, pL(E) < pG(E). From Lemma 3 and Inequal-
ity (6), qG(E) < pG(E) implies pL(E) < pG(E), there-
fore the occurrence of NLWE. Moreover, even if qG(E) >
pG(E), we can show the NLWE phenomenon in terms
of {⌘i, ⇢PT

i }
n
i=1

because the partial transposition of any
separable state is another separable state and the roles of
pG(E) and qG(E) are interchanged for the minimum-error
discrimination of {⌘i, ⇢PT

i }
n
i=1

.
It is an interesting future work to investigate good

conditions of optimal local discrimination in multiparty
quantum systems having more than two parties. It is also
natural to ask if our results are still valid for other opti-
mal discrimination strategies other than minimum-error
discrimination.
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A continuous-variable (CV) quantum state of light is a
fundamental quantum resource for quantum information
technologies. For example, a single mode CV quantum
state can make quantum enhancement in quantum pa-
rameter estimation [1] and quantum key distribution [2].
Moreover, a single mode quantum state is utilized to con-
struct quantum entanglement [3]. To exploit the experi-
mentally generated CV quantum state for quantum infor-
mation technologies in practice, it is essential to confirm
the nonclassicality of the state.
The nonclassicality can be detected by performing

quantum state tomography (QST), but QST needs in-
formationally complete measurements and a complicated
reconstruction process [4]. Otherwise, high-order mo-
ments [5] or a characteristic function method [6] can
be used to detect nonclassicality with only a single
quadrature measurement. These methods however re-
quire substantial data to achieve su�cient statistical sig-
nificance. Even worse, all of these methods face false-
positive detection of nonclassicality under coarse-grained
measurement [7], where nearby measurement outcomes
are grouped as a single bin and produce the same result.
Coarse graining commonly occurs in realistic quantum
measurement, so reliable nonclassicality criteria compat-
ible with coarse-grained measurement is essential in real
experiments.
In this work [8], we present experiments that reli-

ably detect the nonclassicality of quantum states under
coarse-grained homodyne detection. Furthermore, our
method with coarse-grained e↵ect detects the nonclassi-
cality more e�ciently than the well-known normally or-
dered moments method [5] even with fine-grained homo-
dyne detection.
Our nonclassicality test considers a single-quadrature

probability distribution P (x) of a quantum state. A non-
classicality test can be conducted by noticing that the
probability distribution of any classical state cannot have
a narrower structure than a coherent state because any
classical state can be expressed as a statistical sum of
coherent states. R(s) = P (s)P (�s)es

2

/P (0)2 allows us
to compare the width of the probability distribution of

⇤croh@kaist.ac.kr
†yoon_yd@kaist.ac.kr
‡jiyong.park@hanbat.ac.kr
§youngsikra@gmail.com

a given state with a coherent state. Specifically, R < 1
implies that the probability distribution has a narrower
structure than a coherent state, i.e., the state is non-
classical [9]. This test can be adapted for coarse-grained
measurement:

R =
CdC�d

C2
0

e�
2d2

. (1)

Cm represents the count of measurement outcomes in a
range of [(m�1/2)�, (m+1/2)�] with a bin size �. R < 1
certifies the nonclassicality of a given CV state. This test
uses counts of three bins from coarse-grained data, so we
call this nonclassicality test a three-bin test.

We experimentally demonstrate the three-bin test on
squeezed vacuum states with various phase di↵usions.
Our experimental setup is shown in Fig. 1. We use a
2-mm-thick BiBO crystal for type-I spontaneous para-
metric down-conversion in the synchronously pumped op-
tical parametric oscillator (SPOPO). SPOPO generates
squeezed light in the below-threshold condition, and we
add the Gaussian phase noise. We measure the x̂ (squeez-
ing) quadrature data of phase-di↵used squeezed vacuum
by homodyne detection.

Fig. 2 (a) shows the three-bin test conducted using the
coarse-grained x̂ quadrature data obtained by the experi-
ment. The hatched three bins are selected, obtaining the
R = 0.62 ± 0.05 < 1, where d = 3 and � = 0.5. This
result implies that the three-bin test detects nonclassi-
cality of phase-di↵used squeezed vacuum. To optimize
this three-bin test, we fix d, and change � to check the
e↵ect of bin size. In Fig. 2 (b), R = 0.60 ± 0.05 < 1 at
� = 0.55 gives the smallest R value, where the bin size is
optimized for the d = 3 case. We also check the perfor-
mance of the three-bin test compared with the conven-

SHG BiBO

BS Pulse 
shaperTi:Sapphire

SPOPO

BiBO

Phase-diffused
squeezed vacuum

BS

LO

HD

phase

Figure 1: Experiment setup.
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Figure 2: (a) Three-bin test with coarse-grained quadrature data of the phase-di↵used squeezed vacuum. (b) E↵ect
of the bin size on three-bin test. (c) Performance comparison between the moment method (moment) and three-bin
test (bin).

tional higher-order moment method. A violation degree
V is defined as the ratio between the distance from the
classical limit and its standard deviation on each method.
A positive V shows the detection of nonclassicality, and
the larger positive V denotes the strong statistical sig-
nificance of nonclassicality detection. In Fig. 2 (c), the
three-bin test always outperforms the moment method
with fine-graining detection. Moreover, the three-bin test
reliably detects nonclassicality in the range of phase dif-
fusion shown in Fig. 2 (c), while the high-order moments
method cannot detect nonclassicality at large phase dif-
fusion.
In conclusion, we have experimentally demonstrated

reliable CV nonclassicality detection under coarse-
grained measurement. Our three-bin test employs coarse-
grained data to directly investigate the width of the
phase-space structure, so there is no false detection of the
nonclassicality under coarse-grained measurement. We
have tested phase-di↵used squeezed vacuum to compare
the three-bin test with conventional high-order moments
criteria, and the former outperformed the latter in the
robustness under phase di↵usion and the statistical sig-
nificance. Our results strongly suggest that systematic
and rigorous approaches to coarse-graining models may
provide fundamental and practical tools in quantum in-
formation technologies.
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We propose a natural application of Quantum Linear Systems Problem (QLSP) solvers such as
the HHL algorithm to e�ciently prepare highly excited interior eigenstates of physical Hamiltoni-
ans in a variational manner. This is enabled by the e�cient computation of inverse expectation
values, taking advantage of the QLSP solvers’ exponentially better scaling in problem size without
concealing exponentially costly pre/post-processing steps that usually accompanies it. We detail
implementations of this scheme for both fault-tolerant and near-term quantum computers, analyse
their e�ciency and implementability, and discuss applications and simulation results in many-body
physics and quantum chemistry that demonstrate its superior e↵ectiveness and scalability over ex-
isting approaches.

Introduction.— The study of the spectral properties of
physical systems plays a central role in physics, chem-
istry, and materials, and constitutes a leading candidate
for quantum computers to display an advantage over clas-
sical approaches [1–6]. While the study of ground states
with quantum computers has been an active area of re-
search, excited states have received comparatively less
attention due to its greater complexity and intractability
[7, 8]. Despite recent developments to solve for excited
states with near-term quantum computers [9–15], most
existing approaches explore a limited number of eigen-
states close to the ground state, lacking scalability for
highly excited states.

Nonetheless, the development of theoretical and com-
putational methods to study excited states remain cru-
cial for a plethora of reasons, from the understanding
of the ergodic-localization phase transition of disordered
many-body systems [16–18], the calculation of reaction
rates and binding energies of molecules [19, 20] and
photochemistry [21], to an understanding of biological
processes such as photosynthesis [22] and human vision
[23]. Classically, when analytical or approximative treat-
ments are inadequate, one resorts to large scale compu-
tational approaches such as Lanczos methods combined
with spectral transforms [18] and machine learning meth-
ods [8], but they are ultimately hampered by demanding
memory and time requirements that scale exponentially
with system size.

The application of quantum computers to linear al-
gebraic tasks constitutes another promising avenue with
wide-reaching applications. Among them is the solution
of linear systems of equations and its quantum variant,
the Quantum Linear Systems Problem (QLSP), which,
given input matrix A and quantum state |bi seeks the
preparation of a quantum state |xi that solves the linear
system A |xi = |bi (up to a normalization factor, which
we hide in the main text). An e�cient solution for the
QLSP on quantum computers was first proposed by Har-
row, Hassidim and Lloyd [24], which yielded an exponen-

tial improvement in the scaling in input matrix dimension
over the best general classical algorithm known. Since
then, a flurry of work have resulted in improved algo-
rithms with better scalings [25–28]. The development of
variational QLSP solvers that are feasible in near-term
devices have also been proposed and tested on current
quantum computers [29–32].

However, the exponential improvement over classical
solvers comes with several important caveats that pre-
vents straightforward application [33]. Besides requiring
A to be sparse and well-conditioned, QLSP solvers out-
put a quantum state, only allowing e�cient access to its
statistical quantities. Access to the wavefunction ampli-
tudes that it encodes require further processing, which
may scale as the exponentially many number of ampli-
tudes if complete information is desired. The encoding of
the entries of~b as amplitudes of a quantum state |bi is also
non-trivial, facing the same complexity for unstructured
inputs. Any application of QLSP solvers must there-
fore conform to these potentially limiting requirements
to truly harness the exponential improvement, of which
there are limited instances [34–37]. Indeed, the search for
such applications constitutes an interesting and di�cult
problem in itself.

In this work, we propose a framework with which
QLSP solvers can naturally be applied to solve for highly
excited states of physical and chemical systems with
both near-term and fault-tolerant quantum computers.
Inspired by variational algorithms and classical diago-
nalization techniques based on spectral transformations,
this algorithms prepares arbitrary excited eigenstates of
Hamiltonians in a variational manner, which is enabled
by the e�cient computation and optimization of inverse
expectation values on quantum computers. Our main in-
sight is in realizing that QLSP solvers can be utilized in a
natural manner when its inputs are taken to be Hamilto-
nians and quantum states corresponding to physical sys-
tems. The resulting procedure then leverages the e�cient
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representation of physical quantum states on quantum
computers and the exponential speedup of QLSP solvers,
without concealing exponentially costly processing steps
that appear in classical linear algebraic applications.

Moreover, this procedure does not su↵er from resource
limitations plaguing existing iterative near-term quan-
tum approaches for the preparation of excited eigen-
states, most of which require exponentially many circuit
executions with increasing system size when targeting
high-energy states. Instead, our algorithm targets ar-
bitrary eigenstates directly with an e�ciency that de-
pends mainly on the local density of states (LDOS) near
the target, potentially enabling applications in near-term
devices.

Our work is structured as follows. We begin with
a description of the algorithm in an implementation-
independent manner. We then detail the fault-tolerant
and near-term implementations of the algorithm, fol-
lowed by analyses of their complexities and implementa-
tional costs. Next, we discuss promising applications of
the procedure in many-body physics and chemistry, sup-
plemented with illustrative numerical results when solv-
ing for the interior eigenstates of molecular and lattice
Hamiltonians. We refer the reader to the appendices for
details throughout the text.

The algorithm.— We begin by outlining the algorithm
and its features in an implementation-independent man-
ner. To prepare a target eigenstate |�ki of H with energy
�k, we first require a shift � 2 R chosen in (�k�1,�k+1),
and an easily preparable quantum state denoted |0i⌦n.
The description of the algorithm is then as follows:

1. Variational state preparation : Prepare a
parametrised input state |b(✓)i with a unitary
ansatz U(✓) |0i⌦n = |b(✓)i.

2. Inverse expectation estimation : Compute an
approximation to C(✓) = hb(✓)| (H � �1)�1 |b(✓)i:

(a) Solution of the QLSP of H � �1 and

|b(✓)i : Obtain the quantum state |x̃(✓)i ⇡
(H � �1)�1 |b(✓)i by solving the QLSP (H �
�1) |x(✓)i = |b(✓)i with a quantum computer,
with � chosen in (�k�1,�k+1).

(b) Expectation estimation : Compute the
expectation value of H � �1 on the output
state |x̃(✓)i, which approximates hb(✓)| (H �
�1)�1 |b(✓)i.

3. Classical optimiser feedback : Using C(✓) as a
cost function to be optimized (maximized if � in
(�k�1,�k), minimized if � in (�k,�k+1)), use an
iterative classical optimiser to determine the next
set of parameters ✓0.

4. Optimise over variational parameters until

convergence : Repeat steps 1 and 2 with up-
dated parameters until the classical optimizer con-
verges, yielding optimal parameters ✓⇤. Finally, re-
peat step 1 with ✓⇤ to prepare an approximation

of |�ki. The final optimized parameters are stored
e�ciently in classical memory.

By variationally preparing a quantum state with optimal
shift-inverted energy, the target eigenstate is obtained,
because extremal eigenstates of the shift-inverted Hamil-
tonian (H ��1)�1 correspond precisely to the target ex-
cited eigenstate of the original Hamiltonian H. This pro-
cedure heavily penalises eigenstates near the target by
either repelling or shifting them to the other end of the
transformed spectrum, which is a reason it outperforms
simpler methods such as spectral folding/shift-squaring
[9, 11] which further concentrate neighboring eigenstates.
Arbitrary eigenstates can also be targeted as long as an
estimate of its energy is known, circumventing the lim-
itations of existing iterative variational algorithms that
are ill-adapted for highly excited eigenstates (Surveyed
in Appendix. (E 2)).

A key step in this procedure is the estimation of the ex-
pectation value of an inverted Hermitian operator hH�1i
- we refer to this as inverse expectation estimation. This
is enabled through the solution of a QLSP (Step 2.a)
and the measurement of H on the output (Step 2.b), for
H |xi = |bi implies:

hb| H�1 |bi = hx| H†H�1H |xi = hx| H |xi (1)

due to the self-adjointness of H. Depending on the re-
sources required for the implementation of the QLSP
solver and expectation estimation subroutines, the algo-
rithm can either be classified as requiring fault-tolerance
or feasible in near-term devices, which we detail in the
following sections. For the former case, we describe an
e�cient implementation with the HHL algorithm with
runtime that scales polylogarithmically with the dimen-
sion N of the input matrix and polynomially with its
condition number , sparsity s and LDOS near the tar-
get eigenstate.

Secondly, the QLSP’s input state |bi possesses struc-
ture that can be exploited, in that it should ultimately
correspond to eigenstates of physical systems. This
means that U(✓) can be chosen in a physically moti-
vated manner with e�cient implementations such as the
adaptive [38, 39] or unitary coupled-cluster type [40, 41]
ansatzes for chemistry and the Hamiltonian Variational
Ansatz for lattice models [42]. Ongoing studies to avoid
the appearance of barren plateaus that limit trainability,
such as the usage of motivated initialization strategies
and ansatzes will also play important roles in keeping
U(✓) e�cient [43, 44].

Therefore, by representing quantum states directly on
a quantum computer, and solving QLSPs with quantum
algorithms with exponentially improved scalings in ma-
trix dimension and at most polynomial deteriorations in
other parameters, this procedure likely outperforms clas-
sical implementations of shift-invert diagonalization. For
these reasons, we argue that our algorithm involves QLSP
solvers in a natural manner that bypasses their usual
caveats (elaborated in Appendix. (B)).
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Fault-tolerant implementation.— With access to fault-
tolerant quantum computers, both expectation estima-
tion and QLSP, and hence inverse expectation estimation
can be performed e�ciently with quantum algorithms at
each iteration of the optimisation loop. In this section, we
choose the QLSP solver to be the well-studied HHL algo-
rithm for concreteness, adopting similar assumptions as
HHL [24] (c.f. Appendix. (A 1) for review, notations, and
assumptions). In principle, algorithms with improved
scalings can be used.

The solution of the QLSP is the most demanding sub-
routine of the procedure, involving long coherent evolu-
tion of a quantum state with a circuit shown in Fig. (2).
To adapt it for shift-inversion, we modify the eigen-
value inversion part (consisting of a Ry(✓) Pauli rota-
tion controlled by qubits of the eigenvalue register with
✓ = arccos(C/�̃)) by choosing ✓ = arccos(C/(�̃ � �)),
resulting in the transformation:

X

j

�j

����̃j

E
|uji |0i !

X

j

�j

s
1 � C2

(�̃j � �)2

����̃j

E
|uji |0i

+ �j

C

�̃j � �

����̃j

E
|uji |1i .

(2)

Post-selecting the ‘1’ states of the ancilla qubit and nor-
malizing then yields:

X

j

�j

�̃j � �

����̃j

E
|0im |1i ⌘ |x̃0i |0im |1i , (3)

where |x̃0i is an approximation to the solution |x0i of:

(H � �1) |x0i = |bi . (4)

The choice of the constant C must also be modified ac-
cordingly to satisfy unitarity while at the same time re-
maining large to maximise the probability of obtaining
the outcome ‘1’. This results in the choice:

C = min
i

{|�i��|} = min{|�k ��|, |�k+1��|, |�k�1��|}.

(5)
Finally, as our goal is to transform �k to the end of the
spectrum, we choose � to be between �k and �k+1 (or be-
tween �k�1 and �k), but not too close to either values to
keep C as large as possible. This implies that the LDOS
near �k will impact the success probability of the algo-
rithm, similar to how input matrices with large condition
numbers a↵ect the HHL algorithm. Amplitude amplifi-
cation is expected to improve the success probability by a
quadratic factor. This also means that the resulting com-
plexity does not depend directly on the position of the
target eigenstate in the spectrum, but rather on the local
spectral properties around the target eigenstate. This al-
lows the algorithm to be executed successfully as long as
the LDOS is not too high around the target eigenstate.

Finally, the expectation value hx̃| (H � �1) |x̃i at each
iteration of the optimisation can be computed with QPE-
based techniques [45], operator averaging, or with the
SWAP test since hx| A |xi / hx|b|x|bi.

Error and complexity of the fault-tolerant

implementation.— Firstly, we remark that the only
e↵ect of modifying the HHL algorithm to introduce a
shift � is to change the success probability to depend on
the LDOS near the shift (Eq. (5)); QPE is still performed
on H, which has eigenvalues �1, ...,�N between 1/ and
1.

Denote by h |M | i
est

the estimated value of h |M | i.
An upper bound for the error in the expectation value
estimated from the output of the QLSP algorithm ✏ can
be split into:

✏ = | hx̃|M |x̃i
est

� hx|M |xi |
 | hx̃|M |x̃i

est
� hx̃|M |x̃i | + | hx̃|M |x̃i � hx|M |xi |

⌘ ✏exp + ✏HHL,
(6)

with ✏exp ⌘ | hx̃|M |x̃i
est

� hx̃|M |x̃i | the error from the
imprecise estimation of the expectation value of M on
the state |x̃i, and ✏HHL ⌘ | hx̃|M |x̃i�hx|M |xi | the error
from the imprecise output of the HHL algorithm.

For ✏HHL, we derive an upper bound for it to be
O(kMk1



t0
), where kMk1 is the largest eigenvalue of

M , and t0  t where t is the time that appears in eiHt

for QPE (Appendix. (C)). As the observable M to be
measured is always taken to be equal to the input of
the QLSP solver H � �1, and � is always chosen be-
tween the largest and smallest eigenvalues of H, the
shifted operator have eigenvalues in [1/ � 1, 1 � 1/],
which results in O(( � 1)/t0). This implies that an er-
ror of  ✏HHL will require taking t0 = ( � 1)/✏HHL.
Since the depth required by QPE (within HHL) scales
as O(log(N)s2t0) (or O(log(N)s2(� 1)/✏HHL) in terms
of ✏HHL), while the preparation of |b(✓)i is assumed
to scale as O(polylogN) with the choice of an e�cient
variational ansatz U(✓), the resulting circuit depth to
prepare |x̃i is O(log(N)s2( � 1)/✏HHL + polylog(N)).
Additionally, O(p2) repetitions are required to success-
fully post-select the shift-inverted quantum state, where
p = min{|�k � �|, |�k+1 � �|, |�k�1 � �|}, which can be
reduced to O(p) by amplitude amplification.

For ✏exp, expectation estimation of hHi by QPE-based
methods contributes O(1/✏exp) additional operations,
while operator averaging contributes at most O(M/✏2

exp
)

repetitions where M is the number of terms in H.
For the number of qubits, an ancillary qubit plus

n = log(N) qubits to encode |bi are always required. Im-
posing that the target eigenstate’s energy must be dis-
tinguishable from its neighbors, we find that the size
of the eigenvalue register also scales e�ciently as m =
O(�log(�k)), where �k ⌘ min{|�k ��k�1|, |�k ��k+1|} is
the smallest spectral gap between the target eigenstate
|�ki and its neighbors (elaborated in Appendix. (C)).
Near-term implementation.— We describe how the al-

gorithm can be implemented in a completely variational
manner that does not require fault-tolerance, and is thus
executable on near-term devices. An example we use to
illustrate this is the VQLS [29], a variational QLSP solver
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requiring circuit depths and repetitions that scale only
polynomially in the number of qubits, and a constant or
linear number of ancillary qubits. Using VQLS as the
QLSP solver in Step 2.a of the algorithm in conjunc-
tion with operator averaging for expectation estimation
in Step 2.b, inverse expectation estimation can therefore
in principle be performed on near-term quantum com-
puters.

Again, solution of the QLSP is the most demanding.
Given an input matrix H which can be decomposed as
a linear combination of L unitary matrices with complex
coe�cients H =

P
L

i=1 ciUi and quantum state |bi, VQLS
solves the QLSP in a variational manner by minimising
the cost function CV QLS(�) = | hb|H|x(�)i |2 with the
ansatz V (�), where H |x(�)i = V (�) |0...0i. In our con-
text, the Hamiltonian H can naturally be decomposed as
a linear combination of unitaries [46, 47], while |bi cor-
responds to the variational state |b(✓)i (prepared with
U(✓)) with which the shift-inverted energy C(✓) is min-
imised.

Finally, the estimation of the expectation value
hx̃| (H � �1) |x̃i during the classical optimization loop
over ✓ can be performed by operator averaging, a stan-
dard approach for near-term algorithms [9].

Analysis of the near-term implementation.— The time
complexity of the near-term implementation depends on
the whether both the computation and optimisation of
the outer (C(✓)) and inner (CV QLS(�)) loops can be per-
formed e�ciently.

For the outer loop, the computation of C(✓) with op-
erator averaging incurs no additional circuit depth, at
the expense of repetitions that scale as O(M/✏2), where
M is the number of terms in H. Heavy parallelization
and recent developments such as e�cient term grouping
strategies [48–50] and QPE-based enhancements [51] are
expected to improve this scaling. For the inner loop, the
cost of computing CV QLS(�) depends on the choices of
U(✓) and V (�). Denoting their depths as DU and DV

respectively, its computation with the Hadamard test re-
quires O(L2) circuits of depth / 2DU + DV to be exe-
cuted at each iteration of the classical optimisation over
✓. If DU and DV can be taken to scale e�ciently in n,
each circuit execution is e�cient.

This brings us to trainability. The issue for U(✓)
was discussed earlier. For V (�), numerical results [29]
for a particular ansatz choice with DV that scales lin-
early with n indicate scaling of the runtime of VQLS in
problem size, condition number, and error that is e�-
cient and comparable with known optimal bounds [24].
This provides positive indications on the trainability of
CV QLS(�), although the issue is subtler [32, 52] and re-
quires further study of the VQLS, which is beyond the
scope of our discussion. Nonetheless, we expect physi-
cally motivated choices of V (�) to be crucial, an example
being the ADAPT-VQE ansatz that have been shown to
circumvent the barren plateau problem in certain situa-
tions [38, 39].

Applications.— Problems arising from chemistry and

many-body physics satisfy the criteria of the algorithm,
and are natural candidates that can exploit the speedup
o↵ered by QLSP solvers. Namely, their Hamiltonians
generally admit sparse representations, inputs to the
QLSP solver can be prepared with physically motivated
ansatzes that exploit the target eigenstate’s structure
without the need to read from a classical vector, and only
statistical quantities such as expectation values need to
be extracted from the QLSP solver’s output, without the
need for complete tomography. The output of the algo-
rithm is then a small set of real numbers ✓⇤ that allows
e�cient preparation of the target quantum state, from
which meaningful physical quantities can be extracted.

In the context of ab initio methods in chemistry and
materials, our algorithm allows a primary output – the
quantum state itself – to be obtained, which can then
be probed for useful quantities such as dipole moments,
partial charges, absorption spectra and so on. This is tra-
ditionally a di�cult task in large scale even for pioneering
machine learning methods [8], and is important for a va-
riety of applications as discussed in the introduction. We
refer the reader to a related classical algorithm that ex-
ploits shift-inversion – known as the Harmonic Davidson
method [53] – for its numerous applications. As an il-
lustration, Fig. (1) shows numerical simulations of our
algorithm applied to prepare highly excited (k = 500th)
eigenstates of a 10-qubit molecular Hamiltonian – the
Lithium Hydride (LiH) molecule in the STO-3G basis
– at di↵erent bond lengths to recover its potential en-
ergy surface, compared against spectral folding, another
existing variational algorithm. We consistently obtain
superior results across all types of problems considered,
described in Appendix. (D 1).

Many-body quantum systems constitute another nat-
ural candidate due to the exponential scaling of classical
resources needed to simulate larger systems. In partic-
ular, many-body localised (MBL) systems have recently
become a subject of interest in our context [16, 17], due
to the presence of a mobility edge in energy, resulting in
the MBL-ergodic transition occurring at di↵erent criti-
cal disorders for di↵erent energies [54]. A detailed un-
derstanding of this dynamical phase transition therefore
entails a study of the entire spectrum instead of only
the ground state, requiring the preparation and study of
highly excited eigenstates. In fact, classical shift-invert
diagonalisation constitute the state-of-the-art, but is ulti-
mately limited by exponentially demanding memory re-
quirements to less than ⇠ 26 spins [18]. Since QLSP
solvers outperform existing iterative classical solvers, we
expect our algorithm to also perform well in this context,
potentially allowing the study of higher-dimensional lat-
tices in the near-term. This is explored and verified in
Appendix. (D 1 b).

Discussion and outlook.— Immediate implementation
of the near-term variant of the algorithm will likely
be di�cult for molecular Hamiltonians of classically in-
tractable sizes due to the number of terms that gener-
ically scale as O(n4) [50], leading to a large number of
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Figure 1: Energy spectrum of LiH computed with the
shift-inversion algorithm (blue) and the spectral

folding/shift-squaring algorithm (red), compared to ED
results (dark grey line). An eigenstate near the middle

of the spectrum (k = 500) is targeted at all bond
lengths. Exact potential energy surfaces for other
energies are also shown (light grey lines). Each

datapoint is obtained by averaging 100 runs of the
algorithm with randomly chosen initial parameters, and
standard deviations are indicated by vertical error bars.

The ansatz of Fig. (3) with 12 layers and the
SLSQP/BFGS optimizers are used. Inset shows Mean
Absolute Error (MAE) from exact results, with errors
bars indicating standard deviations. We observe better
accuracy and consistent converges with shift-inversion.

circuits needed for VQLS. Ongoing studies such as the
incorporation of adaptive ansatzes, term grouping strate-
gies, and measurement optimisation will severely reduce
this requirement. On the other hand, lattice models such
as the disordered Heisenberg model which exhibits MBL
appear within reach : the cost of expectation estima-

tion is reduced to a constant scaling after qubit-wise-
commutation grouping, while the number of terms scale
only as O(nD), where D is the lattice dimensionality.

A potential impediment is the dependence on the
LDOS near the target, a limitation also shared by clas-
sical spectral transformation techniques [18, 55]. While
this is not problematic for systems such as Anderson lo-
calised models [56] and certain electronic structure prob-
lems [57], systems that exhibit exponential concentration
of the LDOS at certain energies may prohibit e�cient im-
plementation. To weaken this dependence beyond ampli-
tude amplification, pre-conditioners and filter functions –
which are also crucial techniques in state-of-the-art clas-
sical methods [18] – will be important. Alternatively,
the algorithm can be used as a warm-starting subroutine
that prepares a quantum state with high overlap with
the target eigenstate, which is then taken as the input
of other algorithms such as QPE or filtering algorithms
[58], in the same spirit as adiabatic inspired state ini-
tialisations for ground state searches. Similarly for the
near-term implementation, rough initial outputs can be
refined with additional variational circuits that approx-
imate excitation operators [11] or variance-minimisation
techniques [15]. Finally, we note that characteristics be-
yond the energy can be exploited to overcome the ex-
ponentially concentrating DOS, an idea that has been
exploited in DMRG-based approaches for MBL where
large di↵erences in spatial properties of neighboring ex-
cited eigenstates allow them to be resolved despite being
exponentially close in energy [59, 60].

In practice, prior information on the spectrum may
also be required to select a suitable shift � and normalise
H. Well-studied strategies in the context of chemistry
such as e�cient approximations of the LDOS near the
target [61, 62] and iterative approaches [63] can be ap-
plied for shift selection, while standard VQE can be used
to obtain extremal eigenvalues to normalize H.

Summarising, we have proposed an algorithm that
can e�ciently prepare highly excited states of physical
and chemical Hamiltonians, which exploits the e�ciency
QLSP of solvers while avoiding its usual caveats. Demon-
strations in existing devices also appear attainable, espe-
cially for lattice models. We believe that the practical rel-
evance of our algorithm provides compelling motivations
to improve on existing QLSP solvers and other aspects
of the algorithm.
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Abstract. This paper introduces QMINE (Quantum Mutual Information Neural Estimation), a method
for estimating von Neumann entropy and quantum mutual information. QMINE utilizes a quantum neural
network to minimize a loss function that determines von Neumann entropy, leveraging the advantages of
quantum data processing and the e�ciency of quantum neural networks compared to classical counter-
parts. To create the loss function, we propose the Quantum Donsker-Varadhan Representation (QDVR),
a quantum version of the Donsker-Varadhan representation. By applying the parameter shift rule on
parametrized quantum circuits, QMINE can be implemented and optimized. Experimental results validate
the e↵ectiveness of QDVR and demonstrate the performance of QMINE in estimating quantum mutual
information.

Keywords: Quantum Mutual Information, Von Neumann entropy, Quantum neural network, Quantum
Donsker-Varadhan Representation, Parameter shift rule

1 Introduction

In this paper, a method called QMINE (Quantum Mu-
tual Information Neural Estimation) is introduced for de-
termining the von Neumann entropy and quantum mu-
tual information. QMINE utilizes a quantum neural net-
work to minimize a loss function that evaluates the von
Neumann entropy. To estimate the von Neumann en-
tropy, a quantum version of the Donsker-Varadhan rep-
resentation, known as the Quantum Donsker-Varadhan
Representation (QDVR), is proposed to generate an ap-
propriate loss function. QMINE o↵ers a potential ad-
vantage in estimating von Neumann entropy using only
O(poly(r), poly( 1✏ )) copies of the quantum state, which is
advantageous in terms of computational resources. How-
ever, the challenging barren plateau problem and the de-
velopment of e�cient quantum training methods need to
be further investigated to fully harness this potential.

2 Quantum Donsker-Varadhan Repre-
sentation (QDVR)

The Quantum Donsker-Varadhan Representation
(QDVR) is a mathematical framework that allows quan-
tum neural networks to estimate von Neumann entropy.
It is a quantum adaptation of the classical Donsker-
Varadhan Representation, focusing specifically on quan-
tum entropy instead of relative entropy. QDVR is essen-
tially a modified version of the Gibbs variational prin-
ciple, which operates on density matrices. While the
classical Donsker-Varadhan Representation was used in
MINE [1] to estimate classical mutual information with
classical neural networks, a quantum version of this rep-
resentation is suitable for estimating quantum mutual in-
formation. By estimating the von Neumann entropies

⇤hanwoolmj@kaist.ac.kr
†js lee@norma.co.kr
‡kgjeong6@snu.ac.kr

of specific density matrices, such as S(⇢A), S(⇢B), and
S(⇢AB), the quantum mutual information I(A : B) can
be determined. Furthermore, there exists a variational
formula for von Neumann entropy.

Proposition 1 (QDVR) Let f : Hd⇥d ! R be a func-

tion defined on d-dimensional Hermitian matrices, and

let ⇢ be an r-rank density matrix.

g(T ) = Tr(c⇢T )�log(Tr(ecT )), where c � 2rn+r log

✓
1

"

◆

(1)
Then,

|S(⇢)� inf(g(T ))| < " (2)

for d-dimensional r-rank density matrices T .

3 Von Neumann Entropy Estimation
with Quantum Neural Networks

We will now describe the process of estimating
von Neumann entropy using quantum neural networks,
specifically focusing on parametrized quantum circuits
as an example. Our methodology draws inspiration from
the work of Liu et al. [2], which employs variational au-
toregressive networks and quantum circuits to address
quantum statistical mechanics problems. Let’s begin by
assigning specific values to the variables in T . We define
t as a set of real numbers, {ti|ti 2 R}, and | ii as com-
plex vectors in Cd. Additionally, we assume the rank of
⇢ is denoted as r, and we define T =

Pr
i=1 ti| iih i|.

Consequently, the function g(T ) takes the form g(T ) =
�c
Pr

i=1 tih i|⇢| ii + log (d� r +
Pr

i=1 e
cti). To intro-

duce a unitary operator U that transforms | ii to |ii, we
represent this unitary operator using a set of parameters
✓ as U(✓).
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g(T ) = �c
rX

i=1

tihi|U(✓)⇢U†(✓)|ii+log

 
d� r +

rX

i=1

ecti

!

(3)
By considering U(✓) as a quantum neural network

with ⇢ as its input, we can compute the network’s out-
put by evaluating U(✓)⇢U†(✓). To calculate g(T ) accu-
rately with an error less than ", we must measure the
output of the quantum neural network approximately

O
⇣

Var(cti)
2

"2

⌘
= O

⇣
c2

"2

⌘
times.

Our objective is now to optimize the parameters to
find the maximum value of g(T ). As an example, let’s
consider a parametrized quantum circuit [3] with Pauli

gates as the quantum neural network U(✓) =
Qk

i=1 U(✓i),

where U(✓i) = e�i
✓i
2 Pi . By applying the parameter shift

rule [4], we can observe that

r✓g(t, ✓) =
1

2

h
g
⇣
t, ✓ +

⇡

2

⌘
� g

⇣
t, ✓ � ⇡

2

⌘i
(4)

@g(t, ✓)

@ti
= �chi|U(✓)⇢U†(✓)|ii+ cecti

d� r +
Pr

i=1 e
cti

(5)

To satisfy the conditions ti � 0 and
Pr

i=1 ti = 1,

we can choose ti =
⇣Qi�1

j=1 sin
2 'j

⌘ �
cos2 'j

�
. By per-

forming gradient descent on 'j and ✓i, we can optimize
the quantum circuit. Calculating the gradient requires

O
⇣

c2

"2 ⇥ (number of parameters in the QNN)
⌘

copies of

⇢. Thus, to obtain inf (g (T )) and estimate S (⇢) with an
error less than ", we need

O

✓
1

"2

✓
r2n2 + r2 log2

✓
1

"

◆◆
nparamsntrain

◆

copies of ⇢.
Using analytic gradient measurements in convex loss

functions requires O
⇣

n3

✏2

⌘
copies of ⇢ to converge to a

solution that is O(✏) close to the optimum [5]. Although
situations involving parametrized quantum circuits often
feature non-convex loss functions, many algorithms still
utilize them and achieve quantum speed-ups. We ex-
pect that employing parametrized quantum circuits with
analytic gradient measurements in QMINE will lead to
a quantum speed-up. Furthermore, estimating the von
Neumann entropy using O(poly(r)) copies of ⇢ is feasi-
ble. In future research, we will explore the relationships
between ntrain, nparams, and the approach’s performance.
The key idea is that we have transformed the problem of
estimating quantum mutual information into a quantum
neural network problem.

4 Numerical Simulations

We validate the performance of QMINE in estimat-
ing the quantum mutual information of randomly gener-
ated density matrices through numerical simulations of

a quantum circuit. Our objective is to demonstrate that
QMINE can estimate the quantum mutual information
with a high degree of accuracy. Additionally, we con-
duct an analysis of the rank and trainable parameters,
along with simulations to support the results obtained
from QDVR.

4.1 Rank Analysis

In accordance with QDVR, we establish that if the
rank of the density matrix ⇢ is denoted as r, setting the
rank of the parameter matrix T to r is su�cient. Hence,
our aim is to find the optimal T that provides an accurate
estimation of the von Neumann entropy. To investigate
the influence of the rank, we experiment with di↵erent
ranks of T , denoting r = rank(⇢) and k = rank(T ). In
this analysis, we simulate a scenario with N = 5, D = 30,
r = 8, and c  80, where N represents the number of
qubits, D denotes the circuit depth, r signifies the rank of
the density matrix, and c is calculated using QDVR (for
more details, refer to the supplementary material). The
results depicted in Figure 1 illustrate that when k � r,
QMINE converges to the correct value, while for k < r,
it converges with a high error. This phenomenon is ob-
served consistently in other cases as well, thereby sup-
porting QDVR’s assertion that the rank of the optimal
solution T is r. Given that convergence is faster when
k = r compared to when k > r, it is advisable to uti-
lize QMINE with k = r. Please refer to Figure 1 for the
results.

Figure 1: The green curve represents QMINE with the
exact rank, displaying the best performance with rapid
convergence and low error. The red curve represents
QMINE with a lower rank, which exhibits high error
during convergence. Finally, the blue curve represents
QMINE with a higher rank, converging with low error
but at a slower pace.

4.2 Analysis of the Number of Trainable Param-
eters in the Quantum Circuit

To assess the performance of QMINE, we analyze the
impact of varying the depth of the quantum circuit. Our
simulations involve N = 5, D = 30, r = k = 8, and
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c  80. The experimental findings confirm that as the cir-
cuit depth increases and the number of parameters grows,
the estimation accuracy of QMINE improves. Figure 2
illustrates the results, indicating that a circuit depth of
20 achieves optimal performance. It converges quickly
with a lower error compared to a depth of 30, which, al-
though yielding a similar error, takes longer to converge.
These results highlight the significance of selecting an
appropriate circuit depth (corresponding to the number
of parameters) in QMINE. The complexity of copying
the density matrix is determined by the number of pa-
rameters (nparams) and the number of training iterations
(ntrain). Thus, when applying QMINE in various scenar-
ios, choosing the suitable circuit depth becomes crucial.
We intend to further investigate this aspect in future re-
search. Please refer to Figure 2 for the results.

Figure 2: The graph displays di↵erent performance out-
comes illustrated by three lines. The green line represents
a circuit depth of 20 with 400 parameters, which showed
the most favorable performance. It rapidly converged
with a minimal error. In contrast, the red line represents
a depth of 10 with 200 parameters, which converged with
a high error. The blue line corresponds to a depth of 30
with 600 parameters, achieving a low error but requiring
a longer convergence time.

4.3 Estimating Quantum Mutual Information

We estimate the quantum mutual information of a ran-
domly generated density matrix using simulations with
N = 4 qubits. For each tested random density matrix,
we achieve an error rate ranging from 0.1% to 1%. Sup-
plementary Information B provides additional details.
Please refer to Figure 3 for the results.
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Abstract. Recently, there has been a study applying the celebrated error mitigation technique, the
“Virtual-Purification” (VPEM) to quantum metrology and successfully reduce the bias caused by noise,
for particular estimation tasks. Beyond the specific tasks, we study factors determining the e�cacy of
the VPEM on general quantum estimation schemes. We find that the closeness between the dominant
eigenvector of a noisy state and the ideal quantum probe (without noise) determines the mitigatable bias.
Next, we show that one should carefully choose the reference point of a target parameter. Otherwise, even
if the dominant eigenvector and the ideal quantum probe are close enough, the bias of the mitigated case
could be larger than the non-mitigated one. Finally, we study the error-mitigated phase estimation scheme
in optical systems, under various noises.

Keywords: Quantum Error Mitigation, Quantum Metrology, Bosonic system

1 Introduction

Recently there has been research applying Virtual-
Purification (VPEM) to quantum metrology to reduce
bias caused by unknown noise [4]. However, while Ref. [4]
presented a framework of VPEM for quantum metrology
and provided examples in which VPEM e↵ectively
reduces a bias, the general applicability of VPEM to
quantum metrology has not been fully understood. In
this work, we study when VPEM can e↵ectively reduce
the bias caused by an unknown noise. In particular,
we identify two crucial factors that determine whether
VPEM can reduce bias. The first one is how close the
dominant eigenvector of a noisy state and the (noiseless)
ideal state are. More specifically, the closeness decides
the achievable amount of reduced bias. The second
one is the reference point of a parameter that we want
to estimate. Assuming that the unknown parameter
to be estimated is small (often called local parameter
estimation), the reference point is the one around which
the unknown parameter varies. In local parameter
estimation, we show that one has to carefully choose
the reference point that gives the smallest bias before
applying VPEM to quantum parameter estimation.
Otherwise, even if the expectation values of Â over the
ideal quantum probe and the dominant eigenvector are
the same, the bias of the mitigated case could be larger
than the non-mitigated case. We emphasize that a
strategy of choosing a reference point is a unique feature
of quantum metrology that has not been considered in
the previous studies.

2 Results

All the detailed caculations and results are in Ref. [1].

⇤h.jeong37@gmail.com

2.1 The dominant eigenvector | i
We consider local parameter estimation where

unknown parameter � is assumed to be small and varies
around a reference point �0 . We analyze how the
bias changes when we apply VPEM to local parameter
estimation. More specifically, we inspect what will be the
leading order of the bias in terms of the noise strength
� when we apply VPEM. First, we inspect the bias of
the non-mitigated case. If we exploit a non-mitigated
quantum probe which corresponds to an error state
⇢̂e(�+�0) to estimate the parameter �, the corresponding
bias is

Be(�,�0,�) =
n�1X

k=1

"
fk(�0) + �

@fk(�)

@�

����
�=�0

#
�k +O(�n).

(1)

Here the derivative over � comes from the linear
regression since we consider small � and we express the
bias using Taylor’s series in terms of noise strength �.
We find that all the coe�cients, fk’s, come from the
di↵erence between the ideal state and the error state.
In other words, all the fk’s depend on the di↵erence
between (i) the expectation value of Â over the dominant
eigenvector and the ideal state, (ii) the eigenvalues of the
error state and 1 (we note that the eigenvalue of the ideal
state is 1), and (iii) the expectation value of Â over the
rest of the eigenvectors and the ideal state. Next, the
bias of mitigated case is

Bmit(�,�0,�) =
n�1X

k=1

"
ak(�0) + �

@ak(�)

@�

����
�=�0

#
�k +O(�n).

(2)

The coe�cients of the mitigated case ak’s show stark
contrast to the non-mitigated case. We find that ak’s
only depends on the di↵erence between the expectation
value of Â over the dominant eigenvector | i and
the ideal state. Therefore, the di↵erence between the
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dominant eigenvector and the ideal state dictates the
leading order in � of the bias while other components in
(ii) and (iii) are suppressed by VPEM. As a consequence,
if | i = | idi, while Be = O(�), which clearly shows
that in the small regime of �, the bias can be reduced by
applying VPEM. However, if the dominant eigenvector
and the ideal state are not close enough, we emphasize
that VPEM cannot even guarantee the constant factor
reduction of the bias even for small noise [1].

2.2 Reference point of the parameter

We emphasize that according to Eqs. (1) and (2), the
bias of both error and mitigation case consist of zeroth
and the first order of �. In addition, both biases are a
function of the reference point �0. Therefore, we can
alleviate the bias by choosing a reference point that
minimizes the zeroth order of � of the bias. We call
the reference point as optimal reference point and denote
it as �opt0 . We note that the optimal reference point of
error and mitigation case could be di↵erent in general
and denote them as �opt0,e and �opt0,mit.
Without appropriate reference point, even if the

dominant eigenvector and ideal state are identical,
(Bmit)2 can be larger than (Be)2 because of an
inadequate reference point instead of the failure of error
mitigation. Therefore, one should consider a reference
point when adopting VPEM to quantum metrology,
unlike expectation value estimation [2, 3].
In general, the optimal reference point depends on

noise strength, �opt0 = �
opt
0 (�). Although choosing an

optimal reference point seems not feasible for an unknown
noise, we can still apply our method to some situations.
Let us assume that we know the type of occurring noise
during the estimation, but, we do not know the noise
strength �. First, when the optimal point does not
depend on�, one can choose the optimal point regardless
of noise strength. When the optimal point depends on
�, a possible choice of the reference point is to use some
prior knowledge in such as way that

�
opt
0 = argmin

�0

Z �2

�1

p(�)B(� = 0,�0,�)2d�, (3)

as a reference point that minimizes the zeroth order
of bias in the average sense. Here p(�) is the prior
distribution of noise strength � and the bias B (�opt0 )
stands for Be/mit (�opt0,e/mit). When the optimal point
does not rapidly change as �, the above choice can be
su�cient.

2.3 Phase Estimation in optical system

We inspect phase estimation in optical systems with
several quantum probes and di↵erent kinds of noises.

2.3.1 N00N state-photon loss

N00N state as a quantum probe in the presence of the
photon loss, we find that the dominant eigenvector is
equal to the ideal state and the optimal reference point
does not depend on a noise strength. Fig. 1 exhibits
simulation results of bias errors with the N00N state in

the presence of photon loss. They show that under the
optimal reference point, VPEM can always e↵ectively
reduce the bias regardless of noise strength and the
value of �. In addition, if one does not carefully choose
a reference point, an error case could have a smaller
bias than a mitigation case even though the dominant
eigenvector and the ideal state are the same.

2.3.2 Squeezed and coherent state-photon loss

Squeezed and coherent state entangled by a beam-
splitter as a quantum probe in the presence of the photon
loss, we find that dominant eigenvector are di↵erent from
the ideal state and the optimal reference point depends
on noise strength. Fig. 2 shows the non-e↵ectiveness
of VPEM-based quantum metrology as implied by our
analysis because of the di↵erence between the dominant
eigenvector and the ideal state. For the most of the
regions of �, Be(�,�

opt
0,e ,�)2 and Bmit(�,�

opt
0,mit,�)2 are

similar in magnitudes.

2.3.3 Squeezed and coherent state-Additive
Gaussian noise

We consider squeezed and coherent state entangled by
a beam-splitter as a quantum probe. For pedagogical
purposes, we consider an additive Gaussian noise, which
might not be directly relevant to experiments. We
assume that Gaussian noise occurs only on the mode of
the coherent state. Furthermore, we assume that �x and
�p that are the standard deviations of the Gaussian noise
are

�x =

r
�

2
e
�r

, �p =

r
�

2
e
r (4)

where r is a squeezing parameter and � is a noise
strength. In this case, we find that the dominant
eigenvector is equal to the ideal state but the optimal
reference point depends on a noise strength. Fig. 3,
shows the validity of the averaged optimal reference point
defined in Eq. (3). We find that under the averaged
optimal reference point, VPEM can always e↵ectively
reduce the bias regardless of noise strength and the value
of �.
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Figure 1: (a)-(c) Simulations of bias (with log scale) exploiting N00N state (N = 5) as a quantum probe in the presence
of photon loss with di↵erent noise strengths. We use Ns = 107 numbers of samples. Solid, dashed, and dot-dashed
lines are theoretical values of the bias errors.

Figure 2: (a)-(c) Simulations of bias (with log scale) using the coherent state (Nc = 2.5) and squeezed vacuum state
(Nr = 2.5) in the presence of photon loss with di↵erent noise strengths. Other features of the figure are the same as
Fig. 1.

Figure 3: (a)-(c) Simulations of bias (with log scale) using the coherent state (Nc = 2.5) and squeezed vacuum state
(Nr = 2.5) in the presence of additive Gaussian noise with di↵erent noise strengths. Other features of the figure are
the same as Fig. 1.
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Abstract. Mitigating measurement errors in quantum systems without relying on quantum error cor-
rection is crucial for the practical development of quantum technology. Deep learning-based quantum
measurement error mitigation has exhibited advantages over the linear inversion method due to its capa-
bility to correct non-linear noise. However, scalability remains a challenge for both methods. In this study,
we propose a scalable quantum measurement error mitigation method that leverages the conditional in-
dependence of distant qubits and incorporates transfer learning techniques. By leveraging the conditional
independence assumption, we achieve an exponential reduction in the size of neural networks used for
error mitigation. Additionally, incorporating transfer learning provides a constant speedup. We validate
the e↵ectiveness of our approach through experiments conducted on IBM’s 7-qubit and 13-qubit systems,
demonstrating excellent error mitigation performance and highlighting the e�ciency of our method.

Keywords: Quantum error mitigation, deep learning, conditional independence, transfer learning

1 Introduction

The susceptibility of quantum computing to noise and
imperfections poses a significant challenge, limiting its
ability to surpass classical capabilities in solving real-
world problems. While the theory of quantum error cor-
rection (QEC) and fault-tolerance holds the promise of
scalable quantum computation, building a fault-tolerant
quantum computer remains a long-term endeavor. Quan-
tum error mitigation (QEM) refers to a set of techniques
that reduces the impact of errors on the outcomes of
quantum computations, as opposed to completely remov-
ing it as done in QEC. QEM is crucial for practical quan-
tum computation, especially in the Noisy Intermediate-
Scale Quantum (NISQ) era [1], as it maximizes the uti-
lization of limited quantum resources and expands the
capacity of quantum systems for solving real-world prob-
lems.
Measurement is an essential operation in quantum

computing, but is prone to errors. In certain quantum de-
vices, measurement errors can severely damage the over-
all computation. For instance, IBM Quantum devices
typically exhibit measurement error rates on the order
of 1%, with some cases reaching as high as 40%. Several
methods have been proposed to mitigate measurement er-
rors [2–6], but their complexity scales exponentially with
the number of qubits, imposing limitations on both scal-
ability and practicality.
In this paper, we present a scalable deep learning-

based method for quantum measurement error mitiga-
tion (QMEM). Our method leverages the concepts of
conditional independence and transfer learning [7] to sig-
nificantly improve the e�ciency compared to previous
methods. Conditional independence assumes that the
impact of measurement cross-talk between distant qubits
is negligible. By incorporating this assumption, we are
able to exponentially reduce the size of neural networks

⇤changwonlee@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

used for QMEM. Transfer learning assumes the existence
of an error component that is shared across all qubits.
This assumption facilitates a constant factor reduction in
training time by e↵ectively leveraging pre-trained mod-
els. To validate our approach, we conducted proof-of-
principle experiments on IBM quantum devices with 7
and 13 qubits. The results demonstrate that the under-
lying assumptions hold and a�rm the e↵ectiveness of our
QMEM method in reducing measurement errors.

2 Background

Many experimental setups for both the quantum cir-
cuit model and quantum annealing use projective mea-
surement in the computational basis to perform read-
out of a quantum state. Moreover, positive operator-
valued measurements can be realized through the projec-
tive measurement with ancillary qubits [8, 9]. Therefore,
our primary focus is the development of error mitigation
techniques to enhance the projective measurement in the
computational basis. An ideal measurement on n qubits
results in the probability distribution, which can be rep-
resented as a vector p = {p1, p2, ..., p2n}. However, the
observed probability distribution in experiments deviate
from p due to measurement errors. We denote the ob-
served probability as p̂i and the error map as N such that
p̂ = N (p). The goal of QMEM is to minimize the loss
function, D(p, p̂) where D is some distance measure.

The linear inversion method (LI-QMEM) assumes a
noise model N (p) = ⇤p and aims to reconstruct the
noise matrix ⇤ through tomography. It produces an
error-mitigated probability vector p̃ = ⇤�1p̂ [2–4]. In
contrast, QMEM can be performed by training a deep
neural network F to approximate the inverse noise func-
tion N�1 [5, 6]. The trained neural network produces
an error-mitigated probability vector p̃ = F(p̂) ⇡
N�1(p̂) = p. This approach, referred to as NN-QMEM,
is capable of correcting non-linear errors, which is not
possible with LI-QMEM [6]. However, both LI-QMEM
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Figure 1: Connectivity of the quantum devices used in
this paper. (a) is 7qubit quantum device (b) is 27qubit
quantum device.

and NN-QMEM su↵er from scalability limitations as the
memory and computation time grow exponentially with
the number of qubits. Recent estimations suggest that
the current classical computational resources can only
handle NN-QMEM for quantum systems of up to 16
qubits [6].

3 Main results

3.1 Theoretical Framework

In NN-QMEM, the size of the neural network can be
exponentially reduced by leveraging the concept of condi-
tional independence. The definition of conditional inde-
pendence is as follows. Consider random variables X, Y
and Z. We say that X and Y are conditionally indepen-
dent given Z if the joint probability of X and Y given Z
can be expressed as p(X,Y |Z) = p(X|Z)p(Y |Z). As an
example, consider a 7 qubit system with qi denotes an ith

qubit. Suppose that the set of qubits A = {q0, q1, q2} and
B = {q4, q5, q6} are connected only through C = {q3} as
illustrated in Fig. 1 (a). Then assuming conditional in-
dependence of subsystems A and B given C, the joint
probability distribution can be written as

p(A,B,C) = p(A,B|C)p(C) = p(A|C)p(B|C)p(C).

To learn how to correct for the full joint probability
p(A,B,C) via deep learning, the number of input nodes
of the neural network must grow exponentially with the
number of qubits. Typically, the total number of nodes
grows linearly with the number of input nodes, and
the number of parameters grows quadratically. On the
other hand, under the conditional independence assump-
tions, one needs three machine learning models that cor-
rect for p(A|C), p(B|C), and p(C) independently. In
this example, the number of input nodes for p(A|C)
and p(B|C) is 23, and is 21 for p(C). Thus the total
number of parameters to be trained is proportional to
2((23)2+(23)2)+(21)2 = 260, whereas for the full model
requires it to be proportional to (27)2 = 16384. Reduced
parameter count in neural networks implies less training
data is needed for convergence. Therefore, by leverag-
ing the conditional independence assumption, the overall
training time can be significantly decreased. Addition-
ally, smaller networks lead to faster inference runtimes.
Hereinafter, we refer to as the qubit corresponding to C
as the conditional qubit.

Figure 2: Partitioning of qubits according to the condi-
tional independence assumption.

The general idea of partitioning the given quantum
system according to the conditional independence is il-
lustrated in Fig. 2. In the figure, Si,j means the jth

subsystem at a partition level i, and ci means the qubit
that bridges the two subsystems partitioned under the
assumption that the subsystems are independent given
the state of ci. The partitioning continues until the sub-
systems in the leaf nodes have a small number of qubits
(e.g. less than 10). If, for example, the partitioning ends
at level 3 in Fig. 2, then we need eight independent neural
networks, one for each leaf node, to correct for a condi-
tional probability distribution p(S3,i|cjckcl), i = 1, . . . , 8
and jkl indicates the set of indices of conditional qubits
that connects the leaf and the root. The conditional
probability distributions have to be corrected for all com-
putational basis states of the conditional qubits cjckcl,
but the number of conditional qubits grows with the
depth of the tree, which grows logarithmically with the
number of total qubits. Therefore, the number of neu-
ral networks to be trained independently grows linearly
with the number of total qubits, and the size of each
neural network is constant. This constitutes an e�cient
QMEMmethod that is exponentially faster than previous
methods that aim to correct for the full joint probability
distribution model without conditional independence, for
which the size of the neural network or the size of the lin-
ear response matrix grows exponentially with the number
of qubits.

Transfer learning can further reduce the training run-
time by leveraging pre-trained neural networks. Instead
of training a new neural network from scratch on a
new dataset, transfer learning involves using parameters
from a pre-trained network on a reference dataset that
shares some similarities with the new dataset. Typically,
the lower layers representing low-level features are kept
frozen, while only the upper layers are trained. This elim-
inates the need to learn low-level features again, resulting
in faster convergence and reduced training time. For ex-
ample, in our case, the neural networks for S3,i, i > 1,
can utilize the parameters of the initial layers from the
neural network trained on S3,1, and only fine-tune the re-
maining layers specifically for each subsystem S3,i with
i > 1.
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3.2 Experimental Results

The first set of experiments were conducted on the 7-
qubit IBM quantum devices, ibmq jakarta and ibm lagos,
to compare the performance of our QMEM with LI-
QMEM and NN-QMEM. For each device, we generated
7,500 data and split them into 6,000 for training and
1,500 for testing. To compare the performance of di↵er-
ent QMEM methods, we used mean square error (MSE),

DMSE =
1

2n

2n�1X

i=0

|p̃i � pi|2

where pi and p̃i are the ith elements of the ideal and the
mitigated probability distributions, respectively.
We report MSE for the probability distributions ob-

tained with (1) no error mitigation (p̂), (2) LI-QMEM
(p̃LI) (3) NN-QMEM ( p̃NN) (4) our method using con-
ditional independence (p̃CI), which we call CI-QMEM,
and (5) our method using conditional independence and
transfer learning (p̃CI+Transfer), which we call CITL-
QMEM. First, we compare the cases (1) to (4) with re-
spect to the number of training data. The results are
shown in Fig. 3.

Figure 3: Experimental results showing the mean square
error with respect to the ideal probability distribution
as a function of the number of training data. The re-
sults are obtained by executing the experiments on (a)
ibmq jakarta and (b) ibm lagos.

The experimental results indicate that CI-QMEM
achieves substantial error mitigation using less data
compared to NN-QMEM. While NN-QMEM employs
1,805,568 parameters, CI-QMEM achieves even better
performance with only 29,484 parameters. These findings
highlight the e�ciency of training time achieved through
a significant reduction in the number of parameters, while
maintaining robust performance. Furthermore, by em-
ploying transfer learning, the number of parameters in
CITL-QMEM was further reduced to 15,644. Figure 4
visually illustrates the e↵ectiveness of transfer learning
in reducing errors.
Finally, we performed QMEM on 13 qubits, se-

lected from 27-qubit quantum devices, ibmq mumbai and
ibmq kolkata. For each device, we generated 6,000 data
and split them into 5,000 for training and 1,000 for test-
ing. The partitioning of the 13-qubit system is shown in
Fig. 1 (b), and the results are shown in Fig. 5.

Figure 4: Seven-qubit QMEM results on (a) ibmq jakarta
and (b) ibm lagos.

Figure 5: Thirteen-qubit QMEM results n (a)
ibmq mumbai and (b) ibmq kolkata.

Our method significantly reduces errors on the 13-
qubit system. Note that LI-QMEM requires 8192 data
and NN-QMEM requires 7 billion parameters, while our
method is trained with much less data and parameters.

4 Conclusions

This work presents a scalable quantum measurement
error mitigation method, overcoming the limitations of
existing methods. By harnessing conditional indepen-
dence and transfer learning, we achieve exponential re-
ductions in neural network size while preserving excellent
error-mitigation capabilities. Our method not only re-
duces neural network size and the number of parameters
to optimize but also significantly decreases the amount
of data required to train a neural network. Experimen-
tal results on 7-qubit and 13-qubit systems validate the
e�ciency and e↵ectiveness of our method in mitigating
measurement errors.
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Abstract. Gamification is a machine learning technique that reframes optimization problems as games,
allowing for the design of robust, implementable, and parallelizable algorithms. In this work we intro-
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Keywords: Quantum game theory, separability, Best Separable State problem, replicator dynamics,
Baum-Eagon dynamics, Matrix Multiplicative Weights Update

1 Introduction

The framework of gamification has recently emerged
as a prominent trend in the field of machine learning,
o↵ering a novel approach to solving optimization prob-
lems. By reimagining these problems as games, it is pos-
sible to design distributed and decentralized algorithms
that are robust and easily parallelizable. A notable ap-
plication of this approach are the constrained min-max
optimization problems that underlie Generative Adver-
sarial Networks (GANs), which are known to be compu-
tationally challenging [10]. However, by framing them
as competitive games between two players, simple de-
centralized algorithms have been developed, showcasing
practical e↵ectiveness and convergence towards appro-
priate solution concepts. Furthermore, gamification has
showcased success in addressing other optimization prob-
lems in machine learning such as Principal Component
Analysis [13] and Nonnegative Matrix Factorization [34].
While the most well-known achievements are based on
zero-sum games [8, 9, 29, 33], the current focus is in-
creasingly shifting towards the more challenging domain
of cooperative settings [4, 27, 35], where all agents share
the same goals and try to optimize the same function.
In this work, we leverage the gamification paradigm to

address the Best Separable State problem (BSS), which
corresponds to linear optimization over the convex hull
of bipartite product states ⇢⌦ �, i.e.,

max{Tr(R(⇢⌦ �)) : ⇢ 2 D(A),� 2 D(B)}. (BSS)

where R is a fixed Hermitian matrix. The BSS problem
is a crucial challenge in quantum information theory that
is closely tied to entanglement detection [15, 22, 16, 14].
To apply the gamification approach to the BSS problem,
we model a BSS instance as a quantum common-interest
game and bridge the gap between optimization and game

⇤wayne lin@mymail.sutd.edu.sg
†georgios@sutd.edu.sg
‡ryann sim@mymail.sutd.edu.sg
§antonios@sutd.edu.sg

theory by establishing equivalence between KKT points
of a BSS instance and Nash equilibria of its correspond-
ing game. Quantum games, which allow players access to
quantum resources, are a natural extension of the classi-
cal game theory framework, see e.g. [11, 7, 17, 39]. In the
simplest possible setup, two players (Alice and Bob) con-
trol quantum registers A and B and their strategies are
density matrices acting on A and B respectively. Upon
playing strategy profile (⇢,�) each player i receives a bi-
linear utility ui(⇢,�) = Tr(Ri(⇢⌦ �)), where Ri is a Her-
mitian matrix. Quantum common-interest games, which
are introduced and studied in this work, involve two play-
ers who jointly aim to maximize a shared bilinear utility
function u(⇢,�) = Tr(R(⇢⌦ �)).

We study quantum potential games under the
paradigm of learning in games, where equilibration arises
as the outcome of each agent implementing a strat-
egy revision mechanism that relies on past interactions.
Because of the equivalence between KKT points of a
BSS instance and Nash equilibria of the correspond-
ing game, learning dynamics for the quantum common-
interest game give rise to decentralized algorithms for the
BSS problem that are robust, easily implementable, and
parallelizable algorithms.

Our results. In Section 3 we introduce quantum
common-interest games. We show that any BSS in-
stance can be interpreted as a quantum common-interest
game where KKT points corresponds to Nash equilibria.
In Sections 4 and 5 we study continuous and discrete-
time dynamics respectively for learning in a quantum
common-interest game. We show that if players update
their states according to any of our dynamics, the utility
is strictly increasing, limit points are fixed points, and
interior fixed points are Nash equilibria. Finally, we per-
form extensive experiments to assess the performance of
our dynamics. We demonstrate that our continuous-time
dynamics empirically converges to Nash equilibria, while
our discrete-time dynamics perform well (⇡ 0.97OPT)
on the BSS problem.
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2 Preliminaries and related work

Classical games and learning dynamics. Natural
first-order learning dynamics converge to various notions
of equilibria in classes of classical games, see e.g. [20, 18,
28]. A well-studied first-order continuous-time dynamic
are the replicator dynamics. For a two player CIG where
players select simplex vectors x, y and receive common
payo↵ x>Ay, the replicator dynamics (written only for
the x-player) are given by:

ẋi = xi((Ay)i � x>Ay). (REP)

see e.g. [36, 20, 6, 38]. In terms of properties, replicator
dynamics converge to Nash equilibria in CIGs [20, 28]
and are a gradient flow with respect to the Shahshahani
metric hv, wix =

P
i

1
xi
viwi [32].

There are three related discrete-time dynamics, the lat-
ter two of which have an adjustable stepsize ✏ > 0:

xi  xi
(Ay)i
x>Ay

,

xi  xi
1 + ✏(Ay)iP

i xi(1 + ✏(Ay)i)
,

xi  xi
exp(✏(Ay)i)P
i xi exp(✏(Ay)i)

.

(BE)

(lin-MWU)

(exp-MWU)

These discrete-time dynamics are referred to respectively
as the Baum-Eagon update [5], the linear multiplicative
weights update, and the exponential multiplicative weights
update, see e.g., [19, 2, 31, 12]. The utility function x>Ay
under both BE and lin-MWU is non-decreasing [5], and
the limit points of lin-MWU are Nash equilibria [31].

Quantum games and learning dynamics. The ma-
jority of the literature on quantum games investigates the
potential advantages of using quantum strategies over
classical ones. To this end, researchers have developed
quantum versions of well-known games such as the Pris-
oner’s Dilemma and Matching Pennies [11]. In addi-
tion, an increasing amount of research has focused on
studying quantum notions of equilibria, i.e., states that
remain stable against unilateral player deviations [39],
determine their tractability [7], and structural charac-
treizations of equilibrium sets [21]. Beyond the analysis
of specific games, various attempts have been made to
establish more general theories of quantum games that
aim to unify the existing works, e.g., [17, 7].
In contrast, there are relatively few works that inves-

tigate learning in quantum games. Most existing re-
sults focus on the zero-sum regime, where players select
density matrices ⇢ and � and receive a bilinear utility
ui(⇢,�) = Tr(Ri(⇢ ⌦ �)), subject to the constraint that
u1(⇢,�)+u2(⇢,�) = 0. The payo↵s can also be expressed
explicitly as bilinear functions ui(⇢,�) = h⇢,�i(�)i,
where Ri represents the Choi matrix of the superoper-
ator �i. In the zero-sum setting, the Matrix Multiplica-
tive Weights Update (written only from the perspective

of the ⇢ player) is given by:

⇢(t+ 1) exp

 
✏

tX

⌧=1

�(�(⌧))

!
, (MMWU)

and converges (in the time-average sense) to Nash equi-
libria in quantum zero-sum games [25]. MMWU was first
introduced for online optimization over the set of density
matrices [2, 26, 37] MMWU has found many other ap-
plications: important examples include solving SDPs [3],
proving that QIP=PSPACE [23], finding balanced sepa-
rators [30], and spectral sparsification [1].

Recently, [24] introduced the exponential quantum
replicator dynamics (exp-QREP), a (continuous-time)
quantum analogue of an exponential expression of the
replicator dynamics, given by:

d⇢

dt
=

d

dt

✓
exp(A)

Tr(exp(A))

◆
, A(t) =

Z t

0
�(�(⌧))d⌧.

(exp-QREP)

3 Quantum CIGs and the BSS

We define a two-player Quantum Common-Interest
Game (CIG) between Alice and Bob, who have access
to quantum registers H1 = A and H2 = B respectively,
as one in which Alice selects a density matrix ⇢ 2 D(A),
Bob selects a density matrix
sigma 2 D(B), and they both obtain common utilty

u(⇢,�) = Tr(R(⇢⌦ �)) =
⌦
⇢,�(�>↵

for some Hermitian operator R. (R and � are related via
the Choi isomorphism.)

We can define Alice’s best response set to Bob’s strat-
egy � 2 D(B) by BRA(�) = {⇢ 2 D(A) : u(⇢,�) �
u(⇢0,�) 8 ⇢0 2 D(A)}, and analogously for Bob. The
Nash equilibria (NE) of the game are the strategy pro-
files (⇢,�) 2 D(A) ⇥ D(B) such that Alice’s and Bob’s
strategies are best responses to each other, i.e.

u(⇢,�) � u(⇢0,�) 8 ⇢0 2 D(A)

and
u(⇢,�) � u(⇢,�0) 8 �0

2 D(B).

Lastly, a Nash equilibrium (⇢,�) is called interior if both
⇢ and � are positive definite.

Relation between quantum CIGs and the BSS

problem. In a quantum CIG, Alice and Bob try to
jointly maximize their common utility function u(⇢,�) =
h⇢,�(�)i. Analogous to the classical case, there is a
strong connection among the NE of the game and the
underlying BSS optimization problem. Recall that the
BSS problem corresponds to maximizing a linear func-
tion over the set of separable states, i.e.,

Theorem 1 The Nash equilibria of a two-player quan-
tum common-interest game with common utility function
u(⇢,�) = h⇢,�(�)i correspond to the KKT points of BSS.
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For a classical game, if (x, y) is a Nash equilibrium,
every pure strategy that is played by Alice with positive
probability is a best response to y, i.e., for each i with
xi > 0 we have (Ay)i = xTAy, and similarly for Bob.
We have the analogous statement for quantum CIGs:

Theorem 2 Let (⇢,�) be a Nash equilibrium of a two-
player quantum CIG with common utility u(⇢,�) =
h⇢,�(�)i. If ⇢ � 0, we have that �(�) = h⇢,�(�)i B,
i.e., for any ⇢0 2 D(A) we have ⇢0 2 BRA(�). Simi-
larly, if (⇢,�) is a Nash equilibrium and � � 0, then
�†(⇢) = h⇢,�(�)i A.

With the connection between Nash equilibria and KKT
points established, and motivated by the well-known clas-
sical result that ‘natural’ learning dynamics converge to
Nash equilibria in classical CIGs, in the next section we
propose a non-commutative extension of one such fam-
ily of gradient flow dynamics and study their theoretical
convergence properties.

4 Continuous-time dynamics

We define the linear quantum replicator dynamics

d⇢

dt
= ⇢

1/2
h
�(�)� h⇢,�(�)i A

i
⇢

1/2,

d�

dt
= �

1/2
h
�†(⇢)� h⇢,�(�)i B

i
�

1/2,
(lin-QREP)

which were obtained as a normalized gradient flow of the
utility with respect to the quantum Shahshani metric

hA,Bi⇢ := Tr
h
⇢�

1
2A⇢�

1
2B
i

which we define on the PSD manifold. We have the fol-
lowing results:

Theorem 3 Consider a quantum CIG with utility func-
tion u(⇢,�) = h⇢,�(�)i where ⇢ 2 D(A),� 2 D(B). The
lin-QREP dynamics define a gradient flow of the utility
function u(⇢,�) on the product manifold D(A) ⇥ D(B)
imbued with the quantum Shahshahani metric. Moreover,
the utility u(⇢,�) is strictly increasing along the trajecto-
ries of the lin-QREP dynamics.

Corollary 4 The set of !-limit points of a trajectory
{⇢(t),�(t)}t�0 of the lin-QREP dynamics is a compact,
connected set of fixed points of the dynamics that all at-
tain the same utility.

Theorem 5 For a quantum CIG with common utility
function u(⇢,�) = h⇢,�(�)i where ⇢ 2 D(A),� 2 D(B),
we have the following two properties relating interior fixed
points and !-limit points of the lin-QREP dynamics with
Nash equilibria of the game:

(1) The set of interior fixed points of the lin-QREP dy-
namics is equivalent to the set of interior Nash equi-
libria.

(2) The interior !-limits of any trajectory of the lin-
QREP dynamics are Nash equilbria.

5 Discrete-time dynamics

We introduce the Matrix Baum-Eagon update

⇢new  
1

h⇢,�(�)i
⇢

1/2�(�)⇢
1/2,

�new
 

1

h⇢new,�(�)i
�

1/2�†(⇢new)�
1/2

(Matrix BE)

and the Linear Matrix Multiplicative Weights Update

⇢new  
⇢1/2[ A + ✏�(�)]⇢1/2

1 + ✏ h⇢,�(�)i
,

�new
 

�1/2[ B + ✏�†(⇢)]�1/2

1 + ✏ h�,�†(⇢)i
.

(lin-MMWU)

for an adjustable stepsize ✏ > 0. Matrix BE and lin-
MMWU are non-commutative extensions of BE and lin-
MWU respectively, and the former is a special case of the
latter in the limit ✏!1. We have the following results:

Theorem 6 For any quantum CIG with a positive def-
inite game operator R, the common utility u(⇢,�) =
hR, ⇢⌦ �i = h⇢,�(�)i, is strictly increasing along the
trajectories of Matrix BE or lin-MMWU, except when at
a fixed point.

Corollary 7 The set of limit points of an orbit
{
�
⇢(t),�(t)

�
}t2N of Matrix BE or lin-MMWU is a com-

pact, connected set of fixed points.

Theorem 8 The set of fixed points of the discrete-time
update rules Matrix BE and lin-MMWU are equal to the
set of fixed points of the continuous-time gradient flow
lin-QREP.

6 Full paper

A full paper with proofs and experiments can be found
on the arXiv at https://arxiv.org/abs/2302.04789.
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Cost of the Fault-Tolerant Quantum Circuits
Yongsoo Hwang

Electronics and Telecommunications Research Institute, Daejon, 34129, Republic of Korea

Abstract. To realize fault-tolerant quantum computing, we need fault-tolerant quantum circuits of
theoretically verified quantum protocols. Unlike topological codes, for concatenated codes, we have to find
the fault-tolerant quantum circuits separately from the protocols. To resolve the geometric locality, the
circuit must contain the qubit moves not revealed in the protocols. In this presentation, we analyze the
cost by those qubit moves and discuss how to reduce it in theory.

Keywords: fault-tolerant quantum circuit, concatenated code

1 Introduction

Topological codes represented by surface code [1] and
color code [2] have been paid attention for the last years
due to a high threshold around O(10�2) and local gate
composition. On the other hand, concatenated codes
have been less studied due to high hurdle for implementa-
tion. However, we believe some concatenated codes such
as [[23,1,7]] Golay code [3, 4] are still important and can
play significant role in implementing FTQC. For exam-
ple, from the fixed code length, it is possible to build
a syndrome lookup table, which makes an instant error
decoding.
To implement FTQC based on concatenated codes, we

have to generate quantum circuits that preserve fault
tolerance and locality. To date, manually obtained cir-
cuits have been proposed for well-known small-sized
codes [5, 6, 7]. Since they are optimized for a target case
including a specific qubit layout, it can not be directly
applied to other cases, in particular large codes.
The authors proposed a quantum circuit mapping al-

gorithm suited for fault-tolerant quantum protocol [8].
They enumerated the requirements for the circuits of
universal fault-tolerant quantum computing and imple-
mented their idea with heuristic quantum circuit map-
ping algorithm.
In this presentation, we analyze the cost of the cir-

cuits of fault-tolerant quantum protocols based on the
products of the fault-tolerant quantum circuit mapping
algorithm described in Ref. [8].

2 Non-FT Circuit versus FT Circuit

The quantum circuit mapping on computational algo-
rithms focuses on associating physical qubits and algo-
rithm qubits with respect to the physical qubit connec-
tivity. However, the circuit mapping on fault-tolerant
quantum protocols has to check the type of the quan-
tum state physical qubits hold because we have to block
spreading quantum errors to data qubits. In this regard,
the fault-tolerant quantum circuit produced by the cir-
cuit mapper specialized for the fault-tolerant protocols
includes more SWAP gates and therefore has more faulty
locations. Fig. 1 shows a reason why the FT circuit may
need more SWAP gates.

X
X (1)

(2)

|dataii

|dataji

|ancii

|Oi

(a)

(3)

XX(1)

X
X (2)

|dataii

|dataji

|ancii

|Oi

(b)

Figure 1: Qubit move to execute CNOT |dataii, |ancii.
Since both qubits are not located in neighbor, any qubit
should be moved first. (a) Non-FT move including
the noisy SWAP gate between data qubits |dataii and
|dataji. (b) FT move not including the noisy SWAP gate
between data qubits. Note that |Oi indicates a dummy
qubit not carrying an important information.

Here we compare fault-tolerant circuit with large loca-
tions and non-fault-tolerant circuit with small locations
in terms of the threshold and the yield of fault-tolerant
preparation of logical basis state. From the results, we
claim that the theoretical fault-tolerance of a protocol
does not guarantee its fault-tolerant execution. We need
a fault-tolerant quantum circuit.

3 FT Circuit on large qubit connectivity

In general, by taking a quantum chip having a larger
qubit-connectivity, it becomes possible to make a quan-
tum circuit of less depth. So far, most of the quan-
tum circuits of fault-tolerant protocols implemented on
2-dimensional rectangular lattice [5, 6, 7]. In this pre-
sentation, we applied the quantum chips having larger
connectivity than the conventional architectures for de-
veloping the fault-tolerant circuits (see Fig. 2). In partic-
ular, this work for the first time show the fault-tolerant
quantum circuit working on 3-dimensional cube lattice.
Table 1 compares the depths of the fault-tolerant quan-
tum circuits of [[7,1,3]] Steane code on the various qubit
architectures. As the connectivity increases, the depth is
decreased even though the degree is not so large.
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(a) (b) (c)

Figure 2: Qubit Connectivities: (a) 2D Rectangular Lat-
tice, (b) 2D Triangular Lattice, and (c) 3D Cube Lattice

Table 1: Circuit Depth of FT Syndrome Measurement of
[[7,1,3]] Steane code on Diverse Qubit Connectivities

Q-Chip 2D Rect. 2D Tri. 3D Cube
Architecture (5 X 7) (5 X 7) (3 X 3 X 4)
Circuit Depth 35 [8] 34 32

4 Discussion

We say that for implementing fault-tolerant quantum
computing, we need the quantum circuits that are exe-
cutable in the fault-tolerant way, besides the protocols
having the fault-tolerance. The topological code that
is inherently composed of local gates and therefore the
fault-tolerant protocol for the code is directly executable
on a quantum device. However, for concatenated code,
we have find such circuits separately.
To find a full set of quantum circuits for universal fault-

tolerant quantum computing, we developed an algorith-
mic method and here we analyzed several cases. Since the
method is heuristic, the results shown here may not be so
remarkable. But, the method can be applied any target
situation of concatenated code and the topological code
cases for a certain non-trivial quantum chip architecture.
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Abstract. It has been found that one can conceive of processes where multiple parties locally perform
quantum operations, but where the causal order between the parties is no longer well-defined. A central
question is which of these processes have an operational interpretation or physical realisation, and, more
particularly, whether and how indefinite causal order could be realised within standard physics. It has been
shown that certain causally indefinite processes can take place as part of standard quantum mechanical
evolutions, described by acyclic quantum circuits, if the latter are described with respect to an alternative
choice of quantum subsystems which can be delocalised in time. In this contribution, we provide a general
framework to describe such transformations between di↵erent subsystem decompositions of quantum cir-
cuits. On this basis, we then analyse transformations between di↵erent causal perspectives in the quantum
switch, which turn out to be inequivalent from the subsystem perspective we developed.

Keywords: Quantum causality, Indefinite causal order, Process matrix framework, Causal
(non)separability, Time-delocalised quantum subsystems

This submission is based on Ref. [1], as well as follow-
up work in progress.

1 Introduction and context

Recently, there has been significant interest in the
question of what quantum theory implies for our un-
derstanding of causality, and what new types of causal
relations can emerge in the presence of quantum e↵ects.
In particular, it has been found that one can theoreti-
cally conceive of situations where the causal order be-
tween quantum operations is no longer well-defined. Such
indefinite causal order arises in the process matrix frame-
work [2], where one assumes separate parties that locally
abide by the laws of quantum theory, but that are not em-
bedded into any a priori causal structure, and one stud-
ies the most general correlations that these parties can
establish. Through this general top-down approach, on
the one hand, one recovers standard quantum scenarios
such as measurements on multipartite quantum states, or
quantum circuits in which the parties apply their opera-
tions in a fixed causal order. On the other hand, one also
finds so-called causally nonseparable processes, in which
the parties cannot be assigned a well-defined causal order
(see e.g. Refs.[2, 3, 4, 5, 6, 7]).
The operational meaning or physical realisability of

these causally nonseparable processes is one of the central
questions in the field. In particular, a central open prob-
lem is which of these processes are realisable in standard
physics, without resorting to exotic physical e↵ects or
new physical regimes such as quantum gravity. A frame-
work to formally pose and investigate this question is that
of time-delocalised quantum subsystems [1, 8]. Namely,
certain indefinite causal order processes can be shown to
take place as part of standard quantum mechanical time
evolutions, described by acyclic quantum circuits, if the
latter are described with respect to an alternative choice

⇤julian.wechs@ulb.be
†ognyan.oreshkov@ulb.be

of quantum systems. These alternative systems are delo-
calised over several of the standard, “time-local” systems
in the circuit which are associated to di↵erent times.

Such realisations on time-delocalised systems notably
exist for indefinite causal order processes that are based
on coherent control of the order of operations [8, 9] (in
particular, for the quantum switch [3, 10], a paradig-
matic, widely studied example of a causally nonsepara-
ble process). Recently, it has been shown that a larger
class of tripartite processes, that of tripartite processes
with a unitary extension [11], also has realisations on
time-delocalised subsystems [1]. This class includes some
exotic examples that violate so-called causal inequalities
(see e.g. [2, 4, 5, 6, 12, 13]), and that require new ways
of time-delocalising quantum operations, beyond those
achievable by coherent control of causal orders.

In this submission, we provide a general framework to
describe di↵erent subsystem decompositions of quantum
circuits. For a given quantum circuit, we consider the
tensor product of all its operations, which defines a quan-
tum operation acting on the joint Hilbert space of all sys-
tems in the circuit. An alternative subsystem decomposi-
tion of the circuit is then defined by an alternative tensor
factorisation of this joint Hilbert space. Our formula-
tion provides a convenient and concise way to formalise
the notion that certain processes with indefinite causal
order have a realisation on time-delocalised subsystems.
Namely, the situations described in the process matrix
formalism can be understood as particular instances of
cyclic quantum circuits, and having a realisation on time-
delocalised subsystems means that these cyclic quantum
circuits can be transformed into standard, acyclic circuits
through a subsystem transformation of the type we define
here. For the known examples of causally indefinite pro-
cesses on time-delocalised systems, this construction re-
quires considering a “fine-grained” or “extended” process
matrix picture—that is, the cyclic circuits that get trans-
formed into acyclic ones involve additional systems, over
which one needs to compose to recover the process matrix
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situation [1]. This fact has implications for the question
of whether one can transform between di↵erent tempo-
ral circuits that realise the quantum switch, and which
describe di↵erent “causal perspectives” in which one of
the operations is respectively localised in time. From the
subsystem perspective we develop, these causal perspec-
tives turn out to be inequivalent, because the respective
“fine-grained” or “extended” cyclic circuits including the
additional systems are di↵erent in the two cases. This
raises the question of whether the framework can be ex-
tended or modified to account for such transformations
between causal perspectives.

2 Subsystem decompositions of quantum
circuits

Quantum experiments can be abstractly described in
terms of a quantum circuit, that is, a collection of quan-
tum operations (pictorially represented by “boxes”) that
are composed through quantum systems (pictorially rep-
resented by “wires”), see Fig. 1 for an example.

Figure 1: An example of a quantum circuit. Here, we

have an acyclic circuit consisting of operations {M[j1]
1 }j1 ,

. . ., {M[j6]
6 }j6 , which are composed over quantum sys-

tems X1, . . ., X7.

The quantum operations are, in the most general case,
quantum instruments, that is, collections of completely
positive (CP) maps, each associated to a measurement
outcome, whose sum is a completely positive and trace-
preserving map. For a circuit with no open wires, the
composition of all operations corresponds to the joint
probability of the measurement outcomes [14, 15].
In Fig. 2, we illustrate the general idea of how to trans-

form between alternative subsystem descriptions of one
and the same quantum circuit. For that purpose, we
“unfold” the circuit as on the left-hand side in Fig. 2—
that is, we consider the tensor product of all opera-
tions in the circuit, which defines a quantum operation

{M[j1,...,jN ]}(j1,...,jN ), with M[j1,...,jN ] := M[j1]
1 ⌦ · · · ⌦

M[jN ]
N , that acts on all systems in the circuit. The

composition over all systems is obtained by feeding the
output of this operation back into its input. In gen-
eral, the decomposition of a quantum system into sub-
systems is defined by a tensor factor decomposition of
the corresponding Hilbert space. Here, an alternative
subsystem decomposition of the circuit is thus most gen-
erally defined by an isomorphism J which defines an-
other tensor factorisation of the joint Hilbert space of
all systems, and which acts on the input and output

Hilbert space of the operation describing the quantum
circuit (cf. the middle of Fig. 2). This defines the de-
scription of the circuit with respect to the new systems
(cf. the right-hand side of Fig. 2) which is given by an
quantum instrument {N [j1,...,jN ]}(j1,...,jN ) with CP maps

N [j1,...,jN ] = J � M[j1,...,jN ] � J�1. With respect to an
arbitrary subsystem decomposition, a standard, tempo-
rally ordered circuit can contain cycles [1, 8].

3 Application to indefinite causal order
processes

Quantum processes with indefinite causal order are
formally described in the process matrix framework [2].
There, one considers parties that locally perform quan-
tum instruments, but that are not a priori embedded into
any global causal order. The object which connects the
parties is the process matrix, which formally describes
a channel that takes the output systems of the parties
back to their input systems. A quantum process can
thus be understood as a cyclic quantum circuit, in which
the (variable) local operations performed by the parties
are composed in a cyclic manner with the (fixed) channel
corresponding to the process matrix, see Fig. 3.

W

Figure 3: In the process matrix framework, the local op-
erations performed by the parties are composed with the
process matrix, which defines a channel from the output
systems of the parties back to their input systems, in a
circuit with a cycle.

Certain processes with indefinite causal order have re-
alisations on time-delocalised systems [1, 8]. That is, one
can find a standard, acyclic quantum circuit (with “vari-
able” operations, depending on the local operations that
the parties are to apply), which precisely corresponds to
the cyclic circuit considered in the process matrix frame-
work when described in terms of suitable alternative sub-
systems. This is, in particular, the case for unitary ex-
tensions of bipartite [8] and tripartite [1] processes.

Our general formulation of subsystem decompositions
of quantum circuits allows us to formalise this idea in a
simpler and more concise way. Namely, a given cyclic
circuit is realisable on time-delocalised subsystems pre-
cisely if there exists a circuit transformation of the type
we described in Sec. 2, which maps it back to a standard,
acyclic quantum circuit.

For the examples of indefinite causal order processes
that have been shown so far to have realisations on time-
delocalised subsystems, it is however necessary to em-
bed them into a larger circuit, i.e., one needs to consider
some “fine-grained” process matrix picture, from which
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Figure 2: General prescription to change the subsystem decomposition of a quantum circuit. The circuit is “unfolded”
as on the left-hand side, i.e., one considers a quantum operation consisting of all boxes in the circuit, which acts on
the joint Hilbert space of all systems in the circuit. Another subsystem decomposition of the same circuit is defined
in terms of an isomorphism J which acts on the joint Hilbert space of all systems in the circuit, and defines a new
factorisation thereof.

the cyclic circuit consisting of the process matrix and the
local operations can be recovered by partially composing
over certain of the subsystems [1, 8].

4 Transformations between “causal per-
spectives” in the quantum switch

The quantum switch [3, 10] is a paradigmatic example
of a causally nonseparable process, in which two parties
Alice and Bob apply their operations in an order that
is controlled coherently. This process can be realised on
time-delocalised systems in di↵erent ways—that is, there
are several temporal circuits that one can associate to the
quantum switch via the correspondence described in the
previous section. In particular, one can realise the quan-
tum switch through the two temporal circuits shown in
Fig. 4. In Fig. 4(a), we have a temporal circuit in which
the operation UA associated to Alice occurs at a definite
time, while the operation UB , associated to Bob, occurs
either before it or after it, depending on the state of the
control system, which is initialised in the “global past”.
In Fig. 4(b), the situation is reversed, and Bob’s opera-
tion occurs at a definite time. The two temporal circuits
can be interpreted as describing the “causal perspec-
tives” [16] associated to the two parties Alice and Bob,
respectively. Each circuit describes a situation where one
respective operation is “temporally localised”, while the
other operation is delocalised around it.
One may wonder whether it is possible to find a trans-

formation between subsystem decompositions that di-
rectly relates the circuit in Fig. 4(a) to the circuit in
Fig. 4(b). Interestingly, it turns out that in our frame-
work, such a subsystem transformation between the two
“causal perspectives” does not exist—although the two
temporal circuit both realise the quantum switch, the
“fine-grained” process matrix picture which one obtains
in the two cases is not the same, and one can show that
there is no isomorphism between subsystem descriptions
of the two circuits that relates them. This raises the ques-
tion of whether and how the framework could be modified
to account for transformations between di↵erent causal
perspectives, e.g. by considering a continuous version.

Figure 4: Two temporal circuits for the quantum switch,
which describe the “causal perspectives” of Alice and
Bob, respectively.
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Abstract. Quantum machine learning (QML) is a promising approach for leveraging quantum advantages
in the noisy intermediate-scale quantum (NISQ) era. However, practical challenges remain in handling
massive data sets. To tackle this, we propose coreset selection, which reduces training data size while
maintaining competitive performance for quantum learning algorithms. We formalize coreset selection as
a k-set cover problem and analyze the generalization performance of quantum learning models trained
on coreset. We apply the proposed method to three quantum learning tasks including synthetic data
classification, quantum correlation classification, and quantum compiling. The numerical results obtained
in this study provide evidence that models trained on coreset outperform those trained using random
sampling. The coreset not only enhances the performance of quantum learning models but also accelerates
the training time, addressing a critical concern in the context of NISQ devices.

Keywords: quantum machine learning, coreset, quantum kernels, variational quantum algorithm

1 Introduction

Classical machine learning models have achieved re-
markable success across diverse fields, benefiting from
vast amounts of data [15][10][12]. To leverage the po-
tential of quantum computing in solving learning prob-
lems, quantum machine learning (QML) has gained sig-
nificant attention, spanning from theoretical exploration
to practical applications [3][6][5]. In certain scenarios,
QML has demonstrated quantum advantages over classi-
cal counterparts, such as enhanced performance on chal-
lenging synthetic data or improved e↵ective dimension-
ality [1][14][18]. Data is essential in both classical and
quantum settings. In classical models, abundant data
enables better training and higher accuracy, given suf-
ficient capacity and expressivity. However, in the con-
text of noisy intermediate-scale quantum (NISQ) ma-
chines, increased data volume poses challenges for stor-
age, access, and analysis. E↵ective loading of enormous
amounts of data from classical to quantum presents a sig-
nificant challenge. Thus, QML models hardly show their
true power under the limits in practical terms. In terms
of feature engineering, it often applies the kernel trick to
encode classical samples into quantum-enhanced feature
space. The advantage is the capability of capturing the
intractable complex patterns that classical methods are
hard to handle. However, the complexity of estimating
the quantum kernel matrix is still O(n2), where n is the
training set size which is computationally infeasible when
dealing with large data sets. Besides, when considering
training e�ciency, the quantum learning model, such as a
quantum neural network (QNN), trained on a large data
set naturally takes a long time to converge.

2 Overview of main results

Here we devise a generic method that can construct a
reduced data set yielding competitive performance with

⇤See the attached file for the technical version of the submission.

the original training data set for most QML models.
More precisely, we propose a coreset-based method to
distill a handcraft dataset from the original dataset in the
preprocessing procedure. We further analyze the compa-
rable generalization performance of QNN and quantum
kernel learning when they are optimized under the orig-
inal dataset and the coreset. Numerical simulations on
synthetic data, identification of non-classical correlations
in quantum states, and quantum circuit compilation con-
firm the e↵ectiveness of our proposal.

In the remainder of this section, we first introduce the
basic knowledge of coreset and generalization error, fol-
lowed by presenting the proposed coreset selection al-
gorithm and exhibiting the corresponding generalization
error of QNNs and quantum kernels.

Coreset The coreset selection, originally developed in
computational geometry, provides a framework for ap-
proximating various measures of point sets by identify-
ing a small subset [2]. This concept has been extended to
practical coreset approaches that assist in tackling com-
putationally challenging problems in machine learning
[4][11]. The underlying idea is to find a representative
subset of the data that allows a learning model trained on
this subset to achieve competitive performance compared
to models trained on the entire data set. For example,
the coreset method for support vector machines utilizes
the minimum enclosing ball (MEB) algorithm to approxi-
mate the solution [19], while approaches for k-Means and
k-Median clustering aim to compute a weighted subset of
points with an acceptable approximation error [13].

Performance Analysis of Learning Models The
goal of the supervised learning algorithm is to find a hy-
pothesis f : X ! Y with parametersw such that the true
risk R on given data is minimized, R = Ex,y[l((f,x, y))],
where l(·) is the function that measures the degree of
fit between the output of hypothesis f(x) and ground
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Figure 1: The illustration of k set cover problem. The red
stars are the picked k points with �R radius covering the entire
set. In the case shown in figure, there are 5 center data points
Pk 2 D, k 2 [5] such that the maximum distance from any
point in D to its closest center is minimized.

truth y. As it is impossible and necessary to access
all the data, thus we employ the empirical risk Re =
1
St

P
xi,yi2St

l(f,xi, yi) on training data St to approxi-
mate instead. Since our aim is to explore the perfor-
mance of the learning model with coreset selection, we
analyze the following upper bound of the true risk R,

R  kR�Rek| {z }
generalization error

+ kRe �Rck| {z }
coreset error

+ kRck| {z }
training error

. (1)

Coreset Selection Algorithm Enhancing quantum
learning models through coreset selection involves choos-
ing a subset Sc of points xj from the entire data set St.
The objective is to minimize the di↵erence in average em-
pirical loss between the entire data set and the selected
subset. We regard coreset construction as a k set cover
problem, where a few points with a radius of �R are cho-
sen to cover the entire set. In practical terms, finding
a subset that covers the entire data set is equivalent to
solving a k-center problem. The goal is to identify k
data points as centers C, minimizing the maximum dis-
tance between any point s 2 St and its nearest center. In
other words, the aim is to select C such that the radius
�R is minimized.

Sc = arg min
C✓St,|C|=k

max
xj2St

D(xj ,xc) (2)

where the D(xi,xc) = minxc2C d(xi,xc) denotes the dis-
tance between point i to its closest center. Although it
is an NP-Hard problem, there is a provable greedy algo-
rithm that can e�ciently get a 2-approximate solution,
that is if S⇤

c is the optimal solution of Eq. (2), it is proven
to find a solution Sc such that �⇤C  �C  2 · �⇤C .

Generalization bounds with coreset Based on the
aforementioned coreset construction strategy, we investi-
gate the true risk of two mainstream quantum learning
protocols, QNN and quantum kernel, built with coreset.
These results give a rigorous analysis that combines the
out-of-sample performance and coreset performance.

QNN We utilize the greedy algorithm to construct k-
center coreset and feed it as the training data to QNN.
In classification, QNN typically employs a parameter-
ized quantum circuit (PQC) U(✓) that consists of a

sequence of m fixed or gates parametrized quantum
gates, generated by the Hermitian operator Hi and rep-
resented as U(✓i) = exp(�i✓iHi), to evaluate state
|xi which encodes the training data x. Then it es-
timates the expectation value of observable M as the
output. According to the loss function l(f✓;x, y) =
1
2 (h0|U

†(x)U†(✓)MU(✓)U(x)|0i � y)2, QNN iteratively
updates the parameters ✓ of PQC to minimize the empir-
ical risk Re. we assume the training loss l(f✓;xi, yi) over
coreset Sc is equal to zero. Thus, only the first two terms
in Eq. (1) we need to consider which are generalization er-
ror and coreset error. Given Nt training data {xi, yi}

Nt
i=1,

Ref. [8] proved that the upper bound of the generalization

error is kR�Rek 2 O(L
q

m log(m)
Nt

+ L
q

log(1/�)
Nt

).

With regard to the coreset error, since we assume
the training error over coreset is zero, the coreset er-
ror only leaves the term of the empirical error over
the full data set, i.e. 1

Nt

P
i l(f✓,xi, yi). Thus, if we

are able to give a bound of Ex,y[l(f✓;x, y)], then the
coreset error can be bounded. Assume there are �⌘-
Lipshcitz continuous class-specific regression functions
⌘c(x) = p(y = c|x) for all class c, the loss l(f✓, ·, y) is
bounded by L, and we construct �c coreset to cover full
data set, we have the following bound on coreset error,
kRe �Rck 2 O(�cmkMk

2 + �c�⌘L|c|). Combine the gen-
eralization error and coreset error together, we reach the
bound for the true risk

R 2 O(L

s
m log(m)

Nt
+L

s
log(1/�)

Nt
+�cmkMk

2+�c�⌘L|c|).

It provides valuable insights into sample complexity
bounds. For any given " > 0, we can ensure, with a
high probability of success, that R  " require training
data of size Nt 2 O( m logm

"2+�2cm
2 ). Remarkably, this sample

complexity scales e↵ectively in a linear manner with the
number of parameterized gates m. These results high-
light the e↵ectiveness and e�ciency of our approach in
achieving accurate and reliable results with a reasonable
amount of training data.

Quantum Kernel Quantum kernels are kernel functions
that utilize a quantum embedding from a real-valued vec-
tor x2 Rd to a quantum state Ux |0i. From the quantum
state, one can devise a kernel function (x,x0), mapping
to a real value, representing the closeness of the two states
in some high dimensional Hilbert space. The common
choice of the quantum kernel function is |h0|U†

xi
Uxj |0i|

2,
though any other symmetric positive-definite functions
are also valid candidates. Di↵erent forms of the quantum
kernel correspond to di↵erent feature maps in Hilbert
space, which could provide quantum advantage for clas-
sification tasks if designed properly [16].

Adopting a quantum-kernel-based hypothesis of the
form hw,�(x)i to predict the class label, either Support
Vector Machine (SVM) or other relevant models can be
applied to perform binary classification tasks on data
distribution Z = X ⇥ Y, where X is the feature space
bounded by Euclidean radius of r, and Y is label space
with yi 2 {1,�1}. Given Nt number of training samples,
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(a) classification by quantum kernel, (b) correlation classification by QNN, (c) compiling by QNN,

Figure 2: (a) and (b) demonstrate the performance of quantum kernel and QNN on classification over synthetic data and
quantum correlation, respectively. The shaded area refers to the range of the test accuracy while the solid line represents the
average accuracy. (c) The performance comparison between the di↵erent compression ratio of coreset on compiling task. The
solid dark and light lines represent the models trained on the coreset and random samples. The vertical axis represents the
percentage of states in the test set for which the trace distance to their corresponding targets is below 10�5.

the parameters of the model could be optimized to w⇤.
When exposing to the full distribution, the generalization
error of the model would be bounded by [14], i.e.,

kR�Rek 2 O(

sp
hw⇤,w⇤i

Nt
+

s
log(4/�)

Nt
).

If we utilize quantum kernel to encode each training
point to a Nq qubit system and further condense these
Nt samples to a coreset with fewer samples using k set
cover selection with radius �c. The true risk of the model
could be bounded by the following (assuming zero in-
coreset error and up-to-quadratic terms in Hamiltonian):

R 2 O(

sp
hw⇤,w⇤i

Nt
+

s
log(4/�)

Nt

+�cd
2.5Nq max

j
|w⇤

j |r + �c�⌘L|c|).

This result is in accordance with the general interpre-
tation that a wider geometric margin, 1/||w⇤

||2, means
less generalization error. However, it should be noted
that the optimized parameters in the bounds are not
known prior to the optimization, at the data selection
stage, which depends on the selected coreset, the form of
the kernel function, and also the optimization objective
[14].

3 Numerical Results

In this section, we employ the coreset selection method
for three related learning tasks including 1) classification
of synthetic data with quantum advantage. 2) classifica-
tion of quantum correlations, and 3) quantum compiling.
Here we mainly present the key results and defer the
omitted details in the technical version.
Classification by Quantum Kernel We employ the
coreset selection for a classifier with quantum kernel on
the synthetic data set {xi, yi}

Nt
i=1. The construction rule

of the synthetic data set follows Ref. [14]. In Fig 2a,
we compare the classification performance of coreset and

random sampling as the data reduction strategy. Two
methods exhibit similar performance, possibly due to the
fact that the synthetic data is approximately evenly dis-
tributed. In which case, the geometrical uniformity guar-
anteed by the coreset approach is in no significant di↵er-
ence to the random sampling following the probabilistic
distribution.
Correlation Classification by QNN We employ the
quantum neural network combined with coreset selection
in this learning task. We consider a family of quantum
states characterized by parameters p and ✓, defined as
follows:

⇢AB(p, ✓) = p| ✓ih ✓|+ (1� p)
I
2
⌦ trA(| ✓ih ✓|) (3)

where the p 2 (0, 1), ✓ 2 (0, 2⇡) and state | ✓i =
cos(✓)|00i + sin(✓)|11i. Fig.2b shows our numerical re-
sults. The numerical investigation demonstrates that the
accuracy of the coreset overperforms the random sam-
pling under di↵erent training samples under 40% com-
pression ratio.
Quantum Compiling by QNN Compiling a unitary
or algorithm into gate sequences is a challenging task
for NISQ quantum devices, considering functionality, cir-
cuit connectivity, and hardware limitations. Recent ad-
vancements optimize the PQC to approximate the de-
sired unitary [7, 9, 17]. Besides, there are some works
also exploring how to generate few data for compiling
[8, 20]. In this study, we apply a quantum neural network
for tackling the compiling task. Training data consists
of randomly chosen input states and their correspond-
ing outputs when a target unitary U is applied, denoted
as {| ji, U | ji

Nt

j=1} for an n-qubit system. To approx-
imate U, we minimize the empirical loss, which is the
squared trace distance between the target states U | ji

and the parametrized output states U(✓)| ji, using ran-
domly sampled states in the Hilbert space. The numeri-
cal results of the compiling task, spanning a compression
ratio range from 20% to 80%, are depicted in Fig. 2c.
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Recovering quantum entanglement after its certification
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Abstract. Entanglement is a crucial quantum resource with its versatile applications. For harnessing
entanglement in practice, it is a prerequisite to certify the entanglement of a given quantum state. How-
ever, the certification process itself destroys the entanglement, thereby precluding further exploitation of
the entanglement. Resolving this conflict, here we present a protocol that certifies the entanglement of
a quantum state without complete destruction, and then, probabilistically recovers the original entangle-
ment. Our results show how entanglement certification can be made compatible with subsequent quantum
applications, and more importantly, be beneficial to sort entanglement for better performance in quantum
technologies.

Keywords: Quantum measurement, Entanglement certification, Entanglement recovery

Entanglement, which distinguishes quantum physics
from classical physics, has been a major source in the
quantum application, such as quantum teleportation [1],
quantum metrology [2], and quantum computation [3].
To ensure its functionality in quantum technology, en-
tanglement certification should precede before the appli-
cation. This entanglement certification can be classified
into three di↵erent categories depending on the trust in
the measurement devices of Alice and Bob. First, if both
devices are trusted, one can certify the entanglement by
performing quantum state tomography [4] or an entan-
glement witness test [5]. Second, when trusting only one
device, a quantum steering test can be used [6], and fi-
nally, for no trust in both devices, a Bell nonlocality
test can be used to certify entanglement [7]. However,
these conventional certification tests destroy the original
entanglement because they generally involve projective
measurement to obtain information [8]. As a result, the
state after the certification test is no longer applicable
to further operations. Hence, the conventional certifica-
tion protocols must assume that a quantum state under
a certification test, which is in turn destroyed, is identi-
cal to an unmeasured quantum state used for quantum
applications. Resolving this limitations, Can we make
the entanglement certification be compatible with fur-
ther quantum applications requiring entanglement?

Here we propose and demonstrate a solution to this
question by avoiding the complete destruction of entan-
glement during the certification test from introducing
non-projective measurements, i.e., weak measurements.
Weak measurement prevents the complete destruction of
the entanglement in the quantum state while extract-
ing the su�cient information needed for certification.
We have generalized widely-used entanglement certifica-
tion tests (Entanglement witness, quantum (EPR) steer-
ing, Bell nonlocality) in entangled photonic qubit sys-
tem by taking into account an intermediate measurement
strength. After certification, we implement the reversal
measurement for the disturbed state to restore its origi-
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Figure 1: Experimental set-up for entanglement certifi-
cation and its subsequent recovery

nal entanglement. Through this reversal process, we can
provide the fully recovered entangled state for subsequent
quantum technological applications.

Figure 1 represents our experimental setup for demon-
strating the entanglement certification and the subse-
quent recovery of the initial entanglement. The initial
quantum state distributed to the two users is designed to
target the Bell state |�ii = 1p

2
(|++i+ |��i). To certify

the generated state, users locally perform the weak mea-
surement, which is implemented as the Sagnac interfer-
ometers, where the HWP angle ✓k controls the measure-
ment strength as pk = |cos 4✓k|. The weak measurement

is characterized as M̂ (k)
±|{pk,~rk} =

p
(1 ± pk)/2 ⇧̂

(k)
±|~rk +

p
(1 ⌥ pk)/2 ⇧̂

(k)
⌥|~rk , where ⇧̂(k)

±|~rk = 1
2 (Î(k)±~rk·~̂�(k)) is the

projection operator to the direction ~rk (Î: an identity op-
erator, ~�: Pauli operators (�̂x, �̂y, �̂z)), and the measure-
ment strength pk ranges from 0 (Identity operation) to 1
(projective measurement). To recover the disturbed state
after the certification, we construct the reversal mea-

surement operator; R̂(k)
±|{qk,~sk} =

p
(1 ⌥ qk)/2 ⇧̂

(k)
±|~sk +

p
(1 ± qk)/2 ⇧̂

(k)
⌥|~sk , which is also implemented experi-

mentally with Sagnac interferometers. Note that the re-
covered state | f i =

p
(1 � p2A)(1 � p2B)| ii brings the

normalization factor to the initial state, which can be
interpreted as the success probability of the reverse op-
eration, so-called reversibility (R =

p
(1 � p2A)(1 � p2B)).
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Figure 2: Entanglement certification by weak measurement

We implement three di↵erent entanglement certifica-
tion tests; entanglement witness, steering, and Bell non-
locality. For witness (W ), as in figure 2(a), we can always
detect entanglement with non-vanishing measurement
strength (pa(b): Alice’s (Bob’s) measurement strength)
since we have the full knowledge of the weak measure-
ment on the both sides. For quantum steering (S3), only
one side of the measurement device is known; therefore, it
requires a measurement strength above a certain amount,
pa(b) > 1p

3
. One noticeable point for quantum steering

is that two users individually achieve the steering con-
dition (see figure 2(b)) by controlling the measurement
strength separately; therefore, the steering can happen in
one-way or both (two)-way. Lastly, the Bell nonlocality
test (S), with no trust on both measurement devices, has
the most stringent bound for measurement strength for
certification; pa,b >

1p
2
, corresponds to the red region in

figure 2(c).
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Ē
F̄
P̄

1

Ē
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Figure 3: Recovery of the original quantum entanglement

In addition, we observe the fidelity and the entangle-
ment of the quantum state after the certification. As ex-
pected, the fidelity and the entanglement decrease as the
measurement strength increases, showing in figure 2(d).
However, the purity is una↵ected because the weak mea-
surements do not introduce noise. The observed reduc-
tion of entanglement is attributed to the imbalance of
probability amplitudes in the quantum state rather than
generation of a mixed state, suggesting that appropriate

quantum operations can recover the original entangle-
ment.

To fully recover the entanglement disturbed during the
certification, we implement the reversal measurement on
the disturbed quantum state. We take the same mea-
surement strength p for both users. Figure 3(a – c) shows
the result of recovery: the final state exhibits near-unity
values of fidelity, entanglement, and purity. The recov-
ery process is probabilistic, where the reversibility (i.e.,
the success probability) R decreases as the measurement
strength increases, as depicted in figure 3(d).

In summary, we propose and demonstrate a protocol
that certifies the entanglement of a quantum state with-
out fully destroying it, and then, recovers the original
entanglement for subsequent quantum applications. Our
protocol generalizes entanglement certification by incor-
porating non-destructive quantum measurements, which
has been applied for various certification tests assuming
di↵erent levels of trusts in the measurement devices. We
have shown that our generalized protocol can successfully
certify the entanglement by preserving useful entangle-
ment, where the following reversal measurement fully re-
covers the original entanglement in a probabilistic way.
From a practical perspective, our protocol is beneficial for
enhancing the performance of quantum technologies by
selecting high-quality entanglement from a realistic en-
tanglement source. Our certification protocol may find
broad applications in entanglement-based quantum tech-
nologies [2, 3, 10, 11, 12, 13], which is applicable to other
quantum systems as well (e.g. superconductors [14] and
trapped ions [15]).
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The KQ-Cloud: A Cloud-based Service Framework
for Quantum Computing Resources
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Abstract. The Republic of Korea (ROK) government recently has launched a national flagship project to
develop a circuit-based full-stack quantum computer where the Korea Institute of Science and Technology
Information (KISTI) leads the development of quantum software stack. Here, we introduce the cloud-based
software framework that is currently being developed to serve the KISTI-powered emulating software, as
well as the circuit-based quantum computer whose establishment is carried by the Korea Research Institute
of Standards and Science (KRISS). With a web-based programming environment, our in-house framework
provides a job submission interface for interactive & remote execution of user-defined tasks, enables users
to monitor the status of jobs submitted to remote resources, and supports the functionality to visually
check the results. Currently, the framework is connected to the emulator resource that can simulate up to
44 quantum bit (qubit) circuits with a parallel computing in the National 5th supercomputer of ROK.

Keywords: Quantum software stack, Cloud-based service framework, Quantum emulator and Quantum
Computer, High Performance Computing

1 Introduction

Quantum computing (QC) has witnessed remarkable
progress in recent years, both in hardware platforms
and software technologies, revolutionizing the landscape
of computation and o↵ering unprecedented potential
for solving complex problems. On the hardware side,
progress can be seen through an increase in the number of
quantum bits (qubits) and the expansion of volume sizes.
Recently, IBM announced the latest superconducting-
based quantum processor of 433 qubits, whose quantum
volume also exceeds that of the previous 127 qubit proces-
sor [1, 2]. On the software side, e↵orts are put to provide
an user environment for developing and experimenting
with algorithms and applications, and to overcome lim-
ited access to quantum computing systems. In particular,
a cloud-based on-premise service model has been adopted
to provide convenient access to quantum computers, en-
abling development and execution of quantum algorithms
and applications in a cost-e↵ective manner.
In this fierce competition for quantum computing tech-

nology, the Republic of Korea launched a national flag-
ship project in June 2022 to develop a full-stack & gate-
based 50-qubit quantum computer. This project involves
collaborations among four institutions. Sungkyunkwan
University (SKKU) and Ulsan National Institute of Sci-
ence & Technology (UNIST) are responsible for fabri-
cating superconducting-based Josephson junction arrays
[3]. The Korea Research Institute of Standards and Sci-
ence (KRISS) is in charge of designing qubit controls
and integrating physical qubits into computing systems.
The Korea Institute of Science and Technology Informa-
tion (KISTI) focuses on developing software components
required for programming circuits and public service of
quantum computing resources.
This paper introduces a cloud-based software frame-

work, designed to facilitate the development and pro-
gramming of quantum algorithms and circuits. It enables

⇤elec1020@kisti.re.kr (Corresponding Author)

interactive task submission and provides visual feedback
on results, enhancing the user experience and promoting
the adoption of quantum computing technologies. Addi-
tionally, to enable practical exploration of quantum com-
puting, the framework incorporates an in-house scalable
emulating software that can distribute simulation work-
load with a parallel computing into the classical high per-
formance computing (HPC) resource.

2 KQ-Cloud: The KISTI Quantum com-
puting cloud service framework

Figure 1 shows the architectural diagram of the KQ-
Cloud service framework that we are developing to serve
quantum computing resources. The KQ-Cloud consists of
three software layers: (1) a hardware-level QC resources
layer, (2) a QC service framework layer, and (3) a web-
based interface layer through which users can access and
program quantum computing resources. Each layer here
communicates through a classical server that presents a
set of application programming interfaces (APIs) that is
developed to process requests from users and responses
from resources.

The quantum resource layer: The KQ-Cloud is de-
veloped to serve two di↵erent QC resources: (1) The
KRISS-driven superconductor-based quantum computer,
and (2) the KISTI-driven software package that simulates
large-scale quantum circuits with aids of a parallel com-
puting in classical HPC systems and, particularly, the
National 5th supercomputer in Republic of Korea (the
NURION system) [4]. A software component to be con-
sidered in the quantum resource layer for QC services is
the Resource API server (marked with 4○ in Figure 1),
which receives requests for QC resources from the ser-
vice framework, processes requests, and returns resource-
generated responses to the service framework.

Figure 2(a) describes the actions according to the
eight user resource identifiers (URIs) and corresponding
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Figure 1: The KISTI Quantum (KQ) cloud consists of
three software layers: Quantum computing (QC) re-
sources, QC service framework and web-based user In-
terface. Each layer handles requests & responses for QC
services through API-based communications. Note that
we marked some of technical components with 1○- 4○ for
discussion in main texts.

RestAPI’s provided by our resource API server. Figure
2(b) shows the communication process for a job submis-
sion between the service framework and the resource API
server in order: (1) First, when the service framework
checks whether the job manager of the backend QC re-
source selected through the GET/job method is busy, a
response is returned. (2) If the job manager is not busy,
a job is sent to the selected backend via the POST/job
method, and the Resource API server returns an id for
the task. (3) The service framework sends a Get/job[id]
method request to check the progress of the job until the
job is finished, and receives the job status as a response.
(4) When the job status becomes ‘success’, i.e., the job
is successfully finished, the execution result of the job is
delivered through a Get/job/[id]/result method.

The service framework layer: With aids of virtual-
ization techniques, the service framework enables multi-
ple users to access QC resources and run their applica-
tions with e�ciency in the service overhead. The service
framework is developed to flexibly incorporate the unique
characteristics that QCs have against classical comput-
ing, such as the implementation platforms, the post pro-
cesses of computational outputs, and etc. [5, 6, 7]. The
KQ-Cloud adopts a microservices architecture and lever-
ages the Kubernetes [8] to deploy service instances in

Figure 2: (a) User resource identifiers (URIs), RestAPI
methods and corresponding actions to handle quantum
computing resources. (b) Communication flow between
the service framework layer and the resource API server.

containers. It o↵ers a total of eight backend service
components: job, resource, storage, authentication, no-
tification, documents, account, and JupyterLab services.
To facilitate e�cient communication between users and
backend service components, we employ an API gateway
that ensures proper routing of relevant service requests.
Service components within the framework communicate
through a message broker that is based on a publish-and-
subscribe pattern for event-based interactions. A service
mesh is also developed to enhance the speed of service
discovery and routing process.

Throughout development of the KQ-Cloud, special at-
tention has been given to meet the unique requirements of
quantum computing services. In particular, the Jupyter-
Lab service utilizing JupyterLab Notebook (marked with
3○ in Figure 1) places significant importance on pre-
serving the users’ working state, including their pro-
gramming environment and data. Therefore, these ser-
vices have been implemented to be compatible with Ku-
bernetes’ persistent volume (PV) and persistent volume
claim (PVC) functionalities, which will ensure that user
data and states are e↵ectively stored and maintained.

The web-based user interface layer: Users can pro-
gram and access QC resource through our web-based in-
terface. Functionalities of the web portal are divided into
two parts: one for cloud services and the other for circuit
programming. The first part (marked with 1○ in Figure
1) provides an environment for six basic services: (1) ac-
count registration and management, (2) resource lookup,
(3) user data management, (4) job submission, (5) notifi-
cation, and (6) document delivery, similar to what tradi-
tional cloud systems do for classical computing. The sec-
ond part (marked with 2○ in Figure 1) provides accesses
to the JupyterLab-based programming environment. We
also present a software development kit (SDK) so users
can also interactively program circuits and check the re-
sults in the notebook.

Figure 3 depicts a series of processes in which users
use the entire cloud-based service through our web por-
tal. To access a programming environment, the user be-
gins by logging into KQ-Cloud through a web browser.
First, user initiate the process by creating a JupyterLab
notebook (Step 1). Subsequently, a Python container,
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Figure 3: A conceptual illustration that shows the end-
to-end workflow of the KQ-Cloud service framework

built on JupyterLab, is requested and generated, and the
user is presented with the JupyterLab interface (Steps 2-
4). Once the JupyterLab container is available, users can
access it to develop quantum circuits and request execu-
tion (Steps 5-6). The JupyterLab server then executes
the code and submits the job to QC resources (Steps 7-
8). Upon the job completion, the result obtained from
QC resources is transferred back to users (Steps 9-11).
Finally, the user can examine the results through a visu-
alization toolkit that is supported either directly by the
SDK or by our in-house solution.

The quantum emulator: The SDK we present is
based on the PennyLane package [9], and is used to pro-
gram with both QC hardware and classical simulation
software (a.k.a. quantum emulator). To drive scalable
simulations of large quantum circuits in huge classical
computing environments that normally consist of more
than several hundred computing nodes, we parallelize the
Pennylane-Lightning source code with the Message Pass-
ing Interface (MPI) [10]. Figure 4 shows the strong scal-
ability tests that are conducted against 36-40 qubit ran-
dom circuits in the NURION supercomputer [4], which
confirms fairly nice parallel e�ciency of large-scale quan-
tum circuit simulations.

Figure 4: Strong scalability tested for parallel execution
of 36-38 qubit random circuit simulations in the NU-
RION supercomputer whose single computing node con-
sists of 68 physical cores.
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Abstract. Testing whether two uncharacterized quantum devices behave in the same way is crucial for
benchmarking near-term quantum computers and quantum simulators, but has so far remained open for
continuous-variable quantum systems. We develop a machine learning algorithm for comparing unknown
continuous variable states using limited and noisy data. Our approach is based on a convolutional neural
network that assesses the similarity of quantum states based on a lower-dimensional state representation
built from measurement data. Our network can also be applied to the problem of comparing continuous
variable states across di↵erent experimental platforms, with di↵erent sets of achievable measurements,
and to the problem of experimentally testing whether two states are equivalent up to Gaussian unitary
transformations.

Keywords: machine learning, neural network, quantum state characterization, continuous variable quan-
tum information

1 Introduction

Comparing unknown quantum states based on experi-
mental data [1, 2, 3, 4] is crucial for benchmarking quan-
tum simulations and near-term quantum computers [5].
A natural approach in this context is to choose a trusted
device as a reference standard, and to compare other de-
vices to it. For example, the trusted device could be built
and maintained by a quantum computing company, while
the other devices could be owned by users in distant lab-
oratories. One way to compare two unknown quantum
devices is to estimate their overlap [6, 7, 8, 9, 1, 10, 11],
which is also useful for tasks like quantum state discrim-
ination and classification [12, 13, 14, 15]. Recently, El-
ben et al. proposed an approach named cross-platform
verification [1], which uses only local Pauli measure-
ments to experimentally estimate the overlap between
two multiqubit states. This approach has been recently
demonstrated on quantum systems with more than ten
qubits [16]. An alternative approach to characterize
quantum states from measurement data is provided by
deep neural networks [17, 18, 19, 20, 21, 22, 23, 24, 25, 26],
which can work with a smaller amount of data when the
states under consideration belong to state families with
su�cient structure, such as the family of ground states
of the Ising model with di↵erent values of the couplings
and of the magnetic field.
In this work, we develop a convolutional neural net-

work for testing the similarity of quantum states drawn
from a continuously-parametrized state family. For su�-
ciently regular families, our network manages to tell dif-
ferent states apart using noisy and incomplete measure-

⇤Ya-Dong Wu and Yan Zhu contribute equally
†yzhu2@cs.hku.hk
‡giulio@cs.hku.hk

ment data, without requiring randomization over an ex-
ponentially large set of measurements, or correlations be-
tween measurements performed on di↵erent states. The
network is trained with data from a fiducial set of quan-
tum states sharing structural similarities with the states
to be compared. After training, the network embeds the
measurement data into a low-dimensional feature space
in a way that reflects the similarity of quantum states.
This low-dimensional state representation is then used by
the network to decide whether the two given states are
the same or not. Our approach is inspired by a classical
technique for the recognition of human faces in blurred
and incomplete images [27], a task that shares similari-
ties with the task of comparing continuous-variable quan-
tum states from finite-statistics approximations of their
Wigner function.

2 Framework

Two experimenters, Alice and Bob, own two quantum
devices producing copies of two unknown quantum states
⇢ and �, respectively. Alice and Bob want to determine
whether their devices prepare the same quantum state,
that is, whether ⇢ = �. To this purpose, they can only
perform a limited set of quantum measurements, possibly
di↵erent for Alice and Bob. The measurements can be
chosen independently and randomly, but there is no need
for Alice and Bob to sample them from the uniform dis-
tribution, or from any specific probability distribution.
In general, the sets of performed measurements SA and
SB need not be informationally complete.

Here we introduce a deep neural network that deter-
mines whether two unknown states are same or not, using
limited and noisy data. We call our network StateNet, in
analogy to FaceNet [27], a popular neural network for the
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Figure 1: Rejection rate for cat states as a function
of the fidelity. Three di↵erent scenarios are considered:
50%, 62.5% and 75% of 32 ⇥ 32 pixels are randomly se-
lected as input to the neural network respectively. For
all the scenarios, each pixel is an estimate of the Wigner
function obtained from 300 measurement samples. In
Fig.(a), solid lines are for cat states with ↵ 2 [1, 2] and
dashed lines are for cat states with ↵ 2 [4, 5]. In Fig.(b),
solid lines are for four-component cat states and dashed
lines are for two-component cat states.

identification of human faces. StateNet uses a convolu-
tional neural network [28] to produce a low-dimensional
representation of quantum states. For the training, we
choose a set of fiducial states and provide the correspond-
ing measurement data to the network. The training
data can be generated by computer simulation, or by ac-
tual experiments, or by a combination of these two meth-
ods. Note that the training data need not be produced
afresh; instead, one can use existing data from past sim-
ulations or past experiments. For each fiducial state ⌧ ,
its measurement data set is fed into a deep neural net-
work to produce a low-dimensional representation, given
by a vector r 2 Rn. The dimension n is a parameter of
the network. Note that in general n can be much smaller
than the dimension of the Hilbert spaces containing the
fiducial states.
In the training phase, we optimize the parameters of

the convolutional neural network with respect to a loss
function, called triplet loss [27]. After the training is con-
cluded, the network maps measurement data to vectors
that reflect the similarity of quantum states. Quantum
states are then compared by evaluating the Euclidean
distance between the corresponding vectors. To decide
whether two vectors correspond to the the same quantum
state, the network uses a threshold value that balances
between the false rejection rate and the false acceptance
rate over a new set of unseen measurement data obtained
from the fiducial states.

3 Testing the similarity of continuous

variable states

A continuous-variable quantum state ⇢ is characterized
by its Wigner function W⇢(↵) [29, 30]. An estimate of
the value of W⇢(↵) at any phase-space point ↵ can be
achieved e.g. by measuring displaced parity operator,
which is widely used for the characterization of quantum
states in circuit quantum electrodynamics [31, 32, 33, 34].
Suppose that Alice (Bob) can estimate the Wigner func-
tion at a finite number of points, chosen at random from
a square grid over the phase space. The set of all points
on the grid corresponds to the set of achievable measure-
ments MA = MB =: M. Alice (Bob) randomly chooses
a subset of points in the grid to perform measurements
of the Wigner function, which is a subset SA (SB) of M.
In general, the points chosen by Alice and Bob need not
be the same. After a finite set of measurement runs, Al-
ice (Bob) obtains a two-dimensional data image, where
some pixels are missing and the value at each of the ex-
isting pixels is an estimate of the Wigner function at the
associated phase-space point. As a result of the finite
statistics, the image will generally be blurred.

We test our method on cat states [35, 36] (|↵i +
|�↵i)/

p
2(1 + exp(�2|↵|2)), where |↵i := D(↵)|0i is a

coherent state. We train StateNet using simulated mea-
surement data from ideal cat states as well as noisy
cat states with a fixed amount of thermal noise. Af-
ter the training is concluded, we test the performance
of StateNet in distinguishing between pairs of noisy cat
states degraded by photon loss. For each pair of noisy
cat states ⇢ and �, we take ⇢ to play the role of the refer-
ence state, and make it close to its noiseless counterpart
⇢ideal, with fidelity 99%). On the other hand, we regard
� as the untrusted state that needs to be verified, and
allow it to be generally noisier, allowing the fidelity with
the trusted state ⇢ to range between 84% and 100%. To
evaluate the performance of the network, we plot the re-
jection rate, namely the probability that the two states
are judged to be di↵erent, as a function of their fidelity.
The resulting plot is shown in Fig. 1.

Fig. 1(a) shows the performance of StateNet for noisy
cat states with amplitudes ↵ 2 [1, 2] and ↵ 2 [4, 5]. The
numerical results indicate that, when the amplitude is in-
creased without increasing the amount of measurement
data, the prediction accuracy decreases. We also test
how the performance of our neural network is a↵ected by
the states’ complexity, as measured by their nonclassical-
ity [37]. To this purpose, we consider cat-like states that
are superposition of four coherent states instead of two.
Fig. 1(b) demonstrates that the success rate of StateNet
decreases as state complexity increases.

To test the ability of our network to cope with high-
dimensional quantum states, we perform numerical ex-
periments on noisy cat states with high amplitudes. Fig-
ure 2(b) illustrates the performances of StateNet for the
comparison of two noisy cat states with amplitudes ↵ 2
[15, 16] (corresponding to an average number of photons
between 225 and 256) using displaced parity measure-
ment data on a 36⇥36 grid within [�1.5, 1.5]⇥ [�1.5, 1.5]
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Figure 2: (a) Wigner function of a cat state with ↵ = 16,
along with a inset figure of the Wigner function on a 36⇥
36 fine grid within the region [�1.5, 1.5]⇥ [�1.5, 1.5]. (b)
rejection rates against quantum fidelity when StateNet
only utilizes 50%, 62.5%, 75% of the measurement data
of the Wigner function on this 36⇥ 36 fine grid.

in phase space. Despite the limited amount of measure-
ment data, StateNet achieves a relatively high success
rate in this high amplitude scenario.

4 Verification of Equivalence up to Gaus-

sian Unitary Operations.

A variant of StateNet can be used to decide whether
two quantum states are the same up to a unitary trans-
formation in a given set. A common example of unitary
transformations are the Gaussian unitary transforma-
tions introduced by displacements, phase rotations and
squeezing [38].
In the Wigner function representation, the combina-

tion of displacements, rotations, and squeezing corre-
sponds to an a�ne transformation in phase space. We
use StateNet for testing whether two data images gener-
ated from states of the form

|�✓,↵i := SNAP(✓) |↵i , (1)

where SNAP(✓) :=
P

n exp(i✓n) |ni hn| is a selective
number-dependent arbitrary phase gate [33, 39], are
equivalent up to an a�ne transformations. Fig. 3 shows
examples of image data for equivalent as well as inequiv-
alent quantum states. By balancing both the false re-
jection rate and the false acceptance rate, we obtain a
distance threshold 0.4, which makes our model accept
all pairs of equivalent states, and reject the inequivalent
ones.

5 Similarity testing with two di↵erent

sets of achievable measurements

Quantum information protocols have been imple-
mented on a variety of experimental platforms, each in-
volving di↵erent sets of feasible measurements. For in-
stance, homodyne measurements are commonly used for

Figure 3: Verification of equivalence up to Gaussian
unitary transformations. Each column contains a pair
of data images of the same quantum state with di↵erent
a�ne transformations. The three di↵erent columns cor-
respond to three quantum states (1) with di↵erent values
of ✓0 and ✓1 (✓n = 0 for n � 2). Each data image con-
tains 4900 pixels randomly chosen from 81 ⇥ 81 = 6561
pixels, and the value at each pixel is an estimate of the
Wigner function obtained from 500 measurement sam-
ples. The number between each pair of data images is the
distance between their state representations produced by
StateNet.

photonic systems [40], while displaced parity measure-
ments are preferable in cavity quantum electrodynam-
ics [33, 34]. Here we demonstrate that StateNet can test
the similarity of quantum states realized on two di↵erent
experimental platforms, with two di↵erent sets of acces-
sible measurements.

We consider a scenario where Alice performs displaced
parity measurements on state ⇢, while Bob performs ho-
modyne measurements on state �. Given measurement
data from these two essentially di↵erent types of mea-
surements, Charlie aims to determine whether ⇢ equals
to �. To achieve this objective, we jointly train two neu-
ral networks, so that their measurement data from these
two di↵erent types of measurements are mapped into a
single representation space.

6 Similarity testing for multiqubit states

StateNet can also be adapted to the problem of test-
ing the similarity of multiqubit states, such as the ground
states of Ising model. We test its performance on pairs
of 10-, 20-or 50-qubit states ⇢ and �, where ⇢ repre-
sents an ideal ferromagnetic Ising ground state, and �
an untrusted Ising ground state with poor calibration of
the coupling parameters. Alice (Bob) selects a subset of
two-qubit nearest-neighbor Pauli measurements, and the
measurement statistics is then input into StateNet. The
results of our numerical experiments show that our ap-
proach can correctly identify whether two datasets are
from the same ⇢ or di↵erent states ⇢ and � with a prob-
ability of over 90% for 10 qubits. However, for 50 qubits,
the success probability drops to 80% if the amount of
measurement data is kept fixed.

A full technical version of this work can be found via
the link https://arxiv.org/pdf/2211.01668.pdf.
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Abstract. In this study, we derive the general expression for variational quantum machine learning mod-
els based on parameterized quantum circuit, and we identify their inductive bias when they are applied to
classical supervised machine learning tasks. Then we argue that a classical counterpart with similar capa-
bility can be easily constructed under such assumption. We also provide results of numerical experiments
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1 Introduction

Quantum machine learning (QML) is an emerging field
that utilizes quantum computers for machine learning ap-
plications [1]. In recent years, with the development of
quantum computing technology, variational quantum al-
gorithms [2] drew much attention as a method that can
give quantum advantage using noisy intermediate-scale
quantum (NISQ) computer [3,4]. From the perspective of
classical supervised machine learning (ML) tasks, there
are two popular types of variational quantum machine
learning (VQML) models, the variational quantum cir-
cuit (VQC) models [5–10] and the quantum kernel (QK)
models [11–15]. However, still it is not clear whether
the VQML models truly o↵er a quantum advantage com-
pared to the other classical models in processing classical
data, mainly because a lot of freedom in selecting the
circuit structure of the VQML model makes it di�cult
to analyze how they handle classical data and how they
can have better performance than its classical competi-
tors. In addition, practical bench-marking results are not
available on current NISQ quantum computer and there-
fore comparison of a quantum model with other classical
models is limited [16]. Fundamentally, the notion of clas-
sical counterparts for VQML models is obscure, like a
classical algorithm processing quantum data is not well-
defined [17].
In this study, we will analyze how the VQML mod-

els process classical data, starting from the fact that any
arbitrary quantum algorithms can be represented by uni-
versal gate set [18]. We will treat a set of single qubit ro-
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tation gates R�x , R�y , R�z and a two-qubit cnot gate as
a basic gate set. We utilize the Stokes representation [19]
of a quantum state and figure out the real-valued matrix
representation of these basic gates. Based on the repre-
sentation, we construct general expression of the VQML
models and clarify the conditions when these models can
be suitably adopted. Finally, we suggest exmaples of
classical counterparts for the VQML models and com-
pare their performance on toy problems. Note that the
VQML models may have various circuit structures and
it requires a compilation process before it is run on a
real quantum computer. This compilation process may
convert the data or the model parameters, and therefore
we consider the values of data and model parameters af-
ter the compilation since it is totally done on a classical
computer.

2 Representation of basic gates

First, we consider a n-qubit quantum state | i as
4n-dimensional real vector v whose elements vi are the
Stokes parameters defined as follows:

⇢ = | ih | = 1

2n

3X

i1,i2,··· ,in=0

vi1,i2,··· ,in

 
nO

k=1

�ik

!
,

where �0 is the identity matrix and �x,y,z = �1,2,3, the
Pauli matrices. We denote vi with i = i1 ⇥ 4n�1 + i2 ⇥
4n�2 + · · ·+ in ⇥ 40. Now we obtain the real matrix rep-
resentation of basic gates acting on v. Note that we use
the following equality to make cnot gate representation
on q1 and q2 qubits.

Uq1q2
cnot = e�i⇡

4 e�i⇡
4 (Zq1Xq2)R

3q1
�

⇣
�⇡
2

⌘
R

1q2
�

⇣
�⇡
2

⌘
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Note that Rik
� (✓) = e�i ✓

2�ik is a single qubit gate acting
on k-th qubit where ik 2 {1, 2, 3}. Figure 1 shows the
graphical representations.

Figure 1: Graphical representation of single qubit gates
and two-qubit gate. Note that we consider the single
qubit gates acting on k-th qubit and Rak

� = e�i ✓
2�ak .

The two-qubit gate e�i⇡
4 Zq1Xq2 acting on q1, q2 qubits is

used to construct the cnot gate.

3 Expression of VQML models

According to the result of the previous section, we can
find that the final quantum state of VQML models has
the following general form:

vi2{0,1,2,3}n =
X

k2{0,1,2}d

cik

dY

j=1

gkj (✓j),

where the real vector ✓ can be a data point or the model
parameters or both and d is its dimension. Note that
cik 2 {�1, 0, 1} and g0(✓) = 1, g1(✓) = sin ✓, and g2(✓) =
cos ✓. One may repeat the same circuit structure several
times to enhance the capability of VQML models [20].
We can simply extend the above representation for this
case:

vi2{0,1,2,3}n =
X

k2{0,1,2}d

r2{1,2,··· ,l}d

cik,r

dY

j=1

�
gkj (✓j)

�rj , (1)

According to this expression, we recognize that the
VQML models require a knowledge of the important co-
e�cients cik,r to have a good performance on supervised
ML tasks. This can be considered as the inductive bias of
VQML models, which raises the following question: Can
a classical model be constructed under such condition,
which can approximate the VQML models or even sur-
pass their performance? We can think of two kinds of
simple classical models which can be adopted instead of
the VQML models.

3.1 Direct estimation model

When we have knowledge of crucial coe�cients in (1),
we can directly estimate it from data. Consider we have
data point x 2 [�⇡,⇡]d and set l = 1. We assume that
the data is properly pre-processed so that each data fea-
ture is independent of each other. From the orthogonal
property of Fourier series, we can estimate the coe�cients
as follow:

cik =

Z

x2[�⇡,⇡]d
f(x)

0

@
dY

j=1

gkj (xj)

1

A dx

⇡ E(x,y)2D

2

4y

0

@
dY

j=1

gkj (xj)

1

A

3

5

Of course this model can be used only when we need
to evaluate small portion of cik, since the number of co-
e�cients grows exponentially as the dimension of data
increases. This method assumes that each data feature
is sampled from uniform distribution from [�⇡,⇡]. This
assumption can be handled by using techniques like im-
portance sampling, when we can infer the real distribu-
tion [21].

3.2 Classical kernel based model

The Dirichlet kernel is known to have the partial
Fourier space as its reproducing kernel Hilbert space
(RKHS) [22]. Consider a feature map of 1-dimensional
data x.

� : x !
h
e�ilx, e�i(l�1)x, · · · , eilx

i
, l 2 N

Then the inner product between x(1) and x(2) in this
feature space can be computed as follows:

�†(x(1))�(x(1)) =
sin ((l + 1/2)�x)

sin(�x/2)
= D(�x),

where�x = x(1)�x(2) and D(�x) is the Dirichlet kernel.
It can be easily extended to d-dimensional data x:

�†(x(1))�(x(2)) =
dY

i=1

D(�xi).

A classical kernel method like kernel ridge regression
(KRR) and kernel support vector machine (SVM) can be
used with the Dirichlet kernel to approximate the output
of VQML models.

4 Numerical experiments

We compare the outputs of VQML models and the
classical models suggested in section 3 for toy examples.
First, we sampled 2-dimensional data points x 2 [�⇡,⇡]2
and generate the label based on values of a function f(x)
which has the form in equation (1) with l = 3. We ran-
domly initialize the coe�cients cik,r and then approxi-
mate the distribution of function values. In Figure 3, we
present the distribution of the target function f(x) and
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Figure 2: Outputs of models for (a)-(d) checkerboard and (e)-(h) symmetric donuts dataset. (a), (e) outputs of VQML
model. (b), (c), (f), and (g) outputs of direct estimation model. (d), (h) outputs of kernel based SVM.

Figure 3: The distribution of target fucntion and VQC
model output. (a) The function values for input x 2
[�⇡,⇡]2. (b) The circuit structure used for VQC model.
(c) The trained VQC model output for each number of
layer l.

Figure 4: Output of classical models. (a) direct estima-
tion model and (b) KRR model with the Dirichlet kernel.

the output of VQC model to approximate it. Figure 3
(b) shows the circuit structure used for VQC model and
we trained it with di↵erent number of layers l. As the
number of layer grows, the VQC model approximate f(x)
better. Note that l = 3 would be the least requirement
for the VQC model to approximate f(x) well, but the
result shows that more than 3 layers are needed due to
its limited capability.
We show the result of direct estimation model and the

KRR model with Dirichlet kernel in Figure 4. As the
estimated number of coe�cients goes larger, the direct
estimation model overfits to train data and becomes inef-
ficient. KRR model utilizing the Dirichlet kernel approx-
imates the target distribution well, without the necessity
of estimating all the coe�cients directly.
Next we aim to learn a synthetic data distribution

shown in Figure 5. We apply a QK model suggested
in Ref. [23] and its output for each dataset can be found
in Figure 2 (a) and (e). It can separate the train data
well but the output has much simpler form than the true
distribution. For the direct estimation model, we first

Figure 5: Distributions of synthetic datasets. (a) checker-
board and (b) symmetric donuts dataset.

estimated the largest 20 coe�cients. The output is on
Figure 2 (b) and (f). It has similar shape with the QK
model for the input space. By estimating all coe�cients,
we could have more complex outputs which are more sim-
ilar to the true ones. See Figure 2 (c) and (g). For the
last, we applied SVM with the Dirichlet kernel. Again,
the SVM could learn the target distribution well, with-
out explicitly computing the coe�cients. Figure 2 (d)
and (h) shows the outputs of SVM.

5 Discussion

In this study, we showed explicit form of expression of
the VQML models and argue that a classical counterpart
can be constructed using the inductive bias which is nec-
essary for the VQML models. We suggested two simple
examples of classical model and showed that these classi-
cal models can surpass the performance of VQML models
through numerical experiments with synthetic datasets.
As Lee et al. [24] showed that the classical heuristics re-
quired for a quantum chemistry algorithm yield a ques-
tion about the quantum advantage of such algorithm,
the bias required for VQML models makes one to think
of their potential quantum advantage. We identified the
necessary conditions for VQML models and concluded
that classical counterparts can be easily built under such
kind of conditions. The results of our numerical experi-
ments support our claim and demand a new approach of
QML dealing with classical supervised ML tasks.
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Effect of Scattering on Quantum Ghost Imaging and Ordinary Imaging
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Abstract. Scattered light is a inherent source of noise in X-ray imaging, and its influence can be mitigated
by employing collimators. However, to compensate for the loss of light caused by collimators and obtain
images of sufficient quality, it is necessary to increase the light intensity. Unfortunately, increasing the
light intensity is undesirable for the human body due to the increased radiation exposure. In this study,
we consider a quantum ghost imaging scheme to utilize the scattered light, which does not depend on
collimators. We also demonstrate that this scheme can outperform the conventional approach.

Keywords: Quantum ghost imaging, Quantum entanglement, Scattering

1 Introduction

Quantum ghost imaging [1] is an application protocol
of entanglement [2]. This protocol is much more robust
against noise than conventional imaging techniques. It is
expected to allow objects obscured by noise to be seen
more clearly than with conventional technology. One of
the common advantages of quantum measurement us-
ing light, including quantum ghost imaging, is that it
is much more sensitive than conventional optical mea-
surement when using light with extremely low energy.
However, if the intensity of light in conventional opti-
cal measurements is increased, measurement with higher
sensitivity than quantum measurements using weak light
may be possible. Thus advantages of quantum measure-
ments will disappear when we can use strong light.
Is there a case where we want to use the weakest

possible light source for measurement? There are cases
where there is a need to avoid damaging the object to
be measured. For example, when measuring the human
body with X-rays, there is a strong need to minimize the
amount of exposure to radiation. In X-ray imaging in
particular, scattered light is known to be a significant
noise factor, and current technology uses collimators to
remove scattered light. However, since collimators reduce
the amount of light reaching the detector, it is necessary
to increase the amount of light to obtain images of suffi-
cient quality. Such an increase in light intensity is unde-
sirable in human body measurements because it causes
an increase in radiation exposure. Since scattering oc-
curs when light is irradiated to an object, scattered light
also contains information about the object. In addition,
some studies have recently been conducted to increase
measurement sensitivity by collecting information on the
scattered light [3].
In this study, we focused on the fact that “scattering

occurs when light is irradiated to an object”. If quantum
ghost imaging using two entangled lights is applied, the
position of one light before it is refracted by scattering
can be known by the position of the other light. This
means that the information of the scattered light can be

∗im231009@cis.aichi-pu.ac.jp
†wang@kanagawa-u.ac.jp
‡usuda@ist.aichi-pu.ac.jp

fully utilized.
In quantum ghost imaging, attenuation and other fac-

tors have been considered by various researchers, but the
main theme of this study is to consider the effect of scat-
tering. In this paper, we first treat a setup in which light
randomly spreads around an object after passing through
it as a simple model of scattering. Also we compare the
characteristics of classical imaging and quantum ghost
imaging through simulations. The object to be treated
is simply an A-shaped shield (a setup similar to that in
[4, 5]). As an evaluation method, first we are subjec-
tively compare the obtained images and then we com-
pute PSNR [6, 7] as an objective evaluation. PSNR is a
measure of how close two images are and has often been
used in the evaluation of quantum ghost imaging. The
definition of PSNR is as follows:

PSNR = 10 log10

(
I2
MAX

MSE

)
, (1)

where IMAX is the maximum value of signal intensity
and MSE is the mean squared error. In this paper, the
intensity is assumed to be normalized and IMAX = 1.

2 Problem Setup

2.1 Quantum Ghost Imaging

Ghost imaging is a technique to create a two-
dimensional image of the shape of an object by using
two detectors with different roles and spatially correlated
light. The two roles are to measure light intensity infor-
mation and to measure light position information, respec-
tively. Among ghost imaging techniques, those that use
entanglement for correlation are called quantum ghost
imaging. The schematic of quantum ghost imaging is
shown in Fig.1. In Fig.1, DA represents a detector with-
out spatial resolution, DB represents a detector with spa-
tial resolution (d× d pixels), and C represents the corre-
lator. An entangled photon pair consists of two modes:
the modes A and B. The following explains the protocol:

(1) Two modes of a spatially entangled state are irra-
diated toward DA and DB , simultaneously.

(2) DA detects the light and checks for the presence of
an object at the corresponding coordinates.
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(3) Direct light from the light source at DB to obtain
information on the irradiated coordinates.

(4) The image is calculated by applying the informa-
tion on the light intensity and coordinates obtained
by the two detectors to a correlator.

While the mode A, where the object exists, is affected
by noise, the mode B is an imaging technique that is less
affected by noise due to the fact that it can obtain po-
sitional information by directly illuminating the detector
and the fact that the image is obtained by the correlation
process between the modes A and B.

Figure 1: Schematic of quantum ghost imaging

2.2 Quantum State

The quantum state used in this study is an entangled
state, defined by the following equation.

|Ψ〉 = 1√
N

N∑

i=1

|Ψi〉 , (2)

where

|Ψi〉 = |0L〉A1
|0L〉B1

· · ·
|1L〉Ai

|1L〉Bi
· · · |0L〉AN

|0L〉BN
(3)

is the product state of the modes A and B. Both the
modes A and B consist of N points A1, . . . , AN and
B1, . . . , BN corresponding to N = d × d pixels. In this
study, |0L〉 is a photon number state with zero photons
(vacuum state) and |1L〉 is a photon number state with
a single photon. |Ψi〉 is defined as the product state
of the quantum states at each point. The typical light
source used for quantum ghost imaging is entangled light
produced by spontaneous parametric down conversion
(SPDC), and it was used in the world’s first quantum
ghost imaging experiment [1]. The state in Eq.(2) is in
a sense an idealized version of the entangled state pro-
duced by SPDC; SPDC is a special case of parametric
down conversion (PDC). Actually, PDC of X-rays has
been considered since the 1960s [8, 9]. More recently, ex-
periments on quantum ghost imaging using X-rays have
also been performed [10].

2.3 Scattering

In this paper, as a simple model of scattering, we treat
a setup in which light randomly spreads around an object
after passing through it. The parameter s (0 ≤ s ≤ 1)
represents the fraction of light that spreads; when s =
0, it means that all light travels straight ahead; when
s = 0.5, 50% of the light is scattered uniformly in the
surroundings.

3 Results

Let k be the number of photons per pixel. For example,
when k = 10, each pixel is irradiated 10 times, i.e., the
total number of photon irradiations is 10 × 100 = 1000.
The results of the simulation are shown below.

3.1 Output image

Fig.2 shows the output image by the quantum ghost
imaging and Fig.3 shows that by an ordinary (classical)
imaging. Here, a black point represents no photon is
detected at the coordinate, whereas a white point rep-
resents at least a one photon is detected. In the ghost
imaging, the shape of the shield A appears without the
effect of scattering. In the classical imaging, the entire
image is white due to the effect of scattering. Since the
entire image is white in the classical case, to improve visi-
bility, introduce a grey-scaled image instead of the black-
and -white image. Fig.4 shows the grey-scaled image of
the classical imaging. Here, the grey-level is determined
by the number of detected photons. More precisely, we
use a normalization with respect to the maximum num-
ber of detected photons. The image of shield A appears
when the number of photon irradiations increases, but
the number of irradiations must be increased significantly
in order to clearly identify the shield as A. Even if the
number of irradiations is greatly increased, the image of
shield A becomes dim due to the effect of scattering.

k = 2 k = 4 k = 6

k = 8 k = 10

Figure 2: Output image of quantum ghost imaging

k = 2 k = 4 k = 6

k = 8 k = 10

Figure 3: Output image of ordinary (classical) imaging
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k = 2 k = 10 k = 100

k = 1, 000 k = 10, 000 k = 100, 000

Figure 4: The grey-scaled (normalized) image of the clas-
sical imaging

3.2 PSNR

The PSNR is summarized in the graph shown in Fig.5.
In classical imagings, the PSNR is strongly affected by
scattering. As a result, when normalized to the maxi-
mum value, the PSNR reaches a certain value and no
further improvement can be seen. In the quantum ghost
imaging, the PSNR diverges because it coincides the orig-
inal image. Fig.6 shows the dependence of the PSNR on
the degree of scattering s. In the quantum ghost imag-
ing, the effect of scattering is eliminated for any s, so the
PSNR diverges and is not represented on the graph. In
the classical imaging, except for the case of s = 0, the
entire image is white and the PSNR is constant. In the
grey-scaled case, the smaller the degree of scattering, the
better the PSNR value, and the stronger the scattering,
the worse the PSNR value.

Figure 5: PSNR with respect to the number of photon
irradiations

Figure 6: PSNR with respect to s when k = 100, 000

4 Conclusion

We compared the performance of classical imaging and
quantum ghost imaging under the influence of scattering.
First, a simple model of scattering was considered and
repeated irradiation simulations were performed. As a
result, we found that classical imaging is greatly affected
by scattering, and when the amount of scattering is large,
a clear image cannot be obtained even if the number of
irradiations is increased, whereas quantum ghost imag-
ing is not affected by scattering, and the image becomes
clearer as the number of irradiations is increased, regard-
less of the amount of scattering, based on examples of
obtained images and PSNR.
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