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Engines for predictive work extraction from memoryful quantum
stochastic processes

Ruo Cheng Huang1 2 ∗ Paul M. Riechers1 2 † Mile Gu1 2 ‡ Varun Narasimhachar1 2 §
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Abstract. Quantum information-processing techniques enable work extraction from a system’s inher-
ently quantum features, in addition to its classical free energy. Meanwhile, the science of computational
mechanics affords tools for the predictive modelling of non-Markovian stochastic processes. We combine
tools from these two sciences to develop a technique for predictive work extraction from non-Markovian
stochastic processes with quantum outputs. We demonstrate that this technique can extract more work
than non-predictive quantum work extraction protocols, on one hand, and predictive work extraction
without quantum information processing, on the other. We discover a phase transition in the efficacy of
memory for work extraction from quantum processes, which has no classical precedent. Our work opens
the prospect of machines that harness environmental free energy in an essentially quantum time-varying
form.

Keywords: Quantum Thermodynamics, Stochastic Processes, Computational Mechanics, Temporal Cor-
relations

1 Introduction

In the earliest heat engines, a combustible fuel was
burned to maintain a temperature gradient between hot
and cold heat reservoirs. The second law of thermody-
namics holds that no engine can sustainably function
with a single reservoir [1, 2, 3, 4]. While thought ex-
periments such as Maxwell’s demon and Szilard’s engine
initially appear to defy this law [5], a more complete
understanding of thermodynamics resolved the apparent
paradox: the resource powering the engine need not be
a temperature gradient, but may be any form of free en-
ergy—even information [6, 7, 8, 9, 10]. The emerging
field of quantum thermodynamics has continued to ex-
pand the scope of “fuel” to increasingly general forms
of free energy. There has been both theoretical and ex-
perimental advancement in constructing engines that can
harness the free energy locked up in quantum coherence,
over and above classical free energy [11, 12, 13, 14, 15].
The story does not stop there—in addition to static

fuel, there is also a dynamical fuel-like resource embodied
by complex thermodynamic processes. The framework
of computational mechanics in complexity science offers
powerful techniques for the characterization and manip-
ulation of stochastic processes. The future behaviour of
such a process in general cannot be known perfectly using
data from its past. Nevertheless, temporal correlations,
i.e., patterns in a process’s behaviour over time, enable
prediction. These correlations may even be non-Marko-
vian, whereby the future of a process depend not only
on its present, but also on its distant past. Epsilon ma-
chines and their quantum extensions [16, 17, 18] perform
memory-optimal predictive modelling of stochastic pro-

∗ruocheng001@e.ntu.edu.sg
†pmriechers@gmail.com
‡gumile@ntu.edu.sg
§varun.achar@gmail.com

cesses. Pattern extractors [14, 19] leverage prediction to
extract useful work from the classical free energy present
in temporal patterns, exchanging heat with a single bath.
However, these predictive engines are not equipped to
harness the free energy locked up in quantum degrees of
freedom.

1.1 Our contributions

Here, we develop the theoretical prototype for a pre-
dictive quantum engine: a machine that charges a bat-
tery by feeding on a multipartite quantum system whose
parts are temporally correlated via a classical stochastic
process [20]. It can extract free energy beyond what is
accessible to current quantum engines or classical pre-
dictive engines. We present a systematic construction of
such an engine for arbitrary classical processes and quan-
tum output states. We illustrate its application on ex-
ample stochastic processes of correlated non-orthogonal
qubits. (Fig. 1). We also use this test case to bench-
mark the performance of our engine against various al-
ternatives, including one without coherent quantum in-
formation processing, and one without predictive func-
tionality. Our predictive quantum engine outperforms
these alternatives in terms of work output. We show
that parametrized processes of correlated non-orthogonal
quantum outputs exhibit phase boundaries between para-
metric regions where memory of past observations can
and cannot enhance the work yield—despite the appar-
ently smooth change of memoryful correlations in the
process across this boundary. The sudden lack of memory
advantage is thus fundamentally thermodynamic (since
prediction per se has more freedom than during work
extraction) and fundamentally quantum (since classical
engines can exploit all the process’s inherent memory).
Finally, we generalize the Information Processing Sec-
ond Law (IPSL) to the quantum regime and derive the

1
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Figure 1: Latent-state sources of correlated quantum pro-
cesses. Each arrow represents a transition between latent
states; the label p : σ(x) indicates that the transition hap-
pens with probability p and produces a quantum state
σ(x). (a) Perturbed-coin process. (b) 2-1 golden-mean
process.

fundamental bounds on a quantum pattern engine’s per-
formance.

2 Framework

Rather than using memoryless quantum sources which
produce independent and identically distributed (IID)
quantum states at each discrete time [21, 22], we con-
sider general finite-state sources of quantum states which
can create nontrivial correlation across time. Some sim-
ple examples are depicted in Fig. 1. these memoryful
sources of states can be represented by a hidden Markov
Model (HMM). The states generated are separable but
can have non-classical correlations in the form of dis-
cord [23]. These sources generalize the kindred ‘classi-
cally controlled qubit sources’ of Ref. [24].
We restrict the the engine to possess no quantum mem-

ory and limited classical memory. Each of the quantum
states generated also has an immediate expiration date,
hence the quantum states generated must be fed into the
engine one at a time rather than storing everything for
later time. We allow the HMM to be arbitrary in its al-
phabet, size, statistics as well as the quantum outputs’
dimensionality and purity. Lastly, we assume that the
source of the fuel tape is known exactly, which entails
the complete knowledge of the HMM
The engine will operate relying on its internal memory

which keeps track of “belief states”, ηt. The memory
will allow the engine to predict what the next expected
state, ξt, will be. The engine then attempts to extract
work from the quantum states based on the identity of ξt.
The battery storing the work will eventually be measured
and the memory will be updated. The process proceeds
cyclically as shown in Fig. 2.

3 Results

Here we provide a summary of our results.

1. We generalised the so-called “mixed-state presen-
tation” into the quantum regime where the states
are non-orthogonal [25, 26, 27, 28, 29].

Update belief state 𝛈
conditioned on state of battery, B 

Quantum Work 

Extraction based on 𝜉

Predict next 

expected state, 𝜉

ξ

ξ

1

Figure 2: The protocol proceeds cyclically to fine-tune
the belief state.

2. We demonstrated the superior performance of our
engine by comparing it against other engines that
lacked either memory or the ability to operate co-
herently on quantum states.

3. We discovered a phase transition in efficacy of
knowledge in work extraction with respect to pro-
cess parametrization. This along with the general
performance of our engine can be found in Fig. 3

4. Finally, we provide a fundamental limit of this
quantum pattern engine by invoking the quantum
information processing second law to act as an up-
per bound.

4 Discussion

We developed the theoretical prototype for a quantum
pattern engine: a machine that can adaptively extract
useful work from quantum stochastic processes by ex-
ploiting knowledge of the temporal patterns they con-
tain. We witnessed that, in the presence of coherence,
the memory-assisted quantum approach will always out-
perform the memory-assisted classical approach. We also
demonstrated its advantage over engines that can only
harness static quantum resources. We found a phase
transition marking the onset of memory advantage. It
is an open question whether this phase transition coin-
cides with the onset of quantum discord.

We found how to update the state of knowledge about
any latent-state generator of a quantum process, given
any POVM on the current quantum output. Further-
more, the fundamental thermodynamic limits of work ex-
traction from correlated multi-partite quantum systems
was found, setting the ultimate benchmark.

Despite the advances presented here, many open ques-
tions remain for future work.

Although designing the protocol guarantees maximal
work extraction locally in time, it remains an interesting
open question whether there is a superior steady-state
approach that sacrifices short-term work extraction for
greater knowledge and long-term returns. It may be pos-
sible to extend our method to more complex quantum
processes, e.g., to those with entangled temporal corre-
lations. This would, however, likely require a quantum
memory. On the other hand, our method can imme-
diately be adapted to applications where the pattern is
spatial instead of temporal (e.g., states of many-body
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Figure 3: Comparison between average work-extraction rates of various approaches. (a) Memory enhancement of work
extracted, compared to memoryless quantum approach. (b) Quantum enhancement of work extraction, compared to
memoryful classical approach. Panels (c) and (d) reveal phase transitions in memory enhancement through cross-
sections of parameter space. Analytic results (solid lines) and simulations (markers) are shown. Blue (squares)
represents memory-assisted quantum approach; black (circles) represents memory-assisted classical approach; red
(triangles) represents overcommitment approach; green (stars) represents memoryless quantum approach.

systems), and where the engine is constrained to operate
locally on small regions at a time.
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Swarm Intelligence for Routing on Quantum Repeater Networks

Hyensoo Choi1 ∗ Shigetora Miyashita2 † Takahiko Satoh3 ‡

1 Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882,
Japan

2 Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
3 Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Abstract. Ant colony optimization, a classical optimization heuristic, allows each node in the network to
generate a routing table while none of each node has the knowledge of the entire path. It has been proposed
with a quantum computer by Jannu et al. and extended to network routing protocols called AntNet by
Di Caro et al.. This work applies the AntNet routing algorithm to generate and update routing tables of
the quantum repeater network. Moreover, we also demonstrate it for a single routing table during local
quantum repeater network operations. Our algorithm, namely quantum walking AntNet, makes the most
of quantum networks by implementing edge selection based on quantum walks on a graph. The results
pave the way for routing quantum repeater networks using a quantum computer.

Keywords: Ant colony optimization, quantum computing, quantum ant, quantum network, swarm in-
telligence

1 Introduction

Quantum networks have attracted considerable atten-
tion as they can teleport and process data based on
quantum mechanical laws. Unlike classical networks
that rely on bits, quantum networks use qubits that
can simultaneously exist in an exponential number of
states owing to the superposition. This theoretical basis
leads to the development of several key ideas in practi-
cal implementation, such as the quantum internet archi-
tecture [Koz+23] that enable quantum communication
among different nodes and quantum clock synchroniza-
tion (QCS) [Tro+22] to achieve highly accurate and se-
cure synchronization of clocks. Various researchers have
demonstrated the protocols, such as China’s Micius satel-
lite experiment, but without considering quantum re-
peaters. Therefore, this work develops a path selection
based on evaluating quantum links [Van+13] to build and
maintain repeater-based quantum networks.
Here, we present an analysis of a novel routing algo-

rithm AntNet, equipped with a quantum walk for easier
discoverability of each node, especially over a mesh net-
work topology. While the AntNet protocol broadcasts a
massive amount of lightweight set of data and lets them
hop around the network until the specific condition (e.g.,
the target node) is met to perform a standard random
walk, we improve this by applying the rule of quantum
walk in the moment of random path selection.
Like classical networks, it requires various technolo-

gies and research to be complete, covering diverse lay-
ers. One way to efficiently compute a blueprint of a
new quantum networking protocol or algorithm is using
a quantum network simulator, such as QuISP [Sat+22],
SeQUeNCe [Wu+21] or NetSquid [Coo+21].
This algorithm can be applied to a quantum network.

Still, we need to prepare a method to encode the concept

∗collodi@sfc.wide.ad.jp
†miyashita@atto.t.u-tokyo.ac.jp
‡satoh@ics.keio.ac.jp

of Ant into the quantum information to take advantage
of quantum mechanics.

ACO relies on the random walk concept, and we see
the potential for performance improvement by applying
its quantum analogue, the quantum walk [Zha18]. We
want to design an ACO algorithm variant by generat-
ing the entity of quantum walking ants in the algorithm
and investigate the differences in terms of performance
between our variant and classical ACO.

Many prior projects have shown the usage of classi-
cal AntNet in the physically extreme classical network
environment, and the same rule also applies to the quan-
tum network. One of the most widely-used networks
that find its use in a hostile environment (e.g., under
the ocean [Tro+22]) is the sensor network, a quantum
sensor network in our case. Sensor nodes are often in-
stalled in extreme environments, or the connection goes
through such locations. If then, we can think of several
important physical locations requiring the installation of
a sensor node, which is far from the gateway location
but relatively close to the neighboring node. We need a
quantum mesh network to easily deploy sensors wherever
the network end node can reach [MZ21].

Lastly, one of the most significant advantages of ACO
with quantum network routing is that it can leverage
the power of the quantum walk algorithm. For in-
stance, [Miy+23] demonstrated the effectiveness of quan-
tum walk in exploring the relativistic spacetime. How-
ever, quantum walk can achieve the expansion of its func-
tionality with the application for digraphs, and we can
map into the existing routing problems.

[Zha18] showed us that Quantum Walk is performable
on graphs and digraphs, which means it is applicable on
the standard quantum network topology, just if we can
run the quantum evolutionary algorithms on the physical
network while hopping through edges. To achieve this,
teleportation on the edges of quantum states is necessary,
and we cannot perform in classical networks.

Our manuscript examines quantum repeaters within
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the context of heterogeneous links. These systems in-
volve distinct segments between repeaters, each possess-
ing unique properties. These properties may pertain to
the physical medium of the link (e.g., fiber optic ver-
sus free space), the length of the link, or the level of
loss or noise inherent in the link. The design and imple-
mentation of quantum repeaters for such heterogeneous
links pose significant challenges, as they necessitate han-
dling diverse errors and inefficiencies across various links.
To address these complexities, we introduce QAntNet—a
novel algorithm developed specifically for quantum re-
peaters and premised on the principles of ant colony opti-
mization. Within the QAntNet framework, we distribute
’ants’ to identify the most optimal path. A distinctive
attribute of this method is the entanglement of the ants
with the (entangled) resources. We conceptualize this
model as a quantum walk search operating on a quan-
tum repeater network graph, enabling the optimal path
selection.

2 Background

2.1 Routing in Classical Networks

Routing in the conventional network relies on the
OSPF (Open Shortest Path First) protocol. The pro-
tocol is based on the distributive Dijkstra algorithm to
generate a routing table regarding the link cost informa-
tion. When each user performs a communication, the
generated routing table is used to send the data packet
to the destination using the shortest path possible.
Currently, the quantum network is actively adopting

the qDijkstra algorithm to its routing protocol, which
is precisely the same as the normal OSPF but includes
the quantum link’s unique cost calculation method to its
evaluation factors.

2.2 Ant Colony Algorithm and AntNet

Ant colony algorithm or ant colony optimization al-
gorithm (ACO) is mostly focused on finding the opti-
mal path in the given space/network. Motivated by ants
and their route-finding method, ACO introduces an ab-
stract object called an ant and uses the state transi-
tion model to emulate the real ecology of ants on the
graph [DBS06]. There are several algorithm variations,
and they are called the ACO family.
Both ACO and Dijkstra are developed considering

more generalized problems such as abstract graphs, but
like OSPF, ACO also has its networking counterpart,
AntNet [DD98]. This member of the ACO family is
known to perform faster than OSPF on several network
topologies [DD+98].
Following is the general description of the AntNet al-

gorithm [DD98; Jia+12]:
The good quantum link is evaluated by the bell pair’s

fidelity and the cost of a link is determined by the av-
erage coherence time of the bell pair measured by each
nodes over a time. Uptime can be measured by record-
ing the begin/end time of the classical routine’s quantum
resource access.

Here, we explain how the conventional AntNet algo-
rithm generates a routing table by passing a query func-
tion to its neighbours:
Walker Initialization. A starting node S generates a bi-
nary function f based on the query of the node user.
The function f is a composition of several commonly pre-
defined, primitive binary functions. (e.g. function g(n)
returns 1 if the node has more than n qubit. If not, g(n)
returns 0.)
First Evaluation. Node S runs f in itself. If 1, the pro-
cedure ends right there because the node S itself is the
target. If 0, the node performs a pheromone database
lookup, and picks a connection with highest pheromone
value, which leads to the next node N . Now the starting
node S passes function f to N with the list of visited
nodes, concatenating itself to the list.
Next Node. When the arbitrary neighbouring node N re-
ceives a function f with additional data, it automatically
executes the function part and repeats the procedure of
node S, selecting the next node (by pheromone or ran-
dom) and passing f with a list of received visited nodes,
concatenated with N itself.
Peak. When the function f finally reaches the target
node T , it will return True, and send the function+data
back the way it came to the starting node, adding the
pheromone value of every visiting node’s edge-pheromone
database.
Note: Every node owns its own key-value database table,
where the key is a socket number of connection and value
is a pheromone amount. With this method, for every sin-
gle connection there are two key-value representing the
pheromone of that connection, because every connections
has two endpoints.

The above algorithm is classical. There are enough
demonstrations of AntNet’s unique functionalities, such
as easy extensibility of the network without directly con-
necting every node to the gateway, which leads to less
node installation cost (considering the extremely high
cost of underground optical cable installation, even the
slightest difference in cable usage can make a huge dif-
ference).

2.3 Routing in Quantum Networks

A quantum network is built for various purposes, and
those are achieved by teleporting the quantum state with-
out losing information. Entanglement Swapping, also
known as two-qubit Bell state measurement (BSM), is
how we teleport the quantum state from one location to
another physically distant location. With this, the quan-
tum network equips the ability to move the quantum in-
formation we want without violating the no-cloning the-
orem. Quantum routing protocol is a pre-defined set of
promises between the network nodes in order to lead the
message to the correct destination. [Pan+19; HPE19].

A method has been proposed for routing quantum re-
peater networks that uses the rate at which bell states are
generated between neighboring repeaters. By defining
the inverse of this rate as the link cost, we can generate
the link table using the OSPF technique [Van+13].
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3 Routing for Quantum Networks based
on AntNet

This section briefly starts by explaining the advantage
of quantum walks over classical random walks. We then
discuss how to replace the classical AntNet with quantum
walks.

3.1 Advantage of Quantum Walks over Random
Walks

In this subsection, we briefly explain the advantage of
quantum walks over classical random walks by reviewing
the difference. Random walks are stochastic processes
where the position of a walker moves through a graph
probabilistically. The process is defined by a Markov
chain of the form following according to Ref [Chi09]:

d

dt
p(t) = (M − I)p(t). (1)

This is nothing but a diffusion equation known as the
lazy random walk. On the other hand, quantum walks
are defined as a counterpart of random walks, and we
can quantize the dynamics according to the Schrödinger
equation.

i
d

dt
q(t) = Hq(t). (2)

Here, the Hamiltonian H for a continuous-time quan-
tum walk is defined by

H = −γL− |w⟩ ⟨w| (3)

with a Laplacian matrix L. The Laplacian matrix
comprises two sub-matrices: negative off-diagonal entries
from the adjacency matrix A and positive diagonal ele-
ments from the degree matrix D such that L = D − A.
These matrices allow us to search various types of graphs
efficiently.
Quantum walks have been shown to offer exponential

speedup in certain search problems compared to classi-
cal random walks. For example, a quantum walk-based
search algorithm on an unsorted database can locate the
desired item exponentially faster than classical random
walks [CG04]. This is mainly because continuous-time
quantum walks have a quadratic dispersion due to the
Hamiltonian defined in Eq. (2), which makes the prop-
agation faster than classical random walks. Further-
more, the propagation becomes even faster in discrete-
time [Miy+23].

3.2 Proposal of AntNet with Quantum Walks

To utilize the advantage of the quantum walk men-
tioned above, we replace the random walking part of the
conventional AntNet algorithm with the quantum walk.
The random walk used in ACO/AntNet is perform-

ing relatively independent actions in each node, and that
means the edge selection process only cares about not

visiting the previously visited nodes (and the pheromone
value of every connected edge). However, in the case of
Quantum Walk, the selection is determined by the uni-
tary quantum operation on the arbitrary quantum state
passed from the previous node.

From the quantum register’s perspective, every node
is required to have at least two quantum registers (e.g.
quantum register A and B) for communication, to per-
form quantum teleportation with a previous node. For
instance, when quantum register A receives a quantum
state from a previous node, the current node will apply
the quantum walk’s unitary coin operator to the received
quantum state and measure it to use the result to decide
the next edge.

When the next destination is decided, the node will
use another quantum register, B, to send the post-
measurement quantum state to the next node on the
quantum channel. The query function and history of
visited nodes will be sent on the classical channel.

4 Conclusion

In conclusion, our manuscript presented an approach
to finding the optimal path for quantum repeaters within
heterogeneous link systems. We address the challenges
inherent in such systems by proposing QAntNet, a quan-
tum repeater-specific algorithm inspired by ant colony
optimization. QAntNet leverages the optimal path by
distributing ants through a quantum walk search. Since
QAntNet can identify the optimal paths, it can be
demonstrated to concrete graph problems for quantum
repeaters across heterogeneous links. We anticipate that
our findings will stimulate further advancements in the
field of quantum communications, fostering the develop-
ment of more efficient and robust quantum networks.
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Abstract. We consider a game-theoretical scenario involving two parties, say Alice and
Bob. At each round, Alice chooses a quantum state from a given ensemble, known to
both parties, and sends it to Bob. Bob is allowed to perform any quantum operation on
the state and to query Alice multiple times, one state at a time, until he correctly guesses
the state. The game is repeated many times, and Bob’s aim is to minimize the average
number of queries needed. This problem, known as quantum guesswork, can be reframed
as an instance of quantum hypothesis testing, and has therefore long been conjectured
not to admit analytical solutions except for the cases in which the hypothesis testing
problem is solvable, that is, for binary and symmetric ensembles.

Here, we disprove such a belief by deriving conditions under which the guesswork
problem can be recast as a combinatorial problem, that is, an optimization over a finite
set, and therefore can be solved analytically by exhaustive search. We further show that
such conditions are verified by any qubit ensemble, thus conclusively settling the problem
in dimension two, and we show that in that case the guesswork is equivalent to a combi-
natorial problem known as quadratic assignment problem (QAP). Finally, we introduce
the (infinite) class of so-called benevolent qubit ensembles, which includes symmetric,
informationally complete (SIC) and mutually unbiased basis (MUBs) ensembles, and we
explicitly solve the corresponding QAP for such a class.

This presentation is based on Refs. [4, 7].

Keywords: quantum guesswork, quantum hypothesis testing, quadratic assignment
problem

The guesswork problem can be conveniently
framed as a theoretical game involving two par-
ties, say Alice and Bob. At each round, Alice and
Bob are given a classical and a quantum state,
respectively, the latter solely dependant on the
former. Bob queries Alice one state at a time
until he correctly guesses her classical state, at
which point he pays a cost that solely depends
on the number of queries he had to perform. The
probability distribution according to which clas-
sical states are sampled, the mapping between
classical and quantum states, as well as the cost
function, are known in advance to the parties.
The minimum guesswork problem consists of the
minimization of Bob’s average cost.

For almost a decade, obtaining closed-form so-
lutions for this problem has been considered im-
possible. In this respect, while discussing quan-

∗michele.dallarno.mv@tut.jp

tum hypothesis testing in relation to the guess-
work problem, the Authors of Ref. [2] write (ver-
batim):

Closed-form result or optimal
measurement is only known for
some special quantum systems, e.g.,
the case with exactly two states,
equiprobable symmetric states, or
multiply symmetric states. We be-
lieve that it is also the case for min-
imum guesswork discrimination, be-
cause of the analogy between these
two problems.

Following this line of thought, Ref. [3] resorts to
numerical techniques to approximately compute
the guesswork, even for ensembles as “simple” as
the trine and square ensembles of a qubit. The
Authors therein write
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Moreover, the SDP in (87) can be
solved numerically to obtain the same
value, providing a matching numeri-
cal lower bound; see [20] for the code
involved, including a high-precision
demonstration using the SDP solver
SDPA-GMP [37] showing agreement
to 200 digits.

As recently as November 2022, Ref. [6] appeared
which still resorts to numerics to approximate
the value of the guesswork for the square ensem-
ble.

In this contribution, we disprove this belief by
deriving the closed-form expression of the guess-
work for a class of ensembles that includes, for
instance, any qubit ensemble (not necessarily bi-
nary nor symmetric) with uniform probability
distribution. To achieve this, we demonstrate
and exploit a symmetry of the guesswork prob-
lem (technically, a Z2-covariance) that has been
so far overlooked. It is important to remark that
such a symmetry is not inherited by the ensem-
ble (which may as well be not symmetric at all),
but instead it is “injected” by the structure of
the guesswork problem itself.

In the qubit case, our solution recasts the
guesswork, by definition a continuous optimiza-
tion problem on Bob’s quantum strategy, as
a finite combinatorial problem known as the
quadratic assignment problem (QAP) [8, 9, 10],
whose solution can therefore be found by exhaus-
tive search.

As such, the QAP by itself represents a closed-
form solution of the guesswork problem, but
it can further be solved for the class of so-
called benevolent ensembles, which includes reg-
ular polygons, SICs and MUBs. For instance,
from our result the following closed-form expres-
sion for the guesswork G(ρ) of any regular N -
polygon qubit ensemble ρ follows:

G (ρ) =
N + 1

2
− 1

2


2
√

3 cos( πN )
2
+1

N sin( πN )
2 , if N even,

cos( π
2N )

N sin( π
2N )

2 , if N odd.

whose generality and exactness can be com-
pared with the aforementioned numerical ap-
proximated approaches.
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Abstract. Sharing quantum entanglement between long distances is a key resource of quantum com-
munication network. Optical fiber channel loss is the main challenge of sharing photonic entanglement.
Quantum repeater and spin-photon interface is promising candidate to implement quantum network. In this
paper, we propose modified entanglement swapping scheme of Duan-Lukin-Cirac-Zoller (DLCZ) protocol
using path encoded qubits for spin-photon entanglement scenario. we show the entanglement property by
removing which-way information and verify channel loss robustness of our scheme. This proof-of-principle
experiment paves the way towards overcoming optical channel loss problem.

Keywords: Quantum Entanglement, Entanglement swapping, Quantum optics

1 Introduction

Distributing quantum entanglement between long dis-
tance nodes is a key challenge of quantum communica-
tion network. Optical fiber channel loss is main prob-
lem of photonic quantum network and many approaches
are proposed to overcome optical fiber channel loss. A
potential solution to this problem is quantum repeater
architecture[1] and spin-photon interface[2]. In spin-
photon interface, particle spins are coupled to vacuum
and single photon state. Single-photon entangled state
is robust in terms of channel loss because there is only
one photon that actually passes through the optical lossy
channel[Fig.1].

Figure 1: Entanglement swapping protocols based on po-
larization entanglement and spin-photon entanglement.
a) Polarization entanglement swapping. Two photons
traverse lossy channels, resulting in the entanglement dis-
tribution probability decreasing proportionally to η2. b)
Spin-photon entanglement swapping. In this scenario,
only one photon traverses the lossy channel. Thus, the
entanglement distribution probability decreases at a rate
proportional to η.

In this work, we propose modified DLCZ scheme and
experimentally demonstrate entanglement property of

∗zowan@kist.re.kr
†yong-su.kim@kist.re.kr

distributed state by showing which-way information visi-
bility. We verify channel loss robustness of path encoded
entanglement among two parties by manipulating chan-
nel loss for spin-photon interface scenario. For asymmet-
ric channel losses, we restore state visibility by preparing
asymmetric input states.

2 Theory

We have used two Spontaneous Parametric Down Con-
version (SPDC) crystals and built Mach-Zehnder Inter-
ferometer (MZI)[Fig.2]. Beam displacer have separated
pump laser. Thus, initial state as follows:

a |LV DH⟩+ a′ |RV UH⟩ (1)

H, V denote polarization and L,R,U,D denote left,
right, up, down path. a and a′ are related to input powers
of crystals. L and R are connected to entanglement veri-
fication part (blue region), and U and D are connected to
Bell state projection part (green region). waveplates and
polarization beam splitter implement X, Y, and Z basis
projection.

After the X basis projection, the state collapses onto
single-photon path-encoded state and this state has en-
tanglement property[3]. We show visibility curve by re-
moving which-way information at the entanglement ver-
ification part. For pure state, this visibility is equal to
concurrence[4][5].

3 Experiment

We have used 405nm CW laser and two Periodically-
Poled KTP crystal for 405-810 down conversion pro-
cess. beam separation distance is 4mm. input pow-
ers before crystals are 0.5mW for each. To avoid dou-
ble pair generation in SPDC process, we have used low
power. X basis projection visibilities are 0.9471±0.0065
and 0.9300±0.0070. Z basis projection visibilities are 0.06
and 0.07[Fig.3a]. To get entanglement distribution rate,
we have measured coincidence counts of Alice’s detec-
tor (DA) and Bob’s detector (DB) . The HWP before
PBS in entanglement verification part have been set to 0
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Figure 2: Experiment setup. We used Mach-Zehnder
type interferometer with calcite type beam displacers. A
type-2 SPDC crystal generates horizontal and vertical
polarization photon. The set of beam displacer and po-
larization projector can removes which-way information.
The Charlie part performs Bell state projection onto X,
Y, and Z basis by changing angles of the HWP and QWP.
We implemented channel loss by using a PBS and two
HWPs before the PBS. BD: Beam Displacer, PBS: Po-
larization Beam Splitter, HWP: Half-Wave Plate, QWP:
Quarter-Wave Plate, IF: Bandpass Interference Filter.

and Bell state projection part have been set to X basis
projection. We have verified that coincidence counts lin-
early decrease as function of channel loss η. Coincidence
counts are integrated up to 5 seconds[Fig.3b]. We have
shown that X basis projection visibilities are maintained
when we have changed channel loss. Two optical channel
losses are same[Fig.3c].

Figure 3: Experiment results. a) Visibilities for X, Y,
and Z projections. The X-axis denotes the HWP angle
within the Q-H-Q waveplates set. b) The entanglement
distribution rate in terms of channel loss η. The HWP
before PBS in entanglement verification part was set to
0 and Bell state projection part was set to X projection.
Two types of dots denote coincidence counts between
Alice’s detector and Charlie’s, and between Bob’s and
Charlie’s. c) X projection visibilities in terms of chan-
nel loss η. Two types of dots denote visibilities of each
coincidence set.

We have tested asymmetric channel loss, For instance,
one optical channel has no loss and only one channel has
loss. By changing HWP before first BD, we have ma-
nipulated input power ratio for two crystals and it have
changed input state coefficient a, a′. This asymmetric
initial state coefficients have compensated asymmetric
optical channel loss. We have checked that degradation
of visibilities by asymmetric channel loss (green dots) and
restoration of visibility by compenstation (violet and red
dots)[Fig.4].

Figure 4: Visibility restorations for asymmetric channel
losses. Two green dots denote visibilities for asymmetric
channel losses and symmetric input states. Violet and
red dots denote visibilities for asymmetric channel losses
and asymmetirc input states.

4 Discussion

We have experimentally demonstrated entanglement
property of distributed state by showing which-way infor-
mation visibility. We have verified channel loss robust-
ness of path encoded entanglement among two parties
by manipulating channel loss for spin-photon interface
scenario.
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Abstract. A quantum neural network (QNN) is a method to find patterns in quantum data and has a
wide range of applications including quantum chemistry, quantum computation, quantum metrology, and
quantum simulation. Efficiency and universality are two desirable properties of a QNN but are unfortu-
nately contradictory. In this work, we examine a deep Ising Born machine (DIBoM), and show it has
a good balance between efficiency and universality. More precisely, the DIBoM has a flexible number of
parameters to be efficient, and achieves provable universality with sufficient parameters. The architecture
of the DIBoM is based on generalized controlled-Z gates, conditional gates, and some other ingredients. To
compare the universality of the DIBoM with other QNNs, we propose a fidelity-based expressivity measure,
which may be of independent interest. Extensive empirical evaluations corroborate that the DIBoM is both
efficient and expressive.

Keywords: Quantum Machine learning, Quantum Neural Network, Efficiency, Universality, Expressivity

1 Introduction

Machine learning (ML) has emerged as one of the most
revolutionary techniques in recent years [Goodfellow
et al.(2016)Goodfellow, Bengio, and Courville]. Despite
its significance, ML necessitates a tremendous amount
of computational power. However, with the waning ef-
fectiveness of Moore’s law on the speed of classical pro-
cessors [Waldrop(2016)], and the ever-increasing compu-
tational demands of state-of-the-art ML models, the fu-
ture development of ML may face significant hindrances
due to the shortage of adequate computational resources.
Quantum computing [Nielsen and Chuang(2010)], a novel
computing paradigm, holds the potential to sustain-
ably advance ML. At present, quantum machine learning
(QML) [Biamonte et al.(2017)Biamonte, Wittek, Pan-
cotti, Rebentrost, Wiebe, and Lloyd], which refers to the
use of quantum computers for machine learning, is still
in its nascent stage. Depending on whether the data and
the learning algorithm are classical or quantum, QML
can be categorized into four types: classical learning of
classical data, quantum learning of classical data, classi-
cal learning of quantum data, and quantum learning of
quantum data.

Among the four categories of QML, quantum learn-
ing of quantum data is arguably the most promising
type to achieve a demonstrable exponential speedup
over classical machine learning methods. Further-
more, quantum learning of quantum data has a di-
verse array of applications, including quantum chem-
istry [Arute et al.(2020)Arute, Arya, Babbush, Ba-
con, Bardin, Barends, Boixo, Broughton, Buckley,
Buell et al.], quantum data compression [Romero
et al.(2017)Romero, Olson, and Aspuru-Guzik], quan-
tum error correction [Johnson et al.(2017)Johnson,
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Romero, Olson, Cao, and Aspuru-Guzik], quantum
metrology [Koczor et al.(2020)Koczor, Endo, Jones,
Matsuzaki, and Benjamin], quantum compiling [Sharma
et al.(2020a)Sharma, Khatri, Cerezo, and Coles], quan-
tum state diagonalization [LaRose et al.(2019)LaRose,
Tikku, O’Neel-Judy, Cincio, and Coles], quantum sim-
ulation [Li and Benjamin(2017)], quantum fidelity es-
timation [Cerezo et al.(2020)Cerezo, Poremba, Cin-
cio, and Coles], and consistent histories [Arrasmith
et al.(2019)Arrasmith, Cincio, Sornborger, Zurek, and
Coles]. It is worth noting that these quantum applica-
tions generate a substantial amount of quantum data,
which in turn fuels the development of quantum learning
of quantum data, analogous to how the vast amount of
classical information drives the advancement of classical
machine learning.

Methods of quantum learning of quantum data
can be classified into two categories: those that be-
long to quantum neural networks (QNNs) and those
that do not. Examples of methods that do not
fall into the QNN category are the Harrow-Hassidim-
Lloyd algorithm [Harrow et al.(2009)Harrow, Has-
sidim, and Lloyd], quantum principal component anal-
ysis [Lloyd et al.(2014)Lloyd, Mohseni, and Reben-
trost], and quantum support vector machines [Reben-
trost et al.(2014)Rebentrost, Mohseni, and Lloyd]. Var-
ious proposals of QNNs have been put forward in
the literature [Schuld et al.(2015)Schuld, Sinayskiy,
and Petruccione,Lewenstein(1994),Wan et al.(2017)Wan,
Dahlsten, Kristjánsson, Gardner, and Kim, da Silva
et al.(2016)da Silva, Ludermir, and de Oliveira,
Gonsalves(2017), Kouda et al.(2005)Kouda, Matsui,
Nishimura, and Peper, Beer et al.(2020)Beer, Bon-
darenko, Farrelly, Osborne, Salzmann, Scheiermann, and
Wolf], among which the current state-of-the-art is ar-
guably given by Ref. [Beer et al.(2020)Beer, Bondarenko,
Farrelly, Osborne, Salzmann, Scheiermann, and Wolf].
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In addition, specialized QNNs tailored to specific data
inputs have also been developed, including quantum
convolutional neural networks [Cong et al.(2019)Cong,
Choi, and Lukin], quantum recurrent neural networks
[Bausch(2020)], quantum generative adversarial networks
[Lloyd and Weedbrook(2018)], quantum autoencoders
[Bondarenko and Feldmann(2020)], quantum reservoir
networks [Ghosh et al.(2021)Ghosh, Nakajima, Kris-
nanda, Fujii, and Liew], and quantum residual networks
[Killoran et al.(2019)Killoran, Bromley, Arrazola, Schuld,
Quesada, and Lloyd]. However, these specialized QNNs
cannot perform universal quantum computation, which is
essential for the general quantum learning task of learn-
ing the hidden mapping between a set of quantum input
and label pairs. Consequently, we will focus our atten-
tion on general QNNs and the general quantum learning
task hereafter.

Efficiency and universality are two desirable properties
of a general QNN. While efficiency is measured in terms
of the number of parameters in the model, which should
be as small as possible, universality refers to the abil-
ity of a QNN to approximate an arbitrary unitary on n
qubits. These two properties are often in conflict with
each other. For instance, consider a basic QNN that ap-
plies a parametrized unitary U to the quantum input and
produces an output that approximates the label. Here,
the parametrized unitary U for n qubits is represented
as

U = exp

i
 3∑
j1=0

· · ·
3∑

jn=0

αj1,j2,...,jn (σj1 ⊗ · · · ⊗ σjn)

 ,
(1)

where σ0 is the identity matrix, σ1, σ2, σ3 are Pauli ma-
trices, and αj1,j2,...,jn are real parameters that are learned
during training. Although this basic QNN is universal, as
it can approximate any unitary by adjusting its param-
eters, it is not efficient since its number of parameters is
4n. Ideally, the number of parameters should be polyno-
mial in n for the model to be efficient.

This work investigates a deep Ising Born machine (DI-
BoM), which has a flexible number of parameters to
mitigate the efficiency issue while retaining universal-
ity with sufficient parameters. The DIBoM consists of
a generalized controlled-Z (CZ) gate, a conditional gate,
a global or local cost function, and some other ingre-
dients. By replacing the normal CZ gate with a gen-
eralized CZ gate in a hardware-efficient QNN [McClean
et al.(2018)McClean, Boixo, Smelyanskiy, Babbush, and
Neven, Benedetti et al.(2019)Benedetti, Garcia-Pintos,
Perdomo, Leyton-Ortega, Nam, and Perdomo-Ortiz],
we demonstrate that the expressivity can be increased
through numerical evaluations. Along the way, we de-
velop an expressivity measure, called fidelity-based ex-
pressivity, to characterize the expressivity of different
QNN architectures. This measure may be of independent
interest. Moreover, we theoretically prove that hardware-
efficient QNN with generalized CZ gates can achieve uni-
versal quantum computation with sufficient parameters.
The conditional gate is used to solve the problem of differ-

ent input and output dimensions, and this approach can
save space by a constant factor compared to dissipative
QNNs [Beer et al.(2020)Beer, Bondarenko, Farrelly, Os-
borne, Salzmann, Scheiermann, and Wolf]. In addition,
the ablation study shows that this ingredient improves
the expressivity of the DIBoM. We examine two vari-
ants of the DIBoM, one with a global cost function and
the other with a local cost function, and show that the
global cost function version has a wider range of applica-
bility, while the local cost function is more trainable and
can mitigate the barren plateau issue. We perform exten-
sive experiments to compare the DIBoM with other QNN
architectures, evaluate its different components, analyze
the sensitivity of its performance to various parameters,
and examine its robustness to noise. Our work invites
further research on the design of QNNs with multiple
desirable properties, and we hope it will stimulate fur-
ther development of the architecture design of QNNs in
general.

The roadmap for the rest of the paper is as follows.
First, in Sec. 2, we review related works. Next, in Sec. 3,
we present the DIBoM model and its training method.
In Sec. 4, we analyze theoretically the properties of the
DIBoM. We then turn to the empirical evaluation of the
model, with Sec. 5 describing the simulation setup and
Sec. 6 presenting the results. Finally, we conclude the
paper in Sec. 7 and give a few outlooks.

2 Related works

In this section, we provide a review of the related works
in the field, including hardware-efficient QNNs, dissipa-
tive QNNs, Ising Born machines, and Hamiltonian learn-
ing.

2.1 Hardware-efficient QNNs

We start by reviewing hardware-efficient QNNs
[McClean et al.(2018)McClean, Boixo, Smelyanskiy,
Babbush, and Neven, Benedetti et al.(2019)Benedetti,
Garcia-Pintos, Perdomo, Leyton-Ortega, Nam, and
Perdomo-Ortiz]. Hardware-efficient QNNs were pro-
posed to reduce the exponential training cost of the ba-
sic QNN, and require only a polynomial number of re-
sources. They are composed of alternating layers of
single-qubit rotations and entangling gates such as CZ
gates. The connectivity of the entangling gates can
be either linear [McClean et al.(2018)McClean, Boixo,
Smelyanskiy, Babbush, and Neven] or pairwise [Benedetti
et al.(2019)Benedetti, Garcia-Pintos, Perdomo, Leyton-
Ortega, Nam, and Perdomo-Ortiz], as shown in Figs. 1(a)
and (b). The layer number of a hardware-efficient QNN
can vary and so are the parameters of its single-qubit ro-
tations. From now on, we will refer to the architecture in
Ref. [McClean et al.(2018)McClean, Boixo, Smelyanskiy,
Babbush, and Neven] as the hardware-efficient QNN.

There are two drawbacks to the hardware-efficient
QNN. First, to our knowledge, there is to date no proof
that the hardware-efficient QNN presented in [McClean
et al.(2018)McClean, Boixo, Smelyanskiy, Babbush, and
Neven] is capable of universal quantum computation even
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Figure 1: (a) A series of blocks where each block consists
of single-qubit rotations with nearest-neighbor CZ gates;
(b) A series of blocks where each block consists of single-
qubit rotations with all-to-all CZ gates; (c) Unitary with
a single CZ gate connecting the first two qubits.

with an exponential number of layers, see Sec. 4.2 for
more details. In particular, it is not known whether
it can be used to simulate a circuit with a single CZ
gate, which is illustrated in Fig. 1(c). Secondly, it falls
short of varying the relative number of qubits between
the input and the output. The DIBoM resolves these
shortcomings of the hardware-efficient QNN [McClean
et al.(2018)McClean, Boixo, Smelyanskiy, Babbush, and
Neven] while retaining its merits.

Note that the definition of the hardware-efficient QNN
varies in the literature, and in the broadest sense can
include any QNN that can be implemented efficiently on
some quantum hardware. This in particular includes the
DIBoM as a special case, which is different from its usage
in our work.

2.2 Dissipative QNN

We next review dissipative QNNs, a different type
of QNNs that deal with quantum inputs and outputs
of unmatched dimensions [Beer et al.(2020)Beer, Bon-
darenko, Farrelly, Osborne, Salzmann, Scheiermann, and
Wolf, Sharma et al.(2020b)Sharma, Cerezo, Cincio, and
Coles]. Initially, all hidden and output qubits are in the
state |0〉. Dissipative QNNs apply a unitary on all in-
put, hidden, and output qubits and subsequently trace
out the input and hidden qubits,

ρout ≡ trin,hid

(
U(ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|)U

†
)
. (2)

This process is illustrated in Fig. 2. Here, it can be
easily seen that the dimensions of the quantum in-
put ρin and the quantum output ρout need not be the
same. Since this network architecture discards lots of
qubits, it was given the name a dissipative QNN [Sharma
et al.(2020b)Sharma, Cerezo, Cincio, and Coles].

However, a dissipative QNN also has several disad-
vantages. First, it has a larger space complexity due
to its dissipative nature. When the dimensions of the
quantum input and output are equal, a dissipative QNN
has an overhead of 2 over a basic QNN in terms of

Figure 2: An illustration of a dissipative QNN. Here,
ρin and ρout are its quantum input and quantum output
respectively, and U is a unitary. The hidden and output
qubits are all in the quantum state |0〉 initially.

the qubits used. Second, the resource that a dissipative
QNN requires is still exponential, due to the same reason
that an exponential number of parameters are needed to
parametrize a unitary transformation. A DIBoM main-
tains the merit of a dissipative QNN that can handle
unequal quantum input and output dimensions and in
the meantime has the additional merits of having small
space complexity and being resource efficient.

2.3 Ising Born machine

We then review the Ising Born machine [Coyle
et al.(2020)Coyle, Mills, Danos, and Kashefi], which
bears a close resemblance to the DIBoM. We be-
gin by defining a quantum Born machine [Cheng
et al.(2018)Cheng, Chen, and Wang, Liu and
Wang(2018), Benedetti et al.(2019)Benedetti, Garcia-
Pintos, Perdomo, Leyton-Ortega, Nam, and Perdomo-
Ortiz], as illustrated in Fig. 3(a). A quantum Born ma-
chine is a class of models that consists of a parametrized
quantum circuit followed by a quantum measurement.
As the measurement outcome is determined by Born’s
rule, these models are named “quantum Born ma-
chines” [Cheng et al.(2018)Cheng, Chen, and Wang, Liu
and Wang(2018), Benedetti et al.(2019)Benedetti,
Garcia-Pintos, Perdomo, Leyton-Ortega, Nam, and
Perdomo-Ortiz]. Figure 3(b) provides a specific
choice of the parametrized quantum circuit proposed
by Ref. [Coyle et al.(2020)Coyle, Mills, Danos, and
Kashefi], containing one fixed layer (Hadamard gates
on all qubits) and two tunable layers (one with tunable
two-qubit gates on all pairs of qubits and the other
with tunable one-qubit gates on all qubits). Since
tunable two-qubit gates mimic the Ising model, this
model was named the “Ising Born machine” [Coyle
et al.(2020)Coyle, Mills, Danos, and Kashefi]. Although
the original Ising Born machine was designed for gen-
erative modeling of classical data, it can be adapted to
the general quantum learning task by removing the final
quantum measurement layer in Fig. 3(b). The main
difference between the DIBoM and Ising Born machine
lies in the number of tunable layers; the DIBoM can
contain more than two tunable layers, thereby achieving
higher expressive power than the Ising Born machine.
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In particular, the Ising Born machine is not capable of
universal quantum computation, while the DIBoM is.

Figure 3: (a) The schematics of a quantum Born ma-
chine. Here, U is a parametrized quantum circuit. (b)
The schematics of an Ising Born machine. Here, H is a
Hadamard gate, Uz consists of tunable two-qubit gates
on all pairs of qubits, and Uk (k ∈ N) is a tunable single-
qubit gate on qubit k.

2.4 Hamiltonian learning

Finally, the general quantum learning task is
closely related to Hamiltonian learning [Cirstoiu
et al.(2020)Cirstoiu, Holmes, Iosue, Cincio, Coles, and
Sornborger, Barison et al.(2021)Barison, Vicentini, and
Carleo], a topic that has attracted a tremendous amount
of interest recently. The correspondence is as follows: the
quantum input |φin〉 corresponds to the initial quantum
state of a system, and the quantum label |φout〉 corre-
sponds to the quantum state of the system after evolving
for a time δt. The hidden mapping V can be associated
with the time-evolution operator e−iHδt where H is the
Hamiltonian of the system. By approximating V using
QNNs, the Hamiltonian H is learnt.

3 Model

After reviewing related works, we now describe the DI-
BoM architecture. We first mathematically formulate the
problem of quantum learning of quantum data in Sec. 3.1.
Then in Sec. 3.2, we describe the DIBoM model which is
targeted to this learning problem. Finally, we describe
the training procedure of the DIBoM in Sec. 3.3.

3.1 Learning problem setup

We begin by introducing the quantum learning prob-
lem addressed by the DIBoM. Let D be an underlying
distribution, and suppose we have N pairs of training
samples and labels (|ψi〉, |φi〉) ∈ D, where 1 ≤ i ≤
N . For each pair, we are given K copies of the input
⊗Ni=1(|ψi〉⊗K , |φi〉⊗K), as well as M copies of test samples
denoted by ρ⊗M . The goal is to generate model outputs
for each test sample that closely approximate the cor-
responding test label. We use the infidelity to measure
the similarity between two quantum states, and assume
that the training and test data are independently sam-
pled from D. To illustrate, consider an example where
|ψi〉 is a randomly generated n-qubit pure state and its
corresponding label is |φi〉 = V |ψi〉. Here V is a hidden
n-qubit unitary that is independent of i and unknown to

the model. This example will also be used in the evalu-
ation section. It should be noted that |ψi〉 and |φi〉 may
not be of the same dimension for general D.

3.2 Model architecture

After defining the learning problem, we now turn to the
model of the DIBoM. The DIBoM takes a quantum state
as an input and outputs a quantum state as an output
which may have different dimensions. It is based on a
basic quantum structure which is illustrated in Fig. 4.
This basic quantum structure has three steps. First, the
quantum input ρin together with a k-qubit ancilla |0〉⊗k
undergo a unitary transformation U that produces an
intermediate state

ρinter1 = U(ρin ⊗ |0〉⊗k)U†. (3)

Second, part of the joint quantum state is measured,
resulting in outcome j. Let ρjinter2 denote the post-
measurement state conditioned on that the outcome is
j. Third, another unitary Vj , that can depend on the

outcome j in the second step, is applied to ρjinter2 to pro-
duce the output quantum state

ρout = Vjρ
j
inter2V

†
j . (4)

Figure 4: The basic quantum structure. Here, ρin and
ρout are its quantum input and quantum output respec-
tively, U is a unitary, and V is a controlled unitary by
the result of the measurement outcome.

With the basic quantum structure at hand, we are
ready to define the DIBoM. Instead of applying the uni-
taries U and Vj which would consume exponential time
to train, the DIBoM uses a stack of layers as a substitute
for U and Vj . The layers have two types. The first type
consists of single-qubit rotations that are parametrized
by αj as follows:

USG = exp

i( 3∑
j=1

αjσj)

 , (5)

where σ1, σ2, σ3 are Pauli matrices. The second type of
layer applies a generalized CZ gate to all pairs of qubits:

UCZ = exp

−iπ(
∑

1≤j<k≤n

βjk|11〉jk〈11|jk)

 , (6)

16



where βjk is an arbitrary real number that interpolates
smoothly between a CZ gate and an identity gate. It
is worth noting that if βjk = 1, a CZ gate is applied on
qubits j and k, and if βjk = 0, an identity gate is applied.

The DIBoM is constructed as
∏1
j=L/2(U jCZU

j
SG) for L

even and U
(L+1)/2
SG

∏1
j=(L−1)/2(U jCZU

j
SG) for L odd, where

L is the total number of layers and
∏L
j=1 U

j is short

for U1 · · ·UL. An illustration of the DIBoM is shown in
Fig. 5.

Figure 5: The schematics of a deep Ising Born machine.
Here, SQ denotes a tunable single-qubit gate; CZ denotes
generalized CZ gates between all pairs of qubits. The rest
symbols have the same meanings as the basic quantum
structure.

3.3 Training procedure

After presenting the DIBoM model, the next step is
to discuss the training process. In this regard, two vari-
ants of the loss functions are considered. The first loss
function, called the global loss function, has the form

LG = 1− Ex〈φxout|ρxout|φxout〉, (7)

where |φxout〉 is the correct label, ρxout is the output of the
DIBoM, and Ex stands for the expectation over the ran-
dom variable x. The intuition behind this loss function
can be seen through some special cases. If the correct
label is identical to the model output, the loss is 0; oth-
erwise, the loss is positive. Hence, by minimizing the loss
function, the model output converges to the correct label.
If the correct label is a mixed state σxout, the loss func-
tion can be easily generalized to L = 1−ExF (ρxout, σ

x
out),

where F (ρ, σ) :=
[
tr
√
ρ1/2σρ1/2

]2
.

The second loss function, called the local loss function,
is given by

LL = 1− 1

nN

N∑
x=1

n∑
y=1

tr((
∣∣φ0
x

〉
y

〈
φ0
x

∣∣
y
⊗ Iȳ)ρ0

x(s)), (8)

where
∣∣φ0
x

〉
y

is the y-th qubit of the input state
∣∣φ0
x

〉
,

Iȳ denotes completely mixed states for all qubits except
the y-th qubit, N is the number of samples, and n is the
number of qubits. Here, ρ0

x(s) represents the effective
input which, when applied the unitary given by the cur-
rent model, generates the correct quantum label. When

applying the local loss function, it is assumed that the
input quantum state

∣∣φ0
x

〉
is a product state and has the

form
∣∣φ0
x

〉
=
∣∣φ0
x

〉
1
⊗ · · · ⊗

∣∣φ0
x

〉
n
, where n is the number

of qubits. Note that no such assumption is made when
applying the global loss function.

With the loss function defined (either LG or LL, for
simplicity denoted as L), we describe the procedure to
train the network with quantum computers in two steps:
(i) calculate the loss function with quantum comput-
ers; (ii) update the parameters by performing gradient
descent on the loss function. For the first step, we
first compute the quantity 〈φxout|ρxout|φxout〉. To this end,
we exploit the quantum circuit plotted in Fig. 6 [Beer
et al.(2020)Beer, Bondarenko, Farrelly, Osborne, Salz-
mann, Scheiermann, and Wolf]. Through straightforward
calculation, one can verify that this circuit takes |φxout〉
and ρxout as inputs and outputs (1 + 〈φxout|ρxout|φxout〉)/2.
By a linear transformation and some classical computa-
tion, the loss function L is obtained.

For the second step, we calculate the derivative of the
loss function for all parameters and update the param-
eters accordingly by performing gradient descent. For a
parameter yµ (either αj or βjk) in any layer, we calcu-
late its derivative by running the loss function calculation
twice as follows,

δL
δyµ

=
L(yµ)− L(yµ − ε)

ε
, (9)

where ε is a small value. Note that this method assumes
the availability of a high-precision quantum computer, as
a noisy quantum computer may yield a derivative that is
far from the true value. An alternative way would be
calculating an analytic derivative directly with quantum
computers, but this requires further investigation and is
left as future work.

Then we update each parameter yµ in the k-th itera-
tion to minimize the loss function by the rule

yµk+1 = yµk − η
δL
δyµk

, (10)

where η is the learning rate. When η is small enough, the
loss function always decreases by the parameter update.
We note that the DIBoM is efficiently trainable as it has
only a polynomial number of parameters.

The training strategy presented here does not aim to
optimize the efficiency or computation cost of the train-
ing algorithm. Instead, we chose this strategy to eval-
uate the model’s performance in terms of its converged
loss. If the model can converge to a low test loss with
some strategies, it is highly probable that the training
strategy presented here will also result in a low test loss.
This makes it quite ideal for testing the performance
of the model in terms of its converged loss. Notably,
there are training strategies such as the parameter-shift
rule [Wierichs et al.(2022)Wierichs, Izaac, Wang, and
Lin] that can significantly reduce the number of quan-
tum circuit evaluations, and gradient descent methods
that offer faster convergence. For example, one may
utilize Nesterov acceleration [Nesterov()] which is also a
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Figure 6: Circuit to calculate the loss function. Here, H
is the Hadamard gate, CSWAP is the controlled-SWAP
gate, |φx〉 is the ground-truth label, and ρx is the model
output.

first-order optimization method (utilizing only first-order
derivatives) to speed up the convergence. The k-th itera-
tion of the parameter yµ in Nesterov acceleration has the
form,

xµk+1 = yµk +
k − 1

k + 2
(yµk − y

µ
k−1),

yµk+1 = xµk+1 − η
δL

δxµk+1

.
(11)

It can be shown that when η = 1/L where L is the Lips-
chitz constant of L, the convergence rate by the above it-
eration rule is O(1/k2), quadratically better than O(1/k)
of Eq. (10).

Second-order or higher-order optimization methods
can offer further improvements in convergence by utiliz-
ing second-order derivatives ∂2L/∂yµ∂yν . However, the
computational cost of each iteration step in second-order
optimization methods is O(N2), in contrast to O(N) of
first-order optimization methods, where N is the num-
ber of parameters. In classical neural networks, N is
usually on the order of 108, making second-order opti-
mization methods computationally too expensive. As
a result, first-order optimization methods are generally
preferred. Similarly, in QNNs, second-order optimization
methods were considered inferior to first-order methods
in cases where the learning problem required a large N to
solve. However, recent advances have shown that second-
order methods can be substantially sped up [Gacon
et al.(2021)Gacon, Zoufal, Carleo, and Woerner], mak-
ing them a competitive alternative.

The training procedures presented above update all
parameters simultaneously, and we refer to them as si-
multaneous training. Another training method, known
as layer-by-layer training [Skolik et al.(2021)Skolik, Mc-
Clean, Mohseni, van der Smagt, and Leib], offers an alter-
native approach. In each training step, the parameters
of one layer are updated using gradient descent, while
the parameters of all other layers are fixed. The layer
to be trained can be selected in a round-robin manner,
from layer 1 to layer L and then repeated, where L is the
number of layers. Alternatively, choosing the layer ran-
domly is also a plausible approach. For the remainder
of this paper, we will use the round-robin approach for
layer-by-layer training, unless otherwise specified.

4 Theoretical Analysis

In this section, we conduct a theoretical analysis of
the DIBoM architecture from three perspectives to gain
insight into its properties. Specifically, we examine its
flexibility with unequal input and output dimensions in
Sec. 4.1, its balance between expressive power and effi-
ciency in Sec. 4.2, and compare it with other models in
Sec. 4.3.

4.1 Input-output dimension

We start by showing that the DIBoM can support un-
equal input and output dimensions. This is due to its
underlying structure, which was illustrated in Figure 4.
The DIBoM can accommodate a larger or smaller num-
ber of input qubits m than output qubits n by adjusting
the number of ancilla qubits and the qubits to be mea-
sured. There are two cases to consider. First, if m < n,

an ancilla |0〉⊗(m−n)
can be used, and no measurement

is required after the unitary U . Second, if m > n, no
ancilla is needed, and a measurement can be performed
on m− n qubits after the unitary U .

As a result, quantum teleportation can be instantiated
by the DIBoM as follows. We begin with a single-qubit
quantum input ρin and an ancilla in the state |00〉. A
unitary operator U is next applied to the system, which
leaves the quantum input unchanged and entangles the
ancilla into an EPR pair. A measurement is subsequently
performed on both the quantum input and one of the
qubits in the EPR pair. Based on the measurement out-
come, an appropriate unitary operation is applied to the
other qubit of the EPR pair. The result is the original
quantum state being teleported to the quantum output
ρout.

4.2 Expressive power

Next we show another theoretical property of the
DIBoM, namely its ability to perform universal quan-
tum computation. This is achieved by a reduction
from a well-known result that 2O(n) layers of single-
qubit gates and CZ gates suffice for universal quan-
tum computation, where n is the number of qubits
[Nielsen and Chuang(2010)]. Note that a general cir-
cuit with 2O(n) layers of single-qubit gates and CZ gates
is inequivalent to the hardware-efficient QNN [McClean
et al.(2018)McClean, Boixo, Smelyanskiy, Babbush, and
Neven]. For example, Fig. 1(c), which belongs to the
class of circuits with single-qubit gates and CZ gates, can-
not be converted into the form of the hardware-efficient
QNN [McClean et al.(2018)McClean, Boixo, Smelyan-
skiy, Babbush, and Neven], while it can be turned into
the form of DIBoM as we will see shortly.

Given a circuit C with 2O(n) layers of single-qubit gates
and CZ gates that approximates the desired unitary U
within an error of ε, we convert it to the structure of a
DIBoM in two steps.

1. In the first step, we split each layer of C into two
layers, with the first layer containing only single-
qubit gates and the second layer containing only
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CZ gates. The resulting circuit is called C2.

2. In the second step, we fill missing single-qubit gates
in the odd layer of C2 with identity single-qubit
gates, and fill missing generalized CZ gates in the
even layer of C2 with identity two-qubit gates.

An illustration of this reduction is shown in Fig. 7. Hence
a DIBoM with 2 × 2O(n) = 2O(n) layers is capable of
universal quantum computation.

Figure 7: A reduction from C to C2. Each layer of C
consists of a mixture of one-qubit gates and CZ gates.
In the reduction, every layer of C is split into two layers,
the first involving only single-qubit gates and the second
involving only CZ gates.

The representation power of the DIBoM forms a hi-
erarchy that varies with the number of layers. At one
end of the spectrum, when the DIBoM has a polynomial
depth, it possesses a limited number of parameters, mak-
ing it highly efficient. Conversely, at the other end of the
spectrum, when the DIBoM has an exponential depth, it
has the ability to approximate universal quantum com-
putation with high precision. Hence the DIBoM balances
the efficiency and the expressive power quite well.

To quantitively compare the expressivity of the DIBoM
and other QNN architectures, we propose an expressivity
measure

E(A) = min
U,|φ〉

max
θ

∣∣〈φ|A(θ)†U |φ〉
∣∣ , (12)

where A(θ) and θ are the parametrized circuit and its
parameters, U is an arbitrary unitary, and |φ〉 is an ar-
bitrary pure quantum state.

To understand this measure, let us consider two spe-
cial cases. First, when A(θ) can recover any unitary, we
can choose θ such that A(θ) = U and hence E(A) = 1.
Second, when A(θ) is a fixed unitary, i.e. θ is empty,
for an arbitrary |φ〉, we can select a unitary U such that
A(θ)|φ〉 and U |φ〉 are orthogonal quantum states, hence
E(A) = 0. Due to its close relationship with fidelity,

we call this expressivity measure, fidelity-based expres-
sivity (FBE). Compared with other expressivity mea-
sures of QNNs, such as covering-number-based expres-
sivity (CNBE) [Du et al.(2022)Du, Tu, Yuan, and Tao],
FBE has the advantages of having no extra parameters
(CNBE has a parameter ε), and having the range [0, 1]
(CNBE is not upper bounded by a constant). In addition,
FBE can be computed through continuous optimization,
while some measures such as CNBE require discrete op-
timization which is usually harder to compute.

We now compare the expressive power of the DIBoM
and hardware-efficient QNN through FBE. Specifically,
we consider a three-qubit learning task and plot the FBE
of the DIBoM and hardware-efficient QNN with L lay-
ers as a function of L. (More details of the plot can be
found in Appendix A.) Recall that the hardware-efficient
QNN consists of alternating layers of single-qubit rota-
tions and fixed CZ gates, while the DIBoM consists of al-
ternating layers of single-qubit rotations and generalized
CZ gates. Our results, as shown in Fig. 8, indicate that
the DIBoM outperforms the hardware-efficient QNN by
a substantial margin when the layer number is the same.
For instance, with 21 layers, the DIBoM achieves an
FBE exceeding 0.77 (where higher values indicate supe-
rior performance), whereas the hardware-efficient QNN
achieves only around 0.57. (Note however that DIBoM
has more parameters than the hardware-efficient QNN
with the same number of layers and hence this does not
imply that DIBoM is strictly superior to the hardware-
efficient QNN.) Finally, the Ising Born machine, which
corresponds to a DIBoM with L = 3, exhibits signifi-
cantly lower expressivity than the DIBoM with 21 layers,
as shown in the figure.

Figure 8: Fidelity-based expressivity (FBE) of the DI-
BoM and hardware-efficient QNN as a function of the
layer number L.

The use of FBE also allows for a quantitative eval-
uation of the balance between efficiency and expressiv-
ity in DIBoMs. In Fig. 9, we present such an evalu-
ation for a 3-qubit DIBoM. Efficiency is quantified as
the logarithm of the number of parameters, while ex-
pressivity is measured using FBE. The endpoints of the
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curve are obtained through theoretical analysis, where a
0-parameter DIBoM corresponds to an FBE value of 0
and a 13449-parameter DIBoM corresponds to an FBE
value of 1. (The proof for the latter fact can be found in
Appendix B.) The remaining data points are computed
numerically. The quality of the balance is characterized
by the area of the purple region, with a smaller area indi-
cating a better balance. It is worth noting that for some
QNN architectures such as the hardware-efficient QNN,
this area is not even guaranteed to be finite. In the fig-
ure, we show that through DIBoM, this area can be made
finite. An interesting question for future work is how to
achieve the smallest possible area of the purple region by
optimizing over different QNN architectures.

Figure 9: Quantitative characterization of the balance
between efficiency and expressivity for a 3-qubit DIBoM.
Here, the y axis stands for efficiency which is measured
as the logarithm of the number of parameters, and the
x axis stands for expressivity which is measured using
fidelity-based expressivity (FBE).

4.3 Comparisons with other models

With the theoretical properties of the DIBoM at hand,
we are ready to compare the DIBoM with other QNNs
theoretically. First, we compare it to a basic QNN, as
defined by Eq. (1). The DIBoM has the advantage that
its number of parameters is quadratic while a basic QNN
has an exponential number of parameters.

Second, we compare it to a dissipative QNN [Beer
et al.(2020)Beer, Bondarenko, Farrelly, Osborne, Salz-
mann, Scheiermann, and Wolf]. In the case that the in-
put and output have the same quantum dimension, the
DIBoM uses only half the number of qubits required by a
dissipative QNN. In addition, the number of parameters
that a DIBoM uses is exponentially smaller than that of
a dissipative QNN.

5 Empirical evaluation setup

To further investigate the properties of the DIBoM ar-
chitecture, we conduct an extensive empirical evaluation
of the DIBoM in this and the following sections. In this

section, we present the setup of the evaluation, while the
results of the evaluation are presented in the next section.
The setup consists of two parts. In the first part, we de-
scribe the synthetic dataset that is used in the evaluation
of the DIBoM. In the second part, we give the classical
simulation for the training of the DIBoM.

5.1 Dataset

We start with the construction of the synthetic
datasets used in the empirical evaluation. The samples
in each dataset are of the form

∣∣φinx 〉 where x = 1, . . . , N
and N is the number of samples. Each sample is asso-
ciated with a corresponding label |φoutx 〉 = V

∣∣φinx 〉 where
x = 1, . . . , N . The unitary V is referred to as the intrinsic
unitary of the data and is hidden from the training mod-
els. If not otherwise specified, the samples are 2-qubit
states and chosen randomly. In our main experiment,
we generate a total of 20 samples, which are randomly
divided into equal-sized training and test sets (50:50).

5.2 Classical simulation of training

With the dataset in place, we next describe how to
evaluate the performance of a DIBoM on the dataset.
Due to the lack of a quantum computer, we classically
simulate the training procedure of the DIBoM and ex-
amine the result. In the following, we describe the classi-
cal simulation of the network training for a DIBoM. Let
L+1 be the number of layers in the network, where layer
0 is the input layer and layer L the output layer. The
transition from layer l − 1 to layer l is given by

ρlx(s) = U l(s)ρl−1
x (s)U l

†
(s), (13)

where s is any parameter of the model (such as αj or βjk)
and U l(s) is the unitary in layer l. The loss function is
computed as L(s) = 1− C(s), where

C(s) =
1

N

N∑
x=1

〈
φLx
∣∣ρLx (s)

∣∣φLx 〉, (14)

with N being the number of data points, ρLx (s) denoting
the output state of the network, and

∣∣φLx 〉 denoting the
label.

In each iteration, the unitaries in the network are up-

dated by U l(s + ε) = eiεK
l(s)U l(s). Therefore, the net-

work training is equivalent to obtaining Kl(s) in each
iteration. To this end, we first calculate the derivative of
C with respect to the parameter s, which is

dC

ds
= lim
ε→0

C(s+ ε)− C(s)

ε
, (15)

where ε is a small positive number. To evaluate this
derivative, we first obtain the expression of C(s+ ε). For
the parameter s + ε, the input quantum state stays un-
changed as ρ0

x(s + ε) = ρ0
x =

∣∣φ0
x

〉〈
φ0
x

∣∣. The quantum
output, by the composition of layers, is however changed
and can be expressed as

ρLx (s+ ε) =

1∏
l=L

eiεK
l(s)U l(s)ρ0

x

L∏
l=1

U l
†
(s)e−iεK

l(s).
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We then substitute the updated quantum output corre-
sponding to the parameter s+ ε into the derivative of C,
obtaining

dC

ds
=

i

N

∑
x

tr(

1∑
l=L

M l(s)Kl(s)), (16)

where N is the number of samples, tr denotes the trace
operation, and M l(s) is defined as

M l(s) = [

1∏
j=l

U j(s)ρ0
x

l∏
j=1

U j
†
(s),

L∏
j=l+1

U j
†
(s)
∣∣φLx 〉〈φLx ∣∣ l+1∏

j=L

U j(s)].

Here, [·, ·] denotes the commutator operation. The
derivation of Eq. (16) is given in Appendix ??.

To maximize the increase of C, Kl(s) should be cho-
sen such that dC/ds is maximized. For this purpose, we
consider Kl(s) which corresponds to a general n-qubit
unitary U l(s). To avoid overfitting, we impose regular-
ization on the parameters. Specifically, we regularize the
parameters Kl

α1,··· ,αn
(s) which are defined as

Kl(s) =
∑

α1,··· ,αn

Kl
α1,··· ,αn

(s)(⊗nk=1σ
αk). (17)

Hence, the combined objective (which both maximizes
the derivative of C and minimizes the change of network
parameters) to be maximized is

C2 =
dC

ds
− λ

∑
αi

Kl
α1,··· ,αn

(s)2

=
i

N

∑
x

tr(

1∑
l=L

M l(s)Kl(s))− λ
∑
αj

Kl
α1,··· ,αn

(s)2

=
i

N

∑
x

trα1,...,αn(trrest(

1∑
l=L

M l(s)Kl(s)))

−λ
∑
αj

Kl
α1,··· ,αn

(s)2. (18)

To maximize C2, we calculate its deriva-
tive with respect to Kl

α1,··· ,αn
(s) as

i
∑
x trα1,··· ,αn

(trrest(M
l(s))(⊗nk=1σ

αk))/N −
2λKl

α1,··· ,αn
(s). By setting it to 0 and solving for

Kl
α1,··· ,αn

(s), we obtain

Kl
α1,··· ,αn

(s) =
i

2Nλ

∑
x

trα1,··· ,αn
(trrest(M

l(s))(⊗nk=1σ
αk).

There is a caveat that C2 might be always negative, in
which case we should not update s. To ensure that the
solution of dC2/dK

l
α1,...,αn

= 0 results in an increase in
C, we explicitly check the value of C before updating s.
We substitute the obtained value of Kl

α1,...,αn
(s) back to

Kl(s) and obtain

Kl(s) =
i

2Nλ

∑
α1,··· ,αn

∑
x

trα1,··· ,αn(trrest(M
l(s))

(⊗nk=1σ
αk))(⊗nk=1σ

αk)

= i2n
∑
x

trrest(M
l(s))/(Nλ). (19)

Finally the unitary U l is updated by

U l(s+ ε) = exp(−ε2n
∑
x

trrest(M
l(s))/(Nλ))U l(s).

Now we consider the specific unitaries used by the DI-
BoM which can be categorized into three cases:

1. The first case is U jSG, which is a single-qubit uni-
tary on the qubit j. The corresponding K for this
unitary is Kl(s) =

∑3
α=0K

l
α(s)σα. To obtain the

optimal Kl
α(s), we set dC2/dK

l
α(s) = 0 and obtain

Kl
α(s) =

i

2Nλ

∑
x

trj(trrest(M
l(s))σα), (20)

where “rest” denotes qubits other than qubit j.
Substituting the expression back into Kl(s), we
have

Kl(s) =
i

2Nλ

∑
α

∑
x

trj(trrest(M
l(s))σα)σα

= i
∑
x

trrest(M
l(s))/(Nλ). (21)

Therefore the unitary is updated as U l(s + ε) =
exp(iεKl(s))U l(s).

2. The second case is a product of single-qubit gates
U⊗SG, the corresponding K of which has the form

Kl(s) =

n∑
j=1

3∑
α=0

Kl
j,α(s)σαj . (22)

By letting dC2/dK
l
j,α(s) = 0, we obtain

Kl
j,α(s) =

i

2Nλ

∑
x

trj(tr[n]\{j}(M
l(s))σαj ), (23)

where [n]\{j} refers to all qubits except qubit j.
Substituting this expression back into Kl(s), we
have

Kl(s) =
i

2Nλ

n∑
j=1

∑
α

∑
x

trj(tr[n]\{j}(M
l(s))σαj )σαj

= i

n∑
j=1

∑
x

tr[n]\{j}(M
l(s))/(Nλ). (24)

Therefore the unitary is updated as U l(s + ε) =
exp(iεKl(s))U l(s).
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3. The third case is the collection of generalized CZ
gates on all pairs of qubits UCZ . Its correspond-
ing K is Kl(s) =

∑
1≤j<k≤nK

l
jk(s)|11〉jk〈11|. By

setting dC2/dK
l
jk(s) = 0, we obtain

Kl
jk(s) =

i

2Nλ

∑
x

trj,k(tr[n]\{j,k}M
l(s))|11〉jk〈11|),

(25)
where [n]\{j, k} refers to the set of qubits excluding
qubits j and k. Substituting this expression back
into Kl(s), we have

Kl(s) =
i

2Nλ

∑
j,k

∑
x

trj,k(tr[n]\{j,k}(M
l(s))|11〉jk

〈11|)|11〉jk〈11|

= i[
∑
x

∑
j,k

trj,k(tr[n]\{j,k}(M
l(s))|11〉jk〈11|)

|11〉jk〈11|]/(2Nλ).

Therefore the unitary is updated as U l(s + ε) =
exp(iεKl(s))U l(s).

Three final remarks are in order. First, the hyperpa-
rameter λ is set to 0.5 in the simulation unless otherwise
stated. Second, the classical simulation of the gradient
descent for each parameter s in layer-by-layer training is
identical to the simultaneous training method. Third, the
classical simulation for training controlled unitaries Vj is
similar, and the specifics are deferred to Appendix C.

6 Empirical evaluation results

Having presenting the simulation setup, this section
proceeds to present the empirical evaluation results. We
first empirically compare the performance of DIBoM with
other QNNs in Sec. 6.1. Next, we conduct an ablation
study on the DIBoM in Sec. 6.2 to investigate the indi-
vidual components of the model. Then in Sec. 6.3, we
assess the sensitivity of the performance of the DIBoM
to its various parameters. Additionally, in Sec. 6.4, we
analyze the robustness of the DIBoM to noise. Finally,
in Sec. 6.5, we mitigate the barren plateau issue in the
training of the DIBoM. Some auxiliary details pertaining
to the construction of the datasets used in this section
are presented in Appendix D.

6.1 Performance comparison

To begin, we analyze the training performance of the
DIBoM and compare it to that of other models, consid-
ering both the converged loss and the model complexity.
Additionally, we explore two different training methods
and evaluate the gap between training and test perfor-
mance. Moreover, we plot the optimization landscape of
the DIBoM and dissipative QNN to gain a deeper under-
standing of their respective training processes.

We first test the simultaneous training and layer-by-
layer training methods and display four training results
with different datasets in Fig. 10. The results indicate
that the model’s loss converges to 0. Comparing the two

training methods, we observe that layer-by-layer training
consistently performs worse than simultaneous training.
Thus, we will solely utilize simultaneous training in fu-
ture simulations.

Figure 10: Four learning curves for a DIBoM with two
training methods.

We next examine the DIBoM’s prediction accuracy on
the test set and assess its gap with the training accuracy,
as depicted in Fig. 11. Notably, the training loss and test
loss are nearly identical, with the test loss occasionally
being smaller than the training loss. This suggests that
statistical fluctuations rather than generalization errors
may cause the deviation between the training and test
losses. Given the close proximity of the two losses, we
will exclusively evaluate the test loss in subsequent sim-
ulations.

Figure 11: Four training and test learning curves for a
DIBoM.

We then compare the DIBoM with three other QNNs:
a hardware-efficient QNN [McClean et al.(2018)McClean,
Boixo, Smelyanskiy, Babbush, and Neven], a dissipative
QNN [Beer et al.(2020)Beer, Bondarenko, Farrelly, Os-
borne, Salzmann, Scheiermann, and Wolf] and an Ising
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Born machine [Coyle et al.(2020)Coyle, Mills, Danos, and
Kashefi]. In the simulation, we set the number of qubits
to be 2, the DIBoM to contain five alternating layers of
tunable single-qubit gates and tunable two-qubit gates,
the hardware-efficient QNN to have the same structure
as the DIBoM but with all tunable two-qubit gates re-
placed by CZ gates, and the Ising Born machine to con-
tain a layer of tunable two-qubit gates followed by a layer
of tunable single-qubit gates. The intrinsic unitary V of
this simulation is restricted to have the same structure
as the DIBoM but with unknown parameters. We com-
pare the models based on two criteria. First, we compare
them in terms of their performance, as shown in Fig. 12.
We observe that both the dissipative QNN and the DI-
BoM reach zero loss while the hardware-efficient QNN
and the Ising Born machine do not. This could be at-
tributed to the limited expressive power of the hardware-
efficient QNN and the Ising Born machine. We also ob-
serve that the dissipative QNN converges faster than the
DIBoM. Second, we compare them in terms of the num-
ber of model parameters in Fig. 13. We observe that the
dissipative QNN requires significantly more parameters
than the other three models. As the number of qubits
increases, the ratio of the number of parameters of the
DIBoM to that of the dissipative QNN tends to 0. Hence,
there is a tradeoff between performance and the number
of parameters.

Figure 12: Comparison of a DIBoM with a dissipative
QNN, a hardware-efficient QNN and an Ising Born ma-
chine in terms of the performance for a structured unitary
V .

To investigate why the DIBoM and dissipative QNN
can achieve zero loss, we plot the optimization land-
scapes of them with two parameters varying and other
parameters fixed. The result of the DIBoM is shown in
Fig. 14, where one parameter to be changed is from the
single-qubit unitary gate (parameter 1) and the other pa-
rameter to be changed is from the generalized CZ gate
(parameter 2). Despite the highly non-convex landscape,
all local minima are global minima, explaining why the
DIBoM can always converge to zero loss. The result of
the dissipative QNN is shown in Fig. 15. It can be seen

Figure 13: Comparison of a DIBoM with a dissipative
QNN, a hardware-efficient QNN and an Ising Born ma-
chine in terms of the number of model parameters.

that there is no flat region in the landscape and this
explains the fast convergence of a dissipative network.
However, there exists a local minimum in the middle of
the figure which does not coincide with the global min-
imum. Hence, whether dissipative networks can always
be trained to reach a global minimum requires further
investigation.

Figure 14: Optimization landscape of a DIBoM with two
parameters varying and other parameters fixed.

To facilitate a performance comparison between the
DIBoM and other models, we have assumed that the
hidden unitary V has the same structure as the DIBoM,
but with unknown parameters. To further evaluate the
DIBoM’s performance, we conduct a test where V is a
random unitary, with n = 3 qubits and 10 layers for
both the DIBoM and hardware-efficient QNN. The re-
sults are shown in Fig. 16. The DIBoM outperforms the
hardware-efficient QNN and the Ising Born machine but
has lower accuracy than the dissipative QNN. As com-
pensation, the number of parameters in a DIBoM scales
only quadratically with n, whereas the dissipative QNN
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Figure 15: Optimization landscape of a dissipative QNN
with two parameters varying and other parameters fixed.

has exponential scaling.

Figure 16: Comparison of a DIBoM with a dissipative
QNN, a hardware-efficient QNN and an Ising Born ma-
chine in terms of the performance for a random unitary
V .

6.2 Ablation study

After analyzing the overall performance of the DIBoM
architecture, we next alter some components of the DI-
BoM to get a better understanding of the contribution of
each component of the DIBoM to its performance.

First, we investigate the case that the DIBoM consists
of a layer of one single-qubit gate (U2

SG), which acts ex-
clusively on the second qubit. The training result is plot-
ted in Fig. 17, where it is evident that the fidelity of the
model output reaches 1 after sufficient training. More-
over, it converges rapidly, reaching zero loss by the 14th
iteration. To delve deeper into the optimization process
and understand why the optimization of the single-qubit
unitary does not trap at a local minimum, we plot the
loss function as a function of two parameters while keep-
ing all other parameters fixed. Both parameters are from

the single-qubit unitary, and the resulting plot is depicted
in Fig. 18. Despite the highly non-convex optimization
landscape, it is noticeable that all local minima have ap-
proximately the same value, explaining the achievement
of zero loss during training of a single-qubit unitary.

Figure 17: Learning curve of a variant of the DIBoM
(U2

SG).

Figure 18: Optimization landscape of a variant of the
DIBoM (U2

SG) with two parameters varying and other
parameters fixed.

Next we examine the case that the DIBoM consists of
one layer of generalized CZ gates (UCZ). As displayed in
Fig. 19, the fidelity of the model output approaches unity
after sufficient training, similar to the case of single-qubit
gates. Note however that the initial loss for the general-
ized CZ gate case is lower than that of the single-qubit
gate case. This observation suggests that a generalized
CZ gate is more rigid than a single-qubit gate, implying
a narrower range of variation in the quantum output in-
duced by the former. Note also that convergence for the
generalized CZ gate case occurs around the 50th itera-
tion, which is slower than the convergence rate for the
single-qubit gate case, indicating the former case is com-
paratively harder to train than the latter case.
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Figure 19: Learning curve for a variant of the DIBoM
(UCZ).

Then we investigate the DIBoM (UCZU
2
SG) where one

of the layers is fixed. For the case that the second layer
is fixed, the training result is shown in Fig. 20. As illus-
trated, the training converges to zero loss and the con-
vergence is quite fast, reaching the optimal loss at the
40th iteration. Conversely, for the case that the first
layer of the DIBoM is fixed while the second layer is to
be trained, the convergence is slower, as evidenced by
the training results shown in Fig. 21. This slower con-
vergence could be attributed to the flatter optimization
landscape of the generalized CZ gate. Nonetheless, the
training also eventually converges to zero loss.

Figure 20: Learning curve of a DIBoM (UCZU
2
SG) with

the first layer trained and the second layer fixed.

Next we examine a network comprising a layer of
single-qubit gates on all qubits followed by a layer of gen-
eralized CZ gates (UCZU

⊗
SG). Here, U⊗SG is a n-qubit gate

that can be decomposed as a tensor product of param-
eterized single-qubit gates, potentially featuring varying
parameters. We refer to the former layer as a product
gate layer. Figure 22 compares the performance of the
product gate case to the single gate setting. It can be

Figure 21: Learning curve of a DIBoM (UCZU
2
SG) with

the second layer trained and the first layer fixed.

seen that the product gate case converges to a zero loss
while the single gate case does not, implying that the
product gate case has more expressive power.

Figure 22: The performance comparison between the
product-gate variant of the DIBoM (UCZU

⊗
SG) and a DI-

BoM (UCZU
2
SG).

An ablation study of generalized CZ gates is then con-
ducted by comparing the following two models. The first
model, denoted as “generalized CZ”, utilizes DIBoM with
3 layers (U⊗SGUCZU

⊗
SG). The second model, denoted as

“normal CZ”, is almost identical to the first model, ex-
cept that all the generalized CZ gates in the second layer
are replaced with normal CZ gates. The study’s results
are presented in Fig. 23, which indicates that the first
model achieves a much lower loss than the second model.
This finding suggests the strong effectiveness of general-
ized CZ gates.

To evaluate the effect of the controlled unitary Vj , we
conduct an ablation study. For this purpose, we modify
the training dataset to have different input and output di-
mensions. Specifically, we construct the training dataset
as (|ψi〉 ⊗ |0〉 ⊗ |0〉, |ψi〉)1≤i≤N , where |ψi〉 represents a
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Figure 23: Performance comparison between a DIBoM
and an ablated DIBoM where generalized CZ gates are
replaced by normal CZ gates.

randomly generated pure qubit using the Haar measure.
The objective of the model is to transform the quantum
sample such that the third qubit approximates the quan-
tum label as closely as possible. We denote the complete
DIBoM model as with control. The model first applies a
three-qubit unitary U , measures the first two qubits in
the computational basis, and then uses the measurement
result j to perform the controlled unitary Vj on the third
qubit. On the other hand, the ablated version, denoted
as without control, includes the same first two compo-
nents but lacks the final component. More precisely, the
unitary U is composed of three layers USGUCZUSG, and
there are four single-qubit unitaries Vj (0 ≤ j ≤ 3) to be
optimized. The results are illustrated in Fig. 24, which
indicates that the complete DIBoM model achieves signif-
icantly lower loss than the ablated version. This suggests
that the complete DIBoM model can effectively learn the
quantum teleportation protocol from scratch, while the
ablated version lacks this capability.

6.3 Parameter sensitivity

So far, we have investigated the performance of the DI-
BoM and the contributions of its individual components
to this performance. For a more comprehensive evalua-
tion of the DIBoM, we conduct experiments to test the
effect of different parameters, including the data size, the
number of layers, the number of qubits per layer, and the
regularization constant.

We begin by examining the relation between the num-
ber of training samples N and the performance character-
ized by the training loss. The result is shown in Fig. 25,
which clearly demonstrates that the larger the sample
size, the faster the convergence. This is because more
samples help to estimate the intrinsic unitary V better
during training. We next test the relation between the
number of samples and the gap between the training per-
formance and the test performance, as shown in Fig. 26.
It can be seen that as the number of samples increases,
the gap gradually becomes smaller. This is expected as

Figure 24: The performance comparison between a full
DIBoM with controlled gates and an ablated DIBoM
without controlled gates.

a larger number of samples results in a smaller variance
and thus, improved generalization performance.

Figure 25: The training performance of a DIBoM with a
varying number N of training samples.

Next, we test the effects of the layer number L on the
performance of the product gate variant of the DIBoM
(· · ·U⊗SGUCZU

⊗
SG), as shown in Fig. 27. It can be seen

that the losses of all cases converge to zero loss, indicat-
ing that the network can scale to many layers without
adversely affecting trainablity.

Then we test the number of qubits n that the input
and output contain, also on the product gate variant of
the DIBoM (UCZU

⊗
SG). As shown in Fig. 28, for all cases

from 2 qubits to 4 qubits, the DIBoM can train well,
with zero loss convergence. However, the case of n = 5
did not perform as well, resulting in non-zero loss. There-
fore, we perform four additional simulations for n = 5,
which are displayed in Fig. 29. It is evident that although
the loss function eventually converges to zero loss, this re-
quires a larger number of iterations. Moreover, the train-
ing curve displays both slow-varying and fast-varying re-
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Figure 26: The gap between the training and test perfor-
mance of a DIBoM with N training samples.

Figure 27: The performance of a DIBoM with a different
number L of layers.

gions, a phenomenon that is already observable in the
case of n = 4, but is more pronounced when n = 5.

In addition, we test the effect of the regularity con-
straint parameter λ on the performance of the DIBoM.
The results, shown in Fig. 30, indicate an optimal value
of λ at 0.5. Deviating from this value leads to worse
convergence.

Finally, we assess the ability of a DIBoM
(· · ·U⊗SGUCZU

⊗
SG) to approximate an arbitrary uni-

tary using 2 to 5 layers, alternating between product
gate and generalized CZ gate layers. The results,
presented in Fig. 31, demonstrate that the converged
loss decreases as the number of layers increases. Notably,
with only 5 layers, the DIBoM already achieves a low
loss.

6.4 Robustness to noise

We further assess the robustness of a DIBoM to noise in
the data since real-world data inevitably contains noise.
To this end, we manually corrupt some of the training
data and evaluate its effect on the test loss. The corrup-

Figure 28: The performance of a DIBoM with a different
number of qubits n per layer.

Figure 29: Four learning curves of a DIBoM with 5 qubits
per layer.

tion ratio of the training data varies from 10% to 100%,
with an uncorrupted dataset, denoted by “original”, act-
ing as the control. Given a corruption ratio, say 30%, we
randomly select 30% of real quantum data and replace it
with fake data (

∣∣φinx 〉, |φoutx 〉), where
∣∣φinx 〉 and |φoutx 〉 are

Haar random n-qubit pure states. The results are visu-
alized in Fig. 32. On the negative side, with a gradual
increase of the corrupted ratio, the performance gradu-
ally degrades, as evidenced by the comparison of solid
and dashed lines. On the positive side, even with up to
60% of corrupted data, the DIBoM remained effective,
which indicates a high level of robustness against noise.

We also investigate the noise robustness of the model
with respect to varying numbers of layers. To perform
this investigation, we set a fixed corruption ratio of 20%
and vary the number of layers, while monitoring the loss
at the 300 iterations. The results are presented in Fig. 33.
Notably, our analysis reveals that the noise robustness of
the model remains consistent across different numbers
of layers. This finding highlights the scalability of the
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Figure 30: The performance of a DIBoM with different
parameters of the regularity constraint λ.

Figure 31: The performance of a DIBoM with L layers
on a generic quantum learning dataset.

DIBoM and suggests that increasing the number of layers
does not negatively impact the noise robustness of the
model.

6.5 Barren plateau

In Sec. 6.3, we have observed that the model with
the global loss function Eq. (7) already suffers from
the barren plateau (slow-varying region) issues for n =
5 qubits. Previous work by Cerezo et al. [Cerezo
et al.(2021)Cerezo, Sone, Volkoff, Cincio, and Coles]
demonstrated that local cost functions can mitigate this
issue. Hence we incorporate the local cost function de-
scribed in Eq. (8). We defer the details of the classi-
cal simulation of the model under the local loss function
to Appendix E. To accommodate the local cost func-
tion, we design the training data as a product state
|φin〉 = |φin〉1⊗· · ·⊗|φin〉n for n qubits, which we refer to
as product-form training data. Notably, a zero local cost
function for this data implies a zero global cost function.
We examine the performance of the local cost function
by training the model with 2 to 5 qubits, as shown in

Figure 32: The performance of a DIBoM with various
proportions of the training data corrupted.

Figure 33: Noise robustness of the DIBoM with different
numbers of layers.

Fig. 34. We observe that all learning curves converge
to zero loss quickly, suggesting that the barren plateau
issue is mitigated. This stands in stark contrast to the
global cost function, which exhibits the barren plateau
phenomenon when n = 5.

We have also plotted the comparison between local and
global cost functions in Fig. 35. The local cost func-
tion always reaches zero loss faster than the global cost
function. More importantly, the curve of the local cost
function lacks a flat region, suggesting that the barren
plateau phenomenon is mitigated for the DIBoM with a
local cost function. Notably, we observe that the barren
plateau issue is also mitigated for a global cost function
with product-form training data. This observation sug-
gests that product-form training data may be easier to
train than entangled training data.

Finally, we discuss the computation time required for
our simulations. For the case n = 8, which is the largest
simulation we performed, the computation takes about
1 hour on an 8-core 3.2GHz computer. The number of
parameters for this case is 4n + n(n − 1)/2 = 60. It is
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Figure 34: The performance of a DIBoM with a local
cost function. Here, n is the number of qubits.

Figure 35: Comparisons between global and local cost
functions with different numbers of qubits n. Here, n
ranges from 3 to 8. The redline depicts the local cost
function while the blue line depicts the global cost func-
tion.

worth noting that the computation time is exponential
in n, which is a consequence of the classical computation
requiring multiple multiplications on density matrices of
size 2n × 2n in each iteration. Each of these multiplica-
tions takes time 23n, resulting in a cost of 2563 per multi-
plication when n = 8. Furthermore, the number of itera-
tions is polynomially related to n, with approximately
2000 iterations required for n = 8. Hence, the com-
putation burden on a classical computer is substantial.
However, it is important to note that intermediate-scale
quantum computers have the potential to substantially
decrease computation time to a polynomial of n, as the
classical manipulation of 2n × 2n density matrices is no
longer necessary. As such, we expect that current noisy
intermediate-scale quantum (NISQ) devices will boost
the trainable size to a few hundred qubits.

7 Discussion

In summary, we examined a deep Ising Born machine
(DIBoM) and showed it has a good balance between ef-
ficiency and universality. Specifically, we described its
model architecture and its training procedure. Addition-
ally, through theoretical analysis, we demonstrated that
the DIBoM has the capability of universal quantum com-

putation. Apart from the theoretical analysis, we empir-
ically evaluated the performance of the DIBoM and com-
pared it with other QNNs. Our evaluations revealed that
the DIBoM has a moderate number of parameters while
being quite expressive. Along the way, we introduced a
new expressivity measure called fidelity-based expressiv-
ity, which may be of independent interest.

There are two potential limitations of the DIBoM:
trainability and generalizability. Trainability refers to
the ability to find the global minimum in a polyno-
mial number of iterations with respect to the number of
qubits. In our simulations, we have shown that the DI-
BoM is trainable for a moderate number of qubits, but it
is unclear whether it remains trainable for a large number
of qubits, which is beyond the capability of our simula-
tion. Moreover, there is no theoretical guarantee that
the DIBoM is trainable, and recent negative results [An-
schuetz and Kiani(2022)] suggest that most shallow and
local QNN architectures are not trainable.

Generalizability refers to the ability to achieve low test
error given a small training error. In our simulations, we
have empirically observed that the DIBoM has low test
error, but we have no theoretical guarantee for this fact.
When the number of parameters of a QNN is much larger
than the number of training data, over-parameterization
can cause overfitting, making it difficult to achieve theo-
retical guarantees of generalizability. This is a challeng-
ing problem even for classical neural models.

Therefore, it is crucial to develop QNN architectures
that achieve efficiency, universality, provable trainabil-
ity, and provable generalizability simultaneously. The
DIBoM only addresses the first two goals, leaving much
room for improvement.

There are a few other promising avenues for future re-
search. First, applying the DIBoM to downstream quan-
tum learning tasks is likely to be both fruitful and inter-
esting. Second, an experimental demonstration of the DI-
BoM on quantum hardware would be interesting. Third,
due to the exponential cost of the classical simulation,
a NISQ device may show a speed advantage in training
the DIBoM, which makes it an ideal target for showing
quantum supremacy on practical problems.

The tradeoff between efficiency and universality is also
worth further investigation. To achieve universality as
defined in our work, an ansatz needs to have exponen-
tially many parameters because the ansatz cannot ex-
press all unitaries if the dimension of its Hilbert space is
smaller than that of SU(n). This implies full universality
and efficiency cannot be achieved simultaneously for any
quantum learning model. There are several directions to
further explore the tradeoff between universality and ef-
ficiency and the associated design of quantum learning
models.

First, by relaxing the definition of universality, there
may exist more interesting tradeoff between universality
and efficiency. However, this makes the research land-
scape more complex since there are a lot of ways to
weaken the notion of universality. Previous research has
considered weakening the universality to the class of func-
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tions that maps 0 to the ground state of a Hamiltonian
which is the sum of poly(n) Pauli bases [Biamonte(2021)],
that is real and continuous [Goto et al.(2021)Goto,
Tran, and Nakajima], that can be described by a quan-
tum circuit with a polynomial number of gates where
each gate acts on a constant number of qubits [Cai
et al.(2022)Cai, Ye, and Deng], and that is boolean [Her-
man et al.(2022)Herman, Raymond, Li, Robles, Mezza-
capo, and Pistoia]. Besides these choices, there are many
other choices available, potentially infinitely many. For
example, one can consider the class of function that maps
0 to the thermal state of a Hamiltonian which is the sum
of poly(n) Pauli bases, that is complex and meromor-
phic, that can be described by a quantum circuit with a
logarithmic number of gates where each gate acts on a
logarithmic number of qubits, to just name a few. How to
achieve these different types of universality while main-
taining efficiency in a strict sense is an interesting re-
search question.

Another direction is to replace universality by restrict-
ing the ansatz to contain the solution one is looking
for. In this case, the ansatz becomes problem spe-
cific, which is not a universal ansatz that can deal with
all learning problems. Following this line, after tak-
ing a learning problem, one should design a specific
ansatz that suits this problem which requires additional
manual work and expertise. How to reduce the man-
ual efforts in designing a specific ansatz for a given
learning problem (such as combinatorial optimization
problems [Zhou et al.(2020)Zhou, Wang, Choi, Pichler,
and Lukin], learning the ground state of a Hamiltonian
[Motta et al.(2020)Motta, Sun, Tan, O’Rourke, Ye, Min-
nich, Brandão, and Chan], simulating quantum dynam-
ics [Sparrow et al.(2018)Sparrow, Mart́ın-López, Mar-
aviglia, Neville, Harrold, Carolan, Joglekar, Hashimoto,
Matsuda, O’Brien et al.], or drug discovery for a spe-
cific disease [Cao et al.(2018)Cao, Romero, and Aspuru-
Guzik]) is an interesting question on its own.

This work was supported by the National Natural Sci-
ence Foundation of China (12105105), the Natural Sci-
ence Foundation of Shanghai (21ZR1415800), the Shang-
hai Sailing Program (21YF1409800), and the startup
fund from East China University of Science and Tech-
nology (JKH01221665 and YH0142206).

A Evaluation details of the Fidelity-
based Measure

Here, we detail how we numerically evaluate an upper
bound of the fidelity-based measure (FBE) for any QNN
architecture in Fig. 8.

For a QNN architecture A(θ), we first select k = 100
random unitaries Ui (1 ≤ i ≤ k) and m = 10 random
pure states φj (1 ≤ j ≤ m). Then for any Ui, we optimize
θ to minimize

si =
1

m

m∑
j=1

|〈φj |A(θ)†Ui|φj〉|. (26)

The bound mini si is then taken as the upper bound of
the FBE.

B Concrete number of parameters for a
universal 3-qubit DIBoM

In this section, we provide the precise number of pa-
rameters needed for a 3-qubit DIBoM to be universal.

To begin with, according to Section 4.5.1 of
Ref. [Nielsen and Chuang(2010)], a 3-qubit unitary can
be decomposed as a product of 23−1(23 − 1) = 28 two-
level unitaries. Our next goal is to decompose a two-level
3-qubit unitary further.

As per Section 4.5.2 of Ref. [Nielsen and
Chuang(2010)], a two-level 3-qubit unitary can be
decomposed as a product of at most 5 controlled-
controlled single-qubit unitaries. Our next goal is to
decompose a controlled-controlled single-qubit unitary
further.

Figure 4.18 of Ref. [Nielsen and Chuang(2010)] reveals
that a controlled-controlled single-qubit unitary can be
decomposed as a product of 2 CZ gates and 3 controlled
single-qubit unitary gates. Our next goal is to decompose
a controlled single-qubit unitary further.

Figure 4.6 of Ref. [Nielsen and Chuang(2010)] states
that a controlled single-qubit unitary can be decomposed
as a product of two CZ gates and single-qubit gates.
Consequently, a controlled-controlled single-qubit uni-
tary can be decomposed as a product of 2+ 3×2 = 8 CZ
gates and single-qubit gates, a two-level 3-qubit unitary
as a product of 8×5 = 40 CZ gates and single-qubit gates,
and a 3-qubit unitary as a product of 40 × 28 = 1120
CZ gates and single-qubit gates. This implies that a
(1120 × 2 + 1)-layer 3-qubit DIBoM is sufficient to re-
alize any 3-qubit unitary.

A (1120 × 2 + 1)-layer 3-qubit DIBoM contains 1121
single-qubit gate layers and 1120 generalized CZ gate lay-
ers. This translates to a total of 1121 × 9 + 1120 × 3 =
13449 parameters.

%endwidetext

C Simulation of the controlled unitary Vj

In this section, we present the classical simulation that
involves the controlled unitaries Vj . Before any measure-
ments, the initial quantum state ρ0 is evolved to the fol-
lowing quantum state:

ρ1 = Uk · · ·U1ρ0U1† · · ·Uk†. (27)

After measuring with outcome i, the post-measurement
state is given by

ρ2
i = trA(ρ1(|i〉〈i|A ⊗ IB)). (28)

The post-measurement states then undergo another se-
ries of unitaries and become

ρ3 =
∑
i

V li · · ·V 1
i ρ

2
iV

1
i
† · · ·V li

†
,
∑
i

E i(ρ1), (29)

where E i is a quantum operation that acts on the state
ρ1.
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After getting the output of the quantum circuit ρ3, the
cost function can be written as

C(s) =
1

N

N∑
x=1

〈ψx|ρ3
x|ψx〉 =

1

N
tr(|ψx〉〈ψx|ρ3

x). (30)

Since

ρ3(s+ ε) =
∑
i

eiεK
l
2,iV li · · · eiεK

1
2,iV 1

i trA[eiεK
k
1Uk · · · eiεK

1
1

U1ρ0
xU

1†e−iεK
1
1 · · ·Uk†e−iεK

k
1 (|i〉〈i|A ⊗ IB)]

V 1
i
†
e−iεK

1
2,i · · ·V li

†
e−iεK

l
2,i ,

(31)
we can evaluate the derivative of the cost function as

dC

ds
= lim

ε>0

C(s+ ε)− C(s)

ε
=

1

N
tr(|ψx〉〈ψx|X), (32)

where

X =

4∑
i=1

{[iKl
2.i, V

l
i · · ·V 1

i ρ
2
iV

1
i
† · · ·V li

†
] + · · ·+

V li · · ·V 2
i [iK1

2.i, V
1
i ρ

2
iV

1
i
†
]V 2
i
† · · ·V li

†
+

+ E i([iKk
1 (s), Uk · · ·U1ρ0U1† · · ·Uk†]) + · · ·+

+ E i(Uk · · ·U2[iK1
1 (s), U1ρ0U1†]U2† · · ·Uk†)}.

(33)
To update the parameter in the network, we minimize

the function

dC

ds
− λ

∑
α1,··· ,αn

K2
α1,··· ,αn

(s)2, (34)

where Kα1,··· ,αn
(s) is related to K1(s) by

K1(s) =
∑

Kα1,··· ,αn
(s)⊗nk=1 σ

αk . (35)

We will focus on two specific cases of K1(s): K1(s)→ σαj
and K1(s)→ |11〉jk. The former case involves one qubit,

while the latter case only involves two qubits. If Kj
1(s)

only acts on qubit j, we let

K1(s) = Kj
1(s)⊗ Ij̄ . (36)

If Kj,k
1 (s) acts on qubits j and k, we let

K1(s) = Kj,k
1 (s)⊗ I ¯j,k. (37)

This ends the classical simulation of the controlled uni-
taries.

D Simulation details

This section presents additional simulation setups for
the figures in Sec. 6.

To know beforehand that the global optimal loss of the
DIBoM can reach 0 with a suitable tuning of its param-
eters, we make the following restrictions on the intrinsic
unitary V . For Figs. 10, 11, and 12, the intrinsic unitary
V is restricted to a single-qubit unitary multiplied by a

generalized CZ gate, with the single-qubit unitary acting
on the second qubit. For Fig. 17, the intrinsic unitary V
is restricted to a single-qubit unitary acting on the second
qubit. For Fig. 19, the intrinsic unitary V is restricted to
a layer of generalized CZ gates. For Fig. 20, the intrinsic
unitary V is chosen in such a way that it is obtained by
a single-qubit gate multiplied by a generalized CZ gate,
where the generalized CZ gate of V is set to be identical
to the fixed second layer of the DIBoM. For Fig. 21, the
intrinsic unitary V is also obtained by a single-qubit gate
multiplied by a generalized CZ gate, with the single-qubit
gate matching the first layer of the DIBoM. For Figs. 22,
28, 34, and 35, the intrinsic unitary V is restricted to
a product gate layer followed by a generalized CZ gate
layer, with the product gate acting on all qubits of the
quantum input. For Fig. 23, the intrinsic unitary V is re-
stricted to have the same circuit structure as the DIBoM
but with different parameters. For Fig. 27, the intrin-
sic unitary V is restricted to an alternating product of a
product gate layer and a generalized CZ gate layer with
a total of L layers, where L is the given layer number.

Some auxiliary setups are as follows. For Fig. 11, both
the training and test samples are drawn from the same
distribution, meaning that the intrinsic unitary V that
transforms the input into the output is identical for both
sets. The number of samples in the test set is fixed at 10.
For Fig. 31, the intrinsic unitary V is randomly selected
from all 2-qubit unitaries, with no additional constraints.

E Simulation of local cost function

When simulating the local cost function, there are two
changes compared to simulating the global cost function.
Firstly, the input and output are reversed. Secondly, the
input |φ〉〈φ| is substituted by |φ〉i〈φ| ⊗ Iī.

Let us start with the first change. The ground truth
unitary is V , hence the ground truth output is

∣∣φLx 〉 =

V
∣∣φ0
x

〉
, where

∣∣φ0
x

〉
is the quantum input. In the re-

verse setup, we will compare the “model” input ρ0
x =

U†
∣∣φLx 〉〈φLx ∣∣U with the actual input

∣∣φ0
x

〉〈
φ0
x

∣∣ in the cost
function:

Creverse(s) =
1

N

N∑
x=1

〈
φ0
x

∣∣ρ0
x(s)

∣∣φ0
x

〉
. (38)

A crucial observation is

dCreverse
ds

=
i

N

∑
x

tr(

1∑
l=L

M l(s)Kl(s)), (39)

where M l(s) and Kl(s) are exactly the same as the ones
in Appendix ??. The optimization of the reversed cost
function Creverse is hence equivalent to that of the orig-
inal cost function C, thus completing the first change.

Moving on to the second change, we note that the input∣∣φ0
x

〉
is a product state, which allows us to express it as∣∣φ0

x

〉
=
∣∣φ0
x

〉
1
⊗ · · · ⊗

∣∣φ0
x

〉
n
. As a result, the local cost

function takes the form

Clocal(s) =
1

nN

N∑
x=1

n∑
y=1

tr((
∣∣φ0
x

〉
y

〈
φ0
x

∣∣
y
⊗ Iȳ)ρ0

x(s)), (40)
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where Iȳ is the identity operator acting on all subsystems
except the y-th one. Accordingly, the derivative of Clocal
with respect to the parameter s can be expressed as

dClocal
ds

=
i

Nn

∑
x

tr(

L∑
l=1

M l
local(s)K

l(s)), (41)

where

M l
local(s) = [

1∏
j=l

U j(s)(
∑
y

∣∣φ0
x

〉
y

〈
φ0
x

∣∣
y
⊗ Iȳ)

l∏
j=1

U j
†
(s),

L∏
j=l+1

U j
†
(s)ρ0

x

l+1∏
j=L

U j(s)].

The remaining procedure is identical to that of the global
cost function.
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Abstract. In this work [1], we provide device-independent (DI) self-testing of the unsharp instrument
through the quantum violation of two Bell inequalities where the devices are uncharacterized and the
dimension of the system remains unspecified. We introduce an elegant sum-of-squares approach to derive
the dimension-independent optimal quantum violation of Bell inequalities which plays a crucial role. Note
that the standard Bell test cannot self-test the post-measurement states and consequently cannot self-test
unsharp instrument. The sequential Bell test possess the potential to self-test an unsharp instrument.
We demonstrate that there exists a trade-off between the maximum sequential quantum violations of the
Clauser-Horne-Shimony-Holt inequality, and they form an optimal pair that enables the DI self-testing of
the entangled state, the observables, and the unsharpness parameter. Further, we extend our study to the
case of elegant Bell inequality. Since an actual experimental scenario involves losses and imperfection, we
demonstrate robustness of our certification to noise.

Keywords: sharing of nonlocality, device-independent self-testing, unsharp measurement

Device-independent (DI) self-testing [2, 3, 4, 5, 6] is the
strongest certification protocol based on the Bell test. In
DI scenario, the devices remain uncharacterized (black-
boxes) and the dimension of the quantum system is con-
sidered to be finite but unbounded. Essentially, the op-
timal quantum violation of a Bell’s inequality self-tests
the entangled state and the observables in any arbitrary
dimension. In this work, we provide the DI self-testing of
unsharp measurements based on the two Bell’s inequali-
ties, viz., the CHSH inequality [7], and the elegant Bell
inequality [8]. By unsharp measurements, here we mean
the noisy variants of the sharp projective measurements
so that the number of measurement operators equals the
number of projectors.
Note that, both the above mentioned inequalities are

optimized in quantum theory for sharp measurement and
any unsharp measurement naturally gives rise to sub-
optimal quantum values. Thus, to DI self-test unsharp
instrument one has to introduce a protocol based on a
sub-optimal quantum violation of Bell’s inequality. How-
ever, in an ideal scenario, the sub-optimal quantum value
in a Bell test may come from different sources, viz., inap-
propriate choices of entangled state or observables than
that are required for optimal quantum violation, or from
unsharp measurements. If one can ensure that the en-
tangled state and observables remains same that are re-
quired for optimal quantum violation then it is indeed
the unsharp instrument that is responsible for providing
the sub-optimal quantum value. This, in turn, self-tests
the unsharpness parameter of the quantum instrument.
We demonstrated that the sequential Bell test has the

potential to provide DI self-testing. Specifically, we first
consider the CHSH inequality, and by introducing an el-
egant sum-of-squares (SOS) approach we derive the opti-
mal quantum violation without assuming the dimension
of the system. Further, we consider the sequential shar-
ing of nonlocality [9, 10, 11, 12] when multiple observers

∗prabuddharoy.94@gmail.com
†akp@phy.iith.ac.in

on one side perform unsharp measurements. Note that,
the sharing of non-locality without assuming the dimen-
sion has not hitherto been demonstrated. Using our SOS
approach, we optimize the quantum violations for two
sequential observers and show that there is a trade-off
between those two quantum violations. Moreover, we
show that the trade-off in turn enables us to certify the
state, observables and unsharpness parameter of the in-
strument in a DI way. Note however that, in the practical
implementation of our protocol, there will be inevitable
noise and imperfection which forbids obtaining the max-
imum quantum values. For that case, we provide a range
within which the unsharpness parameter should belong.
The more perfect the experimental realization more ac-
curate one can self-test the unsharpness parameter. We
extend our protocol for the case of elegant Bell inequal-
ity, where we demonstrate that at most three observers
can sequentially share the preparation contextuality and
demonstrate the self-testing of two unsharpness parame-
ters.

1 Results

In this paper [1], we have demonstrated the following
results:

i) First, we derive the optimal quantum value of CHSH
inequality without assuming the dimension of the system
by introducing sum-of-squares (SOS) approach. This in
turn uniquely certifies the state and observables.

ii) Next, we consider the sequential sharing scenario
where on one side of the shared entangled state, Alice
performs sharp measurement and on the other side mul-
tiple independent Bobs performs unsharp measurement.
By optimizing the quantum violations for sequential Bobs
in the Bell-CHSH scenario and from the trade-off between
the quantum violations, we first showcase that at most
two independent Bobs can showcase quantum advantage
over preparation non-contextual (local) model in the DI
way.

iii)We then prove that the sub-optimal sequential
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quantum values are maximized for the same state and
observables as required for the optimal violation. Hence,
two maximized sub-optimal quantum violations form an
optimal pair enabling the DI self-testing of the unsharp
instrument.
iv) According to Naimark’s theorem, any non-

projective measurement can be modelled as sharp mea-
surements in a higher dimension. Since in DI scenario
there is no bound on the dimension one may argue that
sub-optimal quantum violation arises due to the inap-
propriate choices of observables in higher dimension and
not from the unsharp measurement. Our dimension-
independent optimization of the sequential quantum vio-
lations of Bell’s inequality bypasses the constraints that
would arise from Naimark’s theorem and enables the DI
self-testing of unsharp instruments.
v) Moreover, We provide an argument to demonstrate

how our certification protocol is robust to the noise by
providing a range within which the unsharpness param-
eter can belong.
vi) Following the similar approach, we have addition-

ally demonstrated the sequential scenario of nonlocality
for elegant Bell inequality in the DI manner and certify
the states, local observables and unsharpness parameters
which provide such advantage.

2 Figures and Tables
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Figure 1: Optimal trade-off between quantum bound of CHSH
inequality of Bob1 and Bob2 is shown by the solid blue curve
while the shaded portion gives the suboptimal range. The solid
green line is for classical bound of CHSH inequality for the same

two Bobs.

Figure 2: Optimal trade-off between quantum bound of elegant
Bell inequality of Bob1, Bob2 and Bob3. The black point on the
three-dimensional graph indicates the point which certifies the
unsharpness parameters λ1 and λ2 when quantum values of all

three sequential Bobs are considered to be equal.
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Generation of Braiding Operators for Topological Quantum Computing
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Abstract. Topological quantum computing is a theoretical framework that enables unitary operations
to be performed without introducing errors due to the system’s dynamics. This framework relies on the
statistical properties of anyon particles, which are governed by the braid group. However, computing
the anyonic braid matrices for topological quantum computing is considered challenging. In this study,
we propose a systematic method for computing such braid matrices for quantum circuit-based anyonic
states. This method can serve as the foundation for a general topological quantum computing simulator,
facilitating the study of complex topological quantum circuits in the context of any anyon model. In this
presentation, we aim to provide a comprehensive review of the foundational principles of anyon model
theory. Specifically, we describe the methodology for constructing qubits/qudits based on anyonic states.
Furthermore, we present a generalized formula for systematically computing the matrix components of
the braid operations, which we validate through algebraic techniques. Moreover, we reproduce well-known
quantum gates from previous studies to demonstrate the validity of our method.

Keywords: Fault-tolerant quantum computing, topological quantum computing, anyons, quantum cir-
cuit compilation

Experimental implementations of quantum computers
are susceptible to errors that arise from the interac-
tion of qubits with their environment. To tackle this
challenge, multiple approaches are being investigated,
including cooling and fabrication technologies, as well
as quantum error mitigation techniques. However, for
achieving fault-tolerant quantum computing, quantum
error correction is necessary. Nonetheless, the practical
application of quantum error correction is limited by the
threshold theorem, which stipulates that a sufficiently
low error rate is required for reliable quantum computa-
tion.

In recent decades, topological quantum systems
have emerged as a promising approach for storing and
processing quantum information in a robust manner, as
they are immune to local noise [1]. Topological quantum
computation (TQC) focuses on two-dimensional quan-
tum systems that support excitations with fractional
statistics, known as anyons. These anyons exhibit
statistics that differ from those of fermions and bosons,
making them unique. A system of anyons possesses
a topologically protected Hilbert space that grows
exponentially with the number of anyons, and quantum
information can be processed through the braiding of
anyons. Furthermore, topological quantum comput-
ers, based on anyon models, have been shown to be
Turing-complete i.e universal. Experimental evidence
has confirmed that quasi-particles produced by the
Fractional Quantum Hall Effect (FQHE) exhibit anyonic
statistics [2]. Other potential systems for constructing
a topological quantum computer include lattice models
such as the Kitaev toric code, Kitaev honeycomb model,
and Levin-Wen model.

∗m.taha.rouabah@umc.edu.dz

Anyon models serve as the frameworks for topological
quantum computation (TQC), providing a description
of the fusion rules among different types of anyons
with distinct topological charges. In the context of
anyon models, quantum information is encoded in the
permissible fusion states of the anyons and manipu-
lated through the exchange of anyons, which is known
as braiding. The fusion state of a pair of anyons is
determined by a non-local collective property of that
pair, and it is not accessible to either individual anyon.
Therefore, quantum information encoded in anyons must
be resilient to local perturbations, as it is protected by
the non-local properties of the anyons in the fusion states.

To account for the various ways of fusing more than
two anyons, fusion matrices F are introduced, which
allow for basis transformations. On the other hand, the
exchange of two isolated anyons is described by rotation
matrices R. By solving the hexagon and pentagon
identities, one can determine the explicit values of the
components of F and R. These identities ensure the
algebraic consistency of any anyon model. Methods for
solving such equations are already established in the
literature on quantum groups, providing a thorough
explanation of the general analytical solution of the
hexagon and pentagon equations for any SU(2)k anyon
model.

The process of exchanging two adjacent anyons is
commonly referred to as a braid operation. The braid
group is generated by the set of all possible braid
operators for a given number of anyons. These operators
must satisfy the Yang-Baxter equation, which is also a
consistency relation that gives the algebraic structure
of anyon models. In addition to the hexagon and
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pentagon equations, the Yang-Baxter equation also
has practical applications in the implementation of
unit-testing for numerical packages used to compute the
braid generators. It serves as a crucial tool for validating
the accuracy and reliability of numerical computations
in the context of topological quantum computing.

The explicit matrix representation of a braid generator
can be obtained by selecting the basis of the fusion
space and applying the relevant F and R moves. In
this work, we investigated the action of braid generators
on a group of identical anyons that are grouped in
sets of a specific number. Each set is dedicated to
representing a qubit/qudit. Representing qubits/qudits
with a definite number of anyons preserves the circuit
model of quantum computing. The formula introduced
in this work ensures a systematic method for computing
braid generators with the assistance of computational
units. However, this method does not guarantee the
reduction of computational complexity since the size
of the braid generator grows exponentially with the
number of anyons.

To demonstrate the reliability of our approach, we
utilized the algebraic relations of the braid group. Ad-
ditionally, we have shown how to reproduce well-known
topological quantum gates from previous works.

This approach is highly valuable for studying the
compilation of quantum circuits on topological systems
that utilize anyonic states [3]. The method has already
been implemented in the TQSim library [4] for the Fi-
bonacci model and can be extended to all SU(2)k anyon
models, as general solutions for F and R matrices are
available [5]. Simulating topological quantum circuits is
extremely useful for testing the compilation of quantum
gates and developing valuable quantum circuits.

References

[1] A. Kitaev. Fault-tolerant quantum computation
by anyons. Annals of Physics, 303(1):2 – 30,
January 2003. doi:https://doi.org/10.1016/S0003-
4916(02)00018-0.

[2] H. Bartolomei, et al. Fractional statistics in anyon
collisions. Science, 368(6487):173–177, 2020. doi:
10.1126/science.aaz5601.

[3] M. T. Rouabah, et al. Compiling single-qubit braiding
gate for fibonacci anyons topological quantum com-
putation. Journal of Physics: Conference Series,
1766(1):012029, January 2021. doi:10.1088/1742-
6596/1766/1/012029.

[4] A. Tounsi, et al. TQSim, a topological quan-
tum computing simulator based on anyon mod-
els. https://github.com/Constantine-Quantum-
Tech/tqsim, 2022.
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The phenomenon of quantum entanglement underlies several important protocols that enable

emerging quantum technologies. Being an extremely delicate resource entangled states easily get

perturbed by their external environment, and thus makes the question of entanglement certification

immensely crucial for successful implementation of the protocols involving entanglement. In this

work, we propose a set of entanglement criteria for multi-qubit systems that can be easily verified

by measuring certain thermodynamic quantities. In particular, the criteria depend on the difference

in optimal works extractable from an isolated quantum system under global and local interactions

respectively. As a proof of principle, we demonstrate the proposed thermodynamic criteria on nu-

clear spin registers of up to 10 qubits using Nuclear Magnetic Resonance architecture. We prepare

noisy Greenberger–Horne–Zeilinger class of states in star-topology systems and certify their entan-

glement through our proposed criteria. We also provide elegant means of entanglement certification

in multi-qubit systems when only partial or even no knowledge about the state is available.

Introduction.– Quantum entanglement, a fascinating characteristic of multipartite quantum systems, is

crucial in the advancement of quantum information theory, communication protocols, quantum computa-

tion, and quantum sensing. While entanglement between two subsystems can be separable or entangled,

multipartite systems exhibit various forms of entanglement. This type of entanglement has proven useful

in distributed protocols and the potential development of the quantum internet. Verifying whether a state

is entangled or not is essential for successful implementation of these protocols. Existing methods involve

complex calculations or impractical tomographic knowledge. However, recent research has introduced

thermodynamic quantities that can quantify entanglement in multipartite pure quantum states. We propose

utilizing ergotropic work, a thermodynamic quantity, as an entanglement certifier for N-qubit systems. By

considering different information about the state’s spectral properties, we present several entanglement cer-

tifiers. We demonstrate the effectiveness of our method by implementing it on nuclear spin registers of

up to 10 qubits using Nuclear Magnetic Resonance architecture. Our approach not only verifies entangle-
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ment experimentally but also allows certification of multipartite states when complete state knowledge is

unavailable.

Theory.– A generic state of an N -qubit system is described by a density operator ρA1···AN
∈

D
(
(C2)⊗N

)
. A state is fully separable if it is a probabilistic mixture of fully product states. States ly-

ing outside the set of fully separable states are entangled. Different kinds of entanglement are possible for

multi-qubit systems, characterized by the set of states separable across a bipartite cut denoted as S[X|Xc].

Quantum entanglement has implications for work extraction from a quantum system. The ergotropy

measures the optimally extractable work from a state, which is the difference between the energy of the state

and the minimum energy achievable under unitary transformations [1]. During optimal work extraction, the

system evolves to the passive state, which is the lowest energy state with the same spectral properties as the

initial state.

In the multipartite scenario, different parts of the system can be probed separately for work extraction.

The thermodynamic quantity ∆X|Xc captures the difference in work extraction between the global system

and the subsystem X in the X vs Xc configuration. A thermodynamic entanglement criterion is derived

based on ∆X|Xc , involving the spectral properties of the states and Hamiltonians (see Theorem 1 in the

main manuscript attached below).

The derived entanglement criterion states that for an N -qubit state separable across X vs Xc cut, ∆X|Xc

is upper-bounded by a specific function involving the spectral properties of the global state and the subsys-

tem. Three versions of the criterion are presented in this work: one requiring knowledge of the state’s spec-

tral properties (δGL
X|Xc) (resembling Nielsen-Kempe criterion [2]) and one based solely on the global state’s

spectral properties (δGX|Xc), and the third one does not require any information about the state (δIX|Xc). The

latter criterion is experimentally less demanding.

Experimental tests of these thermodynamic entanglement criteria are conducted using specific classes of

entangled states (noisy GHZ) in an NMR setup [3–5]. The results confirm the effectiveness of the criteria

in detecting entanglement in the tested states. Further details and analysis are provided in the appendix.

Experimental results.– Figure 1 (a) The 1H spectrum corresponds to the singlet or Werner state of pair

of hydrogen spins BRTP. (b) The NMR pulse sequence to produce Werner class states with controlled purity

and then to certify the presence or absence of entanglement. Here rectangles with Θβ = e−iΘ(I1β+I2β)

represent RF rotations, delays represent free-evolutions, and PFG is the Pulsed-Field Gradient [6, 7]. (c)

Plot of ∆1|2 in units of ℏωH versus purity of the Werner class. The vertical dotted lines indicate the purity

threshold for entanglement: the left one marks purity λ = 1/3, above which ∆1|2 surpasses δG1|2 and the

state becomes entangled; the right one marks λ = 1/2, corresponding to the state-independent bound δI1|2.

Figure 2, (a) The NMR pulse sequence to prepare GHZ / MSSM class states with controlled purity on
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FIG. 1

an STR and then certify the presence or absence of entanglement. The vertical line shows the instant when

the passive state is created. The dashed pulses cancel each other. (b) 19F spectra of FAN corresponding to

one-pulse experiment (front) and to the three-qubit GHZ state (back). (c) Plot ∆1|23 (in the unit of ℏωH )

vs purity λ for 3-qubit noisy GHZ states. Comparing the values of ∆1|23 and δG1|23, δI1|23, we identify the

threshold values marked by the dotted lines: λ = 3/7 and λ = 0.68, respectively. Above these thresholds,

the state exhibits entanglement. (d,f) 31P spectra of TMP corresponding to one pulse experiment (front),

and to GHZ (d, back) and MSSM class (f, back). (e,g) ∆1|1c vs purity λ for the 10-qubit GHZ and MSSM

classes. Here λ = 0.499 and λ = 0.957 for δG1|1c and δI1|1c marks the entanglement threshold boundary.

Discussions.– Efficient manipulation of entanglement in multipartite systems is crucial for various quan-

tum technologies and protocols involving distributed quantum information. Different quantum architec-

tures, such as linear optical devices, ion-trap systems, superconducting qubits, NMR systems, and hybrid

quantum circuits, are being explored for this purpose. Certifying entanglement in the state being used is a

crucial step in these efforts. While Bell tests provide device-independent certification schemes for bipartite

and multipartite systems, they often require spatial separation among the entangled parts. Witness-based

methods, on the other hand, require complete tomographic information about the state.

In contrast, our proposed thermodynamic criteria offer a less demanding approach to certify entangle-

ment by measuring global and local ergotropic works. When the spectral information of the state is known,

our criteria are equivalent to the Nielsen-Kempe majorization criteria. We experimentally validate these

thermodynamic entanglement criteria in an NMR architecture using specific classes of noisy entangled

states with 2, 3, and 10 qubits. Furthermore, our thermodynamic approach enables entanglement certifica-

tion even when the knowledge about the state is limited. This opens up avenues for certifying entanglement

41



4

FIG. 2

in various quantum architectures with different degrees of state purity.

In terms of future research, several questions arise from our study. Generalizing the thermodynamic

criteria for systems with arbitrary local dimensions and capturing more exotic forms of entanglement, such

as genuine multipartite entanglement, would be important. Testing the criteria for other important classes of

states, such as Bell diagonal states and X-states, would be interesting. Implementing the state-independent

criteria experimentally is another intriguing direction, and recent work in this area may provide valuable

insights. Finally, testing these thermodynamic criteria in other quantum architectures would be of great

interest.
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Abstract. In this paper, we study the optimal sending quantum state for BPSK-type asymmetric quan-
tum communication in attenuated environments. We are improving the Nair state. Nair state is the
optimal sending quantum state in a noiseless environment. We study the optimal sending quantum state
in an attenuated environment under constrained conditions for restricted the photon number state used.
We also study the error probability and the sending quantum state, with the aim of discovering the optimal
sending quantum state in an attenuated environment when an any quantum state can be used.

Keywords: asymmetric quantum communication, entanglement, phase shift keying

1 Introduction

We consider quantum communication with asymmet-
ric settings (e.g., [1, 2]). The asymmetry here means
that the sender/receiver in the communication system
exhibits a difference in ability, cf. a master unit and a
slave unit. The master unit side has an abundance of en-
ergy and computational power as a base station. In con-
trast, the slave unit side has small-capacity batteries like
those in mobile communication devices, various Internet-
of-Things (IoT) devices and sensor tags in IoT and sen-
sor networks, and satellites in space communication. The
assumption is that, with such devices on the slave unit
side, it is more difficult to perform complicated calcula-
tion processing compared with that on the master unit
side. Such forms of communication have been put into
practical use in current technology, but in this research,
we shall consider whether it is possible to bring in quan-
tum technology and pursue performances uniquely avail-
able to mechanisms utilizing quantum properties. For
this reason, the chief policy is to exploit actively quan-
tum entanglement, which is one such property.
Asymmetric quantum communication involves a mas-

ter unit and a slave unit, as described below. We will con-
sider the case where the slave unit is the sender and the
master unit is the receiver. The slave unit does not need
to generate the sending light used for communication, but
only modulates it. We assume M -ary phase-shift key-
ing (PSK) as the modulation scheme. For scheme using
amplitude-shift keying (ASK), the reliability of commu-
nications already has been studied [4]. And for scheme
using PSK, the reliability and security of communications
already has been studied [5, 6]. This paper considers the
optimal sending quantum state in an attenuated environ-
ment, which was considered as a future work in [5].

∗223426010@ccmailg.meijo-u.ac.jp
†wang@kanagawa-u.ac.jp
‡takahira@meijo-u.ac.jp
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2 Asymmetric quantum communication

We proposed the asymmetric quantum communication
system by reference to quantum reading [3, 5]. As the ba-
sic form of an asymmetric communication, we consider
the setup of a sender and a receiver (see Fig.1) [5]. Here,
the sender corresponds to the weaker unit (hereinafter re-
ferred to as the slave unit), and the receiver corresponds
to the stronger unit (hereinafter referred to as the mas-
ter unit). The communication from the master unit to
the slave unit is taken to be a usual quantum commu-
nication. In the case that information is sent from the
slave unit to the master unit, the communication is per-
formed in the manner illustrated in Fig.1. First, the en-
tangled light beam |Ψ⟩SR of modes S and R is generated
by the master unit (receiver); in mode S, the light illu-
minates a slave unit (Sender). If the sending information
bit is m ∈ {0, 1, . . . ,M − 1}, the mode S light undergoes

a unitary transformation denoted by Û
(S)
m . The output

Û
(S)
m ⊗ Î(R) |Ψ⟩SR is the input to the detector. A joint

measurement is then performed on the state of the com-
posite system SR. Here, Î(R) is the identity operator of
the mode R, indicating that no action is being made on
the state of mode R.

3 Sending quantum state

3.1 Nair state

Nair and his colleagues compose a MPSK-based sys-
tem based on the setup of quantum reading and consid-
ered what kind of light source would be optimal, here
meaning minimizing the error probability under the en-
ergy constraint. Here, the energy constraint is to con-
strain the average number of photons ⟨NS⟩ from the light
source to be less than or equal to a given value NS. And,
the Nair state, a quantum state constructed with refer-
ence to the results of Nair’s optimal state is follows [5]

|Ψ⟩(Nair)
SR =

M−1∑
n=0

√
pn |n⟩S |n⟩R , (1)
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Figure 1: Asymmetric quantum communication.

where, |n⟩ is the photon number state and pn is set to
minimize the error probability of the legitimate receiver
[7]. Now, it is also necessary to consider the error prob-
ability of the third party as well, since there may be a
third party who eavesdrops on the information. The error
probability of third parties should be as large as possi-
ble. In PSK-type asymmetric quantum communication
in a noiseless environment, the Nair state is optimal. Op-
timal means that the error probability of the legitimate
receiver is minimum (best for the legitimate receiver) and
that of the third party is maximum (worst for the third
party). However, the Nair state is not optimal in an
attenuated environment. The error probability of the le-
gitimate receiver is not minimum [5]. In fact, the Nair
state showed a worse error probability than the quasi-Bell
state and the TMSV state [5].

3.2 Improved Nair state

From the above, we need to search for optimal quan-
tum states in an attenuated environment. However, the
search is difficult because it requires to consider an infi-
nite dimensional space. Therefore, we focus on the fact
that the Nair state uses photon number states from |0⟩
to |M − 1⟩. That is, under the condition that only |0⟩
to |M − 1⟩ photon number states are used, we search for
the set of coefficients pn that shows the minimum error
probability in an attenuated environment. And, we re-
search the changes when that condition is relaxed to |M⟩.
From the above, we improve (1) as follows

|Ψ⟩SR =

Nmax∑
n=0

√
pn |n⟩S |n⟩R . (2)

(2) use photon number states from |0⟩ to |Nmax⟩ (Nmax ≥
M−1). If Nmax = M−1, (2) is similar to the Nair state.

Also, if Nmax > M − 1, the degree of freedom is higher
compared to the Nair state, which can only be used up
to |M − 1⟩.

4 Error performance

We use the Kraus representation to represent an at-
tenuated channel.

4.1 Kraus representation

Let ρ̂(in) be the input to an attenuated channel and
ρ̂(out) the output. Then,

ρ̂(out) =

∞∑
k=0

Êkρ̂
(in)Ê†

k, (3)

where

Êk =

∞∑
n=0

√(
n
k

)√
ηn−k(1− η)k |n− k⟩ ⟨n| (4)

is the Kraus operator representing an attenuated channel.

4.2 Phase shift operator

When PSK is used as the sender’s modulation scheme
Û

(S)
m in Fig. 1 is

Û (S)
m = R̂(S)

(
θ =

2mπ

M

)
= ei

2mπ
M N̂(S)

, (5)

where R̂(·) is the phase shift operator, N̂ is the number
operator. In this manner, the slave unit shifts the phase
2mπ
M of the mode S depending on the classical information

m.

4.3 Reliability

We describe the error probability of the master unit.
If the received quantum state in BPSK communication

is {ρ(out)0 , ρ
(out)
1 }, the minimum error probability with a

quantum optimal receiver is:

Pmin
e =

1

2

(
1−

∣∣∣∣∣∣ρ(out)0 − ρ
(out)
1

∣∣∣∣∣∣) , (6)

where || · || is the trace norm.

4.4 Security

Next, we consider the error probability by a third
party. For the Nair state, an error probability of a third
party is maximal, even in a noiseless environment. Since
an attenuation does not improve the error probability,
the error probability of the third party remained at max-
imum [5]. The improved Nair state has the same form
as the Nair state; the only difference is expansion coef-
ficients. As a result, the error probability of the third
party is the maximum in both noiseless and attenuated

environments (worst for the third party): 1 − 1

M
.

4.5 Error performance

We investigate the error probability of BPSK asym-
metric quantum communication at the legitimate receiver
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Figure 2: The error probabilities of the BPSK-type asym-
metric quantum communication with Nair states and im-
proved Nair state (Opt(Nmax = 1, 2)) in an attenuated
environments with the transmissivity 2

3 .

side in an attenuated environment. The sending quan-
tum states are the Nair state and the improved Nair state
with Nmax = 1, 2. The error probability of the Nair state
was calculated in the previous paper [5]. The error prob-
ability of the improved Nair state is calculated using (6):

PNmax=1
e =

1

2
(1− 2

√
ηp0p1) , (7)

PNmax=2
e =

1

2

{
1− 1

2

(
A+B +

√
A2 +B2

)}
, (8)

where

A = 2
√
ηp1

(√
p0 +

√
2(1− η)

√
p2

)
, B = 2η

√
ηp1p2.

If we setNS a concrete value, p0 and p1 in (8) are uniquely
determined. Therefore, it is sufficient to search for the
minimum error probability within the energy constraint.
On the other hand, for (8), if one of p0, p1, p2 is de-
termined, the other two are also uniquely determined.
Therefore, after minimizing one variable, the minimum
error probability is searched for in the energy constraint.
In this paper, we used a numerical search to minimize.
The above minimization is calculated with the trans-

missivity η = 2
3 and the result is shown in Fig. 2. First,

we can see that the Nair state and the improved Nair
state with Nmax = 1 coincide. The error probability
decreases with NS when 0 ≤ NS ≤ 1

2 and are constant
when NS > 1

2 . Specifically, the value of pn is {p0, p1} =
{1 − NS, NS} for 0 ≤ NS ≤ 1

2 and {p0, p1} = { 1
2 ,

1
2} for

NS > 1
2 .

Next, we look at the improved Nair state when Nmax =
2. The NS is almost similar to the case Nmax = 1 up to
about 0.1, and the difference with Nmax = 1 starts to
widen from about 0.2. And the minimum error proba-
bility of 0.0286... is then achieved with the NS ≓ 0.83,
{p0, p1p2} = {0.335, 0.500, 0.165}. The distribution of
the set of pn is Fig. 3. For NS = 0, p0 starts at 1 and
p1, p2 at 0. As the NS increases, p0 decreases, p1 in-
creases and p2 also increases slowly. The increase in p1
becomes slower from NS ≈ 0.5, and the minimum error
probability is achieved at NS ≓ 0.83, where p1 = 1

2 .
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Figure 3: Coefficients pn of the BPSK-type asymmet-
ric quantum communication with improved Nair state
(Opt(Nmax = 2)) in an attenuated environments with
the transmissivity 2

3 .

4.6 Discussion

For the condition we can only use a superposition of
|0⟩ and |1⟩, the Nair state, which is an optimal state
for a noiseless environment, and the optimal state for an
attenuated environment coincide and {p0, p1} = { 1

2 ,
1
2},

the minimum error probability is achieved. One might
think that more |1⟩ should be used in the presence of
attenuation, but it turns out that this is not the case.

Let us look at the improved Nair state when Nmax =
2. It can be seen that before the NS is about 0.1, it is
similar to the case Nmax = 1. This is probably to be
because the value of p2 is close to zero, so that the set
of pn in Nmax = 1 and Nmax = 2 are close. This is
also considered to be the case when increasing Nmax. In
other words, when the NS is so small that a some pn
can be regarded as zero, the results when constrained to
Nmax and the results when Nmax → ∞ can be considered
almost equivalent. It also looks at the NS that achieve
the minimum error probability. For η = 1, the Nair state
is optimal, so NS = 0.5, for η = 2

3 , NS ≓ 0.83. It has
also been confirmed that the NS achieving the minimum
error probability also increases when the transmissivity
is further increased. This research is a future work.

5 Conclusion

In this paper, we have studied the asymmetric quan-
tum communication using BPSK in an attenuated en-
vironment. In order to find the optimal sending quan-
tum state in an attenuated environment, the optimal
sending quantum state is derived numerically when the
photon number states used are constrained from |0⟩ to
|Nmax⟩ and the error probability characteristics are an-
alyzed. And we also investigate pn. A future work is
to investigate the error probability characteristics when
the constraint on the number of photon states used is
more relaxed. This will allow us to advance the research
towards the discovery of the optimal sending quantum
state under unconstrained conditions in an attenuated
environment.
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Advantage of Hardy’s Nonlocal Correlation in Reverse Zero-Error Channel Coding
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Hardy’s argument constitutes an elegant proof of quantum nonlocality as established by the
seminal Bell’s theorem. In this Letter, we report an exotic application of Hardy’s nonlocal correlations.
We devise a simple communication task and show that the expected payoff of the task cannot
be positive given that only 1-cbit communication is allowed from the sender to the receiver, who
otherwise can share an unlimited amount of classical correlation. Interestingly, the same classical
channel can ensure a positive payoff when assisted with correlations exhibiting Hardy’s nonlocality.
As it turns out, among all the 2-input-2-output no-signaling correlations, only Hardy’s correlation
can ensure a positive payoff while assisting the 1-cbit channel. This further prompts us to show that
in the correlation assisted reverse zero-error channel coding scenario, where the aim is to simulate a
noisy channel exactly by a noiseless one in assistance with correlations, assistance of non-maximally
pure entangled states – even with vanishingly zero amount of entanglement – could be preferable
over the maximal one.

Keywords: NS correlation, Hardy’s correlation, Maximally and Non-maximally entangled
states, Entanglement assisted simulation of noisy channel, channel capacity.

Arxiv link of the main manuscript. – arXiv:2303.06848

Introduction.– The pioneering work of J. S. Bell estab-
lishes one of the most striking departures of quantum
theory from a classical worldview [1] (see also [2]). Viola-
tion of a Bell-type inequality, as demonstrated in several
milestone experiments [3–8], endorses that certain cor-
relations obtained from multipartite entangled states are
not compatible with a local-realistic description [9]. Apart
from Bell-type inequalities, another technique popularly
known as ’nonlocality without inequality’ proof is often
used to establish the nonlocal behaviour of quantum
theory. While the first proof of this kind for tripartite
quantum systems is due to Greenberger-Horne-Zeilinger
[18] (see also [19]), for bipartite systems, such a proof
was first proposed by Hardy [20], which is considered
to be “simpler and more compelling than the argu-
ments that underlie the derivation of Bell-CH inequality"
[21]. More recently, Hardy-type nonlocality proofs have
shown to be useful in several practical tasks [22–27].

Here, we report a novel application of Hardy’s non-
local correlation in the simplest communication scenario.
In particular, we show that Hardy’s nonlocal correla-
tion shared between two distant parties can empower
the communication utility of a perfect classical chan-
nel. This is quite striking due to the following reasons.

Firstly, nonlocal correlations are compatible with the no
signalling (NS) principle, and hence they by themselves
cannot be used for information transfer. Second, the
advantage reported here is different and much more
elementary than the nonlocal advantage demonstrated
in the communication complexity scenario [13].

A two party guessing game.– We start by introducing a
distributed guessing game played between two distant
players (say) Alice and Bob. There is a Referee (say)
Charlie who, in each run of the game, provides four
closed boxes, numbered 1 to 4, to Bob, who has to open
one of these boxes. Some of these boxes contain a bomb
that will explode upon opening the box. Among the
boxes that don’t contain the bomb, some may be empty,
some may contain a dollar bill, and others may even
prompt Bob to pay a dollar bill to Charlie. In each
run of the game, Charlie randomly picks one among
four different arrangements of these boxes, as shown
in Fig.1. Charlie then informs his choice to Alice, who
then tries to help Bob in picking a box. However, only
1-bit of classical communication is allowed from Alice
to Bob, which may be further assisted with preshared
NS correlations shared between them. From now on, we
will call this the distributed mine-hunting (DMH) game.
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Figure 1. Distributed mine-hunting (DMH) game. Opening a
box with ‘ + $′ assures dollar bill gain for Bob while opening
a box with ‘ − $′ demands him to pay dollar bill to Charlie.
A box with a ‘smile’ neither offers nor demands any dollar
bill, whereas a box with a ‘bomb’ turns out to be fatal to Bob.
Alice knows which of the arrangements {A-1,· · · ,A-4} Charlie
chooses in a particular run and tries with a limited classical
channel to help Bob to optimize his expected dollar gain.

General scenario.– The aforesaid game can be formally
studied within a more generic set-up. Alice and Bob
are given some collaborative payoff depending on the
classical index z ∈ Z produced by Bob, given that Alice
received some classical message m ∈ M sampled from a
probability distribution {p(m) | m ∈ M}. Such a game,
in fact, is completely specified by the payoff matrix G ≡
(gmz), where gmz ∈ R is the reward/payoff given when
Bob produced the index ‘z’ provided Alice received the
message ‘m’. For instance, the DMH game is specified
by the following payoff matrix:

GDMH ≡

M\Z 1 2 3 4

1 −1 0 0 −∞
2 −∞ 0 −∞ 0
3 +1 0 −∞ −∞
4 −∞ −∞ 0 0

(1)

Payoffs in (1) quantitatively capture the scenario of
DMH game. A reward of −∞ for the box containing the
bomb captures the notion that choosing such a box must
be avoided at all costs [30]. The reward 0 corresponds to
the event where the players survive but do not receive
any reward. Events with reward +1 (−1) correspond to
the scenario where the players receive (pay) some dollar
bill from (to) Charlie. The game matrix and the sampling
distribution of Alice’s inputs are common knowledge to
the players.

Alice and Bob are cooperative in nature and aim
to maximize the payoff. Their collaborative strategy

depends on the available resources, which can be
broadly categorized into two types: (i) correlation shared
between them before the game starts and (ii) commu-
nication from Alice to Bob which is allowed even after
the game starts. While correlations can further be clas-
sified into classical, quantum, or the more general no
signalling types, for direct communication, a classical or
quantum channel can be used. The strategy employed
by the players can be represented as a |M| × |Z| matrix
S ≡ (smz), where smz denotes the probability of produ-
cing the output z ∈ Z by Bob given that Alice received
the message m ∈ M. Manifestly, entries of such a mat-
rix are non-negative with row sum one. In this work,
we refer to this matrix as a strategy matrix which, up
to a transposition, is identical to the notion of ’channel
matrix’ used in [31]. Given such a strategy matrix S, the
average payoff can be obtained as

P(S) = ∑
z,m

p(m) gmz smz . (2)

As it is evident, there will always be a perfect strategy
for such a game if log2 |M| bits of communication are
allowed from Alice to Bob. Interesting situations arise
when communication is limited which might further be
aided by preshared correlations of different types. In the
next section, we analyze different such cases for DMH
game and present some novel results.

Results.– We start with the scenario where only 1
bit of classical communication is allowed from Alice
to Bob, and they can share an unlimited amount
of share randomness, i.e., classical correlation. By
Ωnc+SR(|M|, |Z|) we denote the set of strategy matrices
obtained when n-bits classical communication and un-
limited amount of shared randomness are available. The
set Ωnc+SR(|M|, |Z|) forms a polytope with extreme
points Se’s representing strategy matrices obtained
through deterministic encoding E : M → {0, 1}n at
Alice’s end and deterministic decoding D : {0, 1}n → Z
at Bob’s end [31] (see also [32]). Entries of such extreme
strategy matrices can only be 0 or 1, and since only n-
cbits are allowed, such a strategy can have at most 2n

non-zero columns. Our first technical result is to limit
the optimal success probability of the game in Eq.(1) for
classical strategies.

Theorem 1. When players communicate using 1 bit of inform-
ation assisted by a pre-shared unlimited classical correlation,
the maximum possible average payoff of the DMH game is
limited to zero.

Theorem 2. A strictly positive average payoff in DMH game
can be ensured when a 2-input-2-output Hardy’s nonlocal
correlation is available to assist the 1-cbit communication
channel from Alice to Bob.
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Figure 2. General strategy to play a game G when the 1-cbit
communication channel is assisted with NS correlation. Alice
computes the input x = X(m) to her part of the nonlocal box
based on the message m ∈ M received from Referee. The
output a of the nonlocal box at her end and the message m
determines the classical bit c = C(a, m) sent to Bob. Bob then
inputs y = Y(c) into his end of the NS box and obtains the
output b. Finally, he generates his guess as z = Z(b, c).

Theorem 3. Any 2-input-2-output NS correlation providing
a strictly positive payoff in DMH game as an assistance to the
1-cbit channel must exhibit Hardy’s nonlocality.

Theorem 4. Two qubit maximally entangled state together
with 1-cbit channel from Alice to Bob does not result in a
strategy ensuring strictly positive average payoff in DMH
game.

This theorem has an interesting implication. It shows
that there exists a communication task wherein a non-
maximally pure entangled state can be preferable over
the maximally entangled one even when the entangle-
ment of the former is vanishingly zero. More formally
we can deduce the following corollary.

Corollary 1. For every non maximally entangled state |ψ⟩ ∈
C2 ⊗ C2 there exists a strategy matrix Sψ such that Sψ ∈
Ω1c+SR+|ψ⟩(4, 4) but Sψ /∈ Ω1c+SR+|ϕ+⟩(4, 4).

Conclusion and outlook.– In conclusion, the present
work establishes a novel use of quantum entanglement in
zero-error information theory [49] (see also [50]) whose
motivation arises from the fact that in many real-world
critical applications no errors can be tolerated, and in
practice, the communication channel can only be avail-
able for a finite number of times. In particular, we show
that quantum correlations exhibiting Hardy’s nonlocality
can empower the communication utility of a perfect clas-
sical communication channel. In the supplemental part
of the main manuscript [51], we have also shown that
similar results can be obtained by considering generaliz-
ation of Hardy’s nonlocality argument as proposed by
Cabello [29]. Our work also motivates many questions

for future study. For instance, it would be interesting to
see whether any nonlocal correlation can be made use-
ful as a communication resource in the sense discussed
here. It will also be interesting to see whether maxim-
ally entangled states of higher dimensions provide some
advantage in the DMH game.
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Abstract. In recent years, a revolutionary breakthrough called twin-field (TF) QKD has been developed
to overcome the linear key-rate constraint and greatly increases the achievable distance. Later, no-phase-
postselection TF-QKD was proposed and became a popular variant, since the removal of phase postselection
leads to a higher key rate. However, the achievable distance is decreased compared to the original one.
Here, we propose a TF-QKD protocol with partial phase postselection. Namely, its code mode is still
free from global phase randomization and postselection to make sure the advantage of the high key rate
remain. On other hand, phase postselection is introduced in the decoy mode to improve the performance.
Applying an operator dominance condition, we prove universal security of the proposed protocol in the
finite-key regime against coherent attacks, and numerical simulations confirm its potential advantages in
terms of key rate and achievable distance.

Keywords: quantum cryptography, twin-field quantum key distribution, phase postselection

1 Introduction

Quantum key distribution (QKD) allows two remote
parties to share information-theoretically secure keys. In
2018, M. Lucamarini et al. proposed the original twin-
field (TF) QKD [1] to overcome the fundamental rate-
distance limit [2, 3] of QKD without needing quantum
repeaters. Once it was proposed, it has received extensive
attention due to the advantages of measurement-device-
independence and significant improvement on achievable
distances. Soon after, the security of TF-QKD was
strictly proved in [4].

Roughly speaking, the original TF-QKD [1, 4] consists
of code-mode and decoy-mode. In the former one, the
phase 0 or π of a weak coherent pulse is modulated to en-
code raw key bit 0 or 1 respectively. The latter one is sim-
ilar but with different intensities, the function of which
is to monitor security. Additionally, a continuous ran-
dom phase θa (θb) from [0, 2π) is applied in each optical
pulse by Alice (Bob). After receiving the announcement
from Eve, Alice and Bob postselect the cases satisfying
θa ≈ θb to generate sifted key bits. This phase random-
ization and postselection play important role in security,
but obviously reduce the key rate per trial. As an alter-
native, the variant called no-phase-postselection (NPP)
TF-QKD [5, 6, 7] removes the phase randomization in
code mode, thus its key rate will be free of reduction
due to phase postselection. In its decoy mode, phase-
randomization remains but postselection is also bypassed
for simplicity. Intuitively, phase postselection inevitably
reduces the key rate, but it seems helpful for Alice and
Bob to monitor the security. Inspired by this idea, we
propose a variant of the TF-type protocol with partial
phase postselection. In our protocol, code mode can be
the same as NPP-TF-QKD, thus still free from global
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phase randomization and postselection, which guarantees
the advantage of high key rate remains. Conversely, the
phase postselection is introduced in the decoy mode to
help Alice and Bob to bound information leakage more
accurately.

2 Protocol

Our protocol process is as follows.
Step 1: Alice and Bob randomly choose code mode

and decoy mode with probabilities p0 and 1− p0, respec-
tively. In each mode, they send weak coherent pulses
independently to the untrusted third party Charlie.

Step 2: In the code mode, Alice (Bob) randomly gen-
erates a key bit κa(κb) ∈ {0, 1} and prepares the cor-
responding weak coherent state |eiκa(b)π

√
µ〉 with inten-

sity µ. Additionally, Bob introduces a randomized phase
δb ∈ [−∆

2 ,
∆
2 ] (typically ∆ = π/8). In the decoy mode,

Alice (Bob) prepares nothing (vacuum state µ0 = 0) with
probability (conditional probability in the decoy mode,
the same below) p10/(1 − p0) or a weak coherent state
with intensity randomly choosing from µ1 and µ2 with
probabilities p11/(1− p0) and p2/(1− p0). For Alice and
Bob, they modulate a phase θa(b) on their own weak co-
herent state for both intensities µ1 and µ2, where θa(b) is
a randomized phase chosen uniformly from [0, 2π).

Step 3: Charlie makes the two incoming states interfere
on a beamsplitter (BS), two single-photon detectors L
and R are located at its two distinct outputs. He records
which detector clicks.

Step 4: Steps 1 to 3 will be repeated Ntot times. When
the quantum communication is over, Charlie publicly an-
nounces all the information about the detection events.
Only the trials where just one of the two detectors clicked
are retained for further processing, all the other trials are
discarded. Alice and Bob announce the intensities for
each remaining trial. When Alice and Bob both choose
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the code mode (both send the intensity µ), they record
their key bits κa and κb sequentially to form the sifted
key string. Note that if the click of the right detec-
tor R was announced, Bob should flip his corresponding
key bit κb. When Alice and Bob both choose the de-
coy mode, they retain the trials in which they both send
a vacuum state. For other cases in decoy mode, they
announce their random phases and only the trials that
meet both of the following conditions will be retained: (1)
both of them choose the same intensity, (2) phase posts-
election condition: the random phase θa and θb satisfies
|θa − θb| mod π ≤ ∆

2 , e.g., | − 17
8 π| = | −

π
8 | = |

17
8 π| =

π
8 .

We denoted the length of the sifted key string as K0. We
also denote the numbers of the retained trials in which
Alice and Bob both send the intensities µ0, µ1 or µ2 as
K10, K11 and K2, respectively, and K1 ≡ K10 +K11.

Step 5: According to K0, K1 and K2, Alice and Bob
can share a secret key string with length G from their
sifted key string K0 after error correction and privacy
amplification [8] with a failure probability no larger than
εsec.

3 Result

Based on the operator dominance method [9], we proof
the security of our protocol in the finite-key region and
get the final key length G = K0−[K0h(f(K1,K2)/K0)]−
HEC− ζ− ζ ′, where f(K1,K2) is the analytic function of
K1,K2 used to estimate the upper bound on the phase
error. Here we define HEC = fcorK0h(ebit) as the cost
of error correction, where fcor is the error correction in-
efficiency, ebit is the bit error rate in code mode, h(x) =
−xlog2(x) − (1 − x)log2(1 − x). Meanwhile, ζ ′ bits are
consumed to ensure that the failure probability of error
verification is up to 2−ζ

′
. The protocol is εsec-secure with

a small security parameter εsec =
√

2
√
ε+ 2−ζ + 2−ζ

′
.

Note that, in the numerical parts of our work, we fix
εsec = 2−31 by assuming ε = 2−66, ζ = 66 and ζ ′ = 32.

We denote the distance between Alice and Bob as L
(in km) and its loss is 0.2dB/km. We set the error cor-
rection inefficiency fcor = 1.1 in our protocol. The de-
tection efficiency of Charlie’s apparatus is ηd = 30%,
so the channel transmittance from Alice (Bob) to Char-

lie is η = 10
−0.2L

20 ηd. The dark count probability (also
the count rate of the vacuum state) of each detector is
pd = 10−8 per pulse and the intrinsic error rate due to
imperfect optical interference visibility is ed = 0.03. Us-
ing the same simulation model as [10], We optimize the
group of parameters (µ, µ1, µ2, p0, p10, p11, p2,∆) to max-
imize the secret key rate G for any communication dis-
tance L.

We compare our results with the results [9] of the
original NPP-TF-QKD protocol in fig.1 for the Ntot =
1013, 1015 and 1018 cases. The achievable distances of
our protocol are 426 km, 443 km and 450 km in the three
cases, which are 17 km, 26 km and 31 km longer than the
original protocol, respectively. At short or medium dis-
tances, such as 340 km, the key rate bits per pulse of our
protocol are doubled than original protocol. Addition-
ally, our idea of partial phase postselection is applicable
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Figure 1: The key rate bits per pulse as a function of
distance L between Alice and Bob. We show the result
of our protocol and the original NPP-TF-QKD protocol
for the Ntot = 1013, 1015 and 1018 cases.

0 50 100 150 200 250 300 350 400 450 500

Distance between Alice and Bob

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

K
e
y
 r

a
te

 b
it
s
 p

e
r 

p
u
ls

e

Original protocol: N
tot

=10
13

Our protocol: N
tot

=10
13

Original protocol: N
tot

=10
15

Our protocol: N
tot

=10
15

Original protocol: N
tot

=10
18

Our protocol: N
tot

=10
18

Figure 2: The key rate bits per pulse as a function of
distance L between Alice and Bob in Ntot = 1013, 1015

and 1018 cases for the original four-phase protocol [10]
and our improved protocol.
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in other variants of TF-QKD. Indeed, the four-phase TF-
QKD proposed in [10] is very similar to NPP-TF-QKD,
except that in code mode both Alice and Bob encode
bit in phase from sets {0, π} or {π/2,−π/2} and then
select the rounds with the same coding sets to gener-
ate sifted K0 key bits. Evidently, we can introduce the
proposed phase postselection to the decoy mode in this
protocol. The improvement results are shown in fig.2.
The achievable distances of improved four-phase proto-
col are 451 km, 470 km and 474 km when sending 1013,
1015 and 1018 pulses, which are 21 km, 29 km and 30 km
longer than the original four-phase protocol. At short or
medium distances, such as 340 km, the key rate bits per
pulse of the improved protocol are also doubled than the
original protocol.

In summary, we propose a variation of TF-type QKD
with partial phase postselection and give the security
proof in the finite-key regime. Phase postselection being
still free in code mode but introduced in decoy mode sig-
nificantly improves the key rate and achievable distance.
Our idea can also be used in the optimized four-phase
twin-field protocol proposed by [10], which confirms its
potential advantages in terms of key rate and achievable
distance.
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Negativity as a Resource for Memory Reduction in Stochastic Process

Modeling
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Abstract. Finding the most efficient model that generates a stochastic process is an important
and ubiquitous task in the field of quantitative science. It is known that for a given classical
model with least amount of memory, as quantified by its statistical complexity, one can generally
construct a quantum model with less memory. We first show that the presence of negativity in
the quasi-probability representation (QPR) of a quantum machine is necessary for such memory
advantage, and see that the amount of negativity grows as the memory advantage gets larger. From
this intuition, we propose a quasi-probabilistic model from a class larger than those of quantum
QPRs that saturates the absolute information-theoretic memory lower bound that for any model
to perfectly generate a stochastic process, known as the excess entropy. We view and show that
negativity acts as a resource to memory reduction in the same way it has been a resource in
obtaining advantages in quantum information and quantum computation tasks.

Keywords: stochastic process modeling, hidden Markov model, quasi-probability representation,
negative probabilities, Renyi entropies

Stochastic process modelling is an essential task
which have found plenty of applications in the fields
of quantitative science involving time-series data.
One of the most ubiquitously used model is the
Hidden Markov Model (HMM) [Vid11]; [Vid14];
[RJ86], which consists of an internal state that
transitions over-time as it emulates the statistics
of the given stochastic process that it models.
The efficiency of such an HMM, which has been
pervasively quantified using an entropic measure
on its stationary distribution, called the statisti-
cal complexity, has been one of the primary focus
of the field of computational mechanics [CY89];
[SC01] which has found many practical applica-
tions [Jel98]; [GJ95]; [FST98]; [HKS10]; [Yan+08]
[CF97], as well as fundamentally interesting from
both information-theoretical and physical stand-
points.

Notably at the center of computational mechan-
ics is the ϵ-machine, which is the unique HMM
with least amount of memory among all predictive
HMMs, namely those that perfectly emulates the
future statistics of a stochastic process given only
the past data. It has been shown more recently
that one can obtain an HMM with lower statisti-
cal complexity for some stochastic processes by re-

∗andrew.tanggara@gmail.com

sorting to a construction with quantum-mechanical
internal states and unitary dynamics, called the q-
machine [Gu+12]; [MAC16]; [Yan+18]; [Rie+16];
[BTG18]; [Liu+19]; [LC19]; [Ell+20]; [Ell21] (also
similar quantum HMM constructions in [WC08];
[MBW12]; [MW16]). Furthermore it was shown
that a specific q-machine construction in [Liu+19]
that involves a one-to-one mapping between the
states of ϵ-machine and the states of the q-machine
along with some optimized phase factor is optimal
among all q-machines. Despite these fruitful ex-
cursions into the quantum regime, it remains the
question of how one can construct an HMM that
saturates the absolute information-theoretic mem-
ory lower bound necessary for any HMM that per-
fectly generates a stochastic process, known as the
excess entropy (as it was posed as an open ques-
tion in [Gu+12]). In this work, we address this
long-standing open question using the framework
of quasi-probabilities.

As a natural alternative representation to the
Hilbert space representation of quantum mechan-
ics, we first resort to the quasi-probability rep-
resentation (QPR) [FE08]; [FE09]; [Fer11] of the
q-machines. We first show that the presence of
negativity in the QPR is a necessary condition
for quantum memory advantage, despite not be-
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ing sufficient, as we show in a construction of a
non-negative discrete Wigner QPR for some q-
machines that exhibits memory advantage. Nev-
ertheless with evidences showing that the amount
of negativity are larger for q-machines with smaller
statistical complexity, we proceed to an analysis
of a class of quasi-probabilities larger than that of
quantum QPR. Here, we answer the long-standing
open question of the existence of an HMM that
saturates the excess entropy in a construction of a
quasi-probabilistic HMM called the n-machine.

Figure 1: Illustration of n-machine construction
from a classical HMM.

The n-machine construction takes an ϵ-machine
or a q-machine that generates a certain stochas-
tic process and ”splits” one or more of its internal
states into multiple states for which internal transi-
tions between them can be with negative probabil-
ity (hence still normalized) such that it still enables
any n-machine to faithfully generates the statistics
of any physically realizable stochastic process. We
show that it is possible to construct such machine
with statistical complexity saturating the excess en-
tropy for stochastic processes realizable by a finite-
state ϵ-machine or a q-machine. Another notable
feature of this construction is that the resulting n-
machine can be thought of as a generalization of
the discrete Wigner quasi-probability representa-
tion (QPR) of a q-machine, where some features
of the n-machine manifests in the QPR stationary
distribution and transition matrix. Furthermore,
we have found evidence showing that the amount
of negativity present in the stationary state of the
n-machine is proportional to its memory advantage
over the ϵ-machine, as can be shown from construc-

tions for some stochastic processes.
Moreover for some stochastic processes, we show

that the n-machine can be more efficient than the
most general classical and quantum HMMs, called
the generative HMMs, which internal dynamics are
oracular, i.e. containing information about both
the future and the past [LA09a]; [LA09b]; [Löh12];
[Rue+18]; [Ell21]. It is to be noted that a conse-
quence of oracular nature of generative models is
that it introduces non-determinism in the internal
transition probability of the HMM, which makes
the problem of minimizing the statistical complex-
ity of classical or quantum generative HMMs for a
given stochastic process a persistently hard prob-
lem, let alone determining whether one that sat-
urates the excess entropy bound exists. Our n-
machine construction hence circumvents this noto-
riously elusive problem for the more general class of
quasi-probabilistic HMMs by saturating the excess
entropy lower bound. Combined with the afore-
mentioned n-machine feature that generalizes the
discrete Wigner QPR, we see the n-machine con-
struction as a promising first step towards a fur-
ther, more-restricted construction for optimal gen-
erative classical and quantum HMMs. The class of
n-machines can be also viewed as a restricted sub-
class of the class of all HMMs operating within the
regime of generalized probabilistic theories (GPTs),
a general physical theory that contains quantum
theory and classical theory, which is known as an
HMM quasi-realization [Vid14]; [FLW22]. Our n-
machine construction can be seen as part of the
long-standing efforts of finding the set of prin-
ciples that single out quantum theory from any
other GPTs [Bar+10]; [Lam18]; [Mül21]; [Plá16];
[Sch+21]; [Sha21]; [GM20]; [CY14]; [Chi+20].

In light of this quasi-probabilistic HMM con-
struction, we use a Rényi entropic definition of sta-
tistical complexity and excess entropy with estab-
lished operational interpretations and have found
many applications in cryptography [Ben+95];
[Ren08]; [Buh+08], coding theory [Gal65]; [Csi72];
[Ari73]; [Csi95]; [PV10] and quantum theory
[BPP12]; [DFW14]; [Dup+14]; [BCW14]. We show
that they still enjoy most of the properties satisfied
by their traditional counterparts for any classical
and quantum HMMs, hence validates their utility
as a measure of information. The use of these Rényi
entropic measure may be of separate interests due
to its features, such as a correspondence that we
that found to the overlap between internal states
of the q-machine (which their memory advantage
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has been attributed to).
For the n-machines, we have showed that these

Rényi excess entropy and Rényi statistical com-
plexity are well-defined, despite negative values
in the n-machine stationary distribution. With
the increasing amount of interests in the use of
entropic measures on quasi-probabilities [MF00];
[WS07]; [BL19]; [BLZ22]; [OKK22]; [KJ22], we
also argue that this is a reasonable measure of
information for quasi-probabilities. In particu-
lar, we refer to the studies of classical simulation
of quasi-probability sampling [AB14]; [PWB15]
which has found applications in the study of classi-
cal simulations of quantum computation [PWB15];
[RRC16]; [KJ22]; [Kou+22], quantum error-
correction [TBG17]; [Tak21]; [Tak+22], classical
simulation of quantum memory channels [Yua+21],
and local simulation of non-local quantum channels
[MF21]. We made a simple observation by tak-
ing the Rényi entropy of the classical probability
distribution P that simulates sampling of a given
quasi-probability distribution Q and found that the
entropy of P is simply the sum of entropy of Q
plus a logarithmic factor of the amount of negativ-
ity present in Q. The latter quantity is precisely
what has been identified as a resource for quantum
computational advantage known as mana [Vei+14],
whereas the amount of negativity has been shown
as the overhead of classical simulation of quasi-
probability sampling [PWB15]; [KJ22]. We argue
that this observation shows that the entropy of a
quasi-probability Q is simply part of how much in-
formation contained in its classical simulation P
subtracted with the amount of overhead cost of
running this simulation, hence giving us the ”true”
information content of Q. In addition, our use of
entropic measure for quasi-probabilistic stochastic
processes can also may also further the study of
the information-theoretic principles of physical the-
ories from an operational perspective of stochastic
processes generation, which may be tied to uses
of entropy of quasi-probabilities to derive quantum
theory [WS07]; [OKK22]; [BLZ22].

We view that negativity acts as a resource in
obtaining memory advantage in stochastic pro-
cess modelling, analogous to how it acts as a re-
source in obtaining advantages in numerous com-
putational [ME12]; [Vei+12]; [Vei+14]; [How+14];
[KK21], communication [AB11]; [AB14]; [OBC14],
and metrology [Arv+20] tasks. It is interesting to
ask a further question on identifying information-
theoretic principles, such as the data-processing

inequality, that one can impose on a stochastic
process for it to have a realizable model within
some physical theory and identify the most effi-
cient model among all such theories. One way
that can directly follow from this work is to iden-
tify such principle(s) to obtain the QPR and frame
representations of quantum theory [FE08]; [FE09];
[Fer11] from the n-machine construction which puts
further restriction on the quasi-probabilistic HMM
construction.
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Abstract. Device-independent randomness generation uses the violation of a Bell inequality to verify that the
outputs of a nonlocal game are truly random. We focus on “local” randomness expansion protocols, where the
extracted bits are random even to one of the involved parties. By incorporating zero-probability constraints into
the Clauser-Horne-Shimony-Holt (CHSH) nonlocal game, we enhance the extractable rate in both asymptotic and
finite-size regimes. Using the generalized entropy accumulation theorem and refining the second-order correction
terms, we achieve a rate of up to 0.9 bit-per-round in our modified protocols, surpassing the standard CHSH game’s
maximum of 0.55 bits. Our results demonstrate some tolerance even without strictly enforcing the zero-probability
constraints.

Keywords: Device-independent, local randomness, finite-size analysis, entropy accumulation, nonlocal game

In cryptography, randomness is an indispensable resource.
Classically, there are no perfect classical sources of random-
ness. At best, one can exploit physical processes such as ther-
mal or radio noise to produce unpredictable but partially bi-
ased and correlated bits. However, quantum physics allows
us to obtain truly random outcomes from measurements on
quantum systems [1], [2]. For cryptographic applications,
the honest participants require perfect and secret randomness,
which means a sequence of bits that is uniformly distributed
from the perspective of some adversary who might hold some
side information. So even with quantum devices, we need to
make sure they are functioning properly, otherwise, an adver-
sary could still exploit the noise in the implementation to gain
some knowledge about the random bits.

To circumvent this possibility, we can adopt a device-
independent (DI) approach based on nonlocal games such as
the Clauser-Horne-Shimony-Holt (CHSH) game [3]. In a two-
party nonlocal game, two cooperating but non-communicating
players, Alice and Bob, receive inputs from a referee, and they
each reply with an output to the referee. The referee decides
if the players win the game or not by checking whether the
combination of the inputs and outputs satisfies a winning con-
dition. The winning condition is known by both players be-
forehand so they can choose a strategy that can achieve a max-
imal winning probability. A typical nonlocal game is designed
in such a way that there is a gap between classical strategy, a
strategy that can be described by the local hidden variable the-
ory [4], and quantum strategy, a strategy that can be realized
by quantum states and measurements.

Device-independent (DI) cryptography is based on the ob-
servation that for certain nonlocal games, players that employ
a quantum strategy can achieve a score that is better than what
can be reached by any classical strategy. Often we consider
those nonlocal games with a property known as self-testing or
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rigidity [5]. If the players Alice and Bob achieve a winning
probability close to the optimal quantum value, then the self-
testing [6] property guarantees that the underlying state and
measurements must be close to the optimal quantum strategy
for that game, up to some inessential local isometries.

A nontrivial implication of the observed super-classical
score is that genuine randomness can be extracted from the
outputs of the nonlocal game, which lead to DI applications
like quantum key distribution [7], [8] and random number
generation [7], [9]–[11]. In the aforementioned examples, we
usually consider “global” or non-blind randomness, where the
unpredictability is from the perspective of some external third
party to the nonlocal game. In contrast, as proposed by Miller
and Shi [12], we may instead consider “local” or blind ran-
domness, where the unpredictability is from the perspective
of other players in the game. In [13], near-optimal bounds
of local randomness for the CHSH game have been provided.
Note that local randomness can also be thought of as the stan-
dard randomness with a higher level of security. Therefore,
the local randomness extracted in this scenario can be used in
any cryptographic task that required standard randomness.

Because the players in a nonlocal game cannot communi-
cate, we expect Alice’s (Bob’s) statistics for output a(b) to be
independent of Bob’s (Alice’s) inputs y(x). This means that
the correlations P⃗ (a, b|x, y) must satisfy no-signaling (NS)
constraints, i.e.,

∑
b P (a, b|x, y) = P (a|x) for all y and∑

a P (a, b|x, y) = P (b|y) for all x. Geometrically, the set
NS of NS correlations for a fixed number of inputs and out-
puts forms a convex polytope. Since the only other constraint
on any P⃗ ∈ NS is that the conditional probabilities are non-
negative, then any P⃗ that belongs to the no-signaling bound-
ary (NSB) should have some P (a, b|x, y) = 0.

Recently, Chen et al. [14] demonstrated that there are sev-
eral classes of quantum correlations that lie on the NSB, each
corresponding to violations of the CHSH inequality subjected
to some extra zero-probability constraints. These correlations
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Figure 1: The scenario for a nonlocal game and Eve’s strategy
for guessing Alice’s output.

can be classified according to the number and the relative po-
sitions of the vanishing probabilities [14, Table IV]. All these
classes were proven to exhibit self-testing properties. In this
work, we show that these NSB quantum correlations can pro-
vide more local randomness for a given winning probability
in the CHSH game.

Let us describe the scenario involved in a protocol for local
randomness. Here the adversary Eve is one of the players in
the nonlocal game. Consider a CHSH game where Eve tries to
guess Alice’s outputs as shown in Fig 1. One of Eve’s viable
strategies can be described as follows (Fig. 1). Suppose in ev-
ery round, Alice and Eve share a bipartite state ρPiQi , where
Pi and Qi denote Alice and Eve’s respective quantum sys-
tems in i-th round. We allow Eve to prepare this state so she
can also create a purification of it, i.e., |ψ⟩PiQiE′

i
. Then, she

sends system Pi to Alice and keeps systemsQi andE′
i. After-

ward, Alice and Eve perform the measurements for the nonlo-
cal game according to their respective inputs Xi = x, Yi = y
for the i-th round. Additionally, Alice generates an extra out-
put Ci = w(Xi, Yi, Ai, Bi) to record the results of the non-
local game in the i-th round, i.e., Ci = 1(Ci = 0) for a
win (loss). After n rounds, Alice can check the statistics of
{Ci}i to determine whether Eve is honest or not. More pre-
cisely, Alice can set a better-than-classical threshold wth that
can be achieved with an honest implementation of the chosen
nonlocal game. If the statistics of {Ci}i give a value that is
lower than this threshold wth, she aborts the game and dis-
cards all the outputs {Ai}i. At the end of the protocol, Eve’s
quantum side information is E′n = E′

1E
′
2...E

′
n. If we de-

note the classical information: An = A1A2...An, and simi-
lar for Bn, Xn, Y n. The exact amount of local randomness
that can be extracted from the outputs is given by the n-round
conditional smooth min-entropy, i.e., Hε

min(A
n|Bn, Xn =

xn, Y n = yn, E′n).
In Fu and Miller’s work [13], they computed the local ran-

domness by Eve’s guessing probability of Alice’s output using
a second measurement that depends on Alice’s input. From
this guessing probability, we can compute the min-entropy—
a relevant quantity for estimating the amount of extractable
randomness in the one-shot setting, a setting that considers
the worse case in a single shot. However, the one-shot set-
ting can only promise the randomness we can extract from
a source follows a certain probability distribution, which is
still fairly unrealistic since with finite data, we can only try
to estimate the probability distribution (and thus its associated
winning probability) using the relative frequencies, but this
is a good estimate only in the asymptotic limit. To this end,
note that the entropy accumulation theorem (EAT) [15] and its
generalized version (GEAT) [16] are powerful frameworks for

bounding the conditional smooth min-entropy, a quantity that
also counts the deviation of the estimated probability distri-
bution, for a sequential quantum cryptographic protocol [17]–
[19].

The original EAT applies to multi-round protocols with a
model of side information consisting of a static quantum vari-
able and a sequence of independent classical variables that
satisfy Markov conditions [15, Chapter 4]. On the other hand,
GEAT can be used in protocols where the full (quantum) side
information is updated in every round, so long as no new side
information of past outputs is created [16, Chapter 4]. Unlike
in QKD protocols where either version is applicable due to the
equivalence between prepare-and-measure and entanglement-
based schemes, in local randomness expansion, the adversary
acquires new quantum side information in each round as a
player in the nonlocal game so the use of GEAT is imperative.
Indeed, this is one of the examples considered in [16], how-
ever, they only presented a figure of single-round conditional
von Neumann entropy bounds for the CHSH game.

In this work, we employ GEAT to compute the amount
of extractable local randomness incorporating finite-size ef-
fects for the various classes of NSB correlations described in
[14]. To apply GEAT, the single-round conditional von Neu-
mann entropy is required. For this we follow Brown-Fawzi-
Fawzi method [20], which uses an integral approximation
of the logarithm combined with the Navascués-Pironio-Acı́n
(NPA) hierarchy [21], [22] to obtain an entropy lower bound
with semidefinite programming (SDP).1 Finally, to obtain the
finite-size extractable rates, we adopt techniques from [23],
[24] to build the min-tradeoff function, which is essential for
obtaining the second-order correction. The min-tradeoff func-
tion depends on the testing probability γ and some parameter
f⊥. For our construction, we set the testing probability at
γ = 10−2. Then for a fixed number of rounds N , we scan
through the range of f⊥, and the order α of the Renyi entropy
to find the values that lead to the highest rates.

Our results indicate that by adding some simple constraints,
namely zero-probability constraints (or even relaxing this by
allowing small values), the extractable local randomness in-
creases in some range of lower winning probabilities. In
the photonic DI randomness expansion experiment by Liu et
al. [23], they demonstrated that when the winning probabil-
ity is around 0.7525, then the number of rounds required for
achieving a nonzero extractable rate of non-blind randomness
with the CHSH game is at least 8.951 × 1010. In contrast,
if we instead consider the local randomness from the CHSH
game with some simple additional constraints, then as shown
in Figure 2, we can achieve a nonzero rate with far fewer
rounds, i.e., N ≈ 7.6 × 108. Furthermore, we can also re-
lax the zero constraints to inequality constraints that tolerated
a small value, e.g., we take δzero = 10−3, which has been
shown to be attainable in practice [25]. With this small tol-
erance, we can still get a nonzero rate if we have 6.7 × 109

rounds. This illustrates that our results exhibit some robust-
ness to implementation errors, making it quite experimentally
feasible.

1We use Peter Wittek’s python package, ncpol2sdpa, to construct
NPA hierarchy. The latest version of the package is currently main-
tained by Peter Brown and can be found in https://github.com/
peterjbrown519/ncpol2sdpa.
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Figure 2: Finite local randomness per round for the standard
CHSH, class 1, class 2c, and class 3b (The numbers of the
classes indicate the number of the zero-probability constraints
to be imposed in the protocol). The dashed line shows class
3b where we tolerate a comparably detectable value δzero =
10−3 for the zeros.

Moreover, if we consider the highest achievable winning
probabilities for each class, we see a substantial improvement
in the amount of local randomness compared to the standard
CHSH. For instance, if we look at the asymptotic rates, for
CHSH at the maximum winning probability of 0.8535, we can
extract about 0.5523 random bits per round. But when we
consider class 3b, which has a maximum winning probability
of 0.7837, we can get a much higher rate of 0.8975 random
bits per round. This is nontrivial and even potentially useful.

In general, we observe that the amount of extractable local
randomness is more when the correlation has zeros. These can
be roughly understood as follows: When adding extra con-
straints to an optimization problem, we are taking a subset of
the feasible solutions that satisfy the original constraints. And
for a minimization problem, the optimal value from the feasi-
ble set is always a valid lower bound on the optimal value from
its subset. Moreover, in the case of the highest winning prob-
ability for each class, the self-testing property restricts Eve’s
attacks in the sense that they cannot deviate too much from a
particular quantum strategy in the nonlocal game.

Furthermore, while classes with more zeros typically pro-
duce more local randomness (higher rates) for the same win-
ning probability, we observe that the best possible rate does
not necessarily trend with the number of zeros. This sug-
gests that the amount of local randomness also depends on the
structure of the correlation, or geometrically to the particular
boundary it belongs to.

Because we have observed an improvement in the local ran-
domness rate of CHSH by adding simple constraints, this sug-
gests a potentially similar gain in the standard DI (global)
randomness. In addition, it may be worth noting that when
we consider the CHSH game with two zero-probability con-
straints, one possibility leads to an optimal quantum strat-
egy where the parties have one identical measurement setting.
This makes it a natural candidate for a DI quantum key dis-
tribution (QKD) protocol based on the CHSH game that does
not require additional input. And maybe even in this case, we
could observe an improved finite key rate over the standard
CHSH game.

We may also consider how the local randomness of these
NSB quantum correlations can be applied to cryptographic
tasks with mistrustful parties. For example, in the DI pro-
tocol for certified deletion based on Mermin-Peres magic
square [13], [26], if the deviation from the maximum score
is δ then the secrecy guarantee scales like 9

√
δ. There might

be some advantages with a protocol based on the CHSH game
or any of its variants with zero constraints.
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Dynamics-based Witnesses of Nonclassicality and Entanglement
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Abstract. We recently introduced a series of protocols [1, 2, 3] that detect the nonclassicality or en-
tanglement of suitable states of quantum systems, under the assumption that the measured dynamical
observable undergoes a known time evolution. These works are based on an unexpected observation by
Tsirelson about the quantum harmonic oscillator [4]: despite its time evolution being the same as its clas-
sical counterpart—a precession in phase space—its nonclassicality can be detected by probing its position
at different times. Our protocols do not rely on sequential or simultaneous measurements, as only one
randomly-chosen measurement is performed in each round. They are also more akin to Bell inequalities
than to uncertainty relations: in particular, they do not admit false positives from classical theory. While
the main focus will be for the case where the dynamics is that of a uniform precession, the extension of
the protocol to systems with general bound dynamics will also be briefly covered.

Keywords: harmonic oscillator, quantum dynamics, negativity witness, entanglement witness

A common task in quantum mechanical experiments is
to demonstrate that the controlled system is actually do-
ing something quantum. This might be done by demon-
strating some quantum feature of a single system, or by
certifying entanglement over multiple systems.
Amongst the different types of controlled quantum sys-

tems, the harmonic oscillator is a mainstay: it appears
in superconducting circuits, trapped ions, photonics, and
optomechanics. Commonly reported quantum features
of the harmonic oscillator tend to probe its discrete na-
ture, like the nonzero ground state energy, or probe the
incompatibility of observables, like with sequential mea-
surements of position and momentum.
Meanwhile, the time evolution of the harmonic oscilla-

tor is the same in both classical and quantum theory. The
classical observables (x(t), p(t)), and the corresponding
quantum observables (X(t), P (t)) given in the Heisen-
berg representation, all satisfy

x(t) = cos(ωt)x(0) + sin(ωt)p(0)

p(t) = cos(ωt)p(0)− sin(ωt)x(0),
(1)

with (x, p) → (X,P ) in the quantum case. As such, one
does not expect to find quantumness in the dynamics of
the harmonic oscillator.
Surprisingly, an overlooked preprint by Tsirelson [4]

showed that this was not the case. By simply asking
“How often is the coordinate of a harmonic oscillator
positive?”, suitable quantum states can violate a clas-
sical bound set by the classical harmonic oscillator.

Our work. For single systems, we have expanded
Tsirelson’s original protocol to a family of protocols, and
extended it to the case of spin angular momentum [1]
and general bound dynamics [3]. For the multipartite
scenario, we have shown that the protocol is an entangle-
ment witness when applied to a normal mode of multiple
harmonic oscillators [2].

∗zaw@l-lin.com

A few key properties of our criteria are highlighted in
the next page. Meanwhile, we summarise the protocols
for harmonic oscillators here.

Protocol to Certify Nonclassicality of a Har-
monic Oscillator. The protocol is performed for
an odd K > 1, and consists of many independent
rounds. In each round:

1. The system is prepared in some state. This
state may not be identical in each round, and
the interactions required to prepare the state
do not need to be specified.

2. After the preparation is completed, the system
is decoupled from everything else, and under-
goes the closed dynamics of a harmonic oscil-
lator, resulting in a uniform precession with
period T = 2π/ω.

3. A duration tk ∈ {kT/K}K−1
k=0 is randomly cho-

sen. The system is then left to precess for a
time tk.

4. The position x(tk) is measured at the chosen
time. Since the round ends here, the measure-
ments can be destructive.

After many rounds, the average score

PK :=
1

K

K−1∑
k=0

{
Pr [x(tk) > 0] +

1

2
Pr [x(tk) = 0]

}
is calculated. If PK > Pc

K := 1
2 (1 + 1

K ), then the
system is quantum.
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Protocol to Witness Entanglement of Two
Harmonic Oscillators. The nonclassicality pro-
tocol is performed on the centre-of-mass motion of
two coupled oscillators, which precesses uniformly as
an effective oscillator. The centre-of-mass position
is given by

xθ =

(
m1

m2

)1/4

cos(θ)x1 +

(
m2

m1

)1/4

sin(θ)x2.

Here mj and xj are respectively the mass and po-
sition of the jth oscillator. Meanwhile, θ is deter-
mined by the strength of the coupling between the
two oscillators. There are two cases:

• If θ = π/4, PK > Pc
K implies that the two

oscillators are entangled.

• If θ ̸= π/4, PK > PSEP
K (θ) implies that the

two oscillators are entangled, where PSEP
K (θ)

can be found using semidefinite programming
under some energy constraints [5].

Assumption of dynamics. The primary assumption
of our criteria is that, while the protocol is being per-
formed, the time evolution of the measured observables
are known. As such, our criteria are especially useful
when the dynamics themselves are not in question, but
there are doubts about whether the system is actually
behaving “quantumly”. For example, this might be the
case when one can be certain that a mesoscopic particle
is trapped in a harmonic potential, but where full to-
mography is not an option due to the size of the system.
Another example can be found in optical setups, where
position measurements at different times, together with
the assumption of harmonic dynamics, is equivalent to
different settings of a quadrature measurement.

No simultaneous or sequential measurements. In
each round of our protocol, only a single coordinate mea-
surement is made, upon which the round ends. This is in
contrast to usual tests of contextuality [6] and Leggett-
Garg-type criteria [7], which require the simultaneous or
sequential measurement of two or more observables in
each round. In particular, our criteria do not utilise the
noninvasive measurements required in similar Leggett-
Garg tests of harmonic oscillators [8, 9], which avoids
the “clumsiness” loophole entirely [10].

No false positives from classical theory. Many
commonly-used witnesses of continuous-variable entan-
glement are based on the uncertainty relation, where the
systems are said to be entangled if the measured stan-
dard deviations of some observables are below a cer-
tain threshold [11, 12, 13, 14]. This requires measur-
ing the positions and momenta of both systems with a
precision set by ℏ. At the precision of, say, human per-
ception, two oscillators at equilibrium are described by

xj = pj = 0 =⇒ ∆xj = ∆pj = 0. This would imply
entanglement if the above witnesses are used näıvely. On
the contrary, in our protocol, nonclassicality or entangle-
ment is certified by showing that some observed value
exceeds a classical bound, the maximum possible value
achieved by the corresponding classical system. As such,
our criteria do not admit false positives from classical
theory by construction.

Detection of non-Gaussian states. Since the clas-
sical bound also holds for states that can be classically
simulated—in particular, Gaussian states—they will not
be certified as nonclassical by our criteria. As a conse-
quence, our criteria only detect the entanglement of some
non-Gaussian states. This is notable as non-Gaussian
states are required for a quantum advantage in many pro-
tocols [15, 16, 17, 18], but commonly-used entanglement
witnesses can be ineffective at detecting them [19].

Detection of states not detected by other entan-
glement witnesses. We have also explicitly shown the
existence of families of entangled states that are detected
by our criteria but not by any of the existing ones. A
particular example is the entangled three-level cat state
given by |Ψ⟩ ∝

∑1
k=−1|αei2πk/3⟩1 ⊗ |αei2πk/3⟩2. This

state cannot be detected by the criteria of [11, 12] for
any value of α, is detected by the criteria of [13, 14] for
1.23 ≲ |α| ≲ 1.82, and is detected by our criteria for
0.88 ≲ |α| ≲ 1.23.
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Abstract. We introduce the minimal set of requirements that define a feasible PBT protocol and con-
struct a simple PBT protocol that teleports an unknown state of a qudit with success probability ex-
ponentially better than previously known schemes with the resource state consisting of N maximally
entangled states. We define the corresponding efficient superdense coding protocols which transmit
more classical bits with fewer maximally entangled states. Furthermore, we introduce rigorous methods
for comparing and converting between different PBT protocols.
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1 Motivation

Quantum teleportation introduced first in [1] is the
concept of sending an unknown state of the quantum
system without physically transferring the medium
found its use in an impressive range of applications [2].
Despite of many applications proposed the teleporta-
tion scheme has some limitations and one of the main
is the necessity of unitary correction in the last step of
the transmission procedure. However, there is also an-
other teleportation scheme, introduced by Hiroshima
and Ishizaka [3, 4], with properties that were previ-
ously believed to be unattainable. These protocols go
under the name of port-based teleportation (PBT) and
they possess a counter-intuitive property that appears
to be at odds with non-signalling principle of quantum
mechanics, namely, that the teleported state requires no
unitary correction and is readily available for use after
the sender performs a measurement and sends classical
communication.

All PBT protocols found wide-ranging applications
in cryptography and instantaneous non-local computa-
tion [5], they were instrumental in establishing a link
between interaction complexity and entanglement in
non-local computation and holog- raphy [6], they estab-
lished a fundamental link between quantum communi-
cation complexity advantage and a violation of a Bell
inequality [7], fundamental limitations for quantum
channels discrimination by designing adaptive proto-
cols called PBT stretching [8] and others [9, 10, 11, 12]
including even continuous variable realisation [13].

2 Configuration for PBT

In the vanilla PBT setup parties share a large resource
state consisting of N copies of the maximally entan-
gled states |Ψ+〉⊗N , where each singlet is a two-qudit
state, called port. Alice performs a joint measurement
∗ss870@cam.ac.uk
†michal.studzinski@ug.edu.pl

on an unknown state ψC together with her half of the
resource state and communicates the outcome to Bob.
The outcome of the measurement indicates the subsys-
tem where the state has been teleported to. To obtain
the teleported state, Bob discards all ports except for
the one indicated by Alice’s outcome. There are two
versions of the PBT protocol, depending on the exact
set of measurements used by Alice. The first type, so-
called deterministic teleportation (dPBT), is described by
the set of N POVM elements X = {Πa}N

a=1 (in a form
of square-root measurements (SRM)). Upon measuring a-
th element the teleported state ends up in the a-th port
on Bob’s side. He then traces out all but a-th subsys-
tem which contains the teleported state. The second
type, probabilistic PBT (pPBT), consists of a measure-
ment with N + 1 POVM elements {Πa}N

a=0 (different
than for dPBT), where Π0 indicates a failure of the tele-
portation. In this protocol, when Alice obtains the input
a ∈ {1, . . . , N}, the parties proceed as above. When she
obtains 0, they abort the protocol.

Due to the no-programming theorem [14] it is impos-
sible to obtain perfect transmission with a finite number
of shared ports. However, because of so many break-
through applications, it was very important to learn
what is the efficiency 1 of all variants of PBT schemes
as a function of the number of shared ports N and local
dimension d, and it was done in papers [15, 16, 17].

In both versions of the PBT scheme (pPBT and dPBT)
we also distinguish so-called optimized protocol, where
Alice before sending an unknown state optimizes si-
multaneously over the resource state and measure-
ments. This procedure leads to a square improvement
in N of the efficiency of dPBT and pPBT. Notice that
after optimisation parties do not share a maximally en-
tangled resource state but perform better.

1Entanglement fidelity for dPBT when parties send a half of the
maximally entangled state. The probability of success for pPBT av-
eraged over all input states. Both quantities depend on N and local
dimension d.
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3 Our goals

Despite of the huge progress in the area of PBT in
recent years the topic of PBT-theory still offers many
important questions and problems very important from
fundamental point of view. In particular, we can ask
about the following:

1. What other forms of transferring quantum infor-
mation from one subsystem to another exist?

2. Are there many other distinct protocols which re-
sult in quantum state transfer akin to the ordinary
teleportation and PBT-like protocols?

3. Can one treat the latter as a single class of proto-
cols or, perhaps, there is a number of fundamen-
tally different protocols within PBT?

4. Are there any practical implementations of the
above addressed points?

Our work aims to address the above by providing novel
conceptual insights. What is more in our work we in-
tensively exploit nontrivial methods coming from rep-
resentation theory of algebras, numerical methods sup-
ported by the Sage package, and tools coming from SDP
theory. We strongly believe that this makes our results
interesting not only from the fundamental point of view
but also from the point of view of applied toolkits.

4 Main Results

Result 1 We introduce a new protocol that cannot be
reduced to any known protocols and that satisfies this
set of minimal requirements. This protocol is exponen-
tially more efficient than any known pPBT, hence it cannot
be obtained from any such protocol. consider the fol-
lowing sequence of steps outlined in the box below.

PBT protocol P

INPUT
n ≥ 0, a shared 2n − qubit state ρ

(n)
AB be-

tween sender A and receiver B; a state ψC to
be teleported; a set measurements {MA,i}k

i=1,
where without loss of generality we have k =
n + 1. The instantiated protocol is denoted as
Pn({MA,i}k

i=1, ρ
(n)
AB, ψC).

ALGORITHM

• Alice performs a measurement MA,i on

ρ
(n)
AB ⊗ ψC, obtaining outcome i ∈ [1, . . . , k].

• Alice sends the index i to Bob by classical
channel;

OUTPUT
If i ∈ [1, . . . , k], then the teleported state is ρ

(n)
Bi

.
Otherwise, return ”FAIL”.

With each Pn({MA,i}k
i=1, ρ

(n)
AB, ψC) we associate a

two-parameter estimate Q(Pn({MA,i}k
i=1, ρ

(n)
AB)) =

(F(σA, ρ
(n)
Bi

), p) that describes the performance of a tele-
ported state. The first parameter characterises the qual-
ity of teleported state and the second – the success of
the teleportation. In the next step we constructed ex-
plicitly new PBT-like protocols, called the minimal PBT
satisfying the above requirements. What is more we
show that our protocol exponentially outperforms in
probability of success all previously known PBT proto-
cols, even when we use only resource state composed of
maximally entangled states - no optimisation is needed
for better performance. The corresponding entangle-
ment fidelity is also evaluated and it is no worse than
for previously known PBT schemes. This is contained
in Table 1 and visualized on Figure 1 for higher dimen-
sions.

Figure 1: Fidelities (top) and probability of success
(bottom) for d = 4. The mPBT scheme performed by
SRM measurements (blue) outperforms the optimal qu-
dit pPBT (orange), for which the probability of success
is psucc = 1− d2−1

N+d2−1 [15]. When one considers result-
ing fielities, we see that the mPBT scheme (blue) is more
efficient up to∼ 30 ports when one compares it with the
non-optimal dPBT with SRM measurements (orange).

Result 2 We develop methods for comparing port-based
teleportation protocols in terms of their resource states
which enable one to estimate their entanglement per
port and distinctness. Despite the fact that all PBT
protocols share operational similarities, their underly-
ing resource states are rather different. We discuss
the properties of the resource states in all PBT proto-
cols by evaluating their closeness. We show that by
starting from maximally entangled states, the optimiza-
tion operation applied by Alice has a large effect on
their mutual distances. To quantify the distance, we
will use the square-root fidelity

√
F. We show that in-
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Teleportation protocol Entanglement fidelity F Average success probability psucc
Non-optimised deterministic PBT F = 1−O(1/N) 1

Optimised deterministic PBT F = 1−O(1/N2) 1

Non-optimised probabilistic PBT 1 psucc = 1−O(1/
√

N)

Optimised probabilistic PBT 1 psucc = 1−O(1/N)

Minimal PBT (entangled resource) F = 1−O(1/N) psucc = 1− N+2
2N+1

Table 1: Asymptotic behaviour of all known variants of PBT protocols compared with introduced mPBT – the
qubit case. The mPBT offers exponentially better scaling in N compared to optimised pPBT for average probability
success, even with the non-optimised resource state included in this table. For entanglement fidelity, mPBT offers
the same scaling with the number of ports N.

creasing the number of shared ports
√

F is decreasing,
but exhibiting different asymptotic properties for dif-
ferent resource states. Mentioned behavior is depicted
in Figure 2, however in the manuscript, we derive
also analytical expressions for

√
F in terms of group-

theoretical quantities like multiplicities and dimensions
in the Schur-Weyl duality.

Result 3 We further introduce methods for the conver-
sion between PBT protocols and determine the conditions
when it is possible to turn one type of PBT into another.
In particular, we formulate an explicit procedure for
converting dPBT into pPBT. We derive respective mea-
surements and resulting efficiencies. We illustrate our
findings by explicit construction of such conversion for
known examples of PBT and we evaluate their efficien-
cies. We argue that conversion from pPBT to dPBT is
not always possible - we formulate conditions for such
conversion and we construct examples. Additionally,
we also discuss how the newly introduced mPBT proto-
col lies in the landscape of all known PBT-like schemes,
and how, and under what conditions it generates other
schemes.

Result 4 We know that superdense coding protocols
are dual to teleportation protocols. While ordinary su-
perdense coding protocols are well-understood in the
context of original teleportation, very little is known
about their dual-PBT versions, with only one known ex-
ample in [18]. We show how to take an arbitrary dPBT
protocol with an established lower bound on fidelity
and compute the corresponding performance of the su-
perdense coding protocol. In particular, we find that
there exist superdense coding protocols that are capable of
transmitting the same amount of classical information
as in [18], but using significantly less entanglement -
we show that one can get square improvement in the
number of shared ports N. The explicit construction
of such schemes is also discussed. Similar results have
been obtained recently and independently in [19].
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Abstract. Quantum compiling is the task of translating an quantum operation into an executable quan-
tum circuit. The circuit should be constructed using as few gates as possible to maximize arithmetic
accuracy. In the use of current noisy intermediate-scale quantum devices, quantum compiling is one of the
most important tasks because the effect of errors in each operation is severe. We investigated the sparse
regularization methods suitable used in the field of mathmatical optimization as a tool to achieve quantum
compiling, as we speculate that approximate circuits consisting of a small number of gates can be created
by optimizing parameterized quantum circuits with loss functions based on classical sparse regularization.
Implementation and testing of circuits that reduce the number of gates by using regularization demon-
strated that methods using sparse regularization produce a sparse parameter set in parametrized quantum
circuits.

Keywords: Quantum Compiling, Sparse Regularization, Quantum Machine Learning

1 Introduction

Quantum compiling is the task of translating quan-
tum operations, where inputs and outputs are given as
quantum states, into a quantum circuit containing feasi-
ble gates[1, 2]. In this task, it is necessary to output a
quantum state that is as close as possible to the result
of an appropriate unitary operation on the input quan-
tum state. Quantum compiling is an important task in
the execution of quantum circuits in noisy intermediate-
scale quantum(NISQ) devices[3]. As quantum compiling
requires outputs to be obtained by unitary operations,
the optimization of gate placement is challenging.
As a recent approach to quantum compiling, the use of

dynamic circuit models based on parameterized quantum
circuits has attracted much research attention[4, 5, 6].
Parameterized quantum circuits are quantum circuit
models that are optimized by iteratively updating the
quantum circuit parameters[7]. The natural idea of con-
structing a quantum circuit based on the final parame-
ters of each gate makes it easy to handle the compiling.
In addition, since these parameters are classical numer-
ical values and can thus be easily simulated on classical
computers, applied research using simulators and actual
equipment has been widely conducted[2].
Recently, Madden and Simonetto proposed using

a classical sparse regularization method called group
Lasso[8], which utilizes a sparse regularization method on
a group basis consisting of multiple variables, to achieve
quantum compiling[9]. Sparse regularization is used to
optimize the value of a function f(x) ∈ R so that many
elements of multi-dimensional variable vector x ∈ Rd be-
come zero; i.e., x is sparse[10]. Application of sparse
regularization produces a sparse solution in which only a
few variables are non-zero, so it should enable extraction
of information on the variables that truly contribute to
the optimization of f(x). General rotation gates (e.g.,

∗arahon243@eis.hokudai.ac.jp
†i.noda@ist.hokudai.ac.jp
‡oyama@ds.nagoya-cu.ac.jp

RX, RZ, CP) with a rotation angle of zero are equivalent
to an identity gate, and such gates for which the param-
eters are zero can be ’removed’ in the quantum compil-
ing problem setting. In other words, sparse gate con-
figurations should result from the application of sparse
regularization. Therefore we focused on the difference
in performance for each sparse regularization method as
a tool to achieve quantum compiling and thereby obtain
sparse circuits. In this study, we investigated the effect of
applying classical regularization methods to sparse quan-
tum compiling for more general circuits and gate sets.

2 Problem Setting

In a nutshell, the problem setting was designed for op-
timizing a general ansatz in a situation where a dataset
consisting of input and output quantum state pairs that
can be used multiple times is given, and the result of ap-
plying the ansatz to the input is as close to the output
as possible. The details are described in the following
sections. First, arbitrary one-qubit rotation gates and
CNOT gates are set as the set of available gate sets. The
main motivation for setting up the problem this way is
that it utilizes a universal gate set and that the form is
continuous-valued for any gate in order to obtain a sparse
circuit by applying sparse regularization. The quantum
circuit is set up as Figure 1 and alternates between a
one-qubit rotation gate (local operation) and an entan-
gle circuit (global operation). The configurations of the
one-qubit rotation gate and entangle are shown in Fig-
ure 2, which shows that arbitrary unitary operations on
one qubit can be expressed when the one-qubit rotation
gate is configured as shown. The entangle circuit is con-
structed with continuous parameters, which play an im-
portant role in the application of sparse regularization.
Let |ψin

i ⟩ be the i-th input quantum state, and |ψout
i ⟩

be the i-th output quantum state. We define n as the
number of data points in the dataset and θ ∈ Rd as
parameters in the parametrized quantum circuit. For
parametrized ansatz U(θ), we write |ψθ

i ⟩ as the output
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· · · · · ·

· · · · · ·

· · · · · ·

|ψin⟩

R(θrot
0,1 )

Uent(θ
ent
i )

R(θrot
i,1 )

|ψout⟩R(θrot
0,2 ) R(θrot

i,2 )

R(θrot
0,3 ) R(θrot

i,3 )

Repeat for i = 1, . . . , k

Figure 1: Diagram of parameterized quantum circuit model
of three-qubit system treated in this study

=R(θ) RX(θ1) RZ(θ2) RX(θ3)

(a) Configuration of the one-qubit rotation gate

Uent(θ) = P (θ1,2)

P (θ1,3) P (θ2,3)

(b) Configuration of entangle circuit Uent

Figure 2: Configuration of components used in
parametrized quantum circuit

quantum state when we apply U(θ) to input quantum
state |ψin

i ⟩; i.e., |ψθ
i ⟩ = U(θ)|ψin

i ⟩. The objective func-
tion for the accuracy of the outputs is defined by using
the inner product of the quantum states:

f(θ) =
1

n

n∑
i=1

{
1− ∥⟨ψout

i |ψθ
i ⟩∥2

}
(1)

=
1

n

n∑
i=1

{
1− ∥⟨ψout

i |U(θ)|ψin
i ⟩∥2

}
(2)

When f(θ) takes values in the range [0, 1] and f(θ) = 0,
we can say that U(θ) is a suitable ansatz for perform-
ing a perfect unitary operation on the quantum states in
the data set. Therefore, in the setting of the quantum
compiling problem, the challenge is to find a value for
parameter θ that reduces the value of f(θ) as much as
possible.

3 Controlled Phase Gate and Sparse
Regularization

The Cphase gate is a two-qubit gate (Figure 3) that
change the phase of the target bit with reference to the
control bit. The amount of phase change is controlled
by parameter θ, the determination of which is important
in sparse regularization. This is because the number of
CNOT gates C(θ) required to create a Cphase gate cor-
responding to parameter θ is

C(θ) =

 0 (θ = 2kπ, k ∈ Z)
1 (θ = (2k + 1)π, k ∈ Z)
2 (otherwise)

(3)

That is, by using sparse regularization, many θ values
can be reduced to 0 or integer multiples of π, enabling

the induced optimization to reduce the number of CNOT
gates to be implemented.

=

P (θ/2)

P (θ) P (θ/2) P (−θ/2)

Figure 3: Cphase gate configuration

4 Regularization Methods

In general, in sparse regularization, the sum of the
function to be optimized and the regularization term is
the overall loss function, and the objective is to minimize
the loss function. Let g(θ) be the regularization term for
sparse regularization, then the overall loss function L(θ)
is L(θ) = f(θ) + g(θ). There are various types of regu-
larization terms, which are set by the user in accordance
with the tradeoff between the desired function to be op-
timized and the degree of sparsity. This study focuses on
two types of regularization, L1 regularization and mini-
max concave penalty (MCP) regularization. The form of
each regularization term is shown in Figure 4.

L1 Regularization L1 regularization is one of the
most fundamental methods in sparse regularization; the
regularization term is defined as

g(θ) = λ∥θ∥1 = λ
∑
i

|θi|. (4)

where hyperparameter λ ≥ 0 represents the strength of
regularization. The higher the value of λ, the stronger the
applied regularization. The closer the value of parameter
θi to 0, the smaller the value of g(θ). Since g(θ) has
an absolute value of slope λsgn(θi) at the point θi ̸= 0
for each θi, L1 regularization induces the value of θi to
approach 0.

MCP Regularization MCP regularization is a
stronger regularization method[11]. Its regularization
term is expressed as g(θ) =

∑
i gMCP (θi), where

gMCP (θ) is defined as

gMCP (θ) =


λ|θ| − θ2

2α
(|θ| ≤ αλ)

αλ2

2
(otherwise)

. (5)

where hyperparameter λ ≥ 0 represents the strength of
regularization, and hyperparameter α adjusts the range
of parameter θ to enable regularization to be applied.
This regularization term satisfies gMCP (θ) ≒ λ|θ| at
θ ≒ 0 and its slope is zero when |θ| > αλ. Because the
absolute value of the slope increases as the value of θi
approachs zero, MCP regularization adds stronger regu-
larization compared with L1 regularization. In addition,
in this problem setup, MCP regularization satisfies two
properties.
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Remark 1 Let θ1, θ2 ̸= 0 be any parameters in the
parametrized quantum circuit. Then, the value of the
MCP regularization term is reduced by consolidating θ1
and θ2. That is, the following inequality holds.

gMCP (θ1+ θ2)+ gMCP (0) < gMCP (θ1)+ gMCP (θ2) (6)

As a result, MCP regularization reduces the number of
non-sparse parameters. In addition, MCP regularization
has another property.

Remark 2 Let θ1, θ2 ̸= 0 be parameters for successive
parameterized gates of the same type in the quantum cir-
cuit. Then, the value of the overall loss function is re-
duced by consolidating θ1 and θ2. That is, the following
inequality holds.

L(θ1 + θ2, 0) < L(θ1, θ2) (7)

Here the parameters except θ1 and θ2 remain unchanged.

In other words, when MCP regularization is used, it
induces the gates to merge and become sparse when there
is a sequence of gates of the same type.

Figure 4: Regularization methods

It should be noted that the problem addressed in this
study is the optimization of periodic functions. For ex-
ample, θ = 0 and θ = 2π are different in value but are
equivalent as gate operations. It is therefore reasonable
to design the regularization term so that it is also a peri-
odic function. In this study, we introduce periodicity into
regularization by re-designing the regularization term:

gperiodic(θ) = min
k∈Z

g(θ + 2kπ) (8)

The value of gperiodic(θ) is defined as the minimum
value of the infinite regularization term shifted by one
cycle, so gperiodic(θ) trivially has periodicity.

5 Numerical Experiments

Numerical experiments were conducted to evaluate the
effect of using each regularization term in the quantum
compiling task. The target of the compiling task was
a three-qubit quantum Fourier transform; 100 training
and 100 test data points (23-dimensional complex vec-
tors) were created for each term. The complex vectors

that served as data input were generated from the 23-
dimensional complex unit sphere, i.e., a Haar distribu-
tion. We set the depth of the circuit to 5 to guarantee
the existence of a parameter set θ such that f(θ) = 0.
We initialized the parameters by sampling from a uni-
form distribution on [−π, π] independently. When up-
dating the parameters, the proximity gradient method
was used instead of the usual gradient method because
there is a partially impossible point in loss function L(θ).
The learning rate was fixed at 0.5 for simplicity and was
assumed to remain unchanged during the learning pro-
cess. Hyperparameter α in MCP regularization was set
as α = π/λ. The changes in function values after 10,000
parameter updates are summerized in Table 1.

Table 1: Experimental results for sparse regularization
methods

Method Test loss No. of CNOT gates
Baseline 3.581 ∗ 10−7 30
L1(λ = 10−3) 7.693 ∗ 10−5 20
MCP(λ = 10−3) 1.870 ∗ 10−5 16

As shown in Table 1, the method with L1 regulariza-
tion and the method with MCP regularization reduced
the number of CNOT gates and non-sparse gates while
suppressing the increase in loss compared with the base-
line. This indicates that methods using sparse regular-
ization produce a sparse parameter set in parameter-
ized quantum circuits. Furthermore, a comparison of
the results for L1 regularization and MCP regularization
shows that MCP regularization reduced the number of
CNOT gates more. This is attributed to MCP regulariza-
tion having a stronger effect for parameters to approach
zero than L1 regularization when the λ parameters are
aligned, as shown in Figure 4. Moreover, MCP regu-
larization produced a somewhat sparser solution. That
test loss for MCP regularization was lower than that for
L1 regularization is a bit surprising because MCP has a
disadvantage in the optimization of test loss due to the
tradeoff between optimization and sparsity. This could
have resulted from insufficient number of update steps for
convergence. Nevertheless, the fact that a function with
MCP regularization further reduced the loss function is
non-trivial and interesting.

6 Conclusion

An optimization method using sparse regularization for
parameterized quantum circuits was proposed as a quan-
tum compiling method. Implementation and testing of
parameterized quantum circuits that reduce the number
of gates by using the regularization term, resulted in the
attainment of a sparse parameter set, confirming that the
number of gates was reduced.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant Number JP22K19820, and JST SPRING Grant
Number JPMJSP2119.

75



References

[1] Marco Maronese, Lorenzo Moro, Lorenzo Ro-
cutto, and Enrico Prati. Quantum compiling.
arXiv:2112.00187, 2021.

[2] Sumeet Khatri, Ryan LaRose, Alexander Poremba,
Lukasz Cincio, Andrew T. Sornborger, and
Patrick J. Coles. Quantum-assisted quantum com-
piling. Quantum, 3:140, 2019.

[3] John Preskill. Quantum computing in the NISQ era
and beyond. Quantum, 2:79, 2018.

[4] M. Bilkis, M. Cerezo, Guillaume Verdon, Patrick J.
Coles, and Lukasz Cincio. A semi-agnostic ansatz
with variable structure for quantum machine learn-
ing. arXiv:2103.06712, 2021.

[5] Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo,
Kunal Sharma, Andrew Sornborger, Lukasz Cincio,
and Patrick J. Coles. Generalization in quantum
machine learning from few training data. Nature
Communications, 13(4919), 2022.

[6] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger,
and Patrick J Coles. Learning the quantum algo-
rithm for state overlap. New Journal of Physics,
20(11):113022, 2018.

[7] Marcello Benedetti, Erika Lloyd, Stefan Sack, and
Mattia Fiorentini. Parameterized quantum circuits
as machine learning models. Quantum Science and
Technology, 4(4):043001, nov 2019.

[8] Ming Yuan and Yi Lin. Model selection and estima-
tion in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67, 2006.

[9] Liam Madden and Andrea Simonetto. Best approx-
imate quantum compiling problems. ACM Transac-
tions on Quantum Computing, 3(2):1–29, 2022.

[10] Junya Otsuki, Masayuki Ohzeki, Hiroshi Shinaoka,
and Kazuyoshi Yoshimi. Sparse modeling in quan-
tum many-body problems. Journal of the Physical
Society of Japan, 89(1):012001, 2020.

[11] Cun-Hui Zhang. Nearly unbiased variable selection
under minimax concave penalty. The Annals of
Statistics, 38(2):894 – 942, 2010.

76



Unified Quantum State Tomography and Hamiltonian Learning Using
Transformer Models: A Language-Translation-Like Approach for

Quantum Systems

Zheng An1 ∗ Jiahui Wu1 † Muchun Yang2 3 ‡ D. L. Zhou2 3 4 § Bei Zeng1 ¶

1Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong, China

2Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences,
Beijing, China

3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Abstract. Schrödinger’s equation is fundamental in characterizing quantum systems, with quantum
state tomography and Hamiltonian learning being essential. This study introduces an attention-based
transformer model that merges both tasks without changing architecture, effectively learning relationships
between quantum states and Hamiltonian. We demonstrate effectiveness across various quantum systems,
from simple 2-qubit cases to 2D antiferromagnetic Heisenberg structures. Our method streamlines data
collection, improves scalability, and enables few-shot learning, potentially reducing resources required for
characterizing and optimizing quantum systems. This research advances understanding of quantum systems
and contributes to quantum computation development.

Keywords: Quantum information theory, Quantum metrology, Machine Learning, Natural Language
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1 Quantum systems are governed by the Schrödinger
equation, which plays a pivotal role in defining the re-
lationship between the Hamiltonian structure and the
states of the system. This relationship is central to un-
derstanding the behavior of quantum systems [1] and for
applications such as quantum computing and communica-
tion [2, 3]. Moreover, the mapping between the Hamilto-
nian and the quantum states of a system is indispensable
in quantum information science, as it enables us to predict
the system’s behavior [4, 5]. This knowledge is crucial in
quantum computing applications, where Hamiltonian pa-
rameters are utilized to control and manipulate quantum
systems for specific tasks [6, 7, 8]. Research in this domain
can be bifurcated into two primary directions: Quantum
State Tomography (QST) and Hamiltonian learning (see
Fig. 1).

Quantum state tomography (QST) and Hamiltonian
learning are essential techniques in quantum information
science. QST comprehensively characterizes quantum
states [9, 10, 11, 12, 13], while Hamiltonian learning esti-
mates Hamiltonians for quantum computing and simula-
tion [14, 15, 16, 17, 18, 19]. However, both methods face
challenges such as computational complexity and data
acquisition difficulties. Despite their individual progress,
a unified approach that combines their advantages has
not been developed.

Recent advancements in machine learning, particularly
transformer architectures [20], have greatly impacted
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Figure 1: Bidirectional Translation Model for Quantum
State Tomography and Hamiltonian Learning: Our model
functions as an adaptable and efficient mediator between
Quantum State Tomography and Hamiltonian Learning,
effectively facilitating the interplay between the eluci-
dation of quantum states derived from Hamiltonian pa-
rameters and the estimation of Hamiltonian parameters
informed by observed ground states. The training data
necessitates unidirectional generation from state tomogra-
phy H(x⃗) → P (⃗b|x⃗), proving to be advantageous for the
concurrent training of both methodologies.

scientific research, including quantum information stud-
ies [21, 22, 23]. In this study, we introduce a novel ap-
proach that utilizes a language translation method to
effectively address both quantum state tomography and
Hamiltonian learning, uniting these two techniques in
a unified model. The attention mechanism within the
transformer model enables us to establish a language-
translation-like strategy for mapping Hamiltonian param-
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eters to quantum states. We apply our methodology to
an extensive spectrum of quantum systems, ranging from
2-qubit cases to 2D antiferromagnetic Heisenberg mod-
els, and demonstrate the versatility of our approach by
employing various QST methods.

In this study, we investigate problems within quantum
state tomography and Hamiltonian learning, focusing on
k-local Hamiltonians and the ground state of an n-qubit
quantum system. The Hamiltonian is expressed as:

H(x⃗) =

m∑
i=1

xiHi, (1)

where each Hi is an operator acting non-trivially on no
more than k qubits, and xi represents the local term
parameter. We explore the k = 2 case.

We consider physical systems of n qubits and construct
measurements from an m outcome single-qubit POVM
M = {M (b)}b. The n-qubit measurement is characterized
by the tensor product of single-qubit POVM elements.
The acquisition of training data involves a unidirectional
generation process from state tomography, represented by
H(x⃗) → P (⃗b|x⃗). This approach simplifies data acquisition
and enables simultaneous training of QST and Hamilto-
nian learning, improving efficiency and effectiveness in
characterizing quantum states and estimating Hamilto-
nian.

We present a sophisticated Transformer-based model
to establish a bidirectional relationship between Hamilto-
nian parameters and ground state measurement outcomes.
The model comprises an encoder and decoder, converting
continuous variable inputs into concise representations
and generating target sequence outputs such as discrete
Hamiltonian parameters or measurement expressions.

Our model employs an embedding neural network and
self-attention, focusing on relevant input portions while
generating output. We use a multilayer neural network
as the embedding layer, transforming continuous Hamil-
tonian parameters or probability distributions of local
measurements into learned vector representations. We
discretize Hamiltonian parameters and employ the word
embedding technique from natural language processing
(NLP) to map each label to a learned vector representa-
tion.

We encode distinct local measurement outcomes into
discrete tokens in a vocabulary list, allowing encoding of
any measurement outcome or parameter for an n-qubit
quantum system. The model produces probability distri-
butions for ground states or Hamiltonian parameters.

No modifications to the architecture or parameters are
needed, but careful selection and preparation of train-
ing data are crucial. We use teacher forcing and auto-
regression during training, with the objective to minimize
average negative log-likelihood loss across the training
data.

We present our algorithm to study quantum state to-
mography and Hamiltonian estimation problems. In a
2-qubit toy model,

H(θ) = cos(θ)X1X2 + sin(θ)Z1I2, (2)

we investigate the ability of POVM measurements to accu-
rately represent the ground state, with results indicating
high accuracy even without knowledge of Hamiltonian pa-
rameters. We also explore Hamiltonian learning, finding
that the algorithm can generate appropriate Hamiltonian
parameters given ground-state distribution.

In a 2D antiferromagnetic random Heisenberg model,

H(x) =
∑
⟨ij⟩

xij (XiXj + YiYj + ZiZj) , (3)

we use classical shadow methodology to observe and re-
trieve physical observables. Our model shows high accu-
racy in predicting correlation functions, outperforming
other methods. Furthermore, our approach effectively pre-
dicts Hamiltonians and their properties, offering valuable
insights for quantum many-body systems.

Lastly, we implement a scalable few-shot learning strat-
egy to predict properties of large-scale models using lim-
ited training data. Our method demonstrates the ability
to generate accurate predictions for larger-scale models
after being trained on a sparse dataset. This capabil-
ity is achieved through extrapolation skills developed in
the model, enabling it to generalize to configurations of
greater scale and complexity.

In conclusion, we present a novel approach that employs
language translation models to address quantum state
tomography (QST) and Hamiltonian learning in a unified
framework, an unexplored concept. Our method capital-
izes on the inherent attention mechanism in transformer
models, demonstrating adaptability, reduced computa-
tional demands, and scalability. By streamlining the data
acquisition process and showcasing success across various
quantum systems, our approach lays a solid theoretical
foundation for practical quantum advantages through
machine learning. Furthermore, its few-shot learning ca-
pabilities and the insights it provides into the relationship
between Hamiltonian structure and quantum system be-
havior are critical for advancing quantum technologies.
Overall, our work introduces a novel, unified, and scalable
technique for QST and Hamiltonian learning, fostering a
convergence between quantum and artificial intelligence
technology development for near-term devices.
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Abstract. We propose a hetero-homodyne receiver for quantum illumination (QI) target detection. Un-
like prior QI receivers, it uses a cascaded positive operator-valued measurement (POVM) that does not
require a quantum interaction between QI’s returned radiation and its stored idler. When used without
sequential detection its performance matches the 3 dB quantum advantage over optimum classical illumi-
nation (CI) that Guha and Erkmen’s [Phys. Rev. A 80, 052310 (2009)] phase-conjugate and parametric
amplifier receivers enjoy. When used in a sequential detection QI protocol, the hetero-homodyne receiver
offers a 9 dB quantum advantage over a conventional CI radar, and a 3 dB advantage over a CI radar with
sequential detection. Our work is a significant step forward toward a practical quantum radar for the
microwave region, and emphasizes the potential offered by cascaded POVMs for quantum radar.

Keywords: Quantum illumination, quantum radar, microwave quantum sensing

Background

Quantum radars use resources unavailable to their clas-
sical counterparts, principally entanglement, to obtain
improved remote-sensing performance at the same trans-
mitted energy, see Refs. [1, 2, 3] for recent reviews. To
date, the only quantum radar protocol whose target-
detection performance is predicted to exceed that of its
best classical competitor is Tan et al.’s quantum illu-
mination (QI) [4]. QI with optimum reception offers
a 6 dB quantum advantage in error-probability expo-
nent for detecting a weakly-reflecting target embedded in
high-brightness background noise. This advantage only
occurs in a lossy, noisy setting that destroys the ini-
tial entanglement between QI’s transmitted signal and
its stored idler. In particular, Nair [5] has shown that
in the absence of noise conventional coherent-state radar
closely approximates the target-detection performance of
the optimum quantum radar of the same transmitted
energy. So, because daytime background light at near-
visible wavelengths has extremely low brightness, Tan et
al.’s QI attracted little interest from the radar community
until Barzanjeh et al. [6] described how it might be used
at microwave wavelengths, where high-brightness back-
ground noise is the norm and QI’s quantum advantage
could help in detecting stealth targets.

Tan et al.’s QI relies on the nonclassical phase-sensitive
cross correlation between the brightness-NS signal and
idler beams produced by a spontaneous parametric down-
converter (SPDC), viz., signal and idler consisting of
M � 1 independent and identically-distributed mode
pairs in two-mode squeezed-vacuum states. The TMSV’s

∗roberto.dicandia@aalto.fi

nonclassical cross correlation,
√
NS(NS + 1), greatly ex-

ceeds the classical limit, NS , in low-brightness (NS � 1)
operation, and disappears as NS grows without bound.
Furthermore, because conventional interference tech-
niques are incapable of detecting phase-sensitive corre-
lation [1], the first proposed receivers [7] for obtain-
ing any quantum advantage from QI used paramet-
ric amplifiers to convert phase-sensitive correlation into
phase-insensitive correlation prior to detection by con-
ventional techniques. These proposals—Guha and Erk-
men’s parametric amplifier (PA) and the phase-conjugate
(PC) receivers—deliver at most a 3 dB quantum advan-
tage in error-probability exponent, and to do so they
require a quantum memory capable of losslessly stor-
ing the idler’s high time-bandwidth product quantum
state for the roundtrip radar-to-target-to-radar propaga-
tion delay. So far, however, only 20% quantum advan-
tage has been demonstrated in optical wavelength (with
high-brightness noise injection) [8] and microwave wave-
length [9] table-top experiments.

The first explicit architecture for obtaining QI’s full
6 dB quantum advantage was the feed-forward sum-
frequency generation receiver [10], whose implementation
requires an as yet unavailable single-photon nonlinearity
as well as a quantum memory for idler storage. A more
recent architecture, the correlation-to-displacement re-
ceiver [11], circumvents the need for a single-photon non-
linearity, but requires a lossless M ×M programmable
beam splitter with M � 1—which will be a daunting
implementation task at microwave wavelengths—as well
as the aforementioned quantum memory for idler stor-
age. Were available technology capable of realizing such
QI receivers, the ultimate performance for Tan et al.’s
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Figure 1: Sketch of the Tan et al.’s QI protocol with
hetero-homodyne reception. The hetero-homodyne re-
ceiver measures the cross correlation between the re-
turned radiation and the idler. Because the low-
brightness TMSV mode pairs’ phase-sensitive cross cor-
relation

√
NS(NS + 1) greatly exceeds the classical limit

NS , QI outperforms classical illumination in this regime
even though loss and noise have destroyed the TMSV
states’ initial entanglement. het: heterodyne. hom: ho-
modyne. FF: feed-forward.

target-detection scenario would be obtained, because the-
ory [12, 13, 14, 15, 16, 17, 18] has proven the optimality
of the M mode-pair TMSV state for that setting.

Here, we report [19] a significant advance for mi-
crowave QI, and, more generally, emphasizes the po-
tential offered by cascaded positive-operator valued
(POVM) measurements for quantum radar. First, moti-
vated by Shi et al. [11]’s coherence-to-displacement con-
version and Shapiro’s use of sequential detection [20] to
break Nair’s performance limit on noise-free target detec-
tion [5], we propose a hetero-homodyne receiver for QI,
a cascaded POVM that, unlike prior QI receivers, does
not need a quantum interaction between QI’s returned
radiation and its stored idler, see Fig. ??. Our receiver
achieves a 3 dB advantage over the optimum receiver for
Tan et al.’s QI, i.e., 9 dB better than a conventional clas-
sical radar.

The Hetero-homodyne receiver

Figure ?? shows a schematic of quantum illumination
with a hetero-homodyne receiver. A signal-idler system is
initialized in an M mode-pair TMSV state, with each sig-
nal and idler mode containing NS � 1 photons on aver-
age. The signal is sent to test for the presence of a weakly-
reflecting (roundtrip transmissivity κ � 1) target em-
bedded in high-brightness background noise (NB � 1).
The hetero-homodyne receiver measures the cross corre-
lation between the returned radiation and the idler. It
does so by first applying a heterodyne measurement to
the returned signal, obtaining the complex valueM∈ C
as result. Finally, the idler is measure homodyne along
the direction given by M∗. The homodyne detector’s
output, conditioned on the heterodyne detector’s out-
put, is—with a convenient normalization—a measure-
ment of the observable Re[ER(t)ÊI(t)], which is the op-
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Figure 2: Classical and quantum illumination error
probabilities versus average number of transmitted sig-
nal photons, NT , assuming NS = 0.01, κ = 0.01, and
NB = 100. The solid curves are theory results for
non-sequential CI with homodyne detection and non-
sequential QI with hetero-homodyne detection, respec-
tively (see Ref. [19]). The points are simulated error
probabilities for sequential CI with homodyne detection
and sequential QI with hetero-homodyne detection with
MS = 105 for Perr,target = 10−1, 10−2, 10−3, 10−4, and
10−5. Each point was generated from 106 simulated ex-
periments for each hypothesis.

timal non-collective observable for Gaussian quantum il-
lumination [16].

Classical and quantum illumination with
sequential detection

Wald [21] originated the sequential probability-ratio
test (SPRT) as an alternative to the standard (LRT)
used for fixed-length data. In SPRT states are sent se-
quentially to test the target region, and the transmission
is halted when the desire error probability Perr,target has
been reached. To exhibit the benefits offered by sequen-
tial detection, we have assumed the low SNR regime,
i.e., NS � 1, κ � 1 and NB � 1. We apply the
SPRT protocol to CI using homodyne detection and to
QI using hetero-homodyne detection. For each trans-
mission, the CI transmitter will employ a coherent state
|
√
MSNS〉. The QI transmitter, on the other hand, will

employ MS iid TMSV mode pairs with average photon
number NS in each signal and idler. For both systems
we assume MS � 1 and κMSNS/NB � 1 and evalu-
ate the average number of transmissions—hence the av-
erage transmitted photon number—under the assump-
tions of equally-likely hypotheses and equal false-alarm
and miss probabilities. We have found a 6 dB advan-
tage in error-probability exponent over non-sequential
detection with the same average transmitting power,
see Fig. 2. Putting aside operational considerations re-
garding sequential detection’s practicality for radar tar-
get detection—see Ref. [20] for some discussion of these
considerations—this CI sequential-detection advantage
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matches the quantum advantage of the yet-to-be imple-
mented optimum quantum receiver for QI without se-
quential detection. Thus, if sequential detection is suit-
able for radar target detection, there should be little in-
terest in further pursuit of Tan et al. QI without sequen-
tial detection.

Discussion

Our paper has made two significant advances for mi-
crowave QI: (1) it proposed the hetero-homodyne re-
ceiver, whose non-sequential performance matches that of
the Guha and Erkmen’s receivers in QI’s usual NS � 1,
κ � 1, NB � 1, M � 1 operating regime (but ex-
ceeds their performance outside this regime) and does
not require a quantum interaction between the idler and
the returned signal; and (2) it showed that sequential
detection, at low single-trial SNR in QI’s usual operat-
ing regime, provides a 6 dB increase in error-probability
exponent for both CI homodyne detection and QI hetero-
homodyne detection as compared to their non-sequential
counterparts. Advance (2) demonstrates that Tan et
al.’s TMSV QI does not saturate what can be gained
from using entanglement for target detection in a lossy,
noisy environment despite the optimality proofs from
Refs. [12, 13, 14, 15, 16, 17, 18]. At this point it be-
hooves us to address some additional issues regarding the
hetero-homodyne receiver and its use with sequential de-
tection. On the negative side are its continuing need for
knowledge of the target’s phase delay and its requiring a
quantum memory for idler storage. On the positive side
for sequential hetero-homodyne QI is its less demanding
bandwidth requirement.

In conclusion, we believe the hetero-homodyne receiver
we have proposed both pushes microwave QI target de-
tection closer to fruition and underscores the need for
continued research into quantum radar.
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Abstract—Semi-device-independent (semi-DI) quantum ran-
dom number generators (QRNGs) are gaining more awareness
more and more, presenting a high level of security with an
uncomplicated experimental requirement. In this paper, we study
a semi-DI protocol based on a minimum error rate of energy-alike
coherent states built on the prepare-and-measure scheme with a
straightforward experimental requirement where the measure-
ment device is untrusted. Furthermore, the security estimation
is based on lower bounding the guessing probability, which is
numerically optimized by utilizing semi-definite programming.
Finally, a comparison of different encoding and decoding schemes
is presented.

Index Terms—Quantum random number generator, Assurance
of quantum random number generators

I. INTRODUCTION

Owning high-quality and secure randomness is a necessary
step to initiate most of the cybersecurity protocols. The level
of security is subject to several theoretical and experimental
factors. Accordingly, it is essential to ensure that the random
numbers are generated securely to prevent illegal access and
obtain testable randomness. In general, random number gen-
erators can be classified into three main categories: pseudo-
random number generator (PRNG), hardware random number
generator (HRNG), and quantum random number generator
(QRNG). The PRNG and HRNG are based on deterministic
phenomena making them predictable. At the same time, ran-
domness is a fundamental feature of quantum mechanics that
originated from its probabilistic nature. Relying on the level
of assumptions and experimental conditions, QRNGs can be
divided into three sub-groups: device-dependent (DD), semi-
device-independent (semi-DI), and device-independent (DI)
QRNG. DD QRNGs are easy to implement and performant,
while dishonest producers, imperfections, or any deviation
from the ideal situation can compromise security. On the
other hand, DI QRNGs offer the highest security, but the
experimental realization of DI protocol is very challenging,
causing them to be less practical. Semi-DI protocols, however,
present an excellent trade-off between security and practicality,
making them a perfect candidate for practical uses.

II. PROTOCOL

This semi-DI protocol is based on the prepare-and-measure
scheme where the preparation device is partially trusted,
inspecting the single condition of the protocol, which is trans-
mitting energy-alike states. On the other hand, no requirement

is assumed on the measurement device, and it can be treated
as a black box.

We consider the simplest encoding technique, binary state
preparation, two coherent states represented by two circles in
Fig. 1 (A), guaranteeing the states have similar energy; in this
case, we can also bind the states’ energy to be α-close to the
vacuum state, discrimination of such states always comes with
an error, see Fig. 1 (B). Basically, the state’s indistinguisha-
bility detection imposes a minimal rate of unresolved events,
namely error probability Pe ≥ 1 −

√
1− δ2, where δ is the

scalar product of the states (δ = ⟨ψl|ψj⟩). As shown in Fig. 1
(B), the error probability is maximum when the states overlap
is equal to one (µ = 0), and it decreases with increasing the
energy of the states. Otherwise stated, the ambiguity in states
discrimination increase when the state’s energy decreases; the
closer to the vacuum state, the more ambiguity. Note that the
states’ energy cannot drop to zero as the system becomes
single-choice, transmitting vacuum states all the time. The
same reasoning applies to more inputs; as long as the state
has the energy-alike constraint, the measurement comes with
an error.

Suppose that the source takes an input i, chosen inde-
pendently from the source and the detector, and prepares
a physical system in one of the possible quantum states.
Later, transmitted to the measurement part, where a detector,
which could be either in the continuous or discrete variable
domains, e.g., single-photon detector, homodyne, or hetero-
dyne detector, returns an output string o. Randomness can
be certified by analysing the input-output probabilities p (i|o),
given that the states obey the energy-alike constraint. As
shown in [1,7,8,9], specific input-output correlations indicate
genuine quantum randomness in the sense that the device’s
output cannot be perfectly predicted, whatever the underlying
quantum representation cause it. In spirit, this is comparable
to the violation of Bell inequalities which witness genuine
randomness independently of the devices’ implementation.
Owning the measurement outcomes together with the inserted
values to the preparation box, we can compute the input-output
correlation p (o|i):

p (o|i) =
∑
λ

p (λ)
〈
ψλ
i

∣∣Πλ
o

∣∣ψλ
i

〉
(1)

where ρλi are the propagated states, λ represents the possible
strategies of an attacker, and Πλ

b are the POVM determining
the measurement method. The conditional min-entropy (CME)
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Fig. 1. (A): Schematic representation of coherent state with overlap, the dashed and dotted green and orange lines show the distribution of the states over X.
(B): The detection error probability as a function of mean-photon number (µ) of states (µ = |α|2).

is employed to estimate the system’s entropy, put it differently,
CME calculates the quantity of extractable genuine random-
ness which reads:

Hmin = − log2 (Pguess) =
∑
i

pi
∑
λ

pλ max {
m−1∑
o

Tr
[
ρλi Π

λ
o

]
}

(2)
pi is the probability of transmitting i, while λ is arbitrary,
Pguess is the guessing probability, which is the probability
that an attacker can guess the outcome, given the input.
Pguess should be optimized over all possible measurement and
preparation strategies, making it complicated to be solved an-
alytically. Following the approach presented in [2,3,4,5,6], we
use a numerical tool (semi-definite programming) to solve the
optimization problem and estimate the amount of extractable
randomness.

III. PREPARATION AND MEASUREMENT

The preparation device transmits quantum states with lim-
ited energy; this constraint can be seen in the context of
energy-bound or overlap assumptions depending on the user’s
choice. The energy bound is a tighter bound which imposes
an inevitable overlap of the prepared states. In any case, the
source can be a weak coherent source or a time-bin single-
photon source as long as the experiment energy-alike condition
is satisfied.

Here we demonstrate the phase encoding scheme exploiting
a weak coherent light, meaning that the states are encoded
based on their phase. This provides the possibility to increase
the number of inputs straightforwardly, as shown in Fig. 2
(A); infinite possible states can be encoded in this way, while
the states are located within limits, dashed circle. On the
measurement side, in general, any scheme can be employed;
here, we study heterodyne detection as it gives information
on both light field quadratures simultaneously, enabling track-
ing the states’ phase. The heterodyne detection describes

the probability density of getting detection proportional to
(X+iP )

2 from an optimal simultaneous measurement of field
quadratures X and P. This kind of measurement is undoubtedly
non-ideal, considering that the field quadratures X and P do
not commute. The heterodyne detection corresponding POVM
reads;

Π(xϕ) = |β⟩ ⟨β| (3)

Where |β⟩ is the coherent state with complex amplitude β.
Having the POVM, we can compute the conditional probabil-
ities:

p(α) = 1/π

∫
| |⟨α|β⟩|2 dβ2 (4)

Fig. 2(B) represents the conditional min-entropy as a function
of the number of outcomes for the heterodyne detector for
binary and ternary encoding schemes. As shown, the entropy
improvement for the binary case, even for higher outcomes, is
negligible, but for the ternary case, the gain is more evident.

Note that increasing the number of outcomes can be done
in the post-processing stage without touching the actual ex-
perimental setup. Indicating that more randomness can be
extracted from the same optical device only by changing the
data processing stage.

IV. CONCLUSION

In conclusion, this paper studies a semi-DI QRNG with
various encoding and decoding schemes, particularly phase
encoding and heterodyne detection schemes were investigated
in detail. It is shown that by increasing the number of
inputs and outcomes, the extractable randomness increases
accordingly, meaning more accessible randomness needles for
changing any experimental component.
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Fig. 2. (A): Encoding technique using weak coherent phase; in this way, one
can generate infinite inputs using different phases to encode the states. The
central dashed circle represents the experiment constraint, and the two dotted
lines exemplify the binary phase keying scheme. (B): The conditional min-
entropy as a function of the number of outcomes for heterodyne detection
with binary and ternary phase shift keying encoding schemes.

V. ACKNOWLEDGEMENT*

This work is supported by the Innovate UK Industrial Strat-
egy Challenge Fund (ISCF), project 106374-49229 AQuRand
(Assurance of Quantum Random Number Generators).

REFERENCES

[1] Rusca, D., Tebyanian, H., Martin, A., Zbinden, Fast self-testing quan-
tum random number generator based on homodyne detection, Applied
Physics Letters 116 (2020).

[2] Avesani, M., Tebyanian, H., Villoresi, P., Vallone, G. Unbounded
randomness from uncharacterized sources. Communications Physics. 5,
273 (2022).

[3] Tebyanian, H., Zahidy, M., Avesani, M., Stanco, A., Villoresi, P. &
Vallone, G. Semi-device independent randomness generation based on
quantum state’s indistinguishability. Quantum Science And Technology.
6, 045026 (2021,9), https://doi.org/10.1088/2058-9565/ac2047

[4] Tebyanian, H., Avesani, M., Vallone, G., Villoresi, P. Semi-device-
independent randomness from d-outcome continuous-variable detection.
Phys. Rev. A. 104, 062424 (2021).

[5] Brask, J., Martin, A., Esposito, W., Houlmann, R., Bowles, J.,
Zbinden, H. & Brunner, N. Megahertz-Rate Semi-Device-Independent
Quantum Random Number Generators Based on Unambiguous
State Discrimination. Phys. Rev. Applied. 7, 054018 (2017,5),
https://link.aps.org/doi/10.1103/PhysRevApplied.7.054018

[6] Tebyanian, et al., Time-bin Quantum Random Number Generator with
Uncharacterized Devices.

[7] Tebyanian, H., Avesani, M., Vallone, G. & Villoresi, P. Semi-
device-independent randomness from d-outcome continuous-
variable detection. Phys. Rev. A. 104, 062424 (2021,12),
https://link.aps.org/doi/10.1103/PhysRevA.104.062424

[8] Avesani, M., Tebyanian, H., Villoresi, P. & Vallone, G. Semi-
Device-Independent Heterodyne-Based Quantum Random-
Number Generator. Phys. Rev. Applied. 15, 034034 (2021,3),
https://link.aps.org/doi/10.1103/PhysRevApplied.15.034034

[9] Zahidy, M., Tebyanian, H., Cozzolino, D., Liu, Y., Ding, Y., Morioka, T.,
Oxenløwe, L. & Bacco, D. Quantum randomness generation via orbital
angular momentum modes crosstalk in a ring-core fiber. AVS Quantum
Science. 4, 011402 (2022),

85



Cross-Platform Comparison of Arbitrary Quantum Processes

Congcong Zheng1 ∗ Xutao Yu1 † Kun Wang2 ‡

1 State Key Lab of Millimeter Waves, Southeast University, Nanjing 211189, China
2 Institute for Quantum Computing, Baidu Research, Beijing 100193, China

Abstract. We propose a protocol to compare the performance of quantum processes imple-
mented on spatially and temporally separated quantum platforms using Local Operations and
Classical Communication (LOCC). Local unitaries are sampled and communicated to each plat-
form to construct state preparation and measurement circuits. The generated probability distri-
butions allow for direct estimation of the process fidelity. Remarkably, the experimental results
reveal that the protocol can accurately compare the performance of the quantum processes im-
plemented on different quantum computers, requiring significantly fewer measurements than
those needed for full quantum process tomography. Our work serves as a novel application of
the powerful randomized measurement toolbox and a catalyst for collaborative cross-platform
comparison of quantum computers.

Keywords: random measurements, cross-platform comparison, quantum processes, LOCC

1 Summary

The current generation of noisy intermediate-scale
quantum (NISQ) computers, despite their potential,
are still hindered by quantum noise [1]. A great chal-
lenge is how to directly compare the performance
of the quantum computers fabricated by different
manufacturers, termed as cross-platform compari-
son. This task is especially relevant when we move
towards regimes where comparing to classical simu-
lations becomes computationally challenging.
In this work, by elaborating the core idea of [2], we

present a novel protocol for cross-platform compar-
ing spatially and temporally separated quantum pro-
cesses. The protocol uses only single-qubit unitary
gates and classical communication between quan-
tum computers. This approach allows for accurate
estimation of the performance of quantum devices
manufactured in separate laboratories and compa-
nies using different technologies. We apply the pro-
tocol to compare the performance of five quantum
devices from IBM and the “Qianshi” quantum com-
puter from Baidu via the cloud. The experimen-
tal results reveal that our protocol accurately com-
pares the performance of different quantum com-
puters with significantly fewer measurements than
quantum process tomography. Overall, our protocol
serves as a novel application of the powerful random-
ized measurement toolbox [3]. A technical version
can be found in arXiv:2303.13911.

∗zhengcongcong@seu.edu.cn
†yuxutao@seu.edu.cn
‡wangkun28@baidu.com

2 Cross-Platform Comparison

The max process fidelity between two n-qubit
quantum processes E1 and E2, implemented on dif-
ferent quantum platforms, is defined as [4]

Fmax(E1, E2) : =
Tr[η1η2]

max{Tr[η21],Tr[η22]}
, (1)

where ηi is the Choi state of Ei (i = 1, 2). We first
propose a protocol to estimate Fmax that is con-
ceptually straightforward yet experimentally chal-
lenging. Then, we make a novel modification to the
protocol that employs randomized local input states
and local measurements.

2.1 Ancilla-assisted protocol

In this section, we recover a conceptually simple
approach for estimating the max process fidelity,
which is illustrated in Figure 1(a)-(c). It employs
the cross-platform state estimation protocol pro-
posed in [2] as a subroutine. We refer to this proto-
col as the ancilla-assisted cross-platform comparison
because it requires additional clean ancilla qubits to
prepare the Choi state of the quantum process. To
perform this protocol, a maximally entangled state
is required as input, resulting in a two-fold overhead
when comparing 2n-qubit states instead of n-qubit
states. Furthermore, the experimental challenge of
preparing high-fidelity maximally entangled states
can potentially affect the accuracy of the protocol.

2.2 Ancilla-free protocol

To overcome the limitations of the ancilla-assisted
protocol, we propose an efficient and ancilla-free ap-
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Figure 1: Two protocols to estimate the max
process fidelity Fmax between quantum processes
on different platforms: (a) Ancilla-assisted :
Prepare entangled state, execute target process,
and perform randomized measurements using
U1 ⊗ U2. (b) Ancilla-free: Randomly sample basis
|s⟩, execute UT

1 , execute target process, and
perform randomized measurements using U2. (c)
Run circuits from (a) or (b) on platform Si to

obtain Pr
(i)
U [s,k]. Finally, Fmax is inferred from

probability distributions (see text).

proach for estimating the max process fidelity. We
refer to the new protocol as the ancilla-free cross-
platform comparison and it works as follows. Con-
sider two n-qubit quantum processes E1 and E2 re-
alized on different quantum platforms S1 and S2.
The protocol, illustrated in Figure 1(b)-(c), consists
of three main steps: sampling unitaries, running cir-
cuits, and post-processing.

Step 1. Sampling unitaries: Construct two

n-qubit unitaries Ui =
⊗n

k=1 U
(k)
i , i = 1, 2, where

each U
(k)
i is identically and independently sampled

from a single-qubit set satisfying unitary 2-design.
The information of Ui is then communicated to both
platforms via classical communication.

Step 2. Running circuits: On each platform Si

(i = 1, 2) initialize the quantum system to the com-
putational states |s⟩ and apply the first unitary U1

to |s⟩. Then, implement the quantum process Ei and
apply the second unitary operation U2. Afterward,
a projective measurement is performed in the com-
putational basis, yielding an outcome denoted as k.
Through repeated iterations of this procedure, two

probability distributions are obtained: Pr
(1)
K|s,U1,U2

and Pr
(2)
K|s,U1,U2

, representing the measurement out-
comes for the fixed computational state and uni-
taries. By sampling the computational states and
repeatedly sampling the unitaries, two probability

distributions denoted as Pr
(i)
K,S|U1,U2

are obtained,
accounting for the sampled unitaries. For simplic-

ity, we refer to Pr
(i)
K,S|U1,U2

as Pr
(i)
U .

Step 3. Post-processing: From the experimen-
tal data, we estimate the overlap between the Choi
states ηi and ηj for i, j = 1, 2 as

Tr[ηiηj ] = 4n
∑

s,s′,k,k′∈{0,1}n
(−2)−D[s,s′]−D[k,k′]

× Pr
(i)
U [s,k]Pr

(j)
U [s′,k′].

where · · · denotes the ensemble average over the
sampled unitaries U1 and U2. By setting differ-
ent i and j, we can estimate Using the estimated
quantities, we compute the max process fidelity
Fmax(E1, E2) in Eq. (1).
There are notable points regarding our protocol.

Firstly, it enables comparison between experimen-
tally implemented processes and theoretical simu-
lations when classical simulation is available, facil-
itating experiment-theory comparisons. Secondly,
our protocol estimates the process purity Tr[η2E ] of a
quantum process E . This efficient estimation is cru-
cial for characterizing quantum processes. Lastly,
the versatility of our protocol lies in its ability to
extend to various metrics [4] based on the overlap
Tr[ηE1ηE2 ] and purities Tr[η2Ei ] (i = 1, 2). This adapt-
ability makes it applicable to diverse quantum com-
puting scenarios.

3 Experiments

We utilize our ancilla-free protocol to assess
the performance of H and CNOT gates imple-
mented on seven distinct platforms freely accessi-
ble over the internet: ibmq quito (IBM 1), ibmq oslo
(IBM 2), ibmq lima (IBM 3), ibm nairobi (IBM 4),
ibmq manila (IBM 5), baidu qianshi (BD 1), and an
ideal simulator (IDEAL) for theory comparison.
The performance of the single-qubit H gate is illus-

trated in Figure 2(a). Here, we create 21×NU = 20
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Figure 2: The performance matrices for the
single-qubit H (a) and two-qubit CNOT (b) gates
generated from seven different quantum platforms.
The entry in the i-th row and j-th column of the
matrix represents the max process fidelity between
platform-i and platform-j. (c) Scaling of the
minimal number of required experimental runs.

circuits and execute Mshots = 500 shots for each cir-
cuit. We also employ the same protocol to compare
the performance of the CNOT gate, with 22 × NU =
400 and Mshots = 500. The result is in Figure 2(b).
The experimental results make it clear that, while

some devices may achieve fidelities that are compa-
rable to the ideal simulator, there remains a sig-
nificant discrepancy between them. This empha-
sizes the importance of directly comparing the per-
formance of quantum devices with each other.
Scaling of sample complexity. We investi-

gate the scaling of the required number of experi-
mental runs, 2nMshots, per unitary to estimate the
max fidelity F̃max within an average statistical er-
ror of ϵ = 0.05 while fixing NU to 100. We employ
our protocol to two types of quantum processes: (i)
a highly entangled quantum process corresponding
to an n-qubit GHZ state preparation circuit (En-
tangled) and (ii) a completely local quantum pro-
cess composed of n single-qubit rotation gates (Non-
Entangled). The result presented in Figure 2(c).
The data shows that our protocol has a sample
complexity that scales as 2nNUMshots ∼ 2bn with
b ≈ 2. This scaling, despite exponential, is signif-
icantly less than full quantum process tomography
(QPT), which has an exponent b ≥ 4.
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Abstract. Sampling from the stationary distribution is one of the fundamental tasks of Markov chain-
based algorithms. Quantum sampling from Markov chains corresponds to preparing quantum states with
amplitudes arbitrarily close to the square root of a stationary distribution instead of classical sampling from
a stationary distribution. A new qsampling algorithm for all reversible Markov chains is constructed by
discrete-time quantum walks. In non-regular graphs, the invocation of the quantum fast-forward algorithm
accelerates previous state-of-the-art quantum sampling algorithms for both discrete-time and continuous-
time cases, especially on sparse graphs. In regular graphs, our results match other quantum algorithms,
and the reliance on the gap of Markov chains achieves quadratic speedup compared with classical cases. In
some widely used graphs and a series of sparse graphs where stationary distributions are difficult to reach
quickly, our algorithm is the first algorithm to achieve complete quadratic acceleration (without log factor)
over the classical case without any limit.

Keywords: Quantum sampling, Markov chains, nonregular graphs, ancilla qubits, quantum fast forward-
ing

1 Introduction

Random walks or Markov chains which can simulate
the dynamics of a particle moving randomly on some
graphs are a powerful algorithmic model for classical
computer science. It can be used to solve problems in
machine learning, combinatorial optimization and net-
work science. Similarly, quantum walks which simulate
the quantum coherent dynamics of a particle moving on
a graph present a powerful and universal framework for
designing and creating new faster quantum algorithms.
Sampling from stationary distribution of Markov chain

is one of the fundamental tasks of Markov chain-based
algorithm, since many problems can be reduced to sam-
pling [1], such as estimating the partition function in
counting problems, calculating the importance of Inter-
net pages (the goal of PageRank algorithm), etc.
Mixing time is the minimum time to achieve station-

ary distribution from any initial distribution. Currently,
the quadratic speedup in quantum mixing time is only
known for some special graphs [2] or stationary distribu-
tions [3]. No general results are obtained for the more
general graphs corresponding to any reversible Markov
chain.
So far the classical time complexity of reversible

Markov chain is bounded by δ(P )−1 log(π−1
min) [4, 5],

where δ(P ) denotes the eigenvalue gap of transition ma-
trix P , πg denotes the probability of vertex g in station-
ary distribution, πmin := ming∈V πg. Correspondingly,
the general quantum result can be described with an up-

per bound δ(P )−1/2π
−1/2
g [6]. Although gap can reach

quadratic speedup relative to classical case, the quantum
mixing time is extremely dependent on πmin. Consider

∗shangyun@amss.ac.cn

G = (V,E) with large size n, then quantum result brings
extra

√
n cost compared with classical case and largely

depends on the graphic size.
Several known results of preparing quantum counter-

part of stationary distribution in special cases are listed
as follows. A slowly evolving sequence of Markov chains
are constructed in simulated annealing algorithm [7, 8, 9]
and the total complexity is the product of

√
δ(P ) and

sequence length. By introducing a special Markov chain
with the form of slowly evolving sequences, Orsucci et al.
introduce a quadratic speedup, which improves the ad-

ditional dependency of π
−1/2
min from

√
n to 4

√
n [10]. The

time from single-vertex initial state |g⟩ to stationary dis-
tribution with known πg is Θ(

√
thit) in continuous-time

case [11], where thit is the classical hitting time bound
of G for any vertex in V . The time to reach a long-time
average probability distribution of quantum walk is also
considered [12], which needs to prepare a limiting state,
different from the quantum form stationary distribution.

These results are mainly focused on special Markov
chains or special stationary distribution. However, in
general case, whether the quantum state corresponding
to the stationary distribution can be obtained with the
quadratic acceleration is still an open question.

In this paper, a new qsampling algorithm for all re-
versible Markov chains is constructed by discrete-time
quantum walks. Our work relies on two key technical
methods. The first is the quantum interpolated walks
method [13], which shows how to prepare a state having
constant overlap with the stationary state. Specifically,
an appropriate interpolation parameter s is chosen such
that both the initial state and the stationary state have
constant overlap with the 1-eigenvector (the eigenvector
corresponds to the eigenvalue 1) of quantum interpolated
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walk operator. The second technique we use is quantum
fast-forwarding [14, 15]. It can simulate the dynamics of
classical random walks by using quantum walk operator,
which keeps the stationary state evolving like classical
process while weakens the effect of other states, namely
distinguishing 1-eigenvectors from other eigenvectors. As
a result, quadratic speedup relative to the classical case
can be achieved.

2 Technical Overviews

We divide two cases to discuss. In general, only regu-
lar graphs have known πg for a randomly chosen vertex
g without requiring any additional information since all
vertices have equal probability, but non-regular graphs
with unknown πg are often encountered. Then it is
particularly important to prepare the stationary state
for non-regular graphs. However, if using the reverse
of search algorithm in [13] to determine unknown πg,

the total complexity will be Θ(log(π−1
min)

√
HT log(1ε )),

and increases at least additional log n compared with
known πg case. Here we construct a new algorithm
to determine the value of πg, which reduces the ad-
ditional cost to Θ(log(π−1

min/n)). The additional cost
will become constant in most sparse graphs that sat-
isfy πmin = Θ(1/n). Furthermore, by quantum fast-
forwarding technique, a new reflection around the sta-
tionary state with fewer ancilla qubits is constructed to
measure, which maintains quadratic speedup compared
to classical scale δ−1 and reduces ancilla qubits from
Θ( 1√

δ
log( 1

ε2
)) to Θ(log( 1√

δ
)+log log( 1

ε2
)) compared with

the method by phase estimation [7]. We believe that it
may have independent applications.
In a word, according to πg known or unknown, we di-

vide two cases to construct a stationary state. For un-
known πg, we need to determine the value of πg first.
Then the rest can be reduced to preparing stationary
state |π⟩ with known πg.
To construct a state ε-close to the target state |π⟩ with

constant success probability, we combine quantum fast-
forwarding algorithm with the interpolated walk when
constructing Umain operator (some kind of interpolated
quantum walk unitary operator) according to initial state
|g⟩. An appropriate interpolated parameter s is chosen
such that both the initial state and the stationary state
have constant overlap with the 1-eigenvector of quantum
interpolated walk operator D(s). The method of quan-
tum fast-forwarding is used to distinguish 1-eigenvector
from other eigenvectors by using the quantum walk oper-
ator to simulate the dynamics of classical random walk,
which reduces the dependence on πmin and ε. Besides,
the number of ancilla qubits required is reduced as well.
Then a state that has constant overlap with |π⟩ will be
prepared. At last, we apply a projection operator Ππ

to generate a state that is ε-close to |π⟩ with constant
success probability.

3 Main results

Theorem 1 (Informal statement of main results)
For an ergodic reversible Markov chain P in G(V,E),
there exists an algorithm that generates a state ε-close
to |π⟩ with constant success probability from an initial
state of the form |g⟩, where g is any randomly selected
vertex in graph G.

1. For non-regular graphs (the case with unknown
πg), the complexity is Θ(log(π−1

min/n)
√
HT log(ε−1)) with

Θ(log(π−1
min/n)(log

√
HT+ log log( 1ε ))) ancilla qubits.

2. For regular graphs (the case with known πg),

the complexity is Θ(
√
HT log(ε−1)) with Θ(log(

√
HT) +

log log( 1ε )) ancilla qubits.

Formal results can be found in Theorem 3 and Theorem
4 [16].

4 Results comparison and applications

Compared with the existing works, we build a qsam-
pling algorithm that not only accelerates qsampling in
non-regular graphs but also maintains the speed-up of
existing quantum algorithms in regular graphs with fewer
ancilla qubits. In non-regular graphs, the invocation
of the quantum fast-forwarding algorithm accelerates
previous state-of-the-art qsampling algorithms for both
discrete-time and continuous-time cases, especially on
sparse graphs. In regular graphs, our results match
other quantum algorithms, and the reliance on the gap
of Markov chains achieves quadratic speedup compared
with classical cases. For both cases, we reduce the num-
ber of ancilla qubits required compared with the exist-
ing results. In some widely used graphs and a series of
sparse graphs where stationary distributions are difficult
to reach quickly, our algorithm is the first algorithm to
achieve complete quadratic acceleration (without log fac-
tor) over the classical case without any limit. Our main
results are summarized in Table 1 and applications on
some sparse graphs can refer to Table 2.
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Case Our result
Best previous quantum results

Discrete-time[13]1 Continuous-time[11]

non-regular
(unknown πg)

Complexity Θ(log(π−1
min/n)

√
HT log(1ε )) Θ(log(π−1

min)
√
HT 1

ε ) \
Ancilla qubit Θ

(
log(π−1

min/n)(log
√
HT+ log log( 1ε ))

)
Θ
(
log(π−1

min)(log
√
HT+ log 1

ε )
)

\
regular

(known πg)
Complexity Θ(

√
HT log(1ε )) Θ(

√
HT 1

ε ) Θ(
√
HT log(1ε ))

Ancilla qubit Θ(log
√
HT+ log log( 1ε )) Θ(log

√
HT+ log 1

ε ) Θ(log
√
HT · log( 1ε ))

Table 1: Summary of our main results. The corresponding classical complexity is Θ( 1δ (log(π
−1
min) + log( 1ε ))) for all

graphs. Here δ denotes the eigenvalue gap of Markov chain P , πmin := ming∈V πg denotes the smallest probability
component in stationary state, HT is the classical hitting time bound of G for any vertex in V , and ε denotes the
error. Formal results can be found in Theorem 3 and Theorem 4 [16].
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√
n

√
n log n
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Abstract. Clustering is a fundamental task in data mining that aims to group data based on their sim-
ilarities. Defining similarity is often ambiguous, making it challenging to determine the most appropriate
objective function for describing the data. As a result, various clustering methods, such as the k-means
algorithm and weighted max k-cut, have been developed, each with its own objectives and data-dependent
performance. Additionally, these problems are known to be NP-complete. In this study, we propose a
novel approach that formulates the clustering problem as a search for the ground state of a Hamiltonian.
Within this framework, clustering objectives are tailored by designing the Hamiltonian. Moreover, our
approach seamlessly incorporates constraints, unlike previous clustering algorithms that mainly focus on
unconstrained problems. Our method provides an opportunity to leverage quantum simulation techniques
for clustering problems, customized to the target data and underlying goals. We propose multiple Hamil-
tonians, each representing a distinct objective, and evaluate the clustering performance using well-known
metrics such as the Silhouette score and Rand index through numerical simulations. The simulation results
demonstrate the broad applicability of our method to various clustering problems.

Keywords: Quantum Machine Learning, Clustering, Quantum Optimization, Quantum Simulation

1 Introduction

Quantum machine learning (QML) offers new possibil-
ities and approaches to address the various challenges in
data mining, pushing the boundaries of existing meth-
ods. Among its potential applications, clustering stands
out as a widely used technique in various domains of pat-
tern recognition and data mining, such as image recogni-
tion [1], social network analysis [2], biological data anal-
ysis [3], customer segmentation in marketing [4], and
anomaly detection [5]. However, clustering encounters
several challenges [6, 7]. Firstly, selecting an appropriate
clustering objective without prior knowledge of the target
dataset can be challenging. Moreover, most clustering
algorithms are designed to handle datasets with a single
data type, either categorical or numerical. Consequently,
some data points may not fit well due to the inappro-
priate choice of similarity measures, resulting in cluster
assignment errors. Thus, the selection of similarity mea-
sures and clustering objectives needs to be tailored to
the specific characteristics of the dataset. Consequently,
well-known clustering algorithms such as the k-means al-
gorithm and the weighted max k-cut algorithm exhibit
data-dependent performance. Another challenge is the
scalability of clustering problems, as finding the global
solution is known to be NP-complete.
This work introduces a novel approach to address the

clustering problem by formulating it as a search for the
ground state of a Hamiltonian. This formulation offers
flexibility and a unified framework for clustering, allow-
ing customization for different objectives and constraints.
Specifically, we map the task of grouping N real data
points X ∈ Rd into two clusters to a quadratic uncon-
strained binary optimization (QUBO) problem. The bi-
nary variable z ∈ {−1,+1}N is used to represent the
assignment of data points to clusters, and a feature rep-

∗europa0306@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

resentation of data, V = ϕ(X) ∈ R, is utilized. The
number of data points assigned to each cluster can then
be computed as

N+1 =

N∑
i=1

1 + zi
2

N−1 =

N∑
i=1

1− zi
2

. (1)

These elements are the building blocks for constructing
the desired objective function along with any necessary
constraints. The corresponding Hamiltonian is obtained
by replacing zi with the Pauli Z operator and 1 with
the identity operator on the ith qubit. This Hamiltonian
formulation of clustering offers the potential for more ef-
ficient solution finding on a quantum computer. It can
be solved using existing quantum simulation techniques,
such as quantum annealing [8], quantum approximate op-
timization algorithm [9], or variational quantum eigen-
solver [10–12], on a quantum device, leading to a poten-
tial quantum advantage.

To evaluate the performance of our approach, we com-
pare it to the widely used k-means algorithm using the
Iris dataset as a benchmark.

2 Methods

Intracluster Distance We begin by demonstrating
that the well-known k-means algorithm can be reformu-
lated as a Hamiltonian problem. The objective of the k-
means clustering algorithm is to identify the optimal set
of clusters that minimizes the sum of distances between
each cluster’s center (centroid) and the data points as-
signed to that cluster. The optimization problem can be
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Figure 1: Illustration of the intracluster distance and the
intercluster distance.

defined as follows:

min
z∈{−1,+1}N

N∑
i=1

∥Vi −
1

N+1

N∑
j

Vj
1 + zj

2
∥22

1 + zi
2

+

N∑
i=1

∥Vi −
1

N−1

N∑
j=1

Vj
1− zj

2
∥22

1− zi
2

. (2)

Intracluster and Intercluster Distances The k-
means algorithm focuses solely on intracluster distance,
disregarding intercluster distance. Figure 1 illustrates
the distinction between intracluster and intercluster dis-
tances. However, incorporating intercluster distance into
the objective can enhance clustering results for certain
datasets. This can be done easily in our framework. A
proper formulation of this is achieved by adding the fol-
lowing term to the objective in Equation (2):

−
N∑
i=1

∥Vi −
1

N−1

N∑
j

Vj
1− zj

2
∥22

1 + zi
2

−
N∑
i=1

∥Vi −
1

N+1

N∑
j=1

Vj
1 + zj

2
∥22

1− zi
2

. (3)

In this formulation, the intercluster distance is repre-
sented by the distance between the centroid of one cluster
and a data point in another cluster.

Pairwise Distance In addition to constructing the ob-
jective based on the distance between centroids and data
points, the pairwise distance between data points can also
be taken into account. For example, one can add the fol-
lowing maximization problem to any objectives discussed
thus far.

max
z∈{−1,+1}N

N∑
i=1

N∑
j=1

∥Vi
1 + zi

2
− Vj

1− zj
2

∥22 (4)

In this formulation, the distance between data points in
different clusters is computed by considering the differ-
ence between their feature representations, denoted as
Vi.
Alternatively, pairwise distance can be computed us-

ing pre-computed similarity values between data points

based on standard measures like the Euclidean distance,
instead of utilizing Vi representations. This leads to an
optimization problem of the form:

max
z∈{−1,+1}N

N∑
i<j

wijzizj . (5)

Here, wij ≥ 0 represents the similarity measure between
the ith and jth data points. This is also known as the
weighted max-cut problem on a graph.

Mixture Models A comprehensive objective can be
formed by combining the discussed objectives to incorpo-
rate multiple considerations. For instance, a new objec-
tive can be defined as the search for the ground state en-
ergy of the Hamiltonian that combines the weighted max-
cut objective and a customized Hamiltonian Hc. The hy-
perparameter λ > 0 controls the relative importance of
each term in the objective:

−
N∑
i<j

wijZiZj + λHc. (6)

Cardinality Constraint In certain applications, clus-
tering with a designated number of data per cluster,
known as a cardinality constraint, is desirable. In our
framework, this constraint can be incorporated by aug-
menting the Hamiltonian with a penalty term:

Hc + λ(C −
N∑
i

zi)
2. (7)

Here, C represents the desired difference in the number
of data points between two clusters.

3 Results

To evaluate the effectiveness of the customized Hamil-
tonians for clustering, we employed a brute force algo-
rithm to determine the ground state of the Hamilto-
nian. The analysis involved 150 independent datasets,
each consisting of 16 data points randomly sampled from
the Iris dataset. We compared the performance of our
method utilizing different Hamiltonians against the k-
means algorithm. We used two standard metrics, namely
the Silhouette score and the Rand index, to measure the
quality of the clustering results. In terms of the Silhou-
ette score, which serves as an internal validation met-
ric, our method generally yielded lower scores compared
to the k-means algorithm when utilizing the Euclidean
distance as the similarity measure. However, in certain
samples, the Hamiltonian approach surpassed the per-
formance of the k-means algorithm, as indicated by the
higher values of the external validation metric, the Rand
index. This result suggests that our method with cus-
tomized Hamiltonians have the potential to achieve more
accurate clustering outcomes in specific scenarios.

Numerical analysis also showed that the Hamiltonian
approach can successfully find clusters with the correct
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Figure 2: Comparison of k-means and customized Hamil-
tonian using Silhouette Score: KDE analysis
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Figure 3: Comparison of k-means and customized Hamil-
tonian using Rand Index: KDE analysis

number of data as demanded by the cardinality con-
straint. We conducted tests on 24 and 12 data sets with
C = 4 and C = 8, respectively, and found that all clus-
ters identified by the Hamiltonian approach satisfied the
constraint while achieving high Rand Index and Silhou-
ette score. This feature is not supported by the k-means
algorithm.

4 Conclusions and Discussions

The Hamiltonian formulation of diverse clustering ob-
jectives presented in this work enables customization for
data- and context-specific objectives and constraints, of-
fering a flexible and unified approach to address complex
clustering problems. The hyperparameter λ can be fine-
tuned using other machine learning techniques to further
improve the performance of Hamiltonian-based cluster-
ing. The Hamiltonian approach in clustering benefits
from the computational advantages offered by quantum
simulation algorithms. Existing heuristic quantum simu-
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Figure 4: Rand Index and Silhouette Score for cluster-
ing with cardinality constraints. Note that the k-means
algorithm does not support the incorporation of con-
straints. Despite yielding lower scores, the Hamiltonian-
based clustering method effectively fulfills the specified
constraints.

lation methods, such as quantum annealing, QAOA, and
VQE, that are well-suited for the noisy intermediate scale
quantum (NISQ) devices do not guarantee the finding
of global minima in polynomial time. Nonetheless, the
potential advantage of quantum simulators in finding lo-
cal optima of a Hamiltonian in certain cases opens up
opportunities for achieving quantum advantage in clus-
tering. Additionally, in quantum annealing and QAOA,
the annealing time or the quantum circuit depth can be
controlled, allowing for flexibility in balancing runtime
and clustering performance. The development of more
efficient quantum simulation methods suitable for NISQ
technology holds promise for further improvements in
clustering. Another notable feature of the Hamiltonian
approach is that the clustering performance is not con-
strained by initial values, whereas the performance of the
k-means clustering algorithm is highly dependent on the
initial guess of cluster centers.

Extending the Hamiltonian-based method to handle
arbitrary k clusters is an important avenue for future re-
search. One potential solution is to leverage a binary
matrix representation, as proposed by Peng et al. [13],
where each entry indicates whether a data point belongs
to the k-th cluster or not. Determining the optimal num-
ber of clusters, denoted as k, without prior knowledge is
challenging and greatly affects clustering results. Recent
research has focused on auto-clustering [14] to address
this issue. A promising future direction is to utilize the
Hamiltonian approach to optimize the determination of
k, enabling a data-driven and automated approach that
reduces the need for manual determination of the number
of clusters. Additionally, investigating the performance
of this approach with larger datasets and more complex
clustering problems would be valuable.

94



References

[1] Andrea Baraldi and Palma Blonda. A survey of
fuzzy clustering algorithms for pattern recognition.
i. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 29(6):778–785, 1999.

[2] Mark S Handcock, Adrian E Raftery, and Jeremy M
Tantrum. Model-based clustering for social net-
works. Journal of the Royal Statistical Society: Se-
ries A (Statistics in Society), 170(2):301–354, 2007.

[3] Sara C Madeira and Arlindo L Oliveira. Bicluster-
ing algorithms for biological data analysis: a survey.
IEEE/ACM transactions on computational biology
and bioinformatics, 1(1):24–45, 2004.

[4] Jing Wu and Zheng Lin. Research on customer seg-
mentation model by clustering. In Proceedings of
the 7th international conference on Electronic com-
merce, pages 316–318, 2005.

[5] Shikha Agrawal and Jitendra Agrawal. Survey on
anomaly detection using data mining techniques.
Procedia Computer Science, 60:708–713, 2015.

[6] Anil K Jain. Data clustering: 50 years beyond k-
means. Pattern recognition letters, 31(8):651–666,
2010.

[7] Dongkuan Xu and Yingjie Tian. A comprehensive
survey of clustering algorithms. Annals of Data Sci-
ence, 2:165–193, 2015.

[8] Mark W Johnson, Mohammad HS Amin, Suzanne
Gildert, Trevor Lanting, Firas Hamze, Neil Dickson,
Richard Harris, Andrew J Berkley, Jan Johansson,
Paul Bunyk, et al. Quantum annealing with manu-
factured spins. Nature, 473(7346):194–198, 2011.

[9] Edward Farhi, Jeffrey Goldstone, and Sam Gut-
mann. A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, 2014.

[10] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt,
Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán
Aspuru-Guzik, and Jeremy L. O’Brien. A variational
eigenvalue solver on a photonic quantum processor.
Nature Communications, 5(1):4213, July 2014.

[11] Jarrod R McClean, Jonathan Romero, Ryan Bab-
bush, and Alán Aspuru-Guzik. The theory of vari-
ational hybrid quantum-classical algorithms. New
Journal of Physics, 18(2):023023, feb 2016.

[12] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jar-
rod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, and Patrick J. Coles. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644,
2021.

[13] Jiming Peng and Yu Wei. Approximating k-means-
type clustering via semidefinite programming. SIAM
journal on optimization, 18(1):186–205, 2007.

[14] Absalom E Ezugwu, Amit K Shukla, Moyinoluwa B
Agbaje, Olaide N Oyelade, Adán José-Garćıa, and
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Abstract. Despite entanglement being a prerequisite to observe Bell nonlocality, determining whether
a single instance of an entangled quantum state can lead to nonlocal correlations remains an important,
yet remarkably challenging problem. In this work, we experimentally demonstrate that a single copy of a
photonic Bell-local state can have its nonlocality activated when it is embedded in a quantum network. Our
four photon scheme, based on quantum broadcasting, provides a robust certification of the non-classical
nature of mixed entangled states for noise proportions beyond what is possible for two parties.
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1 Motivation

While all pure entangled states display nonlocal cor-
relations [1, 2], some mixed entangled states [3, 4] are
unable to violate a Bell inequality in the standard two-
party scenario [5]. The motivation for understanding
the relationship between entanglement and nonlocality
is twofold: on one hand it provides foundational insights
into quantum theory; on the other, nonclassical corre-
lations are at the heart of many quantum technologies
[6].
An area that has received significant attention in recent

years is that of quantum networks, which seek to estab-
lish quantum communication channels between multiple
distant nodes. Quantum networks [7] provide consider-
ably different generalizations of nonlocality [8, 9, 10, 11]
that can be exploited for multi-party secure communi-
cation [12] and cryptographic protocols [13, 14]. These
developments highlight the importance of understanding
and mitigating the impact of noise in quantum correla-
tions in the context of networks [15].
An important discovery was that nonlocality is a re-

source that can be activated ; that is, nonlocal behaviour
can be recovered for local states when they are subjected
to more exotic measurement procedures [16]. Quan-
tum networks provide an avenue for activating Bell-local
states [17, 18]. In a typical network scenario, one is al-
lowed to distribute several copies of a local state inde-
pendently to a number of distant parties, in a situation
closely related to entanglement distillation [19]. By tak-
ing a sufficiently large number of copies, any distillable
state can, in principle, be activated [20] in the asymptotic
limit [21]. The associated resource overhead, however,
quickly becomes impractical for experimental implemen-
tations.
In this work, we experimentally demonstrate a scheme

for the activation of nonlocality in a photonic three-node
network. Our demonstration requires only one instance
of a noisy entangled state per measurement round, which

∗luis.villegasaguilar@griffithuni.edu.au

is broadcast to two additional separated parties in a net-
work structure, employing the recent theory results of
Ref. [22]. Additionally, we certify our activation through
a rigorous statistical analysis on our experimentally gen-
erated states. We numerically prove the existence of a
local hidden variable model for our two-party states be-
fore the activating procedure.

Our demonstration does not rely on physical descrip-
tion of the measurement devices used and it can be re-
garded as a realistic, device-independent (DI) protocol
with strengthened noise tolerance.

2 Results

We built a source of high-quality optical isotropic
states ρα = α|Φ+⟩⟨Φ+| + (1 − α)I4/4, where |Φ+⟩ =
(|HH⟩+ |V V ⟩)/

√
2 is a maximally entangled state, I4 is

the 4×4 the identity matrix, and the parameter α ∈ [0, 1]
represents the fractional purity of the state. Our experi-
mental setup allowed for the quantum parameter α to be
fully tuned by means of a controllable depolarizing chan-
nel. The average measured fidelity of our experimental
states with the closest isotropic state was 0.993, with a
maximum of 0.997± 0.003. These fidelities are compara-
ble to the highest reported ones to date for similar states
[23].

A conceptual representation of our activation demon-
stration is depicted in Fig. 1. Initially, a source prepared
a two-qubit state. One of the subsystems was shared with
one party, while the other underwent a local transforma-
tion applied by a quantum channel Ω, which broadcast
it to two additional parties, forming a three-node net-
work. This broadcasting operation was implemented via
an optical controlled-NOT gate with an ancilla photon,
plus local qubit operations. The gate relied on high-
quality nonclassical interference [24] between single pho-
tons from independent sources, with an observed visibil-
ity of 0.97± 0.03.

The Bell inequality that establishes the classical limit
for the probability distribution p(a, b, c|x, y, z) in this sce-
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Figure 1: Conceptual representation of the broad-
cast Bell scenario. Half of of a noisy two-qubit state
undergoes a quantum broadcasting operation, sharing its
outcome with two separate parties, forming a three-node
network. Each party receives input x, y and z, and per-
form local measurements on their qubits, yielding out-
comes a, b and c, respectively.

nario [22] is

IB =⟨A0B0C0⟩+ ⟨A0B1C1⟩+ ⟨A1B1C1⟩ − ⟨A1B0C0⟩
+ ⟨A0B0C1⟩+ ⟨A0B1C0⟩+ ⟨A1B0C1⟩ − ⟨A1B1C0⟩
− 2⟨A2B0⟩+ 2⟨A2B1⟩ − 4 ≤ 0, (1)

with ⟨AxByCz⟩ = Σa,b,c=0,1(−1)a+b+c p(a, b, c|x, y, z)
and analogously for the two-party correlator terms. A
violation of this inequality certifies the presence of non-
local correlations from the original source.

We tested this inequality for a number of experimen-
tally produced states with varying degrees of noise as
shown in Fig. 2. We show activation for a range of data
points below α ≤ 0.687—the current upper bound for
Bell locality of the isotropic state under projective mea-
surements [25]—by violating the inequality IB ≤ 0 with
over two standard deviations. Noticeably, our strongest
activating result was found at α = 0.637 ± 0.004, which
is 12.5 standard deviations below the current theoretical
upper bound for LHV models for the isotropic state un-
der projective measurements. For this state, we recorded
IB = 0.268 ± 0.11 > 0, representing a clear violation of
the local bound.

Additionally, we certify our experimental activation in
a robust manner by ensuring that our original bipartite
states admit a local hidden variable (LHV) description.
The aim of our method is to express our experimental
density matrices ρexp as a convex combination of a state
with a known LHV and a separable state. This can be
framed as a semidefinite programming (SDP) problem, a
class of optimisation problems which can be solved com-
putationally in an efficient and precise manner [26]. Us-
ing this method, we found a positive answer for our target
experimental state, conclusively certifying the activation
of its nonlocality by our protocol.

From a fundamental point of view, our results demon-
strate that nonlocal behaviour can emerge from individ-
ual local states when studied in the context of quantum
networks. From a practical perspective, they open up un-

Figure 2: Experimental broadcast nonlocality as
a function of the quantum parameter α. The pa-
rameter α represents pure-state fraction of our experi-
mental isotropic states. The solid gray area represents
the classical region above which a violation of inequal-
ity (1) occurs. The red area represents the upper bound
(α ≤ 0.687) on Bell locality for isotropic states in the
two-party scenario, points to the left of this region admit
a local hidden variable (LHV) description. The diagonal
blue line corresponds to theoretically predicted results.
Red circles highlight data points for which activation oc-
curs. The error bars represent two standard deviations
total.

explored possibilities for quantum information processing
tasks involving noisy states, an inevitable scenario for
any realistic implementation of a future quantum inter-
net [27, 28].

We note that, although stronger examples of nonlocal-
ity activation are known in multi-copy settings [29, 17],
this can be prohibitively hard to achieve in practice when
dealing with large ensembles of distributed, independent
copies of a quantum state. For instance, to observe acti-
vation for a comparable noise proportion (α ∼ 0.64), one
needs at least N = 21 copies of the isotropic state in a
star network configuration [18].
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Abstract. Quantum error correction (QEC) is a fundamental tool for the implementation of quantum
computation and quantum communication systems. Due to losses, high-dimensional QEC codes are nec-
essary to guarantee the successful transmission of information between users separated by large distances.
However, such codes require an enormous number of two-qubit gates (CNOT) for their initial encoding,
making their realization quite unpractical. Here, we apply the technique of quantum multiplexing to the
encoding of high dimension Quantum Reed-Solomon (QRS) codes. We show that we can drastically reduce
the number of CNOT gates required for creating the initial codewords of a QRS code.

Keywords: quantum error correction codes, quantum multiplexing, quantum gates.

1 Introduction

Quantum communication systems will drastically
change the way users share information in the near fu-
ture [1]. Such systems are expected to enhance the per-
formance of the current classical technologies providing
the basis for distributing quantum information systems,
such as quantum key distribution [2], distributed quan-
tum computation [3], quantum remote sensing [4] and
the quantum internet [5]. However, the performance of
such systems is greatly a↵ected by channel loss, limiting
their potential on their classical counterpart. Quantum
error correcting codes (QECCs) address this issue as they
can correct both gate and loss errors. Among the numer-
ous variety of QECCs the quantum Reed-Solomon (QRS)
code [6] is a remarkable code as it allows to correct qudit
loss errors, which are a fundamental issue in long-distance
quantum communication. However, the number of phys-
ical resources required for an optimal performance of this
code over large distances is quite demanding in terms of
two-qubit gates (CNOT) needed for the construction of
the codewords. Recently it has been shown that applying
the technique of quantum multiplexing to these codes al-
low to reduce drastically the number of physical resources
(both in terms of photons and qubits for communication)
[7]. Quantum multiplexing exploits multiple degrees of
freedoms of a photon to carry the information. Here we
show that using quantum multiplexing in the encoding
of the codewords of a QRS code can lead to a drastic re-
duction of the number of CNOT gates when compared to
other encoding methods. This can be achieved by using
only linear optical elements, such as beam splitters and
optical switches. Our method is quite versatile and can
be extend to other quantum tasks.

⇤nicolo.lopiparo@oist.jp

2 Encoding the Quantum Reed-Solomon
code

The QRS code has remarkable properties of correcting
qudit loss errors [6] and, when the quantum multiplexing
technique is applied to it, leads to a drastic reduction of
physical resources [7]. In the [[d, 1, d�k+1]]d QRS code
one logic qudit of dimension d is encoded into d physical
qudits, in such a way that can tolerate the loss of d � k
or less qudits, where d is a prime number. We describe
how to estimate the number of gates required to encode
a d dimensional QRS code with the example of Fig. 1(a),
where d = 5. Then we encode a 5 dimensional logic qu-
dit using 5 physical qudits each of dimension 5 to create
the [[5, 1, 3]]5 QRS code. This can be done by initializ-
ing the first qudit | i to a superposition of states, i.e.,
| i = ↵|0i+ �|1i+ �|2i+ �|3i+ ✏|4i and all the other
qudits to |0i , where |↵|2 + |�|2 + |�|2 + |�|2 + |✏|2 = 1.
Then a series of SUM gates between two qudits are per-
formed as shown in Fig. 1(a) and a discrete Fourier
transform (DFT) gate is applied to a single qudit, which
creates a superposition of states given by: DFT( |ji) =

1p
d

d�1X

k=0

e2⇡i(jk/d) |ki , where |ki is the kth Fock state and

|ji is the jth phase state. The SUM gate is the gen-
eralization of the CNOT gate for d�dimensional qudits
and is given by SUM( |Ai , |Bi) = |Ai |(A + B)[mod d]i ,
where A and B are integers less than or equal to d�1. It
is important for e�ciency comparisons to determine the
number of SUM gates needed to create a [[d, 1, (d+1)/2]]d
code using a d�dimensional qudit. It can be shown that
this number increases quadratically with the dimension of
the QRS code as shown in Fig. 1(b). Intuitively, this can
be explained by considering that we require (d2�d�2)/2
SUM gates between the first qudit as control and the d�1
qudits as targets and then d� 1 SUM gates between the
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Figure 1: (a) The encoding circuit for the [[5, 1, 3]]5 QRS code. Each qudit has a dimension of 5 while the two qudit
SUM gate is represented by a dot corresponding to the control qudit connecting a “+” symbol inside a box representing
the target qudit. The DFT box represents the DFT gate applied to a single qudit initialized to 0. (b) The number of
two qudit SUM gates versus the dimension of the QRS code. (c) The circuit of the encoding of a 5-dimensional QRS
code in which each qudit has been substituted by 3 qubits.

Figure 2: (a) and (b) Quantum circuit showing the C2X
gate between two photons and its optical representation
(right) in which the time-bin DOF are split into and then
recombined through optical switches (OSs). (c) The gen-
eralization of the C2X gate to Cn+m�1X gate.

qudit in which the DFT gate has been applied as con-
trol and the rest of the qudits as targets. The sum of
these two terms gives (d2 + d � 4)/2. Moreover, within
each SUM gate there are several CNOT gates making the
implementation of higher dimensional QRS codes more
challenging. A more convenient way of encoding each
logical d� dimensional qudit is to use k qubits, where
2k�1 < d < 2d. This will allow us to show the advantages
of applying the quantum multiplexing technique on the
encoding of QRS codes.
There are several ways to construct SUM gates, but

considering that essentially it is a modulo adder, it is
possible to decompose our SUM gates into two parts.
The first is an adder circuit given by a Ripple carry
adder (RCA), which performs the following transforma-
tion: RCA( |Ai , |Bi) = |Ai |(A+B)[mod 2k]

↵
. The sec-

ond part is a modulo conversion that performs the fol-
lowing transformation: Mod( |Ai |(A+B)[mod 2k]

↵
) =

|Ai |(A+B)[mod d]i . Figure 1(c) shows the SUM gate
of a 5-dimensional QRS code between two qudits both

encoded by 3 qubits (23 > 5). This corresponds to the
addition of two binary number, A and B, each repre-
sented by 3 qubits whose digits are denoted as Ai and
Bi (where i = 4,2,1 in Fig. 1(c)), respectively. Now the
RCA module adds sequentially two digits, Ai and Bi,
with an ancilla qubit (that we refer as carry qubit) that
stores the possible overflow of the sum of Ai�1 and Bi�1.
The RCA unit is then made by a series of small adders
subunits and the entire RCA unit will require then 3 an-
cillae, one for each digit of the numbers A and B. Next,
the modulo circuit converts the state stored in B to the
|(a+ b)[mod d]i state in the case the sum of the inputs is
between 5 and 8, no conversion is needed when the sum
is between 0 and 4. To this aim ancillae qubits that we
refer as check-if qubits are flagged (flipped from |0i to
|1i) when the sum of the inputs in each corresponding
value is between 5 and 8. To perform such an opera-
tion a C3X gate is applied between the qubits of B as
control qubits and the corresponding check-if qubit as
target qubit. The check-if qubit will then be the control
of a multi-target CNOT gate that converts the B qubit
from 5, 6, 7 and 8 to 0, 1, 2, and 3, respectively. This
example can be easily extended to an arbitrary qubit di-
mension k required to encode a d dimensional QRS code.
In the modulo conversion part the CkX gate can be de-
composed into 4(k�2) C2X gates as shown in [8], which
can further decomposed into 6 CNOT gates plus single
qubit gates. We refer to this decomposition as “general
decomposition” and we will compare it with the more
e�cient multiplexing decomposition in the next section.

3 Quantum Multiplexing and its perfor-
mance

The key aspect of the Quantum Multiplexing (QM)
technique is the use of multiple degrees of freedoms
(DOFs) carried by a photon [10] and the possibility of
performing CNOT gates between two di↵erent DOFs cor-
responding to two photons [11]. Figure 2 shows the key
idea used in this work to perform multi-control gates be-
tween two photons using only one CNOT gate. Figure
2(a), shows how, using only optical switches (OSs), to
perform a To↵oli (C2X) gate, having as controls the po-
larization DOF of a photon and the time-bin DOF of
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Figure 3: (a) Number of CNOT gates required to construct a single SUM gate versus the dimension d of the code.
The blue curve is based on the general decomposition, the green curve is based on Ralph et al. [9] and the red curve
is based on the quantum multiplexing decomposition of Fig. 2 (b). The total number of CNOT gates required to
construct the entire encoder of the [[d, 1, d � k + 1]]d QRS code versus d. (c) The ratio between the blue curve and
the red(magenta) curve plotted in (a), respectively. The grey vertical line correspond to 2m integer values of m.

a second photon and, as target qubit, the polarization
DOF of the second photon. This can be accomplished
by splitting the time-bin DOF of the second photon into
two di↵erent spatial modes and then applying one CNOT
gate between the relevant modes (in this example the
CNOT gate is applied between the polarization DOF of
the first photon and the mode labeled as “1” of the sec-
ond photon). Then the time-bin modes are recombined
into a single spatial mode using another OS. Figure 2(b)
shows that this can be done also when both controls are
in the same photon and the target is in another photon.
This procedure can be generalized then to the case of a
gate having n controls in the first photon and m controls
in the second photon (see Fig. 2 (c)). The general de-
composition of this gate would require a large number of
direct CNOT gates whereas, with the QM method, only
one CNOT gate is needed (provided that a large number
of OSs are available). In our example so far we have con-
sidered polarization and time-bin DOFs, however, other
modes are also possible, such as frequency-modes and
orbital angular momentum.
We determine the number of CNOT gates in a SUM

gate, NSUM , required to encode a d�dimensional QRS
code using the general decomposition and the quantum
multiplexing method. Figure 3(a) shows NSUM versus
d for the general decomposition (blue curve) and when
QM is applied (red curve). Both curves are almost indis-
tinguishable for small values of d, however, they separate
largely for higher values of d. In particular at d = 139
NSUM = 21182 for the general decomposition and only
NSUM = 1049 when QM is in use. Figure 3(b) shows
the total number of CNOT gates, Ntot, to construct the
entire decoder. We also compare our results with the
ones obtained in [9] in which the authors realize CkX
gates using one k�dimensional qudit, 2k � 1 two-qubit
gates, and single-qudit gates. Our results still show an
advantage, in terms of two-qubit gates reduction, than
the scheme in Ref. [9]. To quantify the reduction of the
number of gates we calculate the ratio between the QM
approach with the general decomposition and the ratio
of the approach of Ref. [9] with the general decomposi-
tion (see Fig. 3(c)). The advantage when the QM is in

use is small for small dimensional codes (⇠ 7 times less
CNOT gates) but it reaches 24 times less CNOT gates at
d = 131. Hence, applying QM leads to a drastic reduction
in the number of CNOT gates.

4 Conclusions

In this work we have applied the quantum multiplexing
method to the encoding of QRS codes. We showed that
especially for high-dimensional codes the improvement,
in terms of CNOT gates reduction, is very high. More-
over, our approach can be also applied to other error cor-
rection codes and algorithms that require a big number
of gates, such as the Grover’s algorithm and the quan-
tum walk algorithm. We believe that this work shows an
important approach to reduce the costs of the implemen-
tation of quantum technologies in the near future.
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Abstract. We consider three approaches to solve the heat equation on a quantum computer.
Using the direct variational method we minimize the expectation value of a Hamiltonian with
its ground state being the solution of the problem under study. Typically, an exponential
number of Pauli products in the Hamiltonian decomposition does not allow for the quantum
speed up to be achieved. The Hadamard test based approach solves this problem, however,
the performed simulations do not evidently prove that the Ansatz circuit has a polynomial
depth with respect to the number of qubits. The Ansatz tree approach exploits an explicit
form of the matrix what makes it possible to achieve an advantage over classical algorithms.
In our numerical simulations with up to n = 11 qubits, this method reveals the exponential
speed up.

Keywords: Ansatz tree approach, variational algorithms, heat equation, quantum comput-
ing, Hadamard test

1 Introduction

Quantum computing is a promising technology
based on the principles of quantum mechanics
Feynman (1982). The main motivation is out-
perform the state-of-the-art classical algorithms
and achieve the so called quantum supremacy
Zhong et al. (2020). Well-known examples are
the quantum search algorithm Grover (1996) and
Shor’s factorization algorithm Shor (1999), which
are both superior to the classical ones. Quan-
tum computers can also be useful in various lin-
ear algebra problems. A remarkable example is
the Harrow, Hassidim, and Lloyd (HHL) algo-
rithm for solving systems of linear equations Har-
row et al. (2009); Montanaro and Pallister (2016).
Because the classical algorithms generally have
the polynomial complexity in the matrix size N ,
HHL algorithm provides the exponential speed-
up in the case of sparse matrices. This algo-
rithm however requires a large-depth quantum cir-
cuit composed of highly accurate quantum gates.
Both these requirements are problematic in the
present era of noisy intermediate-scale quantum
(NISQ) computers Preskill (2018). Error correc-
tion codes Devitt et al. (2013); Noh and Cham-
berland (2020); Egan et al. (2021) and error miti-
gation techniques Temme et al. (2017); Endo et al.
(2018); Zhukov and Pogosov (2022) could poten-

∗guseynov.nm@gmail.com
†zugazoid@gmail.com
‡walter.pogosov@gmail.com

tially overcome these problems, however, the state-
of-the-art quantum devices lack enough number of
qubits to work in the fault-tolerant regime.

2 Results

The paper studies the implementation of three
variational quantum algorithms for solving the
heat equation presented in the finite difference
form. This problem is reduced to the solution of
the system of linear equations arising at each dis-
crete step of the time evolution.

In the first approach (direct variational method)
the expectation value of the Hamiltonian (2) is
minimized on some class of probe functions. The
Hamiltonian is constructed in a way that its
ground state corresponds to the solution of the
system of linear equations.

|x⟩ = A−1 |b⟩ . (1)

It can be readily shown Xu et al. (2021) that this
solution |x⟩ is the ground state of the Hamiltonian

H = A+(I − |b⟩ ⟨b|)A, (2)

We performed proof-of-principles quantum com-
putation with the matrix of size 4×4 using the real
quantum processor of IBM Q project. The direct
variational algorithm demonstrates a fundamental
possibility of solving the system of linear equations
(3) on a quantum computer. However, the expo-
nential number of Pauli products in the matrix
decomposition does not allow one to achieve the
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quantum speedup (superiority over classical algo-
rithms). In some cases it is possible to effectively
sample over these products if we know the distri-
bution of the decomposition coefficients, but this
requires a separate study.

Ax = b, (3)

A(c) =



−2 − c 1 0 · · · 0 1
1 −2 − c 1 · · · 0 0
0 1 −2 − c · · · 0 0.

.
.

. . .
. . .

.
.
.

0 0 · · · −2 − c 1 0
0 0 · · · 1 −2 − c 1
1 0 · · · 0 1 −2 − c


, (4)

x =


Uτ+1
0

Uτ+1
1 ...

Uτ+1
N−1

 , b =


bτ0
bτ1...

bτN−1

 . (5)

The second approach (Hadamard test approach)
is based on the minimization of the expectation
value of the same Hamiltonian, but the problem of
the exponential number of Pauli products is elim-
inated by using the Hadamard test Huang et al.
(2021). A numerical simulation of the algorithm
was performed with up to n = 8 qubits using three
different entanglers or Ansatzs. The results show
that it can be possible to achieve the quantum
superiority, but the simulations with more qubits
are required to definitively confirm this issue. It
is also important to identify an effective entan-
gler for the investigated problem. With this ap-
proach, three types of Ansatzes were tested: the
Hardware Efficient, Checkerboard and the Digital-
Analog Ansatz. The best results were obtained for
the Checkerboard Ansatz, as it gives a more uni-
form entanglement. In addition, by increasing the
grid parameter c, see, one decreases the number of
required layers in the Ansatz. An exponential ac-
celeration of up to eight qubits was demonstrated
for this entangler. However, we argue that the
considered number of qubits is not enough for an
unambiguous conclusion about the advantage of
the algorithm over the classical one.
The third type of approach (Ansatz tree ap-

proach) minimizes the l2 norm (6), rather than
the expectation value of the Hamiltonian.

LR(x) = ∥Ax− |b⟩ ∥22 = x†A†Ax− 2Re{x†A |b⟩}+ 1; (6)

The algorithm is based on the unitary decom-
position of the matrix (4). For the heat equa-
tion it turns out to be advantageous to switch
to the Fourier representation by using the quan-
tum Fourier transform. In the Fourier represen-
tation, the matrix becomes diagonal with a sinu-
soidal spectrum. Then we used a technique that

allows us to replace the spectrum of this matrix by
a piecewise-quadratic function, which, at the level
of the original discretized problem, corresponds to
the elimination of high-frequency oscillations of
the solution, justified from the physical point of
view. This makes it possible to radically reduce
the number of Pauli products in the matrix decom-
position. The simulation of the algorithm with up
to eight qubits was performed and the complexity
of the algorithm was estimated. The complexity is
determined by the depth of the algorithm. The re-
sults show that the depth depends polynomially on
the number of qubits for certain values of the grid
parameter c. This reveals the fundamental ability
of the Ansatz Tree Approach to demonstrate the
quantum superiority for the heat equation.

Thus, the third approach can be considered as
the most promising. The reason is that Ansatz
Tree Approach makes use of the explicit form of
the matrix (4), unlike the other algorithms dis-
cussed, which use the universal entanglers.
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Abstract. Quantum state preparation, the process of encoding data into a quantum state, is a funda-
mental step in quantum computing. However, for non-structured data, this process exhibits exponential
complexity with respect to the number of qubits involved. To address this challenge, several approaches
have been proposed, including variational methods that train fixed-depth circuits with manageable com-
plexity. Despite their potential, these methods have limitations, such as the absence of a back-propagation
technique and the presence of barren plateaus. In this work, we present an innovative algorithm designed
to reduce the depth of the state preparation circuit by transferring computational complexity to a classical
computer. This approach allows for the initialization of quantum states that can be either exact or approx-
imations. Remarkably, we demonstrate that the approximate initialization outperforms the initialization of
the original state on current quantum processors. Through experimental evaluation, we provide evidence
that our proposed method enables more efficient initialization of probability distributions in a quantum
state.

Keywords: Quantum computing, entanglement, Schmidt decomposition, state preparation, approximate
state preparation

1 Introduction
Quantum devices can execute information process-

ing tasks that classical computers cannot perform effi-
ciently [1]. In some instances, this leads to exponen-
tial advantages in solving systems of linear equations [2]
and principal component analysis [3]. Additionally, there
are known advantages in Monte-Carlo sampling [4, 5]
in which a squared increase of convergence can be at-
tained. Furthermore, quantum machine learning appli-
cations [6–8] may exhibit heuristic advantages. For all
these applications, the initialization of a n-qubit quan-
tum state, commonly called quantum state preparation,
is an important step in quantum information processing.

Encoding a N -dimensional (complex) vector requires
n-qubits with N = 2n and quantum circuits with O(2n)
controlled-NOT (CNOT) gates [9,10] these gates are the
building blocks of today’s quantum computers. There-
fore, several works focus on the development of algo-
rithms that supposes data-efficient initialization, as all
above-mentioned quantum advantages could be undone
when the conversion of classical data to quantum data
becomes a bottleneck.

There are several quantum state preparation algo-
rithms [11–14] with a lower bound of O(2n) CNOT gates
to prepare an arbitrary quantum state with n qubits.
Attempts to prepare quantum states more efficiently in-
clude a divide-and-conquer strategy that exchanges cir-
cuit depth by circuit width [14, 15], probabilistic ap-
proaches [16,17], and strategies to initialize approximated
quantum states [18–20]. Most recently, there has been an
increasing focus on developing methods that are tailored
to specific classes of quantum states. This approach rec-
ognizes that not all quantum states are equal, and that
different types of states may require different prepara-
tion techniques to achieve optimal results. By tailor-

∗ifa@yonsei.ac.kr

ing the state preparation algorithm to the specific char-
acteristics of the state of interest, these methods can
often achieve better fidelity and gate complexity than
more general approaches. Examples of this include uni-
form [21], sparse [13] and probability distribution [18]
states. However, there is no clear understanding of which
classes of quantum states can be created efficiently.

Method Script Entangled Separable
CNOTs Depth CNOTs Depth

Low Rank [22] 30998 53644 0 2
PB [12] [22] 38814 71580 38811 71575

Isometry [23] [24] 32752 65505 32752 65505
Multiplexor [25] [24] 65504 131025 65504 131025

Table 1: Depth and number of CNOTs comparison be-
tween LRSP and other state preparation algorithms.
The column "Entangled" indicates that the state is non-
separable, and the column "Separable" indicates that the
state is completely separable (a product state).

The main goal of this article is to define a determinis-
tic state preparation algorithm that creates circuits with
depth as a function of entanglement, and show that for
mapping the classical data into a Noisy Intermediate-
Scale Quantum (NISQ) device, one indeed wants to be in
the regime of low-entanglement. After finalizing the state
preparation, one can increase the amount of entangle-
ment (exponential in the number of qubits) by applying
unitary evolution. This path could lead to the solution of
the so-called loading problem (LP) of classical-quantum
information processing.

The proposed approach’s advantage is that it can accel-
erate quantum applications that require the initialization
of quantum states, in particular on noisy devices. Using
an approximation of the quantum state, the result is that
the error introduced by the approximation is smaller than
the error to encode the original state. The fundamental
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Figure 1: Visualization of probability distributions encoded on the amplitudes of a 7-qubit quantum state. (a)-(d)
Ideal values of the exact (green line) and approximate (blue line) distributions. (e)-(h) Values of the exact and
approximate distributions encoded via BAA and estimated by measurements on ibm_perth device. In the actual
device, the encoding of the approximations performs closer to the ideal (black dotted line) than the exact distribution
encoding. Each result is an average of 10 runs with 8192 shots.

cause of this behavior is the difference in the number
of noisy operations necessary between the circuits to en-
code the original versus the approximate state. But also
apart from this obvious advantages in the NISQ-era, the
proposed approach reduces the complexity to initialize a
low-entangled quantum state into fault-tolerant quantum
devices.

2 Results
This work introduces a novel algorithm called the

Low-Rank State Preparation (LRSP) algorithm, which
is based on the Plesch & Brukner (PB) state prepara-
tion algorithm [12]. The PB algorithm is connected to
the Schmidt decomposition, which allows representing a
given quantum state |ψ⟩ as a superposition of Schmidt
coefficients and corresponding orthonormal basis states
in two quantum subsystems, HA and HB . The Schmidt
decomposition of |ψ⟩ is expressed as:

|ψ⟩ =
k∑

i=1

σi |iA⟩ |iB⟩ (1)

Here, σi represents the Schmidt coefficients, |iA⟩ ∈ HA

and |iB⟩ ∈ HB are orthonormal bases, and 1 ≤ i ≤
min(dim(HA),dim(HB)).

The PB algorithm consists of four main steps. The
first step involves performing the Schmidt decomposition
on a classical computer. In the second step, the algo-
rithm initializes a quantum state in the first register as∑

i σi |i⟩ |0⟩, aiming to incorporate the Schmidt coeffi-
cients into the state. Following that, in the third step,
⌊n/2⌋ Controlled-NOT (CNOT) gates are applied to cre-
ate the state

∑
i σi |i⟩ |i⟩. Finally, in the last step, the

algorithm applies the unitary operation U to the first
register and the transpose of V (denoted as V T ) to the
second register, where U |i⟩ = |iA⟩ and V T |i⟩ = |iB⟩.

The proposed LRSP differs from PB algorithm when
the Schmidt measure m = ⌈log2(k)⌉ < ⌊n/2⌋ and also
by the use of isometries instead of full unitaries. The-
orem 1 establishes the CNOT gates count needed when
a low-rank representation of a state can be found using
the Schmidt decomposition, as well as approximating the
state by truncating the Schmidt coefficients.

Theorem 1 (Low-Rank State Preparation). Given
Eqn. (1) with the Schmidt measure m = ⌈log2(k)⌉, the
low-rank state preparation has a complexity of

condition CNOT count
0 ≤ m < nA O(2m+nB )
m = nA O(2n)

Proof. When acting on s qubits, a quantum state prepa-
ration typically requires 2s−s−1 CNOTs [11], a unitary
decomposition 23/48(22s)− 3/2(2s)+ 4/3 [25], and an isom-
etry decomposition 2m+s − 1/24(2s) + O(s2)2m [23]. Let
|ψ⟩ be a n-qubit quantum state with a Schmidt decom-
position where subsystem HA has nA qubits (1 ≤ nA ≤
⌊n/2⌋), subsystem HB has nB = n− nA qubits and k is
the Schmidt rank. Considering the complete LRSP cir-
cuit, the overall number of CNOT gates is represented
by:
• 0 ≤ m < nA

2m −m− 1︸ ︷︷ ︸
phase 1

+ m︸︷︷︸
phase 2

+2m+nA −
1

24
2nA︸ ︷︷ ︸

phase 3 (isometry)

+2m+nB −
1

24
2nB︸ ︷︷ ︸

phase 4 (isometry)

• m = nA and nA < nB

2nA − nA − 1︸ ︷︷ ︸
phase 1

+ nA︸︷︷︸
phase 2

+
23

48
22nA −

3

2
2nA +

4

3︸ ︷︷ ︸
phase 3 (unitary)

+ 2n −
1

24
2nB︸ ︷︷ ︸

phase 4 (isometry)

• m = nA and nA = nB

2nA − nA − 1︸ ︷︷ ︸
phase 1

+ nA︸︷︷︸
phase 2

+2

(
23

48
2n −

3

2
2nA +

4

3

)
︸ ︷︷ ︸
phases 3 and 4 (unitaries)
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Figure 2: Schematic of the logical swap of qubits. By
rearranging the qubits it is possible to find a biparti-
tion such that the bond dimension between the partition
blocks is small, which means that these blocks are not
strongly entangled. The indices indicate the position of
the qubit in the quantum circuit, and the color (blue or
green) indicate the bipartition block.

The phases brackets indicate the contribution from each
phase of the LRSP procedure to the number of CNOTs.
Phase 1 is a state preparation, phase 2 a sequence of
CNOT gates, phases 3 and 4 are isometry or unitary
decompositions. These equations are bounded by the re-
sults of Theorem 1.

2.1 Low-Rank Approximation
The LRSP algorithm also allows a low-rank approx-

imation limiting the Schmidt rank in exchange for an
error. The fidelity loss can be used to quantify the loss
by the approximation.

Definition 1. Given the low-rank parameter r, the ap-
proximated state is denoted as

∣∣ψ(r)
〉
=

∑r
i=1 σi |iA⟩ |iB⟩

with coefficients for 1 ≤ r ≤ k, i.e. σj = 0, r < j ≤ k.

It is possible to partially (r > 1) or completely (r = 1)
disentangle subsets of qubits while the introduced fidelity
loss l(r, |ψ⟩) := (1 − |⟨ψ,ψ(r)⟩|2) =

∑k
i=r+1 |σi|2 scales

with the Schmidt coefficients that are dropped. The re-
maining coefficients must be normalized.

The task of finding the optimal configuration for disen-
tangling arbitrary bipartition blocks is not immediately
straightforward. However, by rearranging the qubits be-
tween these blocks, it becomes possible to identify a con-
figuration that exhibits a low bond-dimension. This low
bond-dimension allows for a more accurate approxima-
tion and potential disentanglement of the blocks (see Fig-
ure 2).

This approach can be applied recursively on the result-
ing two blocks separately. By using a search algorithm
with a specified maximal approximation error, the opti-
mal approximation of any desired quantum state can be
found. This includes scenarios such as vector encoding
for matrix inversion using the HHL algorithm [3], loading
data into a quantum machine learning model [6,7], or uti-
lizing quantum simulation for stochastic processes [26].
The resulting search algorithm, known as the Bounded
Approximation error Algorithm (BAA), is described in
Section 2.2.

Table 1 compares the LRSP circuit depth and num-
ber of CNOTs with previous state preparation algorithms
for both separable and non-separable 15-qubit quantum
states.

2.2 Bounded Approximation Algorithm
By design, the low-rank approximation only applies to

bipartite systems, yet it can be used hierarchically to en-
able the analysis of multipartite quantum systems [27]
by a recursive algorithm. One then can recursively apply
this approach on the two resulting partitions separately,
i.e., find in the best rearranging of sites to minimize a
bond dimension. This method leads to a tree search al-
gorithm. With a given maximal approximation error, one
can then find the optimal approximation of a quantum
state. It is a bounded approximation error state prepa-
ration algorithm (BAA) that has a classical exponential
run-time with respect to the number of qubits of the state
as an upper bound. As it is a branch-and-bound algo-
rithm using breadth-first search, the complexity usually
converges faster [28, 29], especially when the maximum
allowed error is low (< 0.1) and the algorithm termi-
nates at the first levels of the search tree. The full set of
pseudocode which describes the algorithm is printed in
the main text’s supplementary information.

The BAA proves to be efficient when working with spe-
cific classes of quantum states found, e.g., in the quan-
tum finance [13, 18, 21] area. Indeed, encoding probabil-
ity distributions on the amplitudes of a 7-qubit quantum
state show that even a modest fidelity loss (≤ 0.02) of
the approximation using the BAA results in a significant
reduction in the number of CNOTs. The result of the
BAA discretization is shown in Figure 1. It shows, that
the current devices have a hard time to create the state
when not approximated, but the end-to-end result of an
approximation is closer on the contrary.

3 Conclusion
With the help of Low-Rank State Preparation algo-

rithm, significant improvements in the complexity of two-
qubit entangling gates can be attained. The proposed al-
gorithm exploits this fact by connecting state preparation
complexity with the entanglement structure of the quan-
tum state. Indeed, we highlight that classical data can be
rearranged such that the entanglement structure attains
an easier to approximate structure, as can be seen in Fig-
ure 2. This directly bestows the data with a topological
structure of qubit systems. In particular, by logically
swapping qubits between partitions, one can find more
local behavior. This makes it easier to simulate classi-
cally, but also, by virtue of the above-mentioned circuit
designs, less complex to create on a quantum computer.
To showcase the immediate advantages of this approach,
we present example applications in loading probability
density function and application of quantum machine
learning in the main text. We conclude that this method
can help in the near term to make end-to-end calcula-
tions more precise. The technical version of this work is
available on arXiv:2111.03132.
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Practical advantage of quantum machine learning in ghost imaging
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Abstract. We investigate the practical advantage of quantum machine learning in ghost imaging by
overcoming the limitations of classical methods in blind object identification and imaging. We propose
two hybrid quantum-classical machine learning algorithms and a physical-inspired patch strategy to allow
distributed quantum learning with parallel variational circuits. In light of the algorithm, we conduct
experiments for imaging-free object identification and blind ghost imaging under different physical sampling
rates. The numerical results showcase that quantum learning can restore high-quality images but classical
learning fails. Our work explores a physics-related application capable of practical quantum advantage,
which highlights the prospect of quantum computation in the machine learning field.

Keywords: Quantum machine learning, ghost imaging, variational quantum algorithm

1 Introduction
One of the challenges in quantum computation is to

identify practical applications or problems where quan-
tum algorithms can outperform classical ones [1, 2]. Al-
though various experiments have demonstrated quan-
tum advantage, such as random circuit sampling [3], Bo-
son sampling [4, 5], and quantum walks [6], they have
limited practical applications in the near term. In the
noisy intermediate-scale quantum (NISQ) era [7], quan-
tum noise cannot be fully eliminated, and the number of
qubits is limited. Therefore, the focus is on demonstrat-
ing the advantage of quantum hardware-based computa-
tion in terms of sample or time complexity compared to
classical counterparts [8]. Several research studies aim
to clarify the advantage of quantum machine learning
(QML), such as the rigorous speedup for discrete log-
arithm problems using the quantum kernel method [9]
and the theoretical advantage for identifying quantum
states/processes using QML [10]. These works demon-
strate the possibility of achieving theoretical quantum
advantage in NISQ devices using QML to solve specific
problems.

GI retrieves an image by using two correlated beams,
the reference beam, and the object beam [11, 12, 13, 14].
The reference beam is typically captured by a spatial res-
olution detector and does not interact with the object. In
contrast, the object beam records the object information
by a bucket detector that lacks spatial resolution. Fig-
ure 1a shows the experimental setup. Compared to a
traditional array camera, GI is a time-for-space imaging
method. Due to its inevitable time-consuming sampling,
obtaining high-quality images at a low sampling rate is
significant, under which the dimension of the bucket sig-
nals can be greatly reduced. The signals contain infor-
mation about the physical process, leading to potential
advantages when using QML. The bucket signals can be

∗tailong_shaw@sjtu.edu.cn
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directly used for downstream tasks, such as imaging-free
recognition [16], tracking [17], and segmentation [18].

In this work, we propose a hybrid QML algorithm for
GI systems to demonstrate their practical advantages
in physically-inspired imaging systems [19]. We inves-
tigate two challenging applications: object identification
and imaging, which can be regarded as classification and
regression problems in the machine learning field. We
collect experimentally detected signals from the GI sys-
tem to train QML models using a physical-inspired patch
strategy to divide high-dimensional measured signals into
low-dimensional pieces for accessible data encoding by
current NISQ devices. We also build classical neural
networks with an approximate number of trainable pa-
rameters to benchmark the performance fairly. In the
identification and imaging applications, our hybrid QML
methods are shown to be superior to their correspond-
ing classical machine learning methods. We investigate
the generalization capability of QML when reducing the
training samples and quantify the quantum advantage
using a capacity measure of QML from the perspective
of information geometry. Furthermore, we study the im-
pact of quantum noise in the QML method on the imag-
ing application. Our results demonstrate the substantial
advantage of QML algorithms in the GI system through
rigorous quantitative analysis, highlighting their poten-
tial advantages in physically-related systems.

2 Results
As shown in Figure 1a, the single-beam ghost imaging

technique retrieves an image by utilizing the correlation
between the modulated patterns displayed on the digital
DMD and the bucket signals collected by the detector.
In this technique, a laser beam initially illuminates the
DMD, which is loaded with various modulated patterns.
The modulated light field then propagates towards the
object, and after interacting with the scene, the trans-
mitted or reflected light is collected by a bucket detector
(i.e., a single-pixel detector). This physical process essen-
tially encodes the scene information optically via the illu-
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Figure 1: Hardware-efficient quantum machine learning enhanced ghost imaging. (a) The experimental setup for
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patterns. (b) Hybrid quantum machine learning algorithm by combining the artificial neural network or convolution
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mination light field. Consequently, the collected bucket
signal B can be mathematically represented as follows

B =

∫
I(r⃗0)S(r⃗0)dr⃗0, (1)

where I(r⃗0) is the intensity distribution imprinted on the
object plane, and S(r⃗0) is the intensity transmission or
reflection function of the object. In practical computa-
tional GI scenes, to reduce imaging time, the sampling
is always limited and the illumination I (r⃗o) is approxi-
mated by the loaded patterns I (r⃗). Thus, the recovered
image is given by

G(r⃗0) ≈
1

M

M∑
i=1

∆Ii (r⃗)∆Bi, (2)

where ∆I (r⃗o) and ∆B is the intensity fluctuations of
illuminations and the bucket signals, respectively. The
notation ⟨·⟩ presents the ensemble average. In Eq. (2),
M needs to be at least equal to the imaging pixel number
Np. To accelerate the progress, GI is performed under
M ≪ Np. In this case, the image reconstruction of GI is
an underdetermined optimization problem

Ĝ = argmin
G

∥IG−B∥22 , (3)

where I is the measurement matrix consisting of the
modulated illumination patterns I (r⃗). The conventional
method to directly solve the optimization problem is still
hard, especially in cases where the sample rate is insuffi-
cient. We propose using QML to solve the inverse prob-
lem. QML, specifically its hybrid version (see Methods),
shows promise in enhancing learning capabilities and re-
ducing neural network size. We use patch strategy to
encode the high-dimensional data with parallel quantum
circuit. The basis for patch processing of bucket signals
is rooted in the independence of each bucket signal from
the others.

The backbone of the hybrid quantum-classical machine
learning algorithm consists of a classical artificial neural
network and a parameterized quantum circuit (PQC) as
Figure 1b shows. The classical state x⃗ can be encoded
by

|ψx⟩ =

(
L∏

i=1

Ei(θi, x⃗)

)
|0⟩⊗M , (4)

where L denotes the number of encoding layers, the pa-
rameters {θi} are the variational quantum parameters.
Formally, the final quantum state evolved by the learn-
ing operations is given by

|ψf ⟩ =
L∏

i=1

Ui(ϑi)|ψx⟩, (5)

where Ui denotes the variational learning operation, ϑi is
the trainable parameter in ith learning layer. To obtain
the classical information of the final quantum state, we
require measuring the observable i.e. ⟨O⟩ = ⟨ψf |O|ψf ⟩.
We regard the expectation values of the observable as the
feature representation to make predictions.

To study the potential advantage of QML ghosting
imaging, we conduct the optical experiments in Figure
1a to collect the bucket signals. We adopt the remote
sensing images as our dataset. The images have a low
signal-to-noise ratio and the contrast ratio of the images
is also low. Reconstructing remote-sensing images is a
challenging task in the field of imaging processing. By
using a GI system, we collect the bucket signals as the in-
put of the QML/CML and then output the reconstructed
images. By using the MSE loss function, we can calculate
the gradients of loss over each training parameter. As we
can see, the intuitive comparison from reconstructed im-
ages between QML and CML in Figure 2a demonstrates
that QML outperforms CML in terms of the resolution
and outline of the images. Here, we do not concentrate on
the resolution of reconstructed images. From Figure 2b,
we present the validation mean absolute error (MAE) of
QML and CML. We can find that the MAE of the QML
is much smaller than the CML. The ultimate MAE in the
last epoch (500) of both CML and QML is presented in
Figure 2c. The final MAE of QML is 3.6, 4.2, 4.9, 5.9 fold
smaller than the MAE of CML for M = 64, 128, 256, 512,
respectively. Increasing the number of illumination pat-
terns from M = 64 to 512, the MAE of the QML is de-
creased linearly. On the contrary, the MAE of the CML
does not decrease, which indicates that the network did
not converge well.. In principle, increasing the number
of patterns can increase the GI quality. Even though we
find that QML results are still better than DGI under
the same sample rate.

3 Discussion
In summary, we apply QML to practical GI systems

to demonstrate its advantages experimentally and theo-
retically. We propose a hardware-efficient hybrid QML
framework based on shallow variational quantum circuits
and quantitatively demonstrate its practical advantages
in classic GI task. We exploit a highly flexible physical-
inspired patch strategy that is applicable for current
NISQ devices when handling large-scale classical dataset.
The strategy also makes the large-scale classical simula-
tion of QML in the GI system possible.

Through collecting the experimental dataset with dif-
ferent sampling rates in object imaging tasks, QML-
enhanced blind GI can fully make use of the informa-
tion of a large sampling rate and reconstruct the ob-
ject images with high PSNR. In contrast, CML cannot
simultaneously learn the illumination patterns and the
feature information of the object such that it cannot re-
construct a high-PSNR image. We attribute the superior
performance of QML in part to the exponentially larger
quantum-featured Hilbert space, which provides a more
powerful learning capability in high-dimensional spaces.

Although other researches use QML in classical ma-
chine learning fields but achieve no obvious practical ad-
vantage, the application of real physical-related GI sys-
tem amplifies the advantage of the QML algorithm. Our
study presents a practical and crucial application for the
QML field and also highlights the point that QML is
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likely to be suitable for processing physically system-
generated datasets. In future work, we will study the
connections of QML and sparse encoding and other ap-
plications of QML in the GI system.
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Abstract. There is a gap between properties of quantum and classical reliability functions.
That is, the upper bound of quantum reliability function diverges, whereas that of classical one
does not. We are interested in the origin of the gap. We have focused on the fact that classical
channel matrices of classical-quantum communications depend on what kind of quantum receiver
is used. In this paper, we investigate the properties of classical reliability functions for classical-
quantum communications on quantum receivers. As a result, we show the optimal quantum
receiver is not superior in low rates.

Keywords: Reliability function, Quantum communication, Quantum measurement

1 Introduction

Quantum information technology is the applica-
tion of quantum nature to technology [1, 2]. A co-
herent state [3] is known as a promising medium
for practical applications of quantum communica-
tion and cryptography. Since the state is approxi-
mately realized by laser light, it is often referred to
as classical light, but it is also regarded as a typi-
cal quantum medium. In fact, even using the same
coherent states, the performance of an optimal clas-
sical receiver such as heterodyne and homodyne re-
ceivers and that of an optimal quantum receiver are
quite different [1, 2]. Recently, an upper bound on
the quantum reliability function has been clarified,
and it has been shown that the classical and quan-
tum reliability functions [4, 5, 6] also show quali-
tatively different results. That is, for coherent-state
signals, the classical reliability function based on the
optimal classical receiver always takes finite values,
whereas the quantum reliability function based on
the optimal quantum collective decoding diverges
[7, 8].
The purpose of this research is to consider

the above-mentioned differences between the quan-
tum and classical from various viewpoints. First,
in quantum communication, the channel matrix
changes depending on what kind of quantum re-
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‡takahira@meijo-u.ac.jp
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ceiver is used [1, 2]. That is, we note that the chan-
nel matrix can be controlled. Divergence of the up-
per bound of the classical reliability function never
occurs when any input transitions to any output.
It only occurs when there is a “lack of transition.”
This “lack of transition,” that is, the existence of a
zero component in the channel matrix, occurs even
for very basic signals, such as a BPSK coherent-state
signal, when a certain quantum receiver is used. As
simple examples, there are the Kennedy receiver [9]
and an unambiguous quantum receiver [10, 11, 12].
In this paper, in addition to these receivers, we

consider the Helstrom receiver which is called the
optimal quantum receiver and investigate the prop-
erties of the upper bound of the classical reliability
function for a given channel matrix corresponding
to each receiver.

2 Preparation

2.1 Basis of quantum communication

Let A = {0, 1, . . . ,M−1} be an alphabet which is
a set of the classical information, ξi be the a priori
probability of i, and ξ = {ξi | i ∈ A}. For M -ary
classical-quantum communication, a sender trans-
mits a quantum state |ψi⟩ ∈ H corresponding to i.
The set of quantum states {|ψi⟩ ∈ H | i ∈ A} is
referred to as a quantum signal.
Here, consider the case where the receiver input

is |ψi⟩. At the receiver, a quantum measurement is
performed and a classical information j is obtained
as a measurement outcome. Then the conditional
probability of the measurement outcome j when the
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input state is |ψi⟩ is

P (j|i) = Tr |ψi⟩ ⟨ψi| Π̂j , (1)

where POVM: Π = {Π̂j | j = 0, 1, . . . , N − 1} is a
quantum measurement. The matrix [P (j|i)] whose
(i, j)-component is obtained by the above condi-
tional probability corresponds to a channel matrix
in the classical information theory. In this case, the
channel is determined by the quantum measurement
and is therefore called the quantum measurement
channel [2].

2.2 Classical reliability function

Let P opt
e (n,R) be the optimal error probability

for a sufficiently long codeword length n and a given
coding rate R. Then the reliability function E(R)
is conceptually defined as the error exponent [4, 5]:

P opt
e (n,R) = e−nE(R). (2)

Although it is difficult to compute the reliability
function directly, its upper and lower bounds are
known. Let [W (j|i)] be the channel matrix of a
classical channel. Then the so-called sphere-packing
upper bound is given by

ECU(R) = max
0≤s

max
ξ

[ν(s, ξ)− sR] , (3)

where

ν(s, ξ) = − ln
∑
j∈B

(∑
i∈A

ξiW (j|i)
1

1+s

)1+s

, (4)

and A and B are the input and output alphabets.
In this paper, we compute ECU(R) by substituting
P (j|i) in Eq.(1) into W (j|i). And hereafter, if there
is no confusion, the upper bound will simply be re-
ferred to as the (classical) reliability function.

3 Quantum receiver for BPSK signals

Here, we explain the three quantum receivers
treated in this paper. We also confirm that the “lack
of transition” mentioned in Sec.1. In this paper, we
consider a BPSK coherent-state signal (BPSK sig-
nal) {|ψ0⟩ , |ψ1⟩} = {|α⟩ , |−α⟩} as a quantum signal.
Here, α is a complex amplitude.

3.1 Helstrom receiver

The Helstrom receiver is the optimal quantum re-
ceiver that minimizes the average probability of er-
ror. The conditional probabilities that constitute
the channel matrix are as follows:

P (0|0) = P (1|1) = 1− ε, (5)

P (1|0) = P (0|1) = ε, (6)

where

ε =
1

2

(
1−

√
1− e−4|α|2

)
. (7)

3.2 Kennedy receiver

The Kennedy receiver [9] was proposed by
Kennedy in 1973 as a suboptimal quantum receiver
for a BPSK signal. The conditional probabilities for
the Kennedy receiver are

P (0|0) = 1, (8)

P (1|0) = 1− P (0|0) = 0, (9)

P (0|1) = e−4|α|2 , (10)

P (1|1) = 1− P (0|1) = 1− e−4|α|2 . (11)

From Eq.(9), there is a “lack of transition.”

3.3 Unambiguous receiver

An unambiguous receiver is a receiver that in-
troduces a ‘failure’ in measurement and guarantees
‘no error’ if the measurement succeeds [10, 11, 12].
When a BPSK signal is employed, the conditional
probabilities for the receiver are

P (0|0) = P (1|1) = 1− p?, (12)

P (1|0) = P (0|1) = 0, (13)

P (?|0) = P (?|1) = p? = e−2|α|2 , (14)

where the outcome ‘?’ corresponds to a ‘failure.’
From Eq.(13), there is a “lack of transition.”

4 Result

4.1 Property of classical reliability function

Fig.1 shows the classical reliability functions
ECU(R) corresponding to the three kinds of quan-
tum receivers. Here, maximization with respect to
s and ξ on the right-hand side of Eq.(3) was per-
formed numerically. Denote the capacity by C, then
ECU(R) = 0 for R > C. The capacities by three re-
ceivers are as follows:

Helstrom Receiver: C(He) = 0.66380,

Kennedy Receiver: C(Ke) = 0.64728,

Unambiguous Receiver: C(Un) = 0.59934.

That is, C(Un) < C(Ke) < C(He). Thus, for exam-

ple, when R = 0.65, E
(He)
CU (R) > 0 and E

(Ke)
CU (R) =

E
(Un)
CU (R) = 0. And the classical reliability func-

tion using the Helstrom receiver is largest when
R ≈ C. However, the superiority cannot be main-
tained when R becomes low. Actually, in an inter-
mediate range of R, we have,

E
(He)
CU (R) < E

(Ke)
CU (R) < E

(Un)
CU (R),
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Figure 1: Classical reliability function ECU(R)
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Figure 2: Optimal a priori probability of classical
reliability function in the Kennedy receiver

and we also have,

E
(He)
CU (R) < E

(Un)
CU (R) ≪ E

(Ke)
CU (R)

when R ≈ 0. Although no divergence of the classical
reliability function was observed for either receiver,
that of the Kennedy receiver has a steep change at
low rates. Therefore, at lower rates, the decoding
error probability of the Kennedy receiver is expected
to lower sharply even at short codeword lengths.

4.2 Optimal a priori probability

Since the quantum measurement channels for the
Helstrom and unambiguous receivers are symmetric,
the optimal a priori probabilities are uniform [7].
As for the Kennedy receiver, the optimal a priori
probability ξ0 of the signal |ψ0⟩ = |α⟩ is shown in
Fig.2. Note ξ1 = 1− ξ0.

From Fig.2, when the rate R is large and close
to the capacity, the optimal a priori probabilities
are almost uniform. However, when the rate is
low, the optimal a priori probability of |ψ0⟩ = |α⟩
becomes small, and it is suggested to send more
|ψ1⟩ = |−α⟩. This result can be explained as fol-
lows: Since P (1|0) = 0 from the channel matrix,
it is obvious that when 1 is received, the receiver
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Figure 3: Optimal parameter of s in ν(s, ξ)− sR

knows the transmitted signal is 1 without error, so
sending more 1 will reduce the average probability
of error.

4.3 Optimal parameter of s

The maximization of ν(s, ξ)−sR with respect to s
was performed numerically. Fig.3 shows the optimal
s for each receiver. For any receiver, the optimal s is
s ≤ 1 at high rates. In this case, the upper and lower
bounds of the classical reliability function coincide,
indicating that the true value of the classical reli-
ability function itself is obtained. In contrast, the
divergence of the classical reliability function occurs
if ν(s, ξ) − sR increases with increase in s and it
has no peak due to s. From Fig.3, the optimal s
for the Kennedy receiver has a very large value at
low rates. Thus, although there is no divergence for
the Kennedy receiver, the optimal s is much larger.
Consequently, the classical reliability function was
considerably larger than those for the other two re-
ceivers.

5 Conclusion

In this paper, we investigate the properties of the
classical reliability function from the correspond-
ing channel matrices for three kinds of quantum
receivers; the Helstrom receiver, the Kennedy re-
ceiver, and the unambiguous receiver. Although the
Helstrom receiver provides the largest capacity, it
is not always the best receiver in terms of the up-
per bound of the classical reliability function. That
shows, the Kennedy and the unambiguous receivers
may have lower error probability than the optimal
quantum receiver in low rates.
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Abstract.
The Helstrom measurement, an optimal method for discriminating between two quantum states with

minimum error, presents new opportunities for binary classification in machine learning. Previous empiri-
cal studies have indicated that the prediction performance of Helstrom-based classifiers is affected by the
number of identical copies of the quantum state used to encode the training data. However, due to the
exponential growth the runtime with the number of copies in existing Helstrom classifiers, these studies
have been limited to only a small number of copies. This paper presents an efficient method to simulate
the Helstrom classifier for any number of copies by utilizing the relationship between the Helstrom mea-
surement and fidelity. Numerical experiments on six standard datasets, involving up to 200 copies, clearly
demonstrate the significant impact of the number of quantum copies on prediction performance. The best
instances of the Helstrom classifier consistently outperform or match those of the fidelity classifier in all
cases. This finding suggests that the number of copies should be optimized as a hyperparameter to achieve
optimal classifier performance. Our method provides an efficient means of optimizing this parameter,
thereby enhancing the Helstrom-based classifier beyond previous capabilities.

Keywords: Quantum state discrimination, Quantum-inspired machine learning, Optimal quantum mea-
surement

1 Introduction

Quantum Machine Learning (QML) has shown promis-
ing applications and the potential to provide exponen-
tial speed-up over classical algorithms [1, 2, 3]. One of
the advantages of QML is its ability to exploit quantum
properties to perform classification tasks, which can be
framed as quantum state discrimination problems. In
previous work by Sergioli et al., the authors introduced
the use of Helstrom measurement as a binary classifier [4].
They explored the fact that multiple copies of a quan-
tum state provide additional information compared to
that encoded into a single copy, improving classification
performance [5]. In this paper, we propose an efficient
method to classically simulate the Helstrom classifier on
the number of quantum copies.

The Helstrom measurement [6], is known as the most
ideal one-shot measurement that can be implemented in
two states discrimination tasks [7]. Consider a labelled
training data set:

D = {(x1, y1), . . . , (xM , yM )} ⊆ Rd × {0, 1}. (1)

A quantum feature map φ(x) is responsible for map-
ping this data set to Hilbert space as φ(x) = |φ(x)〉 = |a〉.
There exists numerous schemes that can be used as fea-
ture maps such as amplitude encoding, Hamiltonian en-
coding etc. [8]. In this paper, amplitude encoding is used
to efficiently simulate the encoding process. Using am-
plitude encoding, the data set can be mapped to

D′ = {(a1, y1), . . . , (aM , yM )} ⊆ Cd × {0, 1}. (2)

By defining two subsets D0 = {a : (a, 0) ∈ D′} and

∗wooseop.hwang@exeter.ox.ac.uk
†blank@data-cybernetics.com

D1 = {b : (b, 1) ∈ D′}, quantum centroids can be con-
structed as,

ρ =
1

Ma

∑
a

|a〉 〈a| (3)

σ =
1

Mb

∑
b

|b〉 〈b| . (4)

where Ma is the number of elements in D0, and Mb is
the number of elements in D1. Under such conditions,
the Helstrom operator is defined as

mfid = ρ− σ. (5)

Equation (5) can be rewritten in terms of eigenbasis as

mfid =
∑
j

λj |dj〉〈dj |, (6)

where λj and |dj〉 are the eigenvalues and eigenstates of
mfid respectively. Then, the Helstrom projection is given
by [7]

mhel =
∑
j

sgn [λj ] |dj〉 〈dj | = Π+ −Π− (7)

with the projectors

Π+ =
∑
λj≥0

|dj〉 〈dj | (8)

Π− =
∑
λj<0

|dj〉 〈dj | . (9)

The classification score of a classifier is strongly re-
lated to the measurement outcome of the mfid and mhel
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operators. For a given test data c, fidelity and Helstrom
classifiers can be constructed as

ffid(c) = 〈c|mfid|c〉
fhel(c) = 〈c|mhel|c〉.

By using Equations (5) and (7), the classifiers can be
written as

ffid(c) =
∑
j

λj |〈c|dj〉|2 (10)

=
1

Ma

∑
a

|〈c|a〉|2 − 1

Mb

∑
b

|〈c|b〉|2 (11)

fhel(c) =
∑
j

sgn [λj ] |〈c|dj〉|2. (12)

To reduce the complexity of simulating the Helstrom
classifier, we propose that the eigenvalues of a system
with k copies can be computed by Equation (13).

λa,b = ±
√

1− |〈a|b〉|2k. (13)

Now, for a system with k copies, define fa,b,kfid as

fa,b,kfid (c) = |〈c|a〉|2k − |〈c|b〉|2k,

it can be shown from (13) that there exists only two eigen-
values ±λa,b with λa,b > 0. Then consider,

1

λa,b
fa,b,kfid (c) =

1

λa,b
(|〈c|a〉|2k − |〈c|b〉|2k)

= λ−1
a,bλa,b(|〈c|d+〉|2k − |〈c|d−〉|2k)

= |〈c|d+〉|2k − |〈c|d−〉|2k

= sgn [λ+] |〈c|d+〉|2k + sgn [λ−] |〈c|d−〉|2k

= fa,b,khel (c),

where λ± corresponds to ±λa,b. Hence, the general rela-
tionship between the Helstrom and fidelity classifier is

fhel(c) =
1

Ma

1

Mb

∑
a

∑
b

1

|λa,b|
fa,b,kfid (c). (14)

By substituting (13) in (14), we obtain

fkhel(c) =
1

Ma

1

Mb

∑
a

∑
b

1√
1− |〈a|b〉|2k

fa,b,kfid (c). (15)

At large k, λa,b becomes ±1, and the Helstrom and fi-
delity classifier become equivalent to each other.

2 Numerical simulations

In this section, the simulation results for Helstrom and
fidelity classifiers, and classical classifiers are presented.
The classical classifiers used are: Nearest Neighbors, Lin-
ear Support Vector Classification (SVC), Radial Basis
Function (RBF) SVC, Decision Tree Classifier, Random
Forest Classifier, Multi-layer Perceptron Classifier, Ada
Boost Classifier, Naive Bayes Classifier, Quadratic Dis-
criminant Analysis, and Logistic Regression.

A five-fold cross-validation was performed on the en-
tire data, which was split into five segments. The sim-
ulation was conducted on six different datasets: appen-
dicitis [9], echocardiogram [10], hepatitis [11], iris [12],
Parkinson [13], and wine [14]. Amplitude encoding was
used to embed the data, and Equation (15) allowed for
efficient simulation of the Helstrom and fidelity classi-
fiers for large numbers of copies. As the datasets are
unbalanced, the f1 score was used as the metric for com-
paring prediction performance. The number of copies of
the system was the main parameter considered in the
study. The classification score, which is illustrated in the
figure 1, is the output of the classifiers defined in (12)
and (15). Based on the sign of the classification score,
we assigned a class to the given test data by using the
following scheme:

ypred =

{
0, if f(c) > 0

1, otherwise

where the f(x) corresponds to the classifiers, and c refers
to the input test data. The f1 score was computed by
using ypred and the actual value for each test data ytest.

(a) Iris (b) Appendicitis

(c) Echo-cardiogram (d) Parkinson

Figure 1: Classification score for different data sets

2.1 Overview

The simulation results for cross validated classification
score are presented in the figures (1), with the classi-
fication score representing the output of equations (11)
and (15). The fidelity and Helstrom scores are shown as
brown and blue lines, respectively. The solid lines are
used for class 0, and the dotted lines are used for class 1.
The results indicate that the Helstrom classifiers gener-
ate better scores than fidelity, with the average score for
class 0 closer to 1 and class 1 closer to -1. Additionally,
there is a clear sweet spot in the number of copies where
the classification score is maximized, and it declines be-
yond that point. It is worth noting that the Helstrom
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(a) Parkinson data set (b) Appendicitis data set

(c) Wine data set

Figure 2: Cross validated f1 score

score converges to the fidelity as the number of copies
increases, as expected.

The simulation results for cross validated f1 score are
displayed in Figure 2. The Parkinson dataset demon-
strates a clear out-performance of Helstrom as shown in
Figure 2a. For the remaining datasets, Helstrom per-
formed at least as well as fidelity. The findings also indi-
cate that the prediction performance is influenced by the
number of copies.

Figure 3 presents the prediction performance compar-
ison of classical classifiers and the Helstrom and fidelity
classifiers over all six datasets. The results show that for
datasets such as iris and echocardiogram, the Helstrom
and fidelity classifiers performed as well as the classical
classifiers. On the other hand, there was a clear out-
performance of Helstrom for the hepatitis and appen-
dicitis datasets. However, for the Parkinson dataset, the
performance was lacking. Table 1 reports the number of
copies required to achieve the maximum f1 score. These
results indicate that the performance of the Helstrom and
fidelity classifiers is highly dependent on the dataset be-
ing analyzed.

Table 1: Copies at which the maximum f1 scores were
obtained. The second row illustrates the optimal copies
for the Helstrom classifier. The last row presnets the
optiaml copies for the fidelity classifier.

3 Conclusion

The performance of the Helstrom and fidelity classi-
fiers can be affected by the number of copies. For the
data sets we analyzed, we observe a peak in the classi-

Figure 3: Comparison of f1 scores with other classifiers

fication score before declining. Therefore, choosing the
appropriate number of copies is crucial to obtain the best
prediction performance.

The proposed method allows for an efficient simulation
of the Helstrom classifier on any number of copies. This
is achieved by computing the eigenvalues of the Helstrom
operator directly using the overlap between pairwise com-
bination of train data of different classes, instead of using
eigen-decomposition. Experimental results demonstrate
that the Helstrom classifier performs equally well as the
fidelity classifier. Moreover, the performance of both
classifiers in terms of prediction is influenced by the num-
ber of copies, which is not a monotonic effect and varies
depending on the dataset. Therefore, it is recommended
to treat the number of copies as a hyper-parameter. The
efficient simulation of quantum classifiers at large num-
bers of copies allows for a more thorough exploration of
the hyper-parameter space.

One potential avenue for future research is the imple-
mentation of the kernel trick to theoretically compare
the prediction performance of fidelity and Helstrom clas-
sifiers. This approach would involve comparing the geo-
metric differences between two different kernels, as shown
in previous work on quantum classifiers [15]. Addition-
ally, further improvements to our results may be possible
by exploring different embeddings that consist solely of
Clifford gates, which can be simulated classically. This is
important since the prediction performance is dependent
on the data embedding [16].
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Abstract. Magic state is necessary to build a Non-Clifford logic operator. Up to now, a magic state
injection has been proposed only in the lattice structure. However, IBM quantum computer has the heavy-
hexagon structure. In this work, we propose a magic state injection in the heavy-hexagon structure. We
show that in the heavy-hexagon structure magic state of distance of 5 can be built in the logical error rate
of 0.382% with success probability of 29.27% when the single qubit error rate is p = 0.05%.

Keywords: Surface code, Lattice structure, Heavy-hexagon structure, Magic state

1 Introduction

Present quantum computers show the property that as
the depth of the quantum circuits is deepened, the errors
increase, and the quantum computers become useless. To
avoid errors in quantum computer, the quantum error
correction codes(QEC codes) have been suggested[1, 2].
The well-known QEC code is the stabilizer code which re-
cently revealed the reducing errors in Google’s quantum
computer[3, 4]. The typical QEC code among stabilizer
codes is the surface code where the physical qubits are
located in a lattice structure, and each qubit has a max-
imum of four neighboring qubits. In surface code, the
measurement round to stabilizer should be performed to
detect errors locally. The syndromes are obtained from
the result of measurement, and the correction of errors
can be done through a decoding algorithm[5, 6, 7].
A set of universal logic operators should be constructed

to build a quantum circuit. The Clifford logic opera-
tors can be obtained through transversal gates[2, 8], but
Non-Clifford logic operators cannot be obtained through
transversal gate[9]. To build Non-Clifford logic operators,
one should prepare magic state. For example, to perform
T̂L, one needs to have |M⟩L = |0⟩L+ eiπ/4 |1⟩L. Through
the combination of magic state and Clifford logic opera-
tor T̂L can be performed[10].
To build a magic state |M⟩L, we make a projection of

magic state |M⟩ in the level of physical qubits, onto the
logical quantum state. This process is called magic state
injection. The method for the magic state injection has
been proposed in the lattice structure[11, 12, 13]. Since
the magic state injection is performed not at the level
of logical quantum state but at the level of the physical
qubit, the process for quantum error correction should
be included[14].
However, one of the most promising quantum comput-

ers, such as IBM quantum computers, uses the heavy-
hexagon structure. Therefore, in the heavy-hexagon
structure, a new method for the magic state injection
should be needed because the maximum number of near-
est neighbors in the lattice structure is four, but the max-
imum number of nearest neighbors in the heavy-hexagon

∗hpoqh@hanyang.ac.kr
†khshk18@hanyang.ac.kr
‡marchenw@hanyang.ac.kr
§yyhkwon@hanyang.ac.kr

Figure 1: The arragement of qubits for quantum er-
ror correction in the heavy-hexagon structure. The blue,
green(yellow), and red nodes denote the data, syndrome,
and flag qubits, respectively. The blue plane displays Z
stabilizer, and the red plane displays X stabilizer.

structure is three[17, 18, 19, 20]. Therefore, in this work,
we propose a method for the magic state injection in the
heavy-hexagon structure.

2 QEC code on heavy-hexagon structure
and Magic state injection

In this section, we explain the quantum error correct-
ing code in the heavy-hexagon structure. Fig.1 shows the
arrangement of qubits in the heavy-hexagon structure,
where the blue, green(yellow), and red nodes denote the
data, syndrome, and flag qubits, respectively. The sta-
bilizer consists of four data qubits around the syndrome
qubit in the form of Z⊗4 or X⊗4. The blue plane displays
Z stabilizer, and the red plane displays X stabilizer. Since
in the heavy-hexagon structure, the maximum number of
interaction with nearest qubits is three, we use six addi-
tional flag qubits.

To detect an error in data qubits, we should build the
measurement circuit for stabilizer. Fig.2 shows the mea-
surement circuit of X stabilizer and Z stabilizer in the
heavy-hexagon structure.

The protocol for Magic state injection consists of two
stages. In the first stage we setup the initial state of
physical qubits and perform the projection on the log-
ical quantum state, to build |M⟩L with distance of d1.
The |M⟩L, projected on the logical quantum state, can
be protected from errors by the quantum error correc-
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Figure 2: (a)The qubit arrangement of Z stabilizer in in
the heavy-hexagon structure (b)The measurement circuit
of Z stabilizer (c)The qubit arrangement of X stabilizer
in in the heavy-hexagon structure (d)The measurement
circuit of X stabilizer

Figure 3: The region of I,II,III, and IV for performing the
magic state injection.

tion. In the second stage d1 Magic state is extended to
d2. The black node in the top left of Fig.3 denotes the
magic state in the level of physical qubit. For the magic
state injection the remaining nodes are divided into the
regions of I,II,III, and IV[11]. The each node is used as
the data qubit of d1 or d2 in the magic state.

2.1 Stage I

• As the first step of Stage I, we determine the initial
quantum states of physical qubits located in the re-
gion I and II, indicated in Fig.3. The data qubits
in the region I are prepared as |+⟩, and the data
qubits in the region II are prepared as |0⟩. Mean-
while, for the round of measurement of stabilizer,
syndrome and flag qubit are prepared as |+⟩ and
|0⟩, respectively. And a single qubit state |M⟩ is
prepared in upper-left side.

• As the second step of Stage I, we perform twice the

round of measurement of stabilizer. In each round
of measurement X stabilizer and Z stabilizer are
measured independently. After the measurement,
syndrome qubit and flag qubit are initialized for
the next round.

• As the final step of Stage I, we check whether |M⟩ is
projected to the logical quantum state as the result
of measurement of stabilizer. If there is no error
from the result of measurement obtained by two
rounds of measurement of stabilizer, |M⟩, which is
the quantum state of physical qubit, should be pro-
jected on the logical quantum state. If even a single
error is detected, we should return to the first step.

2.2 Stage II

• As the first step of Stage II, to extend the distance
of magic state to d2, we add qubits in region III and
IV. The physical qubits in the region III are pre-
pared as |+⟩ and the physical qubits in the region
IV are prepared as |0⟩.

• As the second step of Stage II, we perform the mea-
surement of stabilizer to the whole region of d2.
By performing d2 times of round of measurement
of stabilizer, we obtain the syndrome. If errors are
detected, we correct the errors by a decoding algo-
rithm. Through this process, we can prepare |M⟩L
of d2-size. And we can perform non-Clifford logical
operators even in the heavy-hexagon structure.

In Stage I the quantum state |M⟩L consists of |M⟩ =
α |0⟩+β |1⟩. The quantum state in the first step of Stage
I, when the data qubits consisting of ZL are considered,
becomes |0⟩magic ⊗ |0⟩d1−1

data ( |1⟩magic ⊗ |0⟩d1−1
data ). Let us

denote |ϕ⟩data as the quantum state of data qubits except
d1 qubits consisting of ZL. Therefore, the total quantum
state before the round of measurement of stabilizer can
be written as follows:

|ψ⟩ = α |0⟩magic ⊗ |0⟩d1−1
data ⊗ |ϕ⟩data

+β |1⟩magic ⊗ |0⟩d1−1
data ⊗ |ϕ⟩data (1)

If there is no error when two times of round of mea-
surement of stabilizer are performed, |ψ⟩ is projected on
the logical quantum state with +1 eigenvalue to every
stabilizer. We denote the i-th element of total set of sta-
bilizer as Si. Then the following expression provides |ψ⟩L
in terms of |ψ⟩ and Si.

|ψ⟩L =
∏
i

(I + Si) |ψ⟩

= α
∏
i

(I + Si) |0⟩magic ⊗ |0⟩d1−1
data ⊗ |ϕ⟩data

+ β
∏
i

(I + Si) |1⟩magic ⊗ |0⟩d1−1
data ⊗ |ϕ⟩data

= α |0⟩L + β |1⟩L (2)

The error caused in preparing the magic state can be
regarded mainly for three reasons.The first one is that the
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Figure 4: (a)The logical error rate of surface code to the
magic state in the lattice structure. (b)The success prob-
ability of Stage I of surface code to the magic state in the
lattice structure.

Figure 5: (a)The logical error rate of surface code to the
magic state in the heavy-hexagon structure. (b)The suc-
cess probability of Stage I of surface code to the magic
state in the heavy-hexagon structure.

single qubit error in the preparation of physical qubits of
the magic state causes an error in the magic state. The
second one is that because one should use CNOT(CZ) op-
eration between flag qubit and magic state of level of the
physical qubit in the measurement circuit of stabilizer, if
there is an error in the two-qubit operations, there can
be an error in the magic state. The last one is that even
though every data qubit consisting of ZL should be the
zero state, there can be an error in the magic state if
there is a flip.

3 Numerical results

We consider a depolarization error model for a numer-
ical analysis. In the model when the error rate of a single
physical qubit is p the error in {X,Y, Z} becomes iden-
tically p/3. The two qubit operator in this work is only
CNOT operator and CZ operator consists of the combi-
nation of Hadamard gate and CNOT operator. And the
error rate of 15-two qubit operator {I,X, Y, Z}⊗2/{I⊗I}
becomes p/15. The error rate in reset of |0⟩ is 2p/3. When
performing the round of measurement of stabilizer, we
consider an idling error in every data qubit. The error in
every gate is an independent and identical distribution.

As p varies, we obtain the logical error rate to quantum

Figure 6: The performance of magic state injection pro-
tocol in the case of d2 = d1 + 2. (a) The performance
of magic state injection protocol in the lattice structure.
(b)The performance of magic state injection protocol in
the heavy-hexagon structure.

error correction of magic state injection in lattice and
heavy-hexagon structure and get the success probability
to Stage I. We evaluate the logical error rate to quan-
tum error correction of magic state, by comparing the
quantum state of |M⟩ with the quantum state of |M⟩L
obtained through quantum error correction in Stage II.
We get the success probability to Stage I, from the ratio
between the total sample and the result of +1 from the
syndrome in the round of measurement of stabilizer. The
simulation code is made by the Stim code and we obtain
the syndrome samples by applying the depolarization er-
ror model[21]. The Pymatching algorithm is applied to
the syndrome samples for a decoding algorithm[22].

Fig.4 and Fig.5 show the results when the magic state
injections are performed in the lattice and heavy-hexagon
structure, respectively. Here the value of d1 is {3, 5, 7}.
And the value of d2 is equal to that of d1. Fig.6 shows the
result of magic state injection in the case of d2 = d1 + 2.
The number of samples is 3× 106.

In the case of d1 = d2, as the distance becomes larger,
the logical error rate to the magic state becomes less
not only in the lattice structure but also in the heavy-
hexagon structure. In the case of d1 = d2 = 3, at the
value of p = 0.05% the logical error rate to the magic
state in the lattice and heavy-hexagon structure become
0.328% and 0.627% respectively. Meanwhile, in the case
of d1 = d2 = 7, at the value of p = 0.05% the logical error
rate to the magic state in the lattice and heavy-hexagon
structure become 0.247% and 0.314% respectively. In the
case of d1 = d2 = 5, the success probability of Stage
I in the heavy-hexagon structure becomes 29.27% and
the logical error rate to the magic state in the heavy-
hexagon structure becomes 0.382%. And we can see that
as p increases, the success probability of Stage I decreases
rapidly both in the lattice and heavy-hexagon structure.
In Fig.6 we note that when d2 is not d1, as the value of d1
becomes larger, the logical error rate to the magic state
in the lattice and heavy-hexagon structure becomes less.
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4 Conclusions

In this work, we proposed a method to perform a pro-
tocol for magic state injection in a heavy-hexagon struc-
ture. Further, we compared the logical error rate of magic
state in the heavy-hexagon structure with that in the lat-
tice structure. And we showed that the magic state can
be built even in the heavy-hexagon structure.
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Abstract. Quantum Machine Learning (QML) presents exciting opportunities for accelerating
data analysis. Yet, current architectures, while broadly applicable, often encounter substantial
hurdles related to trainability, generalizability, and scalability. This limitation has prompted the
exploration of problem-specific architectures, which could potentially mitigate these challenges.
Among the promising avenues is the adoption of Geometric Deep Learning principles in the
creation of Geometric QML (GQML) models. In essence, the idea in GQML is to exploit
symmetry to focus the search resources into the relevant region of model space. In this talk, we
will introduce various methodologies for constructing these models and highlight their benefits.

Keywords: Quantum Machine Learning, Geometric Deep Learning, Representation Theory

1 Introduction

Quantum Machine Learning (QML) models aim
at learning from data encoded in quantum states.
Recently, it has been shown that models with little
to no inductive biases are likely to have trainability
and generalization issues, especially as we aim at
scaling them to real world problems. As such, it is
fundamental to develop models that encode as much
information, or assumptions, as available about the
problem at hand. This often untapped source of
information comes predominantly as knowledge of
the underlying symmetries of the problem.
In the last years, the study of symmetries has

revolutionized ML. In particular, the field of Ge-
ometric Deep Learning (GDL) [1] has thrived in
conceptualizing and extending the ideas behind the
success of convolutional neural networks (CNNs).
The main insight was to recognize that the trans-
lation invariance of CNNs was key in their ability
to scale to high-dimensional datasets,and that the
same principle could be extended to more general
groups of symmetries, resulting in the development
of so-called group CNNs [2, 3, 1, 4] that have already
found applications in many domains of science.
The aim of this work is to show that (and how)

one can exploit symmetries in a problem to con-
struct novel QML architectures with sharp geomet-
ric priors [5, 6, 7]. As a first step, we characterize
the space of group-invariant QML models [5]. For

∗larocca@lanl.gov
†cerezo@lanl.gov

instance, we apply such characterization to identify
solutions to problems of purity and entanglement
learning. In more general cases, however, such a
direct approach is not practical and one needs to
parameterize the relevant search space to turn the
learning problem into an optimization one. To ad-
dress this problem, we recur to equivariant quantum
neural networks (EQNNs) which provide a construc-
tive apporach to group invariance. We lay down a
general theory for EQNNs [6] and demonstrate their
merits in practical tasks [7].

2 Results

Group-invariant QML models. Consider a
generic task of supervised QML aiming at learn-
ing an unknown function f provided a dataset S =
{(ρi, yi)}Ni=1 consisting of quantum states ρi and la-
bels yi = f(ρi). One starts by positing a family of
parameterized models hθ that could recover f for
an adequate values of θ. A prototypical choice in
the realm of QML are models consisting of a quan-
tum neural network (QNN) U(θ) (e.g., a quantum
circuit with parameterized gates) operating on k
copies of an input state ρ, followed by the mea-
surement of an observable O. That is, models of

the form h
(k)
θ (ρ) = Tr[U(θ)(ρ⊗k)U †(θ)O]. Once the

model structure is defined, one proceeds by opti-
mizing the parameters θ to minimize discrepancies
between model predictions and labels.
In many situations of interest, information about

the task is not limited to the dataset, but also en-
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Task G C(1)(G) C(2)(G)

Purity U(d) 1d 1d ⊗ 1d,SWAP

Ent.
⊗n

j=1 U(2) 1d

⊗n
j=1{1

j
4,SWAPj}

Table 1: For the purity and entanglement tasks,
we provide the symmetry group G and elements
spanning the 1st and 2nd order commutant. Here,
SWAP the operator swapping the two d-dimensional
copies of ρ, and 1j

4 (SWAPj) is the identity (SWAP)
acting on the jth qubit of each of the k = 2 copies.

compasses some knowledge about f . In particular,
one often knows that the labels produced by f re-
main invariant under some set of operations G on
the input, f(VgρV

†
g ) = f(ρ) for g ∈ G, in which case

we say f is G-invariant. The set of such transfor-
mations adopts the structure of a group, acting on
quantum states through a unitary representation Vg

for all g ∈ G. Given the a-priori knowledge of such
invariance, it is natural to require that the model hθ
should be, by-design, G-invariant for any θ.
For our purposes, the symmetries of G are cap-

tured by its kth order commutant C(k)(G) = {W ∈
Cdk×dk | [W,V ⊗k

g ] = 0 , ∀Vg ∈ G}, which is the vec-
tor space of all complex matrices commuting with k-
fold tensor products of elements of G. The case k =
1 copies corresponds to the standard commutant of

G. At a mathematical level, invariance of h
(k)
θ can

be achieved by restricting Õ(θ) = U †(θ)OU(θ) to
belong to C(k)(G) (see Proposition 1 in Ref. [8]).
Notably, the structure of C(k)(G) can be directly
deduced from how V ⊗k

g block-decomposes into ir-
reducible representations (irreps). Given that many
groups occurring in the realm of quantum physics
have been thoroughly studied, we can often leverage
representation-theory results to readily characterize
the space of possible Õ(θ), as is now exemplified.

Toy problems. As a warm-up excersice, we pro-
pose to analize two examplary QML tasks: learn-
ing the purity and entanglement of states. For the
purity task the labels of the dataset are given as
f(ρi) = 1(0) if ρi is pure (mixed), while for the
entanglement one we assume that f is some multi-
partite entanglement measure. In both cases, the
group G of corresponding symmetries is reported in
Table. 1. Then, recalling the irreducible nature of
U(d) (i.e., it does not admit any non-trivial block
structure), and by virtue of the commutation theo-
rem for tensor products [9, 10], we find that C(1)(G)
is trivial in both cases (i.e., only uninformative G-
invariant models can be realized). From an ML per-

spective, h
(1)
θ is ultimately a linear model (in the

ρ !1(θ1) !2(θ2)

Lifting/
Embedding

Rin R1 R2

!3(θ3)

R3

Standard
Projection/

Pooling

Rout

Option: non-linearity using multiple copies

Figure 1: General equivariant QNNs are composed
of equivariant layers satisfying Eq. (1) acting on po-
tentially different spaces and representations.

entries of ρ) and thus is ill-fitted to approximate
non-linear functions such as the purity or entangle-
ment. However, non-linearities can be introduced
when allowing the models to act on several copies
of ρ, with k = 2 copies sufficing for our purposes.
Invoking the Schur-Weyl duality, we obtain the 2nd
order commutants. For the purity task, inspecting
the non trivial part of C(2)(G) one finds that choos-

ing Õ(θ) = SWAP yields a model h
(2)
θ (ρ) = Tr[ρ2]

solving the task. For the entanglement case, C(2)(G)
is spanned by 2n elements and, while not all choices
are useful, it is remarkable that we can recover in an
elegant way all the multipartite entanglement mea-
sures proposed in [11, 12, 13, 14, 15, 16, 17] as special
choices of C(2)(G).

Designing parameterized geometric quan-
tum machine learning models. So far, we have
characterized the ultimate form that a G-invariant

model h
(k)
θ can adopt: a Õ(θ) ∈ C(k)(G). However,

this neither prescribes how to parameterize U(θ),
nor tells us how to choose the observable O that re-
alizes Õ(θ). Furthermore, while for sufficiently large
symmetry group (or equivalently sufficiently small
commutants), one may be able to directly identify
a solution of the problem, in general the space of
invariant models is too large to directly reason over.
We now explore a more constructive approach to-
wards the design of G-invariant models.
Composable invariant models. Consider a

model as composed of M maps, hθ = NM (θM )◦· · ·◦
N1(θ1), where each map can represent the action of
a layer Ul of U , a measurement, post-processing, or
encoding classical data into quantum states in the
first place. Although imposing invariance at the
level of these maps effectively enforces invariance of
the model, this is too restrictive. A more relaxed
approach towards invariant models involves the con-
cept of equivariance [2, 3, 1]. A map N : A 7→ B is
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Figure 2: Comparison of an equivariant QCNN
(left) with a non-equivariant one (right) for classifi-
cation of ground states of the XXX model.

called G-equivariant if it it satisfies:

N ◦RA(g) = RB(g) ◦ N , ∀g ∈ G (1)

with representations RA and RB of the symmetries
g ∈ G on the spaces A and B. In turn, it can be ver-
ified that G-equivariance of all N (m<M) along with
G-invariance of N (M) ensures G-invariance of the
composed overall model.
Equivariant QNNs. Given that our goal is

to develop parameterized quantum models, we fo-
cus on the case when N is a completely-positive
trace-preserving channel (CPTP). Eq. (1) recovers
the concept of the commutant developed thus far
in the case of unitaries, but generalizes to quantum
channels over arbitrary input and output spaces. As
seen in Fig. 1 these can be used to compose general
EQNNs, and to realize in quantum models the main
components of GDL architectures including pooling,
lifting and standard convolutions. In Ref. [6] we pro-
vide a set of complementary techniques to discover
G-equivariant channels, one of which is presented
now. First, in the case of finite groups, we show
that Eq. (1) only needs to be imposed on a sub-
set S ⊆ G of generators. Left with these |S| con-
straints, the task of solving Eq. (1) can be mapped

to a nullspace problem that can be solved symboli-
cally or numerically [18]. Explicitly, for all g ∈ S we
need to solve (1⊗RA(g)t −RB(g)⊗ 1)vec(N ) = 0 ,
where vec(·) denotes vectorization. The space of all
equivariant channels is obtained by intersecting the
nullspaces corresponding to each g ∈ S and further
restricting it to CPTP maps.
Application: SU-equivariant QCNN for

ground-state classification. To demonstrate the
importance of EQNNs, we consider the task of clas-
sifying ground states ρi of the a bond-alternating
XXX Heisenberg model H =

∑n
i=1 Ji(XiXi+1 +

YiYi+1+ZiZi+1), where Ji = J1(J2) for i even(odd).
The ground states of this G = U(2)-invariant Hamil-
tonian -under the representation R(U ∈ U(2)) =
U⊗n- can be found in two phases: a trivial (topo-
logical) one whenever J2/J1 < 1(> 1). This allows
us to build a dataset {ρi, yi} where and we assign
labels yi = 0 and 1 to each phase. For the classi-
fication we employ a quantum convolutional neural
network (QCNN) [19, 20].
While QCNNs, in analogy to CNNs, were en-

visioned to respect translation invariance we show
that symmetries unique to quantum systems can,
and should, be accounted for. Using the nullsapce
approach described earlier we devise a correspond-
ing symmetry-respecting architecture. The convolu-
tional layers of the G-invariant QCNN are composed
of 2-qubit gates generated by parametrized SWAPs
on pairs of neighbouring qubits, while in each pool-
ing layer we trace out half of the qubits.
As seen in Fig. 2(a), the EQCNN achieves accu-

rate classification with as few asN = 2 training data
points, while the non-equivariant version is found to
perform almost as poorly as random guessing.

3 Discussion.

Geometric Quantum Machine Learning is a
nascent field that intends to exploit symmetry
present in learning tasks to enhance QML mod-
els [5, 6, 7]. We envision that soon enough the
field of Geometric Quantum Machine Learning will
be a thriving and exciting field. Merits of the con-
structions proposed were explored in toy examples
and also practical tasks demonstrating a substan-
tial separation in performances between invariant
and non-invariant architectures. As a very nascent
field, we expect many more developments including
more systematic studies of EQNNs performances,
stronger theoretical connections with the already
well-developed field of GDL, and understanding lim-
its imposed by practical implementations.
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P. Veličković, arXiv preprint arXiv:2104.13478
(2021).

[2] T. Cohen and M. Welling, in International con-
ference on machine learning (PMLR, 2016) pp.
2990–2999.

[3] R. Kondor and S. Trivedi, in International Con-
ference on Machine Learning (PMLR, 2018)
pp. 2747–2755.

[4] A. Bogatskiy, S. Ganguly, T. Kipf, R. Kondor,
D. W. Miller, D. Murnane, J. T. Offermann,
M. Pettee, P. Shanahan, C. Shimmin, et al.,
arXiv preprint arXiv:2203.06153 (2022).

[5] M. Larocca, P. Czarnik, K. Sharma, G. Mu-
raleedharan, P. J. Coles, and M. Cerezo, Quan-
tum 6, 824 (2022).

[6] Q. T. Nguyen, L. Schatzki, P. Brac-
cia, M. Ragone, M. Larocca, F. Sauvage,
P. J. Coles, and M. Cerezo, arXiv preprint
arXiv:2210.08566 (2022).

[7] F. Sauvage, M. Larocca, P. J. Coles, and
M. Cerezo, arXiv preprint arXiv:2207.14413
https://doi.org/10.48550/arXiv.2207.14413
(2022).

[8] M. Larocca, F. Sauvage, F. M. Sbahi, G. Ver-
don, P. J. Coles, and M. Cerezo, PRX Quantum
3, 030341 (2022).

[9] M. A. Rieffel and A. Van Daele, Bulletin of the
London Mathematical Society 7, 257 (1975).

[10] C. B. Mendl and M. M. Wolf, Communications
in Mathematical Physics 289, 1057 (2009).

[11] G. K. Brennen, arXiv preprint quant-
ph/0305094 (2003).

[12] D. A. Meyer and N. R. Wallach, Journal of
Mathematical Physics 43, 4273 (2002).
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Exponential separations between classical and quantum learners
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Abstract. We explore provable quantum speedups in learning problems, addressing the challenge of
finding scenarios where quantum algorithms exponentially outperform classical counterparts. Existing
quantum learning advantages are limited to artificial cryptography-inspired datasets. We highlight the im-
portance of subtle differences in definitions, and present two new learning separations where the classical
hardness lies in identifying rather than evaluating the data-generating function. We discuss computa-
tional hardness assumptions required to prove learning separations for quantum-generated data, and show
quantum advantage in condensed matter and high-energy physics. Additionally, we examine the classical
shadow paradigm and its relation to learning separations for quantum-generated data.

Keywords: Quantum machine learning, Computational learning theory, Complexity theory
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The results described below are based on version 2 of the
technical manuscript, which will appear on arXiv soon.

1 Introduction

Quantum machine learning (QML) is a bustling field
with the potential to deliver quantum enhancements for
practically relevant problems. An important goal of the
community is to find practically relevant learning prob-
lems for which one can prove that quantum learners
have an exponential advantage over classical learners.
In this paper, we study how to achieve such exponen-
tial separations between classical and quantum learners
for problems with classical data in the efficient probably
approximately correct (PAC) learning framework. The
first thing we address is that there is no single defini-
tion of what precisely constitutes a learning separation.
In particular, when trying to come up with a definition
there are many choices to be made, and various choices
make sense depending on the use-cases. For instance, as
we explain, a significant difference arise if the emphasize
is on the task of identifying or evaluating the functions
that are generating the data. This ambiguity can lead
to conflating the task of learning in an intuitive sense
with a purely computational task. To address this issue,
we provide multiple definitions of a learning separation,
and we discuss in which cases the tasks involve learning
in an intuitive sense. Moreover, we study existing learn-
ing separations [8, 12] and carefully delineate where the
classical hardness of learning lies and the types of learn-
ing separations they achieve. Furthermore, we provide
new examples of learning separations where the classical
hardness lies more in learning in an intuitive sense rather
than evaluating the functions to be learned.
Next, we turn our attention to the folklore in the

community that states that quantum machine learning
most likely to have advantages when the data quantum-
generated. For instance, it is believed that quantum
learners are more likely to offer an advantage in pre-
dicting the phases of physical systems rather than dis-
tinguishing between images of dogs and cats. This

∗c.f.s.gyurik@liacs.leidenuniv.nl

is because genuinely quantum-generated data typically
has some BQP-hard function underlying it. However,
it is not immediately clear how these BQP-hard func-
tions can give rise to a learning separation. In other
words, if we assume a complexity-theoretic separation
like BPP ̸= BQP, how can we construct a learning sep-
aration from the fact that the labeling function is BQP-
hard? In this paper, we address this question by ex-
ploring the additional complexity-theoretic assumptions
required to build such a learning separation. Moreover,
we provide several examples of how learning separations
can be constructed from physical systems, such as the
Bose-Hubbard model [2], the antiferromagnetic Heisen-
berg and antiferromagnetic XY model [11], the Fermi-
Hubbard model [10], supersymmetric systems [1], inter-
acting bosons [13], interacting fermions [7].

2 Results

The main contributions of our paper are as follows:

Formalizing quantum advantage in learning theory:

• We clarify the finer points regarding the possible
definitions of a learning separation by highlighting
that there are various ways of defining them. Above
all, we explore the distinction between the task of
identifying (i.e., giving a specification of) the cor-
rect labeling function versus the task of evaluat-
ing it (i.e., computing its output), and we explain
that these differences have a significant impact on
whether a problem exhibits a learning separation.

• We outline computational hardness assumptions
that one can leverage to establish learning sep-
arations in the efficient PAC learning frame-
work. In particular, we define the complexity class
HeurBPP/samp that aims to capture all classically
learnable functions. Moreover, using ideas from [6]
we relate our new complexity class to a famil-
iar though unexplored complexity class by showing
that HeurBPP/samp ⊆ HeurP/poly.
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Learning separations with efficient data generation:

• We discuss known learning separations [8, 12], and
we and provide a fine-grained analysis of where the
classical hardness of learning stems from. While
discussing these learning separations, we find that
the ones available in literature largely rely on the
classical hardness of evaluating the function gen-
erating the data on unseen points, as opposed to
the hardness of identifying it. We elaborate how
the identification problem can be what is needed in
practice, and we address this gap by proving two
new learning separations where the classical hard-
ness primarily lies in identifying the function gen-
erating the data.

Learning separations without efficient data generation:

• We show how leveraging stronger complexity-
theoretic assumptions can lead to learning separa-
tions where the data is generated by a genuinely
quantum process. Our main contribution is The-
orem 1, which outlines a method of establishing
learning separations from BQP-complete functions.
We also provide two lemmas, Lemmas 2 and 3,
which introduce natural assumptions under which
the criteria in Theorem 1 are satisfied, which gives
rise to Corollary 4. Finally, we show how Theo-
rem 1 can be used to build learning separations
from problems in quantum many-body physics.

Theorem 1 Consider a family of concept classes
{Cn}n∈N and distributions {Dn}n∈N such that

Quantum learnability:

(a) Every cn ∈ Cn can be evaluated on a quantum com-
puter in time O (poly(n)).

(b) There exists a polynomial p such that for every n ∈
N we have |Cn| ≤ p(n).

Classical non-learnability:

(c) There exists a family {cn}n∈N, where cn ∈ Cn, such
that ({cn}n∈N, {Dn}n∈N) ̸∈ HeurP/poly.

Then, L = ({Cn}n∈N, {Dn}n∈N) exhibits a CC/QQ learn-
ing separation.

Lemma 2 If there exists a (L,D) ̸∈ HeurP/poly with
L ∈ BQP, then for every L′ ∈ BQP-complete5 there ex-
ists a family of distributions D′ = {D′

n}n∈N such that
(L′,D′) ̸∈ HeurP/poly.

Lemma 3 lemmatwo If L ̸∈ P/poly and L is polynomi-
ally random self-reducible with respect to some distribu-
tion D, then (L,D) ̸∈ HeurP/poly.

Corollary 4 If there exists an L ∈ BQP such that L ̸∈
P/poly and it is random self-reducible, then every BQP-
complete problem gives rise to a CC/QQ separation.

5With respect to many-to-one reductions (as is the case for, e.g.,
quantum linear system solving [4]).

Discussion:

• To connect our work to some of the related results
in the field [5, 6, 9, 3], we discuss selected topics
related to learning separations with classical data:

– We discuss the milestone work of Huang et
al. [5] and how their classical machine learn-
ing methods based on the classical shadow
framework relate to learning separations with
quantum-generated data (i.e., those from The-
orem 1). In particular, we highlight their lim-
itations by showing the existence of a family
of Hamiltonians whose groundstates proper-
ties it cannot predict based on cryptographic
assumptions.

– We discuss a specific example (i.e., evaluating
parameterized quantum circuits) that exem-
plifies how access to data radically enhances
what can be efficiently evaluated.

– We discuss how two physically-motivated
problems (i.e., Hamiltonian learning, and
identifying order parameters and phases of
matter) naturally fit in a PAC learning set-
ting where the learner is constrained to output
hypotheses from a fixed hypothesis class, and
how potential separations there are different
from the non-fixed hypothesis class setting

3 Impact and importance

Our paper holds significant importance in the field of
quantum information and computation as it addresses
the fundamental question of identifying learning tasks
where quantum algorithms can provide a provable expo-
nential speedup over classical algorithms. By examin-
ing the subtle differences in definitions and the specific
tasks that require the use of a quantum computer, we
contribute to the understanding of the computational
power and limitations of quantum learning. Further-
more, our exploration of learning problems with prov-
able quantum speedups, particularly in scenarios involv-
ing quantum-generated data, has implications for various
domains, including condensed matter physics and high-
energy physics. Our findings provide valuable insights
into the potential quantum advantages in natural settings
and pave the way for future advancements in quantum
machine learning.
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Abstract. Complexity theory typically focuses on the difficulty of solving computational problems using
classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply
a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a
state-synthesizing counterpart of the class NP, referred to as stateQMA, which is concerned with prepar-
ing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum
message from an all-powerful but untrusted prover. This is a subclass of the class stateQIP recently in-
troduced by Rosenthal and Yuen (ITCS 2022), which permits polynomially many interactions between
the prover and the verifier. Our main result consists of error reduction of this class and its variants with
an exponentially small gap or a bounded space, as well as how this class relates to other fundamental
state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits (stateBQP)
and space-uniform polynomial-space quantum circuits (statePSPACE). Additionally, we demonstrate that
stateQCMA achieves perfect completeness. Our proof techniques are based on the quantum singular value
transformation introduced by Gilyén, Su, Low, and Wiebe (STOC 2019), and its adaption to achieve expo-
nential precision with a bounded space. The full version of this paper is available from arXiv:2303.01877.

Keywords: quantum state synthesis, state complexity theory, quantum Merlin-Arthur proof systems

Classical and quantum complexity theory typically
concentrates on the computational difficulty of solving
problems with classical inputs and outputs. However,
quantum computers have the ability to handle not only
classical problems, but also quantum tasks, such as syn-
thesizing quantum states. The most famous example is
preparing ground states of a physical system [17, 24],
which even dates back to Feynman’s original ideas [7].
Analogous tasks are also commonplace in quantum cryp-
tography and generalized notions of the pseudorandom-
ness, such as quantum money [1] and pseudorandom
quantum states [11]. This motivates the study of com-
plexity of synthesizing quantum states.
In [2], Aaronson investigated the concept on quantum

state complexity, leading to the state synthesis problem.
This problem involves generating a quantum state ρ from
the all-zero state based on a quantum circuit with a suc-
cinct description acting on n qubits with the depth up
to exponential. The resulting state ρ is supposed to be
close to the designated target state |ψ⟩1. This problem is
solvable in (quantum) polynomial space (PSPACE), i.e., a
quantum computer running in exponential time but us-
ing polynomially many gates can generate a state that
well approximates the target state.
Quantum computers are seemingly not capable of solv-

ing any PSPACE problem in polynomial time, while poly-
nomially many messages interactive protocols with the
help of an all-powerful and untrusted prover (known as
interactive proofs, IP) captures the full computational
power of polynomial-space computation, referred to as
the celebrated IP = PSPACE theorem [20, 27]. A re-
cent line of works [9, 22, 26] initializes the study on
the interactive state synthesis problem. Rosenthal and
Yuen [26] denote the polynomial-space-preparable state

1We measure the closeness between ρ and |ψ⟩ by the trace dis-
tance td(ρ, |ψ⟩⟨ψ|) := 1

2
∥ρ− |ψ⟩⟨ψ|∥1.

families as statePSPACE2 and show that such state fam-
ilies are preparable by interactive synthesis protocols,
which belongs to the class stateQIP. Afterwards in [9], the
authors explore the state synthesis problem by taking ad-
vantage of fairly powerful and trusted oracles. Recently,
Metger and Yuen [22] manage to prove the equivalence
between state families that are preparable using polyno-
mial space and those generated by interactive synthesis
protocols, that is, stateQIP = statePSPACE, which is the
state-synthesizing counterpart of the IP = PSPACE the-
orem (and its quantum analogue [10]).

However, there is currently a lack of fine-grained char-
acterizations of computationally easier state families,
viz., state families that are efficiently preparable (e.g.,
efficiently simulating view of quantum statistical zero-
knowledge [28]), or state families that are synthesizable
via simply one-message interactive protocols (e.g., effi-
cient verification of pure quantum states in the adversar-
ial scenario [29]). This opens up opportunities for our
main results.

1 Main results

In this work, we are particularly interested in state
families that are preparable by one-message protocol,
denoted as stateQMA, which is obviously a subclass of
stateQIP. Let us first devote to defining stateQMA in-
formally. For a state family in stateQMA is a family
{|ψn⟩}n∈N indexed by natural numbers such that there
is a verifier that has the following properties, verifying
whether the target state |ψn⟩ corresponds to a given in-
put 1n is well-approximated. The verifier’s computa-
tion, which is a polynomial-size unitary quantum cir-

2The definition of statePSPACE is a bit subtle: although all
quantum states can be well-approximated by an exponentially long
gate sequence owing to the Solovay-Kitaev theorem [15], this expo-
nential gate sequence is not necessarily space-uniform.
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cuit3, takes a quantum-proof state |w⟩ (with no limita-
tions on the preparation method) and ancillary qubits in
the state |0⟩ as input. After performing the verification
circuit, a designated output qubit will be measured on
the computational basis, and the verifier accepts if the
measurement outcome is 1. If the verifier accepts, the
verification circuit has prepared the resulting state ρw
on the remaining qubits that is a good approximation of
the target state |ψn⟩ (if the verifier rejects, the resulting
state could be anything). The acceptance probability is
viewed the success probability for approximately prepar-
ing |ψn⟩.
More precisely, the state family is in the class

stateQMAδ[c, s] for some 0 ≤ s < c ≤ 1 and δ ≥ 0,
if the resulting state ρw is δ-close to the target state
|ψn⟩ provided that the verifier accepts with probability
at least s (soundness condition); and additionally there
exists a quantum witness that makes the verifier accepts
with probability at least c (completeness condition).
It is evident that stateQMAδ[c, s] ⊆ stateQMAδ′ [c

′, s′]
if c′ ≤ c, s′ ≥ s and δ′ ≥ δ. However, how crucially
does stateQMAδ[c, s] depend on its parameters? For com-
monplace complexity classes, viz. BQP, QMA, QIP, etc.,
the dependence on such parameters is very weak: the
class remains the same so long as the completeness c and
soundness s differ by at least some inverse polynomial.
This is known as error reduction, which typically involves
performing the verification circuit in parallel and taking
the majority vote.
However, error reduction for stateQMA requires a more

nuanced approach. A simple parallel repetition of the
verification circuit ends with a tensor product of the re-
sulting state that evidently differs from the original state
family. Therefore, error reduction for stateQMA does
need to preserve not only the quantum witness state |w⟩,
but also the resulting state ρw, referred to as the doubly-
preserving error reduction in Theorem 1.

Theorem 1 (Doubly-preserving error reduction
for stateQMA – informal) For any c(n) − s(n) ≥
1/poly(n) and 0 ≤ c(n), s(n) ≤ 1, we have

stateQMAδ[c(n), s(n)] ⊆ stateQMAδ[1− 2−l(n), 2−l(n)].

Nevertheless, applying Theorem 1 to a polynomial-
space-bounded variant of stateQMA[c, s], which we de-

note by stateQMAUPSPACE
off4, will result in exponen-

tial space. To address this, we generalize Theorem 1
in a manner that preserves the polynomial space com-
plexity. Here in the class stateQMAUPSPACE

off , the veri-
fier’s computation stays polynomially space-bounded but
may take exponential time and the gap between the com-
pleteness c and the soundness s is at least some inverse-
exponential.

3In particular, extending to general quantum circuits does not
change the class stateQMA owing to the principle of deferred mea-
surement. However, such extensions do not immediately work for
space-bounded stateQMA.

4We emphasize that stateQMAUPSPACE
off is not a state-

synthesizing counterpart of the class NPSPACE.

Theorem 2 (Doubly-preserving error reduction
for stateQMAUPSPACE

off – informal) For any c(n) −
s(n) ≥ exp(−poly(n)) and 0 ≤ c(n), s(n) ≤ 1, we have

stateQMAUPSPACE
off

δ[c(n), s(n)] ⊆
stateQMAUPSPACE

off
δ

[
1− 2−l(n), 2−l(n)

]
.

We note that Theorem 1 is a state-synthesis analogue
of the witness-preserving error reduction for QMA [21,
23]. Likewise, Theorem 2 shares similarities with error
reduction for unitary quantum computations [4] in the
context of synthesizing states. Along the line of Marriott
and Watrous [21], we demonstrate that logarithmic-size
quantum witness states are useless for stateQMA, and
this variant is referred to as stateQMA[log]. Here state-
BQP is defined as a subclass of statePSPACE with only
polynomially many quantum gates.

Corollary 3 stateQMAδ[log] = stateBQPδ.

Resembling the approach of Fefferman and Lin [5],
we demonstrate that a variant of stateQMA that ad-
mits an exponentially small gap between completeness
and soundness, known as statePreciseQMA, is contained
in statePSPACE. Surprisingly, Corollary 4 shows that the
distance parameter δ remains unchanged, while a sim-
ilar statePSPACE containment following from [22] will
worsen the distance parameter δ, namely stateQMAδ ⊆
statePSPACEδ+1/poly(n).

Corollary 4 statePreciseQMAδ ⊆ statePSPACEδ.

Furthermore, we prove that stateQCMA, which is a
variant of stateQMA in which the optimal quantum wit-
ness state is classical (i.e., a binary string) for the com-
pleteness condition, can archive the perfect completeness.
This result is analogous to the QCMA = QCMA1 theo-
rem [13, 14] for synthesizing quantum states.

Theorem 5 (stateQCMA achieves perfect complete-
ness – informal) For any c(n)− s(n) ≥ 1/poly(n)
and 0 ≤ c(n), s(n) ≤ 1, we have stateQCMAδ[c, s] ⊆
stateQCMAδ[1, s

′] for some s′ such that 1 − s′(n) ≥
1/poly(n).

In addition, it is worth noting that Theorem 5 also
straightforwardly extends to statePreciseQCMA.

2 Proof techniques

The proof of Theorem 1 and Theorem 2 employs the
quantum linear algebra techniques developed by Gilyén,
Su, Low, and Wiebe [8], specifically the quantum singular
value discrimination.

Error reduction for stateQMA by manipulating sin-
gular values. To elaborate on the intuition, we be-
gin by briefly reviewing the witness-preserving error re-
duction for QMA [21, 23]. Consider a QMA verifica-
tion circuit Vx that takes a quantum witness state |w⟩
(on the register W) and ancillary qubits in the state |0⟩
as input. The corresponding acceptance probability is
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∥|1⟩⟨1|outVx|w⟩|0̄⟩∥22, which is equal to a quadratic form
⟨w|Mx|w⟩ where the matrix Mx := ⟨0̄|V †

x |1⟩⟨1|outVx|0̄⟩.
It is not hard to see the maximum acceptance probabil-
ity of Vx is the largest eigenvalue of Mx. We then view
Mx = ΠinΠΠin as a product of Hermitian projectors Πin

and Π where Πin = IW ⊗ |0̄⟩⟨0̄| and Π = V †
x |1⟩⟨1|outVx.

Remarkably, there exists an orthogonal decomposition of
the Hilbert space, which the projectors Πin and Π act on,
into one-dimensional and two-dimensional common in-
variant subspaces. This elegant decomposition property
is referred as to the Jordan lemma5 [12]. Marriott and
Watrous [21] then take advantage of the Jordan lemma
and present error reduction for QMA that preserves the
quantum witness state.

However, this error reduction technique does not au-
tomatically preserve the resulting state, as required in
stateQMA, we thus need a more sophisticated technique,
namely the quantum singular value transformation [8].
This technique generalizes the qubitization technique in-
troduced by Low and Chuang [19] that inspired by the
aforementioned decomposition property. Moving on to
the maximum acceptance probability of a stateQMA ver-
ifier Vn, it corresponds to the square root of the largest
singular value of the matrix An = ΠoutVnΠin where
Πout := |1⟩⟨1|out is the final measurement. In Section
3.2 of [8], the authors extend the Jordan lemma to the
singular value scenarios. In particular, Img(Πin) and
Img(Πout) can be decomposed into one-dimensional or
two-dimensional common invariant subspaces. Now let
us focus on the specific case of stateQMA, we notice that
the right singular vectors of An correspond to the quan-
tum witness state |w⟩, as well as the left singular vectors
correspond to the resulting state ρw. Therefore, we result
in doubly-preserving error reduction for stateQMA (Theo-
rem 1) by manipulating the singular values accordingly6.

It is noteworthy that Theorem 1 differs from Theo-
rem 38 in [8] since our construction is based on the pro-
jected unitary encoding (e.g., the presented matrix An)
instead of the block-encoding. Furthermore, for estab-
lishing Theorem 2, we make use of an exponential-degree
approximation polynomial of the sign function that all
coefficients within the exponential precision are com-
putable in PSPACE [22]. We additionally observe that
the proof techniques in [22] can be straightforwardly
adapted to projected unitary encodings instead of the
block-encodings originally utilized in their work.

Applications of error reduction for stateQMA.
Along the line of Theorem 3.13 in [21], with Theorem 1,
it seems to straightforwardly make for Theorem 3. Nev-
ertheless, the resulting state raises some concern upon
initial inspection. We fortunately circumvent this caveat
by a careful analysis. Specifically, utilizing the error

5See [25] for the detailed statement of the Jordan lemma, as well
as a simple proof.

6Concretely speaking, the analysis of error reduction based on
majority votes essentially corresponds to obtaining tail bounds for
the Binomial distribution. By leveraging the central limit theorem,
it becomes sufficient to estimate tail bounds for the normal distri-
bution, referred to as the error function erf(x). The approximation
polynomials of the sign function in [18] then achieve this task.

reduction for stateQMA, we begin with a verifier with
completeness 1 − 2−p(n) and soundness 2−p(n) where p
is a polynomial of n. Then we replace the short quan-
tum witness state |w⟩ with a completely mixed state IW,
which gives us a computation meeting the soundness con-
dition such that the soundness s is preserved and the gap
between the completeness and the soundness shrinks to
some inverse-polynomial of n. Although the new result-
ing state ρIW may greatly differ from ρw, the definition of
stateQMA guarantees that ρIW is also close to the target
state because the acceptance probability of the verifier
with IW is greater than the soundness s. This proof also
easily extends to Corollary 4 employing Theorem 2. In
addition, it is noteworthy that stateBQP achieves per-
fect completeness with a worsening distance parameter
δ′. By incorporating error techniques for both stateBQP
and stateUPSPACE, the difference between the new dis-
tance parameter δ′ and the original one can be made
exponentially small. Furthermore, we remark that state-
BQP is not trivially contained in stateQMA, still this is
effortless. We therefore complete the other direction in
Corollary 3.

stateQCMA achieves perfect completeness. Our
proof for Theorem 5 takes inspiration from [14, 13], but
it requires several modifications. Note that our concern
in stateQCMA is not only the maximum acceptance prob-
ability but also the resulting state after performing the
verification circuit and the final measurement. To meet
these requirements, we must choose a specific universal
gateset S such that S can generate a dense subgroup of
SU(2n), and all quantum states generated by these gates
in S have rational entries. For this reason, we opt for the
“Pythagorean gateset” [14, 3]. To ensure that the result-
ing state is indeed close to the target state, we slightly
adjust the construction outlined in [13].

3 Discussion and open problems

Reduction and completeness in state-synthesizing
complexity theory. In the context of state-
synthesizing complexity theory, including prior
works [9, 22, 26] and our own, the concepts of re-
duction and completeness have not been defined.
However, these concepts hold significant importance in
(quantum) complexity theory. The immediate challenge
lies in appropriately defining these concepts, such
as reduction, in a manner that ensures the resulting
states exhibit reasonable behavior before and after the
application of the reduction.

The computational power of statePreciseQMA. Al-
though Corollary 4 establishes that a statePSPACE
containment of statePreciseQMA, the reverse inclusion,
namely statePSPACE ⊆ statePreciseQMA, remains an
open problem. The main challenge lies in adapting
existing proof techniques that demonstrate PSPACE ⊆
PreciseQMA [5, 6, 16], as these techniques heavily rely
on notions of completeness or reduction for the class
PSPACE.
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Abstract. We derive various quantum speed limits for unitary evolution for the case of general quantum
states using the stronger uncertainty relation for mixed quantum states and tighter uncertainty relation
for general quantum states. These bounds are proved to be stronger and tighter than many earlier bounds
in the literature, which renders them useful in the arena of quantum metrology and potential applications
in quantum information processing tasks. In the process we also generalize the tiger uncertainty relation
for pure quantum states to that of mixed quantum states and prove its better performance theoretically.
It is then shown that these bounds can be optimized over different choices of operators for obtaining even
better bounds. We illustrate these with many examples and show their better performance with respect to
at least three existing bounds for general quantum states and many different choices of Hamiltonians that
are useful in different quantum information processing tasks. A part of the technical version of this
work is available in arXiv:2211.14561 and under review in peer reviwed journal and another
part is under review in peer reviewed journal.

Keywords: Tighter and Stronger Quantum Speed Limits, Time Energy uncertainty relation

1 Introduction

The uncertainty relations have helped us to reveal
the behavior of the microscopic world in many different
ways. At first the uncertainty principle was discovered
by Werner Heisenberg who heuristically provided a lower
bound to the product of the error and disturbance for
two canonically conjugate quantum mechanical observ-
ables [1]. On the other hand, the uncertainty relations
are also capable of capturing the intrinsic restrictions
in preparation of quantum systems, which are termed
as the preparation uncertainty relations [2]. This inter-
pretation was quite fruitful for the uncertainty relations
like position-momentum, angular position-angular mo-
mentum uncertainty relations etc. However, the energy-
time uncertainty relation [3, 4] is different from the above
stated uncertainty relations because time is not treated
as an operator in quantum mechanics [5]. In fact in text-
book quantum mechanics time is not treated as a quan-
tum mechanical observable, but as a classical parame-
ter with no inherent quantum uncertainty in it [3]. In
terms of various forms of uncertainty relations, Robert-
son formulated an uncertainty relation for two arbitrary
quantum-mechanical observables. This relation is a type
of the preparation uncertainty relation and expresses the
impossibility of jointly sharp preparation of any two in-
compatible observables. However, the Robertson uncer-
tainty relation do not completely express the incompati-
bility nature of two non-commuting observables in terms
of uncertainty quantification. The stronger variations of
the uncertainty relations have been proved which capture
the notion of incompatibility more efficiently [6]. How-
ever, time, not being a quantum observable, energy-time
uncertainty relation lacked a good interpretation as such
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‡arunpati2008@gmail.com

like for those of other quantum mechanical observables
like the position and the momentum.

Mandelstam and Tamm (MT) derived an uncertainty
relation which is called an energy-time uncertainty re-
lation which follows from the Robertson uncertainty re-
lation when we take into account the initial quantum
state and the Hamiltonian as the corresponding quan-
tum mechanical operators [7]. An interpretation of this
uncertainty relation was given in terms of the so called
quantum speed limit [6]. In the existing literature, there
are several other approaches to obtain quantum speed
limits [6]. As an example, the Margolus-Levitin bound
gives the average of energy in the quantum speed limit [7].
The quantum speed limit bounds have also been extended
to the case of mixed quantum states undergoing unitary
evolution [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24], entangled quantum states [25, 26, 27] and
also open quantum system dynamics [28, 29, 30].

Not only of fundamental importance, but quantum
speed limit bounds have practical applications also. The
quantum speed limit bounds have proven to be very use-
ful in quantifying the maximal rate of quantum entropy
production [32, 33], the maximal rate of quantum com-
munication [34], the maximal rate of quantum informa-
tion processing [35], and in many other avenues. As a
result, these motivate us to find better quantum speed
limit bounds that can be useful.

In the first part of this work, we find tighter form of
quantum speed limit. We show that the new bound pro-
vides a tighter expression of quantum speed limit com-
pared to the existing bounds such as the MT bound [7].
This bound can also be optimized over many orthonor-
mal basis vector sets, as in the case of tighter uncertainty
relations [31]. We find various analytical examples that
shows the performance of our bound over some of the
other bounds. As a byproduct we generalize tighter un-
certainty relation to mixed quantum states analytically.
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In the second part of this work, we use the stronger un-
certainty relation, then generalised to the case of mixed
quantum states to derive a stronger form of quantum
speed limit for mixed quantum states undergoing uni-
tary evolution. We show that the new bound provides
a stronger expression of quantum speed limit compared
to the MT like bound for mixed quantum states. This
bound can also be optimized over many operators. We
then find various analytical examples for mixed states
and some example Hamiltonians that shows the better
performance of our bound over the MT like bound for
mixed quantum states and the bounds for mixed states.
A part of the technical version of this work is

available in arXiv:2211.14561 and under review
in peer reviwed journal and another part is under
review in peer reviewed journal.

2 Main Results

As per our main results, we prove two main differ-
ent types of quantum speed limits for unitary evolution
of general quantum states and prove analytically that
they outperform the MT bound for pure quantum states
and three other different important quantum speed limit
bounds for mixed quantum states with numerical data.
As a byproduct we also generalize the tighter uncertainty
relation for pure quantum states to mixed quantum states
and prove analytically that it outperforms the Robertson
uncertainty relation. After this we work out various ex-
amples that include different cases of random Hamiltoni-
ans, Heisenberg spin chain, perfect state transfer Hamil-
tonian, two qubit CNOT Hamiltonian that are usally
very useful in various quantum information and process-
ing tasks. In the next paragraphs, we state our main
results in the form of theorems and their proofs.

3 Main Results: Tighter and stronger
quantum speed limit for general quan-
tum states

Theorem 1 For a quantum state ρ(t), the speed of uni-
tary evolution generated by the Hamiltonian H is bounded
by the following inequality

τ ≥

[
ℏ

∆H

(
cos−1(

√
Tr(ρ0ρτ ))− cos−1(

√
Tr(ρ20))

)

+
1√

Tr(ρ20)∆H

∫ τ

0

K(t)dt

cos s0(t)2

√
1− Tr(ρ20) cos

2 s0(t)
2

]
.

All the above terms will be clear in the proof as follows.
Consider two non-commuting operators A and B, the
tighter uncertainty relation for a mixed state ρ is given
by

∆A∆B ≥
∑
n

√
|Tr(ĀρĀB̄ψn ρB̄ψn )|. (1)

where

Ā = A− Tr(ρA)I, B̄ = B − Tr(ρB)I, B̄ψn = |ψn⟩⟨ψn|B̄,

and {|ψn⟩} form a complete orthonormal basis. Now with
some algebra we get

∆A∆B ≥
[∑

n

√
|Tr(ĀρĀB̄ψn ρB̄ψn )| − |Tr(ĀρB̄)|

]
+ |Tr(ĀρB̄)|. (2)

We will now analyze the term |Tr(ĀρB̄)|. For this we use
a more convenient notation as |Tr(ĀρB̄)| = |⟨ĀB̄⟩|. We
note that the following equation holds for all mixed quan-
tum states and where the expectation values denoted by
the angled brackets are with respect to the mixed quan-
tum state ρ, i.e.,

|⟨ĀB̄⟩|2 =
1

4
|⟨[A,B]⟩|2 + |1

2
⟨{A,B}⟩ − 2⟨A⟩⟨B⟩|2.

Since both the terms on the R.H.S are positive, we have

|⟨ĀB̄⟩| ≥ 1

2
|⟨[A,B]⟩|. (3)

Using Eq.(2) and the inequality from the above equation
we get

∆A∆B ≥ 1

2
|⟨[A,B]⟩|+K(t), (4)

where K(t) =
[∑

n

√
|Tr(ĀρĀB̄Ψ

n ρB̄
Ψ
n )| − |Tr(ĀρB̄)|

]
is

positive semidefinite. Let us now take the operators A
and B as follows A = ρ(0) and B = H, and ρ ≡ ρ(t) =
e−iHtρ(0)eiHt. The variance of the operator A is then
given by

∆A2 = Tr(ρ(0)2ρ(t))− (Tr(ρ(0)ρ(t)))2

= Tr(ρ20ρt)− (Tr(ρ0ρt))
2, (5)

where we have used the notation ρ(0) ≡ ρ0 and ρ(t) ≡ ρt.
We can now take the following parametrization

⟨A⟩ = Tr(ρ0ρt) = Tr(ρ20) cos
2 s0(t)

2
. (6)

Now, using the equation of motion for the average of A,
we get ∣∣∣∣ℏ ddt ⟨A⟩

∣∣∣∣ = |⟨[A,H]⟩|,

where the averages are all with respect to the mixed
quantum state ρ and A has no explicit time dependence.
Using Eq.(6) then, we get∣∣∣∣d⟨A⟩dt

∣∣∣∣ = Tr(ρ20)
sin s0(t)

2

ds0
dt
. (7)

Therefore, putting the values of A and B explicitly in the
above derived equations we get

∆A∆H ≥ Tr(ρ20)
ℏ sin s0(t)

4

ds0
dt

+K(t). (8)

Now let us analyse the structure of ∆A2 as follows

∆A2 = Tr(ρ20ρt)− (Tr(ρ0ρt))
2. (9)
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Doing some algebra we obtain√
Tr(ρ20) cos

s0(t)

2

√
(1− Tr(ρ20) cos

2
s0(t)

2
)∆H ≥ ∆A∆H.

(10)

The above inequality using Eq.(8) becomes√
Tr(ρ20) cos

s0(t)

2

√
(1− Tr(ρ20) cos

2
s0(t)

2
)∆H

≥ Tr(ρ20)
ℏ sin s0(t)

4

ds0
dt

+K(t). (11)

Now, integrating the above equation with respect to t
and s0(t) we obtain the new quantum speed limit bound
for mixed quantum states as follows

τ ≥ ℏ
√

Tr(ρ20)

4∆H

∫ s0(τ)

s0(0)

sin s0(t)

cos s0(t)2

√
(1− Tr(ρ20) cos

2 s0(t)
2 )

ds0

+
1√

Tr(ρ20)∆H

∫ τ

0

K(t)

cos s0(t)2

√
(1− Tr(ρ20) cos

2 s0(t)
2 )

dt.

The first term on the right hand side can be integrated in
the analytical form, so that we get the following relation

τ ≥ ℏ
√

Tr(ρ20)

4∆H

[
− 4

sin−1(
√
Tr(ρ20) cos

s0(t)
2 )√

Tr(ρ20)

]s0(τ)
s0(0)

+
1√

Tr(ρ20)∆H

∫ τ

0

K(t)

cos s0(t)2

√
(1− Tr(ρ20) cos

2 s0(t)
2 )

dt.

Now, we know that cos s0(0)2 = 1 and
√
Tr(ρ20) cos

s0(τ)
2 =√

Tr(ρ0ρτ ). Thus, putting these value in the above equa-
tion and simplifying, we get

τ ≥ ℏ
∆H

[
sin−1(

√
Tr(ρ20))− sin−1(

√
Tr(ρ0ρτ ))

]
+

1√
Tr(ρ20)∆H

∫ τ

0

K(t)

cos s0(t)2

√
(1− Tr(ρ20) cos

2 s0(t)
2 )

dt.

As before, K(t) is always greater than or equal to zero
in all cases. The optimized version can be expressed as
optimization over the bases.

Theorem 2 The time evolution of a general mixed
quantum state governed by a unitary operation generated
by a Hamiltonian is given by the following equation

τ ≥ τSQSLM =

√
Tr(ρ20)

2∆H
×∫ s0(τ)

s0(0)

sin s0(t)

(1−R(t)) cos s0(t)2

√
(1− Tr(ρ20) cos

2 s0(t)
2 )

ds0,

where τSQSLM stands as a short form for the stronger
quantum speed limit for mixed quantum states and we
have the following definitions of the quantities expressed

in the above equation

s0(t) = 2 cos−1 |

√
Tr(ρ(0)ρ(t))

Tr(ρ20)
|,

∆H = Tr(H2ρ)− (Tr(Hρ))2

R(t) =
1

2
|Tr(ρ 1

2 (
A

∆A
± i

B

∆B
)σ)|2,

where Tr(ρ
1
2σ) = 0 and ||σ||2 = 1,

where we have ||σ||2 = (
∑
n∈I⟨en|σσ†|en⟩)

1
2 , {|en⟩}

forming a complete orthonormal basis in Hilbert space
H, σ ∈ L2(H), i.e., σ belongs to the set of all Hilbert
Schmidt linear operators.

The proof proceeds in similar way as theorem 1, how-
ever we have some different starting point.

4 Discussion of main results

In the first part of this work, we have derived a tighter
quantum speed limit that outperforms the MT bound
and the stronger speed limit bound in many cases. We
have used the tighter uncertainty relations to derive our
bound. We have obtained the necessary and sufficient
conditions for this bound to reduce to that of the MT
bound for pure two qubit states as an example and ar-
gued that we can derive similar conditions for higher
dimensions and mixed steps. Hereafter we have shown
numerically using random Hamiltonians obtained from
Gaussian Unitary ensemble and some other analytical ex-
amples involving interacting quantum systems, that our
bound performs better than the MT and some other ex-
isting bounds in many cases. Since we have shown that
our bound is always better than the MT bound in all
cases, therefore all the cases where the MT bound per-
forms better than the Margolus Levitin bound, our new
bound also performs better than the Margolus Levitin
bound in those cases.

In the second part of this work, we have derived a
stronger quantum speed limit for mixed quantum states
using the mixed state generalization of stronger prepa-
ration uncertainty relations. We have shown that this
bound reduces to that of the pure states under appropri-
ate conditions. Thereafter, we have discussed methods to
derive the suitable operators that allows us to calculate
our bound. Hereafter we have shown numerically using
random Hamiltonians obtained from Gaussian Unitary
ensemble that our bound performs better than the mixed
state version of the MT bound. Also, we have then shown
using many suitable analytical examples of Hamiltonians
useful in important quantum information and computa-
tion tasks that the stronger quantum speed limit bound
derived here for mixed quantum states also perform bet-
ter than the MT like bound and also two more existing
quantum speed limit bounds for mixed quantum states
existing in the current literature.
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Abstract. Anomaly detection is a critical problem in data analysis and pattern recognition, finding
applications in various domains. This paper presents quantum support vector data description (QSVDD),
an unsupervised learning algorithm designed for anomaly detection. QSVDD utilizes a shallow-depth
quantum circuit to learn a hypersphere that tightly encloses normal data, tailored for the constraints of
noisy intermediate-scale quantum (NISQ) computing. Simulation results on the MNIST image dataset
demonstrate that QSVDD outperforms both quantum autoencoder and deep learning-based approaches.
Notably, QSVDD offers the advantage of training an extremely small number of model parameters, which
grow logarithmically with the number of input qubits. This enables efficient learning with a simple training
landscape, presenting a compact and efficient quantum machine learning model for anomaly detection.

Keywords: Quantum computing, Quantum machine learning, Anomaly detection

1 Introduction

Quantum machine learning (QML) leverages quantum
information theory to overcome the fundamental limita-
tions of classical counterparts in addressing various data
analysis tasks [1–3]. QML algorithms have achieved no-
table progress in the field of binary classification, which
is a fundamental problem in pattern recognition. These
algorithms demonstrate the potential to overcome the
limits of classical approaches in terms of runtime, train-
ability, model capacity, and prediction accuracy [4–6].
Anomaly detection (AD) is yet another important branch
of pattern recognition that finds applications in various
domains, including finance [7–9], bioinformatics [10, 11],
manufacturing [12], computer vision [13,14], and high en-
ergy physics [15]. However, AD poses greater challenges
compared to binary classification, primarily due to the
lack of anomalies by definition. Consequently, training
AD models necessitates the use of unlabeled data and
unsupervised learning techniques.
Several QML methods have been proposed to address

AD [16–21]. However, these algorithms face limitations.
Some require expensive subroutines like the quantum
linear solver [22] and matrix exponentiation [23], mak-
ing them unsuitable for Noisy Intermediate-Scale Quan-
tum (NISQ) computing [24] computing. Others focus on
data compression through quantum autoencoders (QAE)
rather than AD itself.
To overcome these limitations, we introduce an end-

to-end QML algorithm, specifically designed for AD and
suitable for NISQ computing. Inspired by deep sup-
port vector data description (SVDD) [25–27], which has
served as a foundation for several state-of-the-art classi-
cal AD approaches, our quantum AD algorithm is named
quantum support vector data description (QSVDD).
QSVDD trains a parameterized quantum circuit, using
the SVDD objective function constructed from a set of
quantum measurements, on normal data. While the
parameterized quantum circuit can take various forms,

∗leo9123@yonsei.ac.kr
†dkd.park@yonsei.ac.kr

we leverage the quantum convolutional neural network
(QCNN) [28] due to its desirable properties such as effi-
cient learning with a small number of parameters [29], ab-
sence of barren plateaus [30,31], and excellent prediction
performance [32]. Through numerical experiments on
the MNIST image dataset, we demonstrate that QSVDD
with the QCNN circuit outperforms QAE-based AD and
classical deep learning-based AD approaches. Notably,
the number of parameters required for training the model
grows logarithmically with the number of input qubits.
Hence, our algorithm offers an extremely compact and
effective machine learning model for AD.

2 Quantum support vector data descrip-
tion

2.1 Loss Function

SVDD is based on learning a feature map Φ : Rd →
Rd′ , where d′ < d, using a training set {xi}i=1,...,m. The
goal is to minimize the radius of the hypersphere that
contains {Φ(xi)}i=1,...,m. The loss function is defined as:

Lc(θ) =
1

m

m∑
i=1

||Φ(xi,θ)− c||2 + λR(θ), (1)

where c represents the center of the hypersphere, which is
defined before the optimization process. The second term
in the equation is the regularization term that prevents
overfitting. To identify anomalies in test data x̃, the
following condition is used:

||Φ(x̃, argmin
θ
L(θ))− c||2 > b, (2)

where b is a predetermined threshold.
QSVDD is the quantum counterpart of the previously

described procedure, utilizing a quantum computer with
n qubits to optimize the feature map Φ. In QSVDD,
Φ(x,θ) = g(U(θ)|ψ(x)⟩), where |ψ(x)⟩ represents the
quantum data encoding, and U(θ) is a parameterized
quantum circuit. These elements, along with the func-
tion g : C2n → Rd′ , are discussed in detail in subsequent
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Figure 1: QSVDD consists of four main components: data encoding, variational quantum circuit, measurement, and
optimization. The classical input data is encoded into quantum data with n qubits, where n depends on the number
of features. This encoding produces the state |ψ(x)⟩. Subsequently, the quantum data undergoes a QCNN circuit. In
the circuit diagram, the dashed line on the convolutional gate indicates its connection through the top and bottom
wires. During the measurement process, the expectation values of Pauli observables are computed, and these values
are utilized in the optimization step. The trainable parameters within the variational quantum circuit are optimized
using a classical optimizer to minimize the loss function.

sections. In the quantum version, since the trainable pa-
rameters of a quantum circuit typically range from 0 to
2π, the regularization term is unnecessary. Therefore,
the QSVDD loss function is defined as:

Lq(θ) =
1

m

m∑
i=1

||Φ(xi,θ)− c||2. (3)

Empirical observations consistently show that setting c =
0 yields good results.

2.2 Data encoding

To perform a QML algorithm on classical data, clas-
sical data must be first mapped to a quantum state us-
ing a quantum feature map represented by the function
Ψ : X → H, where H is a Hilbert space for quantum
states [29, 33, 34]. The process of encoding classical data
into a quantum state using a quantum feature map is
described by the function x ∈ X → |ψ(x)⟩ ∈ H. This en-
coding can be achieved through a unitary transformation
of the initial state |0⟩⊗n. Consequently, we obtain quan-
tum feature mapped data Uψ(x)|0⟩⊗n = |ψ(x)⟩, where n
represents the number of qubits, and Uψ(x) denotes the
unitary transformation.
QSVDD is capable of working with any quantum fea-

ture map. For this study, we employ amplitude en-
coding as an illustrative example. Amplitude encoding
allows classical images to be encoded into an n-qubit
system, where n = O(logN). Specifically, |ψ(x)⟩ =
1

||x||
∑N
i=1 xi|i⟩, where N = 2n, and |i⟩ corresponds to

the i-th computational basis state. This choice of encod-
ing, along with QCNN, allows for a doubly-exponential
reduction in the number of trainable parameters, making
it the most compact QML model. Thus the use of am-
plitude encoding tests the performance of the QSVDD
algorithm under the most extreme condition.

2.3 Variational quantum circuit

The encoded data undergoes a variational quantum
circuit (VQC), U(θ), that contains trainable parame-

ters θ. To make training more efficient, we utilize a
QCNN circuit and divide θ into five groups, denoted
as θ = {θ1,θ2,θ3,θ4,θ5}. Each group corresponds
to a set of parameters in the VQC structure in Fig-
ure 1. Within each group, we implement a convolu-
tional circuit represented by a small blue box in Fig-
ure 1, consisting of Ri(θ) rotation gates where i denotes
the axis of Bloch sphere, CNOT gates, and U3(θ, ϕ, δ) =
Rz(ϕ)Rx(−π/2)Rz(θ)Rx(π/2)Rz(δ) gates. Since this
convolutional circuit can generate the SU(4) group, the
pooling layer in certain QCNN models does not use pa-
rameterized gates [29].

Figure 2: The convolutional circuit used in our study.

QCNN structure has the number of parameters for the
optimization that grows as O(log n), where n is the num-
ber of qubits [29]. This implies that with QCNN struc-
ture and amplitude encoding stated in Section 2.2, we can
reduce the number of parameters double-exponentially
with the dimension of the classical input data. This is
a great advantage in QML since it induces a simplified
structure to optimize. This can also help prevent overfit-
ting and enhance the VQC’s generalization ability.

2.4 Measurement

The function g : C2n → Rd′ is responsible for mapping
the quantum data to a lower-dimensional latent space,
where the hypersphere is determined. In this latent
space, the maximum of d′ is given by max(d′) = 4no − 1,
where no is the number of output qubits in the QCNN
circuit. This represents the number of real parameters for
an no-qubit density matrix. To implement the mapping
function g, we utilize the expectation values of no-qubit
Pauli observables. Each expectation value serves as a
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coordinate within the feature space. Consequently, the
dimensionality of the latent space is determined by the
number of Pauli observables selected by the user, ranging
from 1 to 4no − 1.

2.5 Optimization

The QSVDD loss function in Equation 3 is optimized
by using a classical optimizer. The optimization process
is initialized at θ0, representing the initialized parame-
ters sampled from the standard normal distribution. To
evaluate the training performance of our model, we set
the center as the origin of the given latent space, aiming
to identify Φ(·) that is effective in anomaly detection.
Before presenting numerical experiments, it is worth

noting that QSVDD provides considerable flexibility in
selecting its components, such as the data encoding, the
ansatz, the measurement operators, and the optimizer.
This freedom allows for customization to suit specific
tasks. In this paper, we utilize amplitude encoding as the
data encoding, and the QCNN and QAE ansatz as the
variational quantum circuits for our numerical studies.
Additionally, we employ the set of Pauli measurements
as the measurement operators and Adam optimizer.

3 Numerical experiments

Our experimental findings highlight the exceptional
performance of QSVDD when compared to the QAE
method [21] and the deep convolutional autoencoder
(DCAE), a common approach in deep learning for
anomaly detection [27, 35]. To ensure a fair comparison,
we adjusted the number of parameters in each model ac-
cordingly. The QCNN structure utilized 75 parameters,
the QAE structure utilized 78, and the DCAE structure
utilized 92.
In our experiment, we evaluated the anomaly detection

performance using the AUC score and compared them
across different dimensionalities of the latent space. The
results demonstrated that the optimal performance of
QSVDD, employing the QCNN structure, was achieved
when the latent space dimension was set to 9. Therefore,
we compared the methods using a latent space dimen-
sion of 9, as depicted in Figure 3. Notably, QSVDD ex-
hibited outstanding AUC performance with consistently
small standard deviations across five repeated experi-
ments. This low variability suggests a high level of ro-
bustness and reliability in the obtained results.

4 Conclusion

In this paper, we have presented the QSVDD algo-
rithm, which utilizes a VQC framework for anomaly de-
tection. Our approach involves training a shallow-depth
quantum circuit to learn a hypersphere that tightly en-
closes normal data, with the flexibility to adapt to feature
space dimensions ranging from 3 to 15. This flexibility is
achieved by directly incorporating Pauli measurements
into the loss function component and optimizing them
using a classical optimizer. The flexibility of QSVDD
enables its application to specific tasks. Additionally,

(a) Results of QSVDD with QCNN structure

(b) Comparison with the other methods

Figure 3: AUC scores

QSVDD’s simplified structure enabled by the QCNN cir-
cuit results in logarithmic parameter growth with qubit
count, making it more favorable than other QML models.
This scalability is particularly valuable for NISQ devices,
as it enables more efficient anomaly detection with lim-
ited resources.

In summary, our work introduces a novel quantum
anomaly detection algorithm by optimizing variational
parameters through the QCNN circuit and the QSVDD
loss function. By leveraging the power of quantum com-
puting, QSVDD allows us to tackle challenging problems
in the feature space that are difficult to address efficiently
in the input space.
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Abstract. When quantum systems are thermalised with constraints, the non-equilibrium steady state
(NESS) may differ in its internal energy from the corresponding equilibrium state. Such a difference is
called amplification (resp. mitigation) when the NESS has more (resp. less) energy than the corresponding
equilibrium state, and is useful in engine design. In this talk, we present the general theory of amplification
threshold with a view to non-equilibrium baths with strong symmetry, where both the Hamiltonian and
Lindblad operators commute with a symmetry operator. We relate the amplification threshold to Lan-
dauer’s erasure, towards a generic theory for strong symmetry-protected thermal machines.

Keywords: Open System Thermalisation, Strong Symmetry, Amplification and Mitigation

Symmetries of open quantum systems are powerful
tools that provide control over the systems’ dynamics.
They come in two varieties depending on whether the
symmetry is at the level of the Hilbert space or the Liou-
ville space—namely, strong and weak symmetry. Open
quantum systems with strong symmetries have multiple
steady states associated with the dynamics and are hence
capable of executing non-thermalising dynamics by “re-
membering” some information about the initial state of
the system. The symmetries of open quantum systems
have been employed in various practical applications, in-
cluding quantum error correction [1], symmetry reduc-
tion [2] and controlling quantum transport [3]. But their
implications in quantum thermodynamics still remain
mostly unexplored. We investigate the role of strong
symmetry in the amplification and mitigation of the ac-
tion of a thermalising bath [4, 5, 6]. Multiple steady
states associated with strong symmetric dynamics lead
to partial thermalisation wherein thermalisation occurs
within invariant subspaces of the symmetry (symmetry
blocks), but thermal equilibriation of the initial state’s
overall populations in these subspaces is prevented by the
symmetry. We call such a process symmetry-protected
thermalisation (SPT).
We compare the quantum thermodynamics of the

steady states attained by generic thermalisation and SPT
using standard information theoretic definitions involving
the non-equilibrium free energy. We interpret the initial
state information protected by the SPT to be held in a
classical register in the possession of a Maxwell’s demon.
This interpretation is elucidated in the two figures pre-
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§varun.achar@gmail.com
¶sai@phy.iitb.ac.in

sented here. The demon perspective assists in providing
a Landauer erasure interpretation for the amplification or
mitigation of the thermal bath’s effects in the presence
of strong symmetry.

1 Review of non-Equilibrium Free En-
ergy

The free energy of a generic quantum state with re-
spect to an ambient thermal bath at temperature T is
defined to be F = E − TS. Here E is the system’s
average internal energy and S is the von Neumann en-
tropy of its state. For the equilibrium state at tem-
perature T , ρβ = e−βH/Zβ , the free energy reduces to

F (ρβ) = −KTln(Zβ), where β := (kBT )
−1

is the inverse
temperature of the bath,and Zβ = Tr(e−βH) is the parti-
tion function of the equilibrium state. The free energy of
an arbitrary non-equilibrium state ρness can be expressed
in terms of the equilibrium free energy as F (ρness) =
F (ρβ) + TS[ρness||ρβ ] with S[ρ||σ] = −S(ρ)− Tr(ρ lnσ)
being the relative entropy between the two states.

2 Amplification and Mitigation

The thermalisation process takes an arbitrary initial
state of the system to the thermal state in equilibrium
with the thermal bath driving the process. We seek to
compare steady states attained by the generic thermal-
isation process and SPT. Consider two scenarios, one
wherein the initial state (ρβ0 =

∑
n p

β0
n ρβ0

n ) in equilib-
rium with a thermal bath at inverse temperature β0 un-
dergoes generic thermalisation to thermal state at in-
verse temperature β (ρβB =

∑
n p

βB
n ρβB

n ) and the other
where SPT takes it to a non-equilibrium steady state
ρness =

∑
n p

β0
n ρβB

n where the initial probabilities pβ0
n to

be in symmetric subspace n are preserved.
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Amplification (mitigation) refers to the scenario where
the change in thermodynamic quantities is more (less) in
SPT relative to generic thermalization. The difference in
internal energies of steady states attained after both the
procedure can be expressed as,

Eness−EβB = TB(S(ρness)−S(ρβB )+S[ρness||ρβB ]). (1)

We understand the amplification and mitigation effects
of SPT using Landauer’s erasure principle below.

3 Erasure Principle

The erasure principle was originally proposed by Lan-
dauer [7] to resolve the Maxwell demon paradox by as-
sociating a heat cost kBT ln 2 with erasure of every bit
of classical information. We study a scenario where clas-
sical information is encoded in an ensemble of quantum
states as described in [8]. This ensemble of states inter-
acts sequentially with a bath which thermalises each of
the states to the thermal state thus erasing the encoded
classical information. It follows from the Erasure princi-
ple that this erasure has to be associated with an entropy
cost ∆Serasure such that

∆Serasure = ∆Ssystem +∆Sbath (2)

where ∆Ssystem and ∆Sbath are calculated for the un-
derlying thermalisation process. We employ the erasure
principle to gain insights into the conditions leading to
the amplification and mitigation effects of the bath. To
that end, we interpret the thermalisation pathways as
compositions of intermediate steps as shown in Fig. 1.

Figure 1: A flowchart of two complete therodynamic cy-
cles involving different procedures to erasure and reset
the information gained from a measurement which ac-
quires information about the eigenvalues of the strong
symmetry operator as discussed in the text.

4 Central Result

The first step is the measurement step Φm which can
be thought of as an external observer acquiring the classi-
cal information associated with probabilities {pi}. Also,
note that this step is accompanied by a decrease in the
entropy of the system since S(ρβ0) ≤

∑
i piS(ρ

β0

i ) and

the difference is exactly the information theoretic en-
tropy H(p) associated with the information acquired by
the external observer. Second step is the Symmetry Pro-
tected Thermalisation ΦSPT where each of the subspace
restricted states ρβ0

i is thermalised to ρβB

i while conserv-
ing the probabilities {pi}. After this point, the two path-
ways diverge, geenralised thermalisation consists of the
erasure step ΦLE where each state in the ensemble is ther-
malised to the full thermal state ρβB effectively erasing
the information associated with the probabilities {pi}.

One can note from above that the entropy of erasure
associated with ΦLE is only part of the generalized ther-
malisation pathway leading to the following remark.

Remark 1 Total entropy change asociated with the gen-
eralized thermalisation pathway is always higher than
symmetry protected thermalisation pathway and the dif-
ference can be interpreted as an entropy of erasure of
classical information encoded in the probabilities {pi}.

In the full draft [9], we describe how entropy of erasure
of the final step can be manipulated to obtain the relation
of amplification/mitigation boundary as shown in (1). In
order to physically interpret this result, we start with
independently analyzing the different kinds of entropies
associated with the erasure step

{pi, ρβB

i } −→ ρβB (3)

which are ∆Serasure, ∆Ssystem and ∆Sbath with
∆Serasure = ∆Ssystem +∆Sbath.

Now, for the transformation of the system associated
with the erasure step above ∆Ssystem is fixed and posi-
tive. Further, one can interpret ∆Sbath in relation to the
internal energy change of the system with the opposite
sign since

∆Sbath =
∆Qbath

TB
= −∆Qsys

TB
= −∆Usys

TB
. (4)

where ∆Usys = Tr[(ρness − ρβB )H]. Depending on
∆Serasure, three scenarios could occur:

• ∆Serasure = ∆Ssystem: We call this scenario as
that of optimal erasure since the entropy increase
accompanied by erasure of information is exactly
equal to the entropy increase of the system (note
that erasure entropy is always positive).

• ∆Serasure > ∆Ssystem: Since the erasure entropy is
higher than entropy increase of the system, the ex-
tra entropy is supplied to the bath thus causing an
amplification of the internal energy in the presence
of symmetry protected thermalisation.

• ∆Serasure < ∆Ssystem: It follows that in this case
entropy of bath decreases since it supplies heat to
the system as a result causing mitigation of the
internal energy in the presence of symmetry pro-
tected thermalisation.
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Figure 2: A schematic representation of the flowchart in fig. 1. On the left is an initial measurement that separates
the quantum system into different symmetry sectors, indicated by the circles with differently oriented arrows in the
first set of boxes. In the middle set of boxes, these states are allowed to thermalise within their symmetry sectors. In
the last column of boxes to the left, the thermalisation continues while the symmetries are relaxed. This produces a
standard Gibbs equilibrium at temperature β. On the right hand side, three panels describe the same process, except
that the thermalisation is restricted only to the symmetry sectors. Here the final state is a NESS as described in the
text.

5 Discussion

The amplification vs mitigation behaviour of thermo-
dynamic quantities during thermalisation is of much in-
terest due to the potential for enhancing the perfor-
mance of quantum thermal machines and quantum bat-
teries. This behaviour has been studied in the context of
a pair of indistinguishable two-level systems (TLS) [5],
which has been later extended to a collection of an ar-
bitrary number of such TLSs [4]. Furthermore, a fur-
ther generalisation to a collection of indistinguishable
multilevel systems has also been reported [10]. How-
ever, all these studies have been restricted to a special
case of strong symmetry, namely permutational symme-
try, where the systems undergo collective dynamics due
to indistinguishability. In this work, we show a gen-
eral theory of the amplification and mitigation action of
thermal baths on quantum systems in the presence of
arbitrary strong symmetries encompassing all previous
scenarios. We employ Maxwell’s demon perspective to
understand symmetry-protected thermalisation allowing
an interpretation of the amplification and mitigation in
terms of Landauer’s erasure principle. The new thermal-
isation protocol, namely symmetry-protected thermalisa-
tion, by reservoir engineering, provides versatile control
the steady state attained by the dynamics.
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Abstract. GRU(Gated Recurrent Units), a popular variant of recurrent neural networks, has been
widely employed in natural language processing and time series forecasting tasks due to its ability to
capture long-term dependencies. In this paper, we propose QGRU, a novel classical-quantum hybrid
algorithm that incorporates GRU’s memory and forgetting mechanisms into variational quantum circuits.
QGRU achieves accurate forecasts with fewer qubits in the hidden layer and consistently outperforms other
quantum algorithms on diverse real datasets in classification tasks. This study showcases the potential
of QGRU in temporal data processing and suggests exciting prospects for further research in quantum
computing applications

Keywords: GRU, variational quantum circuits, Quantum GRU, temporal data processing, classification

1 INTRODUCTION

Quantum machine learning (QML) harnesses quan-
tum computing and machine learning for diverse do-
mains [1, 2]. Exploiting quantum features like en-
tanglement and superposition, QML offers exponential
speedup in optimization and simulation. Some QML al-
gorithms show proven speedups, but many use parame-
terized quantum circuits and large Hilbert spaces. Noisy
intermediate-scale quantum (NISQ) devices enable QML
implementation, spurring advances in this emerging field.
Recurrent neural networks (RNN) [3] process sequen-

tial data, capturing temporal correlations and dependen-
cies. With a looped structure, RNN uses previous out-
puts as inputs for later time steps, handling sequences
with varying lengths. RNN applies to language modeling,
speech recognition, machine translation, and more. Their
success motivates using RNN to learn quantum evolu-
tionary dynamics from sequential experimental data.
RNN processes sequential data, but suffers from van-

ishing gradients, hindering long-term dependencies. Re-
searchers have proposed solutions, such as LSTM and
GRU. Compared to LSTM, GRU has fewer parameters
and is easier to train, while matching LSTM results.
GRU [4] defines the reset gate rt and update gate zt

based on the previous hidden state ht−1 and current in-
put xt as follows:

rt = σ(WxrXt +WhrHt−1 + br) (1)

zt = σ(WxzXt +WhzHt−1 + bz) (2)

Once the reset gate rt and update gate zt are obtained,
the candidate hidden state is defined using the reset gate
as follows:

H ′
t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh) (3)

∗shangyun@amss.ac.cn

In this equation, the symbol ⊙ denotes element-wise
multiplication. The output of the activation function
tanh scales the data to the range of -1 to 1. It is evi-
dent that H ′

t mainly contains the current input xt and
selectively incorporates the data of Ht−1 to it. Next,
GRU employs the update gate zt to compute the final
result of the current unit Ht and pass it to the next unit.
The expression for Ht is given by

Ht = (1− zt)⊙Ht−1 + zt ⊙H ′
t (4)

The range of zt is between 0 and 1. A value close to 1
indicates that more information is being ”remembered”,
while a value closer to 0 indicates more ”forgetting”. In
other words, GRU selectively forgets information from
the input based on the weight zt. Therefore, it uses a
single gate to achieve both forgetting and selective mem-
ory.

2 METHOD

Our quantum QRNN framework is described as fol-
lows. The QRNN consists of three parts: the data
encoding layer, the variational layer, and the measure-
ment layer. In the proposed QRNN framework, the data
encoding layer utilizes parameterless quantum gates to
transform classical data into quantum states. At time
step t, the input data x⃗t = (x1t , x

2
t , ..., x

n
t ) is encoded into

the quantum state |xt⟩. Then, U(θ) is applied to the
quantum state |Ht−1⟩ ⊗ |xt⟩, where |Ht−1⟩ incorporates
all the information from previous inputs xi. U(θ) intro-
duces parameters through single-qubit rotation gates and
entanglement through CNOT gates, resulting in the out-
put quantum state |ψh⟩ = U(θ)(|ψh−1⟩ ⊗ |xt⟩). The gate
U is composed of CNOT gates and single-qubit rotation
gates. Subsequently, the last xt qubits are measured to
introduce nonlinearity and reduce the degrees of freedom,
producing the quantum state |Ht⟩, which is then passed
to the next time step, as shown in Figure 1(a). In the
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Figure 1: At time t, (a) represents the quantum circuit of
QRNN, (b) represents a part of the circuit in QGRU that
implements the reset gate, and (c) shows the complete
circuit of QGRU.

final time step, the amplitudes of the hidden layer qubits
are measured, and the final output is obtained through
classical fully connected layers.
We have borrowed the ideas of update and forget mech-

anisms from the classical GRU algorithm and introduced
them into our quantum circuit. Specifically, we assume
that the quantum state |ψi⟩AB = |ψi⟩A⊗|ψi⟩B represents
the quantum state on nh + nx qubits, where subsystem
A consists of nh qubits and subsystem B consists of nx
qubits. Here we consider the case where the update and
reset gates only contain biases. We set |ψi⟩A = |Ht−1⟩
to represent the previous hidden state, and |ψi⟩B = |xt⟩
to represent the current input. In the circuit shown in
Figure 1(b), we introduce an auxiliary qubit to achieve
the reset mechanism of the quantum state, that is, the
final quantum state contains information of |ψi⟩B and
selectively adds |ψi⟩A to the current hidden state. Af-
ter passing through the quantum circuit, the initial state
|0⟩ ⊗ |ψi⟩AB undergoes an evolution and transforms into
the final state α|0⟩ ⊗ (UAB(θ1)|ψi⟩AB) +

√
1− α2|1⟩ ⊗

((UB(θ2) ⊗ IA)|ψi⟩BA). Where α refers to the parame-
ters of the Ry(α) gate in the first qubit of Figure 1(b),
UAB(θ1) represents the quantum gate operation on the
combined system AB with the parameter θ1, UB(θ2) rep-
resents the quantum gate operation on system B with the
parameter θ2, and IA represents the identity operation on
system A. This expression describes the entangled state
resulting from the evolution of the initial state through
the quantum circuit.
After resetting the ancilla qubit to |0⟩ and measuring

the quantum bit corresponding to subsystem B, we ob-
tain a candidate hidden quantum state

|H̃⟩ = αtrB(UAB(θ1)|ψi⟩AB) +
√
1− α2UB(θ2)|ψi⟩B .

(5)

When α = 0, |H̃⟩ simplifies to UB(θ2)|ψi⟩B . When α = 1,

|H̃⟩ simplifies to the quantum state trB(UAB(θ1)|ψi⟩AB).

Otherwise, |H̃⟩ is a superposition of the two. As we can

see, the candidate quantum state |H̃⟩ here implements
the reset function in QGRU.

After obtaining the candidate hidden state |H̃⟩, we in-
troduce an additional auxiliary qubit to realize the up-
date mechanism. As shown in Figure 1(c), the auxiliary
qubit is first acted upon by the Ry(v) gate and then used
to control the quantum circuit in Figure 1(b). After reset-
ting the auxiliary qubit to 0, we obtain the final quantum
state.

|Ht⟩ = v|H̃⟩+
√
1− v2|ψi⟩A

= vα trB(UAB(θ1)|ψi⟩AB) + v
√
1− α2UB(θ2)|ψi⟩B

+
√
1− v2|ψi⟩A

(6)
Noting that the value of v ranges from 0 to 1, a gate

signal closer to 1 represents a greater amount of ”mem-
orized” data, while a signal closer to 0 represents more
”forgotten” data. By employing a single gate, both for-
getting and memory selection are achieved simultane-
ously. Subsequently, |Ht⟩ is taken as the hidden quantum
state input for the next block.

3 RESULTS AND DISCUSSION

We initiate function simulations to validate the per-
formance of QGRU in time series forecasting. Cosine
and second-order Bessel functions are utilized as illustra-
tive examples. Predicting the output of the (N+1)-th
term based on the values of the previous N terms, where
N=4, we examine QRNN and QGRU with 1 hidden layer
neurons, requiring 2 and 4 qubits, respectively. For clas-
sical data, amplitude encoding is employed to convert
it into quantum states. In Table 1, showcasing their
mean square errors (MSE) on the test dataset, along-
side the classical GRU. Comparing with QRNN, it is ev-
ident that QGRU achieves a lower MSE. Furthermore,
even when compared to classical GRU with five hidden
layers, QGRU’s performance only exhibits a slight dif-
ference. These results indicate that QGRU outperforms
QRNN in terms of predictive accuracy and demonstrates
competitive performance with classical GRU models.

Table 1: The mean squared error of QRNN and QGRU
on the test set of sine function and Bessel function.

Function QRNN loss QGRU loss GRU loss
cos 3.67× 10−4 2.61× 10−4 6.0510−5

Bessel 2.95 ∗ 10−4 1.17 ∗ 10−4 1.06 ∗ 10−4

Next, we apply our model to classification tasks. We
used the method mentioned in Ref. [5] to generate a sim-
ple circular decision boundary binary dataset (xk, yk),
which is a nonlinear dataset where xk ∈ R2 represents
the data point and yk ∈ {0, 1} represents the label. The
visualization of the dataset is shown in Figure 2. In
a classification task, unlike function approximation, we
typically add a softmax function F to the output layer.
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Figure 2: The figure shows a training set with 300 data
points in (a) and a test set with 100 data points in (b).
Blue points belong to class 0 and red points belong to
class 1. (c) shows the decision boundary learned by
QRNN, while (d) shows the decision boundary learned
by QGRU.

The classification results are shown in Figure 2, and we
can see that both QRNN and QGRU achieve 100% clas-
sification accuracy in the nonlinear classification task.
In our experiments, QRNN and QGRU were evaluated

for classification tasks on real-world datasets. We divided
the data into a training set (70%) and a test set (30%).
To compare their performance, we also considered other
quantum classification algorithms, such as circuit-centric
quantum classifiers and ADQC. For QRNN and QGRU,
we set the number of hidden layer qubits to 1, requir-
ing two qubits for QRNN and four qubits for QGRU. To
ensure fairness, both circuit-centric quantum classifiers
and ADQC employed rotation encoding, thus also requir-
ing four qubits. Similarly, the classical GRU model had
5 qubits in its hidden layer. Notably, QGRU achieved
100% accuracy on the iris dataset, surpassing other algo-
rithms by 2.22% to 7.78%. Additionally, QGRU demon-
strated superior performance on the Bupa and Wine
datasets compared to existing algorithms. We further
validated our results using the USPS image dataset. Each
image was treated as a temporal sequence with 16 fea-
tures. To save quantum resources, we used amplitude
encoding instead of rotation encoding. For QRNN and
QGRU, with 16 features requiring 4 qubits for encoding,
the number of hidden qubits was set to 4. We selected
two classes (”0” and ”1”) from the USPS dataset and ran-
domly chose 1,000 images from the training set for train-
ing, while evaluating the classification results using all
621 images from the test set. Notably, QGRU achieved
a significantly higher classification accuracy of 96.78%
compared to QRNN’s 88.41%. These results highlight the

Table 2: Performance of 5 algorithms on 3 real-world
datasets.

Methods
Datasets

Iris Bupa Wine

Circuit-centric [6] 97.78% 65.38% 53.70%
ADQC [7] 95.56% 70.19% 64.81%
GRU[4] 95.56% 66.35% 62.96%
QRNN 93.33% 64.42% 64.81%
QGRU 100% 73.08% 68.52%

improved classification performance of QGRU, attributed
to the introduction of update and forget mechanisms.

4 CONCLUSION

We compare QRNN and QGRU for time series pre-
diction. Our experiments show that our QGRU model
matches or surpasses classical GRU models, and out-
performs QRNN. This indicates that memory and for-
get mechanisms in quantum circuits can enhance perfor-
mance, revealing the potential of quantum neural net-
works.
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Probabilistic unitary and state synthesis with optimal accuracy
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Abstract. A new synthesis approach, called probabilistic synthesis, samples a gate sequence to sup-
press the approximate error of a target unitary transformation or pure state. We reveal the fundamental
limitations on the approximation error obtained by the optimal probabilistic synthesis compared to the con-
ventional approach. We also construct efficient probabilistic synthesis algorithms for single-qubit unitaries
and qudit pure states, rigorously estimate their time complexity, and show their quadratic error reduc-
tion. These results are based on our general lemma about the optimal convex approximation of states or
transformations. As a byproduct, our lemma provides a novel method to analyze an entanglement measure.
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1 Background

To realize information processing in a gate model quan-
tum computer, we need to prepare an initial state and
perform unitary transformations on a fixed-size system
with the desired accuracy. This is possible by exploiting
quantum error correction [1] or the nature of the system
[2]. However, those techniques usually force us to prepare
a target pure state ϕ or realize a target unitary transfor-
mation Υ by using a circuit formed from a finite gate set
such as {H,T,CNOT}. As a result of the discretization,

we can only prepare an approximated pure state ϕ̂ or
implement an approximated unitary transformation Υ̂ in
general.
To suppress the effect of decoherence or overhead

caused by the fault-tolerant implementation of each gate,
various synthesis algorithms [3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15] have been proposed for minimizing the
approximation error or the circuit size. Following the
celebrated Solovay-Kitaev algorithm [3], the final goal
of conventional synthesis algorithms is to deterministi-
cally find one of the best circuits for the approxima-
tion. Thus, the minimum approximation error obtained
by such deterministic unitary (or state) synthesis is given

by minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
(or minx∈X

∥∥∥ϕ− ϕ̂x

∥∥∥
tr
), where

X is the label set of unitary transformations (or pure
states) realized by circuits with a certain cost, e.g., the
circuit size, depth, or the number of T gates.
While it makes sense to approximate a target uni-

tary transformation (or pure state) by utilizing an ap-
proximated unitary (or pure state) generated by a sin-
gle circuit, a recently proposed approach called proba-
bilistic synthesis probabilistically samples a circuit for
the approximation. Suppose that the probabilistic al-
gorithm independently samples a circuit Cx implement-
ing Υ̂x (or generating ϕ̂x) in accordance with a proba-
bility distribution p(x) each time Υ (or ϕ) is required

∗seiseki.akibue@ntt.com
†go.kato@nict.go.jp
‡seiichiro.tani@ntt.com

in quantum information processing. Then, each realized
physical transformation (or generated state) is described

by
∑

x p(x)Υ̂x (or
∑

x p(x)ϕ̂x). This can be interpreted
as the transition from coherent errors to incoherent er-
rors [16, 17, 18], and recent studies have experimentally
demonstrated that this transition reduces the approxima-
tion error of pure states [19]. Moreover, Campbell [20]
and Vadym et al. [21] constructed synthesis algorithms
that reduce the approximation error of unitary transfor-

mations into 1
2

∥∥∥Υ−
∑

x p(x)Υ̂x

∥∥∥
⋄
= O(ϵ2) by choosing

p(x) appropriately, where {Υ̂x}x causes the worst ap-

proximation error ϵ := maxΥ minx
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
if the

deterministic synthesis is used.
Despite its importance, the limitation of probabilistic

synthesis, especially the minimum approximation error

minp
1
2

∥∥∥Υ−
∑

x p(x)Υ̂x

∥∥∥
⋄
(or minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr
),

remains unknown, nor is it clear how to find the optimal
probability distribution p. While a few analytical results
are obtained for the case of a qubit transformation [22]
or state [23, 24, 25] in the context of the optimal con-
vex approximation of a quantum transformation or state,
minimax optimization to compute the minimum approx-
imation error makes analyses quite difficult in general.
Note that the result of optimal probabilistic unitary syn-
thesis does not contain that of state synthesis, and vice
versa. This is because the generated state in state syn-
thesis is obtained by applying a unitary transformation
to a fixed input state |0⟩ while the approximation er-
ror in unitary synthesis is quantified for the worst input
state. Moreover, a target state could be approximated
by probabilistically mixing two unitary transformations
whose behaviors are totally different, except for |0⟩.

2 Our contributions

Before presenting our results, we provide intuitive ex-
amples demonstrating the capability of probabilistic syn-
thesis in Fig. 1. As a generalization of the qubit exam-
ples, we obtain the fundamental relationship between the
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(a) (b)

Figure 1: Quadratic reduction of the approximation er-
ror by using probabilistic synthesis. We assume that
we can exactly generate an eigenstate ϕ̂x of the Pauli
operators, represented by the six extreme points of
the octahedron. We represent the Bloch sphere by
a sphere with radius 1

2 , where the trace distance be-
tween two quantum states equals the Euclidean distance
between the corresponding points. (a) We can com-

pute minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr

= ϵ2 = 1
2
√
3

(√
3− 1

)
and

minx

∥∥∥ϕ− ϕ̂x

∥∥∥
tr

= ϵ, where ϕ is the furthest state from

{ϕ̂x}6x=1, represented as a large red point. (b) Sup-
pose that the target state is chosen from SG := {ϕ :
|ϕ⟩ = cos t|0⟩ + sin t|1⟩, t ∈ R}, represented by a merid-

ian. We can compute minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr

= ϵ̃2 =

1
2

(
1− 1√

2

)
and minx

∥∥∥ϕ− ϕ̂x

∥∥∥
tr
= ϵ̃, where ϕ is the fur-

thest state in SG from {ϕ̂x}6x=1, represented as a large
red point.

minimum approximation errors obtained by the deter-
ministic synthesis and the probabilistic one:

Theorem 1 (simplified version) [26, Theorem 1] Let
G be a finite subgroup of unitary and antiunitary op-
erators and SG := {ϕ : ∀U ∈ G, [U, ϕ] = 0} be the
set of pure states invariant under the action of G. If
{ϕ̂x}x∈X = {Uϕ̂xU

†}x∈X for all U ∈ G with a finite set
X, it holds that

max
ϕ∈SG

min
p

∥∥∥∥∥ϕ−
∑
x∈X

p(x)ϕ̂x

∥∥∥∥∥
tr

= max
ϕ∈SG

min
x∈X

∥∥∥ϕ− ϕ̂x

∥∥∥2
tr
.

(1)

This theorem compares the worst approximation errors
occurring when one synthesizes the target state in a sub-
set SG that is most difficult to approximate by using
{ϕ̂x}x, which does not need to be a subset of SG. It
implies that the optimal probabilistic synthesis at least
quadratically reduces the approximation error for any
target state ϕ ∈ SG compared to the worst approxima-
tion error caused by the optimal deterministic synthesis.
This theorem holds for various SG by tailoring G. For
example, SG coincides with the set of pure states when
G = {I}. In such a case, Theorem 1 is applicable to any

{ϕ̂x}x. When G = {I, θ}, where θ represents the complex
conjugation with respect to the computational basis, SG

coincides with {cos t|0⟩+sin t|1⟩ : t ∈ R}, which is gener-
ated by an axial rotation exp(−itσY ) along a fixed axis
from |0⟩. Such one-parameter pure states, more generally
known as conjugation-invariant pure states, are often uti-
lized in the optimal parameter estimation [27]. For the
last example, SG coincides with the set of pure states
in a subspace V or its orthogonal complement V⊥ when
G = {I, 2ΠV − I}, where ΠV is the Hermitian projector
whose range is V. Preparing a state in a particular sub-
space is an extensively used subroutine in various quan-
tum information processing tasks.
The technique used to prove Theorem 1 is also appli-

cable to analyzing the minimum trace distance between
a general mixed state ρ and a convex hull of {ϕ̂x}x, both
of which are invariant under the action of G. For ex-
ample, we can analyze the entanglement measure by set-
ting G and {ϕ̂x}x∈X to be a subset of non-entangling
unitary operators and the set of pure product states,
respectively. As a byproduct, we analytically compute
minσ∈SEP ∥ρ− σ∥tr when ρ is the isotropic state and the
Werner state, which coincides with a conjecture numeri-
cally found in [28]. Moreover, we provide alternate suc-
cinct proof about the following coincidence between the
entanglement measure and coherence measure [29].

Proposition 2 [29, Theorem 3] For pure states |Φ⟩ =∑d−1
i=0 αi|ii⟩ and |ϕ⟩ =

∑d−1
i=0 αi|i⟩, it holds that

min
σ∈SEP

∥Φ− σ∥tr = min
ρ∈I

∥ϕ− ρ∥tr , (2)

where I := conv
(
{|i⟩⟨i|}d−1

i=0

)
is called a set of incoherent

states and {|i⟩}d−1
i=0 is an orthonormal basis.

In the case of unitary synthesis, we obtain the following
theorem.

Theorem 3 (simplified version) [30, Theorem 4.3]
For an integer d ≥ 2 specified below, let Υ and {Υ̂x}x be
a target unitary transformation and a finite set of unitary
transformations on Cd, respectively. It then holds that

4δ

d

(
1− δ

d

)
≤ max

Υ
min
p

1

2

∥∥∥∥∥Υ−
∑
x

p(x)Υ̂x

∥∥∥∥∥
⋄

≤ ϵ2

with

{
δ = 1−

√
1− ϵ2 and

ϵ = maxΥ minx
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
.

(3)

This theorem provides bounds on the worst approxima-
tion error caused when one probabilistically synthesizes
the target unitary that is most difficult to approximate.
The gap between the upper and lower bounds exists if
and only if d ≥ 3. We can show that the gap is in-
evitable by constructing {Υ̂x}x for achieving the upper
bound and that for achieving the lower bound for any d
and ϵ. That is, Ineq. (3) represents the fundamental re-
lationship of the approximation error between the prob-
abilistic and deterministic approximation that depends
only on the dimension d of the system. Moreover, the
two theorems reveal the distinction between unitary and
state synthesis.
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From a computational point of view, we show that the
optimal probability distribution for approximating Υ (or
ϕ) can be computed by the semidefinite program (SDP)

when {Υ̂x}x (or {ϕ̂x}x) realized by using a gate sequence
is given. (This set is computable with certain synthesis
algorithms.) In addition to its optimality, we can rig-
orously estimate the worst time complexity of our SDP
due to established methods for numerically solving SDPs.
As the second main result, we construct a probabilistic
synthesis algorithm for single-qubit unitaries:

Theorem 4 (informal version) [30, Theorem 5.4]
For a given gate set, there exists a probabilistic synthesis
algorithm for a single-qubit unitary with
INPUT: a target single-qubit unitary Υ and target ap-

proximation error ϵ ∈ (0, 1)
OUTPUT: a gate sequence implementing a single-qubit

unitary Υ̂x sampled from a set {Υ̂x}x in accordance with
probability distribution p̂(x).
such that the algorithm satisfies the following properties:

• Efficiency: The algorithm calls a deterministic syn-
thesis algorithm constant times and the whole run-
ning time is polylog

(
1
ϵ

)
,

• Quadratic improvement: The approximation er-

ror 1
2

∥∥∥Υ−
∑

x p̂(x)Υ̂x

∥∥∥
⋄
obtained with this algo-

rithm is upper bounded by ϵ2, whereas the error

minx
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
obtained by deterministic syn-

thesis using the unitaries in {Υ̂x}x is upper bounded
by ϵ.

The first property of the algorithm is desirable for
fault-tolerant quantum computation (FTQC) to main-
tain a polynomial speedup over classical computation.
Due to the second property of the algorithm, we can ver-
ify that it surpasses current algorithms [16, 20, 21] with
respect to the approximation error. The second property
guarantees that our algorithm improves the performance
of existing deterministic synthesis algorithms with the
small additional cost of classically sampling circuits
In the case of state synthesis, we construct a similar

algorithm that is applicable to a general target pure state
on Cd and satisfies the same two properties as the uni-
tary synthesis algorithm [26, Theorem 2]. (In the case of
state synthesis, the second property is measured by the
trace distance.) Moreover, it can be extended into the
case when a target pure state is restricted on SG, defined
in Theorem 1. This extension sometimes dramatically
improves the runtime, as mentioned in the next section.
Since probabilistic state synthesis reduces the approx-

imation error, it also reduces the size of a circuit to ap-
proximately generate a target state for a given approx-
imation error. However, the reduction rate depends on
the circuit’s construction, e.g., which gate set and synthe-
sis algorithm are used. There is a universal lower bound
on the circuit size obtained by regarding a synthesized
circuit as a classical description of a pure state. To ana-
lyze how probabilistic synthesis reduces this lower bound,
we investigate the minimum size of classical memory to

store a pure state ϕ so as to approximately reconstruct
the original state and obtain the following theorem.

Theorem 5 (simplified version) [26, Theorem 3] Let
ndet (or nprob) be the minimum size of memory to encode
an arbitrary pure state ϕ on Cd by assigning a bit string
deterministically (or probabilistically) so as to reconstruct
a state ρ̂ satisfying ∥ϕ− ρ̂∥tr ≤ ϵ. Then, it holds that

lim
ϵ→0

nprob

ndet
= lim

d→∞

nprob

ndet
=

1

2
. (4)

3 Technical Outline

In the proof of Theorem 1, we analyze the minimum
approximation error

min
p

∥∥∥∥∥ρ−∑
x

p(x)ρ̂x

∥∥∥∥∥
tr

= min
p

max
0≤M≤I

tr

[
M(ρ−

∑
x

p(x)ρ̂x)

]
(5)

for general mixed states ρ and ρx, which contains min-
imax optimization by definition. The first tool for the
analysis is the strong duality of semidefinite program-
ming. This enables us to formulate the minimum approx-
imation error as a semidefinite program (SDP). Such re-
formulation also plays a key role in the proof of Theorem
3. The second tool for the proof is the symmetrization of
M in Eq. (5) by exploiting the symmetry of ρ and {ρ̂x}x.
This dramatically simplifies the optimization.

Such analysis is formulated as a general lemma [26,
Lemma 2] about the optimal convex approximation of
a quantum state by using a restricted subset of states.
While the optimal convex approximation and state syn-
thesis have been studied in different contexts, our lemma
has demonstrated that analyzing the former problem pro-
vides not only the fundamental limitation of probabilistic
synthesis but also a construction of an efficient synthe-
sis algorithm. Furthermore, our lemma contributes to
the original motivation of the studies of the optimal con-
vex approximation [23, 24, 25], which is quantifying a
resource measure in convex resource theories [31, 32, 33]
such as the resource theory of entanglement, as shown in
Proposition 2.

The reformulation of the minimum approximation er-
ror as an SDP enables us to efficiently compute the opti-
mal probability distribution to achieve it. By using The-
orem 3, we can verify that by solving this SDP with an ϵ-

covering {Υ̂x}x∈X , i.e., maxΥ minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
≤ ϵ,

we obtain a probability distribution p̂ that achieves the
quadratic reduction of the approximation error. How-
ever, the size of this SDP is too large to achieve the ef-
ficiency shown in Theorem 4, since the size |X| of the
ϵ-covering is

(
1
ϵ

)Ω(1)
. This problem can be resolved by

proving that sampling Υ̂x ∈ B2ϵ(Υ) is sufficient to opti-
mally approximate Υ, where B2ϵ(Υ) is the 2ϵ-ball around
Υ. By using a similar argument, we can construct an ef-
ficient algorithm for state synthesis. Moreover, when the
target state ϕ is restricted on SG, sampling ϕ̂x from an
ϵ-covering of SG and in B2ϵ(ϕ) is sufficient to optimally
approximate ϕ. For some SG, the size of the ϵ-covering
of SG is much smaller than that of the set of pure states.
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Next Generation Quantum Reservoir Computing: An Efficient
Quantum Algorithm for Forecasting Quantum Dynamics
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Abstract. Next Generation Reservoir Computing (NG-RC) is a modern class of model-free machine
learning that enables an accurate forecasting of time series data generated by dynamical systems. However,
adopting a classical NG-RC for many-body quantum dynamics prediction is computationally prohibitive
due to the large Hilbert space of sample input data. In this work, we propose an end-to-end quantum
algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the
block-encoding technique. This proposal presents an efficient model-free fast-forwarding scheme to forecast
quantum dynamics coherently, bypassing inductive biases incurred in a model-based approach.

Keywords: Quantum reservoir computing, Forecasting quantum dynamics

1 Motivation and Introduction

Learning quantum dynamics presents a fundamen-
tal challenge in quantum physics, to which numerous
machine learning techniques have been applied [1, and
references therein]. Simultaneously, quantum systems
themselves can be harnessed as computational resources.
However, quantum algorithms that work on a large batch
of classical data typically requires extreme assumptions
about data loading and readout, which remain points of
contention, see for example [2, 3, 4].
The two challenges spur the proposals of quantum algo-

rithms that can learn directly from quantum data [5, 6].
For example, there are quantum machine learning algo-
rithms that aim to fast-forward the dynamics, that is, to
obtain the learned model that evolves faster than the nat-
ural dynamics [7]. Our work adds to the literature by pro-
viding a novel quantum algorithm for learning from quan-
tum data based on NG-RC. Importantly, this model-free
approach of reservoir computing requires only time-series
of quantum data, without assuming a quantum dynami-
cal ansatz a priori. Such approach circumvents inductive
biases that could arise in learning complex quantum dy-
namics.
Reservoir computing (RC). RC is a computational

paradigm in machine learning that harnesses a recurrent
neural network (RNN) to learn time-series data, such as
the states of a dynamical system. Even when the dy-
namics is complicated or chaotic, well-tuned RC can ac-
curately forecast the future states of such dynamics up
to many Lyapunov times [8, 9].
Importanty, RC bypasses the training of an RNN by

utilizing a fixed, randomly initialized RNN, called a
reservoir, consists of a large number L of hidden neu-
rons. Suppose that an input data si is fed into the reser-
voir, where i could be a label for the time step of some
dynamical process. The data is represented as a feature
vector xi = f(si) ∈ RL, where f is typically a highly

∗apimuk25@hotmail.com
†ninnatdn@gmail.com
‡thiparatc@gmail.com

non-linear function that represents the dynamics of the
reservoir. The feature vector is then linearly transformed
in the final, trainable output layer into a prediction vector
ŷi = Wxi. In particular, the input si at the ith time step
and the output at the previous time step yi−1 may be fed
together as inputs into the reservoir to train the feature
vector xi for the next time step , i.e., xi = f(si,yi−1).

To prevent overfitting in a supervised learning via RC,
the weight matrix W is obtained by optimizing ŷi in
the least-square sense with respect to the desired target,
which can be done via the Tikhonov regularization

W = Y XT (XXT + λI)−1. (1)

Here Y = (y0|· · · |yT−1) ∈ RD×T is the target matrix,
X = (x0|· · · |xT−1) ∈ RL×T is the feature matrix, and
λ ≥ 0 is the regularization parameter.

Versions of quantum RC have been proposed across
various scenarios, encompassing cases where the input
data is quantum, where the reservoir (or “subtrate”) is
quantum, or scenarios where both the input data and the
reservoir are quantum [10, 11].

NG-RC. Despite the fast training protocol offered by
RC, the random initialization of the reservoir presents
its own problem: there are overwhelmingly large num-
ber of hyperparameters to be optimized and there is no
consensus on how to pick an optimal reservoir.

NG-RC is an alternative approach that takes advan-
tage of the discovery that RC can be equivalently per-
formed using a linear reservoir and a nonlinear train-
able output layer [12, 13]. The latter is in turn equiv-
alent to a nonlinear vector autoregression (NVAR) ma-
chine [14]. An NVAR machine predicts future observa-
tions of a time series using past observations. In par-
ticular, the underlying state space of the dynamics to
be learned can be reconstructed using linear and nonlin-
ear functions of past observations. Inspired by this cor-
respondence, NG-RC [15] proposes taking k time-delay
data oi = si ⊕ si−∆ ⊕ si−2∆ ⊕ . . .⊕ si−(k−1)∆ with step
size ∆ as an input, and, forgoing the need for a reservoir,
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directly constructing a feature vector,

xi = oi ⊕ (oi)
⊗p, (2)

whose nonlinearity arises from a degree-p monomial of
the k-delay data, ∆, k, and p being the NG-RC hyper-
parameters. The feature vector is then optimized via
a linear least-square regularization to predict the target
dynamics.
NG-RC with ∆ = 1, k = 2, and p = 2 has been used to

efficiently predict the dynamics of the Lorenz attractor
using only small data sets [15]. Here the feature vector
is a (4D2 + 2D)-dimensional vector of the form

xi = si ⊕ si−1 ⊕ [(si ⊕ si−1)⊗ (si ⊕ si−1)]. (3)

The primary computational bottleneck arises from ma-
trix inversion in Eq. (1). The Tikhonov-regularized least
squares requires O(MN2) matrix operations, where N
and M are, respectively, the larger and the smaller di-
mension of the matrix. This complexity is computation-
ally prohibitive when the data matrix is collected from
many-body quantum states, since the dimension of each
column vector scales exponentially with the system size.
In the following section, we present an end-to-end, next
generation quantum reservoir computing algorithm that
does not suffer from the exponential complexity of the
classical counterpart. Our quantum algorithm takes as
inputs quantum data and outputs the predicted future
quantum states.

2 Method and Result

Block encoding. We employ the block-encoding
technique to construct the non-linear feature matrix and
perform the Tikhonov regularization. Specifically, a rel-
evant matrix A is embedded as a submatrix of a unitary
gate U such that(
⟨0|⊗a ⊗ I⊗s

)
U
(
|0⟩⊗a ⊗ I⊗s

)
= A/α for U =

(
A ∗
∗ ∗

)
,

(4)

where |0⟩⊗a
is the fiducial state of an a-qubit ancillary

system, and α ≥ ∥A∥ due to the unitary constraint.
Once the block-encoded matrix is in place, the quantum
singular value transform (QSVT) allows us to construct
a degree-q polynomial approximation of essentially any
well-behaved function of the singular values of A, using
the number of gates U and controlled operations that are
efficient in q [16, 17]. This approach enables straightfor-
ward creation of matrix polynomials, and in particular,
creation of the Moore-Penrose pseudo-inverse by invert-
ing the singular values of A.

Input assumptions. The forecasting of quantum
dynamics via NG-QRC is divided into two phases: the
training phase and the prediction phase. The data are
assumed to be given by the oracles

O0 : |0⟩⊗d |k⟩ 7→ |sk⟩ |k⟩ , (5)

O−1 : |0⟩⊗d |k⟩ 7→ |sk−1⟩ |k⟩ , (6)

Õ :
∣∣∣k̃〉 |0⟩⊗d 7→

∣∣∣k̃〉 ∣∣s̃−k̃

〉
, (7)

where |si⟩ and |s̃i⟩ are d-qubit input data in the training
phase and in the prediction phase respectively, and k =
0, . . . , T − 1 and k̃ = 0, 1. This assumption is equivalent
to an access to the controlled version of a unitary that
generates each data point, a common assumption in the
block-encoding literature. In particular, we must be able
to create coherent superpositions of the form (|0⟩ |s0⟩ +
|1⟩ |s−1⟩)/

√
2. To express the total query complexity of

the algorithm, we denote the number of calls to the oracle
O (resp. Õ) by TO (resp. TÕ).

(In practice, we may only handed the data |s̃i⟩ in the
prediction phase, in which case we can create coherent
superpositions of such data by consuming multiple copies
of each data point [18]. However, the complexity of the
algorithm depends on the unknown overlap between the
data points we wish to superpose.)

Training phase According to the NG-RC procedure,
by utilizing regularized linear optimization, we obtain an
optimal weight matrix through the regularized pseudoin-
verse of the feature matrix X (cf. Eq. (1)). Therefore,
we begin by efficiently constructing the feature matrix
X. Assuming the existence of oracles O0 and O−1, we
can generate the linear component of the feature vector,
denoted as |ok⟩, by introducing an additional qubit to
entangle with these oracles. This process is depicted by
the operator U lin, which maps the state |0⟩⊗d+1 |k⟩ to
|ok⟩ |k⟩ as shown in Fig. 1 (green box). To incorporate
the nonlinear component |ok⟩⊗ |ok⟩ into the feature vec-
tor, we must apply the operator U lin twice due to the
constraints imposed by the no-cloning theorem. The re-
sulting feature vector |xk⟩ (Eq. (3)) is represented by the

quantum circuit Uf , which maps the state |0⟩2d+3 |k⟩ to
|xk⟩ |k⟩, as also illustrated in Fig. 1 (orange box). We
can coherently construct the feature matrix X with the
block-encoding technology using quantum gates(
I⊗max(0,2d+3−t) ⊗H⊗t ⊗ I⊗max(2d+3,t)

)
· SWAP · Uf ,

(8)
which is the (

√
T ,max(2d+3, t), 0)-block-encoding of the

feature matrix X, illustrated in Fig. 1 (yellow box). Ac-
cording to the regularized linear optimization, we can
find the optimal weight due to Eq. (1). We can construct
the weight matrix W with block-encoding stated in The-
orem 1.

Theorem 1 Let δX , δY ∈ (0, 1]. Suppose we have the
(
√
T ,max(2d+ 3, t), 0)-block-encoding of the feature ma-

trix X and the (
√
2∥Y ∥,max(2d + 3, t) + 1, δY )-block-

encoding of training target matrix Y . Let κX be the con-
ditional number of X, and

κ = κX

√
∥X∥2 + λ

∥X∥2 + λκ2
X

. (9)

where λ ≥ 0 is the regularization parameter [19].
Define w = 2max(2d + 3, t) + 2 is ancilla

qubits used in the block-encoding of W , we can

construct the
(

2
√
2∥Y ∥κ

∥X∥+
√
λ
, w,

√
2∥Y ∥δX + 2κδY

∥X∥+
√
λ

)
-

block-encoding of the weight matrix W in
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Figure 1: (Top) The schematic of the NG-QRC algorithm. The initial part of the algorithm encodes the history of
quantum dynamics collected from a time series into nonlinear feature vectors, which is then processed by a regularized
linear layer (whose weight matrix W training follows from Theorem 1) to predict future quantum states. (Bottom)
The quantum circuits for encoding nonlinear feature vectors via the block-encoding protocol.

TW = O
((

κ
∥X∥+

√
λ
log

(
κ
δX

)
+ 1

∥Y ∥ log
(

∥Y ∥
δY

))
TO

√
T
)

queries, where TO is the number of calls to the oracles.

Prediction phase By assuming Õ, we can create two
initial states, {|s̃−1⟩ , |s̃0⟩}. To construct the linear part
of the initial feature vector |õ0⟩, we apply a Hadamard
gate to an ancilla qubit of Õ. The feature vector |x̃0⟩
is then obtained by duplicating the operation that cre-
ates |õ0⟩. Finally, this state is multiplied algebraically by
the weight matrix W from Theorem 1 to obtain the first
predicted state |s̃1⟩ ∼ W |x̃0⟩ /∥W |x̃0⟩∥. Note that the
block-encoded matrix W is a square matrix with dimen-
sion max(T, 4D2 + 2D) × max(T, 4D2 + 2D) including

zero padding. The resulting state |0⟩⊗max(t−d,d+3) |s̃1⟩
consists of max(t−d, d+3) qubits in a fiducial state that
results from the zero padding, whereas |s̃1⟩ is the predic-
tion for the quantum state after the first time step.

The query complexity of a W -operation has the cost

of O
(

κκW

∥X∥+
√
λ

∥Y ∥
∥W∥ (TW + TÕ)

)
∼ O(TO

√
T + TÕ), where

κW is the condition number of W . From W and the
initial states {|s̃−1⟩ , |s̃0⟩}, we can construct the operator

Ũ1 : |k⟩ |0⟩⊗(w′+2d+3) 7→ |0⟩⊗(w′+d+3) |k⟩ |s̃1−k⟩ , (10)

where k = 0 or 1 and w′ = w +max(0, t− 2d− 3) is the
number of ancilla qubits used in the block encoding of W
and w is defined in Theorem 1.
To predict the next k time steps, the operator Ũk will

recursively contain Ũk−1 as a subroutine, and the register
that contained |s̃1⟩ will now contain |s̃k⟩.

3 Conclusion

Drawing inspiration from the paradigm of NG-RC, we
develop a novel, end-to-end quantum algorithm for pre-
dicting many-body quantum dynamics. The algorithm is
purely data-driven, only requiring a time-series of quan-
tum data and no assumption is made on the nature of
the dynamics i.e. the forecasting is model-free. The
algorithm employs block encoding to efficiently handle
matrix algebra subroutines, including matrix multiplica-
tion, inversion, and regularized linear optimization. In
addition to providing a quantum computational speedup
and avoiding exponential resource consumption in storing
many-body quantum states classically, our algorithm co-
herently processes and generates quantum data, thereby
circumventing classical-quantum data conversion prob-
lems during encoding and readout procedures.
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Analysis of the effects of the two-photon temporal distinguishability on
measurement-device-independent quantum key distribution
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Abstract. Measurement-device-independent quantum key distribution (MDI-QKD) can remove all loop-
holes in the measurement devices of QKD. The arrival times of the pulses send by Alice and Bob fluctuate
independently. According to the Hong-Ou-Mandel (HOM) interference occurring at Charlie’s relay, time
delay between two photons has the greatest effect on the distinguishability. We studied the effects of the
two-photon temporal distinguishability in terms of the visibility of the HOM-dip of two photons on the
final key rate of MDI-QKD with different Bell state measurement (BSM) implements. The acceptable time
delay range is also estimated based on photons with Gaussian spectral amplitude functions. This study
has been published in IEEE Transactions on Quantum Engineering (DOI: 10.1109/TQE.2023.3259043).

Keywords: MDI-QKD, Bell state measurement, decoy method, Hong-Ou-Mandel interference, time de-
lay.

1 Introduction

Quantum key distribution (QKD) ensures theoretical
unconditional security. However, the actual QKD system
may have various security loopholes due to the inevitable
errors and defects of the equipment.
For security holes caused by device imperfection, Acin

et al. [1] proposed device-independent QKD (DI-QKD).
It is possible to prove the unconditional security of a
QKD system. However, this scheme is difficult to achieve
with the current experimental technology, and its key
rate is relatively low.
Lo et al. [2] proposed the measurement-device inde-

pendent QKD (MDI-QKD). This scheme allows Alice
and Bob to send single photon pulses to a third untrusted
party Charlie for BSM. It can be immune to any detector
side channel attacks. Alice and Bob can distill the secret
key from public information as long as they ensure that
their sources are secret and provide near-perfect state
preparation.
According to Lo et al. [2], it is critical for the pho-

tons emitted by two independent lasers to be indistin-
guishable. Since MDI-QKD protocol is based on the
photon bunching effect of two indistinguishable photons
at a 50:50 beam splitter (BS), stable HOM interference
[3, 4] should be observed. However, it is unclear how
the imperfect HOM interference affects the security of a
practical system. The relationship between the visibility
of the HOM interference and the final key rate must be
clarified, and methods that improve visibility must be es-
tablished. So far, few research have explored this issue,
with exceptions including the study by Curty et al. [5],
which calculated only the effect of misalignment error in
the limit of zero distance.
We explored the acceptable indistinguishability of the

MDI-QKD. We used a three-intensity decoy-state MDI-

∗katsu@optnet.ist.hokudai.ac.jp
†tomita@ist.hokudai.ac.jp
‡ao@optnet.ist.hokudai.ac.jp
§k-ogawa@qiqb.osaka-u.ac.jp

QKD protocol to calculate the effect of the visibility of
the two-photon interference on the key generation rate
with different BSM implements. Then, we calculated the
acceptable time delay of the two Gaussian pulses at a
50:50 BS.

2 Analysis of the effects of the two-
photon temporal distinguishability

We consider a symmetric MDI-QKD protocol with
three intensities as a photon-number channel model when
the phase of pulses is fully randomized. The final key rate
can be written as [5-9]

R ≥pµ2
pν2

pzµ2
pzν2

{µ2ν2e
−µ2−ν2sz11[1−H(ex11)]

− Sz
µ2ν2

fH(Ez
µ2ν2

)}
(1)

The overall counting rate and error rate on the x basis
and z basis are shown as [7, 8]

Sx
µiνj

=2y2[1 + 2y2 − 4yI0(s) + I0(s)]

Sx
µiνj

Ex
µiνj

=e0S
x
µiνj

− 2(e0 − ed)y
2[I0(s)− 1]

Sz
µiνj

=SC + SE

Sx
µiνj

Ex
µiνj

=edSC + (1− ed)SE

(2)

where I0(s) is the modified Bessel function of the first
kind, pd is the dark count rate of the photon detector,
e0 is the error rate of the background, and ed is the error
rate due to two-photon distinguishability.

Then, we focus on the error rate ed, which is directly
related to the visibility of the two-photon interference,
and it can be written as

ed = e0d +
1− V

2
(3)

where e0d is the correction parameter and is assumed to
be 0. Note that different BSM implementations adopted
by different protocols should cause the error rates for x-
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(a) Complete BSM. (b) BS+PBS BSM.

Figure 1: Key rate with different visibilities of infinite sized MDI-QKD protocol with a complete BSM(a) and
BS+PBS BSM (b).

and z-basis are also different. According to the results of
BSM, we divide it into three categories, namely complete
BSM, BSM with a beam splitter followed by polarization
beam splitters (BS+PBSs), and BSM with only a BS.
Their success probabilities are 1, 1/2 and 1/4, respec-
tively. For complete BSM and BSM with only a BS,
both x- and z-basis will have errors with the probability
of 1/2. However, for BSM with BS+PBSs, there are er-
rors with the probability of 1/2 in only x-basis but no
bit error in z-basis. In this case, should have no effect on
z-basis in the error rate calculation in Equation (2). The
visibility of the two-photon interference V can be directly
estimated from the coincidence probability in the HOM
interference experiment by

V =
pmax − pmin

pmax
(4)

where pmax and pmin are the maximum and minimum
coincidence probabilities, respectively.

Figure 2: HOM-dip of 100 ps (black solid line) and 200
ps (black dotted line) time duration. The red dotted
line of V=0.38 represents the position with the minimum
coincidence probability of 0.62.

3 Simulation results

Considering the different success rates of different BSM
methods, we need to multiply the key rate R in Equa-
tion (1) by a coefficient, which is 1 for complete BSM,
1/2 for BS+PBS and 1/4 for BS-only. We verify the
difference between the effects of indistinguishability of
complete BSM and BS+PBS BSM methods as shown in
Fig.1 with the parameters given in Table 1.

The key rate of complete BSM is highest when V = 1,
but when V is near 0.9, the key rate becomes lower than
the BS+PBS method. We can also clearly see that the
BS+BPS method has much higher tolerance for indistin-
guishability.

Due to the lack of an evaluation criterion, we tenta-
tively decided on the definition of acceptable visibility
range. First, we define the maximum communication dis-
tance where the key rate falls into zero in our simulation.
Then, we define the acceptable visibility which provide
the maximum communication distance more than the
half of that calculated for the ideal situation (V = 1).
The minimum visibility is 0.38 for successful infinite-sized
key generation.

With the acceptable visibility we can also calculate the
acceptable time delay between the two photons from Al-
ice and Bob. We considered two Gaussian photon pulses,
we can calculate the coincidence probability, p as follow

Table 1: Parameters for Simulation of MDI-QKD

Parameter symbol Quantity
error correction inefficiency f 1.16
loss coefficient of fiber α 0.2 dB/km
dark count rate pd 3× 10−6

error rate of background e0 0.5
detection efficiency ηd %14.5
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p = 1− 1

2
e
−
(2 ln 2)τ2

τ2L (5)

where the time delay of Alice’s and Bob’s photon pulses
is τ and the time duration of the photon pulse is assumed
to be τL.
In the following, we fix the time duration to 100 and

200 ps. Because of the different key rates obtained by
different decoy state calculation methods, we choose the
result of the most efficient infinite-sized protocol. The
HOM dips are shown in Fig.2. They show that the ac-
ceptable time delay is 45.5 ps for 100-ps width and 89.0
ps for 200-ps width.

4 Conclusion

We analyzed the decoy state MDI-QKD protocol,
which allows the receiver to be protected from attacks on
the measurement device. For the implementation of this
protocol, the photons generated by the two independent
laser sources must be indistinguishable. We calculated
the final key rate determine the effects of two-photon
distinguishability on the visibility of their interference.
We also estimated an acceptable time delay between two
photons from two independent pulse lasers.
It should be noted that the calculation results we ob-

tained are based on the three-intensity model. It was
suggested in four-intensity model [9, 10] will improve
the performance for smaller number of pulses. Since the
small data size is very important for practical QKD ap-
plication, we should explore the improvement of the es-
timation with decoy method in the future. Fortunately,
our conclusions are based on HOM interference, so this
method is applicable to any quantum communication
model that depends on two-photon interference.
This study provides quantitative conditions for timing-

control accuracy, which will play an important role in im-
proving the performance of practical MDI-QKD systems.
Because synchronization is crucial to achieving high visi-
bility of two-photon interference, we still need to improve
the method to measure and control the relative time dif-
ference between photons from remote sources.
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Abstract : Physical theories constrained with local quantum structure and satisfying
the no-signaling principle can allow beyond-quantum global states. In a standard Bell
experiment, correlations obtained from any such beyondquantum bipartite state can al-
ways be reproduced by quantum states and measurements, suggesting the local quantum
structure and no-signaling to be the axioms to isolate quantum correlations. In this Letter,
however, we show that if the Bell experiment is generalized to allow local quantum inputs,
then beyond-quantum correlations can be generated by every beyond-quantum state. This
gives us a way to certify the beyond quantumness of locally quantum no-signaling theories
and in turn suggests the requirement of additional information principles along with the
local quantum structure and no-signaling principle to isolate quantum correlations. More
importantly, our work establishes that the additional principle(s) must be sensitive to the
quantum signature of local inputs. We also generalize our results to multipartite locally
quantum no-signaling theories and further analyze some interesting implications.

Keywords : Quantum Correlations, Prover-Verfier, Composition of Local Quantum
Systems

Reference : Phys. Rev. A 106, L040201

Introduction: Correlations among distant
events established through the violation of Bell
type inequalities confirm nonlocal behavior of
the physical world [1–4]. Nonseparable mul-
tipartite quantum states yielding such correla-
tions, in Schrödinger’s words, are “...the char-
acteristic trait of quantum mechanics, the one
that enforces its entire departure from classical
lines of thought" [5]. The advent of quantum
information science identifies the power of such
nonlocal correlations in numerous device in-
dependent protocols – cryptographic key dis-
tribution [6], randomness certification [7] and
amplification [8], dimension witness [9] are few
canonical examples. Cirel’son’s result [10], how-
ever, establishes that the nonlocal strength of
quantum correlations is limited compared to the
general no-signaling (NS) ones [11] as depicted
in the celebrated Clauser-Horne-Shimony-Holt
(CHSH) inequality violation [12].

In a recent work, Barnum et al. have shown
that the set of bipartite correlations attainable

from the POPT states is precisely the set of
quantum correlations [18]. Consequently, their
result provokes a far-reaching conclusion "...
that if nonlocal correlations beyond quantum
mechanics are obtained in any experiment then
quantum theory would be invalidated even
locally." In this work we analyze the correlations
of multipartite POPT states obtained from local
measurements performed on their constituent
parts by considering a generalized Bell scenario
as introduced in [25]. While in the standard
Bell scenario spatially separated parties receive
some classical inputs and accordingly generate
some classical outputs by performing local
measurements on their respective parts of
some composite system, recently Buscemi has
generalized the scenario where the parties
receive quantum inputs instead of classical
variables [25]. Considering this generalized
scenario, here we show that not all correlations
obtained from bipartite POPT states are
quantum simulable. In fact, every beyond
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quantum POPT state produces some beyond
quantum correlations in some quantum input
game. On the other hand, to illustrate the
limitations of the standard Bell scenario, we
show that there are POPT states which produce
classical-input-classical-output correlations
that are not only quantum simulable, rather
simulable classically. Our result shows that
the strong claim made by the authors in [18]
will not be correct anymore in this generalized
Bell scenario which is allowed within the
framework of local quantum theory. From a
foundational perspective our study welcomes
new information principles incorporating
this generalized Bell type scenario to isolate
quantum correlation from beyond-quantum
ones. We also analyze the implication of
this generalized scenario for multipartite
correlations and answer an open question
raised in [19].

Gleason’s theorem and origin of POPT:
We investigate the class of locally quantum
theories studied in a series of works in the
recent past [14–21]. For simplicity, we consider
two parties, Alice and Bob. A more technical
description for multiple parties is provided in
the technical manuscript. A bipartite state is
shared between Alice and Bob such that the
elementary system possessed by each party has
a valid quantum description. However, we do
not assume that the global state is quantum.
Unentangled Gleason’s theorem tells us that
if Alice and Bob are restricted to performing
local measurements, then global states that
are beyond quantum are mathematically
allowed [23]. These states, denoted by W,
are called POPT (positive on pure tensors)
states. Mathematically, W is a Hermitian, unit
trace operator on the tensor product Hilbert
space of Alice and Bob. We will denote the
set of POPT states as W(HA ⊗ HB) and the
set of quantum states (density operators)
by D(HA ⊗ HB). W(HA ⊗ HB) includes
D(HA ⊗HB) as a proper subset. A W will be
called ‘beyond quantum state’ (BQS) whenever

W ∈ W(HA ⊗HB) but W /∈ D(HA ⊗HB). In
this work, our aim is to study the correlations
obtained from BQSs. But before going to our
main results we briefly recall the standard
input-output scenario for the Bell correlation
experiment and its generalization by Buscemi.

Standard and Generalized Bell scenario:
A two party Standard Bell scenario considers
two distant parties Alice and Bob who receive
independent random classical inputs x and y,
respectively, from a Referee. Each party then
produces a classical output a and b, respectively,
based on which the Referee yields some payoff
P : (a, b, x, y) 7→ R. An implicit rule is that
the players cannot communicate with one
another once the game starts, although they
can agree upon some pre-shared strategy. Each
payoff function P describes a game in the Bell
Scenario.
The Generalized Bell scenario was introduced
by Buscemi to establish the nonlocal behaviour
of all entangled quantum states [25]. While in
the standard Bell scenario the distant parties
are given classical inputs, here they are given
some quantum states as the inputs. So, Alice
and Bob receive independent random quantum
inputs ψx and ψy, respectively, from a Referee.
Just like in the standard Bell scenario, they
are asked to produce classical outputs a and b,
respectively, based on which the Referee yields
some payoff β : (a, b, x, y) 7→ R.
The players can share some quantum state or
BQS (say, ZAB) and by making appropriate joint
measurements on their respective parts of ZAB
and on their input states they can generate
a correlation PZAB := {p(a, b|ψx, ψy)} ≡
{Tr[(πa

Ao A ⊗ πb
Bo B)(ψ

x
Ao ⊗ ψ

y
Bo ⊗ ZAB)]}

and thus obtain the expected payoff
IGsq(ZAB) := ∑a,b,x,y β (a, b, x, y)× p(a, b|ψx, ψy)

(see Fig. 1). If it turns out that for some
BQS WAB we have IGsq(WAB) < 0, while
IGsq(ρAB) ≥ 0, ∀ ρAB ∈ D(HA ⊗ HB), then
the the game Gsq establishes the correlation
strength of WAB over quantum states. Gener-
alization of the Bell scenario and the standard
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Bell scenario to multiple parties follows in the
obvious fashion.

Figure 1. (Color online) A powerful but untrust-
worthy Prover distributes a bipartite state ZAB
between two distant Verifiers (Alice and Bob). The
Verifiers do not have any entanglement between
them, but possess their own trusted local quantum
preparation device. Such limited resourceful Verifi-
ers can verify the beyond quantumness of the state
ZAB provided to them (Theorem 1). The seminal
Hahn-Banach separation theorem plays a crucial
role in making this verification possible – the correl-
ations produced from the bipartite quantum states
form a convex-compact proper subset within the
set of correlations produced from all bipartite states
compatible with local quantum description and NS
principle.

RESULTS

Proposition 1. There exist beyond quantum bipart-
ite states yielding correlations that are classically
simulable in the Standard Bell Scenario.

Theorem 1. For every beyond quantum state
WAB ∈ W(HA ⊗HB) there exists a semiquantum
game Gsq such that IGsq(WAB) < 0, while
IGsq(ρAB) ≥ 0, ∀ ρAB ∈ D(HA ⊗HB).

Theorem 2. For every BQS WA1···AN ∈
W(

⊗N
i=1 HAi) there exists a semiquantum game

Gsq such that IGsq(WA1···AN ) < 0, whereas
IGsq(ρA1···AN ) ≥ 0, ∀ρA1···AN ∈ D(

⊗N
i=1 HAi).

While in the standard Bell scenario the result
of Barnum et al. [18] ensures that the correla-
tions obtained from any bipartite BQS is attain-
able in quantum theory, Theorem 1 reports bey-
ond quantum correlations from all such BQSs in
the quantum-input scenario (see Fig. 1). Natur-
ally, it welcomes new principle(s) to isolate the
quantum correlations from beyond-quantum
ones in this generalized scenario.

While Theorem 1 is an existence theorem, it
is not hard to see that given an arbitrary BQS
there is an efficient algorithm to construct a
semiquantum game. The procedure is discussed
in the Appendix of the technical manuscript. It
is worth mentioning that this semi quantum
scenario is different from local tomography as
it establishes beyond quantum nature of POPT
states in a measurement device independent
manner where the measurement devices used
by the spatially separated parties need not to be
trusted [31].

Discussion: One of the earnest research en-
deavours in quantum theory is to understand
the limited nonlocal behaviour of quantum cor-
relations. Apart from the foundational appeal,
this question also has practical relevance as non-
local correlations have been established as use-
ful resources for several tasks. In the bipartite
scenario the result of Barnum et al. [18] provides
an answer to this question by assuming the de-
scription of local system to be quantum. Our
work, however, points out the limitation of the
scenario considered in [18]. While quantum in-
puts are brought into consideration, which is
legitimate within the structure of local quantum
description, the quantum correlations are not
singled out naturally. Our Theorem 1 shows
that all bipartite beyond quantum states com-
patible with unentangled Gleason’s theorem
can yield beyond quantum correlations in the
quantum-input scenario, and accordingly di-
vulges a more complex picture within the cor-
relations zoo. Our study therefore welcomes
new principles to identify the correlations in the
physical world and points out that such a prin-
ciple should take into consideration the type of
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the input-output scenario.
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Abstract. Efficient verification of quantum states and gates is crucial to the development of quantum
technologies. Although the sample complexities of quantum state verification and quantum gate verification
have been studied by many researchers, the number of experimental settings has received little attention
and is poorly understood. In this work we study systematically quantum state verification and quantum
gate verification with a focus on the number of experimental settings. We show that any bipartite pure
state can be verified by only two measurement settings based on local projective measurements. Any
bipartite unitary in dimension d can be verified by 2d experimental settings based on local operations.
In addition, we introduce the concept of entanglement-free verification and clarify its connection with
minimal-setting verification. Finally, we show that any two-qubit unitary can be verified with at most
five experimental settings; moreover, a generic two-qubit unitary (except for a set of measure zero) can
be verified by an entanglement-free protocol based on four settings. In the course of study we clarify the
properties of Schmidt coefficients of two-qubit unitaries, which are of independent interest.

Keywords: quantum state verification, quantum gate verification, minimal settings, bipartite pure states
and unitaries, entanglement-free verification

1 Introduction
Quantum information processing has attracted in-

creasing attention recently due to its great potential and
profound implications. To harness the power of quan-
tum information processing, it is crucial to verify the
underlying quantum states and devices efficiently based
on the accessible measurements. Unfortunately, tradi-
tional tomographic approaches are notoriously inefficient
since the resource overhead increases exponentially with
the system size under consideration. To overcome this
problem, a number of alternative approaches have been
proposed recently; see Refs. [1, 2, 3, 4] for an overview.

Among alternative approaches proposed so far, quan-
tum state verification (QSV) is particularly appealing be-
cause it can achieve a high efficiency based on local op-
erations and classical communication (LOCC) [5, 6, 7, 8,
12, 10]. Notably, efficient verification protocols based on
local projective measurements have been constructed for
bipartite pure states [5, 11, 13, 14, 15], stabilizer states
[16, 8, 17, 18, 10, 19, 20], hypergraph states [18], weighted
graph states [21], and Dicke states [22, 23]. Moreover,
the efficiency of QSV has been demonstrated in a num-
ber of experiments [24, 25, 26, 27]. Recently, the idea of
QSV was generalized to quantum gate verification (QGV)
[28, 29, 30] (cf. Refs. [31, 32, 33, 34, 35]), which en-
ables efficient verification of various quantum gates and
quantum circuits based on LOCC. Notably, all bipartite
unitaries and Clifford unitaries can be verified with re-
sources that are independent of the system size, while
the resource required to verify the generalized controlled-
NOT (CNOT) gate and generalized controlled-Z (CZ)
gate grows only linearly with the system size. The ef-
ficiency of QGV has also been demonstrated in several

∗zhuhuangjun@fudan.edu.cn

experiments recently [36, 37].
So far most works on QSV and QGV have exclusively

focused on the sample efficiency as the main figure of
merit. By contrast, the number of experimental settings
has received little attention, although this figure of merit
is also of key interest to both theoretical study and prac-
tical applications. Even for bipartite pure states, it is
still not clear how many measurement settings are re-
quired to construct a reliable verification protocol. The
situation is even worse in the case of bipartite unitaries,
not to mention the multipartite scenario. This prob-
lem becomes particularly important when it is difficult
or slow to switch measurement settings, which is the case
in many practical scenarios.

In this work we study systematically QSV and QGV
with a focus on the number of experimental settings
based on LOCC. We show that any bipartite pure state
can be verified by two measurement settings based on
nonadaptive local projective measurements. By contrast,
at least d experimental settings based on local oper-
ations are required to verify each bipartite unitary in
dimension d, while 2d settings are sufficient. In addi-
tion, we introduce the concept of entanglement-free ver-
ification, which is of special interest to both theoretical
study and practical applications. Moreover, we show that
any entanglement-free verification protocol can be turned
into a minimal-setting protocol, and vice versa.

For each two-qubit unitary, we determine the mini-
mum number of required experimental settings explicitly.
Our study shows that any two-qubit unitary can be veri-
fied using only five experimental settings, while a generic
two-qubit unitary (except for a set of measure zero) can
be verified by an entanglement-free protocol based on
four settings. Explicit entanglement-free protocols are
constructed for CNOT, CZ, controlled-phase (C-Phase),
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and SWAP gates, respectively. In the course of study we
clarify the properties of Schmidt coefficients of two-qubit
unitaries and their implications for studying the equiva-
lence relation under local unitary transformations, which
are of interest beyond the main focus of this work.

2 Quantum state verification and quan-
tum gate verification

For quantum state verification, consider a quantum
system associated with the Hilbert space H. A quan-
tum device is supposed to produce the target state |Ψ⟩,
but actually produces the N states ρ1, ρ2, . . . , ρN in N
runs. To distinguish the two situations, we can perform
a random test in each run. Each test is determined by a
test operator El, which is associated with a two-outcome
measurement of the form {El, I − El}, where I is the
identity operator. To guarantee that the target state can
always pass the test, the test operator El should satisfy
the condition ⟨Ψ|El|Ψ⟩ = 1, which means El|Ψ⟩ = |Ψ⟩.
If the test El is performed with probability pl, then the
performance of the above verification procedure is deter-
mined by the verification operator Ω =

∑
l plEl. Note

that a positive spectral gap is necessary and sufficient
for verifying the target state reliably, assuming that the
total number of tests is not limited.

For quantum gate verification, consider a quantum de-
vice that is expected to perform the unitary transforma-
tion U associated with the unitary operator U on H, but
actually realizes an unknown quantum process Λ. In or-
der to verify whether this quantum process is sufficiently
close to the target unitary transformation, we need to
construct a set T = {|ψj⟩}j of test states. In each run
we randomly prepare a test state from the set T and
apply the quantum process Λ. Then we verify whether
the output state Λ(ρj) is sufficiently close to the target
output state U(ρj) = UρjU

† by virtue of QSV, where
ρj = |ψj⟩⟨ψj | [29, 28]. By construction, the target uni-
tary transformation can always pass each test.

A set T = {|ψj⟩}j in H can identify the uni-
tary transformation U if the condition Λ(|ψj⟩⟨ψj |) =
U(|ψj⟩⟨ψj |), ∀j implies that Λ = U , that is, Λ(ρ) =
U(ρ), ∀ρ ∈ D(H), where D(H) denotes the set of all
density operators on the Hilbert space H. In this case,
the set T is referred to as an identification set (IS).

3 Verification of bipartite pure states
with minimal settings

Given a bipartite or multipartite pure state |Ψ⟩, how
many measurement settings are necessary to verify |Ψ⟩
reliably? Here we focus on verification protocols based
on nonadaptive local projective measurements, which are
amenable to experimental realization. Although it is
known that any bipartite pure state can be verified by
two distinct tests based on adaptive local projective mea-
surements [13], one test based on adaptive local projec-
tive measurements may entail many different measure-
ment settings, so the result presented in Ref. [13] does
not resolve the current problem under consideration.

Here we show that any bipartite pure state can be veri-
fied by at most two measurement settings, thereby resolv-
ing the minimal-setting problem in the bipartite scenario
completely.

Theorem 1 Every bipartite pure product state can be
verified by one measurement setting. Every bipartite pure
entangled state can be verified by two measurement set-
tings, but not one measurement setting.

4 Verification of unitary transformations
with minimal settings

4.1 Minimal identification sets
Here we are particularly interested in ISs with as few

elements as possible. The set T is a minimal identifica-
tion set (MIS) if, in addition, any proper subset is not
an IS. MISs are crucial to constructing verification pro-
tocols for unitary transformations with minimal settings.
To understand the properties of ISs and MISs, we need
to introduce several additional concepts and the results
are shown in the following lemmas.

Lemma 2 A set of pure states in H is an IS iff it is a
connected spanning set.

Lemma 3 A set of pure states in H is a MIS iff it is a
connected basis.

Lemma 4 Suppose T is a connected spanning set in
H. Then any maximal connected linearly independent
set (CLIS) contained in T is a connected basis.

Lemma 5 Every connected spanning set in H contains
a subset that forms a connected basis. Every set in H
that contains a connected spanning subset is a connected
spanning set.

4.2 Minimal-setting verification and
Entanglement-free verification

A verification protocol for U is entanglement free if
all input test states and the corresponding output states
(after the action of U) are product states; in addition,
all measurements are based on local projective measure-
ments. An entanglement-free protocol does not generate
any entanglement in the verification procedure and hence
the name. Such verification protocols are particularly
appealing to both theoretical study and experimental re-
alization. It turns out entanglement-free verification is
intimately connected to minimal-setting verification.

Denote by Prod the set of pure product states; denote
by Prod(U) the set of product states that remain product
states after the action of U :

Prod(U) = {|ψ⟩ ∈ Prod | U |ψ⟩ ∈ Prod}. (1)

The dimension of the span of the set Prod(U) is denoted
by dProd(U) = dim span(Prod(U)), which satisfies 0 ≤
dProd(U) ≤ d. A state |ψ⟩ in H satisfies the product-
state constraint associated with U if |ψ⟩ ∈ Prod(U). A
set of states satisfies the product-state constraint if it
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is contained in Prod(U), so that each state satisfies the
constraint.

An entanglement-free IS (EFIS) T for U is an IS that
satisfies the product-state constraint, which implies that
T ⊆ Prod(U). Similarly, an entanglement-free MIS
(EFMIS) is a MIS that satisfies the product-state con-
straint. Note that the definition of an EFIS (EFMIS) de-
pends on the specific unitary transformation under con-
sideration, although the definition of an IS (MIS) is in-
dependent of a specific unitary transformation. The uni-
tary operator U can be verified by an entanglement-free
protocol iff it admits an EFMIS, in which case Prod(U)
contains an IS. Theorem 6 below further clarifies the
connections among the product-state constraint as de-
termined by Prod(U), minimal-setting verification, and
entanglement-free verification.

Theorem 6 Suppose U is a unitary operator on a com-
posite Hilbert space H of dimension d. Then the following
five statements are equivalent:

1. µ(U) = d.

2. Prod(U) is a connected spanning set.

3. Prod(U) contains a connected basis as a subset.

4. U admits an EFMIS.

5. U can be verified by an entanglement-free protocol.

4.3 Minimal settings for verifying bipartite uni-
taries

Here we focus on the verification of general bipartite
unitaries and show that the minimum number of settings
required to verify a generic bipartite unitary grows lin-
early with the total dimension.

Theorem 7 Suppose U is a unitary operator acting on
a d-dimensional bipartite Hilbert space H. Then the min-
imum number of experimental settings µ(U) required to
verify U satisfies d ≤ µ(U) ≤ 2d.

Proposition 8 Let U be a unitary operator acting on a
d-dimensional bipartite Hilbert space H. If dProd(U) < d,
then

µ(U) = dProd(U) + 2[d− dProd(U)]. (2)

In the case dProd(U) = d, we have µ(U) = d if the set
Prod(U) is connected and µ(U) = d+ 1 otherwise.

5 Verification of two-qubit unitaries with
minimal settings

Let H = HA ⊗ HB be the Hilbert space associated
with a two-qubit system shared by A and B. According to
Refs. [38, 39], any two-qubit unitary operator UAB acting
on H can be expressed as UAB = VA ⊗WBUṼA ⊗ W̃B,
where VA,WB, ṼA, W̃B are four qubit unitary operators,

U = U(α1, α2, α3) = e−i
∑3

k=1 αkHk ,

0 ≤ |α3| ≤ α2 ≤ α1 ≤ π/4,

Hi = σi ⊗ σi, i = 1, 2, 3,

(3)

and σ1, σ2, σ3 are the three Pauli operators.
We determine the minimum number of experimen-

tal settings required to verify an arbitrary two-qubit
unitary and derive a simple criterion for determining
whether a general two-qubit unitary can be verified by
an entanglement-free protocol. Our main result is sum-
marized in the following theorem.

Theorem 9 Suppose U is a two-qubit unitary operator
with Schmidt coefficients s0, s1, s2, s3 arranged in nonin-
creasing order. Then

µ(U) =

{
5 if s0 > s1 = s2 = s3 > 0,

4 otherwise;
(4)

in addition, the unitary operator U can be verified by an
entanglement-free protocol unless s0 > s1 = s2 = s3 > 0.

According to the relation between α1, α2, α3 and the
Schmidt coefficients, define

S :=
{
(α1, α2, α3)

∣∣∣0 ≤ α3 ≤ α2 ≤ α1 ≤ π

4

}
, (5)

SE :=
{
(α, α, α)

∣∣∣0 < α <
π

4

}
, SEF := S \ SE. (6)

Theorem 10 Suppose 0 ≤ α3 ≤ α2 ≤ α1 ≤ π/4. Then

µ(U(α1, α2, α3)) =

{
4 if (α1, α2, α3) ∈ SEF,

5 if (α1, α2, α3) ∈ SE.
(7)

U(α1, α2, α3) can be verified by an entanglement-free pro-
tocol iff (α1, α2, α3) ∈ SEF.

6 Summary
We studied systematically QSV and QGV with a fo-

cus on the number of experimental settings based on lo-
cal operations. We showed that any bipartite pure state
can be verified by only two measurement settings based
on local projective measurements. The minimum num-
ber of experimental settings required to verify a bipar-
tite unitary increases linearly with the total dimension.
In addition, we introduced the concept of entanglement-
free verification, which does not generate any entangle-
ment in the verification procedure. The connection with
minimal-setting verification is also clarified. Finally, we
determined the minimum number of experimental set-
tings required to verify each two-qubit unitary. It turns
out any two-qubit unitary can be verified using at most
five settings based on local operations, and a generic two-
qubit unitary requires only four settings.

In addition, our work shows that verification protocols
with minimal settings are in general not balanced and
thus do not have natural analogs in QSV, which reflects
a key distinction between QGV and QSV that is not rec-
ognized before. In the future it would be desirable to
generalize our results to the multipartite setting.
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Rate-fidelity trade-off in entanglement distribution between distant
ion-cavity systems
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Abstract. Entanglement distribution between distant ions is necessary for realization of a large-scale
quantum computer. Therefore, various experiments and theoretical research have been conducted to im-
prove the entanglement distribution. However, the inherent problem of spontaneous decay of ions degrades
the entanglement fidelity and generation rate. In this study we investigate the relationship between a
waveform of a pump and spontaneous decay. First, we numerically show the trade-off between the entan-
glement fidelity and generation rate with various Gaussian pump pulses. Following that we propose how to
determine better waveforms. Finally, we show that a Gaussian waveform is sufficient for the entanglement
swapping.

Keywords: Quantum computer, trapped ion, cavity-QED, entanglement swapping

1 Introduction

Trapped ions have a range of properties [1] required
for a good quantum computer such as homogeneity, long
coherence time, high fidelity of gates, state preparation,
and measurements, as well as good connectivity. On the
other hand scalability is a challenge that needs to be solve
to create a full scale distributed quantum computer[2].
The key element on the pathway to the scalable quan-
tum computing is entanglement swapping [3] schemati-
cally shown in Fig. 1 which has been already experimen-
tally demonstrated for instance in [4, 5, 6]. However, the
performance of the entanglement swapping is inherently
limited by spontaneous decays.

Figure 1: Entanglement swapping

The detailed analysis shows that there are two kinds
of spontaneous decays relevant for the entanglement dis-
tribution, γg and γu shown in Fig 2. Here, γg refers to
the process in which the excited state decays to the fi-
nal state without emitting a communication photon. It
decreases the probability of emitting photon. This de-
cay has been well studied and the analytical form of the
optimal waveform of the pump pulse which allow to mit-
igate the impact of this decay on entanglement sharing
has been found [7].
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‡hiroki.takahashi@oist.jp
§takeoka@elec.keio.ac.jp

On the other hand, in the process denoted by γu, the
excited state decays to the initial state. The decay γu
decreases the fidelity of ion-ion entanglement and the
visibility of a photon but does not decrease the proba-
bility because the state after the decay can be excited
again. This impact has been experimentally and numer-
ically confirmed, e.g., in ref. [8, 9, 10]. In the strong
coupling regime, g ≫ κ, γ, these spontaneous decays are
negligible if adiabatic excitation [11] or large detuning
[12] is applied, however achieving sufficiently strong cou-
pling is experimentally challenging. Indeed, the current
maximum g [13] is not sufficient to use the techniques
mentioned above.

Thus, the relationship between a waveform of a pump
pulse Ω(t) and the re-excitable spontaneous decay γu is
currently still not well understood. In this study we in-
vestigate this relation using both numerical and analyti-
cal approaches with realistic experimental conditions and
give the strategy to choose a better waveform of the pump
pulse.

Figure 2: The ion-cavity model. The ion has the Λ-
type energy level. |µ, n⟩ = |µ⟩atom ⊗ |n⟩photon, Ω(t): the
waveform of the pump pulse, ∆p and ∆c: detuning, g:
the ion-cavity coupling factor, γu: the spontaneous decay
rate |e⟩ → |u⟩, γg: the spontaneous decay rate |e⟩ → |g⟩,
and κ: the cavity decay rate.
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2 Methods

In this study, in order to focus our attention on the
relationship between Ω(t) and γu we assume that

∆p = ∆c = γg = 0. (1)

The calculation method follows ref. [8, 14]. Assuming
that the measurement unit of entanglement swapping is
perfect, the entanglement fidelity is determined by the
dynamics of the ion-cavity system. The dynamics is de-
scribed by the following quantum master equation;

d

dt
ρ(t) = −i

(
Heff(t)ρ(t)− ρ(t)H†

eff(t)
)

+ 2γu |u0⟩⟨e0| ρ(t) |e0⟩⟨u0|
+ 2κ |u0⟩⟨g1| ρ(t) |g1⟩⟨u0|

Heff(t) = (∆c − iκ) |g1⟩⟨g1|+∆p |u0⟩⟨u0|
− iγu |e0⟩⟨e0|
+ [Ω(t) |u0⟩⟨e0|+ g |e0⟩⟨g1|+ h.c.] .

(2)

Considering the initial state as ρ(0) = |u0⟩⟨u0|, the
master equation leaves the state in the four-dimensional
space. The probability of emitting photon Pex is the
probability of the state to be in |g0⟩. Therefore,

Pex = 2κ

∫
dt ⟨g1| ρ(t) |g1⟩ . (3)

The fidelity of the ion-ion entanglement [8] is

F =
1

2
(1 + Re{J}), where

J =

∫∫
dtdt′⟨a†c(t)ac(t′)⟩⟨a†c(t)ac(t′)⟩∗

P 2
ex

.

(4)

The two-point correlation function ⟨a†c(t)ac(t′)⟩ can be
calculated by the quantum regression theorem [15] using
the following relations,

⟨a†c(t)ac(t′)⟩ = Tr[Λ(t, t′)ac],

d

dt′
Λ(t, t′) = −i

(
Heff(t

′)Λ(t, t′)− Λ(t, t′)H†
eff(t

′)
)

+ 2γu |u0⟩⟨e0|Λ(t, t′) |e0⟩⟨u0|
+ 2κacΛ(t, t

′)a†c,

Λ(t, t) = ρ(t)a†c.

(5)

3 Results

We calculated F and Pex for different sets of param-
eters presented in Table 1 with various Gaussian pump
pulses by python. In this proceeding, due to the lim-
ited space, we show only the results for the intermediate
regime. First, in Fig. 3 we show the relationship be-
tween F and Pex for various Gaussian pump pulses . We
observe the trade-off between F and Pex.
In Fig. 4 we classified the points from the previous fig-

ure with respect to the pulse area to investigate the trade-
off further. We checked how these plots are changed with
pulse width as shown in Fig. 5 (a) and (b), where we

Table 1: Parameters of numerical simulation

Regime g κ γu C

Intermediate (a) 1 1 1 1

Strong (b)
√
10 1 1 10

Weak (c)
√
10 10 10 0.1

Purcell (d) 10 2 50 1
(e) 10 50 2 1

Figure 3: The trade-off between F and Pex.

chose the pulse area as 0.7 and 7.0 respectively. The
black dot shows the shortest pulse width, and the white
one shows the longest pulse width. We found that the
shorter pulse gives higher fidelity in the same probabil-
ity when the pulse area is 0.7, and the longer pulse gives
higher fidelity in the same probability when the pulse
area is 7.0. We repeated the same procedure for the other
pulse area plots, and we find the same characteristics as
in the above examples.

This result can be intuitively understood as follows.
When the probability is small, to neglect the spontaneous
decay, the pulse width should be much shorter than γu.
On the other hand, when the probability is high, the
adiabatic pumping is more effective [11].

We also considered the effect of non-Gaussian pump-
ing, Fig. 6. We plot results for asymmetric-Gaussian
pulses Ω(t) = 2Ω0/(1 +

√
r) exp

{
−(t− tc)

2/2σ2
}
, where

σ = σ1(t ≤ tc), σ = σ2(t ≥ tc), and r is the ratio of σ1

and σ2 such that the pulse area is kept constant. In Fig.
6(a), σ1 is fixed, and σ2 is changed. In Fig. 6(b), σ2 is
fixed, and σ1 is changed. We can conclude that although
we can see some improvement it is slight.

Finally, we considered the analytical form of the fi-
delity from Eq. (2)-(5) and found the following relation,

J ≤ 4C

4C + 3
−

∫ ∞

0

4

κ(4C + 3)

(
dρg1,g1(t)

dt

)2

dt

+

∫ ∞

0

16gC

4C + 3
(ρu0,g1(t) Im{ρe0,u0(t)}

− ρu0,u0(t) Im{ρe0,g1(t)})dt,

(6)

where ρa,b = ⟨a| ρ(t) |b⟩, and C = g2

κγu
.
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Figure 4: Classified trade-off with the pulse area. Each
color shows the pulse area divided by 2π. The red star
shows 1 + 2C

4C+3 in Eq. (7)

(a) (b)

Figure 5: The relationship of the pulse width and the
trade-off curve, preserving the pulse area. Black dots
show the result calculated by the shortest pulse, and
White dots show the result calculated by the longest
pulse. (a) Pulse area is 0.7. (b) Pulse area is 7.0.

(a) (b)

Figure 6: The trade-off curve with asymmetric Gaus-
sian pumping. Blue: symmetric Gaussian pulse, Orange:
Ω0 = 1.21 and fixed σ = 0.414, Green: Ω0 = 1.81 and
fixed σ = 0.414, Red: Ω0 = 1.41 and fixed σ = 0.616,
and Purple: Ω0 = 0.414 and fixed σ = 10.1. (a) σ1 is
fixed. σ2 = 0.01σ1 2σ1. (b) σ2 is fixed. σ1 = 0.01σ2 2σ2.

The first term on the right-hand side has a significant
contribution, although we need the numerical calcula-
tions to determine the second and third terms. The first
term is plotted as a red star in Fig. 4. The first term
gives a good upper bound, even though it is a loos bound
due to the derivation process. This result suggests that a
Gaussian pulse is sufficient and that it is difficult to dras-
tically improve the trade-off by optimizing the waveform
further.

4 Conclusion

In this study, we consider the effect of the waveform
of the pump pulse in the entanglement distribution sce-
nario. First, we show the trade-off between F and Pex

for various Gaussian pulses.
Then, we find that the shorter pulse gives higher fi-

delity than the other pulses with the same probability
when the Pex is small. On the other hand, the longer
pulse gives higher fidelity than the other pulses with the
same probability when the Pex is high.
Moreover, we show the Gaussian pump pulse is enough

to distribute entanglement between distant ions by com-
paring the analytical and numerical results.

These results show how to determine the waveform of
the pump pulse when generating entanglement between
distant ions.

Finally, our results together with previous research
[7, 8] help to design the optimized realistic experimen-
tal setup.
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Quantum Agents are more energetically efficient at responding in real time
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Abstract. Agents often execute complex strategies - continually adapting their reactions to input stimuli to syn-
ergize with past actions. Here, we show there is a minimal energetic cost for classical agents to execute a given
strategy, implying that they must dissipate a certain amount of heat with each decision. We prove that quantum
agents can reduce this dissipation below classical limits and identify the necessary and sufficient conditions on a
targeted strategy to guarantee this energetic quantum advantage. Our results point to new thermodynamic signatures
of quantumness and a fundamental energetic advantage for agents leveraging quantum processing to enable complex
adaptive behaviour.

Keywords: Quantum Thermodynamics, Agents

1 Introduction
Agents often enact complex strategies to survive in compte-

tive or resource scarce environments. From preditors chas-
ing prey, to self driving cars, or a card counter trying to beat
the house at black jack, each such agent must coordinate their
actions over multiple time steps, predicating future decisions
based not only on present stimuli but also on what has hap-
pened in the past. To do this an agent must track enviornmen-
tal stimuli over potentially long time frames, retaining infor-
mation about the past which can be used to anticipate the con-
sequences of future decisions and thus select rewarding future
actions.

This coordination implies that agents must continuously ex-
pend energy to operate in complex environments. Consider an
example of an agent Alice who is asked one of two questions
at each time step: q0 : ‘Are you hungry?’, or q1 : ‘Do you
like electric sheep?’. Alice is required to exhibit the follow-
ing behaviour: If the interrogator repeats the same question
in two consecutive rounds, Alice’s answers must agree; other-
wise, her response to the second question must be random. It
is clear that to win at this game Alice needs to retain two bits
of information. The first bit being which question was asked
last (so she can determine whether that question is being re-
peated), and the second being her previous answer. However
at most one of these bits is ever reflected in Alice’s future an-
swers. Whats more if she gets asked two differing questions
on consecutive rounds then both bits are discarded (as nei-
ther is relevant to generating a random answer), an operation
which incurs intrinsic thermodynamic cost. Yet Alice can not
play this simple game any more efficiently, there was an in-
trinsic cost to coordinating her actions. However this analysis
assumes Alice is entirely classical.

Here we explore the potential for Alice to use quantum in-
formation processing to play such a game more efficiently
than classically possible. We place fundamental bounds on

∗thompson.jayne2@gmail.com

the thermodynamic efficiency of any classical agent respond-
ing to a series of environmental stimuli in real time. We then
isolate necessary and sufficient properties for a strategy to be
executable by a quantum agent with improved energetic effi-
ciency.

2 Strategies and Games
We describe adaptive agents as systems that interact with

their environment at discrete timestepe t ∈ Z. At each discrete
point in time t the agent recieves and input stimuli or question
xt ∈ X from the environment and responds by generating
an output response yt ∈ Y . Taking t = 0 as the present,
we denote the past sequences of stimuli and actions as←−x :=
. . . x−2x−1 and←−y := . . . y−2y−1 respectively. For shorthand
we denote the pair z := (x, y), and similarly←−z := (←−x ,←−y )
for the entire history.

A strategy P then specifies the desired statistical re-
sponse to each possible future input sequence, conditioned
on what has happened so far in the past. Mathemati-
cally, we adopt the framework of computational mechan-
ics [1, 2], describing each strategy by P = {P (Y0:K =
y0:K |x0:K ,←−z )}K>0, the probability the agent should answer
y0:K = y0, y1, . . . yK−1 when given a sequence of K future
inputs x0:K = x0, x1, . . . xK−1 for each natural number K
and history ←−z . Note that while this definition specifies the
random variable Yt that governs each yt, it makes no such
specification on xt. This is because a strategy constitutes a
promise about the agent’s response for all possible future xt,
regardless of how it is distributed. We thus adopt similar con-
ventions to Bell tests, such that the agent cannot gain any in-
formation about future inputs based on past inputs. There-
fore, we take xt to be independent identically-distributed with
Shannon entropy hx. Let Xt and Yt denote the physical sys-
tems that respectively encode xt and yt. We assume the in-
terigator preconfigures the state of Xt to encode the question
xt before passing it to the agent, meanwhile the output tape is
assumed to be initialized in a maximally mixed default state
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governed by Ydflt with entropy hdflt = log2 |Y|.
To understand the cost of this real-time response, we will

also consider quasi real-time agents that process L-inputs at a
time. Such agents are able to take in (length L) segments of
the tapes X0:L = X0...XL−1 and Y0:L = Y0...YL−1, and
jointly transform them to generate the next L answers simulta-
neously. We call such agents L-stride, in analogy to a related
automata in the literature of pattern machines.

To play the game over multiple rounds the agent must be
able to retain relevant information about what has happened
in the past in order to inform future decisions. To do this the
agent must record relevant past information by configuring the
initial state of a memory register M to some function of the
past f(←−z ). We assume the agent is causal (i.e. the memory
state is always a function of the past), such that someone who
has access to the entire past knows as much about the future
as the agent does. We also assume the agent is stationary,
which is to say that if there is any internal clock dictating the
behaviour of the agent then it has to be recorded in the state
f(←−z ), for proper resource accounting.

Generating statistically correct behaviour at each time step
then requires the L-stride agent to implement some physical
process T (L) that couples the memory M to X0:L and Y0:L,
while

1. Changing the state of Y0:L to encode the output y0:L
with probability P (Y0:L|←−z , x0:L); and

2. Updating the state of M to one consistent with the new
history←−z z0:L (i.e, f(←−z z0:L)).

3. Leaving the state of X0:L unchanged.

Here the first two conditions ensure that the agent executes
statistically correct behaviour meanwhile the last condition
forbids the agent from extracting energy from the incoming
tape of questions (ensuring we are characterizing the energetic
cost of responding to environmental stimuli). These condi-
tions remain true regaurdless of whether the agent is classical
or quantum, ensuring that both counterparts are playing by the
same rules.

3 Work cost of executing a strategy
To analyse the work cost of executing a complex strategy

we treat T (L) as a physical process that interacts X0:L,Y0:L

and M, imprinting the final states of applying the update map
onto each of these systems. This process takes place in con-
tact with a heat bath at temperature T . We also assume the
Hamiltonians governing these systems are degenerate at the
beginning and end of the protocol.

Landauer’s principle then puts immediate bounds on the ul-
timate thermal efficiency of such an agent, implying that the
energetic cost of realizing the update map T (L) is bounded
below by the difference in entropy of the inputs vs. outputs
of the channel. Thus an L-stride agent requires w(L) units of
work per symbol it emits, where Landauer’s principle implies

w(L)

kT ln 2
≥ hdflt +

1

L
[I(Z0:L,ML)−H(Y0:L|X0:L)]. (1)

Figure 1: The energetic cost of a quantum agent executing a
policy map T (L) can be characterized using information bat-
teries. To execute T (L), an agent harnesses a information bat-
tery B comprised of d � 1 qubits of which λ � 1 are maxi-
mally mixed and all others are pure. U then represents a Stine-
spring dilation that couples B with the agent memory, and the
input tape Xt:t+L (here t = 0 for illustrative purposes). At
end of the operation, the battery will be depleted and ejected.
The energy cost needed to reset this battery (while coupling it
to a heat bath at some temperature T ) then gives the single-
shot work cost in implementing T (L).

Here I(Z0:L,ML) is the mutual information between the
joint output state of the two tapes X0:L,Y0:L, and the ter-
minal state of the memory system M at time t = L, and
H(Y0:L|X0:L) the conditional entropy.

4 Classical Agents
Classical agents operate with classical memory, whereby

T (L) is a classical stochastic map. It is then possible to satu-
rate Landauer’s bound using isothermal channels and chang-
ing energy landscapes [3]. Thus the energy-minimal agent
should choose a memory encoding f(←−z ) that minimizes
I(Z0:L,ML) – that is, the encodings that store minimal in-
formation about the past.

This minimum is obtained when the memory states are as-
sociated with an encoding function ε such that ε(←−z ) = ε(←−z ′)
if and only if P (Y0:K = y0:K |x0:K ,←−z ) = P (Y0:K =
y0:K |x0:K ,←−z ′) for all K ∈ N and future input choices x0:K
[2],. The resulting agent has a special significance in clas-
sical complexity science literature where it is known as the
ε-transducer and regarded as the memory minimal automata
capable of executing a given strategy P . This gives an ulti-
mate classical limit on the thermodynamic cost of responding
to input stimuli of

w
(L)
c

kT ln 2
= hdflt +

1

L
[I(Z0:L, SL)−H(Y0:L|X0:L)] (2)

where SL is the random variable governing the memory state
of the ε-transducer at time t = L.
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Associated with this cost we can now derive an ultimate
limit on the extra cost of having to respond to questions one
at a time, by comiting the answer yt at each time step before
xt+1 is asked, vs. the cost of responding to all future questions
at once. In particular we find that (for i.i.d. inputs xt) the
energetic cost of real time response for a classical agent is

εrt = w(1)
c − lim

L→∞
w(L)

c

= kT ln 2[I(Z0, S1)− I(S0, Z0)]. (3)

In the context of our introductory example of Alice the
agent who is asked one of two questions at each time step,
I(Z0, S1) = 2 as the agent records 2 bits about the past time-
step, but I(S0, Z0) = 0.5 as half the time one of these bits is
relevant. Thus here the classical cost of real time response is
εrt = 1.5kT ln 2.

5 Quantum Agents
Quantum agents allow for a quantum memory M that can

store quantum states [4]. Our quantum agents operate by asso-
ciating each memory state of the ε-transducer, sk, with some
quantum memory state |σk〉.

Once configured in the appropriate memory state εq(←−z ) =
|σj〉〈σj |, a L-stride quantum agent implements T (L) by ap-
plying a unitary process U . As depicted in Fig. 1, this uni-
tary acts jointly on an information battery system B initialised
in some default pure state |0〉, alongside the initial memory
state |σk〉 and input-output tapes. The interaction transforms
the two tapes to encode the input-output response sequence
z0:L, while suitably updating the memory to record this out-
put. This results in a joint state∑

y0:L,k

√
T

y0:L|x0:L

jk |σk〉M |z0:L〉Z0:L
|ψ(z0:L, i)〉B (4)

where |ψ(z0:L, i)〉B are junk states accumulated on the battery
register [4]. Thermodynamic cost is then incurred due to the
discarding of the depleted battery register [5, 6].

The resulting work rate w(L)
q associated with discarding the

information battery register can saturate Eq. (2). This implies
that the energetic advantage of a quantum agent over a classi-
cal agent per time-step is

w(L)
c − w(L)

q =
kT ln 2

L
[I(Z0:L, SL)− I(Z0:L,ML)], (5)

where I(Z0:L,ML) represents the amount of information, our
quantum agent retains about the past L exchanges.

In general we show that the quantum agent is always more
energetically efficient than its optimal classical counterpart
such that

∆w(L) = w(L)
c − w(L)

q > 0 (6)

whenever there is step-wise intrinsic irreversibly in the opti-
mal classical agent’s internal map T . Specifically this step-
wise irreversability is characterized by the existence of two
memory states si, sj of the ε-transducer, such that irrespective
of the sequence of future inputs−→x it is impossible to perfectly
discriminate these two starting states based on future output
responses, i.e.

∑
−→y P (−→y |−→x , si)P (−→y |−→x , sj) > 0.

Indeed this knocks on directly into energetic savings in the
cost of real time response for a quantum agent. In particular
the difference between the quantum and classical real time
response costs of responding to i.i.d. xt inputs, is

∆εrt = kT ln 2[I(Z0, S1)− I(Z0,M1)]. (7)

To see this savings in action we return to our initial example
of Alice the agent under integration by an adversary who is
fond of electric sheep. Quantum mechanical Alice would be
capable of generating statistically correct output behaviour by
encoding all past information into a single qubit. If she was
previously asked q0 she simply prepares her memory in either
|0〉 or |1〉 depending on her last answer. Analogously if she
was asked q1 she configures her memory in one of the two
Pauli X eigenstates |+〉 or |−〉 depending on her last answer.
She thus retains I(Z0,M1) = 1 qubits of information about
the past. Afterwards correct answers can always be generated
by associating q0 with a Pauli Z basis measurement, and q1
with a measurement in the Pauli X eigenbasis. We see that
already in this simple case there is a quantum advantage in the
cost of real time response of ∆εrt = kT ln 2[2− 1] = kT ln 2
units of work.

6 Discussion
Agents often need to commit their answers in real time.

Whether it is a black jack player who is expected to play
a card each round, or a preditor chasing prey who needs to
swerve immediately in response to their target changing direc-
tion, most agents need to make decisions on the spot. We have
discovered that there is a quantum advantage in the amount of
energy an agent must invest to be capable of making decisions
in real time.

This advantage complements recent work on the thermo-
dynamics of energy harvesting, where an agent’s target is to
anticipate the distribution over upcoming input strings so as
to extract energy from input stimuli. In contrast here we char-
acterize directly the thermodynamic cost of generating output
responses, encountering a situation similar to quantum ran-
dom access codes. In the sense that a quantum system which
may be asked one of two different questions in the future but
has not the capacity to record the answers of both questions,
almost seems to postpone making a decision about which an-
swer it will commit to memory. Analogously our quantum
agents partially avoiding committing and potentially later dis-
carding the irrelevant answer, leading to thermodynamic en-
hancement.
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Abstract. We give a spatiotemporal classification of general quantum correlations in spacetime. Based
on this, we answer a fundamental question as to when the observed bipartite correlation from local mea-
surements is (a)temporal or (a)spatial. To understand (a)temporality of correlations, we introduce atempo-
rality—an efficiently computable real-valued property that is zero if and only if the correlation is temporal.
Atemporality is asymmetric under time reversal; this includes cases of quantum correlations one way
temporal but not the other. Surprisingly, we find that some entangled states are temporally replicable,
although we prove that entanglement is upper-bounded to be temporally replicable.

Keywords: Quantum causality, Temporal quantum correlations, Entanglement

1 Introduction
Consider the scenario in which Alice and Bob are each

in their own laboratory. In each round, they are each
given a respective qubit labelled A and B. The qubits
are prepared in the same way in each round. Such a
preparation scheme may be

• Spatially distributed, such that A and B corre-
spond to two arms of some bipartite state ρAB (see
Fig. 1a).

• Temporally distributed, such that B is the out-
put of A subject to some fixed quantum channel
(completely-positive trace-preserving map) E , or
vice versa (see Fig. 1b).

• Neither purely spatially nor temporally distributed,
such as when A evolves to B via non-Markovian
evolution [1], or, more generally, when A and B are
related by some general process matrices [2].

Let σ0 = I, σ1 = X, σ2 = Y, σ3 = Z by the identity
and the three standard Pauli operators. Let Pr(x, y|a, b)
then denote the probability of Alice getting outcome x
and Bob getting outcome y when Alice chooses to mea-
sure in basis σa and Bob in σb. Alice and Bob do not
perform any other interventions. By choosing appropri-
ate Pauli measurements over a large number of rounds,
Alice and Bob would then be able to determine the ex-
pected values ⟨σa, σb⟩ =

∑
x,y xy Pr(x, y|a, b) describing

how their measurement outcomes correlated in various
Pauli basis. Alice and Bob then pass this information to
us. From this information, what can we conclude about
the causal mechanism behind the preparation of A and
B?

∗song.at.qit@gmail.com
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We employ the pseudo-density operator formalism to
tackle this question. Given Pauli correlations ⟨σa, σb⟩
for each a, b ∈ {0, 1, 2, 3}, we can describe the information
received concisely via the pseudo-density operator (PDO)

RAB ≡
3∑

a,b=0

⟨σa, σb⟩
4 σa ⊗ σb.

The PDO contains all the information in ⟨σa, σb⟩, since
the latter can be retrieved directly by noting ⟨σa, σb⟩ =
tr[RAB(σa ⊗ σb)]. Thus our capacity to infer causal
mechanisms from the Pauli correlations coincides with
our capacity to infer causal mechanisms from the corre-
sponding PDO. Indeed, it is easy to see that when qubits
A and B are spatially distributed, the definition of RAB

coincides with that of a standard density operator. As
such, PDOs were proposed as a generalization of stan-
dard density operators to quantum measurements made
in space-time [3].

2 Main Results
Spatial-temporal compatibility. We introduce two
distinct criteria on PDOs: We say that RAB is spatially
compatible, or belongs to S if its statistics can be gen-
erated via a spatial distribution mechanism. Similarly,
we say that RAB is temporally compatible, or belongs to
T , if its statistics can be generated via a temporal dis-
tribution mechanism 1. PDOs that lie outside of S are
referred to as aspatial, and those that lie outside of T are
referred to as atemporal.

We then divide the set of all PDOs into four sepa-
rate classes based on their spatial-temporal compatibil-
ity: Those that (a) lie in S and T and are thus spatial-

1We will often use the terms spatial and temporal for brevity,
but we stress that they only mean compatible with a spatially or
temporally distributed structure.
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(a) Spatially distributed struc-
ture

or

(b) Temporally distributed struc-
ture

(c) General spatiotemporal struc-
ture

Figure 1: Alice and Bob in their respective laboratories make projective measurements MA,MB on each of their
quantum systems, andMA,MB are depicted by the orange rounded boxes with expanded view on the left. Above three
quantum circuit–like diagrams illustrate possible spatiotemporal structures. The black boxes represent background
quantum processes not in the observers’ control. The index a ∈ {0, 1, 2, 3} denotes a measurement basis choice, with
the value 0 indicating no measurement and the rest Pauli basis measurements with outcome x and post-measurement
state Πx|a; likewise for b, y.

temporal compatible, (b) lie in S but not T and thus
rule out purely temporal distribution mechanisms, (c) lie
in T but not S and thus rule out purely spatial distri-
bution mechanisms and (d) those that lie outside S and
T that cannot be explained by either purely spatial or
temporal distribution scheme but rather, rely on a more
complicated combination of spatial and temporal mech-
anism. We cannot infer anything conclusive about the
causal mechanism for those that lie within (a), in align-
ment with classical statistical theory. Quantum correla-
tions, however, enable PDOs in each of (b), (c) and (d),
where certain causal mechanisms can be ruled out.

To better understand what PDOs lie within each sub-
class, we need necessary and sufficient criterion for aspa-
tiality and atemporality. Past studies of causality have
focused on the former, showing that the negativity of
RAB is a necessary and sufficient for aspatiality [3]. We
will derive analogous conditions for when a PDO is atem-
poral, and thus build a full picture of spatial-temporal
compatibility. We will also provide some examples for
each subclass, from which we can also show that T does
not form a convex set.

Certifying Atemporality. Given RAB , our goal is to
propose atemporality indicators that rule out its compat-
ibility of temporal distribution mechanisms. To do this,
find it useful to first consider asymmetric atemporality:
The forward atemporality

−→
f and the reverse atemporal-

ity
←−
f .
−→
f (RAB) is zero if and only if RAB has statistics

consistent with a temporal distribution mechanism from
A to B, whereas

−→
f is zero if and only if RAB has statis-

tics consistent with a temporal distribution mechanism
from B to A. Together they naturally induce a general
atemporality measure f = min(

−→
f ,
←−
f ) that is zero if and

only if RAB lies in T .
Our approach involves introducing pseudo-channels, a

temporal analogue of pseudo-density operators. If a given
PDO RAB is induced from a temporal distribution mech-
anism from A to B with a quantum channel

−→
Λ and an

initial state ρA, it is known in Ref. [4, 5] that RAB can
be explicitly written as

RAB =
(
IA ⊗

−→
Λ

)
KAB (1)

where KAB ≡
{

ρA ⊗ IB

2 , SAB

}
with I the identity chan-

nel, {·, ·} the anti-commutator, I the identity operator,
and S the swap operator. It is noteworthy that a physical
channel is represented by a completely positive (CP) and
trace-preserving (TP) map. When RAB is incompatible
with such a temporal distribution mechanism, no such
CPTP maps exist. However, we can drop the complete-
positivity (CP) requirements on

−→
Λ , that is,

−→
Λ remains

trace-preserving, Hermiticity-preserving and linear, but
is no longer CP. This allows us to interpret any spa-
tiotemporal correlations as if RAB results from this map−→
Λ acting on A to generate B. We say that

−→
Λ is a for-

ward pseudo-channel compatible with RAB . Similarly,
we have a reverse pseudo-channel by interchanging the
roles of A and B.

Recall that the Choi–Jamiołkowski isomorphism [6] al-
lows us to represent a linear map

−→
Λ by its corresponding

Choi state χ−→
Λ , and states that χ−→

Λ is positive semidef-
inite if and only if

−→
Λ is CP. Thus negativity N (χ−→

Λ ) of
the Choi state (sum over all absolute value of its negative
eigenvalues) provides a necessary and sufficient indicator
of nonphysicality of

−→
Λ . These provide a natural means

to define
−→
f (similarly

←−
f , and thus f).

The minimal nonphysicality of such a channel then mo-
tivates our definition for forward atemporality:

−→
f (RAB) ≡ min−→

Λ
N (χ−→

Λ ), (2)

where the minimization is over all forward pseudo-
channels

−→
Λ that is compatible with RAB (i.e., those that

satisfy Eq. (1)). Similarly, we define the reverse atempo-
rality

←−
f (RAB) by reverse pseudo-channels, and thus the

general atemporality f ≡ min(
−→
f ,
←−
f ).

That f is a necessary and sufficient conditions for
atemporality is guaranteed by the following theorem:

Theorem 1. Any 2-qubit PDO RAB has at least one
compatible forward (reverse) pseudo channel. Moreover,
if the marginal trB RAB (respectively, trA RAB) has full
rank, RAB has a unique forward (respectively, reverse)
pseudo channel.
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Moreover, we have a systematic method to determine
such compatible pseudo-channels for any given RAB .
When RAB are full rank marginals, the algorithm is par-
ticularly simple:

Algorithm 1 (Forward) Choi state of pseudo channel
construction
Require: 2-qubit PDO RAB

1: ρA ← trB RAB

2: L ←
(
ρA − I

2
)
⊗ trA

[( 1
2 ρ−1

A ⊗ I
)

RAB

]
+ I

2 ⊗
trA

[(
(I− 1

2 ρ−1
A )⊗ I

)
RAB

]
3: χ← (T ⊗ I)(RAB − L) ▷ T denotes the transpose

map
4: return χ

When the marginal ρA is rank-deficient (i.e. some pure
state |ϕ⟩⟨ϕ|), the pseudo-channels compatible with RAB

is no longer unique. This is because any such causal in-
terpretation corresponds to Alice initiating her system in
|ϕ⟩, leaving us free to choose how Λ acts the the perpen-
dicular state

∣∣ϕ⊥〉
. We show that atemporality can be

computed effectively by semidefinite programming, even
in rank-deficient cases.

Atemporality and quantum correlations. While
atemporality can be applied to all PDOs, it is partic-
ularly interesting to investigate the measurement in the
context of correlations that are also compatible with spa-
tial distribution mechanism i.e., those that lie S, whose
PDOs are standard density operators.

We prove that our atemporality measure coincides with
the entanglement negativity [7] whenever R ∈ S is pure
or its marginals are given by the maximally mixed state.
Given this, one may expect that atemporality and en-
tanglement are equivalent. However, we find this to be
false:

Observation 1. Atemporality and entanglement do not
always coincide. There exist entangled states that are
temporally compatible.

An example is the parameterized family of biased
Werner states ρp,q ≡ (1− p)ρWerner

q + p |00⟩⟨00|, achieved
by mixing a standard Werner state ρWerner

q [8] with the
state |00⟩⟨00|. For example, ρ1/2,1/4 has zero atempo-
rality, by an entanglement negativity of approximately
0.0087 (see Fig. 2). Nevertheless, we also observe that
sufficiently strong entanglement does guarantee atempo-
rality. We indeed prove the following:

Observation 2. Any temporally compatible state must
have entanglement negativity of at most 1

2 (
√

2− 1).

Thus we see that atemporality is strongly suggestive of
strong quantum correlations. Our results suggest that
two concepts are heavily correlated but not the same -
with atemporality looking to be a stronger notion of non-
classical correlations than entanglement.

Time-reversal asymmetry. Another noteworthy
property of atemporality is its asymmetry under time

Figure 2: The graph of entanglement negativity Eneg,
atemporality of biased Werner states ρB.W

p,q=1/4 parame-
terized by p ∈ [0, 1], are plotted by the light blue solid
line, the blue dashed line, respectively.

reversal. Some PDOs may be temporal from A to B
(i.e., forward-temporal), but not the other way; others
yet may admit a temporal interpretation only from B
to A. We find the example of forward-temporal PDOs
but not reverse-temporal, and Fig. 3 illustrates their
non-zero reverse atemporality.

Figure 3: The graph of the reverse atemporality
←−
f for

forward-temporal PDOs obtained from a forward tem-
poral process, against the parameter p, where the tem-
poral process is fixed as follows. Suppose A is pre-
pared in a state ρA = 1

4 |+⟩⟨+| + 3
4 |−⟩⟨−|, and af-

ter Alice’s observation, evolves via a quantum channel
Ep : ρA 7→ pρA + (1 − p)ZρAZ† for p ∈ [0, 1]. By con-
struction, RAB ∈

−→
T ; however, for p ∈ (0, 1), RAB /∈

←−
T .

3 Discussion
Quantum correlations differ crucially from classical

counterparts in that they can be fundamentally incom-
patible with certain underlying causal mechanisms. Prior
work showed that the correlations between various Pauli
measurements on two qubits A and B can be aspatial –
such that they cannot be explained purely by a common
cause. In this work, we complete this picture by introduc-
ing atemporality, the situation where such correlations
can only be explained when common causes are involved.
Overall, our worked catalyzes the development a frame-
work to classify general quantum correlations based their
compatibility to spatial and temporal causal mechanisms.
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Abstract. In this work, we theoretically investigate the dynamics of quantum coherence (total, global
and local coherence) present in maximally entangled bipartite and tripartite states in both the unbroken
and the broken phase of PT-symmetry and at an exceptional point when one qubit is acted upon by the
local PT-symmetric Hamiltonian. Our results indicate that quantum coherence behaves differently under
PT-symmetry, when the dimensionality of the quantum system is increased. The dynamics of quantum
coherence present in the maximally entangled bipartite state is experimentally verified by implementing
the PT-symmetric Hamiltonian on an NMR quantum processor.

Keywords: PT-Symmetric Hamiltonian, Quantum Coherence, NMR

1 Introduction

• Theoretically, we study the dynamics of quantum
coherence (total coherence, global coherence and lo-
cal coherence) evolving under a local PT-symmetric
Hamiltonian in maximally entangled bipartite and
tripartite states.

• Our results indicate that quantum coherence in
the bipartite state oscillates in the unbroken phase
regime of the PT-symmetric Hamiltonian. Interest-
ingly, in the broken phase regime, while the global
coherence decays exponentially, the local and total
coherences enter a ”freezing” regime where they at-
tain a stable value over time.

• A similar pattern is observed for the dynamics of
total and local coherences in the maximally entan-
gled tripartite state, while the dynamics of global
coherence in this state differs from that of the bi-
partite state.

• Experimentally, these results were validated for a
maximally entangled bipartite state on a three-
qubit nuclear magnetic resonance (NMR) quantum
processor, with one of the qubits acting as an an-
cilla.

PT-Symmetric Hamiltonian: The PT-symmetric
Hamiltonian for a single qubit can be written as:

HPT = σx + irσz (1)

where, r > 0 is the amount of non-Hermicity and
σx, σy, σz are Pauli matrices. The energy gap of PT-
symmetric Hamiltonian is 2

√
1− r2 and it’s eigenvalues

are ±
√

1− r2 where for | r |< 1, the eigenvalues are
positive that means PT-symmetry is unbroken and for
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| r |> 1, the eigenvalues become complex that leads to
broken PT-symmetry. The Hamiltonian has an excep-
tional point at | r |= 1 where both eigenvalues as well as
eigenvectors coalesce.

Dynamics of quantum coherence: Different mea-
sures of basis dependent quantum coherence have been
proposed such as l1-norm and relative entropy. Based
on these measures, various types of quantum coherences
have been defined in multipartite systems such as global
coherence, local coherence and total coherence:

• Total Quantum Coherence: The relative en-
tropy of total coherence is defined as

CT (ρ) = minσεIS(ρ ‖ σ)

= S(ρd)− S(ρ)
(2)

where S(ρ) = −tr(ρlog2ρ) is the Von Neumann en-
tropy of ρ, and ρd is the matrix of ρ with all off-
diagonal terms set to zero in the basis |i〉.

• Local Coherence: Quantum coherence which is
localized on each qubit of the entire system is called
local coherence. It can also be defined in terms of
relative entropy as

CL(ρ) = minσεIS(δ(ρ) ‖ σ)

= S(δd(ρ))− S(δ(ρ))
(3)

where δ(ρ) = ρ1 ⊗ ρ2 (δ(ρ) = ρ1 ⊗ ρ2 ⊗ ρ3) for
two qubits system (three qubits system) and ρ1 =
Tr2ρ12 (ρ1 = Tr23ρ123) is the single-qubit reduced
density matrix.

• Global Coherence: Quantum coherence that
originates due to the collective nature of the whole
system is called global coherence

CG(ρ) = CT (ρ)− CL(ρ) (4)
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Figure 1: Plots of the evolution of quantum coherence
present in the maximally entangled bipartite (Bell) state
under different phases of PT-symmetry

2 Simulation Results

Two-qubit maximally entangled (Bell) state: A
two-qubit Bell state defined as: ρ

BS
= |ψ

BS
〉〈ψ

BS
| where

|ψ
BS
〉 = (|00〉 + |11〉)/

√
2). We study the dynamics of

quantum coherence evolving under local PT-Symmetric
Hamiltonian and results are shown in Figure 1

Three-qubit maximally entangled state (GHZ):
We consider the three qubits maximally entangled Green-
bergerHorneZeilinger (GHZ) state : ρ123 = ρ

GHZ
=

|ψ
GHZ
〉〈ψ

GHZ
|, where |ψ

GHZ
〉 = (|000〉+ |111〉)/

√
2. The

results of dynamics of quantum coherence evolving under
local PT-Symmetric Hamiltonian are shown in Figure 2

3 Experimental Demonstration

The experimental implementation of PT-symmetric
Hamiltonian on an NMR quantum processor is realized
using three qubits system where three spin-1/2 nuclei
(1H,19F and 13C) of sample 13C-labeled diethylfluoroma-
lonate act as a three qubit system and the sample is dis-
solved in acetone-D6 . The first two nuclear spins 1H and
19F are used to simulate two qubit system while 13C spin
is utilized as the ancillary qubit.

Quantum Circuits: Quantum circuits to prepare a
maximally entangled Bell state and to simulate a PT-
symmetric Hamiltonian is shown in Figure 3.

4 Results and Conclusions

• Our results in Figure 4 show that in the Bell state,
the total, local and global coherences oscillate with
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Figure 2: Plots of the evolution of quantum coherence
present in a maximally entangled tripartite (GHZ) state
under different phases of PT-symmetry

|0〉

|0〉

|0〉

(a)

(b)

H

V R

U1

R

U2

H

1H

19F

13C

y x x z

y x x xz

x x

τ12 γ31 τ31

y x

y z

y

y

y

y

y

y y

x z y

y

y

y

y

y

z

z y x

Figure 3: (a) Quantum circuits: The gates in the first
box create a maximally entangled Bell state on the first
two qubits, with the third qubit acting as an ancillary
qubit. The gates in the second box simulate a PT-
symmetric Hamiltonian on the first qubit. (b)The corre-
sponding NMR pulse sequence, where the unfilled rect-
angles are π

2 pulses, the black rectangles denote π pulses,
the gray rectangle is a θ pulse and the green rectangle
denotes a φ pulse. Pulse phases are given above each
pulse and a bar over a phase represents negative phase.
Further details are given in Ref.[4]

time in the unbroken phase (r = 0.6) while the am-
plitudes are different for various quantum coher-
ences.

• In the broken phase (r = 1.4), the total coherence
initially increases and then freezes at later times.
Similarly, our results indicate that the local coher-
ence, which is not present initially in the Bell state,
is created and increases under the broken phase of
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Figure 4: Dynamics of quantum coherence present in
two qubit Bell State under PT -Symmetric Hamiltonian
where (a), (b) and (c) represent the dynamics of total
coherence (CT ), global coherence (CG) and local coher-
ence (CL) respectively with time in unbroken phase of
PT-Symmetry (r = 0.6). (d), (e) and (f) represent the
dynamics of total coherence (CT ), global coherence (CG)
and local coherence (CL) respectively with time in broken
phase of PT-Symmetry (r = 1.4)

PT-symmetry and freezes at later times whereas
the global coherence initially increases and then ex-
ponentially decays with time.

• Our work sheds some light on the effect of the PT-
symmetric Hamiltonian on quantum coherences in
a multipartite system which can further help in
gaining an understanding of the effects of the PT-
symmetric Hamiltonian in quantum thermodynam-
ics and in quantum information processing.
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Abstract. The amount of information that a noisy channel can transmit has been one of the primary
subjects of interest in information theory. For a large family of optical quantum channels that can be
implemented without an external energy source, we optimize the Holevo information over information
encodings in the attenuations and phase-shifts that they apply to a resource state of finite energy. We
show that for any given input state and environment temperature, the maximum Holevo information can
be achieved by an encoding procedure that uniformly distributes the channel’s phase-shift parameter.
Moreover for large families of input states, any maximizing encoding schemes only involve a finite number
of channel attenuation values, giving codewords that form a finite number of rings around the origin in the
phase space.

Keywords: quantum channel coding, passive linear-optical channel, noisy quantum channel, continuous-
variable quantum information, quantum information theory, holevo information, quantum reading

1 Thermal channel and encoding
In a classical channel coding scenario with a sender (Al-

ice) transmitting messages to a receiver (Bob) through a
channel, one quantifies the rate at which information can
be reliably transmitted from Alice to Bob by the Shan-
non mutual information, which depends on the encoding
procedure over the channel’s input symbols and the chan-
nel’s output statistics [1]. When a quantum channel is
used, Alice’s messages are instead encoded to an ensem-
ble of quantum states that Bob can make (joint) measure-
ments on, where the Holevo information now quantifies
the amount of information that can be reliably trans-
mitted [2]. As in the classical scenario, optimizing over
the encoding procedure gives the ultimate capacity of the
quantum channel.

In this work, we focus on optimizing the Holevo infor-
mation of a family of quantum channels called the ther-
mal channels, which are linear-optical quantum channels
without external energy source where one encodes infor-
mation by mixing a given finite-energy input state with
the environment in some thermal state and then phase-
shifting it (see Fig. 1). The thermal channel model are
applicable in a number of tasks as well as fundamentally
interesting in its own right. Most notably, it is directly

∗andrew.tanggara@gmail.com
†mgu@quantumcomplexity.org

Figure 1: Thermal channel. Input "resource" state ψ
with energy E is mixed with an "environment" in a thermal
state γT by a beamsplitter B(η) of transmittance η and then
undergoes a θ phase-rotation operation R(θ), giving an output
codeword state ψT (η, θ).

applicable to the task of optical quantum reading tasks
[3, 4, 5, 6, 7, 8] where one probes a set of quantum chan-
nels acting as "memory cells" to decode information en-
coded in their parameters (see Fig. 2). The thermal chan-
nels extend some of the aforementioned quantum reading
results that assumed zero-temperature (i.e. vacuum) en-
vironment. Moreover, a thermal channel separates out
the energy sources it utilizes, allowing one to analyze en-
ergy as a resource to perform the task at hand (e.g. for
thermodynamic tasks [9]). From a fundamental perspec-
tive, the thermal channel framework also allows one to
analyze its information capacity with a more restrictive
peak energy constraint as opposed to the more well un-
derstood average energy constraint. As it is known in the
latter case that the information capacity of large classes
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Figure 2: Application of thermal channel in quantum
memory reading. Each memory cell is a thermal channel
with temperature T where information is encoded in its at-
tenuation ηj and phase θj . One decodes the information by
sending a probe state ψ through and measuring the output.

of Bosonic Gaussian channels are achieved by Gaussian
encodings [10, 11, 12], this is not always the case with
a peak energy constraint as we will later show. Lastly,
a peak energy constraint is also relevant to model many
practical scenarios, such as: channels with limited energy
tolerance, technological limitations on generating Fock
states of large occupation number, and satellite-based
laser communication system where energy is scarce.

A thermal channel is formally modeled as a beamsplit-
ter operation that mixes a given resource state ψ with en-
ergy E with the thermal state of the environment with a
given temperature T , followed by a phase shift operation
(see Fig. 1). The procedure that encodes information by
modulating the thermal channel’s attenuation parameter
η ∈ [0, 1] and phase parameter θ ∈ [−π, π] is described
by a joint cumulative distribution function F (η, θ) called
a thermal encoding. This procedure generates the code-
word ensemble {F (η, θ), ψT (η, θ)}η,θ that defines the av-
erage codeword state ψave =

∫
dF (η, θ)ψT (η, θ). In this

work, we characterize thermal encodings F that maxi-
mizes the Holevo information for a given resource state
ψ and environment temperature T given by,

χ[F ] = S(ψave)−
∫
dF (η, θ) S(ψT (η, θ)) , (1)

where S is the von Neumann entropy.

2 Optimal thermal encoding
Our first result on characterizing the optimal thermal

encodings indicates that instead of maximizing χ over
all possible encoding F , we only need to consider a class
of encodings that distributes the phase parameter uni-
formly, called the circularly symmetric encodings. This
is because for any given thermal encoding, there exist a
circularly symmetric encoding that is at least as good.

Proposition 1 Given a resource state ψ and environ-
ment temperature T and an arbitrary thermal encoding
F , there exists a circularly symmetric encoding F ′ such
that χ[F ′] ≥ χ[F ].

Optimizing over the circularly symmetric encoding is
advantageous as one only needs to maximize the Holevo

Figure 3: Phase-space visualization of codewords for an
optimal encoding given coherent state resource with energy
E ∼ 9.2 and a zero-temperature environment. Radius of each
red ring indicates energy of the attenuated and phase-shifted
coherent state codewords (small blue circles).

information over the encodings of the attenuation param-
eter, both practically and theoretically simplifying the
optimization. Additionally, the codeword ensemble of a
circularly symmetric encoding can be nicely visualized in
the phase-space as shown in Fig.3 for coherent state re-
sources, where for each fixed attenuation η one obtains
a ring structure representing the uniformly distributed
phase θ. For any given circularly symmetric encoding
F , we can further use a measure of information called
the marginal information density i[η, F ] for each ring at
attenuation point η, which average gives us the Holevo
information

χ[F ] =

∫
dF (η) i[η, F ] . (2)

Using this relation, we show that all circularly symmetric
encoding that maximizes χ necessarily and sufficiently
satisfy the following conditions.

Proposition 2 For any given resource state ψ, a circu-
larly symmetric encoding F ∗ is uniquely optimal if and
only if

i[η, F ∗] ≤ χ[F ∗] for all η ∈ [0, 1] (3a)

i[η, F ∗] = χ[F ∗] if and only if F ∗(η) is increasing .
(3b)

These conditions for an optimal circularly symmet-
ric encoding F ∗ shows it only contains the attenuation
points η where most amount of information can be en-
coded. Beside being a technical tool to show further
characterizations of optimal thermal encodings, the opti-
mality conditions in Proposition 2 are practically useful
in numerical optimization of thermal encodings. As one
might note that there might be uncountably many at-
tenuation points η in an optimal encoding, we further
show that this is not the case for large families of re-
source states, particularly for coherent state resource in
temperature T = 0 and for thermal state resource. In
fact, an optimal circularly symmetric encoding for those
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resource states involves only a (countably) finite number
of attenuation points.

Proposition 3 For any coherent-state resource ψ =
|α⟩⟨α| in zero-temperature environment and for a
thermal-state resource ψ = ρth(nres) in any environment
temperature, the attenuation-coefficients η of the optimal
circularly-symmetric encoding takes a finite number of
values in [0, 1].

Proposition 3 states that the codewords from these op-
timal circularly symmetric encoding is a finite mixture of
ring states, visualized as discrete rings in its phase-space
representation (see Fig. 3). The number of rings however,
varies as the resource state energy changes (see Fig. 4).

Although we are able to show this property rigor-
ously only for these coherent state and thermal state
resource cases, numerical evidence suggests that it also
holds for the optimal encoding of larger classes of resource
states. Numerical optimization suggests that the encod-
ings satisfying the conditions in Proposition 2. The re-
sulting Holevo information from the numerical optimiza-
tion for given a displaced thermal state resource at zero-
temperature environment can be seen in Fig 5, whereas
the results for given coherent state resource at non-zero
temperature environment is shown in Fig. 6.
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Abstract. Virtual distillation is an error-mitigation technique for arbitrary noisy environments. Con-
sidering isolatable noise from peripherals of a quantum circuit, such as delay lines, we find that virtual-
distillation performance improves if the peripheral is uniformly distributed across the circuit. For multi-
qubit loss and Pauli noise channels of a fixed overall error rate, error-mitigated circuit-output states improve
in quality monotonically as the peripheral is split (diluted) into more layers. We show that second-order
distillation is sufficient for near-optimal mitigation. These results are applied to quantum-computing clus-
ters, where detectors are limited and delay lines are necessary to queue output qubits from multiple circuits.

Keywords: variational quantum algorithm, noisy intermediate-scale quantum (NISQ), error mitigation,
virtual distillation, two-designs, delay lines, noise dilution, Pauli channel, photon loss

1 Virtual distillation

In the current era of noisy intermediate-scale quan-
tum (NISQ) devices, their exploitation for any viable
advantage in computation should accompany the miti-
gation of errors arising from noisy environments. Virtual
distillation [1–3] is a technique that can mitigate noise of
small error rates for arbitrary noise models.
Suppose that an effective noise channel Φϵ, of some

error rate ϵ, acts on a pure state ρ = | ⟩⟨ | of Hilbert-
space dimension d. The resulting noisy state

ρ′ = Φϵ[ρ] = |λ0(ϵ)⟩λ0(ϵ)⟨λ0(ϵ)|+
d−1∑
k=1

|λk(ϵ)⟩λk(ϵ)⟨λk(ϵ)|

(1)

possesses a spectral decomposition with ordered eigenval-
ues λ0 > λ1 ≥ . . . ≥ λd−1, where for sufficiently small ϵ,
the eigenstate |λ0(ϵ)⟩⟨λ0(ϵ)| ∼= ρ.
Virtual distillation utilizes a basic linear-algebraic

principle. If the dominant eigenvalue λ0(ϵ) > λk>0(ϵ) is
nondegenerate, which is typical for noisy environments,

lim
M→∞

ρ′M

tr {ρ′M}
= |λ0(ϵ)⟩⟨λ0(ϵ)| ∼= ρ . (2)

Thus, a sufficiently large distillation order M , followed
by a trace normalization, amplifies the singly-dominant
eigenstate that shall approximately be the target ρ.
In a variational quantum algorithm (VQA) setting [4–

10], one is generally interested in measuring the expecta-
tion value ⟨O⟩ of a Hermitian observable O with respect
to some target ρ = | ⟩⟨ |. Virtual distillation correspond-
ingly entails the measurement of tr

{
ρ′M O

}
/tr

{
ρ′M

}
,

which can be done either with a correcting circuit [2] or
shadow tomography [11].

2 Concept of noise dilution

Consider a circuit peripheral that contributes to isolat-
able noise, where the map Φi.i.d.

ϵ comprises independent
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and identically distributed (i.i.d.) noisy channels. This
leads to the concept of noise dilution [12].

Suppose that this peripheral is used in conjunction
with an n-qubit quantum circuit described by the uni-
tary operator U , which can be split into several smaller
portions. The corresponding noiseless target output
ρ = U |000⟩⟨000|U†, where |000⟩⟨000| is some fixed initialized
pure state. Given the possible decomposition U =
W1W2 . . .WLerr in terms of unitary operators W1, W2,
. . . , WLerr

, the observer may choose to distribute the pe-
ripheral across U , so that the noisy output state is

ρ′Lerr
=Φi.i.d.

ϵ
Lerr

[
WLerr

. . .Φi.i.d.
ϵ

Lerr

[
W2 Φ

i.i.d.
ϵ

Lerr

[
W1|000⟩⟨000|W †

1

]
W †

2

]
. . .W †

Lerr

]
=

(
1− ϵ

Lerr

)Lerrn

ρ+

[
1−

(
1− ϵ

Lerr

)Lerrn
]
ρ(Lerr)
err ,

(3)

where each of the Lerr peripheral layers acts with an error
rate of ϵ/Lerr.
A relevant situation is the arrangement of delay lines in

the practical implementation of the NISQ clusters, where
the total error rate ϵ of these lines is small. Supposing
that the delay line of a certain noise decay rate γ for
which the error rate is ϵ = 1 − e−γτ after some delay
time period τ . For a small τ , we find that ϵ ∼= γτ , so
that the Lerr-layered noise dilution scheme outlined here
is equivalent to splitting the delay line into Lerr equal de-
lay times τ/Lerr and distributing them evenly through-
out the quantum circuit, whilst preserving the total de-
lay time τ . The error rate of each portioned peripheral
is then ϵ/Lerr. In this case, one may either use delay
lines after the computation with U or distribute them
uniformly across U as in Eq. (3). Figure 1 illustrates
noise dilution in a four-qubit circuit.

The mean squared-error (MSE, D) is used to measure
the performance of error mitigation:

D =

〈
tr

{(
ρ− ρ′M

tr {ρ′M}

)2
}〉

. (4)
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Figure 1: Dilution of a peripheral (Φi.i.d.
ϵ ) for a four-qubit quantum circuit into Lerr = 1 (no dilution), 2 and 4 layers.

Figure 2: Noise dilution on a cluster of NISQ circuits.
Each circuit is parametrized by layers of single-qubit
gates R(θθθ) and controlled-NOT (CNOT) gates, where
delay lines are used to queue output qubits after quan-
tum computation.

3 Main results with NISQ clusters

3.1 Premise

We illustrate the main results with an example of a
quantum-computing cluster (see Fig. 2) that houses mul-
tiple n-qubit quantum circuits that are accessible by the
public domain. A user may login to the cluster and use
one such circuit to perform variational computation. We
additionally assume a limited number of detectors, so
that the output qubits are to be queued with delay lines
for the final measurement whenever necessary. These de-
lay lines are the main sources of isolatable errors that can
be rearranged to optimize error-mitigation performance.
In a typical NISQ cluster, each unitary operator Wl

describes a circuit comprising L layers of single-qubit and
CNOT gates. From [13], randomized circuits of this kind

are approximately two-designs if L = O(poly(n)).

3.2 Noise channels

Two single-qubit noise channels, each of error rate ϵ,
are considered: the loss channel that mixes a qubit state
ρqubit with the vacuum state |vac⟩⟨vac|, and the Pauli
channel that introduces rotation errors by the standard
Pauli operators X, Y and Z. Succinctly,

Φloss
ϵ [ρqubit] = (1− ϵ)ρqubit + |vac⟩ϵ⟨vac| ,

ΦPauli
ϵ [ρqubit] = (1− ϵ) ρqubit + ϵ1X ρqubit X

+ ϵ2Y ρqubit Y + ϵ3Z ρqubit Z . (5)

For i.i.d. loss channels, since |vac⟩⟨vac| is orthogonal
to any ρqubit, the complete MSE up to O(ϵ2M ) is

Di.i.d. loss
M,Lerr

=

(
ϵ

Lerr

)2M
[
n
〈
tr
{
tr1 {| ⟩⟨ |}2M

}〉

+

〈 n∑
j=1

tr
{
trj {| ⟩⟨ |}M

}2〉 ]
, (6)

I.i.d. Pauli channels are trickier to handle for their non-
commuting error terms. This gives rise to persistent er-
rors that no longer vanish according to O((ϵlϵl′)

M ). The
respective MSEs for M = 1 and M ≥ 2 up to O(ϵlϵl′) are

Di.i.d.Pauli
M=1,Lerr

= (nϵ)2

[
d3

(d+ 1)(d2 − 1)

− d

Lerr(d+ 1)(d2 − 1)

]
+

nd

Lerr(d+ 1)

3∑
l=1

ϵ2l ,

Di.i.d.Pauli
M≥2,Lerr

= 2

3∑
l,l′=1

ϵlϵl′

L2
err

n∑
j,j′=1

[ 〈
tr
{
ρ T

(l)
j T

(l′)
j′

}〉
−
〈
tr
{
ρ T

(l)
j

}
tr
{
ρ T

(l′)
j′

}〉 ]
,

T
(l)
j = P

(l)
j ρP

(l)
j +WLerrP

(l)
j ρLerr−1P

(l)
j W †

Lerr
+ . . .

+WLerr
WLerr−1 . . .W2P

(l)
j ρ1P

(l)
j W †

2 . . .W †
Lerr−1W

†
Lerr

,

(7)

where P
(l)
j is a single-qubit Pauli operator of error rate ϵl.

We investigate the use of delay lines, that give rise to
these two isolatable noise channels. The first scenario is
when photon loss is dominant, which could be the case
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Figure 3: Virtual-distillation MSE curves for four-qubit
hardware-efficient circuits (L = 2) with respect to the
total delay time τ under the i.i.d. loss channel. Perfor-
mances for various M and Lerr are illustrated.

when the cluster is integrated into a photonic chip. We
take the decay rate γloss = 0.2 dB cm−1 [14] or equiva-
lently γloss = 6 dBns−1, where ϵloss = 1 − 10−γlossτ/10

is related to the delay time τ (in ns). The second sce-
nario is when polarization drifts occur more frequently
in regular optical-fiber-based delay lines [15–17], such
that the depolarizing channel serves as an appropri-
ate noise model. We take the depolarizing rate to be
γdepol = 1.3 × 10−4 s−1 [18], which is equivalent to an
error rate of about 0.01 for a 400-meter optical fiber. In
other words, ϵdepol = 1− e−γdepolτ .
Figures 3 and 4 plot error-mitigation performances

based on four-qubit hardware-efficient circuits that are
shallow, where the number of single-qubit-CNOT layers
L = 2, such that a total of eight circuit layers is consid-
ered for each entire computation circuit. Hence, Lerr = 2,
for instance, implies that one of the diluted noise layers
is sandwiched between two unitary subcircuits, each with
2L = 4 circuit layers [see Fig. 2(c)].

3.3 Result 1: Error-mitigation improves with in-
creasing Lerr

For a fixed total error rate, the more diluted the periph-
eral is across the quantum circuit, the higher the error-
mitigative power with virtual distillation. This finding is
substantiated by the analytical answers in (6) and (7),
as well as Figs. 3 and 4. In particular, (6) and (7) show
that D drops monotonically with increasing Lerr for suffi-
ciently small error rates. This entails that the MSEs are
well approximated with leading orders of the error rates.
Hence, for qubit delay lines of a fixed common length

each, rather than delaying the qubits after first running
them through the entire NISQ circuit, delaying the qubits
uniformly across the circuit can help reduce the noise
influence, and therefore better facilitate error mitigation
for the same order virtual-distillation order M .
Interestingly, such a noise dilution technique may be

Figure 4: Virtual-distillation MSE curves for four-qubit
hardware-efficient circuits (L = 2) with respect to the
total delay time τ under the i.i.d. depolarizing channel
(ϵ1 = ϵ2 = ϵ3 = ϵ/3).

employed to further reduce the effects of persistent noise
channels (such as the Pauli channel), where virtual dis-
tillation beyond the second order brings no additional
advantages.

3.4 Result 2: M = 2 is sufficient for small error
rates

For the i.i.d. photon-loss channel, since the error term
(namely the vacuum state |vac⟩⟨vac|) commutes with
the ideal target state, the MSE Di.i.d. loss

M,Lerr
= O(ϵ2M/Lerr)

drops exponentially with M . Figure 3 confirms this with
up to M = 4 distillation order. Even when noise dilution
is not applied, M = 2 is already sufficient in driving down
the MSE by about three orders of magnitude. Significant
enhancement is achievable with noise dilution.

On the other hand, the i.i.d. Pauli channel, as men-
tioned in Sec. 3.2, introduces error terms that result in
order Di.i.d.Pauli

M,Lerr
= O(ϵlϵl′/Lerr) regardless of the distil-

lation order M ≥ 2. Figure 4 illustrates such an error
persistence for the depolarizing channel.

It is clear that for both of these channels, M = 2 is
sufficient to achieve near-optimal error-mitigation when
the error rate is small.
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Catalysis always degrades external quantum correlations
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Catalysts used in quantum resource theories need not be in isolation and therefore are possibly
correlated with external systems, which the agent does not have access to. Do such correlations
help or hinder catalysis, and does the classicality or quantumness of such correlations matter? To
answer this question, we first focus on the existence of a non-invasively measurable observable that
yields the same outcomes for repeated measurements, since this signifies macro-realism, a key prop-
erty distinguishing classical systems from quantum systems. We show that a system quantumly
correlated with an external system so that the joint state is necessarily perturbed by any repeat-
able quantum measurement, also has the same property against general quantum channels. Our
full characterization of such systems called totally quantum systems, solves the open problem of
characterizing tomographically sensitive systems raised in [Lie and Jeong, Phys. Rev. Lett. 130,
020802 (2023)]. An immediate consequence is that a totally quantum system cannot catalyze any
quantum process, even when a measure of correlation with its environment is arbitrarily low. It
generalizes to a stronger result, that the mutual information of totally quantum systems cannot be
used as a catalyst either. These results culminate in the conclusion that, out of the correlations that
a generic quantum catalyst has with its environment, only classical correlations allow for catalysis,
and therefore using a correlated catalyst is equivalent to using an ensemble of uncorrelated catalysts.

Introduction.— Catalysis in quantum resource the-
ory, a concept inspired by catalysis in chemistry, is a
paradigm that utilizes some quantum resources without
altering or deteriorating it, while expanding the set of ac-
cessible quantum states (or channel) transformations [1].
Initially, catalysis was often studied under the condition
of being uncorrelated with the final state of the sys-
tem [2–7]. In recent years, however, a notable trend is the
investigation of how the power of catalysis, in enabling
state transitions, can be increased by allowing correla-
tions to persist between system and catalyst after the
process [8–18]. The relaxation of this constraint simpli-
fies the conditions for state transition significantly, and
often leads to a characterization of von Neumann quanti-
ties (e.g. entropy) – which have a strong operational sig-
nificance previously only in the asymptotic i.i.d. regime –
in one-shot settings. It is argued that in certain scenarios,
the resultant correlation can be ignored, which assumes
that only the marginal state of catalyst is relevant when
catalyst is separated from the system.

However, this line of thought clashes with an often-
used concept of ‘catalyst bank’ [19–21], a hypothetical
entity that lends quantum resource catalysts to (possi-
bly many) agents and retrieves thereafter (See FIG. 1.)
A catalyst could be only a part of a large collection of
quantum systems possessed by the bank. In this case, it
is operationally natural for the bank to require the agent
who borrows the catalyst to return it in a fashion that
the whole quantum system stays in the same state, even
though the agent used only a small portion. Even if the
catalyst is prepared uncorrelated with other systems, af-
ter a single round of correlated catalysis by some user,
the catalyst will form correlation. When the next user
borrows the catalyst, again, it is natural to require the
correlations to be preserved, as nothing forbids the same

FIG. 1. A quantum resource catalyst could be correlated with
external systems inaccessible to a user in many plausible sce-
narios. First, a catalyst can be a part of multipartite collec-
tion of catalysts of the bank. In this case, it is natural for
the bank to demand the multipartite state to remain intact
after each catalysis. Second, even for an initially uncorrelated
catalyst, after a round of correlation-forming catalysis, it re-
mains correlated with its previous user. The same user can
borrow the catalyst again, and it is natural to expect the re-
lation with the catalyst to remain the same as the previous
round of catalysis.

user to borrow the same catalyst twice, and not wast-
ing any resource not possessed by oneself is the prime
premise of resource catalysis.

Some studies on correlating catalysis deal with such
potential problems, by showing that the amount of cor-
relation formed in catalysis can be made arbitrarily small,
e.g. [9, 14]. However, we will show that whenever the cor-
relation between the catalyst and the external systems
is of a quantum-mechanical nature (which we formally
specify later), even arbitrarily small correlations forbid
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catalysis, in the sense that the joint state cannot be left
unperturbed (Theorem 5).

In doing so, we fully characterize multi-partite states
that cannot be used as a catalyst when only local access
is allowed. We show that this characterization coincides
with the description of quantum states that have no lo-
cal classical observable (Theorem 3). Here, classical ob-
servables mean those that can be measured without per-
turbing the global quantum state, in other words, they
have non-invasive measurability of deterministically dis-
tinguishable states, i.e., obey macro-realism [22–25]. It
turns out that characterizing catalyst with local access is
equivalent to characterizing the property known as (to-
mographical) sensitivity, which was an open problem in
the previous work [26].

The observation that quantum correlation that a cat-
alyst has with other systems only hinders catalysis leads
to the conclusion (Theorem 9) that only classical corre-
lation in correlated catalyst allows for meaningful catal-
ysis. It yields a rather surprising consequence that uti-
lizing a catalyst correlated with an external system is
functionally equivalent to using an ensemble of uncorre-
lated catalysts. In other words, considering correlated
catalyst does not introduce new types of non-trivial cat-
alytic transformations, but it only induces probabilistic
mixtures of conventional catalytic transformations.

Background.— Recall that a bipartite state ρAB is said
to be classical-quantum (C-Q) when there exists an or-
thonormal basis {|i〉} of A such that the following expres-
sion is possible:

ρAB =
∑
i

pi |i〉〈i|A ⊗ ρ
(i)
B , (1)

with some probability distribution (pi) and a set of states

{ρ(i)
B } on B. It is equivalent to the existence of a rank-1

projective measurement {|i〉〈i|} on A that does not dis-
turb the global state ρAB after the measurement, i.e.,

ρAB =
∑
i

(|i〉〈i|A ⊗ 1B)ρAB(|i〉〈i|A ⊗ 1B). (2)

One can generalize this definition where the projective
measurement need not be rank-1 anymore, leading to the
following definition of partial classicality.

Definition 1. A bipartite state ρAB is said to be par-
tially classical-quantum (PC-Q) when there exists a pro-
jective measurement {Πk}nk=1 with n > 1 on A that pre-
serves ρAB , i.e.,

ρAB =

n∑
k=1

(Πk ⊗ 1B)ρAB(Πk ⊗ 1B). (3)

We will sometimes say that a single system is PC when
it is implicitly assumed to be correlated with another sys-
tem and they are in a PC-Q state. When a system is not

PC, then we will say that it is totally quantum (TQ)
[18], so a non PC-Q state is a TQ-Q state. Note that
the correlations in a TQ-Q state can be in general signif-
icantly weaker compared to entanglement. For example,
the following evidently separable state is a TQ-Q state:

ρAB =
1

2

(
d−1∑
i=0

λi |i〉〈i|A

)
⊗ |0〉〈0|B +

1

2
|+〉〈+|A ⊗ |1〉〈1|B ,

(4)

where
∑d−1
i=0 λi |i〉〈i|A is a nondegenerate quantum state

on A and |+〉A = d−1/2
∑d−1
i=0 |i〉A is a maximally coher-

ent state on A. This definition of classicality can be fur-
ther generalized to input or output systems of quantum
channels or completely positive (CP) maps: we say that
the output system of a quantum channel N is partially
classical (PC) when there exists a projective measure-
ment P :=

∑
k Πk(·)Πk that fixes N , i.e., P ◦ N = N .

Similarly we say that the input system of N is PC when
a projective measurement Q exists such that N ◦Q = N .
Likewise, we say that the input or output system is TQ
when it is non-PC.
Totally quantumness and sensitivity.— One could

question the generality of the notion of totally quantum-
ness, since allowing weaker measurements such as posi-
tive operator valued measures (POVM) instead of projec-
tive measurements in Definition 1 may give rise to a quali-
tatively different characterization. Perhaps the most nat-
ural definition of totally quantumness could be as follows:
A of ρAB is said to be totally quantum* (TQ*), or ρAB is
said to be a TQ*-Q state, when any non-trivial quantum
measurement on A necessarily perturbs ρAB . However,
by noting that every quantum channel with Kraus oper-
ators {Ki} can be considered an implementation of the

POVM {K†iKi}, we observe that totally quantumness*
defined above is equivalent to the concept of (tomograph-
ical) sensitivity introduced in Ref. [26], which character-
izes a state’s ability to detect the action of any non-trivial
local channel.

Definition 2. A bipartite state ρAB is sensitive on A
to a set of quantum operations Q with id ∈ Q when for
every S ∈ Q

(SA ⊗ idB)(ρAB) = ρAB =⇒ S = idA. (5)

When a quantum state is sensitive to the set of all
quantum channels, we simply say that it is sensitive,
or equivalently TQ*-Q. Similarly, through the Choi-
Jamio lkowski isomorphism, we say that a linear map N
is sensitive to Q when for every S ∈ Q

S ◦ N = N =⇒ S = id. (6)

Our first main result shows that actually the more gen-
eral definition of totally quantumness is equivalent to the
weaker one. This result solves the open problem ques-
tioned in Ref. [18].
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Theorem 3 (TQ*=TQ). A quantum channel is sensi-
tive if and only if its output system is TQ. Similarly, a
bipartite state ρAB is sensitive on A if and only if it is a
TQ-Q state.

Theorem 3 can be shown using the structure result of
fixed points of quantum channels [27], which in turn fol-
lows from the Artin-Wedderburn theorem [28, 29]. Self-
contained elementary proofs of these results are given in
the Supplemental Materials. Theorem 3 says that there
is no intermediate level of classicality when it comes to
non-invasive measurability; in other words, sensitivity to
projective measurements automatically implies sensitiv-
ity to general quantum channels. This implies that no
classical value can be read from a non-PC system without
perturbing it globally, even through weak measurements
[30–32].

Theorem 3 yields an interesting property of totally
quantumness that it is contagious; if any system pre-
pared in a pure state unitarily interacts with a totally
quantum system, then it also becomes totally quantum.

Proposition 4. Let ρAB be a TQ-Q state. For any
isometry V : A → AK such that the marginal state τE
of τKAB = (V ⊗ 1B)ρAB(V † ⊗ 1B) is full-rank, τKAB is
a TQ-Q state with respect to the bipartition K|AB.

An alternative interpretation of Prop. 4 is that any
subsystem of a totally quantum system is also totally
quantum. This result is analogous to that of Ref. [33],
where a local projective measurement on a Q-Q state in-
evitably forms entanglement with a measurement device.
Prop. 4 shows that this holds similarly even when one
considers the more general case of POVMs, and TQ-Q
states (proof in Supplemental Material).

Proposition 4 shows that it is impossible to circumvent
Theorem 3 by unitarily extracting a macro-realistic part
K from system A invasively. It means that there could be
a non-trivial quantum channel action R on A as a back-
action of the invasive measurement, and one can interpret
V as the Stinespring dilation of the quantum channel R.
It provides additional motivation for the nomenclature
totally quantum system for non-PC systems, as it has no
classical property even in the weakest sense, i.e. when
classicality means macro-realism and non-invasive mea-
surability.

Theorem 3 offers another intuitive explanation of why
quantum key distribution (QKD) is secure. A typical ex-
ample of TQ-Q state can be found in the BB84 protocol
[34]. When Alice wants to send her random bit (say) 0
to Bob through a quantum channel that could be eaves-
dropped, she encodes that bit in either of two random
bases and record it in her memory M ,

ρAM =
1

2
|0〉〈0|A ⊗ |0〉〈0|M +

1

2
|+〉〈+|A ⊗ |1〉〈1|M . (7)

Since ρAM is a special case of (4), by Theorem 3, any
eavesdropper interacting with the qubit A in a non-trivial

fashion must alter the global state ρAB , which results in
detectable statistical difference in the later steps of the
protocol.
Local catalysis of bipartite state.— Theorem 3 has a

significant consequence about catalysis utilizing corre-
lated states. In resource theories, conventionally cat-
alytic transformations mean processes described as

ρS → σS := TrC [Λ(ρS ⊗ τC)], (8)

with the catalytic constraint requiring that the catalyst
remains in its original state in the process:

TrS [Λ(ρS ⊗ τC)] = τC , (9)

where C is called the catalyst and Λ is a free operation
on SC.

However, we do not limit ourselves to state transi-
tions between two fixed quantum states. In this work, a
catalytic transformation means a general quantum chan-
nel Φ(ρ) given as Φ(ρ) := TrC [Λ(ρS ⊗ τC)] regardless
of whether the initial state ρS is fixed or not. Note
that sometimes it is required that the final state of
joint system SC has arbitrarily weak correlation, i.e.
‖Λ(ρS ⊗ τC)− σS ⊗ τC‖1 < ε. However, we do not make
such an assumption here for generality.

Now, using a correlated system CE in state τCE as a
catalyst when only access to C is given means the trans-
formation of the form in (8) (where τS is interpreted as
TrE τCE) with the modified constraint

TrS [ΛSC ⊗ idE(ρS ⊗ τCE)] = τCE . (10)

A typical example of correlated catalyst τCE is the
product of a previous catalysis, i.e. τCE = Λ(ρE ⊗ τC),
here Λ is same with that in (8) but acts on CE (See FIG.
1.) In other words, catalyst τC is ‘borrowed’ by E for
catalysis Λ, formed correlation with E, and returned to
be borrowed by S again for another round of catalysis. As
discussed in Introduction, the bipartite state τCE could
be used as a resource whenever two systems C and E are
combined again, and any change of τCE by S can alter its
resourceful nature. Our second main result then shows
that the catalysis constraint Eq. (10) severely limits the
usability of correlated catalyst.

Theorem 5. A TQ-Q state τCE cannot be used to cat-
alytically implement a non-trivial transformation when
only access to C is given.

Proof. We focus on the fact that once the initial state ρS
and the interaction channel Λ on SC is fixed as in (8),
then the following channel on C is induced.

Γ(ηC) := TrS [Λ(ρS ⊗ ηC)]. (11)

It follows that a catalyst τCE must be a fixed point of
ΓC ⊗ idE . However, by Theorem 3, the only channel on
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C that can fix a TQ-Q τCE is the identity channel idC . It
follows that the channel Λ on SC must be factorized into
ΛSC = ΞS ⊗ idC . It implies that there is no interaction
between S and C, therefore the catalysis is trivial.

We remark that our proofs did not assume that Λ is
a free operation, hence the results are applicable to a
framework of catalysis much more general than the con-
ventional one where the interaction between system and
catalyst should be a free operation. If we assume that
ΛSC is a free operation, ΞS must be free too, if feed-
ing into ΛSC a free state on C and discarding it are all
free operations. Therefore, the whole transformation is of
the form ρS → ΞS(ρS), which is simply a transformation
through a free operation.

In principle, catalysts can be also used for non-free op-
erations to reduce the cost (or boost the rate) of trans-
formation, but Theorem 5 tells us that not even such
generalized catalysis is possible with totally quantum cat-
alysts.

Mutual information catalysis.— If preserving the whole
state of τCE is too severe a constraint, one might want to
preserve only one measure of its correlation, the mutual
information I(C : E)τ . In other words, one might want to
catalytically implement the transformation ρS → σS :=
TrCE [ΛSC⊗idE(ρS⊗τCE)] with the constraint that I(C :
E)τ = I(C : E)η, where

ηCE := TrS [ΛSC ⊗ idE(ρS ⊗ τCE)]. (12)

If the above holds, then we say that the transformation
ρ → σ is MI(mutual information)-catalytically imple-
mented.

For this purpose, we first prove the following lemma:
if one is required to preserve the mutual information of
a TQ-Q state ρAB , then the only actions one can locally
apply on the system A are unitary operations.

Lemma 6. If ρAB is a TQ-Q state, then for any quantum
channel N on A with σAB := (NA⊗ idB)(ρAB) satisfying
I(A : B)ρ = I(A : B)σ must be a unitary operation.

Proof. By the data processing inequality, we have I(A :
B)ρ ≥ I(A : B)σ. By the saturation condition of the data
processing inequality, there exists a recovery channel RN
acting on A such that [35]

((RN ◦ N )A ⊗ idB)(ρAB) = ρAB . (13)

Since ρAB is a TQ-Q state, it implies that RN ◦N = idA.
As the dimensions of input and output systems of NA are
same, it follows that NA is a unitary operation [36].

By using a similar proof to that of Theorem 5, but sub-
stituting the usage of Theorem 3 with Lemma 6, we can
show that this type of catalysis grants us no additional
power either.

Corollary 7. A TQ-Q state τCE cannot be used to
MI-catalytically implement a non-trivial transformation
when only access to C is given.

This technique provides an answer to the following
question: What if different parties try to utilize a multi-
partite state as a catalyst at the same time? One might
wonder if it is possible for two local actions at different
sites can cancel each other to enable the recovery of the
mutual information. The following result shows that it
is nevertheless impossible. In other words, Corollary 7
explicitly shows that indeed quantum correlation would
be a hidden resource; whenever a catalyst is quantumly
correlated with an environment, no catalysis is possible
without destroying such quantum correlations, as quan-
tified by the mutual information.

Proposition 8. For any TQ-Q state ρAB and two chan-
nels NA and MB , if (NA ⊗MB)(ρAB) = ρAB , then NA
is a unitary operation.

Proof. Let τAB := (NA ⊗ idB)(ρAB) and σAB := (NA ⊗
MB)(ρAB). By the data processing inequality, we have
I(A : B)ρ ≥ I(A : B)τ ≥ I(A : B)σ. However, as
σAB = ρAB , we have I(A : B)ρ = I(A : B)τ . By Lemma
6, it follows that N is a unitary operation.

General correlated catalysts.— One may get the im-
pression that the results above only have implications
for a restricted class of bipartite states that are TQ-Q.
However, any non TQ-Q state τCE is a PC-Q state. In
particular, as a consequence of the Koashi-Imoto theo-
rem [37], any bipartite state τCE can be decomposed into
the following form,

τCE =
∑
i

piτCL
i
⊗ τCR

i E
, (14)

where C =
⊕

i Ci is a direct sum of subspaces Ci :=
CLi ⊗CRi and each τCR

i E
is either a TQ-Q state, or |CRi | =

1 (in which case τCR
i E

is uncorrelated, but we include

it for completeness). See Supplemental Materials for a
self-contained and elementary proof of the Koashi-Imoto
theorem based on that of Ref. [38].

This observation tells us how restricted the usage of a
general correlated catalyst with local access is. The sub-
spaces Ci of the decomposition above can be interpreted
as the ‘classical degrees of freedom’ for C that can be read
out without disturbing τCE , and any quantum channel on
C preserving τCE also preserve these sectors. It naturally
leads us to the following conclusion. (See Supplemental
Materials for a detailed discussion.)

Theorem 9. If a transformation can be catalytically
achieved by using the catalyst τCE =

∑
i piτCL

i
⊗ τCR

i E

with access to C, such that τCE is preserved, then the
same transformation can be achieved by an ensemble{
pi, τCL

i

}
of local catalysts.
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Here, by the ensemble
{
pi, τCL

i

}
, we mean the proba-

bilistic mixture of quantum states with classical handle
of index i, distinguished from the mixed state

∑
i piτCL

i
.

Intuitively, using τCE on C goes as follows: First, one
measures which subspace Ci it is supported on without
disturbing τCE . Since no action can act on CRi without
disturbing τCR

i E
, only τCL

i
can be utilized as a catalyst.

Naturally, it is equivalent to having a local catalyst τCL
i

with probability pi. In summary, quantum correlations
in correlated catalyst only hinder catalysis, and only the
classical part of correlation allows for catalysis because
the property of non-invasive measurability, which is es-
sential for recovering the catalyst state.

Conclusion. — We inspect the extent to which ex-
ternal correlations that a catalyst might have with its
environment (inaccessible to agent) would be affected,
when the catalyst is used to facilitate a process. We
find that correlations of a quantum-mechanical nature,
i.e. contained in TQ-Q states, necessarily degrade in the
process of utilizing the catalyst to perform non-trivial
transformations. This cautions against potential embez-
zlement via the consumption of correlations as resources
unaccounted for. Alternatively, from a more constructive
viewpoint, our work also shows that there is no advan-
tage of a catalyst bank in creating quantumly correlated
states and loaning parts of the states out for catalytic
purposes – they might as well prepare classical ensem-
bles of various independent ancillas.

We emphasize again that the ‘classicality’ here means
the non-invasive measurability which means that one can
measure a system without altering the state. Hence, our
results are not in conflict with previous results on quan-
tum catalysis, where ‘classicality’ indicates other prop-
erties, e.g., non-entangled [39], non-coherent [40], non-
imaginary [41], etc. In other words, even when quantum
properties of catalyst are utilized, the state should be
classically known to its user.
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SUPPLEMENTAL MATERIALS

Notations

Throughout this Supplemental Materials we will use
the following notations. First, every Hilbert space asso-
ciated with a quantum system is assumed to be finite-
dimensional and |H| denotes the dimension of a vector
space H. The operator space over a Hilbert space H is
denoted by B(H). We slightly abuse the notation and
denote the identity map on B(H) by idH. Also, we will

sometimes say that a linear map Φ defined on B(H) is
a linear map on H, in the sense we identify the operator
space associated with a physical system with the system
itself. The identity operator in B(H), on the other hand,
is denoted by 1H. A linear map Φ on B(H) is called
completely positive (CP) when Φ ⊗ idK is positive for
any Hilbert space K. A linear map Φ on B(H) is unital
if Φ(1H) = 1H.

For any subspace K of a Hilbert space H and a linear
map Φ on B(H), we define its limitation Φ|K as Φ whose
domain is limited to B(K) without limiting its image. A
‘quantum channel on K’ means a quantum channelde-
fined on B(K) whose image is also in B(K). We will also
identify matrices with operators; the term ‘matrix’ will
be used to emphasize its algebraic properties. Especially,
a ‘full matrix algebra’ is a full operator set over a finite-
dimensional Hilbert space, emphasizing that operation
composition, i.e. matrix multiplication is well-defined.
For any M ∈ B(H), the linear map AdM is given as
AdM (ρ) := MρM†. For any Q ∈ B(H) such that Q ≥ 0,
supp (Q) is used to denote the support of Q, the sum of
eigenspaces corresponding to strictly positive eigenvalues
of Q.

Structure theorem for fixed points of quantum
channel

This section contains the proof of our first main result,
i.e. Theorem 3 in the main text. We first provide the
proof of a technical result, known in literature [27] as
the structure theorem, and use it subsequently to prove
Theorem 3.

Block-diagonal structure

Of central importance for this section is the structure
theorem for the fixed point set of a quantum channel,
which we state as S.Theorem 10. Many proofs of this
theorem relies on the Artin-Wedderburn theorem, where
the proof often requires mathematically advanced tools
such as ring theory [42, 43], functional analysis [27, 38],
or lengthy linear algebraic arguments [37]. In this sec-
tion, we give an elementary and self-contained proof, by
focusing on the more concrete case of our interest.

We begin with the following.

S.Lemma 1. For a unital CP map Φ, if Φ(ρ) = ρ when ρ
is a Hermitian operator with the spectral decomposition
ρ =

∑n
i=1 λiΠi, we have Φ(Πi) = Πi for all i.

Proof. Without loss of generality, we let λi > λi+1 for
all i. Let ri := Tr[Πi] and πi := Πi/ri, then we get that
qi := Tr[πnΦ(Πi)] is a probability distribution. With
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respect to this distribution,

〈λi〉 =
∑
i

qiλi = Tr[πnΦ(ρ)] = Tr[πnρ] = λn. (15)

Since the left hand side is a mean of {λi} and the right
hand side is the smallest element of the set being av-
eraged, it follows that the probability distribution {qi}
must satisfy that qn = 1 and qi = 0 for any 1 ≤ i ≤ n−1.
It implies that Φ(Πn) = Πn, however since Φ is unital,
we also have that

Φ

(
n−1∑
i=1

Πi

)
=

n−1∑
i=1

Πi. (16)

By limiting Φ onto the support of
∑n−1
i=1 Πi, we can re-

peat the same argument and conclude that Φ(Πn−1) =
Πn−1. Repeating this process n times gives us the desired
result.

S.Lemma 2. For a unital CP map Φ with Kraus oper-

ators {Ki}, Φ fixes ρ if and only if [Ki, ρ] =
[
K†i , ρ

]
= 0

for all i.

Proof. Showing the “if” part is trivial; Φ(ρ) =∑
iKiρK

†
i = ρ

∑
iKiK

†
i = ρ. For the other direction,

first let us assume that ρ is Hermitian with the spec-
tral decomposition ρ =

∑
j λjΠj . If Φ(ρ) = ρ, then by

S.Lemma 1 we get that Φ(Πj) = Πj for all j. Next, by

conjugating Πj on Φ(Πk) =
∑
iKiΠkK

†
i = Πk, we get∑

i

T ijkT
i†
jk = δjkΠk (17)

where T ijk := ΠjKiΠk. From the positivity of each

T ijkT
i†
jk, we get that T ijk = ΠjKiΠk = 0 for all i, when-

ever j 6= k. It means that every Ki is block-diagonal with
respect to {Πj};

KiΠj = Ki(1−
∑
k 6=j

Πk) = Ki −
∑
k 6=j

ΠkKiΠk = ΠjKi.

(18)
Hence, [Ki,Πj ] = 0 for all i and j. Finally, this also
then implies that [Ki, ρ] = 0. By using the fact that a
general matrix can be decomposed into Hermitian and
anti-Hermitian parts, and a similar analysis for the anti-
Hermitian part, we get the desired result.

As a side note to complement S.Lemma 2, we remark
that for any set of matrices {Ki}, the centralizer of{
Ki,K

†
i

}
is the set of fixed points of a unital CP

map. This can be shown by downscaling Ki → cKi by
some constant c such that

∑
iKiK

†
i ≤ 1 holds, and

using {Ki} ∪
{√

1−
∑
iKiK

†
i

}
as Kraus operators to

construct a unital CP map.

Our main point of interest for this section involves the
set of fix points for a unital map Φ, for which we denote
as FΦ. By S.Lemma 2, we know that if ρ1, ρ2 ∈ FΦ, then
their product ρ1ρ2 ∈ FΦ also. We remark that because
of Hermitian-preserving property of Φ, if X ∈ FΦ then
X† ∈ FΦ. Furthermore, let us also define minFΦ as
the set of minimal, non-zero central projectors in FΦ.
Here, a minimal projector means that it is not a sum of
two nonzero projectors, and being central means that it
commutes with every element in FΦ.

We start with a quick observation on the relation be-
tween minimal projectors. Note that for any minimal
projector S, SMS = cS for some complex number c
(we assume that M is Hermitian without loss of general-
ity). Otherwise SMS has a nontrivial spectral decompo-
sition, and a projector onto an eigenspace of SMS will
be smaller than S, which violates that S is minimal.

S.Lemma 3. If two minimal projectors S and T com-
mute, either S = T or ST = 0.

Proof. This follows from the fact that if ST 6= 0 and
S 6= T , then ST is a projector smaller than S, which
contradicts that S is minimal.

The next theorem, known as a variant of the Artin-
Wedderburn theorem, states that for unital CP maps Φ,
the structure of FΦ always admits a particular decom-
position, i.e. a direct sum according to projections unto
minFΦ. This particular approach focusing on finding
matrix basis elements is inspired by Ref. [43].

S.Theorem 4 (Artin-Wedderburn [28]). For any unital
CP map Φ,

FΦ =
⊕

P∈minFΦ

FΦP. (19)

Moreover, there exists a tensor product structure for each
supp (P ) = HP ⊗ LP and FΦP factorizes into B(HP ) ⊗
1LP

, where B(HP ) is the full matrix algebra on HP .

Proof. We start by noticing that every two different pro-
jectors P1, P2 ∈ minFΦ are orthogonal to each other
by S.Lemma 3. Otherwise, P1 cannot be minimal since
P1 = P1P2 + P1P

⊥
2 as both P1P2 and P1P

⊥
2 are central

projectors. Next, one can observe that by definition, ev-
ery central projector in FΦ is a sum of minimal central
projections. Especially, the identity operator, which is in
FΦ since Φ, if it is non-minimal, is then also the sum of
all projectors in minFΦ. Finally, each FΦP is an algebra
with P as its unity.

Now, let us focus on each algebra FP := FΦP . Al-
though P is a minimal central projector, there could in
general be minimal projectors Q in FP such that Q < P ,
even though they are not central, otherwise P would not
be in minFΦ. In particular, there exists a decomposition
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of P into minimal projectors

P =
∑
i

Qi. (20)

By S.Lemma 3, we also know that all the Qi in the de-
composition of P are mutually orthogonal.

Consider the following relation between Qi: Qi ∼ Qj
if there exists X ∈ FP such that QiXQj 6= 0. We claim
that this relation is an equivalence relation – the fact that
it is reflexive and symmetric is straightforward, while
transitivity is also true: if there exists X and Y in FP
such that QiXQj 6= 0 and QjY Qk 6= 0, then

Z := QiXQjY Qk 6= 0. (21)

This follows from the fact that

QjY QkY
†Qj = cjkQj , (22)

with cjk = ‖QjY Qk‖22/Tr[Qj ] which is non-zero
and similarly, QiXQjX

†Qi = cijQi with cij =

‖QiXQj‖22/Tr[Qi] 6= 0 so that ZZ† = cijcjkQi 6= 0.
Therefore the equivalence relation ∼ splits {Qi} into
equivalence classes. Moreover, there exists only one
equivalence class; Suppose we have two distinct equiv-
alent classes I and J with QI :=

∑
I =

∑
i:Qi∈I Qi

(similarly for J ), we then have

QIFPQJ = 0. (23)

It follows that for any X ∈ FP , QIX(P −QI) = 0, hence
QI becomes central in FP , which contradicts that P is
a minimal central projector. As a result, for any two Qi
and Qj , we have Qi ∼ Qj , i.e., there exists X ∈ FP such
that QiXQj 6= 0.

Now, we let E11 := Q1 and E1j := Q1XjQj for some
Xj , which is guaranteed to exist, such that ‖Q1j‖2 =

Tr
[
Q1XjQjX

†
j

]
= Tr[Q1]. By letting X1 := Q1, we can

interpret E11 as a special case of E1i. Then we define
Ei1 := E†1i = QiX

†
jQ1 and Eij := Ei1E1j = QiXijQj

where Xij := X†iQ1Xj for all i, j > 1. Because of the
property

QiXQi = (Tr[QiX]/Tr[Qi])Qi, (24)

for all i and X ∈ FP , we have E1iEj1 =

Q1XiQiQjX
†
jQ1 = δij

(
Tr
[
Q1XiQiX

†
i

]
/Tr[Q1]

)
Q1 =

δijQ1. Therefore,

EijEkl = Ei1(E1jEk1)E1l = δjkEil, (25)

and that Tr
[
E†ijEkl

]
= δikδjl so that ‖Eij‖22 = Tr[Q1]

for all i and j. Especially, E2
ii = Eii. Because Eii =

Qi(X
†
iQ1Xi)Qi = rQi for some positive number r, we

have r = 1 so that Eii = Qi. It follows that Tr[Qi] =

Tr[Ei1E1i] = Tr[E1iEi1] = Tr[Q1] for all i, i.e., every
minimal projector Qi has the same rank.

Next, note that for any Z ∈ FP , we have QiZQjEji =
Qi(ZQjXji)Qi = cQi for some complex number c and
by taking the trace of the both hands we get c =
(Tr[EjiZ]/Tr[Q1]) because QjEjiQi = Eji and Tr[Qi] =
Tr[Q1]. Therefore,

QiZQj =
(

Tr
[
E†ijZ

]
/Tr[Q1]

)
Eij , (26)

and it follows that for any Z ∈ FP , Z = PZP =∑
i,j QiZQj =

∑
i,j

(
Tr
[
E†ijZ

]
/Tr[Q1]

)
Eij , so {Eij} is

an orthonormal basis of FP .
Now, we define a linear map Ψ given as for the basis

elements {Eij}

Ψ(Eij) := |i〉〈j|HP
⊗ 1LP

, (27)

with some Hilbert spaces HP and LP such that
|LP | = Tr[Q1]. We can see that it is an isomor-
phism from the fact that Ψ(Eij)Ψ(Ekl) = δjkΨ(Eil)

and Tr
[
Ψ(Ekl)

†Ψ(Eij)
]

= δikδjl Tr[Q1] = Tr
[
E†klEij

]
.

Therefore, one can see that FP = FΦP is isomorphic to
B(HP )⊗ 1LP

.

For any ρAB ≥ 0, if TrB(ρAB) = c |ψ〉〈ψ|A for some
pure state |ψ〉A on A, then we necessarily have ρAB =
|ψ〉〈ψ|A ⊗ ρB . Thus, by considering the Choi matrix of
each limitation Φ|supp(P ), we have the following result.

S.Corollary 5. For a unital CP map Φ with the fixed
point set FΦ with the decomposition (19), each limitation
Φ|supp(P ) decomposes into

Φ|supp(P ) = idHP
⊗ ΦLP

, (28)

for some unital CP map ΦLP
on LP with 1LP

as the
unique fixed point.

Proof. The set of fixed points of the limitation Φ|supp (P )
is M(HP ) ⊗ 1LP

. Therefore every Kraus operator of
Φ|supp(P ) commutes with every matrix of the form AHP

⊗
1LP

, which implies that every Kraus operator is in the
form of 1HP

⊗Ki, hence Φ|supp(P ) = idHP
⊗ ΦLP

.

S.Corollary 5 is a key tool that is necessary for our
goal of proving the structure theorem. Additionally, we
need a few technical lemmata. We present S.Lemma 7
and 9 from Ref. [44] with an alternative proof based
on elementary linear algebra. The proofs of S.Lemma 6
and 8 are taken from Ref. [27] and presented here for
completeness.

S.Lemma 6 (Proposition 6.8, [27]). If a quantum chan-
nel preserves an operator, then it also preserves the Her-
mitian and anti-Hermitian part of the operator. More-
over, the channel also preserves the positive and negative
parts of the (anti-)Hermitian part.
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Proof. Let Φ be a quantum channel and Φ(X) = X. If
X = H + iA where both H and A are Hermitian, then
Φ(H)−H = i(A−Φ(A)). Since the only operator that is
both Hermitian and anti-Hermitian is 0, we have Φ(H) =
H and Φ(A) = A. Moreover, if H = P−N where P,N ≥
0 and PN = 0, then by letting ΠP be the projector onto
supp (P ) and similarly for N , we have

Tr[P ] = Tr[ΠP (P −N)] = Tr[ΠPΦ(P −N)]

≤Tr[Φ(P )] = Tr[P ]. (29)

S.Lemma 7. If λ is an eigenvalue of A ∈ B(H), then the
complex conjugate λ∗ is an eigenvalue of A†. Moreover,
the geometric multiplicity of λ for A is same with that of
λ∗ for A†.

Proof. The first part immediately follows from that
det[A− λ1] = 0 is equivalent to det

[
A† − λ∗1

]
= 0. For

the second part, recall that the geometric multiplicity of
λ for A is equal to |H| − r(A − λ1) where r(X) is the
rank of an operator X. Because rank is invariant under
the adjoint transformation, we have

|H| − r(A− λ1) = |H| − r(A† − λ∗1), (30)

and thus we get the wanted result.

S.Lemma 8 (Proposition 6.10, [27]). For any fixed point
ρ ≥ 0 of a quantum channel Φ, if Q is the projector onto
the support of ρ, then Tr[(1−Q)Φ(Q)] = 0 and

σ ≤ Q =⇒ Φ(σ) ≤ Q. (31)

Moreover, for projectors Q, the condition (31) is equiva-
lent to

Φ†(Q) ≥ Q. (32)

A similar argument can be given for N , too.

Proof. For minimal and maximal positive eigenvalues λm
and λM of ρ, we have λmQ ≤ ρ ≤ λMQ, hence

0 ≤ λm Tr[(1−Q)Φ(Q)]

≤ Tr[(1−Q)Φ(ρ)]

= Tr[(1−Q)ρ]

≤ λM Tr[(1−Q)Q] = 0.

For the second part:
( =⇒ ) Let Q⊥ := 1−Q. Then,

Tr
[
Q⊥Φ(Q)

]
= Tr

[
Φ†(Q⊥)Q

]
= 0, (33)

hence Q⊥Φ†(Q⊥)Q⊥ = Φ†(Q⊥). Using Φ(1) = 1, we get

Φ†(Q) = Q+Q⊥Φ†(Q)Q⊥ ≥ Q. (34)

(⇐= ) For any σ ≤ Q, we have that

Tr[σ] = Tr[σQ] = Tr
[
σΦ†(Q)

]
= Tr[Φ(σ)Q]

≤ Tr[Φ(σ)] = Tr[σ].

Therefore, Tr[Φ(σ)Q] ≤ Tr[Φ(σ)], which implies that
Φ(σ) ≤ Q.

S.Lemma 9 (Theorem 2, [44]). For any quantum chan-
nel Φ on A, if every fixed point of Φ† is proportional to
1A, then Φ also has a unique fixed density matrix ρ.

Proof. As a linear map on B(A) (by identifying A with
its associated Hilbert space), fixed points of Φ are equiv-
alent to eigenvectors corresponding to the eigenvalue 1.
If every fixed point of Φ† is proportional to 1A, then it
means that the geometric multiplicity, or the dimension
of the eigenspace, of eigenvalue 1 of Φ† is 1. By S.Lemma
7, a linear map and its adjoint have the same eigenvalues
and the same geometric multiplicities, the geometric mul-
tiplicity of 1 as an eigenvalue of Φ is also 1. It means that
there is a unique operator ρ in B(A) such that Φ(ρ) = ρ.
This ρ has to be Hermitian because of the Hermitian pre-
serving property of Φ and moreover, ρ ≥ 0 because if a
Hermitian operator is fixed by a quantum channel, then
both of its positive and negative parts should be fixed by
the channel by S.Lemma 6, which makes the geometric
multiplicity of 1 larger than 1. After the normalization,
it follows that there is only a single quantum state fixed
by Φ.

S.Theorem 10 (Structure theorem for fixed points of
quantum channel, [27]). For any quantum channel Φ on
A, the set FΦ of all fixed points of Φ have the decompo-
sition of the form

FΦ =
⊕
i

B(Hi)⊗ ρi. (35)

Here, for any vector space K, K⊗ ρi := {v ⊗ ρi : v ∈ K}.

Proof. By the previous lemmata, FΦ† has the decompo-
sition Eq. (19) and for any P ∈ minFΦ† , Φ†|supp(P ) =

idHP
⊗Φ†LP

. Moreover, since Φ†(P ) = P , by S.Lemma 8,
the image of Φ|supp(P ) is also contained in B(supp (P )),

so that
(
Φ|supp(P )

)†
= Φ†|supp(P ). It follows that each

ΦLP
:= Φ††LP

is a quantum channel on LP and has
the unique fixed point, say, ρP , by S.Corollary 5 and
S.Lemma 9. It follows that, for any X ∈ B(HP ),

Φ(XHP
⊗ ρP ) = Φ|HP⊗LP

(XHP
⊗ ρP )

=idHP
(X)⊗ ΦLP

(ρP ) = XHP
⊗ ρP .

In other words, B(HP ) ⊗ ρP ⊆ FΦ. Therefore, the fol-
lowing direct sum

GΦ :=
⊕

P∈minF †
Φ

B(HP )⊗ ρP , (36)
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is a subspace of FΦ as a vector space over the complex
number field, because each summand is fixed by Φ.

Now, we count the dimension of each space. Recall
that the dimension of a direct sum of vector spaces is
the sum of the dimension of all the individual summand.
Because |B(HP )⊗ρP | = |B(H)|| span{ρP } | = |B(H)| as
ρP is understood as a single-point set and the span of it
is 1-dimensional, we have

|GΦ| =
∑

P∈minF
Φ†

|B(HP )| =
∑

P∈minF
Φ†

|HP |2. (37)

On the other hand, similarly |B(HP )⊗1LP
| = |B(HP )|,

therefore it follows that

|FΦ† | =
∑

P∈minF
Φ†

|B(HP )| =
∑

P∈minF
Φ†

|HP |2. (38)

Finally, note that |FΦ| = |FΦ† | by S.Lemma 7, because
they correspond to the geometric multiplicities of 1 for
Φ and Φ†, respectively. It follows that GΦ = FΦ because
their dimensions are the same.

Proof of Theorem 3

Proof. The first part of the theorem is straightforward
by looking at the contrapositive: if a quantum channel
N has an output system that is not totally quantum, i.e.
PC, then by Eq. (6) there exists a non-trivial projective
measurement, which is a quantum channel that fixes N ,
hence N cannot be sensitive.

We show the other direction. Let the output system
of N be TQ and let us say that a quantum channel S
fixes N , i.e., S ◦ N = N . This means that the image of
N is a subset of fixed points of S. By S.Theorem 10, the
space of all fixed points FS of S must have the following
unique decomposition,

FS =
⊕
i

Mdi ⊗ σi, (39)

with respect to an appropriate basis and for some fixed
full-rank quantum states σi and the full matrix algebras
Mdi .

If there is more than one term in the direct sum of
Eq. (39), we will call the set of projectors onto their sup-
ports {Πi}. Note that the projective measurement de-
scribed by {Πi} fixes all the states in FS , and therefore
all the output states of N . This contradicts the assump-
tion that the output system of N is TQ. Hence, there
should be only one term in the direct sum of Eq. (39)
so that FS should have the form of FS = Md ⊗ σ for
some full matrix algebra Md and a fixed quantum state
σ. However, suppose that there are more than one dis-
tinct eigenvalue for σ so that there are at least two terms
in the spectral decomposition of σ =

∑
j λjPj , where

Pj is the projector onto the eigenspace corresponding to
the eigenvalue λj . Then, we can now identify a projective
measurement that fixes FS , i.e. {1d⊗Pj} where 1d is the
identity matrix inMd. It also violates the output system
of N being non-PC, hence σ should be a 1-dimensional
state so that FS is isomorphic to a full matrix algebra,
i.e., S fixes every operator. This means that S = id and
hence N is sensitive.

The statement for bipartite states follows the proof
above by applying the Choi-Jamio lkowski isomorphism
to S.

Proof of Proposition 4

Proof. Let us start by noting that for any isometry V :
A→ AK, there exists a unitary operator U on AK such
that V = U(|φ〉K⊗1A) for some state |φ〉K . Additionally,
consider a measurement operation PK(·) =

∑
i Πi · Πi

with more than one mutually orthogonal projectors {Πi}
on K that fixes τKAB . Consider an induced quantum
channel on A defined as

Q(·) := TrK [U† ◦ PK ◦ U(|φ〉〈φ|K ⊗ ·A)] (40)

where U is the unitary channel describing the action of U
on AK. Since PE fixes τKAB , QA fixes ρAB . Since it is
a TQ-Q state, it implies that Q is the identity channel.
Since unitary operations cannot form correlation with
other systems, (or by the Schrödinger-HJW theorem [45,
46]) that U† ◦PK ◦U(|φ〉〈φ|K ⊗ idA) = σK ⊗ idA for some
state σK . Applying this channel to ρAB on A, we get

U†KA ◦ PE ◦ UKA(|φ〉〈φ|K ⊗ ρAB) = σK ⊗ ρAB . (41)

Note that UKA(|φ〉〈φ|K ⊗ ρAB) = τKAB and PK does

not alter τKAB . Hence, the left hand side is U†KA ◦
UKA(|φ〉〈φ|K ⊗ ρAB) = |φ〉〈φ|K ⊗ ρAB . It follows that
σK = |φ〉〈φ|K .

Now, a quantum state η is fixed by measurement oper-
ation P(·) =

∑
i Πi ·Πi if and only if ΠiηΠi = η for only

one i. Moreover, PK ⊗ idA is also a measurement opera-
tion. Considering the Choi matrix, it follows that there
exists a unique Πi such that (Πi ⊗ 1A)U(|φ〉K ⊗ 1A) =
U(|φ〉K ⊗ 1A) and (Πj ⊗ 1A)U(|φ〉K ⊗ 1A) = 0 for any
other Πj . By conjugating the operator above to ρAB on
A and tracing out B, we get that ΠjτKΠj = 0, which
contradicts τA being full-rank.
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Proof of Theorem 9

The Koashi-Imoto Theorem and Decomposition of
PC-Q state

Here, we prove that arbitrary bipartite state τCE can
be decomposed into the from

τCE =
⊕
i

piτCL
i
⊗ τCR

i E
(42)

where C =
⊕

i C
L
i ⊗ CRi and each τCR

i E
is a TQ-Q

state. Equivalently, through the Choi-Jamio lkowski iso-
morphism, for any quantum channel T : E → C, one has
the following unique decomposition.

T (ρ) =
⊕
i

τCL
i
⊗ TCR

i
(ρ). (43)

with respect to the same C above for any input state ρ,
where τCL

i
is a quantum state on CLi and TCR

i
: E → CRi

is a sensitive, trace non-increasing [47] CP map (or a
trivial map with |CRi | = 1, which we simply count as a
special case of sensitive map for simplicity). This result
can be attained by using the Koashi-Imoto theorem [37]
as a lemma. Here, we provide a concise statement and
proof of the Koashi-Imoto theorem that mainly follows
that of Ref. [38] without using the result of Ref. [48]
directly, by using the tools that facilitated the structure
theorem (S.Theorem 10) we developed earlier.

S.Lemma 11 (Koashi-Imoto [37, 38]). For any set of
quantum states {ρk} on a Hilbert space H, there exists a
unique decomposition of H =

⊕
iHiL⊗HiR that satisfies

the following:

(i) Each ρk decomposes as

ρk =
⊕
i

qi|k ωiL ⊗ ρiR|k, (44)

where (qi|k) is a probability distribution over i and
ρiR|k is a quantum state onHiR depending on k, while
ωiL is a quantum state on HiL independent of k.

(ii) Any quantum channel C on H that fixes all ρk is a
quantum channel on each subspace HiL ⊗HiR and

C|HiL⊗HiR
= CHiL

⊗ idHiR
, ∀i, (45)

where each CHiL
fixes ωiL , i.e., CHiL

(ωiL) = ωiL .

Proof. Let F := {F : F(ρk) = ρk,∀k} be the set of all
quantum channels that fixes each {ρk}. Then, when FC
is the set of all fixed points of a linear map C, we let

F0 :=
⋂
F∈F

FF† . (46)

Since every FF† is finite dimensional, F0 can be actually
expressed as a finite intersection:

F0 = FF†
1
∩ FF†

2
∩ · · · ∩ FF†

M
, (47)

for some F1, · · · ,FM ∈ F. To see this, observe that in-
tersecting one more FF can never increase the dimension
of the intersection, hence becasue of the finite dimen-
sionality, only a finite number of FF†

i
nontrivially affect

the interaction
⋂
F∈F FF† . Let us consider the quantum

channel F0 given as

F0 :=
1

M

M∑
n=1

Fn. (48)

The Kraus operators of F†0 are simply the union of scalar

multiples of those of F†i . Suppose now, that we have a
state ρ ∈ FF†

0
. Then, by S.Lemma 2, ρ commutes with

all the Kraus operators of each F†i . Therefore, again by

S.Lemma 2, ρ is fixed by all of F†i , i.e., ρ ∈ FF†
1
∩ FF†

2
∩

· · · ∩ FF†
M

. Hence ρ ∈ F0. It shows that FF†
0
⊆ F0,

and therefore F0 = FF†
0
. It follows that there exists the

decomposition of the form (19)

FF†
0

=
⊕
i

1HiL
⊗B(HiR), (49)

with respect to a decomposition H =
⊕

iHiL ⊗ HiR .
Define Qi := 1HiL

⊗ 1HiR
to be the projector onto the

subspace HiL ⊗ HiR of H. Then, we can observe from
the block-diagonal structure (49) that

Qi ∈ FF†
0

=
⋂
G∈F

FG† ⊆ FF† (50)

for any F ∈ F. It means that F†(Qi) = Qi and thus
F†(Qi) ≥ Qi and F†(1 − Qi) ≥ 1 − Qi for any F ∈ F
and i because F†(1) = 1. By S.Lemma 8, it follows that,
for all i and F ∈ F, F|HiL⊗HiR

is a quantum channel on

HiL ⊗HiR and
(
F|HiL⊗HiR

)†
= F†|HiL⊗HiR

.
Especially for F0, from (49) it follows that

F†0 |HiL⊗HiR
= G0HiL

⊗ idHiR
, (51)

with some unital CP map G0HiL
on HiL with the one-

dimensional fixed point set {c1}. By S.Lemma 9,

F0|HiL⊗HiR
= F0HiL

⊗ idHiR
, (52)

with some quantum channel F0HiL
on HiL with a unique

fixed quantum state, say, ωiL . Therefore,

FF0 =
⊕
i

ωiL ⊗B(HiR). (53)

It follows that every ρk, as a fixed point of F0, indeed
has the expression of the form (44).
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Now we prove (ii). For any F ∈ F, again,

F†|HiL⊗HiR
= F†HiL

⊗ idHiR
for some quantum channel

FHiL
on HiL , because F0 = FF†

0
⊆ FF† , so F|HiL⊗HiR

=

FHiL
⊗ idHiR

. Since {ρk} ⊆ FF , it must be that
ωiL ⊗ ρiR|k is a fixed point of FHiL

⊗ idHiR
for all i.

Thus, every FHiL
must have ωiL as a fixed state. It

proves (ii).

We apply this result on the image of the quantum chan-
nel T , {T (ρ)} so that the input state ρ functions as the
index k in the statement of the Koashi-Imoto theorem
above. Hence, according to (i) above, for any ρ, T (ρ)
decomposes as

T (ρ) =
⊕
i

ωiL ⊗ TiR(ρ). (54)

Since ωiL is independent of ρ, it follows that each TiR
is linear in ρ. Moreover, it is immediate that they are
CP. Now we claim that each TiR is sensitive, because,
otherwise, there exists a non-identity quantum channel
NiR on HiR such that NiR ◦ TiR = TiR and it contradicts
(ii) of Lemma 11.

Once we have the decomposition of arbitrary quan-
tum channel (43), by using the Choi-Jamio lkowski iso-
morphism again, for each CP map TiR one can find the
corresponding bipartite quantum state ρCR

i E
and normal-

ization factor qi := Tr[TiR(1H)]/|H| to get (42), which
should sum up to 1 due to the trace preserving property
of T . In this case, for any quantum channel C on C such
that CC ⊗ idE(ρCE) = ρCE , C should satisfy (45).

Proof of Theorem 9

We follow the logic of the proof of Theorem 3 above.
Consider any interaction Λ on SC that implements the
catalytic transformation of a state ρS on S using τCE
with access to C. We consider the channel S on S, de-
fined as

S(ρ) := TrCE [ΛSC ⊗ idE(ρS ⊗ τCE)]. (55)

Recall the statement of the theorem presumes the follow-
ing decomposition of the catalyst with its environment:

τCE =
∑
i

piτCL
i
⊗ τCR

i E
. (56)

Let P =
∑
j Πj ·Πj be the pinching map on C where each

Πj is the projector onto the subspace CLj ⊗ CRj . This
models the process that acts locally on the system after
a projective measurement processes. Note that PC ⊗ idE
fixes τCE , i.e.

PC ⊗ idE(τCE) = τCE . (57)

Thus, one can perform the pinching operation before ap-
plying ΛSC without changing S:

TrCE [ΛSC ⊗ idE(ρS ⊗ τCE)]

= TrCE [ΛSC ◦ (idSE ⊗ PC)(ρS ⊗ τCE)] (58)

= TrC [ΛSC ◦ (idS ⊗ PC)(ρS ⊗ τC)].

Hence, from the discussion of the previous section, we
get the factorization

ΛSC(ρS ⊗ΠjτCΠj) = pjΛSCL
j

(ρS ⊗ τCL
j

)⊗ τCR
j

(59)

with the limitation ΛSCL
j

of ΛSC onto SCLj which is by

itself a quantum channel on SCLj . The resultant trans-
formation of ρS is therefore of the form

S(ρ) =
∑
j

pj TrC [ΛSCL
j

(ρS ⊗ τCL
j

)] (60)

Therefore, one can see that S can be implemented with

the ensemble
{
pi, τCL

i

}
.

Conversely, any catalysis possible with the ensemble{
pi, τCL

i

}
is also possible with τCE through the protocol

explained in the main text after Theorem 9.
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Abstract. Quantum Process Tomography (QPT) is essential for characterizing and validating quantum
devices and algorithms, but unavoidable device noises can lead to non-physical quantum channels. This
work compares regularization methods to tackle shot noise in QPT using commonly used single-qubit
quantum channels. The methods’ effectiveness is evaluated using the minimum eigenvalue of the Choi
matrix and fidelity. Our findings demonstrate spectral transformations as the most effective solution for
finite sampling issues in quantum channel reconstruction in the Noisy Intermediate-Scale Quantum (NISQ)
era.

Keywords: Quantum Channel, Quantum Process Tomography, Optimisation, Spectral Transformations

Simulating large, complex quantum systems with clas-
sical computers is a computationally challenging prob-
lem and quickly becomes intractable with growing sys-
tem size. For this reason, Quantum Simulation, the sim-
ulation of quantum systems with other well-controlled
quantum systems (quantum computers), has been pro-
posed [1, 2]. Several algorithms for quantum simulation
have been developed. However, most of these algorithms
are best suited for fault-tolerant settings. In these set-
tings, quantum computers would provide a clear advan-
tage over classical computers in simulating quantum sys-
tems and other tasks. Despite the advancements made
in quantum hardware, large-scale fault-tolerant quantum
computers are unlikely to appear in the nearest decade.
This, and the growing accessibility of Noisy Intermedi-
ate Scale Quantum (NISQ) computers via cloud services,
naturally lead to the development of the quantum simula-
tion approaches in the NISQ era. Most NISQ-era quan-
tum simulation algorithms are focused on Hamiltonian
simulation or simulation of the unitary evolution.
It is well known that realistic quantum systems are

always in unavoidable contact with the thermal environ-
ment, which leads to decoherence and dissipation [3]. It
has been shown that one can use NISQ devices to perform
a quantum simulation of simple open quantum systems
[4].
The master equation describes the evolution of an open

quantum system. In the simplest case, when one neglects
environmental memory effects, the master equation has
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
[3]. The solution of the master equation is called a quan-
tum channel. Our previous work focused on the NISQ
quantum simulation of the non-convex geometry of CP-
divisible and non-divisible channels (a particular class of
open quantum evolutions with memory) [5].
However, the reconstructed quantum channels are usu-

∗ianjoeldavid290614@gmail.com
†sinayskiy@ukzn.ac.za
‡petruccione@sun.ac.za

ally non-physical due to finite sampling and noise in
the NISQ devices. The process of quantum channel
reconstruction is called quantum process tomography
(QPT). In this contribution, we will benchmark vari-
ous approaches to making the results of QPT physical
(so-called regularisations of the process matrix). For
this comparison, we simulate some common single-qubit
quantum channels. We use two metrics, the minimum
eigenvalue of the Choi matrix and the fidelity, to compare
the effectiveness of these methods. Our results show that
the spectral transformations perform the best overall in
dealing with finite sampling present in reconstructing the
quantum channel in the NISQ era [6].
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Abstract. Bell’s theorem states that local hidden variables cannot fully explain the behavior of an en-
tangled quantum state. Consequently, many have asked how much supplementary classical communication
would be needed to simulate them. Our study aims to investigate the question of whether a partially en-
tangled two-qubit state can be simulated with only one bit of communication. We present a semianalytical
LHV model generated by a neural network, which approximates the behavior of partially entangled states.
We characterize the error values in terms of a hypothesis testing scenario.
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1 Introduction to the problem

It is well established that Local Hidden Variables
(LHVs) are inadequate to describe the behaviours of en-
tangled quantum states. More recently, some have asked
how much supplementary resources, especially classical
communication, do we need to simulate entangled states
[1, 2, 3]. The problem was originally posed as a means
to gain a more intuitive understanding of the power of
entanglement. However, since Toner and Bacon’s proto-
col to simulate a maximally entangled two-qubit state,
progress in the field has been slower [3]. There has
been some works focusing on finding quantum behaviour
that is unsimulatable with just one bit of communica-
tion [4, 5, 6], but none has been found as of yet. On the
other hand, Renner et al. has shown a protocol to simu-
late some partially entangled two-qubit states with just
a single bit of communication [7]. The question that we
are trying to answer in this work is then: Can the other
partially entangled two-qubit states be simulated using a
single bit of communication?

2 Using Machine Learning to generate a
protocol

In this work, we tried to answer the question for the
rest of the two-qubit entangled states by using a neu-
ral network to generate numerical protocols that try to
simulate their behaviours. There have been numerous
uses of neural networks in nonlocality and entanglement
[8, 9, 10], but our approach was inspired by the work of
Krivachy et al. [11] where a neural network which was
built with locality constraints in its architecture was used
as an oracle to test whether a distribution is local. We
modify the design of the network in order to use it to
generate local strategies that can be done with one bit of
supplementary communication.
The locality of the network is done by having separate

∗peter.sidajaya@u.nus.edu

networks represent the different parties and routing the
different inputs according to what each party should re-
ceive. Communication is added to the model by first
looking at one bit communication as a power for one
party to choose between two options for both of them.
This way, we can actually model one bit of communica-
tion by having two local models (which are neural net-
works in themselves) and a third one that takes in Alice’s
inputs and outputs a number between 0 and 1 which de-
notes the probability of Alice choosing the first strategy,
and thus sending the bit 0 to Bob. The final output is
then, a convex combination of the two local models av-
eraged over the LHVs. The architecture is illustrated in
Fig. 1.

3 A semianalytical approximation to the
protocol

We first tested our model on the maximally entan-
gled state and reobtained Toner and Bacon’s model, with
slight modifications. We then proceeded to train our neu-
ral network to simulate the behaviours of partially entan-
gled states. The performance of our models, measured by
the average Kullback-Leibler divergence of its behaviour
with the quantum behaviour, is shown in Fig. 2. We
then wrote down the functions that approximate the be-
haviours of the neural network, which we will call our
semianalytical protocols.

The outputs of Alice are of the form of

P (A1 = +1 | â) = 1

2
(1− sgn(â · λ⃗a1 + ba1)),

where λ̂a1 = ua1λ⃗1+λ⃗2+va1ẑ decides the hemisphere
direction and ba1 = wa1+xa1λ⃗1 · ẑ+ya1λ⃗2 · ẑ decides
the size of the hemisphere. Similarly,

P (A2 = +1 | â) = 1

2
(1 + sgn(â · λ⃗a2 + ba2)),
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Figure 1: The architecture of the Artificial Neural Network (ANN). The model consists of two local distributions and
a communication network and in each distributions the two parties are constrained by locality by routing the input
accordingly. The communication network outputs a value between 0 and 1, and represents the probability of Alice
sending a certain bit to Bob. The output for a particular round is then simply the convex combination of the two
local distributions.
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Figure 2: The relative error between the neural network
models’ behaviours and the quantum behaviours. The
blue dots are for the original model described, while the
green crosses are a simplified model where we reduces the
perceptrons in the network, which we then used for the
semianalytical approximations. The grey shaded region
is the region in which Renner’s LHV model works.

P (B1 = +1 | b̂) = 1

2
(1 + sgn(b̂ · λ⃗b1 + bb1)),

P (B2 = +1 | b̂) = 1

2
(1− sgn(b̂ · λ⃗b2 + bb2)).

The bit of communication is given by

P (C = +1 | â) = 1

2
(1− clip[c,−1, 1]),

where

c = Θ(â · λ⃗1 + bc)Θ(â · λ⃗2 + bc)

+ Θ(−â · λ⃗1 + bc)Θ(−â · λ⃗2 + bc)

−Θ(−â · λ⃗1 − bc)Θ(â · λ⃗2 − bc)

−Θ(â · λ⃗1 − bc)Θ(−â · λ⃗2 − bc),

with bc = uc + vc(λ⃗2 · ẑ)(1 − λ⃗1 · ẑ). Θ is the step
function and clip is the clipping function.
The parameters u, v, w, x, y for all the parties are

constants which depend on the states. We obtained
the values of these parameters, which are listed in
the manuscript, by using numerical methods.

We benchmarked our semianalytical protocol by com-
paring it with the original quantum behaviours and mea-
suring its Kullback-Leibler divergences. To get a better
intuition, consider a hypothesis testing scenario where
we have a sample of n length generated by the same
measurement done to n identical systems, but we only
know that all the systems are quantum systems (PQ), or
our semianalytical LHV models (PLHV ), but we do not
know which. If we take PLHV as the null hypothesis, the
probability for all possible decision making protocol of
mistakenly rejecting a true null hypothesis (thus mean-
ing that the sample comes from the LHV protocol, but
we instead guess that it comes from an actual quantum
system) is lower bounded by

a ≥ e−nDKL(PQ||PLHV ).

This can then be used to find the minimum number
of sample size n needed such that we can be confident
that we would be able to distinguish the two behaviours.
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Figure 3: Violin plots describing the following values:
(a) The Kullback-Leibler divergence between our semi-
analytical protocols and the quantum behaviours. (b)
The Total Variational Distance between our semianalyti-
cal protocols and the quantum behaviours. (c) The min-
imum sample size needed to have at least 95% confidence
in distinguishing the two behaviours as described in the
hypothesis testing scenario. In all three, the distribution
is over the different projective measurements on the two
qubits. The white dots are the averages.

These benchmarks for our semianalytical protocols are
shown in Fig. 3.

4 Conclusions

While the question of exactly simulating partially en-
tangled states with one bit of communication remains
unanswered, our works suggest that producing approxi-
mations of the quantum behaviours quite closely is pos-
sible. Our protocols requires, on average, hundreds of
measurements before it could be distinguished from the
real quantum behaviours, discounting other noises in an
actual quantum system. Taking into account that some
of the two-qubit states can already been simulated by
an exact protocol, these evidences suggests that all two-
qubit states can be simulated with just a single bit of

communication. We still believe that an exact protocol
simulating the states does exist, and we hope that we,
or someone else, would be able to find it and close the
problem for good.

As a side note, the question of the power of entan-
glement compared to classical communication continues
to surprise us even when going to higher dimension. In
the second part of our manuscript, we tried to find a
quantum behaviour in higher dimensions that is unsim-
ulatable by one bit of communication by verifying their
membership in the communication polytope. However,
we were unable to find any as most, if not all, behaviours
of two-qutrit states with up to four measurement settings
on each side can be simulated by a single bit of commu-
nication.
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Security of differential phase shifted QKD against explicit individual
attacks
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Abstract. Quantum key distribution (QKD) is known to be unconditionally secure in principle, but
quantifying the security of QKD protocols from a practical standpoint continues to remain an important
challenge. Here, we focus on phase-based QKD protocols and characterize the security of the 3 and n-
pulse differential-phase-shifted (DPS) quantum key distribution protocols against individual attacks. In
particular, we focus on the minimum error discrimination (MED) and cloning attacks and obtain the
corresponding bit error rates and the collision probability in the presence of these attacks. We compare
the secure key rates thus obtained with the known theoretical lower bounds derived considering a general
individual attack. In a departure from the theoretical lower bounds which have no explicit attack strategies,
our work provides a practical assessment of the security of these phase-based protocols based on attacks
with known implementations.

Keywords: Quantum Key Distribution, Differential Phase, Minimum error discrimination, Cloning.

1 Introduction

QKD offers the promise of secure communication
over public networks, ideally with unconditional secu-
rity [1, 2]. In practice, device imperfections and detector
efficiencies compromise this notion of unconditional se-
curity. Furthermore, different QKD implementations are
susceptible to different kinds of eavesdropping attacks,
ranging from individual attacks like intercept-resend [3]
to photon number splitting (PNS) attacks [4, 5] and col-
lective attacks [6]. We refer to review articles [7, 8] for a
comprehensive survey of the known secure key rate esti-
mates, both in the ideal case as well as in the imperfect
scenarios.

In this article, we focus on the specific class of
differential-phase-shifted QKD protocols [9, 10, 11]. This
class of phase-based protocols is known for its simplicity
and efficient key generation. DPS QKD does not require
basis reconciliation as in the case of the BB84 protocol
and thus every bit that is detected contributes to the
key. The ease of implementing this protocol makes it an
practically relevant. Several variations of this protocol in-
cluding round-robin DPS [12], the small-number-random
DPS protocol [13], and measurement-device-independent
DPS (MDI-DPS) [14] protocols have been studied in the
recent past.

While the DPS protocol was originally proven to be
secure against the basic individual attacks such as the
intercept-resend and beam splitter attacks, it was sub-
sequently shown to be secure against more general in-
dividual attacks [15]. Unconditional security was then
proved under general coherent attacks in [16] for single
photon DPS QKD. In proving unconditional security, the
eavesdropper is considered to be capable of entangling
ancillary systems to blocks of pulses and performing op-
erations that are dependent on previous measurement re-
sults. Other attacks studied prior to the unconditional se-
curity bound [16], include specific collective attacks [17].

We study two individual attacks, namely, the minimum

∗ee21d201@smail.iitm.ac.in

error discrimination and cloning attacks, whose effects
on the secure key rate of the DPS QKD protocol have
hitherto not been quantified. Specifically, we obtain the
secure key rates for both the single-photon and weak-
coherent-source 3-pulse DPS QKD protocols. We com-
pare the secure key rates thus obtained with the known
theoretical lower bounds arising from proofs of uncondi-
tional security. In what follows, we present a brief sum-
mary of our results and refer to [18] for detailed calcula-
tions and security analysis.

2 Preliminaries

We begin with a brief review of the n-pulse DPS QKD
protocol [9, 10], schematically shown for the n = 3
case in Fig. 1. This schematic can be easily extended
to n pulses by simply introducing more delay lines at
the source, or equivalently, by phase modulating a single
weak coherent pulse [19]. The sender (Alice) prepares a
photon in an equal superposition of n ≥ 3 pulses and en-
codes her bit values {0, 1} via the relative phases {0, π}.
The states sent by Alice in the n = 3 case can be written
as,

|ψ⟩±,± =
1√
3

(|100⟩ ± |010⟩ ± |001⟩). (1)

The receiver (Bob) uses an unbalanced Mach Zehnder
interferometer (MZI) for decoding, detects the relative
phase between the pulses and hence obtains the bit value
sent by Alice. Detection in any one of the n−1 time slots
except the first and the last time bin gives the key bits,
wherein the bit-value is assigned based on which detector
(constructive or destructive) clicks.

The security of any QKD implementation can be quan-
tified via the secure key rate. Assuming that the eaves-
dropper is restricted to only individual attacks, the
asymptotic secure key rate can be calculated for the DPS
QKD protocol, as [20],

Rsk = sγpclick {τ − f(e) [h(e)]} . (2)
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Figure 1: The 3-pulse DPS QKD protocol. PM - Phase Modulator, θ12 and θ23 are the phase introduced between the
pulses by the phase modulator. θ12, θ23 ∈ {0, π}. D0 and D1 are single photon detectors. Detection in the second and
the third time slot gives θ12 and θ23 respectively.

Here, Rsifted = sγpclick , where s is the sifting parameter,
with s = 2/3 for 3-pulse case. γ is the repetition rate of
the transmission, pclick is the probability of Bob’s detec-
tion after taking into account detector inefficiencies, e is
the bit error rate, and f(e) characterises the performance
of the classical error correction scheme. The parameter τ
represents the shrinking factor due to privacy amplifica-
tion and is calculated from the average collision probabil-
ity, while h(e) is the Shannon binary entropy [20]. The
shrinking factor τ is a function of the average collision
probability pc.

τ = − log2 pc. (3)

The average collision probability quantifies Eve’s mu-
tual information with Alice and Bob and can be eval-
uated in terms of the individual collision probability of
each bit, denoted as pco. In fact, for individual attacks,
the overall collision probability is simply the product of
the individual collision probabilities. In general, the col-
lision probability is obtained as[15]

pco =
∑
x,z

p2(Xi = x|Zi = z)p(Zi = z) (4)

where X and Z are Alice’s and Eve’s key bit strings re-
spectively.

For the most general individual attack, the collision
probability for each bit can be bound as [15],

pco ≤ 1 − e2 − (1 − 6e)2/2 (5)

Using this value in Eq. (2) gives a lower bound on the
secure key rate obtainable against individual attacks.

3 Minimum error discrimination attack

In the MED attack, the eavesdropper (Eve) aims to
identify the optimal quantum measurement to discrim-
inate the set of signal states being used by the sender.
The minimum error condition is enforced by maximizing
the success probability of the state discrimination. Since
the ideal (single-photon) n-pulse DPS states are linearly
dependent for n ≥ 3, the corresponding protocols are nat-
urally secure against Unambiguous State Discrimination
(USD) type attacks.

The ideal three-pulse single-photon DPS QKD scheme
shown in Fig.1 encodes the logical bits in the relative

phase. The states sent by Alice can be written as in
Eq. (1). We assume that the states are chosen with equal
probability, namely, 1/4. Thus to do a minimum error
discrimination of these four states, Eve has to set up a
positive operator valued measure (POVM) comprising of
a set of four elements {P1, P2, P3, P4}, with each POVM
element identifying one state perfectly. Minimum error
discrimination can be stated as a semidefinite program
(SDP), as described in [21]. The SDP corresponding to
the MED of the DPS states in Eq. (1) is,

maximize: 1
4 ⟨ρi, Pi⟩

subject to:
∑

i Pi = I
Pi > 0

(6)

Here, ρi is the density matrix formed from the kets corre-
sponding to the DPS states. The SDP stated in Eq. (6) is
run using the cvx solver [22, 23]. We find that each state
has a 75% chance of being rightly identified by Eve. In
[10] an intercept and resend attack was considered where
Eve uses the same apparatus as Bob, and Eve introduces
errors in 33% of the intercepted bits. In an intercepting
attack using MED, Eve introduces only a 25% error. We
now compare the key rate in the presence of these two
attacks. The collision probability is found to be 0.72 for
this attack and Eve can intercept up to 4e fraction of bits
to go unnoticed and maintain the error rate at Bob.

The key rate is plotted in Fig.2 and it can be seen that
the length up to which the protocol is secure reduces in
the presence of the intercept and resend attack with MED
as compared to that with intercept and resend using an
MZI.

4 Cloning attack

The cloning attack is described by a quantum chan-
nel Φ, which takes the state ρ ∈ D(X ) to the state
Φ(ρ) ∈ D(Y ⊗ Z). The channel Φ must correspond to a
completely positive and trace-preserving linear mapping
of the form Φ : L(X ) → L(Y⊗Z). Suppose the state that
is sent is indexed k, the overall success probability of the
cloning attack is,

N∑
k=1

pk ⟨ψk ⊗ ψk |Φ (|ψk⟩ ⟨ψk|)|ψk ⊗ ψk⟩ (7)
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Figure 2: Secure Key rate vs channel length in the pres-
ence of intercept resend, Minimum error discrimination,
cloning attack and the lower bound from[15]

The optimal success probability of a cloning strategy,
which is represented by the supremum of the probability
in Eq. (7) over all valid channels Φ : L(X ) → L(Y ⊗ Z),
may be represented by a semidefinite program[24].

The formulation makes use of the Choi-Jamio lkowski
representation J(Φ) ≡ X of a given channel Φ. For find-
ing a cloning machine for the DPS states, we consider the
DPS three pulse state to be the states of a qutrit with
basis states {|1⟩, |2⟩, |3⟩}. The states are then written as,

|ψ⟩±,± =
1√
3

(|1⟩ ± |2⟩ ± |3⟩) (8)

The SDP solution for the probability of right cloning of
the qutrit state gives a value of 0.78. We can obtain
the map acting on Bob’s state from the Choi matrix.
The fidelity F between the original state and the cloned
state is 0.81. This fidelity is obtained for all the states
|ψ(±,±)⟩.

The bit error rate at Bob’s side due to the application
of a cloning machine is found out using the probabil-
ity of detecting in the constructive D1 (destructive D2)
port when destructive (constructive) port is supposed to
click. We write Bob’s mixed state density matrix after
the cloning machine as a convex combination in an appro-
priate basis, and then find out the probability of wrong
detection.

To quantify the maximum information available to an
adversary, we let Eve do a minimum error discrimination
of the states reaching her after the cloning machine. Since
the states reaching Eve and Bob are mixed, the MED suc-
cess probability is relatively less than in the case where
Eve does a MED directly on the states sent by Alice.
Nevertheless, this strategy does marginally better since
the error introduced at Bob due to cloning is less than the
direct MED thus allowing for more bits to be attacked.
Finally, we plot the secure key rate vs the distance for all
the attacks discussed so far in Fig. 2.

5 Conclusion

We quantify the secure key rate for the 3-pulse DPS
QKD protocol in the presence of minimum error discrim-
ination and cloning attack. For both these attacks, we
have identified the optimal strategy for the eavesdropper,
for the specific set of signal states used in the 3-pulse DPS
protocol. We further note that these attack strategies
can be implemented by realising specific maps and are
realistic in the sense that they do not require quantum
memory.

Our results indicate that these sophisticated attacks
are in fact comparable to the simple intercept and resend
attack in terms of the information gained by the adver-
sary. An eavesdropper gets only as much information as
a simple ”Bob-like” intercept and resend strategy even
if she uses the minimum error discrimination or cloning
attack as described here. These explicit attack strategies
give much higher secure key rates than the lower bound
predicted using inequalities such as the Cauchy inequal-
ity.

Although unconditional security of DPS QKD is known
under general, collective attacks, it is useful to bench-
mark the effectiveness of specific individual attacks so as
to be able to assess their relative strengths. The fact
that the secure key rates in the presence of the individ-
ual attacks studied here are still much higher than the
lower bound on the secure key rate also suggests that
these rates are of more practical relevance. Essentially,
the secure key rates under such explicit attacks give a
better sense of the realistic key rates and distances for
QKD protocols.
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Abstract. One of the most counter intuitive aspects of quantum theory is its claim that there is “intrinsic”
randomness in the physical world. Quantum information science has greatly progressed in the study of
randomness in the last decade. With a lot of emphasis on device-independent and semi-device-independent
bounds, one of the most basic question has escaped attention: how much secret randomness can be extracted
from a given state ρ, and what measurement would achieve that bound. We solve the min-max problem of
finding the measurement that minimizes the maximal probability of an eavesdropper. The result is that one

can guarantee an amount of randomness Hmin = − logPguess with P ∗
guess(ρ) =

1
d

(
tr
√
ρ
)2

by performing
suitable projective measurements (in particular, a measurement in a basis that is completely unbiased with
the eigenbasis of ρ).

Keywords: randomness, quantum measurement, quantum cryptography, quantum resource

1 INTRODUCTION

Randomness is one of the intrinsic properties that lies
in the heart of quantum theory, which not only has funda-
mental implications for our world view, but is also attrac-
tive for practical use. The amount of randomness is natu-
rally captured by the guessing probability Pguess of a po-
tential eavesdropper Eve. This intuitive characterisation
was found to have operational meaning: the min-entropy
Hmin = − logPguess quantifies (informally) the fraction
of perfect coin tosses than can be extracted from a string
generated by the available source. There has been an
explosion of designs and implementations of QRNGs cer-
tifiable under various assumptions[1, 2, 3], from device-
independent[4], to semi-device-independent[5] or fully
characterised devices[6].
However, one of the most basis questions was left out:

how much secret randomness can be extracted from a
known state ρ. We show that the answer is H∗

min =
− logP ∗

guess with

P ∗
guess(ρ) =

1

d
(tr

√
ρ)

2
(1)

and discuss the measurements that lead to this result.

2 RESULT

Alice holds a quantum state ρ from a Hilbert space of
dimension d, to which she applies a measurement M =
{Mi}. We want to determine how random, that is, how
unpredictable the measurement outcome is to a potential
eavesdropper Eve, who has a more detailed knowledge
than Alice about the process, but she cannot actively
influence it (she is “outside the lab”). Concretely, in
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every round, Eve knows the true state ρc produced by
the source. Given this knowledge, she guesses the most
likely outcome i = i(c) for that round. The state seen by
Alice must be related to the states known by Eve through
ρ =

∑
c pcρc. Without loss of generality, we can regroup

all Eve’s states that lead to the same guessed outcome
(Eve does not gain anything in treating them as distinct).
Eve’s average guessing probability is therefore given by

Pguess({ρi, pi},M) =
∑
i

pi Tr(Miρi) . (2)

Since we don’t know the true states, we need to consider
the worst case scenario, i.e. the decomposition that max-
imizes Eve’s guessing probability:

Pguess(ρ,M) = max
{ρi}

∑
i

Tr(Miρi) (3)

s.t. ρi ≥ 0 ,
∑
i

ρi = ρ

where we redefined the density matrices so that Tr(ρi) =
pi. Actually, as long as M is predetermined, this value
can be efficiently computed using positive semi-definite
programming(SDP). However, in this context our focus
is how much randomness can be extracted from a
known state ρ. This requires optimizing Alice’s mea-
surement, i.e. computing

P ∗
guess(ρ) = min

M
Pguess(ρ,M) . (4)

We solve this optimisation under the assumption that
M is a rank-1 protective measurement: i ∈ {1, ..., d}
and Mi = |qi⟩⟨qi|. The optimal guessing probability is
(1). The core of the proof consists in rephrasing (3) as
distance-based measurement

Pguess(ρ,M) = max
{σ∈I}

F (ρ, σ) (5)
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where F is Uhlmann’s fidelity and I is the set of states
that are diagonal about the measurement basis {|qi⟩}.
The invariance under unitary transforms of Uhlmann’s
fidelity lead to (1).

In summary, our main results are shown below. Theo-
rem 1 gives the value of the maximal amount of random-
ness we can generate from ρ, and Theorem 2 gives the
measurements that make this value achievable.

Theorem 1. Under the assumption that Eve’s best mea-
surement is a projective measurement with rank 1 ele-
ments Mi = |qi⟩⟨qi|, there is

P ∗
guess(ρ) = F (ρ, I/d) =

1

d
(Tr

√
ρ)2 , (6)

Theorem 2. When the measurement basis M = {Mc}
satisfy:

Tr(Mcρ
1/2) are equal for c = 1, 2, ...d. (7)

it generates maximal randomness from ρ as in Theorem
1. Meanwhile, Eve’s knowledge on this state in the worst
case scenario corresponds to the decompostion

ρc = ρ1/2Mcρ
1/2. (8)

which means the measurement basis is the ”pretty good
measurement” [7] according to the ensemble {px, ρx}, and
7 is saying that Tr(Mcρc) should be equal for all c’s – the
guessing probability is always the same no matter what
the outcome turns out to be.

The most typical example of such measurement basis
M is one that is formed by a basis that is maximally
unbiased with the basis that diagonalizes ρ. This prop-
erty of the measurement guarantees a trivial fulfilment
of (7), and is therefore one of the desired measurement
basis. We will call it ”unbiased measurement” in the fol-
lowing text. For instance, applying this measurement to
a qutrit(therefore d = 3), we have

P ∗
guess(ρ) =

1

3
(Tr

√
ρ)2 , (9)

the solution of (3) using SDP coincides exactly with the
expression (9), which verifies our proof(see Figure 1). It
is important to note that unbiased measurement is not
the only measurement that satisfies (7) and generates the
maximal randomness.

3 Discussion

We answer the question of how much randomness one
can generate from a fixed quantum state ρ (Theorem 1)
and how to generate this amount of randomness (Theo-
rem 2). One of the open questions remained is how to
quantify the randomness if we allow Alice to use a pos-
itive operator-valued measure (POVM) and taking into
consideration the information leaking from the measure-
ment device[8].

Figure 1: The color picture of Pguess(ρ,M), where M is
a measurement unbiased about the computational basis
|0⟩ , |1⟩ , |2⟩. ρ is a qutrit that can be regard as a mixture
of state |0⟩ , |1⟩ , |2⟩, where p0, p1, p2 range from 0 to
1, forming a convex hull in the shape of an equilateral
triangle. According to Theorem 2, it is as well a color
picture of P ∗

guess(ρ).
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Abstract. Sharing logical entanglement pairs between distant quantum nodes is a key process for achiev-
ing fault-tolerant quantum computation and communication. Here, we propose an efficient logical entan-
glement distribution protocol based on surface codes for two distant 2D-array qubits with nearest-neighbor
interaction. Our protocol allows tuning the trade-off relation between the success probability of this
protocol and the infidelity of logical entanglements using post-selection. We numerically evaluated the
performance of our protocol and the trade-off relations and showed that our protocol can prepare logical
entangled states with improving fidelity.
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1 Overview

A quantum network enables various quantum commu-
nication protocols, such as quantum cryptography [1] and
distributed quantum computing [2, 3]. These applica-
tions can be achieved by preparing entangled qubit pairs
between distant quantum devices via qubit transmission.
While the qubit transmission suffers from loss and imper-
fection of communication channels, we can retrieve the
fidelity of entangled pairs with post-selection of Bell mea-
surement and entanglement distillation protocols [4, 5, 6].
In practice, even if we successfully generate high-

fidelity entangled pairs with physical qubits, their fidelity
would be immediately damaged due to their finite life-
times. Thus, they must be kept encoded in the quan-
tum error-correcting codes, with which we can project
quantum states to the logical code space via stabilizer
Pauli measurements and estimate Pauli errors from ob-
tained values. Recently, the implementation of state-of-
the-art error correcting codes, surface codes, has been
demonstrated with superconducting circuits [7] or neu-
tral atoms [8]. These devices enable experimental inte-
gration of several tens or hundreds of physical qubits on
a 2D lattice and two-qubit gates acting on the nearest
neighboring qubit pairs. The communication between
two distant nodes is also experimentally demonstrated.
Thus, the fault-tolerant communication of encoded logi-
cal qubits will be achieved in the near future. Evaluating
the practical performance of logical entanglement distri-
bution is also vital for exploring the design of distributed
fault-tolerant quantum computing and quantum commu-
nications.
There have been massive efforts to explore the rela-

tion between high-performance entanglement distillation
and quantum error correction [5, 6, 9, 10]. For example,
Ref. [5] proved one-way entanglement distillation has the
same ability of distilling entanglement to quantum error
correcting code. Ref. [6] proposed a method to transform
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a stabilizer code into a two-way entanglement distilla-
tion protocol, enhancing its capability to distill entangled
states. The protocol involves post-selection based on sta-
bilizer measurements. However, the existing protocols do
not consider logical entanglement distribution under real-
istic architectures, i.e., recent 2D integrated devices, and
do not consider how we can leverage probabilistic gener-
ations of logical entanglement in these devices. Thus, an
efficient entanglement distribution protocol tailored for
current state-of-the-art devices is lacking.

In this work, we propose an efficient logical entan-
glement distribution protocol tailored for 2D-integrated
quantum devices connected by noisy quantum channels.
In this protocol, we assume that each node can share en-
tangled states between physical qubits in parallel and can
perform arbitrary two-qubit gates on nearest-neighboring
pairs and single-qubit measurements. The protocol con-
sists of three steps: position-wise entanglement gener-
ation, synchronized qubit rearrangement, and quantum
error correction. First, we perform a probabilistic gen-
eration of physical entanglements. Then, we rearrange
randomly distributed successful pairs only with nearest-
neighbor interactions. Finally, we perform stabilizer mea-
surements to project the state to the code space. In this
step, we perform post-selection in terms of syndrome val-
ues, which enables us to tune the fidelity of logical en-
tangled states at the cost of the success rate. It provides
tunability in the design of quantum communication pro-
tocols, i.e., enables balancing between the rate and reli-
ability of communication. We numerically analyzed the
performance of our protocol and revealed the trade-off
relation between the success rates and the fidelity of log-
ical entanglement. Our results indicate that the protocol
is feasible with current achievable experimental param-
eters. For example, when SWAP-gate fidelity is 0.995,
error rates of logical entangled states can reach about
8.0 × 10−3 with a success probability larger than 0.3.
Our results can be used as a baseline of practical logical
entanglement distribution and can be used for estimating
the bandwidth between fault-tolerant quantum comput-
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ing nodes.

2 Protocol

Our protocol aims to share a logical entangled pair
by sharing several physical entangled pairs and encoding
them into the code space of surface codes. We show the
three steps of this protocol and explain the detail of each
step after that.

1. Entanglement generation Generate entangled
states between two distant physical qubits on the
2D square lattice.

2. Qubit rearrangement Rearrange the locations of
generated entangled pairs so that entangled pairs
constitute 2D lattices. Note that the rearrange-
ment process of Alice and Bob is the same since
entangled pairs are located in the same positions.

3. Syndrome measurement Alice and Bob perform
the syndrome measurements, Alice sends obtained
syndrome values to Bob, and Bob performs error
correction according to obtained values. This pro-
cess projects the state of rearranged entangled pairs
into the logical space of surface codes, which re-
sults in an entangled logical pair. If Bob finds that
the number of disagreed syndrome values exceeds
a threshold, they abort and restart the process.

(a) Entanglement generation

(b) Rearrangement on Alice’s 2D array qubits

(c) Syndrome measurement

Figure 1: Sequence of the proposed protocol

Entanglement generation We assume that Alice and
Bob have physical qubits aligned on the L×L 2D square
lattice. They generate the entangled pairs between two
qubits at the same coordinate in parallel. Fig. 1(a) is a

conceptual diagram of entanglement generation. Green
qubit pairs located at the same positions in each node
represent successfully entangled qubit pairs. We denote
the success probability of each generation protocol as
pgen. Note that this probability can be increased by re-
peating trials while the time for the generation process
increases and the error rate of generated entangled states
einit is reduced. After the generation process, the entan-
gled qubit pairs at each node are placed on the random
sites in the lattice, but the arrangements of entangled
pairs on two nodes are always the same since we perform
entanglement generations for qubit pairs at the same po-
sition.

Qubit rearrangement In the rearrangement step, the
generated entangled qubits are assembled to the data-
qubit locations of surface codes as shown in Fig. 1(b).
The distance of surface codes is chosen according to
the number of successfully generated entangled states.
SWAP gates on neighboring pairs are used for moving the
positions of entangled qubits. We assumed SWAP gates
suffer from uniform depolarizing noise, and the depolar-
izing rate is denoted by eswap. We minimized the number
of SWAP gates by converting the optimization problem
into a matching problem between entangled qubit posi-
tions and target positions and numerically solved it.

Syndrome measurement Alice and Bob perform sta-
bilizer Pauli measurements of surface codes to generate
a logical entangled state. Then, Alice sends the syn-
drome values to Bob, and Bob marks the syndrome val-
ues that do not coincide with those observed in the same
position at Alice’s node as anomalous. If the number of
the anomalous syndrome is no more than the acceptance
threshold wthr, Bob estimates errors and corrects them.
If the estimation is correct, the state is projected to an
expected logical entangled state. Otherwise, Bob informs
the failure of the trial to Alice and requests to restart.
Note that if wthr is no less than the number of all the
syndrome values, this protocol is never aborted, and Bob
does not need to inform whether the trial is a failure or
success to Alice, i.e., this protocol becomes one-way.

Our interest is to check the feasibility of the protocol
in realistic parameter regions and explore the trade-off
relationship between the parameters, such as the gener-
ation rate and fidelity of logical entangled states. The
performance of this protocol depends on five parameters:
the generation rate of entangled states pgen, size of the
2D-array qubits L, initial error rate of the physical en-
tangled states einit, error rate of the SWAP gates eswap,
and acceptance threshold wthr. Here, we can tune pgen
and einit under a trade-off relation, and we can choose
any threshold wthr to obtain a desired performance.

3 Numerical evaluation

We examined the performance of our protocol with
numerical simulation. The efficiency of this protocol is
assessed based on the probability of post-selection plog,
which we call protocol success probability, and the error
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Figure 2: The performance of our protocol is plotted as
the function of error rates of SWAP gates eSWAP for sev-
eral acceptance thresholds wthr. The protocol success
probability plog and the logical error rate elog are plot-
ted in (a) and (b), respectively. The initial error rate of
physical entangled states einit is shown as a black dotted
line in (b).

rate of the logical states in the successful events elog. For
simplicity, we evaluated the performance with fixed pa-
rameters in this extended abstract as pgen = 0.3, L =
19, einit = 0.05. The performance is evaluated with
Monte-Carlo sampling, and we repeated 105 trials to eval-
uate each configuration. Note that the trials in this set-
ting typically constitute d = 7 surface codes with few ex-
ceptional cases. So, we show the values calculated only
from the samples with d = 7.
First, we plotted the protocol success probability plog

and the logical error rate of the post-selected state elog
as the function of eswap in Fig. 2(a) and Fig. 2(b), re-
spectively. Here, we varied eswap from 0.05 to 0.005 and
evaluated performances for several threshold wthr. As ex-
pected, as the acceptance threshold becomes large, i.e.,
allowing large discrepancy of syndrome values, the post-
selection probability increases, but the infidelity of re-
sultant states is reduced. When we choose the accep-
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Figure 3: Trade-off relationship between success proba-
bility of the protocol plog and the error rate of resultant
logical entanglement elog.

tance threshold wthr = 5, we can prepare the logical
entanglement with reducing the error rates from physi-
cal ones if eswap is below 0.03, which corresponds to a
fidelity of about FCNOT = 0.9899 in terms of CNOT
gate conversion. Referring to the current experimental
progress [7, 8, 11, 12], we can expect that this setting is
a feasible example.

The balance of the post-selection probability and infi-
delity can be tuned with threshold wthr. Thus, we plotted
their trade-off relation under several eswap in Fig. 3. This
figure illustrates the trade-off relations between quality
and speed of logical entanglement generations between
two distant nodes. These would be crucial parameters
for estimating the performance of fault-tolerant quan-
tum communication and distributed computation. If the
achieved logical error rate is not sufficient for expected
fault tolerance, we can fault-tolerantly perform subse-
quent entanglement distillation using several logical en-
tanglements and lattice surgery operations. The detailed
parameter exploration for optimizing practical quantum
algorithms and protocols is left as future work.

4 Conclusion

In this study, we proposed a logical entanglement dis-
tribution protocol using surface codes on 2D-array qubits
and evaluated its performance through numerical simula-
tions. To encode randomly generated entangled states on
2D-array qubits using nearest-neighbor interactions, we
need error-prone rearrangement of physical qubits. We
proposed a method to mitigate errors in the rearrange-
ment by optimizing the rearrangement sequence and per-
forming post-selection based on the number of syndrome
errors during encoding. This results in the trade-off re-
lation between the generation rate of logical entangled
states and their fidelity after post-selection. We con-
ducted numerical simulations of the proposed protocol
and identified the trade-off relationship between genera-
tion rate and logical error rates under various parameters.
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Abstract. Certain quantum devices, such as half-wave plates and quarter-wave plates in quan-
tum optics, are bidirectional, meaning that the roles of their input and output ports can be
exchanged. Bidirectional devices can be used in a forward mode and a backward mode, cor-
responding to two opposite choices of the input-output direction. They can also be used in a
coherent superposition of the forward and backward modes, giving rise to new operations with
indefinite input-output direction. In this work we explore the potential of input-output indefi-
niteness for the transfer of classical and quantum information through noisy channels. We first
formulate a model of communication from a sender to a receiver via a noisy channel used in in-
definite input-output direction. Then, we show that indefiniteness of the input-output direction
yields advantages over standard communication protocols in which the given noisy channel is
used in a fixed input-output direction. These advantages range from a general reduction of noise
in bidirectional processes, to heralded noiseless transmission of quantum states, and, in some
special cases, to a complete noise removal. The noise reduction due to input-output indefinite-
ness can be experimentally demonstrated with current photonic technologies, providing a way to
investigate the operational consequences of exotic scenarios characterised by coherent quantum
superpositions of forward-time and backward-time processes.

Keywords: quantum communication, indefinite input-output direction, quantum resource the-
ories

Recently, there has been an interest in explor-
ing communication protocols where the configura-
tion of the devices is itself quantum. For example,
information could travel along different routes from
the sender to the receiver, with each route travers-
ing a different quantum device. The choice of route
could be controlled by a quantum system, thus giv-
ing rise to interference of the alternative quantum
evolutions [1, 2, 3, 4, 5, 6]. Similarly, the time of
transmission could be controlled by a quantum sys-
tem, giving rise to interference across multiple time
bins [7]. A further example includes the use of differ-
ent communication devices in different orders, with
the choice of order controlled by a quantum system
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
Indefinite time direction is a new foundational

concept [19]. This concept, originally motivated by
foundational questions about the arrow of time, ap-
plies more generally to all quantum processes for
which the roles of the input and the output can
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be exchanged. Examples of such processes, called
bidirectional [19], are provided by half-wave plates,
quarter-wave plates, and other optical crystals that
rotate the polarization of single photons. Any such
crystal can be traversed in two opposite directions,
giving rise to two different quantum processes, con-
ventionally called the forward and backward pro-
cess. Forward and backward processes can be also
probed in a coherent quantum superposition, by
controlling a photon’s trajectory through the crys-
tal. As a result, the role of the inputs and outputs of
the devices can become indefinite. A general math-
ematical framework for describing the use of a bidi-
rectional device in an indefinite input-output direc-
tion was provided in Ref. [19].
A first operational consequence of input-output

indefiniteness was shown in Ref. [19], which pro-
vided a quantum game in which the player can win
with certainty only if the input-output direction is
indefinite. Recently, this game was demonstrated
experimentally with photons [20, 21]. Another con-
sequence can be deduced from a related work on
the quantum superposition of thermodynamic evo-
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lutions with opposite time arrows [22]. Besides these
works, however, the operational consequences of in-
definite input-output direction are still largely un-
explored, especially in comparison to those of in-
definite causal order, which have been extensively
studied in the past decade [23, 24, 25, 26, 27, 28, 29,
16, 30, 31, 32, 33, 34, 35, 36, 37].
In this paper, we explore the consequences of

input-output indefiniteness for the transfer of quan-
tum information. To this purpose, we formulate
a communication model that uses bidirectional de-
vices in a coherent superposition of the forward and
backward mode. We show that that the ability to
coherently control the direction of a single particle
travelling through a single quantum device can en-
hance the transmission of both classical and quan-
tum information. For dephasing noise, correspond-
ing e.g. to rotations of a single photon’s polariza-
tion about a fixed direction, we show that a per-
fect, deterministic transmission of quantum bits be-
comes possible even if the original dephasing chan-
nel was entanglement-breaking and therefore could
not transmit any quantum information. For more
radical types of noise, such as depolarising noise, we
show advantages both in the transmission of clas-
sical and quantum communication, observing non-
zero capacities even in parameter regimes where no
information can be transmitted by using the device
in a fixed direction. For example, a completely de-
polarising qubit channel used in an indefinite input-
output direction gives rise to a classical communi-
cation capacity of 0.3113 bits per channel use, and
even permits a noiseless heralded transmission of
qubit states with a success probability of 25%.
Our results highlight some similarities, as well as

some differences, between input-output indefinite-
ness and the related notions of indefinite causal or-
der and indefinite trajectories. Regarding the simi-
larities, the communication advantages observed in
all these scenarios are consequences of the ability to
coherently control the configuration of noisy chan-
nels, as first observed by Gisin et al [3] and recently
elaborated in Refs. [4, 38]. On the other hand, our
result indicate that coherent control over the input-
output direction can offer larger advantages. For
example, putting two completely depolarising qubit
channels on two alternative paths, and controlling
the path of a quantum particle gives a classical ca-
pacity of at most 0.16 bits per channel use, while
using the two channels in a coherently controlled or-
der yields a capacity of at most 0.049 bits per chan-
nel use. Both of these values are strictly smaller

than the classical capacity of 0.3113 bits per chan-
nel use achievable with a single depolarising channel
used in a coherent superposition of the forward and
backward mode.
By exploring the communication advantages of in-

definite input-output direction, one can pin down a
number of operational consequences of hypothetical
scenarios in which the arrow of time is in a quan-
tum superposition, thereby allowing agents to ac-
cess quantum processes in a coherent superposition
of the forward time direction, from the past to the
future, and of the backward time direction, from
the future to the past. While the physical realiza-
tion of these scenarios is currently an open problem,
the mathematical framework of quantum operations
is with indefinite input-output direction provides a
rigorous way to explore them a conceptual level. At
the same time, the superposition of time directions
can be simulated in table top experiments by co-
herently controlling the path of single photons, as
envisaged in [19] and recently demonstrated in two
experiments [20, 21]. Notably, all the communica-
tion enhancements identified in this work can al-
ready be demonstrated with a simple adaptation of
these setups. The realization of these experiments
is expected to contribute to the development of a
toolbox for quantum control over the configuration
of multiple quantum devices, which may prove tech-
nologically useful in a longer term.
In the shorter term, our work provides the start-

ing point for a number of foundational explorations.
First, an interesting direction is the investigation
of scenarios where both the input-output direction
and the causal order of multiple processes are sub-
ject to quantum indefiniteness. A mathematical
framework for these more general operations was re-
cently established in [19], but very little is currently
known about their information-theoretic potential.
The angle of quantum communication, explored in
this paper, represents a promising approach to ex-
plore the capabilities of new operations with indefi-
nite order and direction. Another interesting area of
future research is the study of quantum thermody-
namic tasks assisted by indefinite input-output di-
rection. Recently, the communication advantages of
indefinite causal order stimulated new research in
quantum thermodynamics [29, 39, 40]. Similarly,
the communication advantages provided in this pa-
per suggest new thermodynamic protocols where the
input-output direction of one or more processes is
indefinite.
Communication protocols exploiting input-
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output indefiniteness are also interesting outside
the context of quantum communication. They
can be regarded as a new type of error correction,
boosted by coherent quantum control over the
input-output direction of the noisy processes.
These protocols have some similarity with dynam-
ical decoupling protocols in which an unknown
noisy process is alternated with its inverse [41].
In our protocols, however, the advantages do not
come from the alternation, but rather from the
quantum interference between a process and its
inverse, which facilitates the detection of errors
and their subsequent correction. The working
principle of these advantages appears to be the
ability to distinguish between errors represented
by symmetric matrices and errors represented by
anti-symmetric matrices, which in particular allows
one to correct Pauli Y errors separatly from the
other types of single-qubit errors.
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Abstract. This paper proposes a method to reduce T-depth in a quantum circuit by decomposing MCT
(Multi Controlled Toffoli) gates considering the cancellation of operations when multiple MCT gates are
present. The method aims to reduce T-depth by decomposing two MCT gates with common control bits
in a way that their operations cancel each other. Our experimental results show that the proposed method
can reduce T-depth up to approximately 43.17% compared to the method of Niemann et al..
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1 Introduction

General quantum algorithms have a part that calcu-
lates logical functions [1]. Quantum circuits that calcu-
late this logical function need to be designed for each
given logical function. In quantum circuit design, any
logical function can be realized by combining multiple
MCT (Multi Controlled Toffoli) gates. To realize the op-
eration of MCT gates, it is necessary to decompose them
into a group of gate called Clifford+T that can be ex-
ecuted directly [2]. Among the Clifford+T gate group,
there is a gate called T gate. The number of T gates
that cannot be executed simultaneously in a quantum
circuit is called T-depth [3]. Since the operation time
of T gates is longer than that of other gates in the Clif-
ford+T gate group [4], T-depth is used as an index of
the cost of quantum circuit design. For this reason, re-
search has been conducted on MCT gate decomposition
methods that reduce T-depth [5] [6].
Niemann et al.’s method [6] has been proposed as a

method for reducing T-depth when decomposing MCT
gates. This method only considers the decomposition of
single MCT gate, so it may not be optimal when decom-
posing multiple MCT gates. Niemann et al.’s method
reduces T-depth by decomposing single MCT gate into
multiple MCT gates using ancilla bits. However, Nie-
mann et al.’s method does not consider the cancellation
of operations with other MCT gates in this decomposi-
tion. Therefore, this paper proposes a method for reduc-
ing T-depth by performing decomposition considering the
cancellation of operations with other MCT gates.
The proposed method and Niemann et al.’s method

were implemented and evaluated for T-depth. Then, the
reduction rate of T-depth was calculated by comparing
the proposed method and Niemann et al’s method. As
a result, it was confirmed that the proposed method can
reduce T-depth by up to about 43.17% compared to Nie-
mann et al.’s method.

∗is0521kv@ed.ritsumei.ac.jp
†ger@cs.ritsumei.ac.jp

2 Preliminaries and Previous Work

A quantum circuit is a graphical representation of
quantum computation using quantum gates and qubits.
Qubits and quantum gates correspond to bits and logical
gates in classical computing. Quantum gates, like con-
ventional logical gates, have inputs and outputs. By com-
bining multiple quantum gates, desired operations can be
realized. Quantum circuits must always be reversible, un-
like classical circuits, and they have a different property
in that the input can be uniquely determined from the
output.
MCT (Multi Controlled Toffoli) gate [7] is a quantum

gate composed of multiple control bits and one target bit.
MCT gate applies NOT gate to the target bit when all
control bits have a value of 1. Since MCT gate cannot be
executed directly, it must be decomposed into a group of
gates that can be directly executed, such as Clifford+T
gates.
There is a decomposition method for the MCT gate

proposed by Abdesaied et al. [5]. In Abdesaied et al.’s
method, MCT gate with c ≥ 3 control bits can be de-
composed by using (c − 2) dirty ancilla bits, achieving
MCT gate decomposition with T-depth of 4(c− 1).

There is a T-depth reduction method during MCT gate
decomposition proposed by Niemann et al. [6]. In Nie-
mann et al.’s method, MCT gate with c control bits is
decomposed using k ≥ 1 clean ancilla bits. In Niemann’s
method, MCT gate is divided into several stages, and
Abdesaied et al.’s method is applied to each stage.
In Niemann et al.’s method, when 1 ≤ k ≤ c

2 , MCT
gate is decomposed into three stages. Figure 1 shows an
example of MCT gate that is applied in Niemann et al.’s
method when the number of clean ancilla bits is 2.

Let k clean ancillas be denoted as a1, ..., ak, and let the
target bit of MCT that is decomposed gate be denoted as
t. The control lines of c-controlled MCT gate are divided
into groups C1, ..., Ck+1 of k+1 control lines. The number
of control lines of these divided groups of control lines is
represented as |C1|, ..., |Ck+1|. The arrangement of the
three-stage MCT gates is described as follows:

1 In the first stage, we place in parallel k MCT gates
each of which has one of C1, . . . , Ck as control bits,
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Figure 1: Niemann et al.’s method
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Figure 2: Example of decomposing MCT gates consider-
ing the cancellation of operations

and one of a1, . . . , ak as target bit.

2 In the second stage, we place an MCT gate with Ck+1

and a1, . . . , ak as control bits and t as target bit.

3 In the third stage, we place a copy of the first stage to
restore the values on the ancilla bits.

Let d be the number of additional dirty ancilla bits.
To apply Abdesaied et al.’s method to each MCT gate in
this decomposition, it is necessary to follow Equation 1.

c+ 2− k + d

2
≥ |Ck+1| ≥

c− 2k − d− 1

2
(1)

In the method of Niemann et al., the control bits are
placed so that the overall T-depth is small.
For k > c

2 , the decomposition is applied recursively to
the second-stage MCT gate.

3 The Proposed Method

Niemann et al.’s T-depth reduction method for MCT
gates considers only the decomposition of a single MCT
gate. In this section, we propose a method for reducing
T-depth by considering the cancellation of MCT gates
when decomposing multiple MCT gates using k clean
ancilla bits. When two MCT gates have the same bit
as their control bits, MCT gates can be applied decom-
position considering the cancelation.
An example of decomposing MCT gates considering

the cancellations using two clean ancilla bits is shown
in Figure 2. Two adjacent MCT gates, G1 and G2, are
decomposed as shown in the central circuit of Figure 2.
In this circuit, the each of two MCT gates, (g4, g6) and
(g5, g7) have the same control bits and target bits on

𝑐1 𝑐2

𝑡1

𝑡2

𝑙

𝐺1 𝐺2

Figure 3: Example of two MCT gates have common con-
trol bits

the same bit, resulting in the cancellation of operations.
Then, the circuit transforms into the right circuit in Fig-
ure 2. By decomposing two MCT gates into three stages,
arranging them such that they have the controls and tar-
gets on the same bits, and achieving the cancellation of
MCT gate operations, the proposed method can reduce
T-depth in the circuit.
Figure 3 shows two MCT gates with common control

bits. The proposed method finds the number of com-
mon control bits, denoted as m, that can be used when
applying the decomposition considering cancellation for
the two MCT gates. Let n be the number of quantum
bits in the circuit, k be the number of clean ancilla bits
and d be the number of additional dirty ancilla bits. Let
c1 and c2 be the number of control bits for the two MCT
gates G1 and G2, and let l be the number of common
control bits between the two MCT gates. By using a
value of m that satisfies Equation 2 and Equation 3, we
can decompose MCT gates considering cancellation using
the common control bits.

m ≤ min

{
l,
n+ 2k + d

2

}
(2)

max

{
2k,

2c1 + k − d− n− 1

2
,
2c2 + k − d− n− 1

2

}
≤ m (3)

Furthermore, T-depth of two MCT gates is obtained
when applying the decomposition considering the cancel-
lations for the two MCT gates. T-depth is categorized
based on the value of k.
When k = 1, T-depth is as follows:

� 4(c1 − 2) + 4(c2 − 2) + 2 when m = 2

� 4(c1 − 1) + 4(c2 − 1) when m > 2

When k ≥ 2, T-depth is as follows:

� 4(c1 − k − 1) + 4(c2 − k − 1) + 4 when m = 2k

� 4(c1−m+k−1)+4(c2−m+k−1)+8(⌈m
k
⌉) when m > 2k

In the proposed method, the combination that achieves
the maximum reduction in T-depth compared to apply-
ing Niemann’s method is determined by applying the de-
composition considering cancellations, starting from the
first MCT gate in the set of sortable MCT gates. Based
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Table 1: Experimental results on benchmark circuits for k = 2, 3
benchmarks k = 2 k = 3

circuit name number of gates Niemann’s Proposed ∆T (%) Niemann’s Proposed ∆T (%)

tial 265 1041 19355 13974 27.80 14889 12779 14.17
misex3c 244 1721 42077 26838 36.22 31952 24878 22.14
cordic 218 2533 78556 44645 43.17 57527 36539 36.48
ex1010 230 2611 58220 36385 37.50 42211 35028 17.02
alu 319 15764 676098 582528 13.84 498225 445792 10.52

𝐺1 𝐺2 𝐺3 𝐺4

Figure 4: Example of sortable MCT gates

𝐺1, 𝐺4 (𝐺2, 𝐺3)

Figure 5: Example of sorting MCT gates

on the determined combination, MCT gates are sorted,
and the decomposition considering the cancellations is
applied to reduce the T-depth of the quantum circuit.

Example 1 Figure 4 shows a set of four sortable MCT
gates. An example of the proposed method is demon-
strated when applying the decomposition considering can-
cellations with two clean ancilla bits for this set of MCT
gates. The combinations are determined starting from G1

in Figure 4. First, MCT gate G4 is chosen as it provides
the largest reduction in T-depth compared to Niemann et
al.’s method when applying the decomposition considering
cancellations with G1. Next, the combination for G2 is
determined. MCT gate G3 provides the largest reduction
in T-depth when applying the decomposition considering
cancellations with G2. Then, MCT gates (G1, G4) and
(G2, G3) are arranged adjacent to apply decomposition
considering the cancellations, as shown in Figure 5. In
this case, the reduction in T-depth from Niemann et al.’s
method is 20.

4 Experimental Result and Conclusion

To evaluate the proposed method, we implemented
both Niemann’s method and the proposed method. Ta-
ble 1 shows the experimental results using RevLib bench-
mark circuits [8].

� benchmarks

– circuit name: Name of RevLib benchmark cir-
cuit

– number of gates: Number of gates in RevLib
benchmark circuit

� k : number of clean ancilla bits given to the circuit

– Niemann’s: T-depth of quantum circuits ap-
plying the method of Niemann et al.

– Proposed: T-depth of quantum circuits apply-
ing the proposed method

– ∆T (%): T-depth reduction ratio of the pro-
posed method from the method of Niemann
et al. (%)

The ∆T (%) values in Table 1 are all positive, indi-
cating that the proposed method achieves a smaller T-
depth compared to Niemann’s method for all benchmark
circuits.
This paper proposes the T-depth reduction method

by decomposing MCT gates considering the cancellation.
Future work includes a T-depth reduction method using
the remaining common control bits after applying the
decomposition with considering the cancelation.
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Abstract. VQE (Variational Quantum Eigensolver), a quantum algorithm, can be used to solve combi-
natorial optimization problems. A quantum circuit used in VQE is called a PQC (Parameterized Quantum
Circuit). There is a PQC synthesis method for the Traveling Salesman Problem. In the existing method,
only one type of PQC is used so the PQC may not be optimal for some problems. In this paper, we propose
a method for synthesizing PQC for the Traveling Salesman Problem considering quantum states generated
by PQC. The proposed method reduces the total cost in the Traveling Salesman Problem by 10.43% on
average.

Keywords: Variational Quantum Eigensolver, Parameterized Quantum Circuit, W states

1 Introduction

VQE (Variational Quantum Eigensolver) [1] is an al-
gorithm for finding the minimum eigenvalue of a given
Hamiltonian based on the variational approach. By set-
ting the given Hamiltonian appropriately, combinatorial
optimization problems such as the max-cut problem and
TSP (Traveling Salesman Problem) can be solved [2].
VQE is an algorithm that uses a quantum computer

with quantum circuits and a classical computer with a
classical optimizer.The quantum circuit is called a PQC
(Parameterized Quantum Circuit) , and research on its
synthesis has been active [3–5]．There is a PQC synthe-
sis method for the TSP [6]. The existing method requires
the generation of a quantum state called the W state, and
the quantum circuit for generationg it greatly affects the
performance of the algorithm. However, the circuit for
generating the W state has a problem that the W state
varies greatly depending on the arrangement of the quan-
tum gates. Therefore, if the optimal W state cannot be
generated, there is a possibility that an optimal solution
cannot be obtained. Even if an optimal solution can be
obtained, it may require a large amount of computation
time.
In this paper, we propose a method for synthesizing

PQC for the TSP that takes into account the quantum
states generated by PQC. The proposed method synthe-
sizes PQC by arranging quantum gates in a different way
from the existing method [6] to reduce the effect of the
arrangement of qubits on the W state generated. In addi-
tion, considering the W state to be generated, initial val-
ues of appropriate circuit parameters are set to the PQC.
The proposed method increases the number of problems
for which an optimal solution can be obtained and re-
duces the computation time.

∗dos@ngc.is.ritsumei.ac.jp
†matsuoa@jp.ibm.com
‡ger@cs.ritsumei.ac.jp

2 Background

2.1 Formulation of TSP

This section describes the formulation of TSP. With
a complete graph G = (V,E) with N vertices, the cost
of any two vertices (u, v) ∈ E in G is defined as Wu, v.
Formulating the TSP as a linear programming problem,
it can be defined as Eq. (1), (2), (3) . The N2 variables
xv, p (1 ≤ v ≤ N, 1 ≤ p ≤ N) take the value 1 or 0,
meaning that the city v is visited for the pth time when
xv, p = 1 and the city v is not visited for the pth time
when xv, p = 0. Eq. (1) implies the total cost and takes
xu, p and xv, p+1 as variables. The value of xu, p represents
the route with the minimum total cost. Eq. (2) means
that the same city is visited only once, and Eq. (3) means
that only one city is visited at a time.

Minimize
∑

(u, v)∈E

W(u, v)

N∑
p=1

xu, p xv, p+1 (1)

Constraints 1

N∑
p=1

xv, p = 1, v = 1, 2, . . . N (2)

Constraints 2

N∑
v=1

xv, p = 1, p = 1, 2, . . . N (3)

2.2 The method of solving TSP using VQE

The method of solving TSP using VQE is shown below.

1. Set the Hamiltonian H so that ⟨ψθ|H |ψθ⟩ corre-
sponds to the function in Eq. (1).

2. Assign N2 variables xv, p to PQC input |ψ⟩ =
|ψ1⟩ , . . . , |ψN2⟩.The output of PQC is |ψ(θ)⟩ =∣∣ψ1(θ)

〉
, . . . ,

∣∣ψN2(θ)

〉
. The details of PQC used

here are explained in Section 2.3. Then, calculating
the expected value ⟨ψθ|H |ψθ⟩ of H

3. Update θ so that ⟨ψθ|H |ψθ⟩ is smaller by using a
classical computer. It means that the PQC param-
eter θ is updated so that the total cost is minimized.
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Figure 1: A quantum circuit for 3-qubit W state

4. Repeat the above two operations until the expected
value ⟨ψθ|H |ψθ⟩ converge.

5. When the values of ⟨ψθ|H |ψθ⟩ converge afther re-
peating these operations, |ψθ⟩ is the path with the
minimum total cost.

2.3 The PQC for TSP

By using the existing method [6], only bit strings that
satisfy the Eq. (2), are obtained at the output of PQC.
The method for synthesizing circuits that satisfy the con-
straints of the Eq. (2) for TSP is shown below. The cir-

cuit that satisfies the constraints
N∑

p=1
x1, p = 1 at v = 1

in Eq. (2) is synthesized by the following procedures.

1. Initialize the N -bit input to |q1 q2 . . . qN ⟩ =
|00 . . . 0⟩.

2. Apply a X gate to q1

3. Repeat the following three operations from i = 1
to i = N − 1.

• Apply a Ry(θ) gate to qi+1

• Apply a CZ gate to qi and qi+1

• Apply a Ry(−θ) gate to qi+1

4. Repeat the following operation from i = 1 to i =
N − 1.

• Apply a CX gate to qi+1 and qi

An example for N = 3 is shown in Figure. 1. It gener-
ates 3-qubit W state. W state is quantum state defined
as Eq. (4). Observing the N -qubit W state, only a bit
sequence in which only 1 bit of any N bits is |1⟩ and all
other N − 1 bits are |0⟩ is obtained. By applying this
circuit to q4 q5 q6 and q7 q8 q9, the PQC which satisfies
the constraints of the Eq. (2) can be synthesized.

|ψ⟩ =
N∑
i=1

αi(ϕ) |ψi⟩
N∑
i=1

|αi(ϕ)|2 = 1 (4)

|ψi⟩ ∈ { |10 . . . 00⟩ , |01 . . . 00⟩ , |00 . . . 10⟩ , |00 . . . 01⟩ }

Figure 2: A quantum circuit for 3-qubit W state synthe-
sized by proposed method

3 The proposed PQC considering W
States

There are two problems with the existing method [6].
The first one is that PQC is synthesized using only one
type of circuit that generates W state, despite the fact
that there are multiple synthesis methods for circuits that
generate a W state [7]. Second, the initial values of PQC
parameters are not taken into account. The initial values
of the parameters are determined by the classical opti-
mizer during the execution of VQE. It is possible to set
the initial values of the parameters in advance, but the
existing method [6], does not do this. Since the probabil-
ity of observing the W state generated by the parameters
varies widely, the initial values of the parameters deter-
mined by the classical optimizer may not be optimal.

To solve these problems, we propose a new circuit to
generate W state and use it to generate a PQC for TSP.
The initial values of the PQC parameters are set to val-
ues considering the W state to be generated, in addition
to the values determined by the classical optimizer. The
method for synthesizing circuits we propose is shown be-
low.

1. Initialize the N -bit input to |q1 q2 . . . qN ⟩ =
|00 . . . 0⟩.

2. Apply a Ry(θ) gate to q1

3. Repeat the following three operations from i = 1
to i = N − 2.

• Apply a Ry(θ) gate to qi+1

• Apply a CZ gate to qi and qi+1

• Apply a Ry(−θ) gate to qi+1

4. Repeat the following operation from i = 1 to i =
N − 1.

• Apply a CX gate to qN−i and qN−i+1

5. Apply a X gate to q1

An example for N = 3 is shown in Figure. 2.

4 Experimental Results

4.1 Evaluation Method

To evaluate the proposed method, we implemented the
PQC for the existing method [6] and the proposed PQC
in Python. In the proposed method, we set three kinds of
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Table 1: Results of solving TSP
Existing method [6] Proposed method

Number of cities Total cost Time (s) Total cost Time (s)

4 211.5 4.41 199.5 5.33
5 276.3 267.00 248.0 373.92
6 321.9 466.74 271.9 631.87
7 374.0 2623.82 332.1 2843.11

Table 2: The number of times each initial value was selected
Types of initial values Selected times

1 8
2 9
3 23

initial values: (1) the initial value set by the classical op-
timizer, (2) the initial value such that the probability of
observing each W state is equal, and (3) the initial value
such that only |10 . . . 0⟩, where only the most significant
bit among N -bit W state is 1, is observed. In the exper-
iment, we randomly prepared 10 TSP questions from 4
to 7 cities each, and used VQE with each PQC to ob-
tain the answers. The part of VQE that uses a quantum
computer was computed using a noiseless simulator. For
the classical optimizer, we used COBYLA (Constrained
Optimization BY Linear Approximation) [8].

4.2 Results and Consideration

The average of the experimental results for each city
is shown in Table. 1. Experimental results show that the
proposed method reduces the total cost by 10.43% on
average compared to the existing method [6]. As for the
initial values of the parameters, (3) is suitable, indicating
that the initial values of the parameters in the proposed
method have a significant impact on the results. In terms
of computation time, the proposed method increased
27.98% on average compared to the existing method [6].
The Ry gates, where the parameters of PQC are set, are
all placed on both sides of the CZ gates in the exist-
ing method, while the proposed method places them not
only on both sides of the CZ gates but also on the q1
bit. This difference in the placement of the Ry gates af-
fects the time required for optimization with the classical
optimizer, and is assumed to have increased the compu-
tation time for the proposed method. This is presumably
because the classical optimizer sets the initial values of
the parameters for the existing method [6], whereas the
proposed method takes more time when optimizing with
the classical optimizer because the parameters are set
considering the generated W state.

5 Conclusions

In this paper, we proposed the method for synthesiz-
ing PQC for TSP that takes into account the W states to
be generated and the new initial values of its parameters.
We synthesize PQC for TSP using a different circuit that
generates W state from the existing method [6]. For the
initial values of the PQC parameters, we set two types

of values that take into account the generated W states,
in addition to the values set by the classical optimizer,
which were used in the existing method [6]. Experimen-
tal results show that the method proposed in this paper
reduces the total cost by 10.43% on average compared to
the existing method [6]. The optimal initial values of pa-
rameters for the proposed method were also found. Com-
putation time increased compared to the existing method
due to the Ry gate arrangement in the proposed method.
The method proposed in this paper requires N2 qubits

to solve TSP for N cities. Currently, the maximum num-
ber of qubit available on a quantum computer is 127
bits [9], so it is not possible to solve the traveling sales-
man problem for more than 11 cities. Future work is to
improve the proposed method so that multiple quantum
computers can run VQE in parallel, and to support a
larger number of cities. In the experiments to evaluate
the proposed method, the quantum computer part used
a noiseless simulator. In the actual quantum computer,
errors occur due to the influence of noise [10]. It is a
future task to investigate the relationship between the
error due to noise and the proposed PQC by running the
quantum computer part of the proposed method on a real
quantum computer.
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Detecting Information Backflow via Temporal Quantum Correlations
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There are two prominent criteria of non-Markovianity, namely, one due to divisibility and the one
due to distinguishability or information backflow. We show that the two recently introduced mea-
sures of non-Markovianity, those based on temporal quantum correlations, sit somewhere between
these two. We show, by example, that since both causality measure and temporal steerable weight
detect information backflow, they can certify a process to be non-Markovian where trace distance
may fail.

I. INTRODUCTION

No quantum system is perfectly isolated from its sur-
roundings and it may inevitably undergo the process
of decoherence [1], and such a system is called open
quantum system, who’s dynamics is governed by quan-
tum master equations or equivalently represented by a
quantum channel – completely positive trace preserving
(CPTP) map that takes density operators to density op-
erators [2].

Non-Markovian open system dynamics has been of in-
terest for many years from both physics and quantum
information theory point of view [1, 3–8]. Two broad
notions of non-Markovianity are based on divisibility,
which relies on the concept of entanglement [9] and dis-
tinguishability which relies on the concept of distance,
for instance trace distance, between two states under a
channel [10]. Despite the fact that a plethora of non-
Markovianity witnesses and measures exist, they are of-
ten dependent on the type of dynamics. It is known
that these are non-equivalent identifiers of a given phys-
ical process as non-Markovian [11–14]. However, for cer-
tain class of dynamical maps, namely the image non-
increasing maps, they are indeed equivalent [15]. Inter-
estingly, it has been established that the trace distance
as an identifier of information backflow essentially fails
in two cases: (i) eternally non-Markovian channel [16]
(ii) when non-unital part of the channel is solely respon-
sible for the information backflow [17–19]. That is, P-
indivisibility as an equivalent notion of information back-
flow has to be dealt with some care, since it might orig-
inate from non-unital part alone. In certain situations,
non-unitality can be harnessed for quantum information
tasks [20–22]. Therefore, studying the relationship be-
tween non-Markovianity and non-unitality may be a cru-
cial factor for harnessing both these aspects of a quantum
channel.

Quantum correlations, such as entanglement and steer-

∗ shrikant.phys@gmail.com

ing, are those that cannot be realized by any local real-
istic theory, hence they are proven to be resources for
quantum information and quantum computation tasks
[2, 23, 24]. Spatial correlations are generally known to
be the correlations with a common cause [25, 26]. Recent
developments reveal that quantum mechanics allows for
quantum correlations with direct cause dubbed temporal
quantum correlations [27]. It has been shown [28] that
temporal quantum correlations form a hierarchy, namely
temporal non-separability, temporal steering, and tempo-
ral nonlocality, and that temporally non-separable corre-
lations in pseudo-density operator are a form of corre-
lations with stronger quantum direct cause while tem-
poral steerable correlations can be interpreted to that
of weaker form of quantum direct cause. To mention
in the passing, note that temporal steering finds its ap-
plication in quantum cryptography [29]. Recently, tem-
poral steerable weight and causality measure were used
to define measures of non-Markovianity [18, 30]. One
may wonder if these quantities are equivalent indicators
of information backflow, since in the case of spatial corre-
lations two different quantifiers of entanglement may be
in-equivalent in detecting correlation backflow [31], while
there may exist a measure that detects “all most” all non-
Markovian dynamics [32]. In this work, we address the
question of the ability of temporal steering and temporal
non-separable correlations to detect non-Markovianity of
a generic quantum channel and establish their place in
the divisibility hierarchy [12, 13]. Before answering the
question, we shall review the well-known divisibility hi-
erarchy.

II. PRELIMINARIES

A. Divisibility hierarchy

Let ρ ∈ B(H), where B(H) is the bounded operator
space and Λ : B(H) → B(H) be a quantum channel, with
the operator-sum form Λ[ρ] =

∑
j KjρK

†
j , where Kj are

called the Kraus operators with
∑

j K
†
jKj = I. The map
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Λ(t) is positive when it outputs a positive semidefinite
state i.e., Λ(t)[ρ] ≥ 0, for all ρ ∈ B(H). The map Λ(t) is
the said to be completely positive (CP) if the matrix

χ(t) = (I ⊗ Λ)[|Ψ〉〈Ψ|], (1)

called the Choi matrix, is positive semidefinite i.e., χ(t) ≥
0, where I is the identity map and |Ψ〉 = |00〉+|11〉 ∈ H⊗
H is an unnormalized maximally entangled state. The
divisibility property for a map is given by concatenation
of intermediate maps [9]:

Λ(t+ ε, 0) = Λ(t+ ε, t)Λ(t, 0), (2)

for all t+ ε ≥ t ≥ 0. Assuming that some form of inverse
Λ−1 exists, one can define the intermediate map

Λ(t, s) = Λ(t+ ε, 0)Λ−1(t, 0). (3)

Then the following definitions hold.

Definition 1 A process is said to be CP-divisible if the
intermediate map Λ(t, s) is CP.

Definition 2 A process is said to be P-divisible if the
intermediate map Λ(t, s) is positive but need not be CP.

Definition (2) is equivalent to

d

dt
‖Λ(t)[ρ1 − ρ2]‖1 ≥ 0 (4)

for any pair of ρ1, ρ2 ∈ B(H), where ‖A‖1 = Tr
√
A†A is

the trace norm. This measure was originall proposed by
Breuer-Laine-Piilo [10, 33].

We will describe next that the violation of Eq. (4) is
only sufficient but not necessary for P-indivisibility of a
given map Λ(t).

B. Non-unital non-Markovianity

Any d-dimensional dynamical map Λ(t) may be given
a matrix representation as

F (t) =

(
1 01×(d2−1)

τ M

)
, (5)

where τ ∈ Rd2−1 and M is a d2 − 1 × d2 − 1 real ma-
trix. Given the state ρ = 1

d (I +
∑d2−1

i=1 riGi), where
Gi are traceless orthonormal basis given by the gen-
eralized Gell-Mann matrices with G0 = I√

d
and the

Hermitian Gi where i ∈ {1, .....d2 − 1}, then the map
Fij(t) := Tr(GiΛ[Gj ]), which transforms a Bloch vector

r as

r → r′(t) = M(t)r(0) + τ . (6)

The components of the vector τ are obtained as τi =

Tr(GiΛ[I]). Therefore, a map is unital if τi = 0, i.e.,
Λ[I] = I. If r1 and r2 are two Bloch vectors corre-
sponding to the states ρ1 and ρ2, then from Eq. (5)
and (6), the transformation Λ(t)[ρ1 − ρ2] corresponds
to M(t)[r1 − r2]. Therefore, the trace distance fails
to witness non-Markovianity originating solely from τ .
However, the full non-Markovianity, in the sense of P-
indivisibility is encoded in the map F (t). Interestingly,
the divisibility property of Λ(t) carried over as F (t) =

F (t, s)F (s) leads to a non-trivial relationship between
unital and non-unital parts of the channel [13]:

M(t) = M(t, s)M(s) and τ (t) = τ (t, s) +M(t, s)τ (s),

(7)

where τ (t, s) and M(t, s) parameterize F (t, s).

It is known that non-unitality of a channel is neces-
sary for increase of purity P := Tr(ρ2). For instance, it
can be shown that when Λ(t)[I/2] 6= I/2, that is when
τ = 0, then Tr(Λ(t)[ρ])2 ≤ Tr(ρ2) for all t, even when
the map Λ(t) is P-indivisible according to the Eq. (4).
Therefore, the full P-indivisibility is captured in F (t)

and one would require a distance measure that is sen-
sitive to non-unital part. For simplicity, the feature of
non-monotonicity originating solely from the non-unital
part of the channel may be called as “non-unital non-
Markovianity”.

An example of a purely non-unital non-Markovian
channel is given in Ref. [17]. Any qubit channel, up
to a unitary transformation, is equivalently described
by substituting τ = (0, 0, τ3)

T and Mij = {λ1, λ2, λ3}
with Mi 6=j = 0 in Eq. (5). For a qubit, the Pauli op-
erators σi, i ∈ {0, 1, 2, 3), with σ0 = I2, form the or-
thonormal Hilbert-Schmidt basis. In Ref. [17], a non-
Markovian qubit generalized amplitude damping (GAD)
channel Λ(t)[ρ] =

∑
i AiρA

†
i was proposed given by the

Kraus operators

A1 =
√

1− p

[
1 0

0
√
1− η

]
; A2 =

√
1− p

[
0

√
η

0 0

]
;

A3 =
√
p

[ √
1− η 0

0 1

]
; A4 =

√
p

[
0 0
√
η 0

]
,

with η(t) := 1− e−t and p(t) := sin2(ωt), (8)

where ω is some real number. In terms of the map F (t),
this corresponds to the parameters λ1 = λ2 =

√
1− η,

λ3 = 1 − η and τ3 = (1 − 2p)η. Clearly, trace distance
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measure in Eq.(4) fails to witness non-Markovianity as
the non-monotonicity originates from p(t) rather than
η(t).

III. TEMPORAL QUANTUM CORRELATIONS
AND NON-MARKOVIANITY

In this section we show that the so-called temporal cor-
relations, namely temporal non-separability and tempo-
ral steering correlations faithfully witness non-unital non-
Markovianity. However, we show that temporal steerable
correlations fail to quantify enteral non-Markovianity,
which PDO can modified to define a measure of non-
Markoviantiy such that it does indeed quantify eternal
non-Markovianity.

A. Pseudo-density operator

Pseudo-density operator (PDO) construction captures
spatial and temporal correlations in an equal footing
[27, 34]. There are a number of other such frameworks
that address the problem of unification of spatiotempo-
ral correlations namely the process matrix [35], process
tensor [36] that are derived from the framework of quan-
tum combs [37] which represent most general space-time
processes, and superdensity operator [38], the spatiotem-
poral doubled density operator [39], to name a few others.
It has been shown that process matrix can be mapped to
PDO in a number of ways [40].

A two-point qubit PDO can be written as

R = I ⊗ Λ(t)

[{
ρ⊗ I2

2
,
1

2

3∑
i=0

σi ⊗ σi

}]
, (9)

where σi are Pauli operators with σ0 = I2, {A,B} =

AB + BA, I is the identity map and ρ is the input to
the PDO under the quantum channel Λ(t). Fitzsimons
et. al. introduced [27] a measure of “temporalness” of
correlations, dubbed causality measure as the negativity
of PDO, given by f = ‖R‖1 − 1. Later, it was general-
ized to a log negativity of PDO as F = log ‖R‖1 in order
to preserve additivity property, thereby connecting it to
the quantum capacity of a given channel [34]. We call F
simply the causality measure (CM). F is nonincreasing
under CPTP map, therefore a CP-divisible (or, Marko-
vian) map yields FΛ(t)[ρ] ≥ FΛ(t+τ)[ρ], violation of which
implies information backflow. Figure (1) shows this. A
measure of non-Markovianity has been defined [18] using
F , for a given channel Λ and input state ρ, as the integral

FIG. 1. (Color online.) Breakdown of monotonicity of causal-
ity measure F (t) for ω = 3 (bold, blue curve) and the behavior
of trace distance (dashed, orange curve) under non-Markovian
GAD given in Eq.(8). The x-axis is time.

over positive slope of F

N := max
ρ

∫
dF
dt >0

dt
dF (ρ,Λ, t)

dt
. (10)

Interestingly, N causality is equivalent to the entangle-
ment negativity measure due to Rivas-Huelga-Plenio [9]
if ρ = I

2 . This makes PDO an advantage over the Choi
matrix based method since one neither requires an en-
tangled state or ancillary systems to identify correlation
backflows under non-Markovian evolution. Additionally,
since PDM takes in a single density operator as input, it
is free from optimization problem for the initial pair of
inputs states involved in distinguishability measures.

B. Temporal steering

Similar to the steering in space with a given spatially
entangled state, one may steer a state in time by making
a measurement on the input state and sending it via a
quantum channel followed by a complete quantum state
tomography of the output state at the end of the channel.
Now, we shall introduce the notion of temporal steerable
weight. Alice performs a positive operator valued mea-
sure (POVM) measurement on an input state ρ at t = 0

transforming it into

ρa|x =
Πa|xρΠ

†
a|x

p(a|x)
, (11)

where p(a|x) = Tr[Πa|xρΠ
†
a|x] is the probability that an

outcome a occurs given that Alice preforms a measure-
ment in the basis x. Now the state ρa|x is sent to Bob
down a noisy quantum channel Λ(t) for a time t. When
Bob receives the state at t he performs a quantum state
tomography to get the state σa|x(t) = Λ(t)[σa|x(0). We
may call the set of states σa|x(t) as temporal assem-
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blages, and let the unnormalized assemblage be σa|x(t) ≡
p(a|x)σa|x. Now, by assumption, Bob doesn’t trust Alice
nor her devices, and he would want to distinguish the
correlations due to Alice’s measurements from the corre-
lations that might have originated from a hidden variable
λ, making the correlations to satisfy locality in time and
realism. Therefore, we may represent the correlations
that might be produced by such classical origins as

σUS
a|x(t) =

∑
λ

P (λ)P (a|x, λ)σλ, (12)

where σUS
a|x(t) is the unsteerable assemblage and P (a|x, λ)

is the probability that an outcomes a occurs given that
Alice makes a measurement x, and λ the hidden variable
that might have influenced the outcome, in which case
Bob will be able to write down his assemblage in the form
(12), and when he can’t, then he is sure that the state
is prepared by Alice’s measurement. Now, a measure of
temporal steering was introduced by [30] called temporal
steerable weight (TSW). In order to define TSW consider
a convex mixture

σa|x(t) = wσUS
a|x(t) + (1− w)σS

a|x(t) ∀a, x. (13)

Clearly, σa|x(t) is an assemblage which might contain
both unsteerable and steerable correlations, with the con-
straint 0 ≤ w ≤ 1. The TSW for a given assemblage
σa|x(t) is defined by

WTS = 1− w′, (14)

where w′ is the maximum value of w. TSW may be
interpreted as the minimal steerable resources required
to reproduce temporal steerable assemblage. That is,
WTS = 0 and 1 for minimal and maximal steerability,
respectively. w′ may be obtained by semi-definite pro-
gramming:

Find w′ = max Tr
∑
λ

wσλ,

subject to
(
σa|x(t)−

∑
λ

qλ(a|x)wσλ

)
≥ 0 ∀a, x

wσλ ≥ 0 ∀λ, (15)

where qλ(a|x) are the extremal values of Pλ(a|x).
Now, under the noisy quantum channel these correla-

tions deteriorate and [30] have shown that WTS is non-
increasing under local operations. Therefore, we have the
monotonicity condition

WTS
ρ ≥ WTS

Λ[ρ]. (16)

A Markov process satisfies the above condition, and a

FIG. 2. (Color online.) Breakdown of monotonicity of TSW
for ω = 3, for the channel given in Eq.(8).

non-Markovian process violates it. This is shown in Fig.
(2). Given this fact, a measure of non-Markovianity is
nothing but the area under the positive slope of of WTS

Λ[ρ]:

NTSW =

∫ t

t=0 ; dWTS

dt >0

dWTS

dt
dt, (17)

which by the factor of 1
2 is equivalent to

N :=

∫ tmax

t0

∣∣∣∣dWTS

dt

∣∣∣∣dt+ (WTS
tmax

−WTS
t0 ). (18)

It is important to mention that NTSW is only a suffi-
cient and not a necessary condition for non-Markovianity
of Λ. There may be channels that will be detected as
Markovian by this measure while other measures may de-
tect them as non-Markovian. Breakdown of monotonic-
ity of TSW may be interpreted as information back-flow
from the environment to the system, hence this measure
captures the range of memory effects that BLP does.

IV. CONCLUSION AND A NOTE

It is known [17, 41] that trace distance as an indicator
of information backflow may fail for non-Markovian chan-
nel in which non-unital part is solely responsible for in-
formation backflow. Trace distance and other correlation
measures such as mutual information and entanglement
negativity fail to witness “eternal non-Markovianity”
[16]. The question of the equivalence between tempo-
ral steering and the temporal non-separable correlations
in PDO as indicators of non-Markovianity was left open
in Ref.[8]. We fill this gap in this work and we have
shown by example that these two measures sit some-
where between distinguishability (such as trace distance)
and divisibility-based indicators. They faithfully witness
non-unital non-Markovianity, however it can be shown
that they ( the ones presented in the current version of
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the paper) fail to witness eternal non-Markoviantiy.
Note: This work is in progress and more results are

awaited, and the full version shall be posted on arXiv
very soon.

ACKNOWLEDGMENTS

I thank IIT Madras for the support through the In-
stitute Postdoctoral Fellowship. I also thank Prateek

Chawla for the kind help with the semidefinite program
for temporal steerable weight written in MATLAB.

[1] Heinz-Peter Breuer and Francesco Petruccione. The the-
ory of open quantum systems. Oxford University Press,
2002.

[2] Michael A. Nielsen and Isaac L. Chuang. Quantum Com-
putation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2010.

[3] Angel Rivas, Susana F Huelga, and Martin B Plenio.
Quantum non-markovianity: characterization, quantifi-
cation and detection. Rep. Prog. Phys, 77(9):094001,
2014.

[4] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and
Bassano Vacchini. Colloquium: Non-markovian dy-
namics in open quantum systems. Rev. Mod. Phys,
88(2):021002, 2016.

[5] Inés de Vega and Daniel Alonso. Dynamics of non-
markovian open quantum systems. Rev. Mod. Phys.,
89:015001, Jan 2017.

[6] Li Li, Michael J.W. Hall, and Howard M. Wiseman.
Concepts of quantum non-markovianity: A hierarchy.
Physics Reports, 759:1 – 51, 2018.

[7] Dariusz Chruściński. Dynamical maps beyond markovian
regime. Physics Reports, 992:1–85, 2022.

[8] U. Shrikant and Prabha Mandayam. Quantum non-
markovianity: Overview and recent developments. Fron-
tiers in Quantum Science and Technology, 2, 2023.

[9] Ángel Rivas, Susana F Huelga, and Martin B Plenio.
Entanglement and non-markovianity of quantum evolu-
tions. Phys. Rev. Lett, 105(5):050403, 2010.

[10] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo.
Measure for the degree of non-markovian behavior of
quantum processes in open systems. Phys. Rev. Lett,
103(21):210401, 2009.

[11] Dariusz Chruściński, Andrzej Kossakowski, and Án-
gel Rivas. Measures of non-markovianity: Divisibil-
ity versus backflow of information. Physical Review A,
83(5):052128, 2011.

[12] Dariusz Chruściński and Sabrina Maniscalco. Degree of
non-markovianity of quantum evolution. Physical review
letters, 112(12):120404, 2014.

[13] Dariusz Chruściński, Chiara Macchiavello, and Sabrina
Maniscalco. Detecting non-markovianity of quantum evo-
lution via spectra of dynamical maps. Physical review
letters, 118(8):080404, 2017.

[14] Dariusz Chruściński, Ángel Rivas, and Erling Størmer.
Divisibility and information flow notions of quantum
markovianity for noninvertible dynamical maps. Phys.
Rev. Lett., 121:080407, Aug 2018.

[15] Sagnik Chakraborty and Dariusz Chruściński. Informa-
tion flow versus divisibility for qubit evolution. Physical
Review A, 99(4):042105, 2019.

[16] Michael J. W. Hall, James D. Cresser, Li Li, and Erika
Andersson. Canonical form of master equations and
characterization of non-markovianity. Phys. Rev. A,
89:042120, Apr 2014.

[17] Jing Liu, Xiao-Ming Lu, and Xiaoguang Wang. Nonuni-
tal non-markovianity of quantum dynamics. Phys. Rev.
A, 87:042103, Apr 2013.

[18] Shrikant Utagi. Quantum causal correlations and non-
markovianity of quantum evolution. Physics Letters A,
386:126983, 2021.

[19] Nina Megier, Andrea Smirne, and Bassano Vacchini. En-
tropic bounds on information backflow. Physical Review
Letters, 127(3):030401, 2021.

[20] Alexander Streltsov, Hermann Kampermann, and Dag-
mar Bruß. Behavior of quantum correlations under local
noise. Physical review letters, 107(17):170502, 2011.

[21] Shrikant Utagi, R Srikanth, and Subhashish Banerjee.
Ping-pong quantum key distribution with trusted noise:
non-markovian advantage. Quantum Information Pro-
cessing, 19(10):1–12, 2020.

[22] Katarzyna Siudzińska. Improving classical capacity of
qubit dynamical maps through stationary state manipu-
lation. Journal of Physics A: Mathematical and Theoret-
ical, 56(23):235301, 2023.

[23] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki,
and Karol Horodecki. Quantum entanglement. Reviews
of modern physics, 81(2):865, 2009.

[24] Roope Uola, Ana CS Costa, H Chau Nguyen, and Otfried
Gühne. Quantum steering. Reviews of Modern Physics,
92(1):015001, 2020.

[25] Adrien Feix and Časlav Brukner. Quantum superposi-
tions of common-causeand direct-causecausal structures.
New Journal of Physics, 19(12):123028, 2017.

[26] Mariami Gachechiladze, Nikolai Miklin, and Rafael
Chaves. Quantifying causal influences in the presence
of a quantum common cause. Physical Review Letters,

243



6

125(23):230401, 2020.
[27] Joseph F Fitzsimons, Jonathan A Jones, and Vlatko Ve-

dral. Quantum correlations which imply causation. Sci-
entific reports, 5:18281, 2015.

[28] Huan-Yu Ku, Shin-Liang Chen, Neill Lambert, Yueh-
Nan Chen, and Franco Nori. Hierarchy in temporal quan-
tum correlations. Physical Review A, 98(2):022104, 2018.

[29] Karol Bartkiewicz, Antonín Černoch, Karel Lemr, Adam
Miranowicz, and Franco Nori. Temporal steering and
security of quantum key distribution with mutually un-
biased bases against individual attacks. Physical Review
A, 93(6):062345, 2016.

[30] Shin-Liang Chen, Neill Lambert, Che-Ming Li, Adam Mi-
ranowicz, Yueh-Nan Chen, and Franco Nori. Quantify-
ing non-markovianity with temporal steering. Physical
review letters, 116(2):020503, 2016.

[31] Alaor Cervati Neto, Göktuğ Karpat, and Felipe Fer-
nandes Fanchini. Inequivalence of correlation-based
measures of non-markovianity. Physical Review A,
94(3):032105, 2016.

[32] Dario De Santis, Markus Johansson, Bogna Bylicka,
Nadja K Bernardes, and Antonio Acín. Correlation
measure detecting almost all non-markovian evolutions.
Physical Review A, 99(1):012303, 2019.

[33] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and
Bassano Vacchini. Colloquium: Non-markovian dy-
namics in open quantum systems. Rev. Mod. Phys.,
88:021002, Apr 2016.

[34] Robert Pisarczyk, Zhikuan Zhao, Yingkai Ouyang,
Vlatko Vedral, and Joseph F Fitzsimons. Causal limit
on quantum communication. Physical review letters,
123(15):150502, 2019.

[35] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner.
Quantum correlations with no causal order. Nature com-
munications, 3(1):1–8, 2012.

[36] Felix A. Pollock, César Rodríguez-Rosario, Thomas
Frauenheim, Mauro Paternostro, and Kavan Modi. Non-
markovian quantum processes: Complete framework and
efficient characterization. Phys. Rev. A, 97:012127, Jan
2018.

[37] Giulio Chiribella, Giacomo Mauro DAriano, and Paolo
Perinotti. Theoretical framework for quantum networks.
Physical Review A, 80(2):022339, 2009.

[38] Jordan Cotler, Chao-Ming Jian, Xiao-Liang Qi, and
Frank Wilczek. Superdensity operators for spacetime
quantum mechanics. Journal of High Energy Physics,
2018(9):1–57, 2018.

[39] Zhian Jia and Dagomir Kaszlikowski. The spatiotem-
poral doubled density operator: a unified framework for
analyzing spatial and temporal quantum processes. arXiv
preprint arXiv:2305.15649, 2023.

[40] Tian Zhang, Oscar Dahlsten, and Vlatko Vedral.
Quantum correlations in time. arXiv preprint
arXiv:2002.10448, 2020.

[41] Harri Mäkelä. Bounds for the divisibility-based
and distinguishability-based non-markovianity measures.
Physical Review A, 91(1):012108, 2015.

244



Variational Decoupling of Quantum Dynamics
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Abstract. Decoupling of systems enables the decomposition of complex problems into simpler ones.
However, partitioning nature can be intricate, especially in the quantum world, where intuition may gener-
ally lose its sensation. While the analytical solutions are infeasible, variational quantum algorithms (VQA)
provide a promising way to tackle this issue. In this work, we propose a variational algorithm to decouple
quantum evolutions, optimizing the variational circuit to find a good approximation of the original evolu-
tion as independent evolutions on subsystems. Our algorithm can help simplify more complicated quantum
systems, which helps to reveal underlying structures and accelerate variational quantum compilation. The
efficient state-preparation and measurement procedures make our algorithm near-term quantum computer
compatible.

Keywords: Variational Quantum Algorithms, Quantum Simulation, Quantum Compilation, Decoupling

1 Introduction

The partitioning of systems plays a crucial role in the
study of nature. The separability of a system enables the
decomposition of a complex problem into simpler ones.
For instance, consider how the decomposition of forces
simplifies the description of the free-falling objects re-
vealing the breaking of symmetry due to gravity. The
separation of variables has contributed greatly to the suc-
cess of modern physics. Indeed, the attempt to decouple
physical systems is not only for theoretical interest, but
also of practical importance. The ability of decoupling
systems is reflected in the simplification of computation.
By decouple a system into smaller systems, it enables the
possibility of parallelization. The parallelization breaks a
task for large computers into tasks for smaller computers,
which can be solved simultaneously, and save the time of
the overall computation.

Fruitful results in simplifying physical systems have
been achieved by decoupling them. Take how the orbits
of Hydrogen atoms are solved via the separation of vari-
ables as an example. However, though the ability to iden-
tify integrated components is usually taken for granted
by human beings, partitioning nature itself can be con-
voluted in general. This issue is further exacerbated in
the quantum world, where intuition may generally lose
its sensation. As the complexity of quantum systems
increases, the ability to decouple quantum dynamics be-
comes more challenging.

Despite the difficulty, the problems on large quantum
systems need to be solved for deeper studies. While
the analytical methods lose their power, it is natural to
ask if the decoupling of quantum systems can be auto-
mated. Variational quantum algorithms (VQA) [1] at-
tract more and more attention as the noise-intermediate-
scale-quantum (NISQ) [10] era approaching, as they can
be achieved with shallow quantum circuits and are ro-

∗ximing001@e.ntu.edu.sg
†cr.yang@nus.edu.sg
‡ceptryn@gmail.com

bust to some noises. VQA utilizes the techniques from
classical machine learning to optimize the parameters of
quantum circuits, which aims to accomplish tasks with
limited analytical understanding of the tasks. This fast-
developing method provides a promising way to tackle
many more tasks, which includes the problem of decou-
pling quantum dynamics.

In this work, we propose a variational algorithm to
decouple quantum evolutions. An efficiently measurable
quantity is introduced to quantify the degree of decou-
pling, which is used to guide the optimization of the vari-
ational circuit. Based on such quantity, we can find shal-
low pre- and post-processing quantum circuits by opti-
mizing the variational circuits, where the original evolu-
tion can be approximated as independent evolutions on
subsystems after the processing. With this algorithm,
the variational quantum compilation [6] can be acceler-
ated and the parallelization of quantum computations
can be achieved. By pre-train the quantum circuit with
our method, it saves the number of total measurements
for the training process. Under the scope of quantum
simulation, our algorithm can also help to find the decou-
pling of the Hamiltonian of a system by tuning its basis.
We expect our method can help to simplify more com-
plicated quantum systems and reveal more underlying
structures. As the state preparation and measurements
are efficient, our method can be near-term quantum com-
puter compatible.

2 Framework

Parallel quantum computation presents a promising
avenue for accelerating quantum computations by dis-
tributing workloads across multiple quantum systems,
thereby minimizing the rounds of qubit interactions
within a quantum computer, which are considered chal-
lenging to implement [4, 13, 14, 16]. However, a generic
unitary operator UAB acting on two-party quantum sys-
tems A and B generates entanglement between the two
systems, rendering the local implementation of the uni-
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Figure 1: The task of decoupling evolutions is to find
the pre-processing operation V and post-processing op-
eration W , such that the target unitary operation U can
be decomposed as W (UA⊗UB)V , where UA and UB are
unitary operators acting on subsystems A and B respec-
tively.

tary operator on each subsystem impractical. Conse-
quently, this raises the question: can we identify a simple
pre-processing V and a simple post-processing W that
decouples the unitary operator UAB into two unitary op-
erators UA and UB acting on subsystems A and B respec-
tively? This decoupling idea is illustrated in Figure 1.

Although analytically decoupling a general evolution
may be challenging, we develop a variational hybrid
quantum-classical algorithms [9] by optimizing the pa-
rameters of the pre- and post-processing unitary opera-
tors. Indeed, we propose a cost function to measure the
separability of the unitary operator UAB , which lies at
the heart of the success of the algorithm. We propose an
efficient method to evaluate the cost function, leading to
efficiently computing the gradient of the cost function in
conjunction with the parameter shift rules. We try to find
two parameterized pre- and post- transformations W (~θ)
and V (~ϕ), employing which the target unitary operator
UAB can be decomposed as

W †UABV
† = UA ⊗ UB . (1)

We define our cost function CUsep as a measure of
the separability of the unitary operator V UABW , which
takes the average over the separability of quantum states
after applying V UABW to the product states, where

CUsep =

∫∫
Csep(U(|ψ〉〈ψ|A ⊗ |φ〉〈φ|B))d |ψ〉d |φ〉 ,

(2)
and the U is a shorthand for the unitary channel corre-
sponding to the quantum circuit. The function Csep is
defined for a bipartite quantum state ρA,B as

Csep(ρA,B) = 2− Tr
[(
ρA
)2]− Tr

[(
ρB
)2]

,

where ρA,B , ρA, ρB are the density matrices of the entire
system, subsystem A, and subsystem B, respectively. We
show that the cost function can be efficiently measured
through quantum circuits of constant depth and a linear
time classical processing, which does not require ancilla
qubits or controlled operations (theorem 1). As the cost
function is evaluated efficiently, we can also use the pa-
rameter shift rule to obtain the gradients efficiently. The
parameters are then updated with conventional gradient
descending methods, such as ADAM [7]

Theorem 1 Our cost function can be efficiently mea-
sured by preparing a bipartite initial state τA⊗τB follow-
ing a swap test with an observable O,

CUsep(U) = tr
[
U⊗2~θ,~ϕ(τA ⊗ τB)O

]
, (3)

where

1. the initial state τA⊗τB can be prepared with a con-
stant depth quantum circuit and a linear time clas-
sical preprocessing;

2. the observable O can be measured with a constant
depth quantum circuit and a linear time classical
postprocessing;

This cost function is designed as a measure of the sep-
arability of the unitary operator. A quantum evolution is
decoupled if and only if all separable states remain sep-
arable after applying the quantum evolution. Therefore,
we define the cost function to be the average separability
of all quantum states after applying the quantum oper-
ator to the separable states. Thus, for the efficiency of
measurements, we consider the Tsallis-2 entropy of the
Schmidt coefficients of the quantum state |ψAB〉 as the
measure of entanglement, which is also known as the lin-
ear entropy. The linear entropy of the subsystem A is
0 when the entire quantum state has 0 entanglement,
namely separable. Thus, we use the deviance of the lin-
ear entropy from 0 to define our quantum state separa-
bility [11]

3 Numerical Results

We demonstrate the effectiveness of our algorithm in
two settings: (1) quantum compilation that aims to de-
compose a general unitary operator into a circuit consist-
ing of elementary gates, thus having a broad application
in quantum computation and (2) quantum simulation
that mimics the behavior of another quantum system.
In the first setting, our algorithm provides an alternative
method to compile a quantum unitary operator into a
quantum circuit with a tree structure. We apply our al-
gorithm to compile both 2-qubit and 4-qubit unitary op-
erators. Our numerical results show that our algorithm
is faster than the conventional compilation method that
uses fidelity as the cost function. In the second setting,
we apply our algorithm to find a basis of a Hamiltonian
in which the Hamiltonian is separable. Our numerical re-
sults further show that our cost function is quadratically
correlated to the trace distance between the Hamiltonian
and the decoupled Hamiltonian.

3.1 Quantum Compilation

The quantum compilation is the process of convert-
ing a generic unitary operator into a set of elementary
gates that can be executed on a specific quantum comput-
ing hardware. Various variational algorithms have been
proposed to discover approximate quantum circuits for a
given target unitary operator [2, 5, 12, 6]. But minimiz-
ing these variational algorithms’ cost function, the aver-
age fidelity F̄ between target unitary operator U and the
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ansatz unitary operator V , is still challenging for large
quantum circuits due to the vanishing of both fidelity F̄
and its derivatives [8].

Our decoupling method tackles the compilation prob-
lem by breaking down learning the entire approximate
quantum circuits into discovering a sequence of smaller
quantum circuits. Specifically, we first apply our de-
coupling algorithm to find a post-processing unitary op-
erator V that UV † is approximately separable, namely
UV † ≈ UA ⊗ UB , rather than training a circuit V (~θ) to

approximate U such that UV †(~θ) ≈ I. Enlarging the op-
timum set of the optimization problem from I = IA ⊗ IB
to UA ⊗ UB reduces the complexity of training.

We demonstrate the effectiveness of our decoupling
method in compiling 2-qubit and 4-qubit unitary opera-
tors. The target 2-qubit unitary operator U is uniformly
random generated while the ansatz is a circuit that al-
lows compiling any 2-qubit unitary operator. A similar
test is also performed on a 4-qubit unitary, where the tar-
get unitary is generated by one layer of the tree ansatz
with randomly generated parameters. Both methods are
trained with ADAM [7] with the same hyper-parameters.
In both cases, the two methods are compared by the num-
ber of gradients evaluated, which is proportional to the
number of measurements made during the training. The
4-qubit case is shown in figure 2, our decoupling method
converges to a better result with fewer measurements in
general. Note that the average fidelities are not optimized
in the first step (orange region) and the intermediate step
(red region), as we are decoupling the unitary. However,
the average fidelities are optimized faster in the last step
(pink region), as we only need to train the local gates to
approximate the single-qubit unitaries.

Figure 2: Compile a 4-qubit unitary with ADAM opti-
mization. Each line is the average over 10 independent
training processes, while the regions between the worst
and best cases are shaded with the corresponding color.
The task is divided into three steps here. The first step
(orange region) decouples the unitary to 2 two-qubit sys-
tems; the second step (red region) decouples each two-
qubit system to 2 single-qubit systems; and the last step
minimizes the fidelities between each single-qubit system.

Figure 3: The relations between the reconstruction error
and the cost function CUsep. While the cost function is
minimized during the training process, the reconstruction
errors are also non-increasing.

3.2 Quantum Simulation

Quantum simulation predicts material properties by
calculating ground and excited states using qubit-based
operators, which can be implemented by quantum algo-
rithms, with variational methods enhancing results and
expanding simulatable evolutions [3, 15]. For a certain
given Hamiltonian H, it is important to know if its evolu-
tion e−itH can be decoupled into two independent parts:

V e−itHV † = e−itV HV
†
≈ e−itHA ⊗ e−itHB , (4)

where HA and HB are some local Hamiltonians acting on
subsystems A and B respectively. Thus, we apply our de-
coupling method to Hamiltonian decoupling by specify-
ing the post-processing unitary V to be the inverse of the
pre-processing unitary operator. We hope to first train a
shallow circuit V (~φ), so that V (~φ)HV †(~φ) ≈ HA+HB if
possible, where HA and HB only act on each subsystem
A and B, respectively. This can be done with our decou-
pling method by minimizing the cost function CUsep (2)

on e−itH for some random t, which is equivalent to mini-
mizing the trace distance between the target Hamiltonian
and the decoupled Hamiltonian:

DH :=
1

2

∥∥H − V †(HA +HB)V
∥∥
1
. (5)

To demonstrate how the Hamiltonians can be decou-
pled, we test the algorithm on 10 randomly generated
3-tuples (HA, HB , V ) defined on two qubits, where HA

and HB are Hamiltonians acting on a single qubit, and
V is a unitary operator that acts on the entire system.
For each 3-tuple, we add an interaction term with differ-
ent strengths. The reconstruction errors (5) are plotted
against the cost function CHsep for parameter update dur-
ing the training procedure, as shown in Figure. 3. The
figure shows that our cost function is nearly a quadratic
function of the reconstruction error, indicating that our
cost function (2) captures the reconstruction errors well
for the purpose of decoupling the dynamics.
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Abstract. We analyse the performance of quantum circuits and general processes to transform k uses
of an arbitrary unitary operation U into another unitary operation f(U). When the desired function f a
homomorphism, i.e., f(UV ) = f(U)f(V ), it is known that optimal average fidelity is attainable by parallel
circuits and indefinite causality does not provide any advantage. Here we show that the situation changes
dramatically when considering anti-homomorphisms, i.e., f(UV ) = f(V )f(U). In particular, we prove that
when f is an anti-homomorphism, sequential circuits exponentially outperform parallel ones and processes
with indefinite causal order could outperform sequential ones. We presented explicit constructions on how
to obtain such advantages for the unitary inversion task f(U) = U−1 and the unitary transposition task
f(U) = UT . We also stablish a one-to-one connection between three apparently different problems: unitary
estimation, parallel unitary transposition, and parallel unitary inversion, allowing one to easily import
results from one field to the other. Finally, we apply our results to several concrete problem instances and
present a method based on computer-assisted proofs to show optimality.

This submission is mainly based in Ref. [1], Quantum 6, 679 (2022).

Keywords: Quantum higher-order operations, Quantum Circuits, Quantum Supermaps, Quantum Combs,
Quantum Indefinite causality

1 Transforming unitary quantum opera-
tions

We now present the main task analysed in this paper.
Let f : SU(d) → SU(d′) be a function which transforms
unitary operators to unitary operators and SU(d) is the
group of unitary d-dimensional operators with determ-
inant one (special unitary group of dimension d). We
consider a scenario where one has access to k uses of an
arbitrary d-dimensional unitary quantum operation de-
scribed by an operator U ∈ SU(d). Our goal is to design
a universal quantum circuit or a quantum process which
approximates the transformation U⊗k 7→ f(U) for any
U ∈ SU(d).

Main Problem 1 Given a function f : SU(d) →
SU(d′), find the optimal parallel/sequential quantum cir-
cuit or general superchannel which approximates the trans-
formation

U⊗k 7→ f(U), ∀U ∈ SU(d) (1)

As a figure of merit, we quantify our approximations
by means of average fidelity, which for several cases con-
sidered in this work, coincides with the worst-case fidelity
and with the optimal white noise robustness. This work
complements previous research which studied probabil-
istic but exact transformations between unitary quantum
operations [2, 3], scenario which has similarities and dif-
ferences when compared to the deterministic non-exact
analysed here.

∗Ebler.Dan@gmail.com
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2 Parallel strategies are optimal for the
homomorphic case

In Ref. [4] the authors show that when f is a homo-
morphism, every superchannel admits a parallel imple-
mentation without decreasing the average fidelity. In
other words, sequential strategies and even general indef-
inite causal order strategies cannot outperform parallel
ones.

3 Sequential strategies provide exponen-
tial advantage in the anti-homomorphic
case

We now consider the anti-homomorphic case, where
the function f respects f(UV ) = f(V )f(U), case which
covers unitary inversion and unitary transposition. We
start by showing an interesting one-to-one connection
between parallel unitary inversion, parallel unitary trans-
position, and the problem of estimating unitary operations
uniformly sampled in SU(d).

Theorem 1 For any dimension d, the optimal average fi-
delity for parallel unitary inversion, parallel unitary trans-
position, and unitary estimation are equivalent and respect
the upper bound

⟨F ⟩par ≤ 1− 1

(k + 3)2
. (2)

For qubits, the optimal protocol attains

⟨F ⟩d=2
par = cos2

( π

k + 3

)
. (3)

249



Figure 1: Three different strategies to transform k = 2 uses of an unknown unitary operation U into f(U). a) parallel
circuit, E and D stand for fixed operations (encoder and decoder); b) sequential circuit with multiple encoder operations;
and c) general processes acting on U may not have a definite causal order. Here, we analyse the performance of these
strategies for different functions f .

Figure 2: If the function f respects f(UV ) = f(U)f(V ), every protocol that transform k copies of U into f(U) can be
made by a parallel circuit with the same average fidelity [4]. Examples of functions respecting this property are unitary
complex conjugation f(U) = U∗ and unitary cloning f(U) = U ⊗ U .

Figure 3: Every parallel strategy for unitary transposition and unitary inversion can be implemented by a prepare-and-
measure strategy without changing its average fidelity performance. Additionally, the performance of parallel unitary
transposition and parallel unitary inversion are both equivalent to the performance of estimating unitary quantum
operations uniformly sampled in SU(d).

Figure 4: Optimal average fidelity for deterministic protocols transforming k uses of U into its transpose and into its
inverse.The values for k = 2 were obtained via numerical SDP optimisation and rigorously certified up to the fourth
decimal digit with a computer assisted proof.
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We now show that there exists a sequential quantum
circuit in which the average fidelity approaches one expo-
nentially in the number of uses k.

Theorem 2 There exists an explicit sequential quantum
circuit such that unitary inversion can be implemented
with probability

⟨F ⟩inv
seq ≥ 1−

(
1− 1

d2

)⌊ k+1
d ⌋

. (4)

There exists an explicit sequential quantum circuit such
that unitary transposition can be implemented with prob-
ability

⟨F ⟩trans
seq ≥ 1−

(
1− 1

d2

)⌈ k
d ⌉

. (5)

4 Computational results and the advant-
age of indefinite causality

We also present a computer assisted proof methods
based on semidefinite programming which can be used
to analyse parallel, sequential, and the general scenario.
With this method, we can find explicit upper and lower
bounds on the optimal averaged fidelity and show that
indefinite order processes [5, 6] outperform sequential
strategies in some scenarios.
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Abstract. We introduce the National Quantum-Safe Network, which is a nationwide collaborative field-
deployed testbed aimed at demonstrating quantum-safe cryptography solutions. With several key aspects
including testbed, security evaluation, standardisation, and ecosystem building, the network aims to achieve
a vendor-neutral, multi-protocol platform that complies with international standards.

1 Introduction

As the quantum technology landscape evolves, it is
difficult to predict when powerful quantum computers
capable of breaking current cryptography will be avail-
able. Thus, applications and communication infrastruc-
ture handling high-value assets or requiring long-term
protection needs to be equipped with quantum-safe se-
curity enhancements as soon as possible. Quantum Key
Distribution (QKD), a tamper-evident secure communi-
cation technique based on quantum physics, whose se-
curity is independent of computation power, could po-
tentially fulfil such requirement. In recent years, various
QKD networks have been deployed worldwide [1, 2, 3].
The National Quantum-Safe Network (NQSN) in Sin-
gapore is a nationwide collaborative platform and a
field-deployed testbed aimed at demonstrating quantum-
safe cryptography solutions. The NQSN testbed, which
links up academic, public and private members, tar-
gets trials for QKD network, augmented with the Post-
Quantum Cryptography (PQC) technologies. PQC refers
to mathematics-based cryptographic algorithms (soft-
ware) which are believed to be secure against known at-
tacks from quantum computers.
As shown in Figure 1, NQSN is a star type QKD net-

work with the central node connected to the remote nodes
across the island from east to west, and consists of four
logical layers [4]: quantum layer, key management (KM)
layer, network management layer and application layer
(Figure 2). Beyond the terrestrial metropolitan area
network setting, a satellite-based QKD is planned to be
launched to serve as a moving node in the future phase.
NQSN can be further linked up with other global QKD
networks via the satellite node.

∗jy.haw@nus.edu.sg
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Figure 1: NQSN star-type QKD network.

2 Quantum Layer

In the quantum layer, commercial ready and produc-
tion grade QKD devices will be deployed to connect the
central node with each remote nodes, via the existing pro-
duction grade fibre infrastructure. Different QKD pro-
tocols implementations from various QKD vendors will
be considered with regard to the distances and losses
featured by each point-to-point fibre link. The candi-
date protocols include BB84, coherent one way (COW),
continuous-variable (CV) and entanglement-based (EB)
QKD protocols. Under such operation, each pair of the
QKD devices continuously outputs QKD keys to the KM
layer, which are established over the quantum channel
(fibre) and the classical channel (fibre or Ethernet). In
this layer, it aims to achieve one of the main goals of the
NQSN testbed - to serve as a vendor-neutral platform
that demonstrates multi-QKD protocols, supporting dif-
ferent quantum channel conditions.
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Figure 2: Different layers of NQSN. From Bottom to Top:
Quantum Layer, Key Management Layer, Network Man-
agement Layer, Application Layer

3 Key Management Layer

In the KM layer, a high performance, customized, cen-
tralized key manager system will be installed in the cen-
tral node and enable interoperability, connectivity, scal-
ability of the QKD network. Remote key managers will
also be paired with QKD devices in the remote nodes,
connecting with the central node via KM links. With
the star type configuration, the centralized key manager
features a multi-input and multi-output interfaces. The
input interface is to receive QKD keys provided by differ-
ent QKD devices in the quantum layer [5]. The output
interface is to supply keys to applications upon request
by the application layer and network management layer
(e.g. ETSI GS QKD 014 [6]). These key managers also
process and store the received QKD keys into the formats
that are required by specific applications. The key relay-
ing and routing functions in the central key manager fur-
ther enables symmetric key establishments between any
of the two nodes in the network via KM links. Integra-
tion of PQC solutions such as hybrid key combination of
QKD key and PQC exchanged key is among the consid-
ered architecture in the KM layer.

4 Network Management Layer

The network management layer is responsible for con-
trolling and managing network resources across different
nodes of the NQSN testbed network. A centralized net-
work management server is in charge of the controlling
and managing functions, which will be installed in the
central node and hold a global view of the entire QKD
network operation. The server gives controlling instruc-
tions to the quantum layer and KM layer to create the
key delivery path across network nodes and to config-
ure components such as switches, servers and QKD de-
vices. The managing functions consist of monitoring and
collecting performance parameters, detecting and report-
ing any fault events, collecting event logs for networking
analysis from the quantum layer and the KM layer.

5 Application Layer

The application layer in the NQSN QKD network acts
as an open platform that allows for the integration de-
ployment of different applications at various layers of the
Open Systems Interconnection (OSI) model. Some ex-
amples include physical encryption in the physical layer,
link encryptor in the data link layer and IPSec in the net-
work layer. These applications consume keys provided by
the KM layer, via supported interfaces such as ETSI GS
QKD 014 [6]. Different reference use cases and trials are
explored for field trials, interoperability, and performance
evaluation of quantum-safe technologies.

6 Quantum Security Lab

Along with the NQSN testbed, a testing lab dedicated
to testing, evaluation and certification of QKD devices
and their supporting units is established. The main ob-
jective of the lab is to verify the functionality and the
security of the QKD network, and formalize certification
framework towards industry applications of QKD tech-
nologies. Main activities include (i) research on quan-
tum hacking and countermeasures, (ii) development of
functional, performance and security evaluation method-
ologies, (iii) testing tools developments and building up
certification capabilities with industry and academic labs.
Lab facilities are also co-located within some of the nodes,
which open possibilities for novel remote testing and eval-
uation methods on the quantum layer and other layers
under a network configuration.

7 Standardisation

A quantum communication networks task force under
local regulatory authority is also formed, with members
from governmental agencies and industry partners. The
main objective of the task force is to develop local stan-
dards to facilitate the deployment, operation, and adop-
tion of the QKD technologies in different domains. The
standardisation developments will also support certifica-
tions of QKD devices and other entities in the QKD net-
work.

8 Reference Use Cases

One example reference use case is a demonstration of
direct data centre interconnect (DCI) secured by QKD-
keys, as shown in Fig. 3. In this demonstration, which
was performed over two physically separated commer-
cial data centres of ST Telemedia Global Data Cen-
tres (STT-GDC), we confirmed the feasibility of oper-
ating QKD systems (ID Quantique Cerberis XGR) over
a production-grade fibre network (Netlink Trust). Dur-
ing the field test of the QKD devices, the secret key rate
and the quantum bit error rate (QBER) are relatively
stable and continuous over a fibre link of around 20 km.
As shown in Figure 3, an average secret key rate of 2.39
kbps and QBER of 1.90% is achieved. A total of more
than 2 Gbits of AES-256 keys are accumulated, with the
rates of around 690 keys per minutes. A subset of the
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Figure 3: (Left) A quantum secured data transfer utilizing pairs of symmetric keys generated from QKD devices.
(Right) The secret key rate over the trial period.

keys is used by a software-based Quantum Virtual Pri-
vate Network (Q-VPN), which consumed the QKD sym-
metric keys to establish a VPN tunnel using QKD keys
for quantum-secured file transfer.

9 Conclusion

The Singapore’s NQSN focuses on developing a net-
work that addresses several scopes, including multiple
vendors, standards compliance and infrastructure re-
quirements, and various implementations of QKD pro-
tocols. In particular, the NQSN seeks to significantly
improve quantum-safe technologies by enhancing test-
ing and assessment capabilities, promoting the broader
availability of quantum-safe technology, and increasing
awareness about it. End-users and stakeholders can take
advantage of integrating quantum-safe security applica-
tions and solutions, catalysing future innovations and
quantum-related products and services on a regional and
global level.
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Abstract. In this paper, we explore the relationship between the width of a qubit lattice constrained in
one dimension and physical thresholds for scalable, fault-tolerant quantum computation. To circumvent
the traditionally low thresholds of small fixed-width arrays, we deliberately engineer an error bias at the
lowest level of encoding using the surface code. We then address this engineered bias at a higher level
of encoding using a lattice-surgery surface code bus that exploits this bias, or a repetition code to make
logical qubits with unbiased errors out of biased surface code qubits. Arbitrarily low error rates can then be
reached by further concatenating with other codes, such as Steane J7, 1, 3K code and the J15, 7, 3K CSS code.
This enables a scalable fixed-width quantum computing architecture on a square qubit lattice that is only
19 qubits wide, given physical qubits with an error rate of 8.0 × 10−4. This potentially eases engineering
issues in systems with fine qubit pitches, such as quantum dots in silicon or gallium arsenide.

Keywords: Quantum Error Correction, Fault Tolerance, Surface Code, Lattice Surgery

Quantum processor architectures have evolved signifi-
cantly since their first conception, just over a quarter of
a century ago. They started with early discussions on
how to build basic gates with two-level systems and have
evolved into recent plans for machines with millions of
physical qubits. Architecture design must work around
the peculiarities of their constituent qubits. Physical lim-
itations on qubit size, gate speed, decoherence rates, tem-
perature, control wiring, and infrastructure all have a
major effect on the potential scalability of a given archi-
tecture.

Quantum dot qubits in silicon and gallium arsenide
(GaAs) present interesting constraints when investigat-
ing quantum architecture. They have demonstrated rel-
atively low decoherence rates [14, 16], high operation
temperature [15], and high gate speeds [5]. Signifi-
cantly, they offer the potential of high qubit density and
ease of manufacture for large systems on a single wafer
[12, 16, 1]. Yet, the size and small qubit pitch that could
allow for high qubit density come with significant draw-
backs.

Running control wires into gates that have qubit spac-
ings on the order of nanometers in a two-dimensional
geometry is extremely challenging. This is especially im-
portant because architectures using the highest threshold
quantum error correcting codes, such as the surface or
honeycomb codes, tend to assume two-dimensional lat-
tices of unrestricted size. In response, quantum archi-
tectures that utilize three-dimensional fabrication have
been proposed [13], even though the expected fabrica-
tion complexity is formidable. One approach to solving
this is to restrict the width of the array, which limits the
interconnect density because the system grows only in

∗alexis@alexisshaw.com

one dimension.
The idea of minimizing the width of a qubit array is

certainly not new. Since the early days of fault tolerance,
people have considered fixed or minimal-width arrays of
qubits. However, previous approaches have always re-
quired undesirable tradeoffs, either increasing qubit re-
quirements or requiring long-distance qubit interactions.
For example, CSS codes were leveraged in the paper by
Veldhorst et. al. [11], and the subsequent threshold was
extremely small (less than 10−5) due to the costs involved
in interacting non-adjacent qubits in a nearest-neighbour
array. Other examples include specific investigations into
linear nearest neighbours in silicon [7] with a threshold
of about 10−4 and the use of resonators to fold a square
lattice into a bi-linear array [8]. Unfortunately, the lat-
ter approach required long resonators for interaction be-
tween qubits, and these resonators had unknown manu-
facturability and performance in spin systems given their
length and complexity.

In this paper, we present a method of reducing the ar-
ray width without requiring a lower error threshold or
long-distance qubit interactions. Instead, we propose a
coding structure that provides good reductions of width
for realistic error rates, with an array width as low as
19 qubits for a physical error rate of 8 × 10−4. It lo-
cally has the same nearest neighbour interactivity and
the same threshold error rate as the surface code. Of
course, this comes at the cost of significantly more qubits;
however, this may be an acceptable trade-off for certain
technologies, such as silicon quantum dots, where qubits
are hoped to be relatively cheap.
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Technical Contributions
The primary technical contribution of this work is to

circumvent the traditionally low thresholds of small fixed-
width arrays by engineering, not exploiting, an error bias
at the lowest level of encoding using the surface code.
We then address this engineered bias at a higher level of
encoding using codes explicitly tailored for highly-biased
noise. This allows us to reduce the error enough that
another code can be concatenated over the top of this
error correction scheme.

We consider two broadly different approaches, illus-
trated in Figure 1. In the first, we describe and analyze
a fault-tolerant lattice surgery-based data bus inspired
by the scheme of Herr et. al. [6] to implement higher-
level codes above the surface code. key to implementing
this bus with high efficiency is the engineered noise bias.
In the second, we construct our higher-level codes on en-
coded data qubits with an engineered bias. We develop
the required data and theory to describe these schemes
and evaluate the relative trade-offs between array width
and qubit density given a fixed target logical error rate
and varying physical error rates.

The data-bus lattice surgery scheme measures a logi-
cal parity in the surface code using narrow surface code
patches. We show the correctness of this approach, and
evaluate its performance, including the minimum width
and time required to measure that parity and the inter-
action between this and the error rates of square surface
code patches of varying code distances.

We evaluate the performance of the the data bus
scheme when concatenated with the Steane J7, 1, 3K and
the J15, 7, 3K CSS codes when using the flag qubit compi-
lation approach of Reichardt [3, 2, 10, 4, 9]. To do this, we
design a table-based fault-tolerant decoder for different
flagged qubit extraction circuits, simulate the behaviour
of these codes with varying physical error rates, and then
extract an equation of fit for each code. We also extract
a pseudo threshold of p ≈ 4.52 × 10−5 for the SteaneJ7, 1, 3K code and p ≈ 1.25 × 10−6 for the J15, 7, 3K CSS
code.

We then describe a complete compilation approach to
concatenate multiple levels of both the Steane J7, 1, 3K
and J15, 7, 3K CSS codes on top of the surface code when
using the surface code bus to implement two-qubit inter-
actions. We evaluate several approaches to compile these
multiply concatenated circuits and choose the optimal
approach for each number of levels of concatenation. We
then calculate the relationship between the performance
of the concatenated codes and the number of levels of
concatenation for a target logical error rate of 10−15,
which was chosen as the approximate rate required to
factor 2048bit numbers using Shor’s algorithm. An ex-
cerpt of this performance evaluation is summarised in
Table 1.

For the second scheme, we examine the possibility of
using the rectangular patches to engineer a logical er-
ror bias in the data qubit patches. These are concate-
nated with the repetition code to create a memory with
unbiassed errors and high enough logical fidelity that a

nearest-neighbour implementation of a CSS code can be
directly concatenated above it. A scheme is designed to
measure the syndromes of two interlaced repetition codes
that sit above the rectangular patch qubits assuming two
rows of patches. This is used, along with our simula-
tions on the performance of rectangular qubit patches,
to evaluate the performance of this concatenated surface
code, giving error rates and qubit counts for differing
widths and lengths of rectangular surface code patches.
We then determine the minimum widths required to ex-
ceed the pseudo-threshold for the Steane J7, 1, 3K code
implemented on a logical nearest neighbour architecture
that uses swap networks for two-qubit interactions and
show that an array 27 qubits wide is sufficient for a phys-
ical error rate of 1.2 × 10−3, an array 19 qubits wide is
sufficient for an error rate of 8 × 10−4, and an array 11
qubits wide is sufficient for an error rate of 2.5× 10−4.

Technical Version
The complete technical version of this paper can be

found at https://arxiv.org/abs/2212.01550
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Figure 1: Diagram describing the two schemes examine for reducing bus width
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On circuit complexity of quantum access models for encoding classical

data

Xiao-Ming Zhang1 ⇤
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Abstract. In quantum computing, data encoding is usually treated as an oracle, but its implementation
is crucial in practice. We open the black-boxes of some typical access models. For sparse matrix encoding,
the circuit complexity lower bound is polynomial with respect to matrix dimension, and a family of nearly-
optimal construction is proposed. The circuit complexity is reduced exponentially if the matrix is the
linear combination polynomial terms of e�cient unitaries. All of our protocols are highly flexible, enabling
trading circuit depth to ancillary qubits. Our methods are based on our improved state preparation and
other operations that are of independent interest.

Keywords: block-encoding, sparse access models, circuit complexity optimization, state preparation

1 Introduction

The power of quantum computing is commonly stud-
ied in the framework of oracle based computation [1].
More specifically, a function f(x) representing the classi-
cal data of interest is encoded by unitary Uf , which serves
as an oracle during computation. To have indications to
quantum advantages, the number of queries to Uf of a
quantum algorithm is then compared to the number of
queries to its classical counterpart of classical algorithms.
Treating access models as black-boxes is convenient,

but the actual circuit complexity of an algorithm depends
on the cost of each query. We open the black-boxes of
some commonly used quantum access models and study
how they can be constructed with Cli↵ord+T gates. For
a general 2n = N dimensional sparse matrices, we con-
sider its sparse-access input model (SAIM) [2–8, 12] and
block-encoding [14, 15]. We provide both upper bound
and lower bound of the circuit complexity. In particu-
lar, we show that for both access models, the gate count
lower bound increase almost linearly with the matrix di-
mension, even under the sparsity assumption. We de-
velop a family of construction algorithms with tunable
qubit number ranging from ⌦(n) to O(N). In the full
range of qubit number, we achieve nearly optimal cir-
cuit complexity. We then show that when the matrix
can be represented by the linear combination of polyno-
mial number of unitaries that can be implemented with
polynomial-size quantum circuit, the block-encoding can
be realized e�ciently.
Our access model construction is based on the opti-

mized realizations of some subroutines that are of inde-
pendent interest, including quantum state preparation,
select oracle for Pauli strings, sparse Boolean functions.
For all operations listed, we obtained improved or at least
comparable circuit complexities compared to the best-
known realizations, and the protocols allow tunable qubit
numbers.

⇤xmzhang93@pku.edu.cn

2 Sparse-access input model

Let N = 2n, we consider a sparse matrix H 2 CN⇥N

with at most s = O(1) nonzero elements at each row and
column. Let Hx,y be the value of the elements at the
xth row and yth column. Each Hx,y is a d-digit integer
(d = O(1)). We consider two unitaries OH , OF , which
satisfies

OH |x, yiidx|ziwrd = |x, yiidx|z �Hx,yiwrd, (1a)

OF |x, kiidx = |x, F (x, k)iidx, (1b)

where F (x, k) is the column index of the kth nonzero
element in row x. Due to its simplicity and general-
ity, Eq. (1) becomes one of the standard access models
in quantum computing, which is usually assumed to be
available in processing classical data.

2.1 circuit complexity lower bound

Before we discuss the access model construction, we
first study the lower bound of the circuit complexity.
We first analyze the capacity of a quantum circuit with
bounded resource, i.e. the number of unique unitaries
that can be constructed with fixed number of elementary
gates (or circuit depth and qubit number). Secondly, we
analyze the size of the access model, i.e. the number
of unique unitaries required to approximate the access
model with arbitrary parameters. The circuit complex-
ity can then be estimated by comparing the capacity of
a quantum circuit and the size of the access model.

The capacity of quantum circuits without ancilla has
been studied in Section 4.5.4 of [17]. We generalize the
discussion to the scenarios allowing ancillary qubits. We
assume that a finite two-qubit elementary gate set Gele is
given, with g ⌘ |Gele| = O(1). We require that all ancil-
lary qubits are uncomputed at the end of the circuits, so
the unitaries should be in the form of Udat ⌦ Ianc, where
dat represents the data subspace, and anc represents the
subspace containing all ancillary qubits. We have the
following result.

Lemma 1 Let GC be the set containing all unitaries in
the form of Udat ⌦ Ianc that can be constructed with C
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elementary gates in Gele and unlimited ancillary qubits.
Then, we have log |GC | = O ((C log(C + n))).

Lemma 2 Let G0
nanc,D

be the set containing all unitaries
in the form of Udat ⌦ Ianc that can be constructed with
nanc ancillary qubits and D circuit depth. Then, we have
log

��G0
nanc,D

�� = O (D(n+ nanc)).

Lemma. 1, 2 are general and useful for not only the
access model studied in this work. Based on Lemma. 1, 2,
we have

Theorem 3 Given an arbitrary finite two-qubit elemen-
tary gate set Gele. Let nanc, D and C be the number
of ancillary qubits, circuit depth and total number of
gates in Gele required to approximate the SAIM for an
arbitrary sparse H to accuracy " < 1. Then, we have
(n+ nanc)D = ⌦(2nn) and C = ⌦(2n).

Theorem. 3 implies that a general SAIM can not be
constructed with subexponential number of quantum
gates. It is possible to trade ancillary qubit number for
the circuit depth. However, the space and time complex-
ities can not achieve sub-exponential scaling simultane-
ously.

2.2 Construction of SAIM

From the lower bound results above, there is little
hope to have exponential quantum advantage when us-
ing SAIM. However, studying the construction of SAIM
still has its great value. First of all, SAIM is represents
the most general for of sparse classical data. It is in fact
very rare to have structured classical data that can be
encoded exponentially faster. Second, polynomial quan-
tum speedup with respect to the matrix dimension N is
still expected.

The construction of OH is straightforward and we refer
the readers to the technical version.

The construction of OF can be realized in three
steps. We introduce an n-qubit ancillary register
(denoted as anc). We first perform the transfor-
mation |x, kiidx|0ianc ! |x, kiidx|F (x, k)ianc. Then,
we apply swap gates between the ancillary register
and half of the index register which encodes k, i.e.
|x, kiidx|F (x, k)ianc ! |x, F (x, k)iidx|kianc. Finally,
we perform the transformation |x, F (x, k)iidx|kianc !
|x, F (x, k)iidx|0ianc. The total circuit complexity is as
follows.

Theorem 4 Given nanc ancillary qubits where ⌦(n) 6
nanc 6 O(Nnds), OH can be constructed with O(Nnds)

count and O
⇣
Nnds lognanc

nanc

⌘
depth of Cli↵ord+T gates.

Given nanc ancillary qubits where ⌦(n) 6 nanc 6
O(Nns log s), OF can be constructed with O(Nns log s)

count and O
⇣
Nns log s lognanc

nanc

⌘
depth of Cli↵ord+T

gates.

Compared to the circuit complexity lower bound ob-
tained in Theorem. 3, our protocol has nearly optimal
circuit complexities with respect to the matrix dimen-
sion up to a factor of n.

3 Block encodings

Given an N -dimensional matrix H 2 CN⇥N ,
we call unitary U a block encoding of H if
↵ (h0nanc |⌦ IN )U (|0nanci ⌦ IN ) = H for some ↵ > 0,
and IN is the N -dimensional identity. In practice, we
may consider approximated construction of the block
encoding. More specifically, we call unitary Ũ an
(↵, nanc, ")�block-encoding of H if

���H � ↵ (h0nanc |⌦ IN ) Ũ (|0nanci ⌦ IN )
��� 6 " (2)

for some normalization factor ↵ > 0. Throughout our
manuscript, k · k represents the Frobenius norm, i.e.
Schatten 2-norm of either matrices or vectors. For a gen-
eral H, the construction of its block-encoding requires
⌦(Poly(N)) gate count. This is true even for sparse H.

On the other hand, when H has some other structures,
the resource may be significantly reduced. In particular,
we consider H in the form of linear combination of uni-
taries (LCU)

H =
P�1X

p=0

↵pup, (3)

where up are n-qubit unitaries that can be imple-
mented with polynomial-size quantum circuit, and P =
O(poly(n)). In particular, the linear combination of
Pauli strings

H =
P�1X

p=0

↵pHp (4)

will be studied in details. Here, ↵p > 0, P > 1, Hp =N
n

l=1 Hp,l, and Hp,l 2 {I,X, Y, Z} are single-qubit Pauli
operators. Eq. (4) is important as it corresponds to the
Hamiltonian of quantum systems including the spin and
molecular systems.

3.1 Construction of LCU-based Block-encoding

We now discuss the construction of the block-encoding
of Eq. (3) and Eq. (4) in Sec. 2. Without loss of general-

ity, we assume that log2 P is an integer, and
P

P�1
p=0 ↵p =

1.
We define ↵ = [↵1, · · · ,↵P ] and

|↵i =
PX

p=1

p
↵p|pi. (5)

Let G|↵i be the state preparation unitary for |↵i, and
we define G ⌘ G|↵i ⌦ I2n . We then define a Select oracle
corresponding to Eq. (3) as

Select(up) =
P�1X

p=0

|pihp|⌦ up. (6)
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Because

(h0a|⌦ I2n)G†Select(up)G (|0ai ⌦ I2n) = H, (7)

G†Select(up)G is a block-encoding of H with normaliza-
tion factor ↵ = 1 [14]. The constructions of LCU-based
block-encoding is then reduced to the constructions of
quantum state preparation and Select oracle, both of
which can be constructed with polynomial-size quantum
circuits. So we have.

Theorem 5 The block-encoding of H defined in
Eq. (3) can be approximated to arbitrary accuracy with
polynomial-size quantum circuits of Cli↵ord+T gates.

The exact circuit complexity of block-encoding de-
pends on the specific form of up. We take the LCU for
Pauli strings (Eq. (4)) as an example. The result is as fol-
lows, where (nanc, ")-block-encoding is the abbreviation
of (1, nanc, ")-block-encoding.

Theorem 6 With nanc ancillary qubits where ⌦(n) 6
nanc 6 O(NP ), the (nanc, ")-block-encoding of H defined
in Eq. (4) can be constructed with O (P (n+ log(1/")))

count and Õ
⇣
Pn log(1/") lognanc

nanc

⌘
depth of elementary

gates in GClf+T , where Õ suppresses the doubly logarith-
mic factors of nanc.

Theorem. 6 is based on our improved protocols for
quantum state preparation (Theorem. 7) and Select(Hp)
(Theorem. 8), which are introduced in the following sec-
tion.

4 Some useful subroutines

The construction of access models introduced above
are based some subroutines, such as quantum state
preparation, Select(Hp), and sparse Boolean memory.
Their constructions are of independent interest.

4.1 Quantum state preparation

Give an n-qubit quantum state | i, we say that a (n+
nanc) qubit unitary G| i is a quantum state preparation
unitary with accuracy " for | i if

G| i(|0ni ⌦ |0nanci) = | ̃i ⌦ |0nanci (8)

for some
���| ̃i � | ̃i

��� 6 ". The quantum state prepa-

ration problem has been studied extensively [9–11, 13,
16, 18–23]. However, all existing algorithms have either
O(Npoly(n)) or O(Npolylog(n)) Cli↵ord+T gate count
scaling with respect to N . We provide a family of im-
proved quantum state preparation protocols with tun-
able ancillary qubit number. The result is summarized
as follows.

Theorem 7 With nanc ancillary qubits where ⌦(n) 6
nanc 6 O(2n), an arbitrary n-qubit quantum state can
be prepared to precision " with O(N log(1/")) count and

Õ
⇣
N log(1/") log(nanc)

nanc

⌘
depth of Cli↵ord+T gates, where

Õ suppresses the doubly logarithmic factors of nanc.

To our best knowledge, Theorem. 7 is the first result
achieving linear scaling of Cli↵ord+T count with respect
to N , and this is applied for arbitrary space complexity.
The circuit depth lower than and comparable to the best-
known results for nanc = O(n) [20] and nanc = O(N) [11].
Moreover, compared to [20] which also study the space-
time trade-o↵ of state preparation, our method improves
the circuit depth scaling for a factor of Õ(nanc/ log nanc).

4.2 Select oracle for Pauli strings

Let Hp =
N

L

l=1 hx,l, where p 2 {0, 1, · · · , 2m � 1} and
hx,l 2 {I,X, Y, Z}. The select oracle for Pauli strings is

Select(Hx) =
2m�1X

x=0

|pihp|⌦Hp. (9)

We have the following result.

Theorem 8 With nanc ancillary qubits where (m+L) 6
nanc 6 O(ML), Eq. (9) can be realized with O(ML)

count and O
⇣
ML lognanc

nanc

⌘
depth of Cli↵ord+T gates.

Compared to the result in Ref [8] with nanc = m,
our protocol we reduces the circuit depth for a factor
of O( lognanc

nanc
) while maintaining the gate count and qubit

number scaling.

4.3 Sparse Boolean memory

We consider a sparse Boolean function B : {0, 1}n !
{0, 1}ñ, which has totally s input digits q satisfying
B(q) 6= 0 · · · 0. Given an n-qubit index register (denoted
as idx) and a ñ-qubit register (denoted as wrd), we de-
fine the sparse Boolean memory Select(B) as a unitary
satisfying

Select(B)|qiidx|ziwrd = |xiidx|z �B(x)iwrd. (10)

We have the following result.

Theorem 9 With nanc ancillary qubits where ⌦(n) 6
nanc 6 O(nsñ), Select(B(q)) can be realized with O(nsñ)

count and O
⇣
nsñ lognanc

nanc

⌘
depth of Cli↵ord+T gates.

5 Conclusions

We have studied the circuit complexities of encoding
sparse matrices and the block-encoding of LCU. We show
that the circuit complexity lower bound for encoding
sparse matrix is polynomial with respect to the matrix di-
mension, and provide a nearly-optimal construction pro-
tocol. For LCU-based block-encoding, we develop a con-
struction protocol based on the improved implementation
of quantum state preparation and select oracle for Pauli
strings. Our protocols are based on Cli↵ord+T gates and
allow tunable ancillary qubit number.

The results obtain here are useful for determining the
concrete circuit complexities of many algorithms that
have been studied in the framework of query access
model.
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Abstract. For a target system and apparatus described by quantum theory, the quantum no-
programming theorem indicates that a family of states (called programs) in the apparatus implements
distinct unitaries to the target system through a global unitary only if the programs are orthogonal to each
other. In this study, generalizing the programming scheme to generalized probabilistic theories (GPTs),
we derive a similar theorem to the quantum no-programming theorem. We furthermore reveal that pro-
gramming of reversible dynamics is related closely to a curious structure named a quasi-classical structure
on the state space. Programming of irreversible dynamics (channels) in GPTs is also investigated.

Keywords: quantum foundations, generalized probabilistic theories, no-programming theorem

1 Introduction
(The full paper of this study is [1].) In the field of

quantum information, implementing unitary dynamics
to a target system is one of the most important tasks.
Nielsen and Chuang proposed implementing unitary dy-
namics by means of “programmable gate array” [2]. In
their scenario, an apparatus was considered besides the
target system, and the desired unitaries on the target sys-
tem were implemented by controlling states of the appa-
ratus called “programs” and operating a global unitary to
the total system. It could be marvelous if there exist an
apparatus and a global unitary that realize an arbitrary
number of unitaries on the system, but such a protocol
was proved to be impossible: N unitaries on the target
system can be programmed only if a distinguishable set
of N states in the apparatus are used as the programs (the
quantum no-programming theorem).

This study aims at investigating how general such a
relation is between the possibility of programming uni-
tary (reversible) dynamics and programs. We extend the
programming scheme from quantum theory to general-
ized probabilistic theories (GPTs) [3, 4, 5], which are
the most general framework of physics. It is proved sim-
ilarly to the quantum case that a pair of distinct reversible
dynamics in the system can be implemented only if the
corresponding programs in the apparatus are perfectly
distinguishable. We also study whether an apparatus can
program a fixed number of reversible dynamics on an ar-
bitrary target system. We reveal that a curious structure
(named a quasi-classical structure) in the apparatus that
quantum theory does not have enables the programming
on any target system. Another extension of the quantum
setting is also discussed on the scenario of programming
irreversible dynamics, i.e., channels.

∗ryo.takakura@yukawa.kyoto-u.ac.jp

2 Generalized probabilistic theories (GPTs)
- Preliminaries. GPTs are physical theories where
probabilistic mixtures of states and effects are possible.
Mathematically, a GPT is a pair of sets (Ω,E ), where

• Ω is a compact convex set in a real and finite-
dimensional Euclidean space V such that its linear
hull span(Ω) is identical with V and its affine hull
aff (Ω) does not contain the origin O of V ;

• E is the set of all elements e in the dual space V ∗

of V (V ≃V ∗) such that e(ω) ∈ [0,1] for all ω ∈ Ω
(we often write e(ω) also as ⟨e,ω⟩);

• in particular, there is an element u ∈ E such that
u(ω) = 1 for all ω ∈ Ω.

Here we made several assumptions such as the finite di-
mensionality of V and the compactness of Ω for math-
ematical simplicity. The set Ω is called the state space
of the theory and its elements are called states. We de-
note by Ωext the set of all extreme points of Ω. Elements
in Ωext and Ω\Ωext are called pure and mixed states re-
spectively. On the other hand, the set E is called the
effect space and its elements are called effects. The ef-
fect u ∈ E is called the unit effect and we call a family of
effects {ex}x∈X an observable if ∑x∈X ex = u.

Example 1 (quantum theory as a GPT) From the per-
spective of GPTs, a quantum theory with the Hilbert
space Cd (d < ∞) is expressed as (S (Cd),E (Cd)),
where S (Cd) and E (Cd) are the sets of all density op-
erators and effect operators on Cd respectively.

Let us describe transformations between states. For state
spaces Ω1 and Ω2 and their respective linear hulls V1
and V2, we define C (Ω1,Ω2) = {Λ : V1 →V2 | Λ(Ω1)⊆
Ω2, linear} and call its elements channels. When Ω1 =
Ω2 = Ω, we write the set simply as C (Ω). A chan-
nel is called a reversible dynamics if it is bijective and
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Λ(Ω) = Ω, and the set of all reversible dynamics on Ω
is written as GL(Ω). We remark that not all elements of
GL(Ω) are physically possible: in quantum theory, re-
versible dynamics via anti-unitaries are prohibited.

- Bipartite systems. Let (Ω1,E1) and (Ω2,E2) be two
GPTs, and consider their composite system. A funda-
mental assumption is that the composite is also a GPT,
which we write by (Ω12,E12). Requiring several axioms
such as the no-signaling principle, we have

• the embedding vector space V12 = span(Ω12) is
given by V12 =V1⊗V2 with Vi = span(Ωi) (i= 1,2),
and the effect space E12 is embedded into V ∗

1 ⊗V ∗
2 ;

• the independent preparations of states ω ∈ Ω1 and
ξ ∈ Ω2 in each system is described by ω ⊗ ξ , and
the independent measurements of effects e ∈ E1 and
f ∈ E2 by e⊗ f ;

• the unit effect u12 ∈ E12 for Ω12 is given by u12 =
u1 ⊗u2, where ui is the unit effect for Ωi (i = 1,2);

• Ω1 ⊗min Ω2 ⊆ Ω12 ⊆ Ω1 ⊗max Ω2, where

Ω1 ⊗min Ω2 = {µ ∈V1 ⊗V2 | µ =
n

∑
k=1

pkωk ⊗ξk,

ωk ∈ Ω1,ξk ∈ Ω2, pi ≥ 0,
n

∑
k=1

pk = 1, n : finite}

and
ΩA⊗maxΩB = {µ ∈V1 ⊗V2 | ⟨u1 ⊗u2,µ⟩= 1,

⟨e⊗ f ,µ⟩ ≥ 0 for all e ∈ E1, f ∈ E2},
and similarly E1 ⊗min E2 ⊆ E12 ⊆ E1 ⊗max E2.

The sets Ω1 ⊗min Ω2 and Ω1 ⊗max Ω2 are called the min-
imal and maximal tensor products of Ω1 and Ω2 respec-
tively. We often use the notation Ω1 ⊗Ω2 to represent a
bipartite state space composed of Ω1 and Ω2.

Example 2 (quantum composite) The standard com-
posite S (Cd1 ⊗ Cd2) of two quantum state spaces
S (Cd1) and S (Cd2) indeed satisfies

S (Cd1)⊗min S (Cd2)⊆ S (Cd1 ⊗Cd2)
⊆ S (Cd1)⊗max S (Cd2).

The two inclusions are strict.

- Distinguishability. Let (Ω,E ) be a GPT. A family of
states {ωi}i∈I with an index set I is called perfectly
distinguishable if there exists an observable {ei}i such
that ei(ω j) = δi j. Likewise, {ωi}i∈I is called pairwise
distinguishable if any pair {ωi,ω j} of its distinct ele-
ments is perfectly distinguishable. Although the two no-
tions coincide with each other in classical and quantum
theory, they are in general different: a perfectly distin-
guishable set of states is pairwise distinguishable, but
the converse does not always hold in GPTs [6]. In fi-
nite dimensional cases, both perfectly and pairwise dis-
tinguishable sets of states are finite [1].

3 Programming of channels in GPTs
- Quantum theory. Let a quantum system and appa-
ratus be with finite-dimensional Hilbert spaces H and
K respectively. We consider programming unitary (re-
versible) dynamics on the system by choosing states of
the apparatus. Let W be a unitary operator on H ⊗K .
We say that a state |ξ ⟩ ∈K (called a program) in the ap-
paratus implements a unitary dynamics Uξ on the system
through W if for any |φ⟩ ∈ H

W (|φ⟩⊗ |ξ ⟩) = (Uξ |φ⟩)⊗|ξ ′⟩

holds, where |ξ ′⟩ ∈ K . It was proved that programs ξ
and η can implement distinct unitaries Uξ and Uη re-
spectively only if ⟨ξ |η⟩ = 0 holds [2]. Thus the num-
ber of programs is at most dimK and an arbitrary num-
ber of dynamics are not possible, while dimK unitaries
{Un}dimK

n=1 can be programmed with the global unitary
W = ∑nUn ⊗|n⟩⟨n|, where {|n⟩}n is a CONS of K .

- GPTs. Let a system and an apparatus described
by GPTs (Ωsys,Esys) and (Ωapp,Eapp) respectively, and
Ωtot := Ωsys ⊗Ωapp be their composite state space. We
introduce a subset GL0(Ωsys) of GL(Ωsys) such that any
α ∈ GL0(Ωsys) satisfies α ⊗ idΩapp ∈ GL(Ωtot), where
idΩapp ∈ C (Ωapp) is the identity channel on Ωapp. While
any α ∈ GL(Ωsys) satisfies this condition in the minimal
and maximal tensor products, it does not hold in general
composites. We also assume that GL0(Ωsys) is a group
with respect to the concatenation.

Let Λ∈GL(Ωtot) be a reversible dynamics on the total
system. We say that a state (called a program) ξ ∈ Ωapp

implements a reversible dynamics αξ ∈ GL0(Ωsys) on
the system through Λ if for any ω ∈ Ωsys and e ∈ Esys

⟨e⊗uapp,Λ(ω ⊗ξ )⟩= ⟨e,αξ ω⟩ (1)

holds, where uapp is the unit effect for Ωapp. The condi-
tion (1) implies that the dynamics restricted on the sys-
tem is αξ . In fact, if ω is pure, then (1) reduces to

Λ(ω ⊗ξ ) = αξ ω ⊗ξ ′

with some ξ ′ ∈ Ωapp. We remark that without loss of
generality programs are assumed to be pure. Based on
the setting above, we obtain the following theorem.

Theorem 1 If states ξ and η of the apparatus imple-
ment distinct reversible dynamics of the system, then they
are perfectly distinguishable.

Theorem 1 is a generalization of the quantum result to
GPTs: programs in the apparatus should be pairwise dis-
tinguishable, and only a finite number of reversible dy-
namics can be programmed on the system.
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Remark 1 It is not proved in the theorem that N pairwise
distinguishable states as programs are sufficient to real-
ize N reversible dynamics. Rather, there exist a pair of
state spaces and their composite where it does not hold.

- Universal programming. We study another scenario
on programming reversible dynamics.

Definition 1 Let N be a positive integer. A state space
Ωapp is said to have an N-universal programming prop-
erty if for any state space Ωsys and reversible dynamics
{αn}N

n=1 ⊂ GL(Ωsys) there exist a composite state space
Ωsys ⊗Ωapp and a reversible dynamics Λ ∈ GL(Ωsys ⊗
Ωapp) such that there are states {ξn}N

n=1 ⊂ Ωext
app imple-

menting {αn}N
n=1 through Λ.

The following notion is important to investigate univer-
sal programming properties.

Definition 2 A disjoint decomposition Ωext =
∪

k∈K Ωext
[k]

for the set Ωext of pure states of a state space Ω is called a
quasi-classical decomposition of degree |K| if there ex-
ists an observable {ek}k∈K satisfying ⟨ek,ωk′⟩ = δkk′ for
ωk′ ∈Ωext

[k′]. A state space that admits a quasi-classical de-
composition is said to have a quasi-classical structure.

There is a characterization of quasi-classical structures.

Proposition 2 A decomposition Ωext =
∪

k∈K Ωext
[k] is

quasi-classical iff {Ωext
[k] }k is “(linearly) independent"

(i.e.“perfectly distinguishable"). That is, when ω ∈ Ω
is expressed as ω = ∑k∈K pkωk = ∑k∈K qkω ′

k, where
ωk,ω ′

k ∈ Ω[k] with Ω[k] the convex hull of Ωext
[k] and

{pk}k∈K and {qk}k∈K probability distributions on K,
then pk = qk holds for all k ∈ K.

The state space of a finite-level classical system clearly
has a quasi-classical structure, while the quantum state
space S (Cd) does not. There are other examples.

Example 3 A state space Ω=
⊕N

n=1 S (Cdn) describing
a quantum system with a superselection rule has a quasi-
classical structure: Ωext =

∪N
n=1 S ext

[n] with

S ext
[1] = S ext(Cd1)⊕0⊕0⊕·· · ,

S ext
[2] = 0⊕S ext(Cd2)⊕0⊕0⊕·· · ,

...
is a quasi-classical decomposition of degree n.

Example 4 Consider a state space Ω described in Fig-
ure 1. For the set of its pure states Ωext = {ω1, . . . ,ω6},
there are quasi-classical decompositions

Ωext = {ω1,ω2,ω3}∪{ω4,ω5,ω6}
= {ω1,ω4}∪{ω2,ω5}∪{ω3,ω6}.

We can prove that quasi-classical structures enable uni-
versal programmings.

Figure 1: A state space shaped by a triangular prism.

Theorem 3 A state space Ωapp has an N-universal pro-
gramming property iff Ωapp has a quasi-classical struc-
ture such that Ωext

app =
∪

k∈K Ωext
app [k] with |K| ≥ N.

- Irreversible universal programming. We investigate
what observations can be obtained when programming
more general state changes, i.e., channels. Similarly to
Definition 1, we introduce the following notion.

Definition 3 Let N be a positive integer. A state space
Ωapp is said to have an irreversible N-universal pro-
gramming property if for any state space Ωsys and chan-
nels {τn}N

n=1 ⊂ C (Ωsys), there exist a composite state
space Ωsys ⊗Ωapp and a channel Θ ∈ C (Ωsys ⊗Ωapp)
such that there are states {ξn}N

n=1 ⊂ Ωext
app implementing

N distinct channels {τn}N
n=1 of Ωsys through Θ.

In this case, we obtain the following theorem.
Theorem 4 A state space Ωapp has an irreversible N-
universal programming property iff there exists a family
of perfectly distinguishable states {ξn}N

n=1 in Ωapp.
This result can be compared with Theorem 3, where
quasi-classical structures appear as a consequence of
considering reversible dynamics instead of channels.

4 Conclusion
We generalized the quantum programming scheme to

GPTs. We found that a family of reversible dynam-
ics on a target system is programmable only if a pair-
wise distinguishable set of states in an apparatus is used
as programs. This result seems to be a straightforward
generalization of the quantum one, but it was derived
for any composite between the minimal and maximal
tensor products. We also considered changing the pro-
gramming scenario itself: universal programmings of re-
versible dynamics and channels, and investigated when
they are possible. It was shown that the former scheme is
realizable iff the apparatus has a quasi-classical structure
and the latter is possible iff the programs are perfectly
distinguishable. We believe that the former result is im-
portant in that it is peculiar to GPTs beyond quantum
theory: as Example 4 shows, state spaces with quasi-
classical structures seem to have properties that the tri-
angle (classical) and square theories have. Future study
will be needed to characterize quasi-classical structures.
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Calculation of capacity with discrete-valued inputs
using efficiently obtained eigenvalues
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Abstract. In quantum communication theory, the weighted Gram matrix with a priori prob-
abilities is extremely important because it is the matrix representation of the density operator
of a quantum information source. Recently, we have found that the eigenvalue problem of this
matrix can be simplified for asymmetric quantum signals. In the present paper, we apply our
results to the calculation of the capacity for these signals. We also discuss how much of the
capacity of a continuous system, the ultimate limit of classical-quantum communication, can be
achieved by discrete-valued inputs.

Keywords: Quantum communication, Quantum channel capacity, Gram matrix

1 Introduction

The classical capacity of a quantum (lossy) chan-
nel is attained by continuous inputs of coherent-
states [1]. In 2000, Sohma and Hirota showed that
the capacity is asymptotically achieved by binary
coherent-state signals when the average number of
photons is very small [2]. Subsequently, Ishida et al.
applied up to 16-ary signals and showed that the
average number of photons to achieve the capac-
ity is widened [3]. Note that as multi-ary signals,
asymmetric signals are required and we cannot use
the formula for symmetric signals [4]. They called
the maximum classical capacity attained by continu-
ous inputs the “full capacity” and expressed “almost
achieve the full capacity” if the ratio of the capac-
ity with discrete-valued input to the full capacity is
greater than 0.99 [3]. In the following, we use Nth to
denote the maximum value of the average number
of photons that almost reaches full capacity.
However, because of the difficulty of calculating

the capacity for a large number of signals M , known
Nth’s are still very small (e.g., Nth ∼ 0.01 when
M = 2 and Nth ∼ 1 when M = 16). It is highly de-
sirable to be able to calculate the capacity efficiently
even when M is large in order to find signals that
can almost achieve the full capacity over a wider
range of the average number of photons. The ca-
pacity with discrete-valued inputs can be obtained

∗im233003@cis.aichi-pu.ac.jp
†wang@kanagawa-u.ac.jp
‡takahira@meijo-u.ac.jp
§usuda@ist.aichi-pu.ac.jp

by computing the eigenvalues of the weighted Gram
matrix with a priori probabilities. Recently, by gen-
eralizing the results of [5], we found that the eigen-
value problem can be simplified [6, 7]. In the present
paper, we apply our results to calculate the capac-
ity with discrete-valued inputs and show examples
of larger Nth (∼ 10).

2 Preliminaries

2.1 Quantum signals and the density oper-
ator

For a Hilbert space H of a quantum system, a set
of M -ary quantum-state signals is defined by

S = {|ψi⟩ ∈ H | i = 1, 2, . . . ,M, ⟨ψi|ψi⟩ = 1}. (1)

Let ξi be the a priori probability of |ψi⟩ and ξ =
{ξi | i = 1, 2, . . . ,M}. Then (S, ξ) is often referred
to as the quantum information source, and

ρ̂ =
M∑
i=1

ξi|ψi⟩⟨ψi| (2)

is the so-called density operator of (S, ξ). Here, we
introduce the weighted Gram matrix with a priori
probabilities, G, that is a M -by-M matrix whose
(i, j) component is ⟨ψ̃i|ψ̃j⟩, where |ψ̃i⟩ =

√
ξi|ψi⟩.

The importance of the weighted Gram matrix is
that it is isomorphic to the density operator ρ̂, i.e.,

G ∼= ρ̂, (3)
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which means that G is a matrix representation of ρ̂.
Therefore, G can be treated as ρ̂ itself when analyz-
ing it and the eigenvalues of ρ̂ can be obtained by
calculating those of G.

2.2 The von Neumann entropy and capacity

For the density operator ρ̂, the von Neumann en-
tropy is defined as

χ(ξ) = −Tr (ρ̂ log2 ρ̂) , (4)

and the classical capacity of a quantum channel is
defined as the value of χ(ξ) maximized with respect
to a priori probabilities:

C = max
ξ
χ(ξ). (5)

From the fact (3), χ(ξ) can be calculated as

χ(ξ) = −Tr (G log2G) = −
∑
j

λj log2 λj , (6)

where λj are the eigenvalues of G. Thus, for effi-
cient computation of the capacity, it is important to
calculate the eigenvalues of G efficiently.

3 Calculation results

Using the simplification of the eigenvalue problem
for the weighted Gram matrix [6, 7], we calculate the
capacity with discrete-valued inputs for asymmetric
quantum signals. The von Neumann entropy can be
calculated by its eigenvalues, but further maximiza-
tion with respect to a priori probabilities of the sig-
nals is required to compute the capacity. This max-
imization can be achieved when the a priori proba-
bilities of equidistant signals are equal [8]. Here, we
perform the maximization by numerical search with
a reduced set of a priori probabilities based on the
partial symmetry of the signals.

3.1 The von Neumann entropy for QAM
signals

Fig.1 shows a comparison between the von Neu-
mann entropy with equal a priori probabilities of
the QAM signals and the full capacity. The hor-
izontal axis shows the average number of photons
in received signals ηNS, which means energy con-
straint [3]. The number of QAM signals is set to
M = 4, 16, 36, 64. From Fig.1, even at M = 64,
there is a clear gap between the von Neumann en-
tropy with equal a priori probabilities and the full
capacity when the average number of photons is very
small, e.g., when ηNS = 1 or 2. We verify how much
of this gap can be filled by maximization with re-
spect to a priori probabilities.

Figure 1: The von Neumann entropy with equal a
priori probabilities for QAM signals and full capac-
ity

3.2 The capacities for 16-ary signals

Here, we examine how much the full capacity can
be achieved by the capacity with discrete-valued in-
puts for various 16-ary signals. It will be seen that
even though the number of signals is the same, Nth

differs depending on the signal constellations. We
consider five types of signal constellations; 16PSK,
three 16APSK, and 16QAM signals. Fig.2 shows
the signal constellations of three types of 16APSK
signals.

Figure 2: 16APSK signals on phase plane

Figure 3: Ratio of capacities for 16-ary signals to
full capacity

Fig.3 plots the ratio of the capacities with
discrete-valued inputs of 16-ary signals to full capac-
ity. From Fig.3, the average number of photons to
achieve 99% full capacity are Nth ∼ 0.2 for 16PSK,
Nth ∼ 1 for 16APSK, andNth ∼ 1.8 for 16QAM. Re-
garding the signal constellations, 16PSK uses only
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one type of amplitude. In other words, only one
type of concentric points is used in the phase plane.
In contrast, 16APSK uses two types and 16QAM
uses three types. This indicates that the full capac-
ity can be achieved with a larger number of average
photons for many types of amplitudes. In the class
of 16APSK, 16APSK-1 and 16APSK-2 perform bet-
ter than 16APSK-3. 16APSK-3 has a small number
of inner signal points. In other words, the greater
number of inner signal points, i.e., those with small
amplitude, the larger capacity.

3.3 The capacity for 64QAM signals

Fig.4 shows the channel capacity with discrete-
valued inputs for 64QAM in addition to the von
Neumann entropy and the capacity shown in Fig.1.

Figure 4: The capacity with discrete-valued inputs
for 64QAM signals (red dots) on Fig.1 (solid lines)

All solid lines are the same as in Fig.1, and the ca-
pacity with discrete-valued inputs for 64QAM is in-
dicated by red dots. Fig.1 plots the average number
of photons below 10, and the capacity for 64QAM
seems to almost achieve the full capacity over the
entire range.

3.4 Discussion

In this section, the results of the capacity calcula-
tions are summarized, and the differences in achieve-
ment levels are discussed. Fig.5 shows the ratio of
the capacity with discrete-valued inputs for each sig-
nal to the full capacity. Table 1 shows the maximum
value of the average number of photons Nth to al-
most achieve the full capacity for each signal.
From Table 1, it can be seen that 64QAM almost

achieves the full capacity up to approximately 9.33.
By maximizing the von Neumann entropy with re-
spect to a priori probabilities, Nth is approximately
4.7 times larger for 16QAM, 10.8 times larger for
36QAM, and 19.4 times larger for 64QAM. This re-
sult clearly demonstrates the significance of optimiz-
ing a priori probabilities, especially for large M .

Figure 5: Ratio of capacities for each signal to the
full capacity

Type of Signals Nth

BPSK 0.01
4PSK 0.18
8,16,32,64,128PSK 0.20
16APSK-1 1.11
16APSK-2 1.12
16APSK-3 0.89
16QAM(Eq) 0.39
16QAM 1.87
36QAM(Eq) 0.46
36QAM 4.98
64QAM(Eq) 0.48
64QAM 9.33

Table 1: The maximum value of the average number
of photons Nth to almost achieve the full capacity.

4 Conclusion

In the present paper, we calculated the channel
capacity with discrete-valued inputs using the re-
sults in [6, 7] and considered the maximum value
of the average number of photons Nth to almost
achieve the full capacity as in [3]. First, we con-
firmed that Nth is less than 1 in the case of QAM
with equal a priori probabilities, even for 64-ary sig-
nals, and then considered various signal constella-
tions for 16-ary signals. As a result, it was found
that increasing the types of amplitudes tends to
yield larger capacity. Furthermore, we calculated
the capacity with discrete-valued inputs by increas-
ing the number of QAM signals and showed that
Nth > 9.3, which is approximately five times wider
than the previous result [3].

Acknowledgments: This work has been sup-
ported in part by JSPS KAKENHI Grant Num-
ber 20H00581, 20K20397, 21K04064, 22K20437, and
The Nitto Foundation.
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Efficient stabilizer entropies for quantum computers
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Abstract. Stabilizer entropies (SEs) are measures of nonstabilizerness or ‘magic’ that quantify
the degree to which a state is described by stabilizers. SEs are especially interesting due to their
connections to scrambling, localization, and property testing. However, applications have been
limited so far as previously known measurement protocols for SEs scale exponentially with the
number of qubits. Here, we introduce Tsallis-n SEs as efficient measures of nonstabilizerness for
quantum computers. The number of measurements is independent of the number of qubits and
the protocol is easy to implement via Bell measurements. The Tsallis SE is an efficient bound
of various nonstabilizerness monotones which are intractable to compute beyond a few qubits.
Using the IonQ quantum computer, we experimentally measure the Tsallis SE of random Clifford
circuits doped with non-Clifford gates and give bounds for the stabilizer fidelity, stabilizer extent,
and robustness of magic. As applications, we provide efficient algorithms to measure 4n-point
out-of-time-order correlators and multifractal flatness. Our results open up the exploration of
nonstabilizerness with quantum computers.

Keywords: Nonstabilizerness, OTOC, magic, resource theory, NISQ

Stabilizer states and Clifford operations are essen-
tial to quantum information and quantum comput-
ing [1–3]. They are the cornerstone to run quantum
algorithms on most fault-tolerant quantum comput-
ers, where Clifford operations are intertwined with
non-Clifford gates [4, 5]. To characterize the amount
of non-Clifford resources needed to realize quantum
states and operations the resource theory of non-
stabilizerness has been put forward [6–14]. Stabi-
lizer entropies (SEs) [15] are measures of nonstabi-
lizerness with efficient algorithms for matrix prod-
uct states [16–18] which have enabled the study of
nonstabilizerness in many-body systems [16–23].
Recently, SEs have also been related to vari-

ous important properties of quantum systems. SEs
can probe phase transitions in error-corrected cir-
cuits [24] and the entanglement spectrum [25] as well
as determine the testing efficiency of purity [26] and
fidelity [27]. SEs are also connected to the partici-
pation entropy [28], which are helpful to understand
Anderson [29] and many-body localization [30]. Fur-
ther, recent works established a fruitful connection
between out-of-time-order correlators (OTOCs) and
nonstabilizerness [27, 31, 32]. OTOCs describe
scrambling in quantum systems [33, 34]. How-
ever, OTOCs are challenging to measure directly
and often require an inverse of the time evolu-
tion [35]. Higher-order OTOCs and nonstabilizer-
ness have been related to quantum chaos [31] and
state certification [27].
The aforementioned properties make SEs highly

∗soovinlee310@gmail.com

interesting for experimental studies of quantum
computers and simulators. However, the progress
has so far been limited as all previously known mea-
surement protocols for SEs scale exponentially with
the number of qubits [14, 36].
Here, we introduce the Tsallis-n SE with integer

n > 1 as an efficient measure of nonstabilizerness
for quantum computers and simulators. Our algo-
rithms are practical to implement via Bell measure-
ments over two copies of the state, where for even n
we additionally require access to the complex con-
jugate of the state. We leverage the relationship
between SEs and OTOCs to devise an efficient pro-
tocol for 4n-point OTOCs where for odd n we do
not require an inverse time evolution. Further, the
Tsallis SE enables the efficient measurement of the
multifractal flatness. The Tsallis SE also provides
efficiently computable bounds to other nonstabiliz-
erness monotones, which are otherwise intractable
beyond a few qubits. Finally, we experimentally
measure the Tsallis SE on the IonQ quantum com-
puter and demonstrate SEs as efficient bounds for
the robustness of magic, stabilizer extent and stabi-
lizer fidelity. Our work introduces methods to exper-
imentally uncover the key features that characterize
the power of quantum computers and simulators.

Importance for quantum information and
computation

The Tsallis-n SE Tn as an efficient measure of
nonstabilizerness with a measurement cost indepen-
dent of qubit number N , which is an exponential
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improvement over previous protocols [14, 36]. For
integer n > 1, our protocol is asymptotically op-
timal with the number of copies scaling as O(nϵ−2)
and the classical post-processing time as O(nNϵ−2).
The protocol is easy to implement using Bell mea-
surements which have been demonstrated for quan-
tum computers and simulators [37–39].
Future work could find efficient protocols for even

n without the need of complex conjugation, prove or
refute the strong monotonicity condition for n ≥ 2,
and tighten the lower bound of SE for the stabilizer
fidelity.
SEs hold promise for characterizing different

properties of quantum states in experiments. We
experimentally demonstrate SEs as a bound of non-
stabilizerness monotones which otherwise are hard
to compute beyond a few qubits. These monotones
serve as lower bounds on state preparation complex-
ity and characterize the runtime of classical simula-
tion algorithms [8, 40].
Further, we show how to efficiently measure a

class of 4n-point OTOCs. Our protocol has the ad-
vantage that it does not require implementing time-
reversal for odd n > 1, which has been a challenge in
other experiments [33]. Our protocol can measure
higher order OTOCs which promise to reveal more
features compared to the usually considered 4-point
OTOCs [41, 42]. We also give an efficient protocol
to evaluate multifractal flatness which characterizes
the distribution of basis states of wavefunctions.
Finally, our work enables the experimental study

of phase transitions in SE which have been found
for purity testing [26] and quantum error cor-
rection [24], as well as characterization of recent
experiments on fault-tolerant encodings of magic
states [43, 44].
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Abstract. Spatial and temporal quantum correlations can be unified in the framework of the pseudo-
density operators, and quantum causality between the involved events in an experiment is encoded in the
corresponding pseudo-density operator. We study the relationship between local causal information and
global causal structure. A space-time marginal problem is proposed to infer global causal structures from
given marginal causal structures where causal structures are represented by the pseudo-density operators;
we show that there almost always exists a solution in this case. By imposing the corresponding constraints
on this solution set, we could obtain the required solutions for special classes of marginal problems, like a
positive semidefinite marginal problem, separable marginal problem, etc. The notion of quantum pseudo-
channel is also introduced and we demonstrate that the quantum pseudo-channel marginal problem can be
solved by transforming it into a pseudo-density operator marginal problem via the channel-state duality.

Keywords: Pseudo-density operator, Marginal problem, Quantum causality

1 Introduction

The relativity theory treats space and time on equal
footing. However, in quantum mechanics, space and time
play extremely different roles. Searching for a represen-
tation of quantum mechanics that treats space and time
in a more even-handed fashion is thus a crucial prob-
lem and may shed new light on the notion of quantum
space-time and quantum causality. There have been a
variety of proposals for space-time states, process matrix
[16], consistent history [8], entangled histories [5], and
quantum-classical game [9], superdensity operators [4],
multi-time states [1], pseudo-density operator (PDO) [7],
doubled density operator[12], etc.

Clarifying the relation between the whole and its parts
is crucial in many areas of science. The question that
considers in what situation the local information can
be reproduced from a global structure is known as the
marginal problem, which has a long history. This seem-
ingly effortless problem is indeed highly nontrivial, there
exist locally compatible distributions that do not have
global solutions. And the problem has been shown to be
NP-hard [17]. In quantum mechanics, states are repre-
sented by density operators, and thus the marginal prob-
lems are rephrased in terms of density operators. The
question of whether a given set of marginals (reduced
density operators) is compatible with a global density
operator is called a quantum state marginal problem,
see, e.g [19], and references therein. This seemingly easy
problem turned out to be challenging to solve in general,
and it lies at the heart of many problems in quantum
physics. The quantum state marginal problem was ini-
tially proposed in quantum chemistry with the name N -
representability problem and it’s regarded as one of the

∗giannjia@foxmail.com
†song.at.qit@gmail.com
‡phykd@nus.edu.sg

most prominent research challenges in quantum chem-
istry [3, 18]. The existence of absolutely maximally en-
tangled states can be transformed into the existence of
the solution for a specific quantum marginal problem [21].
The symmetric extension of a bipartite state can also be
recast as a marginal problem [6, 15]. The monogamy of
the maximally entangled states is equivalent to the disap-
pearance of the solution for the corresponding marginal
problem [2]. The marginal problem also plays a crucial
role in investigating the quantum phases of matter [22].
The marginal problem essentially characterizes the com-
patibility of quantum states, this can also be general-
ized to quantum channels and quantum measurements
[10, 11]. In this work, we investigate the marginal prob-
lem for space-time states and higher-order dynamics.

2 Pseudo-density operator

The pseudo-density operator formalism concerns the
following scenario [7]: we have a quantum system dis-
tribution over space and we choose to measure some
(generalized) Pauli measurements over some qudit (x)
at some particular instant in time (t). We introduce
a tensor product structure among all space-time events
A = {E(xi, ti)}ni=1. Thus the total space is HA =
⊗iH[E(xi, ti)]. In this way, we obtain a state of the sys-
tem that is distributed over space-time [7] (the general
qudit definition is given in Ref. [13])

RA =
1

dn

d−1∑
µ1,··· ,µn=0

Tµ1···µn ⊗n
j=1 σµj

, (1)

where Tµ1···µn = ⟨{σµj
}nj=1⟩ is the expectation value of

a collection of Pauli measurements. This RA is called a
PDO. Notice that when all qudits are measured at the
same instant of time, we obtain the normal Bloch repre-
sentation of a multipartite state [20]. We will denote the
set of all PDOs for an event set A as PDO(A).
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Theorem 1. For any n-event set A, any PDO RA can be
expressed as a quasi-probabilistic mixture of pure space-
time product states

RA =
∑

a1,··· ,an

p(a1, · · · , an)|a1, · · · , an⟩⟨a1, · · · , an|, (2)

where |a1, · · · , an⟩ = |a1⟩ ⊗ · · · ⊗ |an⟩.
Definition 2. Consider an n-event space-time scenario
A = {E1, · · · , En}, we still assign a local Hilbert space
HEi for each event Ei. The local state vectors are in-
dependent, viz., they are in product-form |a1, · · · , an⟩ =
|a1⟩⊗· · ·⊗|an⟩. The correlations are captured by the neg-
ativity of quasi-probability distribution p⃗ = (p1, · · · , pn),

WA =

k∑
i=1

p(a1, · · · , an)|a1, · · · , an⟩⟨a1, · · · , an|. (3)

3 Quantum space-time causal marginal
problem

In the conventional space-time causal marginal prob-
lem, we ask that given a family of sets of events MA =
{A1, · · · ,Ak}, called a marginal scenario of A = ∪iAi, if
there exists a global causal structure R(A) over all events
contained in A which is compatible with causal structures
R(Ai) for all i = 1, · · ·n. This is clearly trivial, we only
need to check if all R(Ai) are compatible. If they are
compatible, there always exists a solution.

Theorem 3. The deterministic classical causal marginal
problem always has a solution.

Definition 4 (PDO marginal problem). Consider a
marginal scenario consisting of a family of event
sets A1, · · · ,An with their corresponding PDOs
RA1 , · · · , RAn , such that they are compatible. The PDO
marginal problem asks if there exists a global PDO
RA with A = ∪iAi such that RAi

= TrA\Ai
RA for all

i = 1, · · · , n.

From the previous discussion, we see that an n-event
PDO is determined by a rank-n tensor Tµ1,··· ,µn . Taking
the partial trace over some event subset, we obtain the
new tensor for the reduced PDO by just setting the corre-
sponding indices as zero. For example, for Tµ1µ2µ3 , trac-
ing over the third event, the tensor of the reduced PDO
is just Tµ1µ20. This substantially simplifies the problem.

Theorem 5 (Herm1 marginal problem). Consider the
marginal problem {RAi

}ni=1 with RAi
∈ PDO(Ai) and

A = ∪n
i=1Ai. In Herm1(A), there always exists a so-

lution R which is the solution to the marginal problem.
In other words, the marginal problem in Herm1(A) is
trivial.

3.1 Space-time separable marginal problem

Definition 6 (space-times separable marginal problem).
For a marginal scenario MA consisting of a given collec-
tion of event sets {Ai} with their corresponding separable
space-time separable states {WAi

}, the space-times sep-
arable marginal problem asks if there exists a space-time

Figure 1: The illustration of the proof for Herm1

marginal problem, the cube represents the tensor Tµ1µ2µ3

of marginal problem solution RA. The light gray
boxes represent the free parameter, while the light red
boxes represent the parameters fixed by reduced PDOs
RA1

, RA2
, RA3

.

separable state WA for A = ∪iAi such that all WAi
can

be reproduced by taking marginals.

By the theorem 5, we know that there always exists a
set of quasi-probabilistic separable solution

Marg(MA)

={WA =
∑

a1,··· ,an

p(a1, · · · , an) ⊗n
i=1 |ai⟩⟨ai|}, (4)

where all p(a1, · · · , an) are quasi-probability distribu-
tions. To obtain the positive semidefinite solution set,
we need first impose the positive semidefinite condition

Margpos(MA)

={WA ∈ Marg(MA)|Tr(WAY ) ≥ 0,∀Y ≥ 0}.
(5)

The second step is to choose the separable ones from
these positive semidefinite solutions. However, there
is a more efficient approach to filter the solution
from Marg(MA) using the polytope approximation of
Sep(A). Suppose that we have n space-time separa-
ble states R1, · · · , Rn, they can generate a convex poly-
tope P = Sep(R1, · · · , Rn) = Conv(R1, · · · , Rn). By
Minkowski-Weyl theorem, this polytope can be rewrit-
ten as a bounded intersection of half-spaces P = ∩m

i=1Hi.
Each half-space is determined by an Hermitian opera-
tor Ki, namely Hi = {R ∈ Herm|⟨R,Ki⟩ ≥ 0}. The
marginal problem solution contained in this polytope is
thus

MargP(MA)

={WA ∈ Marg(MA)|Tr(WAKi) ≥ 0,∀i}.
(6)

In this way, we obtain an operational method to solve
the space-time separable marginal problem, which can
be implemented numerically.

3.2 Space-time symmetric extension

Theorem 7. For any two-event space-time state (for
which PDO is a special example) WAB , the symmet-
ric extension WAB1···Bk

always exists in the space of all
quasi-probabilistic mixture of space-time product state.
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This technique can also be applied to extendibility for
m-event WA1···AkB1···Bl

with respect to B1 · · ·Bl. No-
tice the above corollary means that any W ∈ Herm1

is extendible in Herm1. This can also be trans-
formed into a marginal problem and be proved using
theorem 5. Suppose we have a collection of space-
time state WAB = WAB1 = · · ·WABn−2 , theorem 5
ensures that there exists a non-empty solution set
Marg(WAB ,WAB1

, · · · ,WABn−2
). Then we can add

more constraints to filter the solutions we need as we
have done in the previous subsection.

3.3 Polygamy of space-time correlations

For spatial quantum correlations, it’s well known that
there are monogamy relations for entanglement, quantum
steering, and Bell nonlocality. The monogamy relation
can be reformulated using a quantum marginal problem,
e.g., a singlet state cannot be shared by three parties
simultaneously, if Alice and Bob share the singlet state,
then the state between Alice and Carol must not be a
singlet state. This means that the marginal scenario M =
{ψ−

AB , ψ
−
AC} has no solution. However, for space-time

correlations, the monogamy relation will be broken, an
example has been given in Ref. [14]. Here, using the
marginal problem framework, we see that polygamy is a
general phenomenon for space-time states.

3.4 Classical quasi-probability marginal prob-
lem

Definition 8. Consider a set of quasi-random variables
A = {X1, · · · , Xn}, then a classical marginal scenario
MA on A is a non-empty collection {A1, · · · Ak} of
subsets of A together with a set of compatible quasi-
probability distributions {p(X ∈ Ai)}ki=1.

Definition 9 (classical space-time state marginal prob-
lem). For a set of classical space-time states {WAi

}ki=1

which are compatible with each other up to local unitary
operations, find a classical space-time state WA such that
all WAi

are local unitary equivalent the reduced states of
WA.

Theorem 10. The quasi-probability classical marginal
problem for a marginal behavior MA is equivalent to the
classical space-time state marginal problem {WAi}.

4 Quantum pseudo-channel

4.1 Quantum pseudo-channel as higher-order
maps

Definition 11 (QPC). Consider the space of all bounded
operators over the Hilbert space HAX

= (Cd)⊗nX with
X = I,O (‘in’ and ‘out’), a pseudo-density channel is a
linear map Φ : B(HAI

) → B(HAO
) such that Φ(RAI

) ∈
PDO(AO) for all RAI

∈ PDO(AI), viz., it maps PDO
to PDO. We denote the corresponding set of QPC as
QPC(AI ,AO).

The above definition of QPC can naturally be gener-
alized to space-time states, which we will call space-time
channels. From the definition of a QPC Φ, we see that

Φ must satisfy: (i) it’s Hermiticity-preserving (HP); (ii)
it’s trace-preserving (TP).

4.2 Marginal quantum pseudo-channel

The notion of marginal quantum operation and quan-
tum channel is introduced in [11]. This can be naturally
generalized to the QPC. Suppose that A and B are in-
put and out event sets of the QPC ΦB|A. The marginal
is defined with respect to a bipartition of both the in-
put and output event sets. Let X ⊂ A and Y ⊂ B, the
marginal QPC ΦY|X is defined as follows: for arbitary
RA ∈ PDO(A) we have

TrYc ΦB|A(RA) = ΦY|X (TrX c(RA)), (7)

where X c and Yc are complements of X and Y in A and
B. We will denote this marginal QPC as TrYc|X c ΦB|A =
ΦY|X .

Hereinafter, for convenience of discussion, we will use
a normalized Choi-Jamio lkowski representation of ΦB|A,

J(ΦB|A) =
1

dA
ΦB|A(Eij) ⊗ Eij . (8)

It’s clear that ΦB|A(R)/dA = TrA[J(ΦB|A)(I⊗RT )]. We
will call this correspondence channel-state duality. Using
the channel state duality, we can translate this defining
condition (7) into a state form (see, e.g., [11, Appendix
A] and references therein)

TrYc J(ΦB|A) = J(ΦY|X ) ⊗ IX c

dX c

. (9)

Since we take a different convention for the Choi-
Jamio lkowski map, there is no dimension factor here
in our expression. This implies that the Choi map
for the marginal channel is indeed the marginal state
J(ΦY|X ) = TrYc|X c J(ΦB|A).

4.3 Quantum pseudo-channel marginal problem

Definition 12 (QPC marginal problem). Given a collec-
tion of QPC {ΦBi|Ai

}, suppose that they are compatible
with each other, the QPC marginal problem asks if there
exists a global QPC from event set A = ∪iAi to B = ∪iBi

which can reproduce all QPCs by taking marginals.

From channel-state duality, J(ΦB|A) is Hermitian if
and only if ΦB|A is HP. ΦB|A is TP implies that
TrB J(ΦB|A) = IA/dA, thus Tr J(ΦB|A) = 1. When
ΦB|A is HPTP, J(ΦB|A) ∈ Herm1. As shown in subsec-
tion 4.2, the compatibility of two QPCs on their overlap
is indeed the same as the compatibility of states corre-
sponding to them.

Theorem 13 (HPTP marginal problem). For a collec-
tion of compatible QPC {ΦBi|Ai

}, there always exists a
solution for the marginal problem in HPTP(A,B).

Acknowledgements. — We acknowledge Fabio Costa,
James Fullwood, Arthur Parzygnat and Xiangjing Liu for
bringing our attention to some relevant works on quan-
tum causal discovery and quantum causal inference. This
work is supported by the National Research Foundation
and the Ministry of Education in Singapore.

277



References

[1] Yakir Aharonov, Sandu Popescu, Jeff Tollaksen, and
Lev Vaidman. Multiple-time states and multiple-
time measurements in quantum mechanics. Phys.
Rev. A, 79:052110, May 2009.

[2] Valerie Coffman, Joydip Kundu, and William K.
Wootters. Distributed entanglement. Phys. Rev. A,
61:052306, Apr 2000.

[3] A. J. Coleman. Structure of fermion density matri-
ces. Rev. Mod. Phys., 35:668–686, Jul 1963.

[4] Jordan Cotler, Chao-Ming Jian, Xiao-Liang Qi, and
Frank Wilczek. Superdensity operators for space-
time quantum mechanics. Journal of High Energy
Physics, 2018(9):1–57, 2018.

[5] Jordan Cotler and Frank Wilczek. Entangled histo-
ries. Physica Scripta, 2016(T168):014004, 2016.

[6] A. C. Doherty, Pablo A. Parrilo, and Federico M.
Spedalieri. Distinguishing separable and entangled
states. Phys. Rev. Lett., 88:187904, Apr 2002.

[7] Joseph F Fitzsimons, Jonathan A Jones, and Vlatko
Vedral. Quantum correlations which imply causa-
tion. Scientific reports, 5(1):1–7, 2015.

[8] Robert B Griffiths. Consistent histories and the in-
terpretation of quantum mechanics. Journal of Sta-
tistical Physics, 36(1):219–272, 1984.

[9] Gus Gutoski and John Watrous. Toward a general
theory of quantum games. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of
computing, pages 565–574, 2007.

[10] Erkka Haapasalo, Tristan Kraft, Nikolai Miklin, and
Roope Uola. Quantum marginal problem and in-
compatibility. Quantum, 5:476, 2021.

[11] Chung-Yun Hsieh, Matteo Lostaglio, and Antonio
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Abstract. We have shown in AQIS2022 that the application of single parity-check codes as
outer codes to CPPM-type KCQ enhances the quantum gain when the average number of photons
is as small as 5 or less in the case of 2-CPPM. By comparing the applied codes with the channel
capacities of a legitimate receiver and an attacker, this paper shows that the coding was effective
in terms of the wire-tap channel.

Keywords: quantum cryptography, wire-tap channel, capacity, KCQ, CPPM

1 Introduction

In the principle of quantum cryptography KCQ
(keyed communication in quantum noise) [1], the
optimum quantum measurement of a legitimate re-
ceiver with a key and that of an attacker without
a key are different. Therefore, secure communica-
tion is accomplished since there is obvious difference
in capability between their measurements. The dif-
ference corresponds to the so-called quantum gain.
There are two types of KCQ protocols; single-mode
and multi-mode types. The former can only provide
a maximum quantum gain of 6dB, whereas a quan-
tum gain of the latter is unlimited. The CPPM (co-
herent pulse position modulation) is a typical multi-
mode type KCQ. However, as stated in section VIB
of [1], the CPPM has the weakness that its band-
width increases exponentially with the number of
slots. It was also mentioned in [1], that this prob-
lem can be solved by applying properly designed er-
ror correcting codes because of the fact that the ca-
pacities of the legitimate receiver and the attacker
are different. It is well-known that the capacity ar-
gument provides only an asymptotic limit and the
design of codes of finite lengths is different issue.
We have shown in AQIS2022 that applying sin-

gle parity-check codes as outer codes to CPPM-type
KCQ enhances the quantum gain when the average
number of photons is as small as 5 or less in the
case of 2-CPPM. In this paper, we first introduce
the above results. Then, we calculate the capacity

∗223426025@ccmailg.meijo-u.ac.jp
†takahira@meijo-u.ac.jp
‡susami@meijo-u.ac.jp
§usuda@ist.aichi-pu.ac.jp

of 2-CPPM signals and verify that the (5,4) or (6,5)
coding is effective in terms of the wire-tap chan-
nel [3] when the average number of photons Ns is
0.5 < Ns < 2.5.

2 CPPM-Type KCQ Cryptography

2.1 Protocol Overview

We refer to the sender as Alice, the legitimate re-
ceiver as Bob, and the attacker as Eve. The details
of the protocols are left to the literature; here are
the main points. For simplicity, assume M = 2 in
the M -ary CPPM. Alice encrypts the 2-PPM sig-
nal {|ϕ0⟩ = |α⟩ |0⟩ , |ϕ1⟩ = |0⟩ |α⟩} corresponding to
the transmitted classical information {0, 1} into a
CPPM signal by applying a unitary operator U(k)
depends on a key k(= 1, 2, . . . ), and transmits it via
the quantum communication channel. The signal
transmitted in this case is as follows.

|ψi,k⟩ = U(k) |ϕi⟩ , (i = 0, 1). (1)

Then Bob obtains the 2-PPM signal by applying
U(k)† which is determined by the key. Assume that
he uses a direct detection receiver or a quantum op-
timal receiver. On the other hand, Eve does not
know the key and cannot obtain the 2-PPM signal,
so she attempts to measure the 2-CPPM signal with
a heterodyne receiver. Here, we consider Yuen’s up-
per bound evaluation method, that is Eve is granted
fictionally the key after her measurement.

2.2 Error Probability for 2-CPPM Signals

Let P opt be the error probability when Bob mea-
sures the 2-PPM signal using a quantum optimal
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receiver. The error rate of a quantum optimal re-
ceiver for binary signals is well known [4], and for
2-PPM signals {|ϕ0⟩ , |ϕ1⟩} it is as follows.

P opt =
1

2

(
1−

√
1− |⟨ϕ0|ϕ1⟩|2

)
=

1

2

(
1−

√
1− e−2|α|2

)
. (2)

Let P het be the error probability when Eve mea-
sures the 2-CPPM signal using a heterodyne re-
ceiver. P het is as follows [1, 5].

P het =

∫ ∞

−∞

1√
2π

exp

[
−
(y −

√
2|α|2)2

2

]
Q(y)dy,

Q(y) = 1− [Φ(y)] ,

Φ(y) =
1√
2π

∫ y

−∞
exp

[
−v2/2

]
dv. (3)

2.3 Channel Capacity for 2-CPPM Signals

Note that Bob can convert 2-CPPM back to 2-
PPM with a key-based unitary transformation, and
a quantum collective decoding can be performed on
the encoded quantum signal. Let

ρ =
1

2
(|ϕ0⟩⟨ϕ0|+ |ϕ1⟩⟨ϕ1|) (4)

be the density operator corresponding to the 2-PPM
signal. Then Bob’s capacity is

CBob = −Tr ρ log ρ

= −λ+ log λ+ − λ− log λ−, (5)

where λ± = 1
2(1±⟨ϕ0|ϕ1⟩) are eigenvalues of ρ. As-

suming that Eve fictionally knows the key after her
heterodyne measurement, the upper bound of Eve’s
capability can be evaluated by soft-decision decod-
ing for coded signals affected by a Gaussian noise.
The corresponding capacity is

CEve = max {H(Y )−H(Y |X)} . (6)

Maximization of the right-hand side of Eq.(6) is per-
formed with respect to the distribution of the input
X and is achieved when the input distribution is uni-
form because the channel is symmetric. The H(Y )
and H(Y |X) in Eq.(6) are the output entropy and
conditional output entropy, respectively, and

H(Y ) = −
∫ ∞

−∞
py(y) log py(y)dy, (7)

H(Y |X) = −
∫ ∞

−∞
py|x(y|x) log py|x(y|x)dy, (8)

Figure 1: Error probability for uncoded and (5,4)
and (6,5) single parity coded signals, measured by
Bob using the optimal receiver and by Eve using
heterodyne receiver

when the distribution of input X is uniform．Here，

py|x(y|x) =
1√
π
e−y2 (9)

py(y) =
1

2
√
π

(
e−y2 + e−(y−

√
2|α|2)2

)
. (10)

In general, CEve < CBob, and the rate R of encoding
should be set as

CEve < R < CBob, (11)

for the security [3].

3 Codings and their Effects

This section describes the coding proposed in
AQIS2022. Here, we explain using the (2,1) repe-
tition code that is the simplest code. First, Alice
generates a codeword state:

|ϕ0⟩ |ϕ0⟩ = |α⟩ |0⟩ |α⟩ |0⟩ : 00,
or |ϕ1⟩ |ϕ1⟩ = |0⟩ |α⟩ |0⟩ |α⟩ : 11. (12)

Alice then encrypts it. For example, if the generated
codeword state is |ϕ0⟩ |ϕ0⟩ and encryption is done
using U(k = 1), U(k = 2), then the encrypted state
is |ψ0,1⟩ |ψ0,2⟩. Bob can decrypt it to |ϕ0⟩ |ϕ0⟩, but
Eve cannot.
The results of applying the (5,4) single parity-

check code and the (6,5) single parity-check code
are shown in Fig.1. From Fig.1, when the average
number of photons Ns = |α|2 is small (near 0 to
4), Eve’s error probability is worsened by coding.
Comparing the (5,4) single parity-check code and
the (6,5) single parity-check code, it can be seen
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Figure 2: Channel capacities for 2-CPPM signals

that Eve’s error probability is worse when the (6,5)
single parity-check code is applied. Therefore, fur-
ther increasing the codeword length is expected to
further deteriorate Eve’s error probability. On the
other hand, Bob’s error probability improves over
uncoded at the average number of photons above
1.5. Therefore, by operating at the average number
of photons near 2, the quantum gain can be widened
by coding.

4 Capacity and discussion

Fig.2 shows the channel capacities for Bob and
Eve (CBob and CEve). Needless to say, CEve < CBob

always holds. The two horizontal lines are the con-
stants 4/5 and 5/6, which represent the rates of the
(5,4) and (6,5) codes (denoted R(5,4), R(6,5)).
From Fig.2, when the average number of photons

satisfies
0.5 < |α|2 < 2.5, (13)

then
CEve < R(5,4), R(6,5) < CBob, (14)

and the rate R satisfies the condition of Eq.(11),
which is expected to be effective in coding to im-
prove the security. In section 3, we mentioned that
the coding is effective when the average number of
photons is near 2, which is consistent with the re-
sults for the capacity.

5 Conclusion

We introduced that the quantum gain can be en-
hanced when the average number of photons is near
2 by applying the (5,4) or (6,5) single parity-check
code as an outer code to 2-CPPM type KCQ. By
comparing the capacity and coding rates of a legiti-
mate receiver and an attacker for 2-CPPM, we show

that coding is expected to be effective for the (5,4)
and (6,5) codes with the average number of photons
Ns of about 0.5 < Ns < 2.5. Although the capac-
ity is usually taken to tell an asymptotic behavior
of the coding rate for very long codeword lengths,
it is found to be useful in protocol design even for
short codeword lengths such as 5 and 6. In the fu-
ture, we will investigate whether choosing the code
to be applied to the KCQ based on the capacities
of a legitimate receiver and an attacker can enhance
security at the required the average number of pho-
tons.

Acknowledgments: This work has been sup-
ported in part by JSPS KAKENHI Grant Num-
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Abstract. Charging effects in ion traps are one of the main culprits of motional decoherence, complicating
the physical control of ions and limiting the performance of qubit operations. The most commonly reported
phenomenon is the long-term dielectric charging effect that occurs from stray charges produced on the
surfaces of insulating materials in the vicinity of the ions. Here, we report on a photoconductive charging
effect, a rather poorly studied subject to date, which mainly arises in semiconductor-based microfabricated
ion trap chips. A Raman transition setup that utilizes the trapped ion as a quantum sensor is used to
measure the stray field originating the exposed semiconductor surfaces in our ion trap chip. Observations
are interpreted through a surface photovoltage (SPV) model which reproduces results that are in good
agreement with experimental data.

Keywords: Ion trap, charging, semiconductor, surface photovoltage

1 Introduction

Ion traps have been demonstrated to be promising
platforms for the physical realization of quantum com-
puters [1, 2]. In particular, microfabricated ion trap chips
are leveraging semiconductor fabrication technologies to
make ever compact and elaborate ion traps, while scaling
up the platform at the same time. Such chips, however,
suffer from charging effects from semiconductors whose
exact origin remains illusive despite numerous studies re-
porting its existence and experimental methods to miti-
gate such effects [3, 4, 5, 6, 7].
Here, we report on the photoconductive charging ef-

fect which is distinct from the more recognized dielectric
charging [8, 9, 10] which arises from stray photo-induced
charges residing on the surfaces of insulating materials.
Whereas the latter is visible over large time scales ranging
from several seconds to hours, the former is detectable in
shorter time scales within the range of a few microsec-
onds to tens of milliseconds in our ion trap chip. Since
the time scale is comparable to that of the time evolution
of the ion, significant motional decoherence occurs as the
ion is displaced from its null position due to the stray
field, thereby limiting the performance of the quantum
operation.
In our study, we performed thorough measurements of

the stray electric field generated from surfaces of the ex-
posed semiconductor substrate, p-type silicon, by using

∗acornzet@snu.ac.kr
†ujun0909@snu.ac.kr
‡taehyun@snu.ac.kr

a 171Yb+ trapped ion as a quantum sensor [16]. A beam
configuration for Raman transitions was set up in a way
such that the ion displacement in the direction of the
stray field could be extracted. Large ion displacements
were observed, even in the NIR wavelengths, raising a
need for a correction to the common belief spread in the
ion trap community that NIR lasers are typically harm-
less to ion trap performance.

We present a photoconductive charging model in the
context of surface photovoltage (SPV) [11, 12, 13, 14]
that can fully explain the general features observed in
our ion trap system. The model is based on the semicon-
ductor equations [15] subject to surface conditions that
involve surface states that can exchange charges with the
bulk through surface absorption (of light) and recombi-
nation. We find that surface conditions on the exposed
silicon surfaces in our chip is very different from the typ-
ically oxidized state of the silicon surface. The forma-
tion of such surface states is presumed to have occurred
through the microfabrication process.

2 Experimental setup and measurement
method

The structure of our silicon-based microfabricated
171Yb+ trap chip and experimental setup for measure-
ment of the stray electric field using the Raman transi-
tion is shown in Fig. 1 (for more detailed descriptions of
the chip architecture, refer to Ref [17]). The direct cur-
rent (dc) and radio frequency (rf) electrodes to create the
trap potential are on the surface of the chip and are made
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of aluminium (Al), which is additionally coated by gold
(Au) near the trap region to avoid oxidation. There is an
extended loading slot along the trap axial direction with
a width of 80 µm which penetrates the chip. The exposed
silicon surface which causes the laser-induced photocon-
ductive charging resides under the electrodes of the chip.

Figure 1: Schematic cross-sectional illustration of the mi-
crofabricated chip with parallel and perpendicularly in-
cident laser beams

A quantitative estimation of the magnitude of the
stray field is perfomed by measuring the change in
the qubit transition strength induced by micromo-
tion of the ion, which arises by the ion’s displace-
ment from the equilibrium of the rf potential [18].
The qubit transition is achieved by the Raman tran-
sition from |0⟩ =

∣∣2S1/2, F = 0,mF = 0
〉

state to

|1⟩ =
∣∣2S1/2, F = 1,mF = 1

〉
state, driven by a pair of

beatnote-locked 355-nm pulsed laser beams. The Raman
beams are aligned perpendicular to the chip so that the
ion displacement in the normal direction with respect to
the surface of the chip could be detected as it is shifted by
the stray field generated from the silicon substrate under-
neath. As the ion is pushed away from the null position
by a stray field, it experiences phase modulation relative
to the laser, induced by the micromotion oscillating at
the frequency of the rf field, which reduces the excitation
strength to the |1⟩ qubit state. By tuning the voltages
of the inner electrodes to compensate this stray field, its
magnitude and sign can be determined.

3 Results

Image of the ion displacement by an NIR laser
Prior to quantitative estimation of the laser-induced
stray field, ion’s displacement by the field which is caused
by scattering of an NIR laser, or the repumping 935-nm
laser in our setup, was witnessed in imaging of the ion.
The 935-nm laser passes through the chip surface with
a separation of 80 µm. Fig. 2 shows images of the ion
captured by an electron-multiplying charge-coupled de-
vice (EMCCD) after collected by an imaging lens of 0.6
NA, becoming defocused as it is displaced from the null
position by scattering of the 935-nm laser with an increas-
ing input power from 100 µW to 1.8 mW (see Fig. 1 for
the configuration of the laser). The defocusing is clearly
noticible and the maximum displacement of the ion is es-
timated to be around 8 µm which can be determined by
translating the EMCCD until the ion is re-focused.

Figure 2: (a)-(d) Images of the ion displaced by the stray
field from silicon substrate induced by scattered light as
the power of the 935-nm laser was increased.

Spectral measurement of the SPV and theoretical
results Ion displacements provide information about
the stray field through which the SPV at the silicon sur-
face can be estimated. Fig. 3 (a) shows the spectral signal
of the SPV rescaled to the value of the probing compensa-
tion voltage applied on the electrodes in the ion trap chip.
Lasers of three wavelengths, two in the NIR range, 1055
nm and 1300 nm, and one in the UV range, 399 nm, have
been uniformly illuminated on the silicon surface exposed
at the backside of the chip. The SPV was measured to
be stronger for 1055 nm than 399 nm, in contrast to the
common perception in the ion trap community that UV
light is the dominant wavelength responsible for produc-
ing charging effects.

This is not unusual when we consider surface absorp-
tion from surface states whose theoretical formulations
are provided in the references [19, 20, 21, 22]. Charge
carriers initially populated in the surface states are opti-
cally excited to the conduction bands and diffuse into the
bulk where they recombine with other free charge carri-
ers. For certain surface states, the charge redistribution
can result in an enhancement of the surface potential,
hence a positive SPV for a p-type semiconductor as in
our case. The magnitude of the SPV increases as more
charge carriers are depopulated from the surface states,
ultimately reaching saturation at zero occupation.

The theoretical absorption spectrum appropriate for
our system (determined by the so called quantum defect
number ν) is plotted in Fig. 3 (b). The numerical val-
ues of the SPV solved by our photoconductive charging
model is plotted in Fig. 3 (a) in dashed lines. Reported
values have been used for bulk parameters, whereas the
surface state parameters have been fitted to agree with
experimental data. The quantum defect number was es-
timated to be ν = 1 from the spectral response of the
SPV. This implies that the surface states responsible for
the signals observed in our ion trap chip are hydrogenic
in character [22].
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Figure 3: (a) Spectral response of laser-induced electric
fields. The error bars in the plots indicate the 95 %
confidence intervals of the fitting in each measurement.
(b) Optical cross section by photon energy (normalized
with respect to 1055 nm) for quantum defect numbers
ν = 0, 1 and the values for the selected wavelengths in our
measurement (yellow-1300 nm, orange-1055 nm, purple-
399 nm). Our observations are explained by the spectrum
corresponding to ν = 1.

4 Conclusion

A study on photoconductive charging effects in a
semiconductor-based microfabricated ion trap chip was
conducted. Significant displacements of trapped ions due
to stray fields from exposed silicon surfaces were mea-
sured and understood through a photoconductive charg-
ing model based on the SPV effect. The framework pre-
sented for estimating the SPV is not limited to the sur-
face conditions used in our work, but may be extended
to predict behaviors for other types of surfaces as well.
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Incompatibility and nonlocality are not only of foundational interest but also act as important resources for
quantum information theory. In CHSH (Clauser–Horne–Shimony–Holt) scenario, the incompatiblity of a pair
of observables is known to be equivalent to Bell nonlocality. Here, we investigate these notions in the context
of qubit channels. The Bell-CHSH inequality has a greater perspective – compared to any genuine tri-partite
nonlocality scenario – while determining about the interplay between nonlocality breaking qubit channels and
incompatibility breaking qubit channels. In Bell CHSH scenario, we prove that if the conjugate of a channel is
incompatibility breaking, then the channel is itself nonlocality breaking and vice versa. However, this equiva-
lence is not straightforwardly generalized to multi-partite systems, due to the absence of an equivalence relation
between incompatiblity and nonlocality in the multi-partite scenario. We investigate this relation in tripartite
scenario by considering some well known states like GHZ and W states and using the notion of Mermin and
Svetlichny nonlocality. By subjecting the parties in question to unital qubit channels, we identify the range of
state and channel parameters for which incompatiblity coexists with nonlocality. Further, we identify the set of
unital qubit channels that is Mermin/Svetlichny nonlocality breaking irrespective of the input state.

I. INTRODUCTION

Nonlocality is one of the profound notions in quantum me-
chanics [1] and is often talked in conjunction with incompati-
bility of observables. Recent developments in quantum infor-
mation theory have found nonlocality as a useful phenomenon
underpinning many advantages afforded by various quantum
information processing tasks [2]. Nonlocality can also be
considered as a potential quantum resource for information
processing, such as in developing quantum protocols to re-
duce the amount of communication needed in certain compu-
tational tasks [2] and providing secure quantum communica-
tions [3, 4]. Incompatibility, like nonlocality, is not merely
of theoretical interest but of practical utility, for example, in
order to explore the advantage of entanglement shared by two
parties in a cryptography task, each party needs to carry out
measurements that are incompatible, in the sense that these
cannot be carried out simultaneously by a single measurement
device. Incompatibility should not be confused with noncom-
mutativity or the related concept of uncertainty principle. The
notion of incompatibility is best understood in terms of joint
measurability [5]. A collection of quantum measurements is
jointly measurable, if it can be simulated by a single common
quantum measurement device. If such a single common de-
vice cannot be constructed by a given set of quantum measure-
ments, it then enables the set to be used as a quantum resource.
This was first noted in [6] in the context of CHSH inequalities
and later in the EPR steering, which is more explicit, when
incompatibility appears as a quantum resource. Incompatibil-
ity is necessary and sufficient for the violation of the steering
inequalities [7, 8]. The relation between incompatibility and
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contextuality has also been studied in references [9, 10]. Fur-
ther, a set of observables that is pairwise incompatible, but not
triplewise can violate the Liang-Spekkens-Wiseman noncon-
textuality inequality [11]. Recently, the connection between
steerability and measurement incompatibility was studied in
[12] in the context of the so called steerability equivalent ob-
servables. Thus, both nonlocality and incompatibility can be
considered as quantum resources whose understanding is of
utmost importance in view of emerging quantum technolo-
gies.

The interplay of nonlocality and incompatibility has been a
subject matter of various studies. It is well known that any in-
compatible local measurements, performed by the constituent
parties of a system, lead to the violation of Bell inequality
provided they share a pure entangled state [1, 2]. Absence
of either of them (i.e., entanglement and incompatibility) will
not allow the system to exhibit nonlocality. It is important to
mention here that a notion of quantum nonlocality without en-
tanglement has been proposed in [13] which is different from
Bell nonloclaity [1] and amounts to the inability of discrimi-
nating a set of product states by local operations and classical
communication, while mutual orthogonality of the states as-
sures their perfect global descrimination.

Further, for any pair of dicohotomic incompatible observ-
ables, there always exists an entangled state which enables
the violation of a Bell inequality [6]. The relationship of in-
compatibility and nonlocality is sensitive to the dimension of
system, for example, increasing the dimension beyond two,
the incompatible observables do not necessarily lead to the
violation of Bell type inequalities implying that the measure-
ment incompatibility can not guarantee nonlocality in general
[14, 15]. Here, we probe the interplay between incompatibil-
ity and nonlocality in tripartite case by using the well known
Mermin and Svetlichny inequality [16]. Svetlichny inequal-
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ity, unlike Mermin inequality, is a genuine measure of nonlo-
cality that assumes nonlocal correlations between two parties
which are locally related to a third party and is known to pro-
vide a suitable measure to detect tripartite nonlocality for W
and GHZ class of states [17]. We refer the interested readers
to [2, 18] for various facets of the multipartite nonlocality.
A nonlocality breaking channel (NBC) can be defined as a
channel which when applied to a system (or part of it) leads to
a state which is local [19], while as incompatibility breaking
channel (IBC) is the one that turns incompatible observables
into compatible ones [20, 21]. An IBC that renders any set of
n incompatible observables compatible would be denoted by
n − IBC. The notion of NBC has been introduced in a simi-
lar spirit of well-studied entanglement breaking channel [22].
Every entanglement breaking channel is nonlocality breaking
but the converse is not true. As an example, the qubit depolar-
ising channel E

(
ρ
)

:= p
(
ρ
)

+ (1 − p)I/2 is CHSH nonlocality
breaking for all 1

3 ≤ p ≤ 1
2 , but not entanglement breaking

[19]. Hence, based on this classification, nonlocality and en-
tanglement emerge as different resources.
The equivalence of the steerability breaking channels and the
incompatibility breaking channels was reported in [23] and
CHSH nonlocality breaking channels were shown to be a
strict subset of the steerability breaking channels [24]. The
connection between Bell nonlocality and incompatibility of
two observable is well understood, however, the question
of the equivalence between NBC [19] and IBC [21] is
rarely discussed. This motivates us to explore the relation
between CHSH nonlocality breaking channels (CHSH-NBC)
and 2 − IBC, such that the action of one may be replaced by
the other. The tripartite nonlocality has much more richer and
complex structure and less is known about its synergy with
incompatibility as compared to its bipartite counterpart. Mer-
min inequality assumes local-realistic correlations among all
the three qubits; hence a violation would be a signature of
the tripartite nonlocality shared among the qubits. However,
biseparable states were shown to also violate the Mermin in-
equality [3, 25]. This motivated Svetlichny to introduce the
notion of genuine tripartite nonlocality [16] and provided a set
of inequalities sufficient to witness it. We make use of these
notions of absolute and genuine nonlocality to figure out the
ranges of state and channels parameters in which NBC and
2 − IBC coexist.

II. RESULTS AND DISCUSSION

A. Equivalance of CHSH nonlocality breaking and
incompatibility breaking channels

Our first result establishes an equivalence of the CHSH non-
locality breaking channel acting on one party, with its dual
being an incompatibility breaking channel – in the context of
2− IBCs. The result can be summarized by the following two
theorems:

Theorem 1. If the conjugate of a qubit channel E is 2 − IBC
, then the channel itself is CHSH-NBC.

Proof. Consider the Bell-CHSH scenario, such that [A1, A2] ,
0 and [B1, B2] , 0, i.e., the operators A1, A2 and B1, B2 are
incompatible in conjunction. Let E† be the conjugate channel
that is 2−IBC. Then the action of this channel on Alice’s side
makes A1 and A2 compatible, i.e., [A1, A2] = 0. Therefore, the
Bell-CHSH inequality is not violated [6], and we have

Tr
[
ρB

(
E†[A1],E†[A2], B1, B2

)]
≤ 2. (1)

Or,

Tr
[
ρE†[A1] ⊗ B1

]
+ Tr

[
ρE†[A2] ⊗ B1

]
+ Tr

[
ρE†[A1] ⊗ B2

]
− Tr

[
ρE†[A2] ⊗ B2

]
≤ 2. (2)

This can be viewed in the Schrödinger picture as

Tr
[
(E ⊗ I)[ρ]A1 ⊗ B1

]
+ Tr

[
(E ⊗ I)[ρ]A2 ⊗ B1

]
+ Tr

[
(E ⊗ I)[ρ]A1 ⊗ B2

]
− Tr

[
(E ⊗ I)[ρ]A2 ⊗ B2

]
≤ 2, (3)

which tells us that the CHSH inequality is satisfied even when
operators A1, A2 and B1, B2 are incompatible in conjunction.
Therefore, the action of E (to be precise of E ⊗ I) on state ρ is
solely responsible for non-violation of the CHSH inequality.
We conclude that E is CHSH-NBC. �

Theorem 2. If a qubit channel E is CHSH-NBC, then its con-
jugate is 2 − IBC.

Proof. Here we start with incompatible operators associated
with the respective subsystems, [A1, A2] , 0 and [B1, B2] , 0
and assume that the channel E acting on Alice’s side does not
allow for the violation of CHSH inequality, that is

Tr
[
(E ⊗ I) [ρ]B (A1, A2, B1, B2)

]
≤ 2. (4)

In other word, looking from the measurement point of view,
in Heisenberg picture, we have

Tr
[
ρE†[A1] ⊗ B1

]
+ Tr

[
ρE†[A1] ⊗ B2

]
+ Tr

[
ρE†[A2] ⊗ B1

]
− Tr[ρE†[A2] ⊗ B2] ≤ 2 (5)

The above inequality holds for arbitrary state ρ which can
even be an entangled state. Thus the non-violation of CHSH
inequality is coming from the action of E† on the operators A1

and A2, making them compatible,
[
E†[A1],E†[A2]

]
= 0. We

conclude that (E† ⊗ I) is incompatibility breaking. �

B. Nonlocality and incompatibility breaking channels in
tripartite scenario

The conditions for Mermin and Svetlichny nonlocality break-
ing channel obtained by the application of a unital quantum
channel to one party of a tripartite system, are depicted in
Fig. 1. All the points below solid (black) and dashed (red)
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FIG. 1: (Color online): Region below the dashed (red) and
solid (black) curve in (a), (b), (c), and (d) corresponds to
Mermin and Svetlichny nonlocality breaking conditions

(M-NBC and S-NBC) plotted against the (dimensionless)
state coefficients. The pairwise incompatibility breaking

condition pertains to all points below the horizontal dashed
line.

curve correspond to nonlocality breaking channel, while as
the points below the horizontal dashed line, η = 1/

√
2, per-

tain to pairwise incompatibility breaking. In all the four ex-
amples, Fig. 1 (a)-(d), the minimum value of ηS for which SI
is violated is 1/

√
2, suggesting that genuine nonlocal correla-

tions can not be established if at least one pair of observable
is compatible. The converse is not true, since there exist re-

gions (above the horizontal dashed line and below the solid
(black) curve) of Svetlichny nonlocality breaking even when
the channel is not 2 − IBC. Thus, these examples illustrate
that corresponding to 2− IBC the conjugate channels are def-
initely S-NLB; however, the conjugate of S-NLB channels may
not necessarily be a 2− IBC. However, in the context of Mer-
min nonlocality, even the first statement does not hold, that is,
existence of a 2 − IBC does not necessarily gaurentee a con-
jugate channel that is M-NLB. Also, the minimum ηM (that is
maximum noise) for which a channel is M-NLB is always less
by a factor of 1/

√
2 than the minimum noise below which that

channel is S-NLB. Note that instead of one party, if two or all
the three parties are subjected to noise, the NBC conditions
become

ηM ≤

(
1

√
2λmax

)1/n

, ηS ≤

(
1

λmax

)1/n

, (6)

where n corresponds to the number of qubits subjected to
noise. Since 1/λmax < (1/λmax)1/2 < (1/λmax)1/3 (with
λmax > 1), the solid (black) and dashed (red) curves in Fig.
1 (a)-(d), are shifted up, thereby decreasing the region of non-
locality with increase in n.

III. CONCLUSION

This work is devoted to a study of the interplay between non-
locality breaking and incompatibility breaking power of noisy
quantum qubit channels. The action of quantum channels on
projective measurements transforms them into noisy POVMs,
characterized in particular by unsharpness parameters. As a
consequence, noise tends to increase the compatibility of ob-
servers that are otherwise incompatible. In fact, pairwise in-
compatibility breaking is assured if the channel parameter is
less than or equal to 1/

√
2. To be specific, we consider bipar-

tite and tripartite scenarios, with CHSH nonlocality in the for-
mer and Mermin and Svetlichny nonlocality in the later case.
The degree of incompatibility breaking directly depends on
the unsharpness parameters. Here, we showed that in Bell
CHSH scenario, if the conjugate of a channel is incompatibil-
ity breaking then the channel is itself nonlocality breaking and
the converse is also true. In tripartite scenario, however, such
an equivalence between nonlocality breaking and incompati-
bility breaking does not exist. We then consider various ex-
amples of three qubit states and identify the state parameters
for which the equivalence of nonlocality breaking corrobo-
rates with the pairwise incompatibility. In particular, it is illus-
trated that the conjugate of incompatiblity breaking channels
are nonlocality breaking, however, the nonlocality breaking
channels do not guarantee the existence of conjugate channels
that are incompatibility breaking. This may be viewed as a
useful feature of the Bell-CHSH inequality when it comes to
the study incompatibility of observables. Further, from ran-
domly generated three qubit states subjected to general unital
channels, we conclude that no Mermin (Svetlichny) nonlocal
correlations are supported for ηM < 0.090 (ηS < 0.128) .
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Abstract. Scalability in quantum computing poses challenges due to high overhead in building fault-
tolerant quantum computers. A study by Wan et al. (PRX Quantum 2, 2021) proposed fault-tolerant
protocols for constructing three-dimensional cluster states using emitters and waveguides. However, scala-
bility was limited by delay line errors and waveguide length restrictions. In this paper, an improved protocol
is presented, distributing cluster state construction across an array of emitter and waveguide pairs. Sim-
ulation results demonstrate that threshold values are tolerant with increased emitters and noisy gates,
enabling scalability. The proposed protocol also reveals that desired logical error rates can be achieved
with higher dephasing error rates than previously believed, emphasizing practical advantages.

Keywords: fault-tolerant quantum computation, measurement-based quantum computation, emitter sys-
tem

1 Introduction

Significant progress has been made in experiments re-
lated to large-scale fault-tolerant quantum computation.
An experiment conducted by Google Quantum AI [1]
demonstrated that physical superconducting qubits ex-
hibit sufficiently low error rates to realize a lower logical
error rate through scaling up the surface code [2, 3, 4, 5]
and employing error correction techniques. This achieve-
ment represents a crucial advancement towards fault-
tolerant quantum computation, as described by the
threshold theorem [3, 6, 7, 8, 9, 10].
However, the scaling up of the number of qubits poses a

major challenge due to the substantial experimental over-
head required. The manufacturing, calibration, and man-
agement of a large quantity of qubits present formidable
obstacles. Therefore, the successful attainment of suffi-
cient scalability in experimental setups is crucial for the
realization of large-scale fault-tolerant quantum compu-
tation.
Wan et al. introduced a practical and scalable exper-

imental setup along with protocols [11]. Compared to
previous methods [12, 13, 14, 15, 16, 17, 18], these proto-
cols utilize an emitter system, offering enhanced feasibil-
ity. Building upon the concept of time-domain multiplex-
ing [19, 20, 21, 22, 23], the protocols achieve fault-tolerant
construction of a three-dimensional cluster state capable
of universal fault-tolerant measurement-based quantum
computation using the surface code [12, 24, 25, 26, 27,
28]. The setup comprises an emitter and a waveguide
that facilitates the flow of photons or phonons. By uti-
lizing fewer components, the experimental overhead is
expected to decrease, leading to lower logical error rates
by enhancing individual components. The qubits be-
come entangled through emitter-mediated interactions,
forming the structure of the three-dimensional cluster
state. Interactions occur successively as the qubits tra-
verse the waveguide, exclusively between the emitter and

∗jint1054@gmail.com
†ikekim@ucdavis.edu

the qubits. While the emitter interacts with all qubits,
the resulting effective errors stemming from a single emit-
ter or qubit error remain localized [11].

The Monte Carlo simulation results, employing a
minimum-weight perfect matching (MWPM) decoder,
demonstrate that the logical error rate of the L× L× L
three-dimensional cluster state construction under open
boundary conditions (OBC) decreases as L increases.
For Protocol A and B, the circuit error rates below the
thresholds of 0.23% and 0.39%, respectively, yield re-
duced logical error rates [11]. However, the setup is also
vulnerable to delay line errors, dephasing errors and loss
errors, as the cumulative delay line errors with longer
waveguides accompanying larger three-dimensional clus-
ter states cannot be disregarded. The errors from cumu-
lative delay lines are directly proportional to the cross-
sectional area of the three-dimensional cluster state. The
simulation results for Protocol B indicate that achiev-
ing logical error rates 10−5, 10−10, 10−15 for a static cir-
cuit error rate of 10−3 requires a dephasing error rate of
1.39×10−5, 2.53×10−6, 1.02×10−6 and a loss error rate
of 1.4×10−4, 2.4×10−5, 9.5×10−6, respectively, when de-
phasing errors and loss errors are considered separately.
Notably, the required loss error rates are currently more
achievable than what can be achieved with state-of-the-
art waveguides [11].

In this paper, we propose enhanced three-dimensional
cluster state construction protocols based on Wan et al.’s
paper, which include multiple emitters and are more re-
sistant to delay line errors. The protocols are fault-
tolerant and composed of a number of emitter and waveg-
uide pairs, still allowing for scalability with a small num-
ber of experimental components. Each emitter is asso-
ciated with its own waveguide, allowing interactions be-
tween emitters and qubits within their respective waveg-
uides, as well as interactions between neighboring an-
cilla qubits. The emitters mediate interactions between
two data qubits within the same waveguide, facilitating
the construction of the three-dimensional cluster state.
Each waveguide stores a portion of the cluster state,
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and inter-waveguide qubit connections are established
through emitter-mediated interactions. By confining
emitter interactions to their two nearest neighbors, the
emitter and waveguide pairs can be linearly aligned. The
introduction of multiple emitters reduces the construc-
tion time of the three-dimensional cluster state, leading
to shorter waveguides and a decrease in delay line errors.

2 The protocols

Figure 1: Unit cell of the bcc lattice.

We start by introducing the graph G = (V,E), where
the vertices are all numbered, and the edge between the
vertices i and j is represented as {i, j} = {j, i}. Then, the
cluster state |ψG⟩ corresponding to the graph G = (V,E)
is defined as

|ψG⟩ =
∏

(i,j)∈E

Zi,j ⊗i′∈V |+⟩i′ , (1)

where Zi,j is the controlled-Z gate on qubits i and j.
Each vertex in the graph corresponds to a data qubit,
while each edge represents a controlled-Z gate applied
between two data qubits. The three-dimensional clus-
ter state |ψGbcc

⟩, defined in Eq. (1), is represented by
the graph Gbcc = (Vbcc, Ebcc), which corresponds to the
body-centered cubic (bcc) lattice [12]. The unit cell of
the bcc lattice is illustrated in Fig. 1. This bcc structure
can be interpreted as the foliation of the surface code
cluster state with additional edges [28] and the three-
dimensional cluster state can be utilized for the univer-
sal fault-tolerant measurement-based quantum computa-
tion [12, 24]. The construction of this state involves the
initialization of data qubits and the implementation of
quantum logic gates.
To construct the three-dimensional cluster state using

multiple emitters, the experimental setup involves pairs
of emitters and waveguides. In this setup, the ancilla
qubit corresponds to the emitter, while the data qubits
represent the qubits traveling along the waveguides. In-
teractions are allowed between the ancilla qubit and the
data qubits within a waveguide, as well as between emit-
ters. To facilitate the discussion, we initially consider the
case of using two ancilla qubits, denoted as Q1 and Q2,
to construct the three-dimensional cluster state |Gbcc⟩.
We will later address the extension of this protocol to
accommodate any number of ancilla qubits. The three-
dimensional cluster state graph Gbcc = (Vbcc, Ebcc) can

be partitioned into two subgraphs, G1 and G2, with the
inclusion of additional edges. By using G1 = (V1, E1)
and G2 = (V2, E2), we may express Gbcc as

Gbcc = (V1 ∪ V2, E1 ∪ E2 ∪ E12), (2)

where the set of edges connecting vertices, one in G1

and one in G2, is represented by E12. We additionally
define V12 satisfying V12 ⊂ V1 ∪ V2 and consisting of all
the vertices appear in E12 for the protocol explanation.
The qubits in the graphs G1 and G2 are identified by
the subscripts 1 and 2, respectively. For the successful
implementation of the protocol, it is crucial to divide G1

and G2 in a suitable manner. Specifically, each vertex
in G1 must be connected to at most one vertex in G2,
and vice versa. The identification of G1 and G2 that
satisfy this condition can be easily accomplished, and an
illustrative example is provided in Fig. 2.
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Figure 2: Figure of the part of 8×8×8 three-dimensional
cluster state under PBC is depicted. Subscripts of the
data qubits are omitted for simplicity.

Figure 2 illustrates a 8×8×8 three-dimensional cluster
state that is partitioned into two subgraphs, namely G1

(left graph) and G2 (right graph), under periodic bound-
ary conditions (PBC). In G1, the blue data qubits cor-
respond to the blue face in G2 and connect to the data
qubits in G2. Similarly, in G2, the yellow data qubits
correspond to the yellow face in G1 and connect to the
data qubits in G1. The black data qubits on the same yz
plane as the blue or yellow data qubits do not connect to
data qubits in the other subgraph.

The key strategy when employing multiple ancilla
qubits is to construct subgraphs of G1 and G2 using an-
cilla qubits Q1 and Q2, respectively, for the vertices not
included in V12. This is accomplished by utilizing the
additional protocol provided in the appendix and Proto-
col B in Wan et al.’s paper [11]. When encountering the
link i1, j2 ∈ E12, the connection between all edges involv-
ing vertices i1 and j2 is established using the interaction
between the two ancilla qubits. Consequently, there are
two distinct protocols, namely Protocol 1 and Protocol
2. Protocol 1 (Protocol 2) employs the protocol in the
appendix (Protocol B) for the vertices not included in
V12.

Expanding the implementation to include more than
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two emitters necessitates the restriction that each ver-
tex in one subgraph can connect to at most one vertex
in other subgraphs. This avoids the requirement for in-
teractions involving more than two ancilla qubits within
a single procedure. For an optimized construction, each
subgraph should be a three-dimensional cluster state of
size (L/n)× L× L, with qubits numbered to match the
numbers of the qubits they will connect to in the other
subgraphs. If the numbers of qubits to be connected dif-
fer, the construction of one subgraph must occasionally
be paused. To fulfill these requirements, the number of
ancilla qubits, n, and L/n should be even numbers. Sub-
graphs with an odd number of emitters will always result
in the pause of construction for some subgraphs.

3 Main results

Our protocols raise two main concerns: nonlocal ef-
fective errors and emitter-to-emitter errors. While it
has been demonstrated that Protocol B (the protocol
in the appendix) results in local effective errors for a
single error in an emitter or qubit in all cases (most
cases) [11], the situation becomes less clear when mul-
tiple emitters and emitter-to-emitter interactions are in-
volved. Therefore, it is essential to investigate whether
the threshold value remains constant as the number of
emitters increases. Moreover, given the current tech-
nology, emitter-to-emitter interactions tend to introduce
more errors compared to emitter-to-qubit interactions.
Thus, it is crucial to assess the tolerance of the threshold
value under significantly higher emitter-to-emitter inter-
action error rates.
To address these concerns and investigate the scalabil-

ity of our protocols, we employ Monte Carlo simulations
using a standard depolarizing model for the L × L × L
three-dimensional cluster state under PBC. We conduct
a comprehensive evaluation of the logical error rates for
our proposed protocols considering circuit errors and an
even number of ancilla qubits. Additionally, we assess
the logical error rates for two ancilla qubits, considering
various emitter-to-emitter gate error rates expressed as
multiples of the other gate rates.
The simulation results clearly show that the threshold

values of the proposed protocols are tolerant to an in-
crease in the number of emitters. Specifically, the thresh-
old values for 2, 4, 6 emitters are 0.324%, 0.323%, 0.325%
for Protocol 1 and 0.389%, 0.387%, 0.388% for Protocol
2, respectively. Additionally, the threshold values remain
tolerant to a significantly higher error rate in emitter-to-
emitter interactions [Fig. 3]. For instance, when the
emitter-to-emitter gate error rate is ten times noisier
than other gates, the threshold is decreased to 0.317%
and 0.382%. Thus, while two nearest-neighbor emitter
interaction may be noisier than other interactions, the
proposed protocol can deal with this issue easily.
In our protocols, the cumulative delay line error is di-

rectly related to the cross-sectional area of the three-
dimensional cluster state, but inversely proportional to
the number of emitters. To demonstrate the scalability
of our protocols, we estimate the delay line error rates
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Figure 3: Threshold values for pe/p = 1, 2, 4, 6, 8, 10 are
depicted for Protocol 1 and Protocol 2. pe and p denote
the emitter-to-emitter gate error rate and the error rate
of other gates, respectively.

required to achieve specific logical error rates using the
maximum number of emitters available. We evaluate the
logical error rates for an even number of ancilla qubits
across different lattice sizes and dephasing error rates,
assuming a static circuit error rate of p = 10−3, which is
below the threshold value. Furthermore, we estimate the
dephasing error rates that can achieve specific logical er-
ror rates for the protocol employing the number of emit-
ters proportional to the length of the three-dimensional
cluster state.

We can expect the optimized three-dimensional cluster
state constructing using the maximum number of emit-
ters, L/2. In that circumstance, each waveguide has 2L2

qubits and the minimum logical error rate is proportional
to . Simulation results show that achieving logical error
rates of 10−5, 10−10, and 10−15 for a static circuit error
rate of 10−3 requires a dephasing error rate of 2.05×10−4,
9.58×10−5, and 6.25×10−5, respectively for Protocol 1.
Compared to the values in Wan et al.’s paper, our pro-
tocol’s values are better by at least 14 times. Notably,
our protocol’s performance is getting better as the target
logical error rate becomes smaller.

In summary, our protocols exhibit scalability even with
a limited number of emitter and waveguide pairs. The
challenge posed by emitter-to-emitter interactions can be
effectively managed, as the protocol is resilient to such
noise. By restricting the interactions of emitters to their
nearest neighbors, the entire system can be represented
as a linear array of emitter and waveguide pairs. Fur-
thermore, the protocols demonstrate that desired logical
error rates can be achieved, even in the presence of higher
dephasing error rates than those showed by previous sim-
ulation results, thereby indicating practical advantages.

References

[1] Acharya, R., Aleiner, I., Allen, R., Andersen, T.,
Ansmann, M., Arute, F., Arya, K., Asfaw, A., Ata-
laya, J., Babbush, R., Bacon, D., Bardin, J., Basso,

292



J., Bengtsson, A., Boixo, S., Bortoli, G., Bourassa,
A., Bovaird, J., Brill, L., Broughton, M., Buckley,
B., Buell, D., Burger, T., Burkett, B., Bushnell, N.,
Chen, Y., Chen, Z., Chiaro, B., Cogan, J., Collins,
R., Conner, P., Courtney, W., Crook, A., Curtin,
B., Debroy, D., Del Toro Barba, A., Demura, S.,
Dunsworth, A., Eppens, D., Erickson, C., Faoro,
L., Farhi, E., Fatemi, R., Flores Burgos, L., Forati,
E., Fowler, A., Foxen, B., Giang, W., Gidney, C.,
Gilboa, D., Giustina, M., Grajales Dau, A., Gross,
J., Habegger, S., Hamilton, M., Harrigan, M., Har-
rington, S., Higgott, O., Hilton, J., Hoffmann, M.,
Hong, S., Huang, T., Huff, A., Huggins, W., Ioffe, L.,
Isakov, S., Iveland, J., Jeffrey, E., Jiang, Z., Jones, C.,
Juhas, P., Kafri, D., Kechedzhi, K., Kelly, J., Khat-
tar, T., Khezri, M., Kieferová, M., Kim, S., Kitaev,
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Long-distance measurement-device-independent quantum key
distribution using hybrid-entangled states
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Abstract. Here we introduce a method of generating high-rate high-quality entanglement between distant
locations, a crucial requirement for quantum science and technology, by using hybrid-entanglement (HE)
between continuous-variables (CV) and discrete-variables (DV). We show that by using the CV part for
transmission and using the DV part for key generation, HE is especially useful in measurement-device-
independent (MDI) quantum-key-distribution (QKD), as it can enhance the transmission distance up to
300 km with a secure keyrate almost an order of magnitude higher than the existing MDI-QKD protocols.
Our results indicate that HE states are a feasible choice in optimaizing practical long-distance entanglement.

Keywords: AQIS, quantum key distribution, hybrid-entanglement, measurement-device-independent

1 Introduction

Generation of high-rate high-quality entanglement be-
tween distant locations is crucial for fundamental tests
of quantum theory and for its applications. For ex-
ample, it is needed for extending the current distances
of loophole-free Bell tests [1, 2], quantum steering [3],
and quantum teleportation [4]. It is also needed for
increasing the transmission distance and the key rate
in entanglement-based quantum key distribution (QKD)
protocols [5, 6, 7]. Moreover, higher-rates in distant lo-
cations will allow us to achieve higher detection efficien-
cies by means of heralded qubit amplifiers [8] or photonic
precertification schemes [9, 10, 11], whose practicality is
currently limited by the rates achieved after transmission
[12].
QKD, for which the security stems from the the laws of

nature [14], promises a vivid example of quantum versus
classical advantage [15, 16]. It has been extensively ana-
lyzed both theoretically and experimentally under variety
of setups such as prepare-and-measure, entanglement-
based, and measurement-device-independent (MDI) sce-
narios for physical systems that could be categorized in
two different sets [17]. The first kind, formally referred
to as discrete variable (DV) systems, are based on dis-
crete degrees of freedom such as polarization of a pho-
ton or orbital angular momentum states of light. On the
other hand, the second kind of physical systems, formally
known as the continuous variable (CV) systems, exploit
the continuous degrees of freedom such as quadrature
distribution of a quantized light inside a cavity.
While both DV and CV based QKD offer their own

set of advantages, they come with their disadvantages
too [12]. For example, DV-QKD protocols offer com-
posable security proofs with good key rate and are also
compatible with other QKD systems that makes them
an ideal choice for quantum networks. However, they re-
quire expensive single-photon-sources and precise single-
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photon measurements which are hard to perform. On the
other hand, CV-QKD protocols generally require Gaus-
sian states which are comparatively easier to prepare
than DV systems. Moreover, they are robust against
transmission losses and can potentially offer long trans-
mission distances. However, their performance is limited
by the requirement of almost ideal homodyne detectors
at telecommunication wavelength. As a consequence, de-
spite an extensive theoretical and experimental analysis
on both types of systems, the quest for an optimal phys-
ical system for QKD remains open.

Nonetheless, there exists a different class of physical
systems formally known as hybrid entangled (HE) states
[23, 24, 25]. These systems, representing a strongly cor-
related [26, 27] cross-system entanglement between DV
and CV states, play a crucial role in various quantum
information processing tasks [28, 29, 30]. Although, such
states have been efficiently generated in a wide range of
experimental setups [31, 32, 33] their potential applica-
tion in QKD still remains unexplored.

From the perspective of generating high-rate high qual-
ity entanglement between distant locations, MDI-QKD
protocols are of great interest as they can effectively dou-
ble the transmission distances. Here, we propose a novel
MDI-QKD scheme, using HE states as an initial resource,
that primarily hinges on generating a single-photon DV
entangled state between two distant parties by exploit-
ing CV entanglement swapping by a third party located
midway. Our scheme offers three major advantages as
compared to earlier DV and CV MDI-QKD protocols.
These are: (i) Elimination of major limiting factors of
DV-MDI-QKD, which include high precision Bell state
or single-photon measurements as well as the photon-
number-splitting attack by an eavesdropper, (ii) Elimi-
nation of the requirement of near-unit efficiency for the
homodyne detectors used for key generation in CV-MDI-
QKD and (iii) Long transmission distance in telecom
wavelength stemming from the robustness of multiphoton
coherent state against transmission losses.

By bringing forth the best of both DV and CV systems,
we show that it is possible to achieve a total transmission
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Figure 1: Schematic for generating DV entangled states
between Alice and Bob using HE states. Alice and Bob
first send the CV part of their individual HE states to
Charlie, who then mixes the incoming signals at a bal-
anced beam splitter (BS1), and uses one of the output
modes for homodyne measurement. The other outgoing
signal of BS1 is mixed with the additional coherent signal
sent by Bob at another balanced beam splitter (BS2) and
is used for a post-selection measurement by on-off detec-
tors. Upon declaration of the results by Charlie, Alice
and Bob obtain a DV entangled pair which is used for
secure key generation.

distance of ≈ 300 km by using practical homodyne de-
tectors with efficiency ηh = 0.55 [18, 19, 20, 21, 22] and
on-off detectors with efficiency η0 = 0.8, thereby surpass-
ing earlier results at telecommunication wavelengths on
optical fibres. The use of realistic and widely available
equipment makes our scheme readily implementable for
an intercity QKD network using current state-of-the-art
technologies.

2 Protocol

Let |0⟩ and |1⟩ correspond to photon number states in
the Fock basis and |α⟩ correspond to a coherent state of
a quantized light. We denote the photon number state
and the coherent state as the DV system and the CV
system respectively. A HE state is defined as entangled
pair between the DV and CV degrees of freedom as [23]

|ψ⟩a1a2
=

1√
2

(
|0⟩a1

|α⟩a2
+ |1⟩a1

|−α⟩a2

)
. (1)

We consider that two distant parties, Alice and Bob,
each of them having access to bipartite HE states |ψ⟩a1a2

and |ψ⟩b1b2 given by Eq. (1). We provide a step-by-step
description of the protocol, schematically represented in
Fig. 1.
Step 1: Alice and Bob transmit the CV part of their

systems (modes a2 and b2, respectively) to a third un-
trusted party, Charlie, who lies midway between them,
through a lossy quantum channel with transmittance T
(0 ≤ T ≤ 1). Bob also transmits the state

∣∣√2α
〉
, which

we label by mode c, to Charlie separately through a sim-
ilar quantum channel.
Step 2: Charlie mixes the two incoming modes a2

and b2 via a beam splitter (BS), labelled as BS1, with
two output modes which we can label as a

′

2 and b
′

2.

Step 3: In our protocol we are specifically interested
in the vacuum state contributions from the mode a

′

2. To
extract this contribution, Charlie mixes this mode though
a second BS (BS2) with mode c with output modes la-
belled as a

′′

2 and c
′
.

Step 4: Charlie now performs a projective measure-
ment, M = {Π0, 1 − Π0}, where Π0 = (1 − |0⟩ ⟨0|)a′′

2
⊗

(1−|0⟩ ⟨0|)c′ . This measurement is accomplished by using

on-off detectors on each of the modes a
′′

2 and c
′
. Charlie

then publicly announces the outcome of the projective
measurement which is considered to be successful only if
the result Π0 is obtained, i.e., both detectors click. In
that case, the protocol continues. Otherwise, the mea-
surement is deemed unsuccessful and the parties must re-
peat the aforementioned steps again. In order to model
realistic detectors, we consider imperfect on-off detectors
with efficiency η0.

Step 5: After a successful projective measurement
(as dictated in Step 4), Charlie performs a homodyne
measurement on the mode b

′

2 and, again, announces the
results publicly. We consider that homodyne measure-
ments have efficiency ηh.
Step 6: After a public announcement of the results of

a successful projective measurement and the homodyne
measurement by Charlie, Alice and Bob end up with the
final normalized single-photon-Bell-state in modes a1 and
b1 as

ρa1b1 =
1

2
(|01⟩ ⟨01|+ |10⟩ ⟨10| + f [g |01⟩ ⟨10|+ g∗ |10⟩ ⟨01|])

(2)
with probability

p0 =

(
1− e−ηoTα2

)2

2
, (3)

where f = e−4(1−Tηh)α
2

, g = e4i
√
Tηhαp, g∗ is the conju-

gate of g, and p is the result of the homodyne measure-
ment.

Step 7: For the case in which Alice and Bob share
ρa1b1 , they perform two-outcome Pauli measurements
corresponding to σZ on their respective subsystems to
generate a raw key. The length of the raw key that the
parties can generate is quantified by the mutual informa-
tion I(A : B) between them for the observable σZ .
Step 8: Alice and Bob then estimate the amount of

information that an adversary, Eve, can have on their raw
key. This information is quantified by the Holevo bound
χ(A : E) between Alice and Eve. As a consequence, we
can write the final secure key rate as

r ≥ p0 [I(A : B)− χ(A : E)] . (4)

3 Results

We assume that Charlie is midway between Alice and
Bob such that the total transmission distance is L. We
assume that the transmittance of both the channels,
Alice-Charlie and Bob-Charlie, is given by T such that

T = 10−l
L/2
10 , where l = 0.2 dB/km is the standard chan-

nel loss for telecom wavelength [34, 35].
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Figure 2: Secure key rate as a function of total transmis-
sion distance L for different values of α. We fix ηh = 0.55,
η0 = 0.8, and p = π

2 .

In Fig. 2, we plot the secure key rate as a function the
total transmission distance L. We choose the parameters
ηh = 0.55, η0 = 0.8, and p = π

2 to be as realistic as
possible. We see that the total transmission distance can
reach upto 300 km with a secure key rate of the order of
10−9 bits/pulses for α = 0.5. However, as we increase α,
the key rate is found to decrease drastically. We also find
that decreasing the value of α below 0.5 also decreases the
key rate as well as the maximum transmission distance
leading to an optimal choice of α ∼ 0.5.
This optimal value for α is in agreement with the ob-

servation that it is also the value of α which is more
robust to transmission losses. The effect of a quantum
state passing through a noisy channel can be seen as the
system undergoing photon loss. Let us denote the photon
loss fraction by R such that R = 0 and R = 1 correspond
to no photon loss and complete photon loss, respectively.
In Fig. 3, we show that the entanglement content of an
HE state undergoing photon loss over the CV part, as
given by logarithmic negativity. For a significantly lossy
channel, we find that the optimal value of α approaches
α = 0.5. This behaviour of HE states can be qualitatively
understood in terms of the interplay between entangle-
ment and the fragility of the initial HE state. Starting
from the initial separable state at α = 0, the HE state
becomes more entangled as α increases. An increase in α
also corresponds to an increase in the average number of
photons, which can be understood as an increase in the
mean energy of the system. However, with an increase
in the mean energy, the state becomes more vulnerable
to decoherence. This behaviour is similar to what is also
shown in Ref. [36] for superposition of coherent states
with increasing values of coherent amplitude. As a con-
sequence, with increase in α beyond an optimal value,
the HE state becomes extremely fragile under noise lead-
ing to a drop in entanglement when the multiphoton part
passes through a noisy quantum channel.
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Figure 3: Logarithmic negativity of the HE state after its
CV system is transmitted via a lossy quantum channel
as a function of the coherent amplitude α.

4 Conclusion

We have shown that our scheme with HE-states is able
to overcome the major drawbacks and disadvantages of
both DV and CV MDI-QKD protocols. Most notably,
it removes the requirement of using single photon detec-
tors, Bell state measurements, and near perfect homo-
dyne detectors, which are difficult to implement in an
experimental realisation. Instead, our protocol provides
the best of both worlds: longer transmission distances
and higher key rate using devices that can be readily im-
plemented in the laboratory. Our results indicate that
it is possible to achieve a total transmission distances of
∼ 300 km with a secure keyrate of the order of 10−9

bits/pulse. However, there exists a critical choice of α
(here it is ∼ 0.5) that yields optimal result which could
be attributed to the interplay between the fragility and
entanglement for an HE state undergoing transmission
losses.

It may further be noted that the probability of prepar-
ing the HE state is ∼ 50% and with fidelity ≈ 0.75 for
α = 0.5 [31]. This could be a limiting factor in a prac-
tical realisation of our protocol. However, this problem
can be mitigated by using other forms of HE states, most
notably with the DV and CV modes corresponding to
polarization and cat states respectively [33] which offer
exceptionally good fidelity of preparation as well as prob-
ability of generation.

Nonetheless, the use of realistic instruments, widely
available on the market, makes our protocol a viable
alternative in implementing linear optics based secured
cryptosystem at telecommunication wavelength within
the reach of current state-of-art technology. Moreover,
it could be reasonably extended to quantum networks
[37, 38] as well as satellite-based secure communication
[39].
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Efficient computation of nonstabilizerness with quantum computers and
matrix product states
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Abstract. Nonstabilizerness or ‘magic’ characterizes the amount of non-Clifford operations
needed to prepare quantum states. It is a crucial resource for quantum computing and a nec-
essary condition for quantum advantage. However, quantifying nonstabilizerness beyond a few
qubits has been a major challenge. Here, we provide efficient methods to compute measures
of nonstabilizerness for quantum computers [1] and matrix product states [2, 3]. We apply
our methods to experimentally uncover the transition in nonstabilizerness with increasing non-
Clifford resources on the IonQ quantum computer. Further, we study critical many-body systems
and find nonstabilizerness is in general not extremal. Our methods open up the experimental
and numerical study of nonstabilizerness of extensive quantum systems.

Keywords: Nonstabilizerness, magic, resource theory, critical many-body systems, NISQ

Nonstabilizerness, also known as magic, quanti-
fies the minimal number of non-Clifford operations
needed to prepare quantum states and is a neces-
sary condition for quantum advantage [4, 5]. As
typical measures of nonstabilizerness involve mini-
mization procedures and a computational cost ex-
ponential in the number N of qubits [6], it has been
notoriously hard to characterize the nonstabilizer-
ness of many-body states [7]. In particular, the pre-
viously best known algorithms were limited to about
12 qubits [8].
In our submission, we efficiently compute mea-

sures of nonstabilizerness for quantum computers [1]
and matrix product states (MPSs) [2, 3] respec-
tively. Our results give us novel insights in the non-
stabilizerness of quantum many-body states, as well
provide practical applications for quantum comput-
ers which we demonstrate in experiment.

Measures of nonstabilizerness for quan-
tum computers

In Ref. [1], we introduce “Bell magic” that can
be efficiently measured on quantum computers with
the numbers of samples scaling as O(1) and classical
post-processing time as O(N). The measurement
protocol is simple, requiring only two copies and
Bell measurements. Our measurement protocol is
robust against noise via a cost-free error mitigation
strategy, which we demonstrate experimentally on
the IonQ quantum computer. We apply our meth-

∗tobias.haug@u.nus.edu

ods to experimentally study the transition nonsta-
bilizerness of random Clifford circuits doped with
T-gates. Further, we efficiently distinguish stabi-
lizer and non-stabilizer states with low measurement
cost, even in the presence of noise. In the context of
noisy intermediate scale quantum computers [9], we
provide a variational quantum algorithm to maxi-
mize Bell magic, which can remain trainable even
for highly expressible circuits.

Measures of nonstabilizerness for matrix
product states

In Ref. [2], we show that the recently introduced
Stabilizer Rényi Entropies (SREs) [8] can be com-
puted efficiently for MPSs. Specifically, given an
MPS of bond-dimension χ, the replica trick allows
us to compute the SRE with a computational cost
of O(Nχ12). We recently improved the cost to
O(Nχ3) [3]. Our work opens up the numerical
study of nonstabilizerness of many-body systems
for extensive system sizes, which so far has been
challenging [7]. Using our tools, we investigate
the stabilizer entropy of the transverse-field Ising
model, one of the most fundamental spin models.
We analyze the SRE near criticality and investigate
its dependence on the local computational basis.
Surprisingly, the SRE is in general not extremal
at the critical point, hinting at a more subtle con-
nection between nonstabilizerness and criticality.
Further, local unitary transformations can reduce
the SRE even at criticality, implying that the
nonstabilizerness of the Ising model ground state is
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short-range.

Importance for quantum information and
computation

• Quantum phase transitions are generally as-
sociated with long-range correlations. Thus,
naively one would assume that quantum state
preparation requires the most resources for
states at the transition point. However, our
work shows that the magic of many-body sys-
tems is not extremal at the critical point in
general. This highly counter-intuitive results
hints at a more subtle connection between the
cost of quantum simulation and criticality.

• Nonstabilizerness of quantum states can ex-
ist on different length-scales. When nonstabi-
lizerness is short-range, it can be removed by
local transformations. In contrast, removing
long-range nonstabilizerness requires deep cir-
cuits extending over many qubits [10]. This
feature is crucial to understand the difficulty
of quantum simulation [11]. We find that lo-
cal transformations can substantially reduce
the SRE of the ground state of the quantum
Ising model, implying that its nonstabilizer-
ness is short-range. Surprisingly, the short-
range character of the SRE persists even at
criticality.

• Is it always necessary to compute nonstabiliz-
erness over the full quantum system, or are
measurements over local subystems sufficient
to predict its nonstabilizerness [12]? For trans-
lational invariant MPS, we prove that local
measurements over subsystems of size ℓ can
indeed be used to predict the nonstabilizer-
ness of the full system. In particular, we show
that the error scales as ℓ−1.

• Variational quantum algorithms suffer from
various limitations. One is that gradients can
vanish exponentially with system size, which
is the so-called barren plateau problem [13].
Barren plateaus are closely related to the ex-
pressibility of the ansatz, i.e. the ansatz ex-
plores the full Hilbertspace equally such that
it forms a 2-design. In particular, when the
ansatz circuit is expressible, barren plateau al-
ways appear for a general class of cost func-
tions that consist of a polynomial number of
Pauli strings [14]. We show that nonstabiliz-

erness as a cost function can overcome this
limitation in training variational quantum al-
gorithms, i.e. it can remain trainable even if
the ansatz is a 2-design. Measures of non-
stabilizerness cannot be expressed as a poly-
nomial number of Pauli strings, owing to the
fact they require quantum memory to be mea-
sured, which is known to give advantages [15].
Beyond our work, exploiting this feature could
yield other cost functions with similar desir-
able training properties.

• When randomly given either a stabilizer state
and a state with high nonstabilizerness, can
one efficiently distinguish those two states?
This question has been recently answered with
‘yes’ for noise-free states [16]. Our work shows
that efficient discrimination is robust even in
the presence of noise [1].
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Computing ground state energies of molecules using variational
quantum eigensolver on IBM superconducting quantum computers
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Abstract. Simulating quantum systems such as molecules and condensed matter will most likely be
a killer application of quantum computers. We will introduce our recent efforts on quantum simulation
using a noisy intermediate-scale quantum (NISQ) algorithm, variational quantum eigensolver (VQE), for
computing the ground state energy of hydrogen molecules on the IBM superconducting quantum computers.
For a single hydrogen molecule, ground state energy is converged within a few iterations and the converged
value is close to the result that is obtained by classical computers. For two hydrogen molecules, however,
obtaining converged results requires tens of iterations, and its converged value shows the difference from
the results obtained by classical computers because of the increased circuit complexity. We also investigate
the effect of error mitigation techniques in our VQE calculations.

Keywords: Quantum simulation, IBM Quantum, VQE, NISQ algorithm, error mitigation

Quantum computer has been regarded as a solution
to perform certain tasks that are intractable by classical
high-performance computers (HPC). Among diverse ap-
plications where HPC is used, simulating quantum sys-
tems such as molecules and condensed matter systems
would most likely be benefited from quantum computing
in the near term as understanding the quantum mechan-
ical nature of the quantum systems by a quantum com-
puter is the original idea proposed by R. Feynman [1]
and the number of qubits and gates required to achieve
quantum advantage is relatively small compared to other
applications [2].
The advancements in quantum technologies have been

significant in recent years and the milestone for achiev-
ing a fault-tolerance quantum computer has been accom-
plished step-by-step [3]. Many private companies and
governments are also expanding their investigations to
prepare for the age of quantum computing. IBM has
been providing cloud service so that anyone who is inter-
ested in using superconducting quantum computers can
access it from their laptop and its capability and services
have been improved over time. But we are now in the
noisy intermediate-scale quantum (NISQ) era where its
capability is quite limited and does not provide any val-
ues over classical HPCs to the real-world industry yet.
It is important to understand the performance limit of
the current state-of-the-art NISQ devices and to find out
how we could improve quantum algorithms and quantum
devices to get better results.
Variational quantum eigensolver (VQE) is the proto-

type NISQ algorithm to compute electronic ground state
energies using shallow quantum circuits with classical pa-
rameter optimization technique [4]. Recently, the devel-
opment of ansatz for parameterized quantum circuits and
novel optimization schemes have been proposed for im-
proving variational algorithm [5, 6]. In this work, we
focus our attention on computing ground state energies

∗junho5.lee@lge.com
†hyukgeun.cha@lge.com
‡seonghyok.kim@lge.com

of hydrogen molecules using VQE on IBM superconduct-
ing quantum computer to benchmark how large a quan-
tum system can reliably be addressed using the state-
of-the-art IBM quantum computer. We also apply er-
ror mitigation techniques [7] in our quantum simulations
to improve the accuracy of results. It turns out that
the current IBM quantum computers are still limited in
computing a large quantum system and significant hard-
ware and algorithmic advancements should be achieved
so that quantum computing markets are more attractive
enough than the classical counterpart. This work will
provide quantum community benchmark results by the
IBM quantum computer on computing molecular ground
state energy using the NISQ algorithm and direction to
further developments.

In this work, we investigate the ground state energies
of hydrogen molecules using the VQE algorithm on
IBM superconducting quantum computers with error
mitigation. We first explore a H2 molecule that requires
2 qubits and 3 parameters to be optimized in quantum
circuits (∼ 10 gates). As the number of qubits and
gates in quantum circuits is small, it gives us acceptable
outputs that are close to the results obtained by classic
computers. There are no substantial bottlenecks in
finding optimal parameters used in quantum circuits
and obtaining accurate results against circuit noise.
However, as we increase system size as H4, the situation
changes. The number of qubits increases to 6 and the
number of parameters to be optimized increases to 26
in the case of UCCSD ansatz, giving rise to difficulty
in finding optimized parameters in variational processes
and accumulated noise because of the deep quantum
circuit. We apply diverse error mitigation techniques to
improve calculation results but the error mitigation does
not improve results significantly.

We used VQE algorithm [4] to compute ground state
energies of hydrogen molecules. For a single hydrogen
molecule, we set the distance between two hydrogen
atoms of 0.735 Å. We used PySCF [8] as a driver
and used STO-3G minimal basis to expand electronic
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Figure 1: VQE calculation for a hydrogen molecule in
IBM superconducting quantum computer. Error mitiga-
tion of T-REx has been applied during the variational
process. After obtaining optimal parameters of quan-
tum circuits from the calculation with T-REx (black
line), two additional calculations using optimized param-
eters as initial parameters with zero-noise extrapolation
(ZNE) (red-filled square) and probabilistic error cancel-
lation (PEC) (blue-filled square) are done as denoted by
filled squares. Red dashed line represents numpy result.
For this simulation, we used ibmq kolkata backend. En-
ergy represents electronic energy only, not including nu-
clear energy.

orbitals and Parity mapper to transform fermionic op-
erators to qubit operators. For parameterized quantum
circuits, we used unitary coupled-cluster single and
double (UCCSD) ansatz and hardware efficient ansatz
(HAE) [9]. In HAE, we used a single representation of
circuit and linear entanglement. We perform 1,000 shots
for each quantum circuit. To optimize a set of param-
eters used in quantum circuits, we used the COBYLA
optimizer. In order to obtain reference results, we used
the NumPy minimum eigensolver algorithm. We apply
error mitigation techniques such as Twirled readout
error extinction (T-REx) [10], zero-noise extrapolation
(ZNE), and probabilistic error cancellation (PEC) [11].
We used ibmq qasm simulator as a simulator and
quantum devices of ibmq jakarta and ibmq kolkata

backends.

We first perform VQE calculations for a single hydro-
gen molecule as shown in Fig. 1. It turns out that the
quantum computer provides reasonable results (-1.81 Ha)
compared to classical reference results (-1.86 Ha) in terms
of accuracy, but not speed because of the variational ap-
proach that requires many iterations and computing over-
head. In this case, we used UCCSD ansatz for the quan-
tum circuit. The ground state energy converges to -1.81
Ha less than 10 iterations as there are only three parame-
ters to be optimized in the quantum circuit. The noise is
also not that significant in this calculation. We apply er-
ror mitigation such as T-REx (used as a default option),
ZNE, and PEC. We perform single quantum computation
(no iteration, but multiple shots for the given quantum
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Figure 2: VQE calculation for H4 using COBYLA op-
timizer. Hardware Efficient (blue) and UCCSD (black)
ansatzes are compared.

circuit) applying ZNE and PEC using optimized param-
eters obtained by T-REx. We find that ZNE (-1.83 Ha)
and PEC (-1.84 Ha) error mitigation slightly improve T-
REx results. For the single hydrogen molecule case, noise
in the result is not that significant, thereby observing the
effect of error mitigation is not that clear. We enlarge the
quantum system as four hydrogen atoms.

We perform VQE calculations for two hydrogen
molecules, H4 in total so that we can systematically in-
crease system size. We make the distance between two
neighboring hydrogen atoms the same as 0.735 Å. In this
case, the number of spin-orbitals is eight, and the number
of qubits required to express a parameterized quantum
circuit is six.

We perform VQE calculations on
ibmq qasm simulator to see how they converge as
shown in Fig. 2. For the COBYLA optimizer, HAE
converges more monotonically than UCCSD ansatz
which oscillates significantly at the early stage of iter-
ation. More than ∼ 100 iterations, the UCCSD result
converges to ∼ -4.81 Ha which is ∼ 8.6% deviation
from the refernce value (∼ -5.26 Ha), thereby showing
the limitation of the classic optimizer (or variational
approach itself). We also try SPSA, ADAM, and
L BFGS B optimizers, but COBYLA gives the best
results given the computation setting mentioned above.
Convergence of H4 is quite slow compared to the H2 case
and the converged result of H4 shows a large discrepancy
compared to the reference result. This implies that
even without the presence of noise of a real quantum
computer, the difficulty of convergence of variational
approach hinders practical applicability as the circuit
complexity increases [12].

We then move to real quantum hardware. We find that
without error mitigation there is substantial noise in the
result although its iteration is converged to some number
(∼ -3.50 Ha, pink line) compared to the simulator result
(∼ -4.81 Ha, blue line) as shown in Fig. 3. We then per-
form VQE calculation with T-REx (∼ -3.13 Ha, red line)
and get worse results than one without error mitigation.
As we apply ZNE in our VQE calculation, the result be-
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Figure 3: VQE calculations for H4 with the same dis-
tance between nearest neighbor, forming a straight hy-
drogen chain. Hardware efficient ansatz and COBYLA
optimizer are used. The blue line represents the simula-
tor result. The pink line corresponds to results obtained
by ibmq jakarta backend without any error mitigation.
Red and black lines represent T-REx and ZNE error mit-
igation results, respectively.

comes worse. It oscillates up to 40 iterations. This os-
cillatory behavior implies that iterative calculation with
ZNE is not a proper way to improve results, contrary
to previous results [13]. Instead, doing single quantum
computation using optimized parameters obtained from
T-REx or without error mitigation could be a proper way
to get better results.
In summary, we perform VQE calculations for hydro-

gen molecules on IBM superconducting quantum com-
puters. It turns out that as the system size increases,
circuit complexity increases, giving rise to accumulated
noise and difficulty in parameter optimization that hin-
ders large-scale quantum simulation. Applying error mit-
igation also requires systematic investigation to get the
right answer.
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Abstract. The scalability of a quantum processor unit (QPU) in noisy intermediate-scale quantum
computing is limited by its qubit number and connectivity. Utilizing entanglement-assisted local operations
and classical communication (LOCC), distributed quantum computing (DQC) can break the topological
limit of a QPU to enhance its scalability. To save entanglement cost in DQC for general quantum circuits,
we propose an entanglement-efficient DQC protocol based on ”distributing enhanced by embedding”. The
distributability and embeddability of a quantum circuit can be represented by graphs, based on which one
can derive heuristic algorithms to reduce and determine a constructive upper bound on entanglement cost.

Keywords: AQIS, template

1 Background and motivation

The connectivity and the number of qubits on a QPU
are believed to be key features to enhance quantum vol-
ume [2], which quantifies the scalability of a QPU. To
scale up quantum computing, one has to overcome the
intrinsic topological limits of a single QPU. To this end,
one can employ entanglement shared between two QPUs
to implement entanglement-assisted LOCC to extend the
connectivity of qubits over multiple QPUs. Harness-
ing the topological structure of distributed entanglement
over quantum internet [3], one can build a distributed
quantum computing system with multiple QPUs to scale
up quantum computing. As entanglement is costly re-
source in quantum networks, it is essential to develop a
distributed quantum computing protocol that consumes
as less entanglement as possible.

2 Distributing enhanced by embedding

For a circuit consisting of nonlocal control unitaries
with the same control qubit, the DQC protocol intro-
duced in [4] is optimal and utilizes only one pair of maxi-
mally entangled state, namely one ebit. Here, we refer to
the protocol in [4] as EJPP protocol. For general circuits,
we need to extend the EJPP protocol to a more general
process called a packing process (Fig. 1 (c)), which starts
with a pair of maximally entangled state (Fig. 1 (a)) and
ends with measurement control operations (Fig. 1 (b)).
The intermediate gates between the starting and ending
are the kernel of a packing process. If the kernel is lo-
cal, then the packing process is an entanglement-assisted
LOCC, which we call a distributing process (Fig. 2 (a)).
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Figure 1: The starting and ending processes: the symbol
on the left side represents the operation given by the
quantum circuit on the right side. A working qubit q
and an auxiliary qubit e′ belong to a local QPU A, while
and an auxiliary qubit e belongs to another local QPU
B. (a) The starting process. (b) The ending process. (c)
A packing process.
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The ultimate goal of distributed quantum computing
is to transpile a quantum circuit into a circuit of dis-
tributing processes. Since each distributing process con-
sumes an ebit, an entanglement-efficient DQC protocol
should reduce the number of distributing processes. To
this end, we introduce the so-called embedding process
(Fig. 2 (b)), which embeds the original unitary into a
packing process with additional local correcting gates.

(a)

(b)

Figure 2: (a) A distributing process (b) An embedding
process

Such an embedding process allows the merging of two
non-sequential distributing processes. As it is shown in
Fig. 3, the distributing processes of the control unitaries
CU and CV are merged through the embedding of CX .
Such an embedding saves one ebit in DQC. We there-
fore introduce the so-call distributable packets, which are
blue-highlighted on the left quantum circuit of Fig. 3.
They fully describe the embedding-enhanced distribut-
ing structure of a quantum circuit.

3 Packing graph and conflict graph

From a set of embedding rules, one can then identify all
the distributable packets of a quantum circuit. Each dis-
tributable packet is connected with another distributable
packet through a nonlocal gate. From these connected
the distributable packets one can induce a packing graph
of a quantum circuit. As is it shown in Fig. 4 (a),
the green-highlighted circuit nodes are the distributable
packets, from which one obtains a packing graph in Fig.
4 (b). Each edge in the packing graph represents the
nonlocal gates in the circuit.

To transpile a quantum circuit into distributing pro-
cesses, we need to implement distributing processes on
the vertices of the packing graph, such that all edges
(nonlocal gates) are distributed. Technically speaking,
we need to find the set of vertices that cover all the edges,
namely the vertex cover of the packing graph. The min-
imum entanglement cost is then determined by the min-
imum vertex cover of the packing graph.

One important remark on our DQC protocol is that not
all of the distributable packets can implement distribut-

ing processes at the same time. A distributing process
may prevent the implementation of another distributing
process. For example, in Fig. 4 (a), the distributing pro-
cess on the packet 8 prevents the distributing process on
the packet 0. Such incompatibility is due to the conflict
between two embedding processes involved in the corre-
sponding distributable packets, which are highlighted in
violet in Fig. 4 (a). Such incompatibility is represented
by a conflict edge between the two distributable packets.
For a set of distributable packets selected from the min-
imum vertex cover of a packing graph, there may exist
pairs of incompatible distributable packets represented
by a set of conflict edges. Together with distributable
packets, the set of conflict edges forms a conflict graph
of the quantum circuit as it is shown in Fig. 4 (c).

One has to resolve the incompatibility in the selected
distributable packets by removing the conflict edges in
the conflict graph. To this end, one removes one of the
embedding processes connected by a conflict edge. The
removal of an embedding process leads to the splitting of
the corresponding distributable packet and an increase of
entanglement cost by one ebit. As it is shown in Fig. 5
(a), the conflict between the packets 0 and 8 is resolved
by spliting the distributable packet 0 into 0a and 0b. It
results in an updated packing graph in Fig. 5 (b). The
entanglement cost of the DQC of the circuit is then equal
to the number of the minimum vertex cover of the up-
dated packing graph, which is equal to 4.

4 The packing algorithm

The packing graph and conflict graph of a quan-
tum circuit completely represent the distributability, em-
beddability and incompatibility of a quantum circuit.
We have derived heuristic packing algorithms based on
the packing graph and the conflict graph to find an
entanglement-efficient packing strategy for a given quan-
tum circuit distributed over two QPUs. The algorithms
utilize the minimum vertex cover of bipartite graphs,
which can be efficiently implemented on a classical com-
puter. As an application, we employ our algorithm to
find the DQC strategy of a 4-qubit UCC cluster circuit
[5, 6]. It shows a reduction of entanglement cost from 64
ebits to 17 ebits, which saves 47 ebits.

5 Conclusion

As a conclusion, we have developed a protocol for
DQC, which is based on two types of entanglement-
assisted quantum gate teleportation, namely distributing
processes and embedding processes. The protocol in this
work can be summarized as “distributing enhanced by
embedding”. We have developed heuristic packing algo-
rithms to transpile a given quantum circuit into a dis-
tributed circuit assisted by a small number of entangled
pairs. Such a protocol can facilitate large-scale quantum
computing in a quantum network of QPUs.
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Figure 3: Merging of two distributing processes through an embedding process.

(a)

(b) (c)

Figure 4: (a) Distributable packets. (b) Packing graph (c) Conflict graph

(a) (b)

Figure 5: (a) Distributable packets after resolving the conflict. (b) Packing graph after resolving the conflict
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