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The use of noise-enhanced applications in the field of open quantum walk (QW) has recently
seen a surge due to their ability to improve performance by introducing artificial noise to quan-
tum evolution. However, verifying the success of open QW remains a significant challenge, as state
tomography for density matrix is a resource-intensive process, and implementing all required mea-
surements is almost impossible due to various physical constraints. To address this challenge, we
present a neural-network-based method for reconstructing mixed states with a high fidelity (∼ 98%),
while costing only 50% of the number of measurements typically required for open QW. Our method
employs a neural density operator that models both the system and the environment, followed by a
generalized natural-gradient-descent procedure that significantly speeds up the training process. In
addition, we introduce a compact realization of the interferometric measurements, which improves
the scalability of our photonic QW setup that enables experimental learning of the mixed state.
Our results demonstrate that highly expressive neural networks can serve as powerful and practi-
cal alternatives to traditional state tomography, enabling researchers to study a broader range of
problems in both Hermitian and non-Hermitian physics using photonic platforms.

Introduction

Quantum Walk (QW) provides a basic framework for
developing effective quantum algorithms and simulating
complex phenomena [1–3]. Through interaction with a
certain amount of noise, the open (i.e. noisy) QW can
produce a remarkable improvement in quantum trans-
port over the noise-free QW [4, 5]. And such a noise-
enhanced feature aids in problem-solving efficiency in
tasks such as graph isomorphism testing [6], a maze es-
cape [7, 8], and ranking elements [9] in large networks.
While as a prototypical dynamical process, the open
QW can model the dissipative evolution of quantum neu-
ral networks [10, 11], and such simulation enables bet-
ter performance to process various issues like pattern
recognition [12]. Adding controlled noise into the quan-
tum evolution, QW can be dynamically initialized in any
high-dimensional form [13–15] and generate the Haar ran-
dom unitary operators [16, 17] required for quantum com-
putation. Implementing the open QW and validating
these noise-assisted computational and simulated perfor-
mances demand a complete density-matrix characteriza-
tion. However, identifying such a system with inherent
high-dimensional structures is indeed a fundamental task
to be solved in quantum information science [18].

For a discrete-time QW [19], the usual local to-
mographic technique was experimentally demonstrated
that enables one to access the two correlated sub-
systems of coin [20–22] and position [23, 24], respec-
tively. The tomography was subsequently extended to

the walker’s complete wave-function with a pure-state
hypothesis [25], or a low-rank state when decoherence
should be estimated[26]. An alternative tomographic
method was recently developed with machine-learning
techniques [27–29], where a trained neural network can
be used to recognize and classify QW states [30, 31].
The complicated mapping from the measured data to
the probability amplitudes can also be learned supervis-
edly [32], and a “physical” wave-function of QW is ob-
tained by projecting the un-physical neural-network out-
puts [33]. Nevertheless, these methods mainly focus on
the tomography of a closed QW, and none of them could
be applicable for the mixed density-matrix reconstruc-
tion of an open QW, whose number of parameters scales
quadratically with the pure-state one.

Here, we experimentally realize the full density-matrix
tomography of an open QW with arbitrary mixing. We
achieve this by parameterizing the complex-valued ma-
trix elements using a neural density operator (NDO) [34],
because such an effective ansatz has been shown to
have better performance than standard maximum like-
lihood estimation in terms of the reconstruction fidelity
and the number of measurements required. For train-
ing NDO to maximize the measurement data likelihood
more efficiently, the generalized natural gradient descent
(GNGD) procedure, recently developed in our group [35],
is adopted to achieve about an order of magnitude of
convergence rate than traditional gradient descent pro-
cedure. The effective mixed-state tomography of open
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FIG. 1. A schematic diagram of NDO and open QW. (a) |v〉 is encoded in the visible layer (green circles), a hidden
layer h (red triangles) captures the correlation within the physical system, and an ancillary layer a (blue squares) encodes the
coupling between the system and the environment. Matrices Wλ,µ and Uλ,µ are the connecting weights. (b) Open QW consists
of two degrees of freedom: the coin (white arrows) and lattice (colored circles), and the coupling environment introduces the
mixing of this system.

QW, with a lower requirement of the number of measure-
ments and training iterations for high-fidelity reconstruc-
tions, is benchmarked on synthetic datasets. Moreover,
we further experimentally demonstrate that the trained
NDO can learn noisy quantum states from partial mea-
surements on a photonic QW. And the amount of mixing
of the QW caused by the interaction with the environ-
ment can be well captured.

Results
Neural-network ansatz
The quantum state of open systems is generally described
by the density matrix ρ =

∑
v,v′ ρ(v, v′) |v〉 〈v′| in a ba-

sis |v〉. To obtain the complex-valued matrix elements,
a tomography with a series of measurements on a col-
lection of bases {vn} is necessary. The substantial de-
mand for the number of complete tomographic measure-
ments and a complicated data post-processing process
make it impractical for a complex system [18], whereas
neural-network-assisted tomography enables high-fidelity
reconstruction of quantum states with fewer measure-
ment resources [36]. The core step is an effective varia-
tional parametrization of the measurement distributions
on a quantum state in terms of a neural-network model
to infer the complex-valued probability amplitudes [37],
and the density matrix elements that rely on a linear
reconstruction from the trained model distributions [38].
The linear reconstruction of ρ lacks the positivity con-
straint such that it cannot give a physical quantum state.
To give a physical output, a NDO ansatz can be con-
structed by purifying the mixed state with an auxiliary
Hilbert space Ha [34]. Thus, ρ is written as the re-
duced state of a pure one |Ψ〉 =

∑
va Ψ(v, a) |v〉 |a〉, that

is, ρ = Tra[|Ψ〉〈Ψ|]. The probability amplitude Ψ(v, a)
can be parameterized by a three-layer network shown by
Fig. 1(a):

Ψλµ(v, a) = Z
− 1

2

λ

√
pλ(v, a)eilog pµ(v,a)/2. (1)

The joint distribution of the visible and the ancillary lay-

ers pθ(v, a) = e
∑
i log(1+e

W
[i]
θ
v+c

[i]
θ )+aTUθv+b

T
θ v+d

T
θ a (θ =

{λ, µ}), where A[i] denotes i th row of A and AT is the
transpose of A. Vectors bθ, cθ, and dθ are the biases
coupled to the visible, hidden, and ancillary neurons, re-
spectively. Zλ is a normalization constant. The NDO
ansatz of the density matrix can be obtained by tracing
out the auxiliary system [39–41]:

ρλµ =
∑

v,v′
[
∑

a
Ψλµ(v, a)Ψ∗λµ(v, a)] |v〉 〈v′| . (2)

Thus, the state tomography is mapped into an unsuper-
vised learning task for training the network parameters
such that the trained NDO gives an approximate phys-
ical state, i.e., ρλµ ' ρ. The expressive ability of the
NDO ansatz depends on the number of the hidden and
ancillary neurons. We now show how to accomplish the
NDO tomography for an open QW.

Open quantum walk model
As shown in Fig. 1(b), QW is composed of two interacting
subsystems of the coin and the lattice, in which the prob-
ability amplitudes of a quantum walker spreads between
lattice sites depending on the internal coin states [19].
The quantum state of QW is fully described by a density
matrix acting on the product Hilbert spaceH ≡ HC⊗Hl,
where HC ≡ span{|s〉 : µ =↑, ↓} and Hl ≡ span{|l〉 : l ∈
Z} represent the coin and the lattice subspace, respec-
tively. Then the reference base is a tensor product of the
basis for each subsystem |v〉 = |s〉 |l〉. And the density
matrix on this base takes the form:

ρ =
∑

s,l;s′,l′
ρsl,s′l′ |s〉 |l〉 〈s′| 〈l′| . (3)

The open QW at each step t follows the non-unitary dy-
namics [42]: ρt+1 = (1 − w)ÛρtÛ

† + w
∑
i K̂iÛρtÛ

†K̂†i ,
which describes a coherent QW evolution mixed with the
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FIG. 2. Photonic open QW. (a) The experimental setup mainly has four central parts: 1) Spontaneous parameter down-
conversion generates the time-correlated photon pairs, where signal photons as the walker and the idler photons serve to herald;
2) The open QW, as reported in the upper panel of (b), involves the cascade of HWPs (for operator R̂(α)) and calcites (for

operator Ŝ) that realizes the unitary dynamics Û t. An additional varying phase gate R̂(β) with the QWP-HWP-QWP setting

is added to each time step to introduce incoherent contributions K̂i; 3) A Michelson interferometer together with a polarization

analyzer carries out the base transformation Û(vn, v) on the reference base |v〉, which mimics the effect of a duplicate QW in the
lower panel of (b). The PZT-driven mirror is applied for phase-locking by using a reference He-Ne laser, and another moveable
mirror is used for adjustable arm length difference; 4) A single-photon frequency up-conversion implements the position-resolved
detection of the walker in each base. (b) The schematic diagrams show the QW dynamics of a localized initial state (top) and
the duplicate QW with time inversion constructed for the state measurements in different bases (bottom), respectively. A list of
abbreviations: β − BaB2O4 (BBO); dichroic mirror (DM); interference filter (IF); polarization-dependent beam splitter (PBS);
half-wave plate (HWP); quarter-wave plate (QWP); piezoelectric ceramic (PZT); fiber collimator (FC); single-mode fiber (SMF);
Si amplified detector (SAD); photomultiplier tube (PMT); avalanche photodiode detector (APD).

incoherent contributions given by the Kraus operators
K̂i = |i〉〈i|. The mixing parameter w ∈ [0, 1] quan-
tifies the transition from the closed QW to the classi-
cal random walk (CRW). The unitary operator Û for
a time step is given by Û = ŜR̂, where coin-flip op-
erator R̂(α) = e−iασ̂y σ̂z and conditional shift operator
Ŝ =

∑
l(|↑〉〈↑| ⊗ |l + 1〉 〈l|+ |↓〉〈↓| ⊗ |l〉 〈l|). σ̂y and σ̂z are

the Pauli matrices. After a N -step walk, the size of the
high-dimensional lattice state |l〉 is N + 1. Considering
the coin subspace is modeled as a two-level system, the
total dimension of ρ is thus 4(N + 1)2. Here, we utilize
the NDO ansatz ρλµ in Eq. (2) as the variational repre-
sentation of open QW state ρ.

Experimental implementation

QW can be realized on multiple physical platforms [43],
and our experimental setup for photonic QW is shown
in Fig. 2. More details are given in the Methods. In
the experiment, we adopted the heralded single photons
as the walker. The coin {|↑〉 , |↓〉} and the lattice {|l〉}
are encoded in the two polarizations {|H〉 , |V 〉} and the
different arrival times of photons {|tl〉}, respectively. Po-
larization flip R̂(α) is realized by tuning the angle of half-
wave plates. A calcite crystal delays |V 〉 by one time-bin

length (∆t ∼ 5 ps) relative to |H〉, which realizes the
shift operator Ŝ on the time-bin modes. Considering each
state |tl〉 in the time basis is represented by a photonic
wave packet with a width of ∼140 fs that is far less than
the time interval ∆t, thus the overlap between different
time bins is negligible. Through cascading N times the
two operators of R̂ and Ŝ, one can implement an N -step
walk dynamics. The outgoing N + 1 time bins are then
injected into a Michelson interferometer for measurement
base transformation, followed by an upconverted single-
photon detector.

The Michelson interferometer in Fig. 2(a3) is a core in-
gredient for full state tomography and eases the usual de-
mand of constructing a duplicate QW system (see lower
panel in Fig. 2(b)) to obtain the phase relation between
lattice sites [20]. A moveable mirror in the interferome-
ter introduces a controllable time delay between the two
arms, which makes the photons with horizontal polar-
ization |H〉 travel the integer multiples of 5 ps faster (or
later) than those with vertical polarization |V 〉. After
the interferometer, a polarization analyzer with a QWP-
HWP-PBS setting performs the single-qubit Pauli mea-
surements on σ̂x-, σ̂y- and σ̂z-basis. Therefore, the in-
terferometric measurements between all time bins here
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FIG. 3. Benchmarking NDO tomography using partial measurements. NDO reconstruction fidelity F (ρ, ρλµ) =
Tr(

√√
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√
ρ)2 as a function of the number of steps for (a) Hadamard QW with α ≡ π/4 (green solid line), coherent

disordered QW with αt being time-dependent (red dashed line), and (b) open QW with arbitrary mixing (blue dash-dotted
line). The shaded regions for coherent disordered and open QW are the standard errors of NDO reconstruction with 20 random
samples for each step, and the lines are the averaging results. The insets in (a) and (b) show the purity of reconstructed states
ρλµ of the 20 samples for a 20-step coherent disordered (red squares) and open QW (blue squares), respectively. The black
solid lines in the insets are the theoretical values of the purity for target density matrix ρ.

can be viewed as the system’s projections on a series
of basis {|↑〉 |l〉}, {|↓〉 |l〉}, { 1√

2
(|↑〉 |l〉 ± i |↓〉 |l′〉)}, and

{ 1√
2
(|↑〉 |l〉 ± |↓〉 |l′〉)} (l, l′ = 0, 1, · · · , N). Moreover,

even with the number of steps N increasing, the required
amounts of the optical elements for these interferomet-
ric measurements remain constant thanks to the com-
pact structure. Consequently, the compact interferome-
ter can save 50% of optical resources as there is no need
to build another duplicate QW to implement these mea-
surements.

One can classify these projection measurements into
a set of bases {vn}. The first base {v0} is the ref-

erence base {v} = {|↑〉 |l〉 , |↓〉 |l〉}Nl=0, while the bases
{v2k−1} and {v2k} (k ∈ {1, 2, · · · , N + 1}) can be writ-
ten as { 1√

2
(|↑〉 |l〉 ± i |↓〉 |[l − (k − 1)]mod(N + 1)〉)}Nl=0

and { 1√
2
(|↑〉 |l〉 ± |↓〉 |[l − (k − 1)]mod(N + 1)〉)}Nl=0, re-

spectively. Throughout the experiment, the probability
distribution P (vn) in each base is analyzed by utilizing
the up-converted detector in Fig. 2(a4). With a spatial
delay line, one can scan a strong pump light of 300 mW
to upconvert the signal photons in all time bins with
an interval of 5 ps. The up-converted photons are fil-
tered by a spectrum filter that consists of a dispersion
prism in the 4-f system to reduce extra scattering noise.
And the filtered photon counts are then measured by a
PMT, with which we can obtain experimental distribu-
tions Pexp(vn). Note that, using the linear reconstruction
directly [38, 44], one can only access 2(N+1)2 +2(N+1)
matrix elements according to the measurements on these
2(N + 1) + 1 sets of bases. Herein, we resort to the ef-
fective NDO method to learn the full 4(N + 1)2 matrix
elements from the incomplete measurements, which is an
extension of learning some particular properties of quan-

tum states using partial measurements [45, 46].

Performance of the efficient tomography for QW

Before training the neural network with noisy experimen-
tal results, we start by benchmarking the NOD tomog-
raphy of QW using synthetic datasets. We generate the
synthetic distribution P (vn) imposed by the target QW
state ρ in a collection of bases {vn}. The training pro-
cess minimizes the cost function, defined as the total sta-
tistical distance Dθ =

∑
n

∑
vn P (vn)log[P (vn)/Pθ(v

n)],
between the target and the reconstructed distributions.
The process starts with the network parameters being
initialized to random values, and in each optimization it-
eration i, the parameters are updated according to the
GNGD procedure [35]: θi+1 = θi−ηiG−1∇Dθ, where the
searching step ηi is determined by the line search pro-
cess. To determine a well-performed metric G that can
speed up the gradient-based optimization, the core idea
of GNGD is to introduce a proper reference space, which
is regarded as a flat space here. By choosing the identity
matrix as the metric of reference space Gref

ij = δi,j , the
metric for the cost function G can be obtained through
the conversion of coordinates (See Methods for details).
All the NDO reconstructions given below were obtained
in this way.

All the initial state is set to be ρ0 = |ψ0〉〈ψ0| with
|ψ0〉 = 1√

2
(|↑〉+ i |↓〉)⊗|0〉. We first focus on the simplest

model where the flip angle α is time-independent and the
mixing parameter w = 0. Consider that the coin opera-
tor is a Hadamard gate (α = π/4), and the correspond-
ing walk is the typical Hadamard QW. The fidelity of the
NDO tomography performed on the synthetic datasets is
reported by the green solid line in Fig. 3(a), and a uni-
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formly high fidelity is achieved even with an increasing
number of time steps. In a bit complicated case, the an-
gle α ∈ [0, π) is set to be time-dependent and becomes
completely random for each step. For a given step of this
coherent disordered QW [47, 48], twenty disordered con-
figurations are generated, corresponding to twenty dif-
ferent QW dynamics of the quantum states. The red
dashed line in Fig. 3(a) shows the mean performance of
the reconstruction fidelity obtained by averaging over the
results of the twenty samples. A reconstruction fidelity
error below 4×10−3 was found for the coherent walk with
400 samples in total. We then turn to a more challeng-
ing scenario of open QW interacting with a simulated
environment [17, 49]. Decoherence can be introduced by

inserting an extra phase gate R̂(β) = e
i
2βσ̂z with a fast

fluctuating phase β ∈ [−δβ, δβ] into each step of coher-
ent QW. The fluctuating degree δβ ∈ [0, π] determines
the system’s mixing parameter w ∈ [0, 1]. We also gen-
erated 20 samples of the open QW with different mixing
for each time step, and the NDO reconstruction fidelity
shown in Fig. 3(b) can still reach a high value of ∼ 98%
with the partial measurements. Beyond fidelity, an im-
portant question is whether the mixing of QW is repro-
duced accurately in the NDO reconstruction. The insets
in Fig. 3 display the reconstructed purity Tr[ρ2λµ] for the
coherent and open QW, finding a close agreement with
the expected results of the target state ρ. And the mean
value of the reconstruction errors for purity is 5 × 10−3

and 3× 10−3, respectively.

Experimental mixed-state reconstructions

After benchmarking it on synthetic data, we now demon-
strate the efficient learning of open QW with noisy ex-
perimental results. Using Polarizer1 in Fig. 2(a2), the
walker’s initial state is fixed to be a product state
1√
2
(|H〉 + i |V 〉) ⊗ |tl=0〉. The first experiment we per-

formed was a five-step Hadamard walk interacting with a
controllable simulated environment. Besides a Hadamard
gate realized by an HWP with its optical axis oriented at
22.5◦, the extra phase gate R̂(β) = |H〉〈H|+eiβ |V 〉〈V | is
introduced by a configuration of QWP-HWP-QWP for
each time step. The configuration features two QWPs
rotated to an angle of 45◦ and a sandwiched HWP
whose rotation angle controls the relative phase β be-
tween horizontal and vertical polarization [50]. To mimic
the decoherence effect, the five sandwiched HWPs are
installed on the motorized stages to constantly change
their rotation angles with a controlled fluctuating degree
δβ = 0, π/8, π/4, π/2, 3π/4 and π. Then an ensemble
measurement of Pexp(vn) is performed on 13 sets of bases
by unitizing the Michelson interferometer (see Fig. 2(a3))
and the up-converted detector (see Fig. 2(a4)). As re-
ported in Fig. 4(a), NDO can learn to reproduce the pu-
rity of open QW’s mixed states present in the experimen-
tal data well. And the fidelity of the reconstructed full
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FIG. 4. Experimental NDO tomography of open QW
in a simulated environment. (a) Purity of the NDO re-
constructed states ρexpλµ (blue symbols), trained on the exper-

imental measurement data Pexp(vn) for a five-step QW with
six distinct mixings. The red symbols in the inset report the
reconstruction fidelity. The blue and red solid lines give the
theoretical results of target states ρth. Error bars considering
the statistical noise are smaller than the symbol size. (b) and
(c) show the measured probability distributions Pexp(vn) on
13 sets of bases, real and imaginary parts of ρexpλµ (from left to

right) for the Hadamard QW with δβ = 0 and the fully deco-
herent QW with δβ = π, respectively. The lower panels in (b)
and (c) represent the corresponding theoretical expectations.

density matrix is greater than 0.9, as the inset shows.
These results allow us to investigate the QW-to-CRW
transition in greater depth than by only considering their
transport behaviors [51] exhibited in the diagonal terms
of the density matrix. For the Hadamard walk (w = 0)
shown in Fig. 4(b), beyond the typical characterization
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FIG. 5. Experimental GNGD-enhanced NDO tomography of QW in a real environment. (a) Measured probability
distributions Pexp(vn) on 63 sets of bases for a 30-step Hadamard walk. The right panel is the theoretical expectation. (b) Cost
function Dθ versus the number of training iterations for NDO tomography using GD, CG, L-BFGS, and GNGD optimizer. (c)
Real and imaginary parts of the NDO reconstructed state ρexpλµ , and the theoretical expectations are shown in the lower panels.

with pronounced side peaks, the underlying coherence is
clearly presented in the complex-valued off-diagonal ma-
trix elements of ρexpλµ . The decoherence introduced by the
simulated environment can completely destroy the phase
relation between lattice sites such that CRW (w = 1)
dominates. Consequently, it can bring the off-diagonal
matrix elements to zero and cause the diagonal elements
to have a classical binomial distribution, as shown in
Fig. 4(c).

As the total QW steps N increase, the learning of
mixed states with the dimension of 4(N + 1)2 demands
the complicated training of a larger neural network to
keep its high expressive power. Thus, we introduce
the GNGD procedure [35] to enhance the training effi-
ciency of NDO. To better demonstrate the performance
of GNGD for addressing complex networks of NDO, we
extend the evolutionary time N = 30, and a thirty-
step Hadamard walk is experimentally realized. Inter-
ferometric measurements on Nb = 63 sets of bases are
performed, and the obtained distributions Pexp(vn) are
displayed in Fig. 5(a). The mean value of classical indi-
cator similarity of the measured distributions, defined as
S =

∑
n

∑
vn

√
Pexp(vn)Pth(vn)/Nb, reads 0.965±0.008,

giving good agreement with the theoretical predictions.
In Fig. 5(b), we compare the cost function Dθ as a func-
tion of the number of iterations using gradient descent
(GD), conjugate gradient (CG) [52], L-BFGS [53], and
GNGD methods for training NDO, respectively. It can
be found that the GNGD optimizer enables a lower value
of Dθ in one order of magnitude fewer iterations than the
traditional GD-based optimization, and achieves a 5-fold
speedup in the training process over CG and L-BFGS.

As shown in Fig. 5(c), the GNGD-enhanced NDO can ef-
ficiently output the experimental mixed state ρexpλµ with

622 complex-valued matrix elements, using fewer train-
ing iterations and partial measurements. The emblematic
side peaks and the off-diagonal elements that represent
coherence are still clear after the 30-step Hadamard walk.
The reconstructed fidelity and purity are 0.789 ± 0.011
and 0.675± 0.013, respectively. A test on synthetic data
yields the values of fidelity and purity both greater than
0.995, indicating that the uncontrolled decoherence in-
troduced by the real environment is the major deviation
for the experimental reconstruction.

Discussion
In this work, we have experimentally demonstrated an
effective learning of mixed states for open photonic QW
in terms of the number of training iterations, the amount
of measurement resources, and the reconstruction fi-
delity. The learning method is achieved by training a
neural-network-parameterized density operator on mea-
surement datasets and then outputting complex-valued
matrix elements accelerated by the GNGD procedure.
The GNGD optimizer can also be directly applied to var-
ious neural-network architectures for quantum state to-
mography with gradient-based optimization [54–57]. To
capture the correlations within the physical system and
the environment more accurately, we usually increase the
number of hidden and ancillary neurons, respectively.
One can introduce the deep restricted Boltzmann ma-
chine with improved representational power [58], at the
cost of growing training complexity, to further develop
the NDO method to learn the open quantum systems.
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Overall, our approach provides a promising avenue for
addressing the challenges associated with verifying open
QW. We expect that these results will lead to new in-
sights and discoveries in this exciting area of research on
numerous physical systems such as fiber loop [59], spa-
tial path [60], orbital angular momentum [61], transverse
momentum [62, 63], hybrid architecture [64], etc. More-
over, the full quantum state tomography technique can
be combined with the known abilities of arbitrary initial-
ization [13] and flexible manipulation, which can inspire
a prospective QW platform for developing novel applica-
tions in a range of fields.

Methods
Training the neural network by GNGD
The training of the neural network is to learn the optimal
parameters θ = {λ, µ} that minimize the cost function
Dθ. The derivative of the cost function with respect to
the network parameters reads:

∇Dθ = −
∑

n

∑
vn
P (vn)/ρnθ (vn, vn)∑

α,β
Un(vn, α)ρθ(α, β)∇Aθ(α, β)Un,†(β, vn)

+Nb
∑

v
ρθ(v, v)∇Aθ(v, v),

(4)

where ρnθ (v, v′) =
∑
α,β Un(v, α)ρθ(α, β)Un,†(β, v′),

Un = 〈vn|v〉 is the base transformation matrix from the
reference base |v〉 to |vn〉, Nb is the total number of mea-
surement bases. ρλµ(α, β) = Z−1λ eAλµ is the rebuild den-
sity matrix of the system, where

Aλµ(v, v′) =Γ+
λ (v, v′) + iΓ−µ (v, v′) + Πλµ(v, v′),

Γ±θ (v, v′) =
1

2
[
∑

i
log(1 + eW

[i]
θ v+c

[i]
θ )

± log(1 + eW
[i]
θ v′+c

[i]
θ ) + bTθ (v ± v′)],

Πλµ(v, v′) =
∑

i
log{1 + exp[

1

2
U

[i]
λ (v + v′)

+
i

2
U [i]
µ (v − v′) + d

[i]
λ ]}.

(5)

The superscript [i] means the ith row elements.
The network parameters to be optimal here are
{Wθ, Uθ, bθ, cθ, dθ}. Wθ and Uθ are the weight matri-
ces, whose dimension is m × d with d being the degree
of freedom of the physical system and m being the num-
ber of hidden or ancillary neurons. bθ, cθ and dθ are the
vectors of dimension d representing the biases coupled to
the visible, hidden, and ancillary neurons, respectively.

To accelerate the convergence efficiency of training, the
GNGD method emphasizes introducing a proper refer-
ence space [35]. Here, the space span by the density ma-
trix ρθ(α, β) is selected as the reference manifold. We
choose a simple identity matrix Gref

α,β;α′,β′ = δα,α′δβ,β′ as
the metric of reference space. Through the conversion of
coordinates, the metric G for the cost function can be

determined as:

Gi,j =
∑

α,β;α′,β′

∂ρθ(α, β)

∂θi
Gref
α,β;α′,β′

∂ρθ(α
′, β′)

∂θj
(6)

With this metric, the network parameters are updated
according to the gradient-based optimization as:

θi+1 = θi − ηiG−1∇Dθ (7)

where ηi, which is determined by the line search process,
is the searching step at iteration i. We directly sum over
all the terms in Dθ and Gi,j during training for being free
of the sampling error of Monte Carlo sampling based on
the probability P (vn).

Heralded single-photon source
A Ti: sapphire laser source (Mira 900, Coherent)
launches a series of optical pulses with a temporal pulse
width of 140 fs, a repetition rate of 76 MHz, the wave-
length λ=800 nm, and an average power of 1 W. The
ultrafast optical pulses focused by Lens1 (focal length
f=100 mm) pump the first β − BaB2O4 (BBO1), caus-
ing the second harmonic generation. The frequency-
doubled pulses with horizontal polarization and the
residual fundamental pulses with vertical polarization
are collimated by Lens2 and then spatially separated
by the first dichroic mirror (DM1). The fundamen-
tal pulses go through a pair of cylinder lenses (not
shown) to reform the beam’s profile into a Gaussian
shape and are then reused for position-resolved state de-
tection. The frequency-doubled pulses with λ=400 nm
and an average power of 200 mW are used as a pump
source and focused on the BBO2 by lens3 (focal length
f=100 mm). Herein, BBO2 is designed for type-II, non-
degenerate, and “beam-like” spontaneous parametric
down-conversion (SPDC). The generated time-correlated
photon pairs (namely, signal photons with λ=780 nm and
horizontal polarization, and idler photons with λ=821 nm
and vertical polarization) are spatially separated by the
non-collinear SPDC process with a half opening angle
of 3◦. The idler photons, collimated by the Lens5 and
cleaned by a spectrum filter, are coupled to a single-
mode fiber and then detected by the avalanche photodi-
ode detector (SPCM-AQRH-14-FC, Excelitas) to herald
the appearance of the signal photons. The coincidence
count rate between idler and signal photons is 4.5× 102

pairs/(s mW). The collimated and filtered signal photons
are adopted as the walker and sent to the quantum walk
(QW) module.

Time-multiplexing photonic quantum walk
The time-multiplexing QW is achieved by encoding the
walker’s lattice and coin space in the arrival time and
polarization of signal photons, respectively. The signal
photons at the input of the QW module are set to be in
the first time bin, i.e., the origin in lattice space with
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l = 0. Then, the initial polarization state of signal
photons |↑y〉 = 1√

2
(|H〉 + i |V 〉) is prepared through a

polarization-dependent beam splitter (PBS), a half-wave
plate (HWP), followed by a quarter-wave plate (QWP).
|H〉 and |V 〉 represent horizontal and vertical polariza-
tion, respectively. Thus, the initial state of the walker is
|ψ0〉 = |l = 0〉 ⊗ |↑y〉. In the protocol of Hadamard QW,

the unitary operator of a single step Û = ŜR̂ is composed
of an HWP rotated to a specific angle at 22.5◦ (for opera-
tor R̂) and a calcite crystal (for operator Ŝ). Each piece
of calcite is cut parallel to its optical axes to a length
of 8.98 mm, whose birefringence ∆ = 0.167 at λ=800 nm
will induce a 5 ps time shift between the horizontal |H〉
and vertical polarization |V 〉 of the signal photons. In
the experiment, N sets of HWPs and calcite crystals are
positioned to realize an N -step Hadamard walk. Thus,
the lattice space of the walker at the end of the QW
module consists of the superposition of N + 1 time bins
with a time interval of 5 ps. And for each lattice site,
the walker has an internal coin state, which is usually
distinct at a different site. A QWP-HWP-QWP setting
for realizing the phase gate operator R̂(β) = e

i
2βσ̂z can

be introduced at each QW step to mimic a controlled
decoherence effect. Two QWPs are rotated to an angle
at 45◦. HWP in the setting is installed on the motorized
stage (PR50PP, Newport) to change its rotation angle
constantly. The fluctuating range [−δβ, δβ] determines
the degree of decoherence and has a similar effect as the
the mixing parameter w: δβ = 0 is the coherent QW
with w = 0, and δβ = π results in a fully decoherent
classical walk with w = 1.

Base transformation and phase-locking technique

The base transformation is achieved by a Michelson in-
terferometer consisting of a PBS, two QWPs rotated to
an angle at 45◦, and two mirrors. One mirror is piezoelec-
tric ceramic (PZT)-driven to compensate for the phase
fluctuation of the interferometer, and the other mirror is
installed on a motorized positioning system (KXL06100,
Suruga). The moveable mirror is controlled to induce
a time shift between the two arms of the interferome-
ter, which is accurately the integer multiples of 5 ps for
ensuring maximal visibility between different time bins
of the signal photons and avoiding temporal mode mis-
matching. The phase difference between the two arms
can be controlled by the phase shifter (PS) and locked in
a fixed value by an ancillary Helium-Neon (He-Ne) laser
using a proportional-integral-differential (PID) feedback
unit [65]. The PS is the configuration of QWP-HWP-
QWP, where two QWPs are rotated to an angle at 45◦

and the rotation angle of HWP controls the relative phase
between |H〉 and |V 〉 states. Initially, the He-Ne laser
source (HNL050LB, Thorlabs) with λ=632.8 nm is pre-
pared in the state |↓x〉 = 1√

2
(|H〉 − |V 〉) through the Po-

larizer2 and then launched to the same propagation path

with the signal photons through DM2. The signal pho-
tons and the He-Ne laser pass through the interferometer
and are spatially separated by DM3. The reflected He-Ne
laser is projected in the |↑x〉 = 1√

2
(|H〉 + |V 〉) state and

detected by a amplified Si photodetector (PDA8A/M,
Thorlabs). The detected He-Ne laser intensity is initially
set near a reference value through PS. Within the ac-
quisition time of time-correlated photon pairs, the PID
unit compares the detected intensity using the amplified
Si photodetector to the reference value and then uses the
difference to calculate a new input value through the PID
algorithm that is designed to keep the detected intensity
at the reference value. Thus, the unstable phase differ-
ence of the interferometer for signal photons can then be
locked with the He-Ne laser. PS can be used to compen-
sate the phase difference of the signal photons introduced
by the two arms of the interferometer to zero. After pass-
ing through the Michelson interferometer and the polar-
ization analyzer, the signal photons are collected into a
0.1 m-long single-mode fiber (SMF) for spatial filtering.
The two HWPs at the input and output of the SMF are
used for polarization maintenance.

Frequency up-conversion single-photon detector
To measure the probability distribution P (vn) in each
base vn, a position-resolved detection of the signal pho-
tons is constructed. The lattice space of the signal pho-
tons consists of a pulse train with a time interval of 5 ps.
Herein, we utilize a single-photon frequency upconver-
sion system converting the high time resolution to the
spatial resolution. Specifically, the residual fundamental
pulses with λ=800 nm and average power 300 mW dur-
ing the second harmonic generation serve as the strong
pump pulse. The up-converted photons are generated in
BBO3, where the signal photons and the strong pump
pulse meet, and then detected by a photomultiplier tube
(H10682, Hamamatsu). In the up-conversion process, the
propagation path of the strong pump pulse is delayed
and aligned using two moveable mirrors installed on a
motorized positioning system (KXL06100, Suruga). And
the alignment of the signal photons is achieved by re-
placing them with a reference coherent laser to optimize
the spatial mode matching. In addition, the delay of
the strong pump pulse is fine-tuned to match each pulse
in the signal-photon pulse train in the time domain. A
spectrum filter composed of a dispersion prism is used to
reduce the background.
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Efficient information recovery from Pauli noise via classical shadow

Yifei Chen1 Zhan Yu1 Chenghong Zhu1 Xin Wang1 ∗
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Abstract. Quantum systems are inherently susceptible to noises, which adversely corrupt the information
encoded in quantum systems. In this work, we introduce an efficient algorithm that can recover information
from quantum states under Pauli noise. The core idea is to learn the necessary information of the unknown
Pauli channel by post-processing the classical shadows of the channel. For a local and bounded-degree
observable, only partial knowledge of the channel is required rather than its complete classical description
to recover the ideal information. This leads to an algorithm that runs in polynomial-time rather than
exponential-time. Furthermore, the channel sample complexity scales logarithmically in the number of
qubits. We also prove that the sample complexity of this algorithm is optimal and generalise the algorithm
to broader class of channels. As a notable application, our method can be severed as a sample-efficient
error mitigation scheme for Clifford circuits.

Note: A technical version of this work is available as arXiv:2305.04148.

Keywords: information recovery, quantum noise, Pauli noise, classical shadow, error mitigation

Introduction. One of the most important ingredients
in quantum computing is to extract information from a
quantum system by measuring the quantum state, which
is described as the expectation value of some observ-
able O of interest. The expectation value of some cho-
sen observable unravels many properties of the quantum
system, which is extensively used in many quantum al-
gorithms, including variational quantum eigensolver [1],
quantum approximate optimization algoirhtm [2], and
quantum machine learning [3]. For an ideal quantum
state σ, the information that we seek to obtain is tr(Oσ).
However, due to the noise present in the quantum com-
puter, the actual state in practice is some noisy state σ̃
instead.
One of the most standard theoretical models for quan-

tum noise in the study of quantum error correction and
mitigation is Pauli noise. On one hand, Pauli noise pro-
vides a simple model that describes common incoherent
noise such as bit-flip, depolarizing, and dephasing. On
the other hand, general quantum noise can be mapped
to Pauli noise without incurring a loss of fidelity by the
technique of randomised compiling [4, 5]. In the the-
ory of quantum information [6–8], noise of quantum sys-
tems are modelled by quantum channels, which are com-
pletely positive and trace-preserving (CPTP) maps be-
tween spaces of operators. An n-qubit Pauli channel is
defined as

P(σ) :=
∑

P∈{I,X,Y,Z}⊗n

p(P ) · PσP †, (1)

where P is an n-fold tensor product of Pauli operators
in {I,X, Y, Z}, and p is a probability distribution on
{I,X, Y, Z}⊗n.
The problem of recovering from Pauli noise is that,

given access to an unknown Pauli noise P and copies of
the noisy state σ̃ = P(σ), retrieve the information tr(Oσ)
for some observable O. To recover from a noise P, a natu-
ral way is to construct a map Q such that the composed

∗wangxin73@baidu.com

map Q ◦ P is an identity map [9], which could covert
the noisy state P(σ) to the ideal state σ. Such a map
is actually not necessary if we are only concerned with
the target expectation value tr(Oσ) instead of the ideal
state σ. Zhao et al. [10] proved the necessary and suffi-
cient condition for retrieving the target information from
noisy quantum states, and utilised semidefinite program-
ming to determine an optimal protocol for constructing
the map D that satisfies tr(D ◦P(σ)O) = tr(Oσ). While
this method is not restricted to the class of Pauli chan-
nels, it requires complete information of the quantum
noise. Obtaining the full classical description of an un-
known Pauli channel often uses techniques like quantum
process tomography [11–13], typically requiring a num-
ber of copies of the channel that scales exponentially in
the number of qubits, which is resource-consuming and
inefficient. Furthermore, the map D proposed in Ref. [10]
needs to be simulated via probabilistic sampling, which
requires additional resources. Then, how to efficiently
recover information from a Pauli channel with no prior
information still remains an open and challenging prob-
lem.

Overview of results. Motivated by efficient meth-
ods such as shadow tomography [14] and classical
shadow [15], we make progress towards solving this open
problem of information recovery from Pauli noise by ob-
taining partial information of the unknown Pauli channel
and using it to efficiently retrieve the expectation value
of given observables. To be specific, we establish the fol-
lowing:

1. The main result is an efficient algorithm that re-
trieves the information tr(Oσ) from unknown Pauli
noise P for arbitrary n-qubit noisy state P(σ)
and bounded-degree k-local observables O, using
O(log(nk)) applications of Pauli channel P. We
also prove that the channel sample complexity is
optimal.

2. We then extend the algorithm to a broader class of
quantum channels by establishing a sufficient cri-
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Figure 1: Illustration of the algorithm for recovering information from Pauli noise. (a) The classical
information contains eigenvalues of the Pauli channel. It is first estimated using the classical shadows of the channel,
which is obtained by preparing random Pauli eigenstates as input and measuring the output states in random Pauli
basis. (b) Then given any quantum states P(σ) that is subjected to this Pauli noise, estimation of tr(Oσ) can be
obtained by post-processing measurement results of the noisy state and the classical information we learnt. We note
that the same classical information can be reused to recover information for different noisy states.

teria relating to the Pauli transfer matrix of the
channel. We also evaluate our algorithm’s perfor-
mance on both Pauli and Clifford shadows.

3. As a notable application, we apply our method
to mitigate Pauli errors in Clifford circuits, which
leads to a more sample-efficient Pauli error mitiga-
tion scheme than previous methods such as proba-
bilistic error cancellation [16].

Algorithm for Information Recovery from Pauli
noise. Our first contribution is a polynomial-time al-
gorithm on efficiently recovering information from Pauli
noise with logarithmic channel sample complexity. We
then prove that the channel sample complexity of the
learning algorithm is optimal. The starting point of our
method is that under Pauli noise, the Pauli expectation
value of a noisy state is a multiple of the noiseless ex-
pectation that we seek, scaled by an eigenvalue of the
channel. An observable O can be written as a linear
combination of Pauli operators, so the value of tr(Oσ)
is a linear combination of Pauli expectation value of σ.
A Pauli noise would then scale each term by a different
eigenvalue, so if we can learn the eigenvalues, we would
be able to recover the noiseless expectation value.
In the realm of quantum state and quantum process

learning, an approach is called classical shadow tomogra-

phy, which uses randomised measurements to construct
a classical estimate of the unknown state [15]. Then the
information of the state can be calculated classically. In
particular, the sample complexity scales logarithmically
with the number of expectation values to predict, hence
it is very effective and efficient at estimating multiple
information at the same time. As an extension, given
an unknown quantum process, one can prepare random
input state and perform random measurements on the
output state. This is referred to as classical shadow of
a quantum process, which can be utilised to construct
estimate of the Choi matrix of the process [17, 18], or es-
timate directly information of a state under this unknown
process [19]. This provides us the intuition that the tech-
nique of classical shadow tomography has the potential
to lead to an efficient method of retrieving information
from Pauli noise.

Now we present our algorithm. The main scheme is
illustrated in Fig. 1 and the main steps of the algorithm
are given in Algorithm 1, where |P | denotes the weight of
Pauli operator P , meaning number of tensor factors that
are not identity. Our algorithm consists of two parts.

In the first part, we collect classical shadows of the
channel, which is the measurement results obtained when
one prepares random Pauli eigenstates as input, and mea-
sures the output states in random Pauli basis. Using
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them, we can calculate the eigenvalues of the noisy Pauli
channel. We consider only obtaining eigenvalues for Pauli
operators whose weight is less than or equal to k instead
of the full 4n eigenvalues, which would be sufficient for re-
trieving the expectation value of k-local observables. We
show that for local observable, only O(poly(n)) eigen-
values need to be learnt and only O(log(n)) applications
of the channel suffice, where n is the number of qubits.
We then make use of information-theoretic techniques in
Refs. [20–22] to prove a lower bound of the sample com-
plexity on this learning task. This matches our upper
bound hence shows that this part of the algorithm is op-
timal.

Algorithm 1 Information recovery from Pauli noise

Require: Access to an unknown n-qubit Pauli chan-
nel P, a bounded-degree k-local observable O =∑

P αPP , copies of unknown noisy state P(σ).
Ensure: An estimation of tr(Oσ).
1: Collect classical shadows of the channel.
2: For each n-qubit Pauli operator P with |P | ≤ k, com-

pute λ̂P , the estimate for eigenvalue of Pauli operator
P under Pauli channel P, using the collected shad-
ows.

3: For O =
∑

P :|P |≤k αPP , let ←−α P = αP /λ̂P for |P | ≤
k.

4: Perform Pauli measurement on the noisy state P(σ)
for each Pauli operator P with |P | ≤ k and construct
the estimation as

tr(Oσ) ≈
∑

P :|P |≤k

←−α P tr(PP(σ)).

In the second part, usingO(poly(n)) copies of the noisy
state, we can obtain desired Pauli expectation values of
the noisy state by classical shadow tomography. Com-
bining these with the eigenvalues we learnt, we are able
to construct an estimate for the expectation value of the
noiseless state. Together, we have the following guaran-
tee:

Theorem 1 (informal version) To obtain an estima-
tion of tr(Oσ) for bounded-degree k-local observable O,
O(log(nk)) applications of the channel P and O(poly(n))
copies of the noisy state P(σ) suffice. The total classical
computation time is O(poly(n)).

Extensions of algorithm. Our second contribution
is extending our algorithms on a broader class of channels
and evaluating the performance of other classical shad-
ows i.e. the Clifford shadow. We establish a sufficient
criterion related to the Pauli transfer matrix of the chan-
nel in order to extend the set of channels from which
information can be efficiently recovered. One example is
the product channel and we present the corresponding
algorithm in Section VI of the full version.
As another extension, we explore sample complexity

using Clifford shadows, which involves preparing input
states from distribution that is invariant under the Clif-
ford group and measuring the output states in random

Clifford basis. We find that Clifford shadows would break
the efficiency obtained for k-local observables but is po-
tentially better for general observable. A detailed analy-
sis can be found in Appendix D of the full version.

Application. Our third contribution is a Pauli error
mitigation scheme that uses our algorithm for mitigating
Pauli errors in Clifford circuits. Under the assumption
that the circuit C is consisted of H,S and CNOT gates,
and the Pauli noise channel affect each type of the gate
is the same. Once again, each Pauli expectation value is
scaled by a multiplier that is related to the eigenvalues
of the noise channels. We first learn the eigenvalues of
the three different noise channels using the same method
as before, then using the fact that Pauli operator conju-
gated by a Clifford gate is another Pauli and this can be
computed classically efficiently, we can obtain the noise-
less expectation value tr(OC(σ)).
Comparison with related works. Existing infor-

mation recovery method [10] and quantum error miti-
gation techniques [16] necessitates the full information
of the channel is known, which requires an extensive
amount of quantum resources. It also requires the imple-
mentation of arbitrary CPTP maps. However, our pro-
posed algorithm of information recovery requires no prior
knowledge of a Pauli channel, and the channel sample
complexity is logarithmic in the number of qubits. And
our method only requires preparing Pauli eigenstates and
performing Pauli measurements.

We also note that our proposed algorithm is inspired
from [19]. The algorithm in [19] aims to predict the value
of tr(OP(ρ)) from access to P and ρ, whereas we want
to recover the original information from noisy P(ρ).

Furthermore, there are algorithms that can estimate
the error rates for Pauli channels [21–25]. However, learn-
ing error rates to high accuracy cannot guarantee to esti-
mate eigenvalues of the channel to the same accuracy and
vice versa. In Ref. [23], the authors presents a method
for estimating single eigenvalue for a given Pauli opera-
tor, then treat it as a query access and use it to estimate
the error rates, which is similar to our method in spirit
but their estimate is restricted to the specific Pauli that
they query.

Concluding remarks. In this work, we introduced
an efficient quantum algorithm that could retrieve in-
formation from an unknown Pauli noise, using resources
that scale polynomially in the number of qubits. The ef-
ficiency of the algorithm comes from the fact that only
partial knowledge of the channel is required to recover
the ideal information for a local and bounded-degree ob-
servable. For learning partial eigenvalues of the Pauli
channel, we proved it is optimal. We have also shown
that the method can be directly applied to recover infor-
mation from noisy Clifford circuits.
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A Comprehensive Strategy for Improving Steiner-Gauss Elimination:
Qubit Layout Optimization and Circuit Division

Huan Yu1 ∗ Zanhe Qi1 † Shigeru Yamashita1 ‡

1 Ritsumeikan University

Abstract. This paper proposes a comprehensive method to improve Steiner-Gauss elimination for syn-
thesizing an NNA-compliant circuit. This method contains two components. The first component provides
an optimized initial qubit layout which can minimize the sum of distances between the control bits and
target bits of all CNOT gates in the circuit to improve Steiner-Gauss elimination. The second component
divides the circuit into subcircuits based on the“ orientation”of CNOT gates to eliminate unnecessary
NNA CNOT gates in NNA-compliant circuits to improve Steiner-Gauss elimination. Our experimental
results show that our proposed method can reduce 33.18% NNA CNOT gates on average compared to the
basic Steiner-Gauss elimination, and reduce 26.20% NNA CNOT gates on average compared to PAQCS
and Steiner-Gauss elimination.

Keywords: Nearest Neighboring Architecture constraint, CNOT gate, Steiner-Gauss elimination, divid-
ing CNOT circuit, optimized initial qubit layout

1 INTRODUCTION

Quantum circuits are composed of quantum logic op-
erations. The majority of quantum logic operations can
be effectuated using certain universal quantum gate sets,
i.e., the Clifford and T gate set. In other words, quan-
tum circuits can be constructed as a sequence of funda-
mental quantum gates, specifically, one-qubit quantum
gates and CNOT gates. To physically realize quantum
circuits, an essential step is transforming quantum cir-
cuits to meet so-called Nearest Neighboring Architecture
(NNA) constraint [1]; NNA constraint dictates that all
CNOT gates must operate on two physically adjacent
qubits, and we refer to CNOT gates and circuits that
satisfy NNA constraint as NNA CNOT gates and NNA-
compliant circuits.

Many studies have focused on devising efficient meth-
ods to transform quantum circuits to meet NNA con-
straint for one-dimensional [2] [3], two-dimensional [4] [5]
and three-dimensional [6] [7] qubit arthitecture. The
general strategy is to insert SWAP gates to interchange
qubits, making the control and target bits of CNOT gates
adjacent to satisfy NNA constraint. However, given the
high cost of SWAP gates, Kissinger et. al proposed a
more efficient approach, known as Steiner-Gauss elimina-
tion [8]. This approach utilizes Gaussian elimination [9]
to design NNA-compliant circuits with typically fewer
NNA CNOT gates than approaches based on inserting
SWAP gates.

Our contribution: To improve Steiner-Gauss elimina-
tion, we provide a comprehensive proposal comprised of
two components:

• A pioneering algorithm enables the efficient deter-
mination of an optimal initial qubit layout for a
CNOT circuit, a strategy rooted in minimizing the

∗y@ngc.is.ritsumei.ac.jp
†goose@ngc.is.ritsumei.ac.jp
‡ger@cs.ritsumei.ac.jp

sum of distances between control and target bits
of all CNOT gates. This component can reduce
the number of NNA CNOT gates in the NNA-
compliant circuit to improve Steiner-Gauss elimi-
nation.

• An innovative algorithm divides a CNOT circuit
into sub-circuits, based on a novel notion termed
“orientation” of CNOT gates. This component can
eliminate the unnecessary NNA CNOT gates in the
NNA-compliant circuit to improve Steiner-Gauss
elimination.

We can integrate these two algorithms as a unified, com-
prehensive proposal. Additionally, it remains a great op-
tion to employ either of these algorithms individually in
contexts where they demonstrate optimal applicability.

2 PRELIMINARY

2.1 Representing a CNOT circuit by 0/1 matrix

As mentioned previously, NNA constraint mainly im-
poses the restriction on CNOT gates. Hence, to design
NNA-compliant circuits, we focus on CNOT circuits com-
posed exclusively of CNOT gates.

For CNOT gates, we can consider that a CNOT gate
computes the XOR operation of the two inputs on the
target qubit when the input quantum states are classical
(i.e., |0⟩ or |1⟩). Let the inputs of an n-qubit quantum
circuit be q0, q1, · · · , qn−1 in the following. As shown in
Fig. 1 (a), the output state of each qubit of a CNOT
circuit can always be expressed by an exclusive sum (i.e.,
linear combination) of qi.

As shown in Fig. 1 (b), we obtain the same output state
of the CNOT circuit, by performing matrix multiplica-
tion between a 0/1 matrix and a vector that represents
the inputs of the CNOT circuit. Thus, it is reasonable to
regard this matrix as a representation of the functionality
of the CNOT circuit. In other words, the 0/1 matrix in
Fig. 1 (b) can represent the CNOT circuit in Fig. 1 (a).
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Figure 1: The example of using a 0/1 matrix to represent
a CNOT circuit.
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Figure 2: The example of the CNOT circuit synthesis by
Gaussian elimination.

In this way, we can use 0/1 matrices to represent CNOT
circuits.

2.2 CNOT circuit synthesis by Gaussian elimi-
nation

After obtaining a 0/1 matrix that represents a CNOT
circuit, the next step is to explore the utilization of this
matrix for constructing a new circuit. Gaussian elim-
ination, a renowned mathematical algorithm, serves as
a means to solve linear equations by transforming the
associated matrix into an identity matrix. We employ
Gaussian elimination to transform the 0/1 matrix into
an identity matrix.

To achieve this, we implement the following operation:
substituting the i-th row with the result of the XOR op-
eration between the i-th and j-th rows. It is worth noting
that this operation corresponds to the effect of a CNOT
gate whose target and control bits are the i-th and the
j-th qubits, respectively. We repeat the row operations
above to transform the matrix into an identity matrix,
resulting in a sequence of CNOT gates that correspond
to the row operations implemented during Gaussian elim-
ination. Because the identity matrix corresponds to the
input state of the circuit, the above sequence of gates
transforms the output state of the circuit to the initial
state. This means that we can get the desired circuit with
the same functionality by reversing the above sequence
of CNOT gates.

For example, the leftmost 0/1 matrix in Fig. 2 (a)
represents the functionality of the CNOT circuit. In
Fig. 2 (c), we show a procedure of Gaussian elimination
to transform the matrix in Fig. 2 (a) into an identity
matrix. The circuit in Fig. 2 (b) is the new synthesized
circuit. The row operations a, b, and c in Fig. 2 (c)
correspond to the CNOT gates g1, g2, g3 in Fig. 2 (b),
respectively.
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Figure 3: The example of Steiner-Gauss elimination

2.3 NNA-compliant circuit synthesis by Steiner-
Gauss elimination

Building upon the preceding introduction, we enforce
that solely the row operations associated with the NNA
CNOT gates are permitted during the process of Gaus-
sian elimination. Consequently, we derive a sequence of
NNA CNOT gates, effectively synthesizing the desired
NNA-compliant circuit.

Now let us consider NNA constraint in the two-
dimensional 3 × 3 qubit architecture as shown in
Fig. 3 (a). The most-left matrix in Fig. 3 (b) represents
a circuit containing two non-NNA CNOT gates, whose
control bits are q0 and target bits are q2 and q7, respec-
tively. We utilize the Breadth-First Search algorithm to
generate a Steiner tree [10] that connects q0 and q2, as
well as q0 and q7 by inserting the least Steiner points
as shown in Fig. 3 (a). Employing the Steiner tree as a
guide, we are enabled to utilize only row operations that
correspond to NNA CNOT gates to transform the matrix
representing the CNOT circuit into an identity matrix.
Subsequently, compile the NNA CNOT gates correspond-
ing to row operations utilized during the transformation
of the matrix into an identity matrix to synthesize the
desired NNA-compliant circuit. For example, the NNA-
compliant circuit is shown as Fig. 3 (c), and the row
operations a, and b in Fig. 3 (b) correspond to the NNA
CNOT gates g1, and g2 in Fig. 3 (c).

3 Proposed method

3.1 Component. 1: Optimizing initial qubit lay-
out

When employing Steiner-Gauss elimination to convert
a non-NNA CNOT gate into a sequence of NNA CNOT
gates, it is evident that the distance between the control
bit and the target bit of the CNOT gate directly influ-
ences the number of required NNA CNOT gates. As the
distance decreases, the control bit and the target bit are
closer, and fewer NNA CNOT gates are required.

Hence, we present an initial qubit layout where the
distance between the control bit and the target bit is
smaller. In this initial layout, the circuit containing this
CNOT gate can be converted into an NNA-compliant cir-
cuit with fewer or even without additional NNA CNOT
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Figure 4: The example of the disadvantage of Steiner-
Gauss elimination

gates.
Moreover, for a CNOT circuit comprising some CNOT

gates, we can offer an initial qubit layout that reduces
the sum of distances of all CNOT gates in this circuit as
well. In other words, within this initial qubit layout, the
CNOT gates’ control bits and target bits become closer
generally. In this initial qubit layout, this CNOT cir-
cuit containing these CNOT gates can be converted into
an NNA-compliant circuit with fewer NNA CNOT gates.
Thus, we can improve Steiner-Gauss elimination by uti-
lizing the optimized initial qubit layout which minimizes
the sum of distances of all CNOT gates.

To achieve this proposal, we employ Simulated An-
nealing to generate a list of initial qubit layouts which
minimize the sum of distances of all CNOT gates in the
CNOT circuit. Then, we select the initial qubit layout
in the list which has the minimal NNA CNOT gates in
the NNA-compliant circuit generated by Steiner-Gauss
elimination as the optimized qubit layout.

3.2 Component. 2: Dividing CNOT circuit

Predicated on our experimental experience, we recog-
nize that there is a flaw in Steiner-Gauss elimination that
leads to the generation of unnecessary NNA CNOT gates
in the NNA-compliant circuit synthesized by Steiner-
Gauss elimination. For example, when eliminating the
“1” in the blue box in Fig. 4 (a) using Steiner-Gauss
elimination, the undesired “1” in the red circle is added
in Fig. 4 (b), which requires additional row operations
for elimination. The emergence of this undesired “1” is
attributed to the presence of the “1” in the upper trian-
gular matrix.

To avoid the emergence of the undesired “1”, we first
introduce a new notion termed “orientation” of a CNOT
gate as follows.

Definition 1 For a qubit order: q0, q1, · · · , qn−1, if a
CNOT gate whose control bit is in front of the target
bit, the “orientation” of the CNOT gate is downward,
or else the “orientation” is upward.

The matrix representing a circuit containing CNOT gates
with the same orientation is the lower triangular matrix
or upper triangular matrix. In the case of lower trian-
gular matrices and upper triangular matrices, the un-
desired “1s” do not emerge during Steiner-Gauss elim-
ination. Hence, we propose that while preserving the
functionality of the circuit, divide a CNOT circuit into

Table 1: Experimental Results
circuits # Steiner-Gauss PAQCS Proposed method
R cnot 1 10 30 29 14
R cnot 2 10 24 23 14
R cnot 3 15 41 47 30
R cnot 4 15 48 28 23
R cnot 5 15 42 42 21
R cnot 6 15 40 37 26
R cnot 7 15 49 36 25
R cnot 8 20 67 43 31
R cnot 9 20 64 49 33
R cnot 10 20 39 42 25
R cnot 11 20 60 35 36
R cnot 12 25 64 65 44
R cnot 13 25 60 58 46
R cnot 14 25 51 52 43
R cnot 15 30 52 63 51
R cnot 16 30 41 57 45
R cnot 17 30 63 50 51

multiple sub-circuits comprised of CNOT gates with the
same “orientation”. Then perform Steiner-Gauss elimi-
nation on each subcircuit. In this way, we can improve
Steiner-Gauss elimination by eliminating the unnecessary
CNOT gates.

In summary, our proposed approach is to provide the
optimized initial qubit layout first. Subsequently, divide
the circuit in the optimized initial qubit layout into sub-
circuits comprised of CNOT gates with the same “orien-
tation”. Perform Steiner-Gauss elimination on each sub-
circuit to obtain NNA-compliant sub-circuits. Finally,
integrate NNA-compliant sub-circuits into the desired
NNA-compliant circuit.

4 Experimental results

To assess the effectiveness of our proposed method, we
compared the performance of the following three meth-
ods:

• Basic Steiner-Gauss elimination

• PAQCS [11] (Providing an algorithm to optimize
the initial qubit layout as well) and Steiner-Gauss
elimination

• Our proposed method

We used randomly generated CNOT circuits to evalu-
ate the total number of NNA CNOT gates in NNA-
compliant circuits by each method. The randomly gen-
erated CNOT circuits, R cnot 1 to R cnot 17, consist
of 9 qubits, and all qubits are placed on 3 × 3 two-
dimensional square architecture. “#” represents the
number of CNOT gates in test circuits. The proposed
method demonstrated superior performance, with an av-
erage reduction of 33.18% NNA CNOT gates compared
to Basic Steiner-Gauss elimination, and 26.20% com-
pared to PAQCS and Steiner-Gauss elimination.

For computing time, we set a relatively small number
of iterations and a low initial temperature for Simulated
Annealing to ensure the computing time of Component.
1 within 1 second, and the computing time of Compo-
nent. 2 can be considered negligible. Thus, the comput-
ing time of the proposed method is still within 1 second,
indicating no practical issues.
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Quantum metrology [1, 2] features a series of promising applications in the near future [3]. In the

prototypical setting of quantum metrology, the goal is to estimate an unknown parameter carried by

a quantum channel, given N queries to it. A pivotal task is to design a strategy that utilizes these

N queries to generate a quantum state with as much information about the unknown parameter as

possible. This often involves, for example, preparing a suitable input probe state [4–6] and applying

intermediate quantum control [7, 8] as well as quantum error correction [9–12].

In reality, strategies that we could implement are often subject to physical restrictions. For

example, for systems with short coherence time it might be favorable to adopt the parallel strat-

egy (Fig. 1(a)), where multiple queries of the unknown channel are applied simultaneously on a

multipartite entangled state [4]. When the system has longer coherence time and can be better

controlled, one could choose to query the channel sequentially (Fig. 1(b)), which may potentially

enhance the precision. However, it remains an intriguing open problem whether a sequential strat-

egy can strictly outperform any parallel one for single-parameter estimation. In addition to parallel

and sequential strategies, it was recently discovered that the quantum SWITCH [13], a primitive

where the order of making queries to the unknown channel is in a quantum superposition (Fig. 1(c)),

can be employed to generate new strategies of quantum metrology [14–16] that may even break

the Heisenberg limit [16]. Moreover, indefinite causal structures beyond the quantum SWITCH

[13, 17, 18] (Fig. 1(d) and (e)) have recently been shown to further boost the performance of

certain information processing tasks [19, 20]. Their performance in quantum metrology, however,

remains unknown. Overall, the main difficulty is the lack of a systematic method that deals with

the optimization of probe state preparation, control, etc., in a strategy in a unified fashion.

It is therefore of utmost importance to identify the ultimate precision of quantum metrology
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(a) (b)

(c) (d) (e)

FIG. 1. Prototypical strategies of quantum metrology (for the N = 2 case). Eϕ is a quantum channel

carrying an unknown parameter ϕ, and the blue shaded area represents a strategy. (a) A parallel strategy.

(b) A sequential strategy, where U is a control operation. (c) A quantum SWITCH strategy. The blue

and red lines respectively correspond to two different execution orders entangled with a control qubit. (d)

A causal superposition strategy. Two sequential strategies, plotted in blue and in red respectively, are

entangled with a control qubit (not shown in the figure) and the output will be measured with the control

qubit collectively. (e) A general indefinite-causal-order strategy.

under each family of strategies and determine whether one family of strategies strictly outperforms

the other. In this work, our main contributions include:

1. We develop a semidefinite programming method of evaluating the optimal achievable precision

characterized by the quantum Fisher information (QFI) and develop an algorithm that yields

an optimal strategy (in terms of its process matrix as well as the circuit implementation)

attaining this QFI. See Theorem 1 and Algorithm 1 of the full paper.

2. For the strategy set that admits a symmetric structure, we develop a method of reducing the

complexity of our algorithms by an exponential factor.

3. We discover a strict hierarchy (see Fig. 2) of the optimal precision for a series of physically

relevant families of strategies, including parallel, sequential and indefinite-causal-order [13,

17, 18] ones (see Fig. 1).

4. We discover several intriguing new scenarios where ICO strategies have strictly higher QFI.

In particular, there exists a task where a strategy with a simple quantum SWITCH (without

any intermediate control operations) beats all causally-ordered strategies.
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FIG. 2. Hierarchy of QFI using parallel, sequential, and indefinite-causal-order strategies (N = 2,

amplitude damping noise). For each copy of a parameterized quantum channel, the parameter of interest

is encoded in a unitary evolution, followed by an amplitude damping channel with the decay parameter p.

Some notations: Par for parallel; Seq for sequential; Swi for quantum switch; Sup for causal superposition;

ICO for general indefinite-causal-order. A strict hierarchy of Par, Seq and ICO holds, i.e., the QFI J(Par) <

J(Seq) < J(ICO). The gaps can be seen more clearly by zooming in on the interval [0.35,0.45] of the value of p.

Moreover, we find it quite surprising that, assisted by the quantum SWITCH (without any additional control

operations), we can beat any sequential strategies in certain cases (e.g. p < 0.5). The QFI J(Sup) = J(ICO)

with an error tolerance of no more than 10−8 in this case, but the gap between J(Sup) and J(ICO) could exist

with larger N or for other types of noise, which can be observed by randomly sampling noise channels.

Compared to previously known asymptotically saturable bounds for quantum channel estima-

tion, our work fills the gap of fully optimized quantum metrology in the regime when N is not too

large. Identifying the strict hierarchy is an important step in the study of quantum metrological

strategies (where people mainly focused on the parallel-versus-sequential problem for N → ∞).

Moreover, with concrete strategies attaining the optimal precision, our result serves as a versatile

tool for the demonstration of optimal quantum metrology and the design of optimal quantum sen-

sors, especially in the context of control optimization [21, 22] and indefinite causal orders [13–20].

The result is appealing not only to the general community of quantum metrology and quantum

information, but also to researchers who are seeking advantages that new space-time structures

could introduce to quantum information processing and quantum computing [14–16, 20, 23, 24].

Therefore, we believe that our work makes a substantial contribution to quantum metrology and

quantum information processing, and will be of interest to the general audience of AQIS.
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The discovery of dynamical signatures of topology has recently broadened the notion of topolog-
ical matter beyond the realm of thermal equilibrium. In coherent quench dynamics, a topological
discrepancy between a Hamiltonian changing its topological properties over a parameter quench and
a topologically inert quantum state naturally occurs. Identifying and observing topological prop-
erties that unambiguously characterize such a complex scenario remains an important challenge.
Here, we experimentally demonstrate how the presence of noise in quench dynamics enables the
observation of a topologically quantized bulk response known as the mean chiral displacement, in
agreement with the dynamical buildup of a topological mixed state. To this end, we realize photonic
quantum walks with engineered noise to simulate noisy quench dynamics. The difficulty of complete
density-matrix reconstruction in noisy scenarios is efficiently addressed via machine learning of the
distributions of multiple interferometric measurements, allowing us to monitor the state topology.

Introduction.—The topological quantization of physical
observables is among the most fascinating phenomena in
nature [1–5], and has crucial implications for the classifi-
cation of matter as well as for new metrology and infor-
mation technology [6–9]. While early work on topological
matter has focused on low-temperature physics beyond
the celebrated Landau-Ginzburg-Wilson paradigm [10],
more recently numerous dynamical topological proper-
ties have been explored in dissipative systems [11, 12] and
non-equilibrium settings [13–17], respectively. There,
however, even though a range of topological phenomena
without a direct equilibrium counterpart have been dis-
covered, topological quantization is often challenged and
protecting symmetries may be dynamically broken [18–
20].

For the generic non-equilibrium scenario of a quantum
quench, an intriguing discrepancy may arise between the
topological properties of the quantum state that are inert
under coherent time evolution and those of the Hamilto-
nian that may change over the parameter quench [11, 21–
26]. Reconciling this topological discrepancy and identi-
fying clear experimental signatures that characterize such
complex non-equilibrium situations remains an impor-
tant challenge, from both a conceptual and experimental
perspective, where techniques of real-time full quantum
state control and tomography in momentum space need
to be combined.

In this work, using the platform of photonic quan-
tum walks (QWs), we theoretically propose (see Fig. 1)
and experimentally demonstrate (see Fig. 3) how a topo-
logically quantized observable generically emerges in

the noisy quench dynamics of a one-dimensional (1D)
chiral-symmetric two-banded system. Specifically, a
bulk response known as the mean chiral displacement
(MCD) [27–30] is found to exhibit a quantized value that
is stabilized by dephasing noise in two important aspects.
First, by controlling the interaction of QWs with a spe-
cific environment, a pure dephasing of the quantum state
in momentum space is introduced. Consequently, we ob-
serve that dephasing can lead to a topologically quan-
tized value of the instantaneous MCD by damping its
non-equilibrium oscillations, thus alleviating the need for
observing long-time averages. Second, while the protect-
ing chiral symmetry is dynamically broken [18] by co-
herent superpositions of ground- and excited states, it
is restored in the ensemble-averaged mixed state of the
noisy system. Experimentally, by developing a unique
mixed-state learning technique for our photonic QWs,
we are able to track the time-dependent topology of the
density matrix. Interestingly, we find that the Uhlmann
phase [31] of the mixed state exhibits a similar temporal
behavior as the observed MCD, thus resolving the topo-
logical discrepancy that characterizes the coherent limit.

We note that the dynamical buildup of an asymptotic
topological quantization has been theoretically studied
in the context of 2D Chern insulators [11], where uni-
tary time evolution keeps the Chern number of states
constant [21, 22], while the non-equilibrium Hall response
may exhibit a strongly oscillatory time-dependent behav-
ior [22, 23]. There, however, only under specific circum-
stances, including the limit of a slow quench [11], a nearly
quantized Hall response may be recovered in the long-
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FIG. 1. Theoretical analysis of topological properties in QWs.
(a) Phase diagram of the model system and illustration of the
parameter quench. (b) Numerical simulation of the MCD and
the Berry phase in coherent QWs. (c) Numerical simulation
of the Uhlmann phase divided by π and the MCD (solid lines)
in noisy QWs with pure dephasing. The blue circles and red
diamonds represent the corresponding results in the 100-step
noisy QWs interacting with a simulated environment. Decay
rate γk ≡ 0.05, fluctuating degree δθ1 = 0.2, and sample size
is M = 200.

time average, and may be smoothed in the presence of
dephasing. By contrast, in our present setting, a topolog-
ically quantized instantaneous MCD reflecting uniquely
the instantaneous Hamiltonian topology is stabilized by
noise, irrespective of details of the quench protocol.

Noisy quantum walk model.—We start by theoretically
showing how a dynamical topological quantization can
arise in noisy QWs. We consider the split-step QWs [32],
whose each time-step dynamic is governed by a uni-
tary operator U = Ry( θ12 )S↓Ry(θ2)S↑Ry( θ12 ). Ry(θ) =

e−iθ/2σy denotes the rotation of the internal spin state of
the walker by an angle of θ along the y-axis. The shift
operators S↑ = |x + 1〉〈x| ⊗ |↑〉〈↑| + |x〉〈x| ⊗ |↓〉〈↓| and
S↓ = |x〉〈x|⊗ |↑〉〈↑|+ |x−1〉〈x|⊗ |↓〉〈↓| move the walker to
the neighboring sites (labeled by |x〉) according to its spin
states (labeled by {| ↑〉, | ↓〉}). The dynamics U t can stro-
boscopically simulate a time evolution described by the
effective Hamiltonian Heff, with U t = e−iHefft. The effec-
tive Hamiltonian in quasi-momentum k space reads (see
Supplementary Sect. I): Heff(θ1, θ2) =

∫ π
−π dkHeff(k) =∫ π

−π dk[E(k)nH(k) · ~σ] ⊗ |k〉〈k|, where ~σ = (σx, σy, σz),
nH(k) represents the eigenvector of the Bloch Hamilto-
nian Heff(k), and E(k) is the quasi-energy dispersion.
The topological phase diagram of QWs [33] as classified
by the winding numberW is shown in Fig. 1(a). We con-
sider the quench strategy shown by the black arrow in
Fig. 1(a): the system initially stays at the ground state
of a trivial Hamiltonian Hieff, and the control parameters
{θ1, θ2} are changed with velocity v to quench the trivial

Hamiltonian to reach a topologically non-trivial one Hfeff.

In purely coherent quench scenario, while the time-
dependent Hamiltonian keeps all symmetries, the uni-
tary evolution breaks the time-reversal symmetry (TRS)

and the chiral symmetry of the time-evolving state [18].
However, the particle-hole symmetry of the state is
preserved, so the symmetry-protected topological in-
variant remains quantized. As shown by the red
line in Fig. 1(b), the Berry phase of the time-evolving
wavefunction is ΦB(t) =

∫ π
−π dk〈ψk(t)|i∂k|ψk(t)〉 ≡ 0.

Nonetheless, a bulk response (blue line), namely MCD
C = 1

π

∫ π
−π dk〈ψk|Γ(i∂k)|ψk〉 [28], dynamically builds up.

Since the parameter quench between different topolog-
ical phases inevitably goes through a critical time tc
with gap closing, the dynamics is nonadiabatic, and the
coherent superposition of the two energy bands leads
to persistent oscillations of MCD. In marked contrast
with the zero Berry phase of the instantaneous state at
all times, the non-equilibrium MCD can only be quan-
tized in a long-time average of oscillations to an inte-
ger value determined by the final Hamiltonian [27], i.e.,

C = limN→∞ 1/N
∫N

0
C(t)dt→Wf = 1.

To obtain a stationary quantized MCD within a finite
time, as will be the case in realistic measurement, and
to reconcile its topological discrepancy with the state as
shown above, we introduce classical noise into QWs to
induce dephasing. The time-dependent density matrix
of spin ρk(t) is governed by the master equation [11]:

∂tρk = −i[Heff(k), ρk] + γk[σ̃zkρkσ̃
z
k − ρk], (1)

where σ̃zk(t) = nH(k, t) · ~σ is the Pauli operator in the
eigenbasis of Heff(k, t), and γk defines the decay rate of
the phase coherence for each k. The noisy term dynam-
ically decays the coherent superposition of the ground
state and excited state to be classical and induces a
purely dephasing effect that preserves the band occu-
pation. For a completely dephased state, it is diagonal
in the eigenbasis of the instantaneous Hamiltonian and
takes the form ρde

k = 1
2 [1 + ñzk(t)σ̃zk(t)], where 1 is the

identity matrix. For the two-band QWs, the contribu-
tions to MCD from the positive-energy and the negative-
energy band are equal and additive [28]. Thus, MCD of
the dephased state is Cde = 1

π

∫ π
−π dkTr[Γ(i∂k)ρde

k ] ≡ 1,
irrespective of the quench velocity v. As shown by the
blue line of Fig. 1(c), a stationary quantized MCD reflect-
ing the topology of the instantaneous Hamiltonian arises
dynamically by adding noise.

It turns out that the anti-unitary symmetries such as
TRS and chiral symmetry [34], broken in the coherently
evolving state [18], reappear in the dephased mixed state
ρde
k . This is because the eigenstates of the instanta-

neous Hamiltonian respect all the symmetries, and so
does the dephased state as a classical mixture of these
eigenstates. Such noise-assisted symmetry recovery plays
a vital role in reconciling the topological properties of the
mixed state with those of the post-quench Hamiltonian,
as shown below.

For topological characterization of the mixed state, we
note that since the pioneering work by Uhlmann [35], sev-
eral complementary approaches have been reported [31,
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FIG. 2. Photonic experimental setup. The setup mainly in-
cludes four parts (see Supplementary Sect. V for detailed de-
signs and descriptions): (a) a spontaneous parametric down-
conversion process occurring in BBO generates pairs of pho-
tons, in which the idler photons serve as the herald for the
signal ones (walker); (b) a QW module that consists of a series
of polarization rotation operators and polarization-dependent
shift operators; the inset displays the single-step unitary oper-
ator; (c) a Michelson interferometer for realizing the interfer-
ence measurements between different sites; (d) a polarization
projection and an up-converted detector for analyzing the de-
tails of the signal-photon pulse train. PBS, polarizing beam
splitter; BBO: β-BaB2O4; DM, dichroic mirror; HWP, half-
wave plate; QWP, quarter-wave plate.

35–41] to generalize the geometric phases and topological
invariants to the realm of open systems. For our model
system, we find that the temporal evolution of the topo-
logically quantized Uhlmann phase [31] corresponds well
to the change of the quantized MCD from a trivial initial
to a non-zero post-quench value (cf. Fig. 1). Specifically,
with the spectral decomposition of the density matrix
ρk =

∑
i p
i
k|φik〉〈φik|, the Uhlmann connection is defined

as AU =
∑
i,j
|φik〉〈φ

i
k|[∂k

√
ρk,
√
ρk]|φjk〉〈φ

j
k|

pik+pjk
dk, and the asso-

ciated Uhlmann phase ΨU = arg Tr[ρ−πe
∫ π
−π dkAU ]. In

the limit of a rank-1 pure state, ΨU approaches the cor-
responding Berry phase ΦB. By contrast, the Uhlmann
phase of the dephased state ρde

k reads as (see Supple-

mentary Sect. IIC): Ψde
U = arg(cos[|~U |]), with |~U | ≈

|πW + O(υ
1
2 )| and W = 1 is the winding number of

the instantaneous Hamiltonian in the topological phase
(cf. Fig. 1(a)). At least for small v, a non-trivial mixed
state, with the topologically quantized Uhlmann phase
Ψde

U ≡ π, is generically built up dynamically from a triv-
ial initial state, as shown by the red line in Fig. 1(c).
That way, the topological discrepancy between time-
dependent Hamiltonian and state, characteristic of the
coherent case, is reconciled in noisy QWs.

Experimental implementation.—Experimentally, we real-
ize photonic QWs with a setup shown in Fig. 2, where the
heralded signal photons act as the walker. We encode the
internal spin states {| ↑〉, | ↓〉} in the horizontal and ver-
tical polarization of photons {|H〉, |V 〉}, and the lattice

sites |x〉 are composed of photon arrival times (see the in-
set of Fig. 2(b)). The single-step unitary operator of QWs
U is composed of three HWPs (for spin rotation Ry(θ))
and two calcite crystals (for shift operator S↑,↓), with
each calcite inducing a time shift τ ' 5 ps between the
two polarizations. Then, the lattice space of the walker
after the QWs module consists of the superposition of
2N + 1 time bins with a time interval τ .

The key new ingredient in our setup is a Michelson
interferometer with controllable arm length difference,
used to realize the full quantum state tomography and
thus detect the state topology. The interferometer in
Fig. 2(c) consists of a PBS, two mirrors, and two QWPs
rotated to an angle at 45◦. The movable mirror is con-
trolled to introduce a time difference between the two
arms, so that the photons with horizontal polarization
travel integer multiples of 5 ps faster (or later) than those
with vertical polarization. After the interferometer, both
the local polarization states and the arrival times of sig-
nal photons are analyzed in Fig. 2(d). Finally, inter-
ferometric measurements between site x and site x + i
(i = 0,±1, · · · ,±N ) are implemented, and a collection
of 2N+1 sets of photon counts can be obtained. These in-
terferometric measurements can be seen as base transfor-
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FIG. 3. Experimental bulk response and state topology. (a)
Measured MCD (orange dots) and Berry phase (green opaque
bars) of the time-evolving wavefunction in coherent quenched
QWs. (b) Measured MCD (orange dots) and Uhlmann phase
(green opaque bars) of the time-evolving mixed state in noisy
QWs. The yellow solid lines and the green transparent bars in
(a-b) represent the theoretical predictions of the time-evolving
MCD and geometric phase, respectively. The errors are esti-
mated using numerical Monte Carlo simulations considering
photon-counting noise.
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mations and projecting the system onto the sets of bases
{|H〉 ⊗ |x〉}, {|V 〉 ⊗ |x〉}, { 1√

2
(|H〉 ⊗ |x〉 ± i|V 〉 ⊗ |x′〉)},

and { 1√
2
(|H〉⊗|x〉±|V 〉⊗|x′〉)} (x, x′ = 0,±1, · · · ,±N ).

Observation of topological discrepancy.—We first experi-
mentally validate the topological discrepancy in coher-
ent quenched QWs. The system is initialized in the
ground state of the lower energy band of a trivial Hamil-
tonian Hieff with (θi1 = −2π/3, θi2 = 7π/8). This is pre-
pared via the adiabatic evolution from a localized state
|x = 0〉⊗ 1√

2
(|H〉−i|V 〉), which is the ground state of the

trivial flat-band Hamiltonian (θ2 = π) with degenerate
quasi-energy E(k) ≡ −π [42]. Then, the control param-
eters {θ1, θ2} are varied dynamically to drive the trivial

Hamiltonian towards a topologically non-trivial one Hfeff

with (θf1 = −9.3π/10, θf2 = −π/14).
To monitor the dynamics of MCD, C(t) = 2〈ΓX〉 =

2
∑
x x[P↑Γ(x, t) − P↓Γ(x, t)] [27], we measure the two

projection probability distributions P{↑Γ,↓Γ}(x) for each
time-step t, on the basis of the chiral operator {↑Γ, ↓Γ
} = { 1√

2
(|H〉 ± |V 〉)}. As shown by the orange dots in

Fig. 3(a), the non-equilibrium MCD displays a marked
oscillation around an integer value of 1 determined by the
topological Hamiltonian Hfeff. To obtain the Berry phase
of the time-evolving state ΦB(t), we use discrete-time-
resolved wavefunction tomography [43] performed on the
collection of 2N + 1 sets of photon counts, and recon-
struct the spinor states |ψk(t)〉 for each k in the first
Brillouin zone with the Fourier transform. We observe
ΦB(t) ' 0 throughout the coherent evolution, as shown
by the green opaque bars in Fig. 3(a), with an obvious
discrepancy to the finite MCD.
Observing dynamical topological quantization.—To engi-
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FIG. 4. Experimental density-matrix tomography. (a) Fi-
delity (Tr

√√
%%λ,µ

√
%)2 and (b) Purity Tr[%2λ,µ] (green bars)

of the NDO reconstructed mixed states for noisy QWs,
given the experimental photon-counting collection. The black
dashed lines represent the theoretical predictions for the exact
density matrices.

neer the type of noise that induces dephasing in QWs,
we utilize a slowly fluctuating environment [44, 45], with
the time scale of the control parameters changing larger
than a single QW realization. Under this environment,
the parameter θ1 is randomly selected on the interval
[θ1 − δθ1, θ1 + δθ1] for a single realization, and the final
result is the ensemble average over the multiple realiza-
tions. The fluctuating degree δθ1 here plays a similar
effect as the decay rate γk (see Supplementary Sect. IIIB
for details). In the experiment, we have M = 21 random
settings for the parameter θ1 with δθ1 = 0.2. Then, the
measured probability distributions in noisy QWs are the
ensemble average over the 21 samples.

In this noisy scenario, however, the full density-matrix
reconstruction was unusual: the real-space system is gen-
erally described by a density operator % with the dimen-
sion of 4(2N + 1)2 after a N -step walk; theoretically, the
photon-counting collection of the interferometric mea-
surements, complete for tomography of rank-1 pure state,
is incomplete for directly reconstructing %. Here we uti-
lize an effective neural-network quantum state tomogra-
phy [46], where a neural density operator (NDO) approx-
imates the target density matrix %λ,µ ' % after training
the network parameters {λ,µ} with given the 2N + 1
sets of photon counts (see Supplementary Sect. IV for
details). Then the reduced density matrix of spin ρk
in quasi-momentum space can be obtained via Fourier
transform on %λ,µ and taking the trace over k.

Thanks to the unique ability of our photonic QWs,
we can now directly probe the topological properties of
the time-dependent mixed states that are characterized
by the Uhlmann phase ΦU. The green opaque bars in
Fig. 3(b) show that during the noisy quench dynamics,
the Uhlmann phase starts with an initial trivial value of
0 and then experiences an unstable time region where the
phase coherence gradually disappears. The appearance
of the unstable region depends on the quench velocity
v determined by the total QWs step N (see Supplemen-
tary Sect. IIIC for further discussion). Finally, a topolog-

ically non-trivial mixed state with ΦfU/π = 0.951±0.016,
close to the quantized value of 1, is found to build up,
compatible with the underlying topological Hamiltonian
Hfeff. Meanwhile, in contrast with the coherent scenario,
we observe that the amplitude of the periodic oscillations
of MCD is significantly dampened upon adding noise, as
shown by the orange dots in Fig. 3(b). The MCD of the
final state Cf = 0.885 ± 0.022 approaches the quantized

topological number of Hfeff. The experimentally observed
deviation ∼ 0.1 from the quantized Cde ≡ 1 is mainly be-
cause the coherence on the eigenstates of Hfeff cannot be
entirely destroyed by the 13-step noisy dynamics, com-
pared to the numerical results for the 100-step scenario
(blue circles in Fig. 1(c)). However, the onset of a damp-
ing of the persistent oscillations found in the coherent
limit is clearly visible even within the currently available
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experimental resources.

As shown in Fig. 4, extra uncontrollable decoherence
posed by realistic experimental environments degrades
the quality of QWs with the increasing number of steps
N . First, the calibration error of optical elements scal-
ing linearly with N causes an unexpected phase shift be-
tween the multiple interferometers in the QWs module.
Second, because the number of local measurements scales
quadratically with N , the measurement error, especially
for low-probability sites, induces a considerable offset in
the state reconstruction. These two main sources of error
limit the total number of practically viable steps in our
experiment.

Conclusion.—To summarize, we have developed and im-
plemented photonic QWs capable of full density-matrix
reconstruction which has been achieved effectively by
neural-network tomography. In this framework, we have
demonstrated how introducing classical noise enables the
dynamical buildup of a topologically non-trivial mixed
state characterized by a non-zero-quantized Uhlmann
phase. The general mechanism of restoring dynamically
broken symmetries of the time-evolving states by noise
is applicable to other symmetry classes of topological
insulators and superconductors out of equilibrium [19].
In addition, the experimentally observed agreement be-
tween the MCD as a response property and the Uhlmann
phase as a topological property of a mixed state here rec-
onciles the topological properties of the time-dependent
Hamiltonian and the mixed state in the noisy dynamics
of a quenched QW.
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I. B. Spielman, Dynamically induced symmetry breaking

30

mailto:These authors contributed equally.
mailto:xuxiaoye@ustc.edu.cn
mailto:smhan@ustc.edu.cn
mailto:jan.budich@tu-dresden.de
mailto:cfli@ustc.edu.cn
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1126/sciadv.1701207
https://doi.org/10.1126/sciadv.1701207
https://arxiv.org/abs/2212.14054
https://arxiv.org/abs/2212.14054
https://doi.org/10.1103/RevModPhys.88.035005
https://scipost.org/SciPostPhys.12.1.018
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/https://doi.org/10.1038/s41566-021-00944-2
https://doi.org/https://doi.org/10.1038/s41566-021-00944-2
https://doi.org/10.1016/C2009-0-24487-4
https://link.aps.org/doi/10.1103/PhysRevLett.117.126803
https://link.aps.org/doi/10.1103/PhysRevLett.124.010401
https://link.aps.org/doi/10.1103/PhysRevLett.124.010401
https://doi.org/10.1103/PhysRevLett.117.235302
https://doi.org/10.1103/PhysRevLett.117.235302
https://doi.org/10.1038/s41567-017-0013-8
https://doi.org/10.1038/s41567-017-0013-8
https://doi.org/10.1103/PhysRevLett.123.190603
https://doi.org/10.1103/PhysRevLett.123.190603
https://doi.org/ 10.1103/PhysRevLett.126.016802
https://doi.org/ https://doi.org/10.1016/j.scib.2022.04.019
https://doi.org/ https://doi.org/10.1016/j.scib.2022.04.019
https://link.aps.org/doi/10.1103/PhysRevLett.121.090401
https://link.aps.org/doi/10.1103/PhysRevLett.121.090401
https://doi.org/10.1103/PhysRevB.99.075148


6

and out-of-equilibrium topology in a 1d quantum system,
Phys. Rev. Lett. 129, 123202 (2022).

[21] L. D’Alessio and M. Rigol, Dynamical preparation of flo-
quet chern insulators, Nat. Commun. 6, 8336 (2015).

[22] M. D. Caio, N. R. Cooper, and M. J. Bhaseen, Quan-
tum quenches in chern insulators, Phys. Rev. Lett. 115,
236403 (2015).

[23] M. D. Caio, N. R. Cooper, and M. J. Bhaseen, Hall
response and edge current dynamics in chern insulators
out of equilibrium, Phys. Rev. B 94, 155104 (2016).

[24] P. Wang and S. Kehrein, Phase transitions in the diago-
nal ensemble of two-band chern insulators, New J. Phys.
18, 053003 (2016).

[25] A. Kruckenhauser and J. C. Budich, Dynamical equili-
bration of topological properties, Phys. Rev. B 98, 195124
(2018).
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Abstract. The basis of device-independent (DI) certification is a conclusive Bell test. Thus, as with a Bell test,
losses have a negative impact on the possibility of performing realistic DI certification. Specifically, in this work, we
investigate how losses affect the possibility of performing the task of DI entanglement quantification, as measured
by negativity in a bipartite setting and entanglement depth in a tripartite setting. For the former, we obtain a tradeoff
between the amount of CHSH Bell violations and detection efficiency for certifying any given amount of negativity.
Whereas for the latter, we obtain upper bounds on the threshold efficiency required for certifying (genuine tripartite)
entanglement via Sliwa’s inequalities.

Keywords: Entanglement, device-independence, loophole, Bell test, multipartite entanglement

In pursuing new-age quantum technology, quantum entan-
glement [17] has been established as a valuable resource for
many tasks, such as secure communication [14], fast computa-
tion [38, 18], and the generation of provable random bits [1].
Typically, entanglement certification is carried out assuming
the state space dimension and the exact form of the measure-
ments performed. These assumptions are, however, not neces-
sarily justifiable in a realistic experimental scenario, thus mak-
ing the conclusions drawn questionable [30, 25]. An elegant
way to get around this problem is to use a Bell test [3, 2] and
draw conclusions directly from the observed statistics show-
ing Bell-nonlocality [5], i.e., to perform so-called device-
independent (DI) entanglement certification. In fact, even
entanglement quantification based on entanglement mono-
tones [37] can be carried out in a DI manner [24, 20, 34, 10].

Of course, a DI certification or quantification has to meet
its own challenges. For example, since it is based on a Bell
test, it is subjected to [5] so-called locality or detection loop-
holes, which were only closed simultaneously relatively re-
cently [16, 31, 15, 29]. In this work, we focus on the latter,
i.e., how losses in a Bell test impact the task of DI entangle-
ment quantification based on negativity [39] and entanglement
depth [33]. Indeed, if the detection efficiency is too low, a
common-cause strategy that includes the instructions of a no-
detection could fake the violation of a Bell inequality when
we only consider the post-selected events [5]. For example,
in the simplest Bell scenario involving two parties and two di-
chotomic measurements each, also called the Clauser-Horne-
Shimony-Holt [11] (CHSH) Bell scenario, a symmetric detec-
tion efficiency larger than 2

√
2 − 2 ≈ 83% is required for a

conclusive Bell test. More generally, a minimum detection ef-
ficiency of 2

3 ≈ 67% [13] is required to close the detection
loophole in the CHSH Bell scenario.

To determine the impact of losses on DI certification, we
follow the approach of [4] and analyze formally how posts-
election affects the various sets of correlation. To this end,
∗shiladitya.27@gmail.com
†ycliang@mail.ncku.edu.tw

the no-detection event ∅ is formally recognized as an addi-
tional outcome of a Bell experiment. Specifically, in a bipar-
tite Bell test, if we denote by P0(a, b|x, y) the a priori condi-
tional probability of Alice (Bob) observing the outcome a (b)
given that she (he) performs the x- (y)-th measurement, then
Alice’s (respectively, Bob’s) detection efficiency ηA (ηB) are
defined such that:

P0(a 6= ∅, b|x, y) ≡
∑
a 6=∅

P0(a, b|x, y) = ηAP0(b|y) ∀ b, x, y,

P0(b 6= ∅, a|x, y) ≡
∑
b6=∅

P0(a, b|x, y) = ηBP0(a|x) ∀ a, x, y.

(1)

Clearly, physically relevant detection efficiencies ηA, ηB are
those bounded between 0 and 1.

Accordingly, the postselected set of correlation is obtained
from the a priori correlations by

Pps(a, b|x, y) = P (a, b|x, y, a 6= ∅, b 6= ∅) = P0(a, b|x, y)
ηAηB

.

(2)
As was shown in [4], a direct consequence of Eq. (7) is that if
there are losses, i.e., when ηA, ηB < 1, the set Lps(ηA, ηB) of
Pps(a, b|x, y) that admits a local-hidden-variable description
strictly contains the usual set of Bell-local correlations L0 ≡
Lps(1, 1) with no losses. For simplicity, we consider hereafter
only a situation with symmetric detection efficiencies, namely,
when ηA = ηB = η.

Then, in our work, we show that the same observation
holds for various sets of correlations relevant for DI certi-
fication. Examples of which include the set of correlations
generated from a quantum state having an amount of negativ-
ity bounded by N (which we denote by N≤Nη when the ef-
ficiency is η) and those generated from an n-partite quantum
state that is k-producible (we denote the corresponding set by
Qn,kη ). As an illustration, we show in Fig. 3 how N≤0.25η=0.95

has expanded compared with N≤0.25η=1 when we consider the
first level of the semidefinite programming (SDP) hierarchy
introduced in [24].
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Figure 1: A projection plot showing how postselections af-
fects the various sets of correlations assuming a symmetric de-
tection efficiency of η = 95%. Moving outward, we have the
Bell polytope L (violate), the postselected local polytope LPS
(magenta), an outer approximation of the set N≤0.4η=1 of quan-
tum correlations having a negativity upper bounded by 0.4
(blue), the set Q of quantum correlations (red), an outer ap-
proximation of the setN≤0.4η=0.95 of postselected quantum corre-
lations having a negativity upper bounded by 0.4 (black), and
the no-signaling polytope (brown). On the horizontal axis and
the vertical axis, we have, respectively, the value of the Bell
expression CHSH1 ≡

∑1
x,y=0(−1)(x+1)(y+1)E(AxBy) and

CHSH2 ≡
∑1
x,y=0(−1)xyE(AxBy) where E(AxBy) is the

expectation value of the product of the ±1 measurement out-
comes. All outer approximations were computed using level
1 of the SDP hierarchy proposed in [24].

To determine the minimum value of η that one needs to
certify a certain amount of negativity (in the CHSH Bell sce-
nario), we incorporated the constraints of Eq. (6) and Eq. (7)
into the SDP hierarchy introduced in [24] for lower-bounding
the underlying negativity from any given correlation. In the
presence of losses, we take the postselected correlations Pps
and the resulting CHSH value SCHSH as our observable quan-
tity, but in determining the underlying negativity, we use the a
priori correlation P0, which is related to the former via Eq. (7).
The corresponding results are shown in Fig. 4.

As a second example of DI entanglement quantification, we
consider the tripartite Bell scenario where each party can per-
form two binary-outcome measurements. Here, we are inter-
ested to lower bound the entanglement depth [33] of the un-
derlying system. When there is no loss, this is known to be
possible from the strength of the violation of certain tripar-
tite Bell inequalities, as exemplified in [20]. For example, the

Figure 2: Three-dimensional surface plot showing a lower
bound on the amount of negativity certifiable for any detec-
tion efficiency η and any given violation SCHSH of the CHSH
Bell inequality. The plot consists of 1002 points formed by
100 values of SCHSH sampled uniformly between 2 and 2

√
2

and 100 values of η sampled uniformly between 2(
√
2 − 1)

and 1. Here, SCHSH could be any of the CHSH Bell expres-
sion obtained from CHSH1 via a relabeling. All computations
were done using level 2 of the SDP hierarchy proposed in [24].

tripartite Mermin Bell inequality [23] I2 reads as

−2
L0

≤ S2 ≡ E(A1B1C1) + E(A2B2C1)+

E(A2B1C2)− E(A1B2C2)
L0

≤ 2

(3)

where E(AxByCz) is the tripartite expectation value. If we
observe a quantum violation |S2| > 2, we can immediately
conclude that the state is entangled; if |S2| > 2

√
2, we can

even conclude that the underlying state is not 2-producible,
and hence having an entanglement depth of 3, i.e., exhibiting
genuine tripartite entanglement.

In this regard, it is known [32] that the complete set of facet-
defining Bell inequalities in this Bell scenario falls into 46
classes {Ii}46i=1 after taking into account the freedom of rela-
beling [the Mermin inequality of Eq. (23) is the 2nd among
these 46]. Moreover, the corresponding 2-producible quan-
tum bounds were determined in [35]. Again, with the help of
the SDP hierarchy from [24] and equations analogous to those
given in Eq. (6) and Eq. (7) for the tripartite scenario, we can
determine, for any given symmetric detection efficiency η and
any given Bell inequality Ii, an upper bound on the corre-
sponding maximal quantum value of Si for the postselected
local Lps and postselected 2-producible Q3,2

η correlations. In
turn, this allows us to determine an upper bound on the mini-
mal detection efficiency required to violate the local bound or
the 2-producible bound for any given Bell inequality in this
simplest tripartite Bell scenario. Our results pertaining to the
upper bound of each Si [e.g., the local upper bound of 2, or
the 2-producible upper bound of 2

√
2 of S2 in Eq. (23)] are

shown in Table 3. Accordingly, our results pertaining to the
lower bound of each Si [e.g., the local lower bound of −2, or
the 2-producible lower bound of −2

√
2 of S2 in Eq. (23)] are
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Si η∗k=1 η∗k=2 Si η∗k=1 η∗k=2

S1 - - S24 80 84.51
S2 75 75.01 S25 87.51 96.7
S3 87.87 - S26 80.18 82.94
S4 82.84 - S27 87 94.18
S5 82.93 95.34 S28 81.28 94.1
S6 84.42 - S29 83.61 -
S7 81.82 88.78 S30 83.8 -
S8 81.82 87.66 S31 89.2 96.99
S9 87.2 - S32 87.1 93.29
S10 - - S33 78.8 81.15
S11 86.67 - S34 86 91.82
S12 85.69 - S35 88.9 95.60
S13 87.33 - S36 83.1 98.45
S14 85.35 - S37 83.98 -
S15 83.55 94.08 S38 83.9 -
S16 83.22 92.78 S39 78.6 81.05
S17 86.4 - S40 87.6 93.24
S18 84.99 98.13 S41 85.3 99.43
S19 84.95 97.6 S42 79.8 84.98
S20 83.53 - S43 86.4 -
S21 83.73 94.08 S44 83.4 -
S22 81.28 89.87 S45 83.6 -
S23 93.59 - S46 89.4 -

Table 1: Sis in 1st and 4th column denotes the i-th class of
Sliwa’s inequality bounded from above. η∗k=1 is an upper
bound on the critical efficiency required for faithfully detect-
ing non-separability while η∗k=2 is an upper bound on the crit-
ical efficiency required for detecting non-2-producibility, i.e.,
an entanglement depth of 3.

shown in Table 4.
Acknowledgements This work is supported by the Na-

tional Science and Technology Council (formerly Ministry of
Science and Technology), Taiwan (Grants No. 107-2112-M-
006-005-MY2, 109-2112-M006-010-MY3).

Si η∗k=1 η∗k=2 Si η∗k=1 η∗k=2

S1 - - S24 - -
S2 75.1 75.01 S25 - -
S3 87.9 - S26 - -
S4 82.9 - S27 - -
S5 - - S28 82.9 -
S6 84.1 - S29 82.9 -
S7 81.9 88.78 S30 82.9 -
S8 81.9 87.66 S31 86.7 -
S9 87.2 - S32 86.7 -
S10 - - S33 - -
S11 86.7 - S34 - -
S12 - - S35 83.2 91.93
S13 87.4 - S36 82.9 -
S14 85.4 - S37 82.9 -
S15 - - S38 82.9 -
S16 83.3 92.78 S39 - -
S17 86.4 - S40 - -
S18 - - S41 84.1 -
S19 - - S42 78.1 96.98
S20 82.9 - S43 79.6 -
S21 - - S44 82.9 -
S22 - - S45 82.9 -
S23 - - S46 - -

Table 2: Sis in 1st and 4th column denotes the i-th class of
Sliwa’s inequality bounded from bellow. η∗k=1 is an upper
bound on the critical efficiency required for faithfully detect-
ing non-separability while η∗k=2 is an upper bound on the crit-
ical efficiency required for detecting non-2-producibility, i.e.,
an entanglement depth of 3.
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Abstract. The main advantage of quantum computation is its capability to sample from classically
intractable probability distributions. One promising approach to leverage this advantage is the quantum-
enhanced Markov chain Monte Carlo (quantum-enhanced MCMC) method, which utilizes outputs from
quantum circuits as proposal distributions. In this work, we propose the utilization of the Quantum
Alternating Operator Ansatz (QAOA) for quantum-enhanced MCMC and present a strategy to optimize
its parameters in order to improve the convergence speed. By optimizing the parameters of the QAOA
circuit, we can achieve a quadratic speedup in convergence.

Keywords: MCMC, Quantum-enhanced MCMC, QAOA

1 Introduction
The quantum-enhanced Markov chain Monte Carlo

(quantum-enhanced MCMC) method is an algorithm
that fully exploits each sampling outcome from Noisy
Intermediate-Scale Quantum (NISQ) devices [1]. It uses
samples from a quantum circuit as the proposal distri-
bution in the Metropolis-Hastings method [2]. Markov
chain Monte Carlo (MCMC) method [3] is a very power-
ful algorithm that can sample from an arbitrary probabil-
ity distribution π(x). The Metropolis-Hastings method is
a typical method in MCMC. This procedure is as follows:
First, propose the next state according to a proposal dis-
tribution Q(x′|x). Second, decide whether to accept the
proposal based on an acceptance probability

A(x′|x) = min

(
1,
π(x′)

π(x)

Q(x|x′)

Q(x′|x)

)
. (1)

If the proposal is rejected, the next state remains the
same as the state prior to the proposal. The efficiency
of the algorithm is determined by the proposal distribu-
tion. Utilizing a quantum computer for the proposal dis-
tribution, including those that are difficult to simulate on
classical computers, can improve the convergence speed
of MCMC compared to existing methods. The quantum-
enhanced MCMC uses a distribution defined by a classi-
cally intractable quantum state generated by a circuit U
as the proposal. By imposing the symmetry constraint
U = U⊤ on the circuit U , the proposal distributionQ sat-
isfies Q(x′|x) = | ⟨x′|U |x⟩ |2 = | ⟨x′|U |x⟩ |2 = Q(x|x′)
and the ratio of Q in Eq. (1) is equal to 1. This al-
lows A(x′|x) to be efficiently calculated by a classical
computer, even though Q cannot be performed efficiently
even with quantum computers. The circuit proposed in
Ref. [4] is based on the time evolution governed by a time-
independent Hamiltonian. However, this circuit still has

∗u830977g@ecs.osaka-u.ac.jp
†hakoshima.hideaki.qiqb@osaka-u.ac.jp
‡mitarai.kosuke.es@osaka-u.ac.jp
§fujii.keisuke.es@osaka-u.ac.jp

some issues. Firstly, the implementation of the time evo-
lution on NISQ devices faces the challenge of infeasible
circuit depth, which depends on the choice of the time pa-
rameter. Secondly, the circuit’s parameters are selected
heuristically, and the strategy to construct a quantum
circuit that improves the convergence speed of MCMC
remains unclear.

In this work [5], we propose a new MCMC method
called Quantum Alternating Operator Ansatz Monte
Carlo (QAOA-MC) based on the quantum-enhanced
MCMC. This algorithm utilizes a fixed-depth variational
quantum circuit in the form of the so-called Quantum Al-
ternating Operator Ansatz (QAOA) [6] as the proposal
distribution. We thereby aim to suppress the increase in
circuit depth regardless of the parameter choice. Further-
more, we develop a systematic strategy to optimize the
circuit to improve the convergence speed by examining
the relationship between the absolute spectral gap [7] and
the acceptance rate (AR) [8] of the proposal distribution.
Our numerical experiments demonstrate that QAOA-MC
achieves a nearly quadratic speed-up in the convergence
speed compared to the proposal using the uniform distri-
bution. Our results indicate an acceleration of MCMC
using NISQ devices and contribute to promoting the use
of current NISQ devices.

2 Our Method: QAOA-MC
We propose a new MCMC method called Quantum

Alternating Operator Ansatz Monte Carlo: QAOA-MC.
This overview is depicted in Fig. 1(a). More details can
be found in Ref. [5].

2.1 Variational quantum circuit
We apply the Quantum Alternating Operator Ansatz

(QAOA) [6] to the structure of the circuit that generates
MCMC proposals. Specifically, our circuit is defined as
follows:

U(β,γ) = V (β,γ)
⊤
V (β,γ), (2)
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Figure 1: (a) The overview of the QAOA-MC algorithm. This algorithm can be summarized as follows. First,
we optimize the parameter θ using the AR estimator obtained by MCMC (”Main Simulation”). After obtaining the
optimized parameter θ∗, we proceed to the “main simulation” phase. We run the main simulation, using the optimized
parameter θ∗. (b) The circuit of QAOA-MC. We arrange V (θ) and V (θ)

⊤ in a way that ensures the symmetry
constraint: U = U⊤ (upper part). The lower part of the circuit V (θ) consists of two components, UB(θ) and UC(θ),
which are repeated p times.

where

V (β,γ) = UC(γp)UB(βp) · · ·UC(γ1)UB(β1), (3)
UB(β) = exp(−iHmixβ), UC(γ) = exp(−iαHprobγ).

(4)

Here, p represents a hyperparameter that determines the
circuit depth, and α denotes the normalization factor of
Hprob with respect to Hmix. The n-qubits Hamiltonians
Hmix and Hprob are defined as:

Hmix =

n∑
j=1

Xj , (5)

Hprob = −
∑
⟨j,k⟩

JjkZjZk −
n∑

j=1

hjZj , (6)

where Xj and Zj represent the Pauli operators acting on
the j-th qubit. Hprob represents the target Hamiltonian
from which we aim to sample the Boltzmann distribution.
This circuit is shown in Fig. 1(b). It should be noted
that the circuit defined above satisfies U = U⊤ due to its
construction.

2.2 Optimization of circuit
The proposal distribution generated by the proposed

circuit (Eq. (2)) can be optimized to achieve faster con-
vergence. The objective function should be a com-
putable quantity that reflects the convergence speed of
MCMC. After some numerical experiments, we find that
the MCMC acceptance rate can be used as the objective
function. The acceptance rate (AR) [8] is defined by the

following equation:

AR =
∑
x,x′

π(x)Q(x′|x)A(x′|x). (7)

This formula includes π(x), making it difficult to be cal-
culated directly. However, it can be efficiently estimated
by performing MCMC on π(x). We estimate AR using
samples generated from M MCMC steps as follows:

AR ≈ 1

M

M−1∑
j=0

A(x(j+1)|x(j)), (8)

where x(j) represents the state at the j-th step of the
MCMC. After experimenting with the Boltzmann dis-
tributions for various Ising models, we have discovered a
relationship between AR and the absolute spectral gap δ.
We now consider a single-parameter circuit U(θ), where
the parameters {β,γ} in Eq. (2) are set as

θ = β1 = · · · = βp = γ1 = · · · = γp.

Although there is generally no correlation between AR
and δ, a correlation exists for small θ where δ increases as
AR decreases. This trend continues until the AR reaches
a local minimum, which often corresponds to a local max-
imum value of δ. Based on these observations, we opti-
mize U(θ) by searching for a small θ that achieves the
locally minimal AR.

3 Numerical Experiments & Discussion
In our numerical experiments, we analyze the absolute

spectral gap δ of the MCMC transition probability ma-
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Figure 2: Relationship between model size n and aver-
age convergence speed ⟨δ⟩. “Optimized” is QAOA-MC,
“Uniform” is the uniform update, “Local” is the local up-
date, and “Random” uses the randomly chosen parame-
ter θ ∈ [0, 2π] in our circuit.

Figure 3: Relationship between model size n and average
convergence speed ⟨δ⟩ when M varies. The dotted line is
the result of “random” in Fig. 2.

trix P = [pjk]2n×2n , where

pjk =

{
Q(xj |xk)A(xj |xk) (j ̸= k)

1 −
∑

j ̸=kQ(xj |xk)A(xj |xk) (j = k)
. (9)

The absolute spectral gap [7] is defined as the absolute
difference between the two largest eigenvalues of P . This
quantity can serve as the metric for evaluating the con-
vergence speed of MCMC. A larger value of δ corresponds
to faster convergence. The target distribution is the
Boltzmann distribution for a spin glass, given by

µ(x) =
1

Z
exp

(
−E(x)

T

)
, Z =

∑
x

exp

(
−E(x)

T

)
.

(10)

The energy function of the spin glass is given by

E(x) = −
n∑

j>k=1

Jjkxjxk −
n∑

j=1

hjxj , (11)

where xj ∈ {1,−1} is the spin variable of the j-th site.
First, we investigate the performance of QAOA-MC.

We generate 500 random instances for each 3 ≤ n ≤ 10
and calculate δ for each µ(x). Each instance has ran-
dom coefficients {Jjk} and {hj} drawn from a standard
normal distribution. In this experiment, we optimize θ
using AR calculated precisely using Eq. (7). we compare
our proposal to three other proposal distributions: local
update, uniform update, and the “random circuit”. This
“random circuit” corresponds to a distribution defined
by our circuit (Eq. (2)) with a randomly chosen param-
eter θ ∈ [0, 2π] allowing us to verify the improvement of
convergence speed through optimization. Figure 2 shows
the relationship between the model size n and the aver-
age convergence speed ⟨δ⟩. We fit ⟨δ⟩ by 2−kn with a
parameter k and show the result as the straight lines in
Fig. 2. QAOA-MC (“optimized”) has a scaling factor k
approximately 1/1.89 times that of the uniform update,
which corresponds to an approximately quadratic accel-
eration with respect to ⟨δ⟩.

We also examine the impact of MCMC estimation of
AR on the performance of QAOA-MC. Since QAOA-MC
uses MCMC estimates to obtain AR in practice, the ob-
jective function contains statistical errors that could ad-
versely affect the convergence performance. AR is esti-
mated from M samples obtained through MCMC using
Eq. (8). We set M to 8, 32, 128, and ∞ (where AR
is calculated directly from the target distribution using
Eq. (7)) and optimize θ. Figure 3 displays the relation-
ship between M and the resulting ⟨δ⟩. As M becomes
smaller, the standard deviation of ⟨δ⟩ increases, and the
scaling factor k deteriorates at the same time. This is
because decreasing M results in a less accurate AR esti-
mate.

4 Conclusion
In this work, we proposed a new MCMC method called

QAOA-MC, based on the quantum-enhanced MCMC.
We introduced the use of a QAOA-type circuit to im-
plement the algorithm with shallow circuits and devel-
oped a systematic strategy to optimize the circuit to im-
prove the MCMC convergence speed. Numerical exper-
iments demonstrated that QAOA-MC achieved an ap-
proximately quadratic speed-up in the absolute spectral
gap compared to using a uniform distribution for sam-
pling from the Boltzmann distribution in a spin glass
system.
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Quantum state testing beyond the polarizing regime and quantum
triangular discrimination

Yupan Liu1 ∗

1 Graduate School of Mathematics, Nagoya University

Abstract. The complexity class Quantum Statistical Zero-Knowledge (QSZK) captures computational
difficulties of quantum state testing with respect to the trace distance for efficiently preparable mixed states
(Quantum State Distinguishability Problem, QSDP), as introduced by Watrous (FOCS 2002). However,
this class faces the same parameter issue as its classical counterpart, because of error reduction for the
QSDP (the polarization lemma), as demonstrated by Sahai and Vadhan (JACM, 2003).

In this paper, we introduce quantum analogues of triangular discrimination, which is a symmetric
version of the χ2 divergence, and investigate the quantum state testing problems for quantum triangular
discrimination and quantum Jensen-Shannon divergence (a symmetric version of the quantum relative
entropy). These new QSZK-complete problems allow us to improve the parameter regime for testing
quantum states in trace distance. Additionally, we prove that the quantum state testing for trace distance
with negligible errors is in PP while the same problem without error is in BQP. This indicates that the
length-preserving polarization for the QSDP implies that QSZK is in PP. The full version of this paper is
available from arXiv:2303.01952.

Keywords: quantum statistical zero-knowledge, polarization lemma, quantum triangular discrimination,
quantum state testing

The quantum state testing is generally about telling
whether one quantum mixed state is close to the other,
often referred to as the quantum property testing on
the equality of a pair of mixed states. This problem is
the quantum generalization of the classical question on
testing whether two probability distributions are close,
known as the distribution testing. These problems typi-
cally focus on the number of samples (sample complex-
ity) needed to distinguish two mixed states1. However,
in this paper, we will concentrate on understanding the
computational complexity of these problems when mixed
states that has an efficient description.
TheQuantum State Distinguishability problem

(QSDP) with respect to the trace distance, first intro-
duced by Watrous [26], is a well-known example in this
area of study. It is a crucial computational (promise)
problem in both quantum complexity theory and quan-
tum cryptography, and is closely related to the investiga-
tion of quantum statistical zero-knowldge (QSZK). The
input to this problem consists of the description of two
efficient quantum circuits Q0 and Q1, which specify two
corresponding mixed states ρ0 and ρ1

2. Yes instances are
those in which the trace distance between the two mixed
states is at least α, while no instances are those in which
the distance is at most β, where 0 ≤ β < α ≤ 1. Any in-
put quantum circuits that do not fit into either of these
categories are considered outside the promise. In this
paper, we extend the parameters α and β to efficiently
computable functions and denote this parameterized ver-
sion as (α, β)-QSDP, which is the quantum analogue for

∗yupan.liu.e6@math.nagoya-u.ac.jp
1See [18] for a comprehensive survey on the quantum property

testing.
2In order to prepare these mixed states, we first apply quan-

tum circuits Q0 and Q1 on all-zero states, and then tracing out
the ancillary qubits. This will outputs mixed states ρ0 and ρ1
respectively.

the Statistical Difference Problem introduced by
Sahai and Vadhan [19].

In [19], error reduction for the QSDP, also known as
the polarization lemma, demonstrates how to polarize the
statistical distance between two distributions. Put it dif-
ferently, for any constants α and β such that α2 > β, the
lemma constructs new distributions such that they are ei-
ther very far apart for yes instances or very close for no
instances, which reduces errors on both sides. The polar-
ization lemma is used to establish the SZK containment
of (α, β)-SDP provided α2 > β [19], and an analogue of
the direct product lemma for the Hellinger affinity leads
to error reduction for StoqMA on no instances [16]. Inter-
estingly, this polarization lemma techniques works almost
straightforwardly on the trace distance as noted in [26].

Sahai and Vadhan left an open problem of reducing er-
ror parameters α and β that do not coincide with the re-
quirements of the polarization lemma technique. Specifi-
cally, the parameter regime α > β > α2 which is referred
to as the non-polarizing regime. This issue also arises
in the quantum counterpart QSDP. Recently, Berman,
Degwekar, Rothblum, and Vasudevan [4] made signifi-
cant progress in addressing this problem by examining
the limitations of existing approaches to polarization. As
a result, they extended the SZK containment for SDP be-
yond the regime of constants α and β where α2 − β > 0
as originally stated in the polarization lemma3.

Theorem 1 (Informal version of [4]) (α, β)-SDP is
in SZK provided that α2 − β ≥ 1/poly(n) or (α, β) in
the non-polarizing regime α > β > α2 satisfies α − β ≥
1/poly(n) and certain criteria on SD and TD4.

3By inspecting the polarization lemma in [19], SDP is in SZK
for α2 − β ≥ 1/O(logn) as elaborated in [4].

4To be specific, pairs of efficient Boolean circuits (C0, C1) and
(C′

0, C
′
1) such pairs of the corresponding distributions (p0, p1)

and (p′0, p
′
1) satisfy SD(p0, p1) > SD(p′0, p

′
1) > SD2(p0, p1) and
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The proof of Theorem 1 entails a series of ingenious
reductions to two distribution testing problems, with re-
spect to the Jensen-Shannon divergence and the triangu-
lar discrimination, respectively. The prior works focus on
these two divergences since they captured the limitation
of two known approaches to polarization. In particular,
the original polarization lemma [19] focuses on reduc-
ing errors in yes-instances and no-instances alternately,
while the triangular discrimination directly admits the
latter. In addition, the entropy extraction approach [11]
is essentially based on the Jensen-Shannon divergence5.

The focus of this work is to address an analogous issue
in the quantum scenario by examining the limitations
of current techniques on demonstrating QSZK contain-
ments, achieved through investigating quantum counter-
parts of classical divergences related to the problem.

1 Main results

Quantum state testing beyond the polarizing
regime. We introduce two quantum state testing prob-
lems, the Quantum Jensen-Shannon Divergence
Problem (QJSP) and the Measured Quantum Tri-
angular Discrimination Problem (measQTDP).
QJSP corresponds to the quantum Jensen-Shannon di-
vergence defined in [17], while measQTDP involves a
quantum analogue of the triangular discrimination that
will be explained later. The QSZK containments of these
problems, as stated in Theorem 2, also result in the im-
proved QSZK containments for the Quantum State
Distinguishability problem6.

Theorem 2 (Improved QSZK containments of
QSDP – informal)

(1) (α, β)-QJSP is in QSZK if α−β ≥ 1/poly(n). Con-
sequently, (α, β)-QSDP is also in QSZK if α2 −√
2 ln 2β ≥ 1/poly(n).

(2) (α, β)-measQTDP is in QSZK if α − β ≥
1/O(log n). This containment further implies that
(α, β)-QSDP is in QSZK for certain instances 7 with
α2 ≤ β ≤ α and α− β ≥ 1/O(log(n)).

In fact, both QJSP and measQTDP are QSZK-
complete. The measured quantum triangular discrimi-
nation (QTDmeas) exposes the limitation of the quantum
polarization lemma technique [19, 26], and its QSZK con-
tainment exhibits a natural inverse-logarithmic promise
gap. Notably, another quantum analogue QTD does not

TD(p0, p1) > TD(p′0, p
′
1).

5This connection arises from the fact that the Jensen-Shannon
divergence can be interpreted as the (conditional) entropy differ-
ence, as indicated implicitly in Vadhan’s PhD thesis [22].

6The reader may feel confused with Theorem 5.4 in [23] which
builds upon the techniques in [19]. However, it was claimed in [12]
that the proof in [19] does extend to the parameter regime of α2 −
β ≥ 1/poly(n), but this claim was later retracted, see [10].

7In particular, the QSZK containment of QSDP via a reduction
to measQTDP holds for pairs of mixed states (ρ0, ρ1) and (ρ′0, ρ

′
1)

satisfying the conditions td(ρ0, ρ1) > td(ρ′0, ρ
′
1) > td2(ρ0, ρ1) and

QTDmeas(ρ0, ρ1) > QTDmeas(ρ′0, ρ
′
1).

achieve a similar result. Likewise, the quantum Jensen-
Shannon divergence captures the limitation of the quan-
tum entropy extraction approach [3], but our implica-
tions on QSZK containments are slightly weaker than
the classical counterpart in Theorem 1, as quantum ana-
logues of the triangular discrimination behave differently
from the classical equivalent.

Easy regimes for the class QSZK. For the (1− ϵ, ϵ)-
Statistical Difference Problem, if the error param-
eter ϵ is negligible, then this problem falls into the class
PP. SDP instances within these parameter regimes are
unlikely to be SZK-hard because of the oracle separation
between SZK and PP [5]. We show a similar phenomenon
on the (1− ϵ, ϵ)-Quantum State Distinguishability
problem, and these instances are even easier to solve if
there is no error, as stated in Theorem 3.

Theorem 3 (Easy regimes for QSZK, informal) For
a negligible error ϵ ≤ 2−n/2−1, (1− ϵ, ϵ)-QSDP is in PP.
Moreover, (1, 0)-QSDP is in BQP1 if there is no error.

Here the improved SZK-hardness and QSZK-hardness
follow from skillfully applying the polarization lemma for
the relevant distance to the original proof, see Theo-
rem 3.14 in [4]. We then observe that 1

2HS2(ρ0, ρ1) =
1
2 (Tr(ρ

2
0) + Tr(ρ21))−Tr(ρ0ρ1). Hence, the remaining re-

sults are mainly derived from a hybrid algorithm based on
the SWAP test [7], namely tossing two random coins and
performing the SWAP test on the corresponding states.

In essence, the phenomenon that parameter regimes
with negligible errors are easier to solve is not unique
to the class QSZK. Analogous phenomena can also be
observed in other quantum complexity classes, such as
QMA(2) [14] and StoqMA [2]. Nevertheless, it is worth
noting that these similar results in other classes do not
always necessitate the length-preserving property8. Con-
sidering that SZK is a subset of QSZK, Theorem 3 can be
interpreted as an indication that problems that can effec-
tively distinguish quantum states may not remain QSZK-
hard when the acceptance probability deviates negligibly
from 0 or 1.

2 Proof techniques

The QSZK completeness of the aforementioned QJSP
and measQTDP crucially relies on the relationships
between quantum analogues of common classical f -
divergences9. We start by reviewing and defining these
quantum analogues. The most widely used quantum dis-
tances are the trace distance (td) with the Bures distance
(B, essentially the fidelity), which are quantum counter-
parts of the statistical distance (SD) and the (squared)
Hellinger distance (H), respectively. Other commonly

8A polarization lemma for some (quantum) distance is length-
preserving if the output length of the pair of resulting (quantum)
circuits is as same as the output length of the original pair of (quan-
tum) circuits.

9An f -divergence is a function Df (p0∥p1) that measures the
difference between two probability distributions p0 and p1, and
this divergence is defined as Df (p0∥p1) := Ex∼p1f(p0(x)/p1(x)).
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Classical Quantum Usages related to QSZK

SD vs. H2 H2 ≤ SD ≤
√
2H

[13]

1
2
B2 ≤ td ≤ B

[8]

A polarization lemma
for the trace distance [26]

SD vs. JS
1−H2

(
1−SD

2

)
≤ JS2 ≤ SD

[8, 21]

1−H2

(
1−td

2

)
≤ QJS2 ≤ td

[6, 8]

QJSP is QSZK-hard
This work

SD vs. TD
SD2 ≤ TD ≤ SD

[21]

td2 ≤ QTDmeas ≤ QTD ≤ td
This work

measQTDP is QSZK-hard
This work

JS vs. TD
1
2
TD ≤ JS ≤ ln 2 · TD

[21]

1
2
QTD2 ≤ QJS ≤ QTD

This work
None

TD vs. H2 H2 ≤ TD ≤ 2H2

[15]

1
2
B2 ≤ QTDmeas ≤ B2

1
2
B2 ≤ QTD ≤ B

This work

A polarization lemma
for the QTDmeas

This work

Table 1: A comparison between classical and quantum distances (or divergences) with usages related to QSZK

used f -divergences are the KL divergence (also known as
the relative entropy) and the χ2-divergence, which are
unbounded, so we instead focus on their symmetrized
versions, the Jensen-Shannon divergence (JS) and the
triangular discrimination (TD), respectively.
The relationship between two quantum analogues of

the Jensen-Shannon divergence constitutes a specific in-
stance of the renowned Holevo’s bound, namely the mea-
sured quantum Jensen-Shannon divergence is at most the
quantum Jensen-Shannon divergence (QJS). To the best
of our knowledge, there is no known quantum analogue of
triangular discrimination. We thus initiate the definition
of the quantum triangular discrimination (QTD) and the
measured quantum triangular discrimination (QTDmeas),
based on their connection to the quantum analogues of
χ2-divergence [20]. We further examine their relation-
ship with other aforementioned quantum distances and
divergences, as stated in Theorem 4.

Theorem 4 (Inequalities on quantum analogues of
the triangular discrimination – informal) For any
quantum states ρ0 and ρ1, we know that

(1) td2(ρ0,ρ1)≤QTDmeas(ρ0,ρ1)≤QTD(ρ0,ρ1)≤td(ρ0,ρ1);

(2) 1
2QTD2(ρ0, ρ1) ≤ QJS(ρ0, ρ1) ≤ QTD(ρ0, ρ1);

(3) 1
2B

2(ρ0, ρ1) ≤ QTDmeas(ρ0, ρ1) ≤ B2(ρ0, ρ1) and
1
2B

2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) ≤ B(ρ0, ρ1).

We summarize our new results and known inequalities
in Table 1, as well as how we utilize these inequalities
in our proof. In addition, we highlight that the quan-
tum triangular discrimination behaves differently from
its classical counterpart since the triangular discrimina-
tion is a constant multiplicative error approximation of
the Jensen-Shannon divergence. This difference breaks
down the quantum equivalent of the ingenious reduction
from TDP to JSP presented in [4], leading to a slightly
worse parameter in the improved QSZK containment for
the Quantum State Distinguishability problem.
Leveraging inequalities in Table 1, we then proceed

to prove that both QJSP and measQTDP are QSZK-
complete. The QSZK containment of measQTDP uti-

lizes a new polarization lemma for the measured quan-
tum triangular discrimination, and the QSZK contain-
ment of QJSP is demonstrated through a reduction to
the Quantum Entropy Difference problem [3] us-
ing a nice property of the quantum conditional entropy
on a classical-quantum state. We therefore explore the
limitations of current techniques for showing QSZK con-
tainments. Additionally, the QSZK-hardness of these
problems is straightforwardly analogous to their classical
counterparts [4] because of the corresponding inequalities
in Table 1.

3 Discussion and open problems

Improved inequalities on the quantum triangular
discrimination. We observe that the second inequal-
ity in Theorem 4 is not a tight bound. Numerical simu-
lations indicate that the tight bound is QTD2(ρ0, ρ1) ≤
QJS2(ρ0, ρ1) ≤ QTD(ρ0, ρ1) for any mixed states ρ0 and
ρ1, with improved constant factors. This bound can
be saturated by choosing mixed states ρ0 and ρ1 with
an orthogonal support, as these instances sufficient for
QJS(ρ0, ρ1) and QTD(ρ0, ρ1) equal to 110. Furthermore,
numerical simulations also suggest that the triangular
inequality holds for the square root of QTD, namely√

QTD(ρ0, ρ1)+
√
QTD(ρ1, ρ2) ≥

√
QTD(ρ0, ρ2) for any

mixed states ρ0, ρ1 and ρ2. This indicates that the square
root of quantum triangular discrimination is a metric,
with the same property also holding for triangular dis-
crimination [15].

Applications of the quantum triangular discrim-
ination. Is there any other application of the (mea-
sured) quantum triangular discrimination besides its use
in QSZK as demonstrated in this paper? For instance,
Amir Yehudayoff [27] has utilized triangular discrimina-
tion to obtain a sharper lower bound on the communi-
cation complexity of the point chasing problem. Can we
expect an analogous implication in the quantum world?

10In fact, this is a sufficient and necessary condition for QJS as
well as the trace distance. By the first inequality in Theorem 4, we
apply this condition to QTD.
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single-atom-cavity setup
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Abstract. On-demand and efficient storage of photons is an essential element in quantum information
processing and long-distance quantum communication. Most of the quantum memory protocols require
bulk systems to store photons and pose challenge for integration with photonic chip platforms. Here, we
present a protocol for quantum memory using only a single-atom-cavity setup. A single atom containing a
frequency comb coupled to an optical cavity can store photons efficiently. We also discuss how Rubidium
and Cesium atoms coupled to nanophotonic waveguide cavities can serve as promising candidates to realize
this scheme. This provides a possible realization of an on-chip quantum memory.
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1 Introduction

A photonic quantum memory is a device that can store
and re-emit photons on demand [1–3]. It is an essen-
tial component in quantum information processing ap-
plications such as quantum networks [4, 5], quantum re-
peaters [6] and long range quantum communication [7].
In a typical atomic ensemble based quantum memory,
a weak light pulse is absorbed as a delocalized atomic
excitation over all the atoms in the ensemble. This is
retrieved using a set of controlled pulses that emit the
photon at a desired time [2, 3].

To gain scalability and the practical advantage in
quantum information processing, many efforts are being
devoted towards integrated photonic chips [8,9]. On-chip
single photon sources, on-chip beamsplitters and on-chip
photon detectors are already available on integrated plat-
form [10], while on-chip quantum memory is still a work
in progress and is highly sought after device [11,12].

Here, we present a scheme for storing weak light pulses
and single photons using a single atom coupled to an
optical cavity proposed in [13]. The trapped atom con-
tains an intra-atomic frequency comb (I-AFC). This joint
single-atom-cavity setup results in a photon-echo, simi-
lar to the I-AFC based quantum memory protocol [14].
One can also achieve robust and efficient storage for po-
larization and time-bin qubits using this setup. Fur-
ther, Cesium and Rubidium atoms coupled to nanopho-
tonic waveguide cavities can serve as promising candi-
dates for the implementation of this quantum memory
protocol [13]. One of the biggest advantages of the pro-
posed scheme is that it paves a way for the possible re-
alization of an on-chip quantum memory. Furthermore,
since this protocol requires only a frequency comb cou-
pled to a cavity, it can also be implemented using the
quantum dots inside a cavity [15,16]. On-demand single-
photon sources have already been realized using quantum
dots [17, 18]. Combining these two can pave the way for
efficient on-chip photonic quantum computation.

∗ph18004@iisermohali.ac.in
†teja4477@gmail.com
‡skgoyal@iisermohali.ac.in

2 Quantum memory using single-atom I-
AFC coupled to a cavity

Consider an atom that contains a frequency comb,
coupled to a high finesse single-mode optical cav-
ity [Fig. 1(a)]. The Hamiltonian for such atom-cavity
system consists of three parts, the free Hamiltonian of the
single-mode cavity, the free Hamiltonian of the atom and
the interaction between the two systems, which reads [13]

H =Hc +Ha +Hint

=~ωcâ†â+

N∑
n=1

~ωen |en〉〈en|+
N∑
n=1

~ωgn |gn〉〈gn|

− ~

[∑
n

gn |en〉〈gn| â+
∑
n

g∗n |gn〉〈en| â†
]
,

(1)

where â is the photon annihilation operator for the cavity
mode. |gn〉 and |en〉 denote the n-th ground state and
the excited state, respectively, with coupling strength

gn =
dn
~

√
~ωc

2ε0V
. The dn is the transition dipole moment

between |gn〉 ↔ |en〉 transition and ωc is the resonance
frequency of the cavity. Here, it is assumed that a partic-
ular ground state |gn〉 is coupled only to a single excited
state |en〉.

Solving the dynamics in the frequency domain for this
atom-cavity system using the standard input-output for-
malism [19] yields the following expression for the output
field mode âout in terms of the input field mode âin [13]

âout(ω) =

1− κ

i(ω + ∆c) +D(ω) +
κ

2

âin(ω). (2)

Here

D(ω) =
∑
n

σgnn|gn|
2[

i(ω + δn) +
γ

2

] , (3)

is the I-AFC propagator [14], and ∆c = ωc − ωL, δn =
(ωen−ωgn)−ωL are the detunings with respect to the input
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light. γ is the spontaneous decay rate of the atom in free
space and κ is the decay rate of the cavity field. Inverse
Fourier-transform of Eq. (2) yields the output field in
time âout(t).

In Fig. 1(b), we plot the output intensity Iout =〈
â†out(t)âout(t)

〉
as a function of time which we get by

solving Eq. (2) numerically. Here we have considered
a Gaussian input pulse of spectral width 2π × 270 MHz.
The I-AFC associated with the atom has seven teeth with
uniform comb spacing ∆ = 2π × 300 MHz, tooth width
γ = 7.5 MHz and the detuning ∆c = 0. The solid curve
and the dashed curve in this figure correspond to two dif-
ferent values of the cavity decay rates κ. In this figure,
we can clearly see that the first prominent output pulse
of light is at time t = 2 ns which is due to the immediate
reflection from the cavity. The second prominent output
pulse occurs at t ∼ 5.5 ns which is due to the emission
from the cavity. There is a delay of 3.5 ns which is ap-
proximately 2π/∆ due to the interaction of light with
the setup. Hence the atom-cavity setup behaves like an
I-AFC.

γ

κ

âin

âout
δ

∆

(a)

0 2 4 6 8 10 12 14

t (ns)

I o
u
t

η = 72.02%

η = 94.22%

3.5 ns

(b)

Figure 1: (a) Schematic diagram for an I-AFC coupled
to a cavity. Here, the I-AFC is interacting with a single
cavity mode with decay rate κ. âin and âout represent the
input and output field mode operators. γ is the sponta-
neous decay rate of the atom into free space. (b) Photon-
echo after a delay of 3.5 ns for an ideal I-AFC coupled to
a cavity. The input field in Eq. (2) is a gaussian a pulse

given by e−ω
2/(2b2) with b = 2π × 270 MHz. The two

photon echoes shown in dashed purple and solid black
curve correspond to the cavity decay rate 7 and 4 GHz,
respectively, with the corresponding efficiencies 94.22%
and 72.02%, respectively. The blue (dotted) curve shows
the corresponding input field intensity.

2.1 Factors affecting quantum memory

Eqs. (2) and (3) suggest that the output field from the
atom-cavity setup also depends on the cavity parameters
gn, κ and ∆c, hence they can affect the quality of the
memory. To quantify the quality of the quantum mem-
ory we consider the efficiency for this protocol, which is
defined as

η =

∫ 3π/∆

π/∆

〈
â†out(t)âout(t)

〉
dt∫ 〈

â†in(t)âin(t)
〉
dt

. (4)
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Figure 2: Effect of various parameters on the efficiency
(η) of quantum memory in the single-atom-cavity setup
for an ideal comb. In (a) and (b), we plot the variation of
η as a function of the cavity detuning ∆c = ωc − ωL and
the comb finesse (F), respectively for (g′, κ) = (1.8, 11)
GHz with uniform comb spacing ∆ = 2π× 300 MHz. (c)
shows the plot of the variation of η for an ideal comb
with comb spacing ∆ = 2π × 300 MHz as a function of
cooperativity, C ′ = g′2/(κγ) for different values of κ.

In Fig. 2(a), we plot the variation of the efficiency η as
a function of the cavity detuning ∆c while keeping g′, κ
constant. As expected, it shows a drop in the efficiency as
the cavity detuning increases. The efficiency also depends
on the comb finesse F ≡ ∆/γ. In Fig. 2(b), we plot the
efficiency as a function of comb finesse for the ideal comb
with fixed comb spacing, ∆ = 2π×300 MHz by changing
the peak width γ while keeping the cavity parameters
fixed. This plot shows that the efficiency saturates to ∼
100% asymptotically for asymptotic values of the finesse.

For an ideal I-AFC, since all the peaks are identical,
i.e., dn ≡ d, we may write gn = g. We define g′ = g

√
σgnn

as the effective coupling constant and define the coop-
erativity parameter for the atom-cavity system to be
C ′ = g′2/(κγ). In order to understand the effect of the
cavity parameters g′ and κ on the efficiency, in Fig. 2(c),
we plot the variation of η as a function of the cooper-
ativity C ′ for various values of κ and keeping ∆c = 0.
Fig. 2(c) shows that the efficiency first increases, reaches
an optimum value, and then starts decreasing again and
there exists an optimum value of C ′ for every given value
of κ, which maximizes the efficiency. The maximum effi-
ciencies are obtained in the range C ′ ∼ 35-45 for all the
values of κ. (For more details see [13]).

45



3 Realizing the quantum memory using
Rb and Cs atoms

For realistic systems such as Rb and Cs atoms, the
frequency combs obtained are usually non-uniform with
unequal peak heights which affects the storage pro-
cess [14, 20]. Here, we discuss the possibilities for exper-
imental implementation of the single atom based quan-
tum memory protocol in realistic systems such as Rb and
Cs atoms coupled to nanophotonic waveguide cavity and
show that the current scheme can be implemented with
the existing experimental techniques.
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Figure 3: (a) Photon-echo for the I-AFC in Rb and Cs
atoms. (b) Variation of efficiency as a function of 1/κ in
Rb and Cs atoms.

One of the requirements to achieve efficient quantum
memory in I-AFC-cavity setup is a cavity with high cou-
pling strength g of the order of GHz (see Fig. 2). This, in
turn requires a cavity with low mode volume of the order
of (∼ µm)3. Such strong coupling can be achieved us-
ing the nano-cavities [21,22] where mode volume V ∼ λ3

have already been realized. This tight confinement using
nano-photonic cavities gives an additional advantage of
potential integration with nano-photonics. Trapping in
such low mode volumes results in the atom-cavity strong
coupling of the order of g ∼ GHz along with the quality
factor Q = ωc/κ ∼ 105 [21].

Table 1: Rb and Cs parameters used in numerical calcu-
lations. λ is the wavelength of transition B is the mag-
netic field used in obtaining I-AFC. V, κ and Q are the
mode volume, decay rate and quality factor of the cavity,
respectively.

Atom Transition λ (nm) B (T) V (µm)3 κ (GHz) Q

Rb 5s1/2 ↔ 6p3/2 420.3 0.15 20 ∼ 7 105

Cs 6s1/2 ↔ 7p3/2 455.66 0.1 20 ∼ 8 105

Here we consider Cs and Rb atoms as examples to real-
ize this quantum memory protocol. The parameters such
as the atomic transitions used in the Cs and Rb atoms,
the wavelength, applied magnetic field strength and so on
for Rb and Cs atoms used for numerical calculations are
given in Table 1 [13]. In Fig. 3(a) we show the photon-
echo from Rb and Cs atoms calculated numerically by
solving Eq. (2). The maximum efficiencies for Rb and Cs
atoms are found to be 92.9% and 90.36%, respectively,
for the parameters specified in Table. 1. The lesser value
of the efficiencies in the case of Rb and Cs atoms is due

to the inherent non-uniformity present in the frequency
combs.

4 Conclusion

On-chip photonic quantum memories are essential for
scalable and integrated photonic quantum information
processing. Here, we have presented a scheme to store
photons using only a single atom coupled to an optical
cavity. The atom exhibits an I-AFC which enables the
joint atom-cavity system to store photons. This provides
us with a possibility to realize an on-chip quantum mem-
ory suitable for integrated photonic chips. The proposed
setup is capable of storing time-multiplexed photons,
along with their polarization degree of freedom efficiently,
hence providing multi-mode photonic quantum memory.
Although this scheme is presented trapped atoms, this
can very well work with quantum dots and quantum de-
fect centers. Since deterministic single photon sources
have already been realized using quantum dots, combin-
ing it with the on-chip quantum memory can provide a
robust integrated platform for photonic quantum compu-
tation.
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Abstract. We provide the sandwiched Rényi divergence of order α ∈ ( 1
2 , 1), as well as its induced

quantum information quantities, with an operational interpretation in the characterization of the exact
strong converse exponents of quantum tasks. Specifically, we consider (a) smoothing of the max-relative
entropy, (b) quantum privacy amplification, and (c) quantum information decoupling. We solve the problem
of determining the exact strong converse exponents for these three tasks, with the performance being
measured by the fidelity or purified distance. The results are given in terms of the sandwiched Rényi
divergence of order α ∈ ( 1

2 , 1). This is the first time to find the precise operational meaning for the

sandwiched Rényi divergence with Rényi parameter in the interval α ∈ ( 1
2 , 1).

Keywords: sandwiched Rényi divergence, strong converse exponent, quantum shannon theory

1 Introduction

Rényi’s information divergence, defined for two prob-
ability densities, is a fundamental information quantity
which has played importance roles in a diversity of fields,
ranging from information theory, to probability theory,
and to thermodynamics and statistical physics. Its quan-
tum generalization, due to the noncommutativity nature
of density matrices, can take infinitely many possible
forms. To find which one is the correct quantum gen-
eralization is significant and nontrivial.

The sandwiched Rényi divergence is one of the proper
quantum generalization of Rényi’s information diver-
gence. For two density matrices ρ and σ, it is defined
as [1, 2]

D∗
α(ρ∥σ) :=

1

α− 1
log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
, (1)

where α ∈ (0, 1)∪(1,∞) is a real parameter. Since its dis-
covery, several operational interpretations for this quan-
tity have been found. On the one hand, with α ∈ (1,∞),
it characterizes the strong converse exponent for quan-
tum hypothesis testing [3, 4], for classical communi-
cation over classical-quantum channels [5], for classical
data compression with quantum side information [6], and
for entanglement-assisted or quantum-feedback-assisted
communication over quantum channels [7, 8, 9]. On the
other hand, with α ∈ (1, 2) or α ∈ (1,∞), the sand-
wiched Rényi divergence also characterizes the direct er-
ror exponent for the smoothing of the max-relative en-
tropy [10, 11], for quantum privacy amplification [12, 10],
for quantum information decoupling and state merg-
ing [11], and for quantum channel simulation [13].

The other proper quantum generalization of Rényi’s
information divergence that has found operational inter-
pretations, is Petz’s Rényi divergence [14]

Dα(ρ∥σ) :=
1

α− 1
log Tr

(
ρασ1−α

)
, (2)
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for α ∈ (0, 1) ∪ (1,∞). With α ∈ (0, 1), Petz’s Rényi
divergence characterizes the direct error exponent for
quantum hypothesis testing in both the symmetric set-
ting [15, 16, 17] and the asymmetric setting [18, 19, 20],
and for classical data compression with quantum side in-
formation [6, 21]. It is also believed to provide the so-
lution to the long-standing open problem of determin-
ing the reliability function of classical-quantum chan-
nels [22, 23, 24, 19, 25, 26, 21, 27], with α ∈ (0, 1) too.

The roles that the two quantum Rényi divergences
have played so far cause people to guess that the cor-
rect quantum generalization of Rényi’s information di-
vergence may be{

D∗
α(ρ∥σ) when α ∈ (1,∞),

Dα(ρ∥σ) when α ∈ (0, 1).
(3)

Indeed, this has been conjectured in the literature; see,
e.g. [3].

In this paper, we find an operational interpretation
to the sandwiched Rényi divergence of order α ∈ ( 1

2 , 1).
This includes an operational interpretation to D∗

α(ρ∥σ)
itself, as well as to its induced information quantities,
the sandwiched Rényi conditional entropy and the regu-
larized sandwiched Rényi mutual information, all in the
interval α ∈ ( 1

2 , 1). These results are obtained by consid-
ering the strong converse exponents for several quantum
information tasks. Employing the purified distance (or,
equivalently, the fidelity) as the measure of the perfor-
mance, we determine these strong converse exponents,
which are given in terms of the above-mentioned sand-
wiched Rényi information quantities of order α ∈ ( 1

2 , 1).
Specifically, our results are as follows.

• Smoothing of the max-relative entropy . Let ρ be
a quantum state, σ be a positive semidefinite op-
erator, and ϵ ∈ [0, 1]. The smooth max-relative
entropy based on the purified distance is defined
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as [28]

Dϵ
max(ρ∥σ) := min

{
λ ∈ R

∣∣ (∃ρ̃ ∈ Bϵ(ρ)
)
ρ̃ ≤ 2λσ

}
,

(4)
where Bϵ(ρ) := {ρ̃ ∈ S≤(H) | P (ρ̃, ρ) ≤ ϵ} is the
ϵ-ball of (subnormalized) quantum states around ρ.
Regarding Dϵ

max(ρ∥σ) as a function of ϵ, we intro-
duce its inverse function

ϵ(ρ∥σ, λ) := min {ϵ | Dϵ
max(ρ∥σ) ≤ λ}

= min
{
P (ρ, ρ̃)

∣∣ ρ̃ ∈ S≤(H) and ρ̃ ≤ 2λσ
}

(5)

and call it the smoothing quantity.

The smooth max-relative entropy is not only a
basic tool in quantum information theory, but it
also quantifies in an exact way an operational task.
In [29], it is shown that Dϵ

max(ρ∥σ) is the cost of
preparing the box (ρ, σ) with error ϵ, in the re-
source theory of asymmetric distinguishability. So,
the study of Dϵ

max(ρ∥σ) is equivalent to the study
of the dilation problem of asymmetric distinguisha-
bility.

The quantum asymptotic equipartition prop-
erty [30, 31] states that

lim
n→∞

1

n
Dϵ

max(ρ⊗n∥σ⊗n) = D(ρ∥σ). (6)

This shows that the relative entropy is a sharp
threshold. The large-deviation type behaviors are
more conveniently stated in terms of ϵ(ρ∥σ, λ).
When r > D(ρ∥σ), the rate of exponential decay
of ϵ(ρ⊗n∥σ⊗n, nr) towards 0 is determined recently
in [10]. On the other hand, when r < D(ρ∥σ), the
smoothing quantity ϵ(ρ⊗n∥σ⊗n, nr) must converge
to 1 exponentially fast; see [29, 32, 33] for bounds
using Rényi relative entropies. The exact rate of
this exponential convergence is called the strong
converse exponent, which remains unknown.

We determine the strong converse exponent for the
smoothing of the max-relative entropy. Our result
is the following Theorem 1.

Theorem 1 For ρ ∈ S(H), σ ∈ P(H) and r ∈ R,
we have

lim
n→∞

−1

n
log

(
1 − ϵ(ρ⊗n∥σ⊗n, nr)

)
= sup

1
2≤α≤1

1 − α

α

{
D∗

α(ρ∥σ) − r
}
.

(7)

Proof. see [34] for full version. □

• Quantum privacy amplification. Consider a
classical-quantum state

ρXE =
∑
x∈X

px|x⟩⟨x|X ⊗ ρxE . (8)

Let the system X, which is also regarded as a classi-
cal random variable, represent an imperfect random
number that is partially correlated with an adver-
sary Eve’s system E. In the procedure of privacy
amplification, we apply a hash function f : X → Z
on X to extract a random number Z, which is ex-
pected to be uniformly distributed and independent
of the adversary’s system E. The action of the hash
function f can be written as a quantum operation

Pf : ω 7→
∑
x∈X

⟨x|ω|x⟩|f(x)⟩⟨f(x)|. (9)

So the resulting state of privacy amplification is

Pf (ρXE) =
∑
z∈Z

|z⟩⟨z|Z ⊗
∑

x∈f−1(z)

pxρ
x
E . (10)

The effect is measured by two quantities. One is
the size of the extracted randomness, log |Z| in bits.
The other one is the security parameter, defined as

Ppa(ρXE , f) := max
ωE∈S(E)

F 2
(
Pf (ρXE), πZ ⊗ ωE

)
,

(11)
where πZ is the maximally mixed state. Since the
purified distance is a function of fidelity, the secu-
rity parameter employed here takes the same in-
formation as the one based on purified distance in
previous works (e.g., [35, 36, 10]).

In the asymptotic setting where an arbitrary large
number of copies of the state ρXE is available, we
apply the hash function fn : X×n → Zn to extract
private randomness from ρ⊗n

XE , for any n ∈ N. It
has been proven in [37, 38] that to achieve asymp-
totically perfect privacy amplification such that
Ppa(ρ⊗n

XE , fn) → 1, the rate of randomness extrac-
tion must satisfy

lim sup
n→∞

1

n
log |Zn| ≤ H(X|E)ρ. (12)

Finer asymptotic results, including the second-
order expansion based on purified distance [35] and
that based on trace distance [39], as well as the
large-deviation type error exponent [10], have been
obtained later.

On the other hand, when the rate of randomness
extraction is larger than H(X|E)ρ, the strong con-
verse property holds. Specifically, for any sequence
of hash functions {fn : X×n → Zn}n∈N, we have

lim inf
n→∞

1

n
log |Zn| > H(X|E)ρ

⇒ lim
n→∞

Ppa(ρ⊗n
XE , fn) = 0,

(13)

and the decay of Ppa(ρ⊗n
XE , fn) is exponentially

fast. This can be seen, from the one-shot con-
verse bound in terms of the smooth conditional
min-entropy [40, 35] combined with the asymptotic
equipartition property [30]. The work [41] proved
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the strong converse property by providing a bound
on the rate of exponential decay in terms of the
sandwiched Rényi conditional entropy; see also re-
cent works [42, 32] for bounds employing Petz’s
Rényi conditional entropy. The optimal achievable
exponent of this decay is called the strong converse
exponent and is defined as

Epa
sc (ρXE , r)

:= inf

{
lim sup
n→∞

−1

n
logPpa(ρ⊗n

XE , fn)
∣∣∣ lim inf

n→∞

1

n
log |Zn| ≥ r

}
.

(14)

We derive the exact expression for Epa
sc (ρXE , r).

The result is given in the following theorem.

Theorem 2 Let ρXE be a classical-quantum state.
For any rate r ≥ 0, we have

Epa
sc (ρXE , r) = sup

1
2≤α≤1

1 − α

α

{
r −H∗

α(X|E)ρ
}
.

(15)

Proof. see [34] for full version. □

• Quantum information decoupling. Let ρRA be a
bipartite quantum state with A in the lab and R
held by a referee. Quantum information decoupling
is the task of removing the correlation between sys-
tem A and system R, by performing quantum op-
erations on A. We focus on decoupling strategy via
discarding a subsystem [43]; other strategies, such
as those of [44] and [45], can be treated similarly. A
general decoupling scheme D consists of a catalytic
system A′ in a state σA′ and a unitary transforma-
tion U : HAA′ → HĀÃ. We write

D := (σA′ , U : HAA′ → HĀÃ). (16)

Discarding the subsystem Ã, the goal of quantum
information decoupling is to make the resulting
state on R and Ā close to a product form. Thus
the performance of this scheme is characterized by

Pdec(ρRA,D)

:= max
ωR∈S(R),

ωĀ∈S(Ā)

F 2
(

TrÃ[U(ρRA ⊗ σA′)U∗], ωR ⊗ ωĀ

)
.

(17)

The cost is measured by the amount of discarded
qubits, namely, log |Ã|.
It has been established that, when arbitrarily many
copies of the state ρRA is available, asymptotically
perfect decoupling can be achieved if and only if the
rate of decoupling cost is at least 1

2I(R : A)ρ [43].
With catalyst, the second-order asymptotics has
been derived in [46]. Recently, in the catalytic set-
ting too, we have conducted the exponential anal-
ysis, obtaining the best exponent for the conver-
gence of the performance towards the perfect in

case that the rate of decoupling cost is below a crit-
ical value [11].

When the rate of decoupling cost is smaller than
1
2I(R : A)ρ, the strong converse property states
that for any sequence of decoupling schemes

{
Dn =

(σA′
n
, Un : HAnA′

n
→ HĀnÃn

)
}
n∈N, we have

lim sup
n→∞

1

n
log |Ãn| <

1

2
I(R : A)ρ

⇒ lim
n→∞

Pdec(ρ⊗n
RA,Dn) = 0.

(18)

Moreover, the convergence is exponentially fast.
This follows from the one-shot smooth-entropy
bound [47] coupled with the asymptotic equipar-
tition property [30, 31]; see also [48, 41] for proofs
employing Rényi entropies, and [46] for discussions
on the catalytic setting. The optimal rate of expo-
nential decay of Pdec(ρ⊗n

RA,Dn) in the strong con-
verse domain, for a fixed rate of decoupling cost, is
called the strong converse exponent. Formally, it is
defined as

Edec
sc (ρRA, r) :=

inf

{
lim sup
n→∞

−1

n
logPdec(ρ⊗n

RA,Dn)
∣∣∣ lim sup

n→∞

1

n
log |Ãn| ≤ r

}
.

(19)

We derive the exact expression for Edec
sc (ρRA, r).

Our result is as follows.

Theorem 3 Let ρRA ∈ S(RA) and r ≥ 0. We
have

Edec
sc (ρRA, r) = sup

1
2≤α≤1

1 − α

α

{
I∗,regα (R : A)ρ − 2r

}
.

(20)

Proof. see [34] for full version. □

Because these results have extended the operational sig-
nificance of the sandwiched Rényi divergence to the range
α ∈ ( 1

2 , 1), we conclude that the quantum generalization
of Rényi’s information divergence is more complicated
than that was conjectured in Eq. (3).

To derive our results, we employ two different methods.
For the problem of smoothing the max-relative entropy,
we first prove the special case in which ρ and σ commute,
using the method of types [49], and then we reduce the
general case to the commutative case by exploiting some
new properties of the fidelity function. For the problems
of quantum privacy amplification and quantum informa-
tion decoupling, we prove the achievability parts and the
optimality parts separately, using different ideas. The
achievability parts are technically more involved. We em-
ploy an approach developed by Mosonyi and Ogawa [5],
to derive a weaker bound in terms of the log-Euclidean
Rényi conditional entropy (mutual information) and then
improve it to obtain the final bound. On the other hand,
the optimality parts are accomplished by adapting the
techniques developed by Leditzky, Wilde and Datta [41].
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quantum Rényi entropies: a new generalization and
some properties. Journal of Mathematical Physics,
54(12):122203, 2013.

[2] Mark M Wilde, Andreas Winter, and Dong
Yang. Strong converse for the classical capacity
of entanglement-breaking and Hadamard channels
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of the quantum Rényi relative entropies. Communi-
cations in Mathematical Physics, 334(3):1617–1648,
2015.

[4] Masahito Hayashi and Marco Tomamichel. Correla-
tion detection and an operational interpretation of
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Computation of Green’s function by local variational quantum
compilation

Shota Kanasugi1 ∗ Shoichiro Tsutsui2 Yuya O. Nakagawa2 Kazunori Maruyama1
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Abstract. Computation of the Green’s function for large-scale quantum many-body systems is crucial
in material science. It is also a representative problem for which quantum computers are expected to
outperform classical computers. Here, we propose an efficient method to compute the Green’s function
utilizing the local variational quantum compilation, which simulates the dynamics of large-scale quantum
systems using a low-depth quantum circuit constructed through optimization on a smaller-size subsystem.
By performing numerical simulations and estimation of the gate count for the Fermi-Hubbard model, we
demonstrate the advantage of our method compared to the standard approach based on Trotter decompo-
sition.

Keywords: Quantum algorithm, Quantum simulation, Quantum many-body system

1 Introduction

Simulation of quantum many-body systems is one of
the most promising tasks for which quantum comput-
ers are believed to outperform classical computers. An
important physical quantity for studying such quantum
many-body systems is the Green’s function, which tells us
a variety of crucial information such as particle density,
quasiparticle energy dispersion, density of states (DOS),
and dynamical response under external fields. There
are some algorithms proposed to compute the Green’s
function using either long-term fault-tolerant quantum
computers (FTQCs) or noisy intermediate-scale quantum
(NISQ) computers. The implementation of the FTQC
techniques is, however, a long-term goal since they re-
quire an enormous number of very high-fidelity qubits as
well as gate operations. The NISQ techniques, on the
other hand, are expected to be executable on near-term
quantum computers, whereas they are not applicable to
the simulation of large-scale quantum systems requiring
many quantum gates. The lack of feasible techniques is a
significant problem for practical applications such as ma-
terial design, which requires computation of the Green’s
function for large-scale quantum systems of sizes that are
difficult to deal with on classical or NISQ computers. In
this sense, it is desirable to devise a more sophisticated
approach that can bridge the gap between the methods
for FTQCs and NISQ devices.

In this work, to bridge such a gap between the FTQC
and NISQ techniques, we propose a new approach to
compute the Green’s function on quantum computers
based on the local variational quantum compilation
(LVQC) algorithm [1]. This method enables us to com-
pute the Green’s function for large-scale quantum many-
body systems even in the near-term quantum computing
era, in which only smaller-scale quantum devices such
as NISQ devices are available. Specifically, the LVQC
approximates the time evolution operator for large-scale

∗kanasugi.shota@fujitsu.com

quantum many-body systems as a low-depth quantum
circuit by performing an optimization procedure only on
a smaller-size subsystem. Since the formulation of the
LVQC relies mainly on the existence of the Lieb-Robinson
(LR) bound [2], which is a theoretical upper bound of
the speed of propagation of the information in quan-
tum many-body systems, it is applicable to the broad
class of quantum many-body systems with local inter-
actions. Although the LVQC algorithm was originally
devised for spin systems [1], simulating the Green’s func-
tion of fermionic systems (e.g., strongly correlated elec-
tron systems) is important in practical applications such
as material design. Thus, we develop an extended version
of the LVQC algorithm that can be applied not only to
spin systems but also to fermionic systems. Our proposal
is to utilize the approximate time evolution operator ob-
tained by this extended LVQC algorithm for computing
the Green’s function. Leveraging the LVQC algorithm,
we can significantly reduce the number of quantum gates
needed to simulate Green’s function. In addition, the
LVQC can be used to efficiently implement a time evo-
lution operator on not only NISQ devices but also on
early-FTQCs or FTQCs through optimization on NISQ
or classical computers. Therefore, our method is valid
not only for NISQ devices but also for larger-scale quan-
tum computers such as FTQCs.

We demonstrate the validity of our method by perform-
ing a numerical simulation for the Fermi-Hubbard model,
which is the simplest model of interacting fermions but is
essential to study the nature of strongly correlated elec-
tron systems, using a quantum circuit simulator. We con-
firm that our method well reproduces the exact Green’s
function for up to a 4× 4 lattice size (32 qubits) close to
a limitation that can be treated by classical computers.
Furthermore, based on numerical results and a formal
estimation of gate count, we show that our LVQC-based
method computes the Green’s function more accurately
and efficiently compared to a standard method based on
the Trotter decomposition.
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Figure 1: Overview of the LVQC approach to computing
the Green’s function.

In the following, we briefly summarize our proposal
and results. Details of this work are shown in Ref. [3].

2 Our Proposal

Here, we summarize our proposal. We aim to calculate
the retarded Green’s function at zero temperature, which
is defined as

GR
a,b(t) = −iΘ(t) ⟨ψ0| {eiHtcae

−iHt, c†b} |ψ0⟩ , (1)

where t denotes time, Θ(t) is the Heaviside step func-
tion, |ψ0⟩ is the ground state of the target Hamiltonian

H, and ca (c†b) is fermionic annihilation (creation) oper-
ator with a (b) denoting the fermionic mode. Assuming
that the ground state |ψ0⟩ can be prepared on a quan-
tum computer with high accuracy, the Green’s function
in Eq. (1) can be evaluated using a quantum computer if
we can implement the time evolution operator e−iHt as
a quantum circuit [4]. However, it is generally difficult
to efficiently implement the time evolution operator for
a large-scale quantum system on a quantum computer,
and hence some sophisticated approximation method is
needed. Our proposal is to compute the Green’s func-
tion by utilizing an approximate time evolution circuit
constructed by the LVQC algorithm. To simulate the
Green’s function of a large class of quantum many-body
systems using the LVQC, we also performed a theoretical
formulation of the LVQC algorithm for fermionic systems
that was not provided in the original paper [1].

The overview of our protocol is illustrated in Fig. 1.
When simulating the Green’s function for a L-site system
with the Hamiltonian H(L) using the ansatz V (L)(θ⃗), our
quantum-classical hybrid algorithm proceeds as follows.

1. Define a local subsystem consisting of L̃(< L) sites

and specify the local Hamiltonian H(L̃), its time

evolution operator U (L̃)(τ) = e−iH(L̃)τ with τ being

a fixed time, and the local ansatz V (L̃)(θ⃗). Here,
the compilation size L̃ ∝ τ is determined by the LR
bound of the target system.

2. Optimize the parameters θ⃗ to minimize a cost
function, which describes the difference between

U (L̃)(τ) and V (L̃)(θ⃗), by using the local L̃-sites sys-

tem. Then, we obtain an optimal parameter θ⃗opt

that realizes V (L̃)(θ⃗opt) ≈ e−iH(L̃)τ .

3. Calculate the Green’s function for L-site total sys-
tems by using the ground state |ψ0⟩ and the op-

timized circuit V (L)(θ⃗opt) that approximates the

time evolution operator at size L, i.e., V (L)(θ⃗opt) ≈
e−iH(L)τ . A long-time-scale dynamics at t = nτ
(n = 1, 2, 3, ...) can also be calculated by adopting

(V (L)(θ⃗opt))
n ≈ e−iH(L)nτ .

3 Numerical Demonstration

To demonstrate the validity of our method, we per-
formed numerical simulations for the Fermi-Hubbard
model using a classical simulator. Here, we show some
major results.

In this work, we investigate the accuracy of our LVQC
method for various lattice sizes. As a representative re-
sult, Fig. 2 shows the Green’s function and DOS of the
4 × 4 site lattice (32 qubits) Fermi-Hubbard model ob-
tained by the LVQC method. Here, the DOS is an im-
portant quantity for studying the spectral properties of
materials, which is calculated through the Fourier trans-
form of the Green’s function. The LVQC protocol is per-
formed through the minimization of the cost function at
the compilation size L̃ = 2 × 2. We note that this re-
sult is the largest-scale numerical demonstration for our
method because the 4 × 4 site lattice is on the border of
the limit of the system size in which the Green’s function
can be calculated by using a classical computer. In Fig. 2,
we compare the results of the LVQC algorithm with the
exact value shown in Ref. [5], in which the DOS is ob-
tained by the Lanczos method. The LVQC algorithm
nicely reproduces the overall peak structure of the exact
DOS of the 4 × 4 lattice Fermi-Hubbard model. Since
it is known that the accuracy of the LVQC algorithm
is hardly altered with increasing the system size [1] (see
also Fig. 3), we expect that the LVQC method is also
valid for accurately calculating the Green’s function of
the classically-intractable size of lattice more than 4 × 4
lattice.

We also investigate the parameter dependencies of the
accuracy of our LVQC method and compare it with that
of a standard approach based on the Trotter decompo-
sition. As a representative result, we here show the de-
pendence of the accuracy on the system size L by fix-
ing the compilation size L̃. Figure 3 shows the absolute
error of the Green’s function for the L × 1 site lattice
Fermi-Hubbard model as a function of the lattice size
L. The LVQC results (orange diamonds) are obtained
by executing the LVQC protocol with the compilation
size L̃ = 2 × 1, while the Trotter results (blue dots) are
obtained by calculating the Green’s function using the
approximate time evolution operator based on the Trot-
ter decomposition. We see that the absolute error of the
LVQC method is much smaller than that of the Trot-
ter decomposition in a wide range of L. In addition, the
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Figure 2: (a) Green’s function and (b) DOS for 4 × 4 site lattice Fermi-Hubbard model. The cyan circles represent
the results obtained by the LVQC method. The black line in panel (b) represents the exact DOS taken from Ref. [5].
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Figure 3: The absolute error of the Green’s function for
the L× 1 site lattice Fermi-Hubbard model. The orange
diamonds and blue dots represent the results obtained by
the LVQC method and Trotter decomposition method,
respectively.

absolute error for both LVQC and Trotter decomposition
are hardly altered with increasing the system size L owing
to the LR bound of the Fermi-Hubbard model. This is a
remarkable result indicating that the LVQC method en-
ables us to compute the Green’s function more accurately
than the standard Trotter decomposition irrespective of
the system size.

4 Resource Estimation

To discuss the feasibility of the LVQC method from the
viewpoint of the computational resource, we estimated
the gate count needed to compute the spectral function
(i.e., the Fourier transform of the Green’s function) for a
given precision. Specifically, based on the formal gate
count of the quantum circuit needed to compute the
Green’s function and scaling of errors assessed from nu-
merical results, we estimated the number of single-qubit
rotation Rz gates and CNOT gates needed to simulate
the Fermi-Hubbard model. Although a very conservative
estimation, we find that the LVQC (Trotter decompo-

sition) method requires about 7.8 × 107 (1.7 × 108) Rz

gates and 2.1 × 109 (4.7 × 109) CNOT gates to simu-
late the 20 × 20 site lattice model, in which calculating
the Green’s function with high accuracy is not achievable
by classical computers. Hence, the number of both Rz

and CNOT gates required for the LVQC method is at
most less than half of that for the Trotter decomposition
method. This result suggests that the LVQC method
is more practical than Trotter decomposition regarding
gate counts even in classically-intractable size systems.

5 Summary

In summary, we proposed an efficient method to com-
pute the Green’s function on quantum computers by uti-
lizing the LVQC algorithm. The Green’s function is com-
puted through the measurements of the time evolution
circuit prepared by the LVQC protocol. By performing
the numerical simulation for the Fermi-Hubbard model,
we verified that our LVQC method is able to compute
the Green’s function more efficiently and accurately com-
pared to a standard approach based on the Trotter de-
composition. The formal estimation of the gate count
also indicates that our LVQC method has a practical ad-
vantage against the Trotter decomposition.

The proposed method enables us to accurately simu-
late the Green’s function for large-scale quantum many-
body systems using fewer computational resources com-
pared to standard approaches. This method will bring
remarkable progress toward the realization of quantum
advantage for practical problems in condensed matter
physics, quantum chemistry, and material sciences.
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Abstract. Apart from the Bell nonlocality, quantum theory exhibits another kind of nonlocality
that involves the indistinguishability of the locally preparable set of multipartite states. While
activation of Bell nonlocality from local correlations via local operations and shared randomness
is impossible, the activation of the latter kind of nonlocality has already been reported. This
work observes that a stronger notion of such a nonlocality, that deals with elimination instead of
discrimination, can be activated from locally preparable multipartite systems. Moreover, none of
the transformed product states can be eliminated, even if all but one of the parties come together.
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The celebrated notion of Bell nonlocality excludes
any local-realistic description to substitute multipart-
ite quantum correlations. This, in turn, identifies
quantum correlations to be advantageous over its
classical counterpart in several practical applications.
However, quantum theory admits a more elegant non-
classicality in question of state discrimination. While
given a single copy every pure classical preparation
can be distinctively identified from the others, only
the orthogonal quantum states are perfectly distin-
guishable with a single copy. The volume of such
distinguishable states for multipartite scenario gets
further decreased under the limited measurement set-
ting, like, local operations and classical communica-
tion (LOCC). Unlike most of the nonclassical aspects
of quantum correlations obtained from the entangled
quantum states, Bennett et. al. [1] first reported
that the LOCC indistinguishablity holds even for or-
thogonal product quantum states and coined the term
quantum nonlocality without entanglement for such a
phenomenon. Consequently, a plethora of important
works have been carried out in this direction which
have significant importance to understand the com-
plex topology of quantum state space structure.
Limits on state discrimination in quantum theory

further give rise to several interesting questions in the
context of state elimination, where instead of iden-
tification the main goal is to rule out one or more
quantum states from an ensemble of consideration.
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Now, if the performed measurement preserves the or-
thogonality of the remaining states after elimination,
then it is further helpful in the context of the state dis-
crimination. Motivated by this fact, recently Halder
et al. have introduced a stronger notion of quantum
nonlocality for product states which forbids elimin-
ation of any of the product states of a set under or-
thogonality preserving local measurements (OPLM or
local OPM) [2]. Consequently, these fueled a pleth-
ora of interesting studies in the recent past from the
stronger perspective of state indistinguishability, i.e.
irreducibility under OPLM [3, 4, 5, 6, 7].

Apart from revealing the elegant intricacies of state
space structure, local indistinguishability and irre-
ducibility of quantum states also indicate the pro-
spect of locking of information such that unlocking
requires entangled resources. This characteristic cer-
tainly has a crucial significance in various quantum
cryptographic schemes, viz., secret sharing, data hid-
ing [8, 9, 10, 11, 12]. However, in the practical set-
tings, the complexity to retrieve a hidden informa-
tion should depend on their mutual trustworthiness.
Also, it might be important for one of those agents to
manipulate the complexity should their mutual trust-
worthiness change after they have shared the secret
with each other. For instance, consider three agents
Alice, Bob and Charlie who agree to share a LOCC
distinguishable quantum secret at first. However, in
time, Charlie may distrust others and want to up-
date the complexity of the secret, upon which the
revealing of the secret must demand all of them to be
in the same lab. This motivates to propose another
version of quantum nonclassicality, which deals with
the activation of quantum nonlocality from the locally
distinguishable quantum states. The framework has
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recently been reported in [13] for initially distinguish-
able entangled states and in [14] for product states.
Note that, the task can be trivially accomplished if

the agents flag the indistinguishable ensemble with a
distinguishable one and according to the trust update
Charlie can discard his distinguishable share. This re-
dundancy is termed as activation of nonlocality from
a locally redundant set [13].

In the present work, we have dealt with the ac-
tivation of a stronger nonlocality from a set of loc-
ally distinguishable product states, which are also
free from local redundancy. Precisely speaking, be-
sides the nonlocal aspects of state discrimination, we
have further considered a stronger version, which is
related to the impossibility of state elimination in-
stead of state discrimination. Notably, the authors
in [14] have introduced a similar notion for bipart-
ite product states, however with a higher dimensional
quantum states. In contrast, we have shown that such
a feature is generic even in the smaller dimensional
quantum systems. Further, we have extended this
activation phenomenon in the multipartite scenario
and have come up with the strongest possible nonloc-
ality activation. In particular, performing OPLM on
a C6⊗3

we transform the set to tripartite orthogonal
product qutrits, which is locally irreducible even if all
but one players come together. Lastly, motivated by
the practical situation of trust-updated secret shar-
ing we propose a set of states in C3⊗2 ⊗C6, which can
be used to activate strongest form of nonlocality by
performing an OPLM only at the third party’s pos-
session. Besides, our results also draw a significant
difference between the two types of quantum nonloc-
ality – while the Bell nonlocality can not be activated
from a shared local correlations [15, 16], the stronger
version of nonlocality related to state identification
can be activated from locally distinguishable product
states. Importantly, our last example activates the
strongest possible version of nonlocality without in-
volving any communication between the parties.
In the following we present the statement of our

final result which depicts the example of activation
of strong quantum nonlocality without entanglement
from a local set by performing a measurement on the
possession of a single party. This has vivid import-
ance in the framework of data hiding and secret shar-
ing between all but one untrusted party. Precisely
speaking, in such a scenario the particular trusted
agent (personified as Charlie) has full authority to
judge how trustworthy are the other parties and de-
pending upon that he may compel others to meet him
in person to decode a hidden secret. As an example
consider the following set G4 of 27 orthogonal product
states |ζ±i ⟩ , i ∈ {1, · · · , 4, 6, · · · , 9, 11, · · · , 14} and

|ζj⟩ , j ∈ {5, 10, 15} in C3⊗2 ⊗ C6,

|ζ±1 ⟩ = |0⟩ |1⟩ |0± 1+ 4± 5⟩
|ζ±2 ⟩ = |0⟩ |2⟩ |0± 2+ 4± 3⟩
|ζ±3 ⟩ = |1⟩ |2⟩ |0± 1+ 4± 5⟩
|ζ±4 ⟩ = |2⟩ |1⟩ |0± 2+ 4± 3⟩
|ζ5⟩ = |0⟩ |0⟩ |0− 4⟩
|ζ±6 ⟩ = |1⟩ |0± 1⟩ |0− 4⟩
|ζ±7 ⟩ = |2⟩ |0± 2⟩ |0− 4⟩
|ζ±8 ⟩ = |2⟩ |0± 1⟩ |1− 5⟩
|ζ±9 ⟩ = |1⟩ |0± 2⟩ |2− 3⟩
|ζ10⟩ = |1⟩ |1⟩ |1− 5⟩
|ζ±11⟩ = |0± 1⟩ |0⟩ |1− 5⟩
|ζ±12⟩ = |0± 2⟩ |0⟩ |2− 3⟩
|ζ±13⟩ = |0± 1⟩ |1⟩ |2− 3⟩
|ζ±14⟩ = |0± 2⟩ |2⟩ |1− 5⟩
|ζ15⟩ = |2⟩ |2⟩ |2− 3⟩

Proposition 1 The set G4 is distinguishable under
LOCC and free from local redundancy.

However,

Theorem 2 The set G4 can be deterministically
transformed, via a single local OPM at Charlie’s site,
to an orthogonal set of tripartite product states which
is locally irreducible in every bipartition.

Besides its foundational interest to understand the
topology of the state spaces of composite quantum
systems, our work deserves significant importance
from the practical perspective. It has mimicked an
interesting framework of secured data hiding between
several parties, where the distributor is flexible to up-
date the distinguishibility of the secured data hidden
in the correlation of the given states. Recently, we
have also extended this approach of genuinely activ-
ating quantum nonlocality to show [17] generation of
some novel and stronger resources, for example, local
quantum state unmarkability [18].

The current work was published in Physical Review
A as a Letter [19].
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Abstract. As with a Bell inequality, Hardy’s paradox manifests a contradiction between the prediction given by
quantum theory and local-hidden variable theories. In this work, we generalize Hardy’s arguments to an arbitrary
Bell scenario involving two observers. Our construction reduces to that of Meng et al. [Phys. Rev. A. 98, 062103
(2018)] and can be naturally interpreted as a demonstration of the failure of the transitivity of implications. Our
generalization is equivalent to a ladder-proof-type argument for Hardy’s paradox. Furthermore, it provably exhibits
a higher success probability compared with existing proposals. Moreover, this advantage persists even if we allow
imperfections in realizing zero-probability constraints in such paradoxes.

Keywords: Bell-nonlocality, Hardy’s paradox, nonlocality without inequality, logical contradiction, quantum cor-
relations, entanglement

In 1964, Bell [1] showed that local-hidden-variable (LHV)
models cannot reproduce all quantum-mechanical predic-
tions. In particular, he demonstrated how, with the help of
so-called Bell inequalities, one can experimentally falsify the
predictions of LHV models. Nowadays, we know that Bell-
nonlocality not only opens the door to answer fundamental
questions in physics, but also serves as an important resource
for device-independent quantum information [3, 14].

Interestingly, Bell inequalities are not the only way to man-
ifest Bell-nonlocality. Hardy’s proof of nonlocality [7], on the
other hand, manifests the incompatibility between quantum
mechanics and LHV models using logical arguments. Con-
sider the simplest Bell scenario, i.e., one in which two ob-
servers each perform two binary-outcome measurements. Let
x and y (a and b) represent, respectively, the setting/input (out-
come/output) of Alice and Bob side, and Ax (By) denotes the
outcome of Alice (Bob) when given input x (y). The prob-
ability distribution {P (a, b|x, y) = P (Ax, By)} admissible
in LHV models can be described by convex mixtures of local
deterministic strategies {Ax = fA(x, λ), By = fB(y, λ)},
where fA (fB) is a deterministic function of the input x (y)
and LHV λ. The Hardy paradox of [7] is encapsulated by:

P (0, 0|0, 0) = 0, P (1, 1|0, 1) = 0,

P (1, 1|1, 0) = 0, P (1, 1|1, 1) = q > 0.
(1)

In LHV models, the equality constraints of Eq. (1) imply
P (1, 1|1, 1) = 0, which contradicts the inequality constraint
of Eq. (1). Interestingly, Stapp [15] showed that Eq. (1) can
also be interpreted as the failure of the transitivity implications
(FTI), thereby demonstrating Bell-nonlocality (see also [10]).
The probability P (1, 1|1, 1) in Eq. (1) is called as the success
probability, as the corresponding event facilitates (initiates)
the chain or logical reasoning in Hardy’s (Stapp’s) arguments,
see Fig. 1.

Later, inspired by Cabello’s idea [4], Liang and Li [9] (see
also [8]) generalized Hardy argument beyond the simplest
Bell scenario, yielding a larger success probability. In this
work, we propose a different generalization of Hardy’s ar-
guments. As with Stapp’s work and its extension discussed

∗ycliang@mail.ncku.edu.tw
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Figure 1: Comparison of the logical reasoning between
Hardy’s original argument and Stapp’s reformulation.

in [11], our arguments can be interpreted as a demonstration
of FTI. Not only that our generalization gives rise to a higher
success probability than that offered by these previous propos-
als, it also recovers them as special cases.

Let us first focus on the simplest Clauser-Horne-Shimony-
Holt (CHSH) Bell scenario. For the original Hardy para-
dox, it is known [13] that the maximal success probability
P (1, 1|1, 1) attainable in quantum theory is approximately
9.02%. In [8], the authors showed that the success probability
of the so-called Cabello’s argument [9], defined by q − p in
Eq. (2) can reach ≈ 10.79%:

P (0, 0|0, 0) = p, P (1, 1|0, 1) = 0,

P (1, 1|1, 0) = 0, P (1, 1|1, 1) = q,
(2)

In contrast, the conditions of our FTI argument are encapsu-
lated by:

P (0, 0|0, 0) = 0, P (1, 1|0, 1) = r,

P (1, 1|1, 0) = 0, P (1, 1|1, 1) = q,
(3)

where the success probability q − r can reach 12.5%, higher
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than that achievable in Eq. (2). In fact, this advantage holds
even if we relax the zero constraints in both arguments. More-
over, we show that for most of the partially entangled 2-qubit
state, the maximum success probability given by the FTI argu-
ment can be higher than the maximum ones given by Hardy’s
and Cabello’s arguments, see Fig. 2.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) The maximal success probability as a function of the concur-
rence [16] (an entanglement measure) of the two qubit pure states
used for their manifestation. From top to bottom, we give the plot of
q − r in Eq. (3) for our FTI argument (red, solid), q − p in Eq. (2) for
so-called Cabello’s argument (green, dashed-dotted), and q in Eq. (1)
for Hardy’s argument (blue, dashed).
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(b) Success probability as a function of the deviation ϵ from the zero-
probability constraints. The top curve (red, solid) shows a lower bound
on the success probability for our FTI argument (obtained by optimiz-
ing over two-qubit states and projective measurements); the middle
curve (green, dashed) shows an upper bound on the success proba-
bility for so-called Cabello’s argument obtained using level-3 of the
semidefinite programming (SDP) hierarchy described in Ref. [12].

Figure 2: Comparison of the maximal success probability for
various Hardy-type paradoxes in the CHSH Bell scenario.

In Figs. 3 and 4, we schematically illustrate the form of
four Hardy-type arguments in an arbitrary k-input d-output
Bell scenario. Note that Hardy’s argument with d = 2-output
is also known as the ladder proof of nonlocality in [2]. The
generalization of Stapp’s argument for the k = d = 2 Bell
scenario to cases of arbitrary k, d ≥ 2 has been discussed
in [11], and was coined Stapp’s argument therein. Here, we
adopt the same terminology in the following discussion. Inter-

estingly, the authors of [11] proved that in the k-input 2-output
scenario, these generalized Stapp’s argument and the ladder
proof of nonlocality are equivalent. In the companion techni-
cal draft, we show the following theorem, which establishes
this equivalence for arbitrary k, d ≥ 2.

Theorem 1 For any bipartite Bell scenario, Hardy’s argu-
ment is equivalent to Stapp’s argument.

Ak−1 = sAk−1 Bk−1 = sBk−1

Ak−2 = sAk−2 Bk−2 = sBk−2

A1 = sA1 B1 = sB1

A0 = sA0 B0 = sB0

q

p

Figure 3: Logical structure of generalized Cabello’s argu-
ments in the k-input d-output Bell scenario. The generaliza-
tion of Hardy’s original argument to these cases is recovered
by setting p = 0.

Ak−1 = sAk−1 Bk−1 = sBk−1

Ak−2 = sAk−2 Bk−2 = sBk−2

A1 = sA1 B1 = sB1

A0 = sA0 B0 = sB0

q

r

Figure 4: Logical structure of our FTI arguments in the k-
input d-output Bell scenario. Generalized Stapp’s arguments
as introduced in [11] are recovered by setting r = 0.

For completeness, we show also in Fig. 5 a comparison of
the success probability of our FTI argument (generalized to a
general bipartite Bell scenario) against the other generaliza-
tions [2, 5, 6]. Again, our success probability is always higher
than that obtained from all these other proposals.

As with [11], we propose a generalization of Hardy’s para-
dox tailored for quantum systems of arbitrary Hilbert space
dimension and that involves an arbitrary number of measure-
ment settings. Our generalization gives a type of proof of
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(a) For Bell scenarios with more inputs, we plot here the results corre-
sponding to the ladder proof of nonlocality without inequality [2, 11]
(blue, dashed), the generalization of Cabello’s argument due to [5]
(green, dashed-dotted), and our FTI argument (red, solid).
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(b) For Bell scenarios with more outputs, we plot here the results
corresponding to a generalization of Hardy’s proof given by Chen et
al. [6] (blue, dashed), and our analogous generalization of Cabello’s
argument Eq. (2) (green, dashed-dotted), as well as our FTI argument
(red, solid).

Figure 5: Comparison of the upper bound on the success probability for three different Hardy-type paradoxes beyond the
CHSH scenarios. Due to Theorem 1, generalized Stapp’s arguments and generalized Hardy’s arguments give the same success
probability. These upper bounds were obtained by considering on level-1 of the SDP hierarchy introduced in Ref. [12].

Bell-nonlocality via the failure of the transitivity of implica-
tions. Moreover, its success probability is provably higher
than all the other arguments [2, 5, 6, 11] proposed to date,
even in the presence of a deviation from the hard-to-realize
zero constraints. In the CHSH Bell scenario, we analytically
derive the maximum success probability and corresponding
measurements for any given partially entangled state. We also
demonstrate that our generalization yields success probabili-
ties at least as high, if not higher, compared to both Hardy’s
and Cabello’s arguments.

For further details on our results, please see the attached
technical draft.
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Abstract. We investigate two variants of the one-way zero-error classical and quantum communication
complexities for a class of relations induced by a distributed clique labelling problem- where the receiver
must output a valid answer (Communication Complexity of Relations- CCR) or all valid answers belonging
to the relation (Strong-CCR). We find that CCR for a class of graphs does not provide quantum advantage,
but for Strong-CCR the separation between classical and quantum communication grows unboundedly with
the order of the graph. Similar result follows for the case with shared randomness. Applications include
semi-device-independent dimension witnessing and the detection of Mutually Unbiased Bases.

Keywords: Quantum communication complexity, Orthogonality graphs, Orthogonal representation.

This extended abstract is based on the preprint
arXiv:2305.10372 [1].

1 Introduction

Quantum Shannon theory replaces the classical car-
rier of information with quantum systems in Shannon’s
model of communication [2]. This initiated a tide of
research to understand the advantage of encoding clas-
sical information in a quantum system while consider-
ing various information-theoretic scenarios. In prepare
and measure scenarios, advantages in quantum commu-
nication complexity have been extensively explored[3, 4],
which involve computing the minimum communication
required between distant parties in order to perform the
distributed computation of functions [5].

We consider a generalisation of communication com-
plexity of functions to relation. A relation R over
a bipartite prepare and measure scenario is a subset
R ⊆ X × Y × B, where X and Y are the set of pos-
sible input values of Alice and Bob respectively and B
is the set of possible output values by Bob. The one-
way communication complexity of a relation (CCR) R
is the minimum communication that Alice requires to
make with Bob for any input variables x ∈ X and y ∈ Y
such that Bob’s output b gives the tuple (x, y, b) ∈ R.
Additionally, we consider only zero-error scenario, i.e.
probability P (b|x, y) = 0 whenever (x, y, b) /∈ R for all
(x, y) ∈ X × Y . In [6], Raz showed an instance of an ex-
ponential gap between the classical and quantum CCR
for an infinite set of inputs, while we show an exponential
gap for a finite set of inputs.

Another closely related line of study has been to ex-
plore the advantage of quantum communication in tasks

∗rsumitrout3@gmail.com
†nitica.sakh@gmail.com
‡somesankar@gmail.com
§ravi@cs.hku.hk
¶pawhorod@pg.edu.pl

based on orthogonality graphs. In most cases, orthog-
onality graphs that lead to quantum advantage are not
Kochen-Specker (KS) colourable [7], thus connecting this
set of tasks to the feature of quantum contextuality [8],
while the advantage in our work does not rely on contex-
tuality.

In this work, we introduce a new task based on the
communication complexity of relations (CCR) which we
call Strong Communication Complexity of Relations (S-
CCR), which, unlike the communication complexity of
functions, may have more than one correct answer for
Bob. This stronger variation of CCR enforces that Bob
outputs all correct answers over different rounds of the
prepare and measure scenario. The one-way S-CCR of
relation R is the minimum communication that Alice re-
quires to make with Bob for any input variables x ∈ X
and y ∈ Y such that Bob’s output b gives the tuple
(x, y, b) ∈ R and that Bob’s output b in different rounds
of the prepare and measure scenario spans all valid b
for each (x, y) input. Alternatively, one may define S-
CCR as having a strategy with P (b|x, y) > 0 whenever
(x, y, b) ∈ R for all (x, y) ∈ X × Y .

The aim of this task is to be able to decipher or re-
construct the relation R from the observed statistics. In
the limit when the number of iterations tends to infinity,
the observed statistics can be used to get the conditional
output probability distribution {P (b|x, y)}(x,y,b)∈R. We
can define a natural payoff for S-CCR as follows:

PR = min
(x,y,b)∈R

P (b|x, y). (1)

One way to interpret this payoff PR is through its relation
to the probability of success of reconstructing the relation
R, where a higher payoff implies reconstruction with less
runs.

The relations we consider here are induced by rules of
a distributed clique labelling problem (CLP) over a class
of graphs. Consider a graph (G,V, E) where V and E are
the set of vertices and edges in the graph G respectively.
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A maximum size complete sub-graph of G is called a max-
imum clique. Let the graph have n number of maximum
cliques of size ω. Any binary colouring of a maximum
clique assigns value 1 to exactly one vertex of the maxi-
mum clique and 0 to rest of the vertices. Each such bi-
nary colourings of a maximum clique represents labellings
of this clique. Given a graph G described above, dis-

A B

Cxa Cy

b

d

Figure 1: Given an graph G, Alice’s input is a maxi-
mum clique and a clique label, i.e. (Cx, a) and Bob’s
input is some maximum clique Cy. Bob must output
a valid clique labelling b for his input clique such that
(Cx, a, Cy, b) ∈ RCLP (G). Alice can send a physical sys-
tem of operational dimension d to Bob.

tributed clique labelling problem (CLP) is a prepare and
measure scenario involving a referee and two spatially
separated players, Alice and Bob. The referee shares the
graph G with Alice and Bob at the beginning. The ref-
eree gives Alice the clique of size ω randomly chosen uni-
formly from the graph and a random possible labelling
(or binary colouring of vertices) of the same clique, i.e.,
(Cx, a). The referee gives a clique Cy of size ω uniformly
chosen from G to Bob as input. Bob must output a valid
labelling of Cy which satisfies the constraints provided
below, which will define the relation RCLP (G) for the
graph G. We call this Consistent Labelling of Pairwise
Cliques:

1. If Alice and Bob receive the same clique Bob’s la-
belling should be identical to Alice’s input label.

2. If Alice and Bob receive two different cliques shar-
ing some vertices, the binary colouring of each
shared vertex (0 or 1) by Bob should be identical
to Alice’s colouring.

3. If Alice and Bob receive two different cliques shar-
ing some edges, the vertices belonging to an edge
should not both have the binary colour 1.

4. In all other cases Bob can label the cliques inde-
pendently of Alice’s inputs.

Alice can use some communication (either classical or
quantum) sent to Bob which we will optimise to find the
communication complexity. For CCR of RCLP (G), where
any valid answer belonging to the relation is accepted,
we show that there is no advantage in using quantum
systems as carriers of information. However, S-CCR of
RCLP (G) where Bob’s output in different runs should
span over the relation, entails non-trivial quantum ad-
vantage.

Our main results consider two distinct scenarios of S-
CCR depending on the availability of pre-shared corre-
lations and direct communication resources between the
two parties: (i) the spatially separated parties do not

share any correlation, (ii) the communication channels
can transmit systems of a fixed operational dimension.
In the first scenario, we show that for the task S-CCR
the separation between one-way classical and quantum
communication grows with the order of the graph, specif-
ically, the quantum complexity is O(1) while the classical
complexity is Ω(log |V|). We also demonstrate a quantum
advantage for a relation induced by the class of Payley
graphs. In the second scenario, we show that there exist
communication tasks which imply classical channels re-
quire to be assisted by unbounded amounts of pre-shared
classical correlations with a lower bound that is linear in
the number of cliques while the quantum channel does
not require any pre-shared resources. Additionally, we
show that there exist graphs for which the task with a
classical channel requires shared randomness (classical)
linear in the number of cliques whereas only 1-ebit of
shared entanglement assistance is sufficient.

2 Results

In the setup described earlier, Alice and Bob have ac-
cess to a noiseless one-way communication channel of lim-
ited capacity and local sources of randomness (i.e. pri-
vate coins) are considered to be free resources here. In
the scenario when no pre-shared randomness (i.e. pub-
lic coin) is allowed between Alice and Bob we calculate
the necessary and sufficient classical and quantum re-
source required to perfectly satisfy the CCR for relation
RCLP (G) where graph G has n maximum cliques of size
ω.

Theorem 1 Given a graph G, classical one-way zero-
error communication complexity of RCLP (G) is log2 ω
cbits.

It can be shown that the quantum one-way CCR for
RCLP (G) is bounded from below by log2 ω qubits. Thus,
we observe no advantage of quantum communication re-
sources over its classical analogue when considering CCR
of RCLP (G).

Consider some graph G as before, which satisfy the
following conditions:

(G0): Each vertex of the graph is part of at least one
maximum clique of the graph.

(G1): ∀v, v′ ∈ V belonging to two different maximum
cliques ∃ u ∈ V such that u is either adjacent to
v or v′ but not both.

Given such graph G, we prove a tight lower bound for
classical and quantum resources required to win S-CCR
for relation RCLP (G). This bound is calculated for the
zero-error scenario in which Bob should never output
an outcome b such that the tuple consisting of Alice’s
and Bob’s input, (Cx, a) and Cy respectively, and Bob’s
output does not belong to the relation RCLP (G).

Lemma 1 Given a graph G satisfying (G0)-(G1), it is
necessary and sufficient to communicate log2 |V| cbits,
where |V| is the order of the graph, to perform S-CCR of
relation RCLP (G).
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For this graph G, one can assign complex vectors to each
vertex such that these vectors are mutually orthogonal
iff the corresponding vertices in graph G are adjacent. A
collection of such vectors is called a faithful orthogonal
representation of the graph G.

Lemma 2 Given a graph G satisfying (G0)-(G1) that
has faithful orthogonal representation in minimum di-
mension dC, it is necessary and sufficient to communicate
a log2 dC qubits to perform S-CCR of RCLP (G).

Now using the above two results, we show that there
exists an unbounded separation of quantum and classical
communication resources in S-CCR of certain relations.

Theorem 2 There exist a class of graphs such that the
separation between one-way classical and quantum com-
munication, required for zero-error reconstruction (S-
CCR) of the given RCLP induced by these graphs, is un-
bounded. (See [1])

Given some graph G satisfying (G0)-(G1), there exist
quantum advantage in S-CCR of RCLP (G) if it has or-
thogonal representation in minimum dimension d ≤ |V|.
As an example, we calculate the amount of quantum com-
munication required for reconstruction of RCLP for Pa-
ley graphs. For a Paley graph with q vertices, log2

q+1
2

qubit communication is sufficient for S-CCR and it yields
a maximum payoff of 2√

q+1 , while log2 q cbit communi-

cation is necessary and sufficient for non-zero payoff.
When Alice and Bob are allowed to have pre-shared

correlations along with one-way direct communication re-
sources we find that there exist graphs for which non-zero
payoff while using restricted classical communication im-
plies the presence of shared correlation. Also, allowing
for pre-shared randomness removes the advantage of us-
ing quantum communication over classical communica-
tion in S-CCR of relation RCLP (G). Alice needs log2 ω
cbit or qubit communication with Bob for this task. Now
we allow for fixed direct communication capacity, either
quantum or classical, and compare the amount of shared
randomness required to accomplish S-CCR of RCLP (G).

Corollary 1 Given a graph G satisfying (G0)-(G1),
with faithful orthogonal representation in minimum di-
mension ω, it is necessary to share randomness with n-
inputs whlie communicating log2 ω cbit to accomplish S-
CCR of RCLP (G).

We also provide a lower bound on the amount of shared
randomness necessary to achieve maximum payoff for S-
CCR of RCLP (G) while using log2 ω cbits of communica-
tion. This lower bound has a connection with the exis-
tence of orthogonal arrays. Subsequently, when we con-
sider pre-shared quantum correlations (quantum public
coin) between Alice and Bob, we show that it can enhance
classical communication more than classical public coin.

Theorem 3 For classical communication with assis-
tance from public coins, there exist graphs G satisfying
conditions (G0)-(G1) with faithful orthogonal represen-
tation in minimum dimension ω, for which the separation

between classical and quantum public coins required for
perfect S-CCR of relation RCLP (G) is unbounded. (See
[1])

We also discuss some applications of S-CCRCLP . The
first application is the operational detection of Mutu-
ally Unbiased Bases (MUBs) from the observed statis-
tics. When we consider some specific type of graph G
consisting of n maximum cliques of size ω that are com-
pletely disconnected from each other, if a quantum strat-
egy with direct communication of an ω-level system can
achieve the algebraic maximum of the payoff i.e. 1

ω , then
the measurements performed by Bob must be those cor-
responding to MUBs.

In the next application, we consider the problem of
detecting the non-classical resources in both direct com-
munication and in the shared correlation (black-box) sce-
nario. When no public coin is available S-CCRCLP for
some graphs allows us to determine the non-classicality
of the transmitted system. Second, when only a finite
amount of public coins are available and 1 c-bit has been
transmitted, allows us to answer whether the public coin
is non-classical or otherwise.

Finally, we consider a larger class of graphs that do
not have orthogonal representation in dimension ω and
show that these graphs can be used to detect whether
the dimension of the direct communication resource is
greater than ω or otherwise.

3 Outlook

In the S-CCR problem introduced in this work, we
show that there exists a class of graphs for which the
separation between the dimension of quantum and clas-
sical systems necessary can be made unbounded in the
absence of shared randomness between the players. In the
presence of public coins, however, this separation disap-
pears. While quantum communication does not require
public coins, the amount of public coin assistance that
is necessary for classical communication for accomplish-
ing the task scales linearly with the number of cliques.
Additionally, we also show that an 1 c-bit channel when
assisted by 1−ebit public coin performs a task that would
otherwise require the assistance of an unbounded amount
of classical public coin.

Finally, S-CCR task can be seen, as a qualitative
simulation of the quantum statistics on demand. In
fact, the relation-reconstruction condition for the strong
communication complexity proposed here could bridge
the gap between conventional communication complex-
ity and sampling problems with communication [9, 10].
Precisely, in our protocol, the spatially separated parties
are given some set of favourable events and it is required
that the events be quantitatively simulated by classical
communication so that all of them occur with nonzero
probability like it is in the quantum case. Looking at
the protocol from yet another angle, we can see it as a
distribution of a (conditional) randomness with the help
of a restricted communication channel.
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Abstract. Quantum computers hold the promise of revolutionizing several computational tasks by sig-
nificantly enhancing their calculation speed compared to classical computers. Although quantum comput-
ing devices has been rapidly developed in recent years, there is still a large gap between today’s noisy
intermediate-scale quantum (NISQ) computing and the full fault-tolerant quantum computing (FTQC)
based on the quantum error correction (QEC) code due to the extremely large requirement of physical
qubits for the latter. In this study, we propose a quantum computing architecture that fills the gap be-
tween NISQ and FTQC. Our architecture realizes universal computation by using noisy analog rotation
gates and error-corrected Clifford gates implemented by lattice surgery. We perform direct analog rota-
tions with a small qubit requirement and minimize remnant errors by a carefully-designed state injection
protocol. Our estimation based on numerical simulations shows that, for early-FTQC devices that consist
of 104 physical qubits with physical error probability p = 10−4, we can perform roughly 1.72× 107 Clifford
operations and 3.75 × 104 arbitrary rotations on 64 logical qubits. Such computations cannot be realized
by the existing NISQ and FTQC architectures on the same device, as well as classical computers. This
extended abstract is based on a new preprint of the authors [1].

Keywords: Fault-tolerant quantum computing, Quantum error correction, Surface code, Lattice surgery,
Quantum error mitigation

1 Introduction

Quantum computers are expected to provide exponen-
tial speedups of computation in certain tasks. In recent
years, Quantum devices with tens to hundreds of qubits
have gradually emerged and are referred to as noisy
intermediate-scale quantum (NISQ) devices [2]. Unfor-
tunately, it is still challenging to extract useful quantum
advantages over the classical best approaches from NISQ
devices. The main obstacle is that qubits and gate opera-
tions suffer from errors caused by undesirable interactions
with the environment. Although the quantum error mit-
igation techniques [3] can reduce the effects of this noise,
it is nontrivial whether these techniques can sufficiently
mitigate errors in quantum computation involving tens to
hundreds qubits within a reasonable sampling overhead.

The ultimate long-term solution to the noise prob-
lem is the realization of fault-tolerant quantum com-
puting (FTQC) by implementing quantum error correc-
tion (QEC). However, non-Clifford gates, which are in-
dispensable for performing universal quantum computa-
tion and providing quantum speedups, are difficult to
implement fault-tolerantly. Due to the cost of the magic
state distillation [4] and the Solovay-Kitaev decomposi-
tion, FTQC may require hundreds of thousands to mil-
lions of qubits [5, 6, 7, 8]. Therefore, a large gap between

∗yutaro.akahoshi@fujitsu.com

the NISQ and FTQC eras will exist. In the meantime,
it is necessary to establish a theoretical framework that
meaningfully exploits quantum computation with 103–
104 qubit devices (we call these devices as “early-FTQC
devices”).

In this study [1], we propose a quantum computing
architecture that fills the gap between NISQ and FTQC
and provide evidence that a quantum device of 104 qubits
has great potential to exhibit useful quantum advan-
tages. In our approach, we integrate NISQ and FTQC
approaches deeply. Namely, we implement quantum er-
ror correction for the logical Clifford gates and directly
perform non-Clifford analog rotation gates without magic
state distillation. As a drawback, the analog rotation
gates suffer from unavoidable errors. In our proposal,
we minimize these errors by carefully designing the state
injection protocol for the analog rotation gates. Our re-
source estimation based on numerical simulations shows
that the proposed architecture can surpass not only clas-
sical computers but also existing NISQ and FTQC ap-
proaches on a typical early-FTQC device.

2 Proposed Architecture

In this section, we briefly discuss our proposed archi-
tecture, Space-Time efficient Analog Rotation (STAR)
quantum computing architecture. Below we discuss how
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Figure 1: Example of a compact logical qubit arrange-
ment. Gray and green squares represent data pathes
and ancilla patches for the analog rotation, respectively.
Other white region is necessary to perform fundamen-
tal operations of the lattice surgery. It requires 1.5n+ 5
patches to allocate n logical qubits.

to implement universal gates in the STAR architecture
and give a resource estimation. Some details will be
skipped due to the page restriction and can be found
in the preprint [1].

2.1 Fault-Tolerant Clifford Gates

To protect quantum information from noises dur-
ing computation, we employ the rotated planar surface
code [9]. This QEC code has suitable features for the
early-FTQC era: a relatively high threshold value against
other QEC codes and a compact requirement for the
number of physical qubits to encode a logical state.

Although the rotated planar surface code supports a
transversal CNOT gate, it is difficult in practice due to
the restricted connectivity between physical qubits. A
clever way to implement logical Clifford gates even in
such a situation is known as the lattice surgery [9, 10]. In
the lattice surgery, logical qubits encoded in the rotated
planar surface code (hereafter, we refer a logical qubit
as a patch) are arranged into tiles and logical Clifford
gates are implemented by combining fundamental oper-
ations: merging adjacent patches, splitting a patch into
two patches, and deforming a patch. Each fundamental
operation consists of stabilizer measurements and only
requires nearest-neighbor connectivity.

There are mainly two schemes to perform quantum
computing by the lattice surgery: one that implements
explicit logical Clifford gates [9] and the other that ab-
sorbs logical Clifford gates into logical non-Clifford gates
and Pauli measurements [10]. These schemes should be
chosen depending on quantum circuits. The arrangement
of the patches strongly depends on these schemes, and
typical examples are discussed in the preprint [1]. Fig. 1
shows an example of a minimum arrangement. In Fig. 1,
gray patches are data logical qubits, and green patches
are reserved to generate the ancilla state of the analog
rotation gate. Other white region is necessary to per-
form fundamental operations of the lattice surgery. This
arrangement requires 1.5n+ 5 patches to allocate n data
logical qubits in total.

|ψ⟩L MZ

|mθ⟩L • XL RZL
(θ) |ψ⟩L or RZL

(−θ) |ψ⟩L

Figure 2: Quantum circuit for the analog Z rotation gate.
MZ is a destructive ZL measurement on a logical patch.

|0⟩0

RZ0Z2
(θ)|0⟩1 H •

|0⟩2

|0⟩3 H •

Figure 3: Quantum circuit for the injection of the ancilla
state encoded in the [[4, 1, 1, 2]] subsystem code.

2.2 Space-time Efficient Analog Rotation Gate

Next, let us discuss the implementation of the analog
rotation gates, which is a core technology of the STAR
architecture. Our strategy is as follows. We directly per-
form analog rotation gates without the Solovay-Kitaev
decomposition and avoid magic state distillation. In com-
parison to the typical FTQC architecture using Clifford
+ T gate decomposition, this approach is advantageous
in terms of the number of physical qubits and execution
time. A major drawback is that the logical error rate of
the analog rotation remains at O(p). To minimize the
effect of this remaining error, we carefully design a state
injection protocol. As a result, the dominant logical error
becomes a simple phase-flip channel and can be mitigated
by the probabilistic error cancellation.

We implement the analog rotation gate by the gate
teleportation circuit with a special ancilla state, |mθ⟩ =

e−i θ
2Z |+⟩, where θ can be chosen arbitrarily (Fig. 2).

The output state of this circuit depends on the measure-
ment result: namely, if the measurement result is +1,
the output state is correctly rotated; otherwise, it is an
inversely rotated state. When we obtain the inversely
rotated state, we apply another rotation gate with a ro-
tation angle 2θ for correction. This procedure is repeated
until obtaining the correct state (“Repeat-Until-Success”
or RUS). An average repetition number until success is
estimated as 1× 1

2 + 2× 1
4 + 3× 1

8 + · · · =
∑∞

i=1
n
2n = 2.

To prepare the ancilla state |mθ⟩ within reasonable ac-
curacy, we construct a state injection protocol utilizing
the [[4, 1, 1, 2]] subsystem code [11]. We first prepare the
ancilla state encoded in the [[4, 1, 1, 2]] subsystem code by
the circuit shown in Fig. 3. Since this QEC code has a
code distance of two, we can detect a single error. Thus,
we discard the prepared state if the measured syndromes
detect any error. Once we obtain the ancilla state that
passes the post-selection, we expand it to the rotated
surface code with an arbitrary code distance. After that,
we perform another post-selection to remove O(p) errors
that occur during the expansion.

Under the circuit-level noise model, the logical error
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Figure 4: Logical Z error probability and its scaling be-
havior with d = 7, 9. The scaling behavior determined

by a theoretically expected form, PL(p) ≈ p
d+1
2 , is shown

as solid black lines.

probability of the prepared ancilla state behaves as

PZL
(p) = 2p/15 +O(p2), (1)

PXL
(p) = O(p2), (2)

where p is an error probability of physical qubits. This
injection protocol surpasses some previous protocols, e.g.,
the protocol in Ref. [12] that gives PL = 34p/15 +O(p2).
Moreover, the logical error can be regarded as the single
phase-flip error if p is sufficiently small; thus, we can
mitigate it by the probabilistic error cancellation [13, 14].

3 Resource Estimation

To illustrate the performance of the STAR architec-
ture, we estimate a computational resource for early-
FTQC devices based on numerical simulations. We as-
sume a target device has N = 104 physical qubits with a
physical error probability of p = 10−4. In this extended
abstract, we only consider the case where the code dis-
tance of the surface code patch is set to d = 7. A More
detailed discussion is given in the preprint [1].

The number of the Clifford gate we can perform is es-
timated from the logical error probability of the surface
code patch. We perform a numerical simulation on the
error-correcting procedure of the surface code and deter-
mine the scaling behavior of the logical error probability.
We show the logical Z error behavior in Fig. 4 as an
example. As a result, with the physical error probabil-
ity p = 10−4, we estimate the available number of the
Clifford gates as NClifford ≈ 1.72 × 107.

The available number of analog rotation gates can be
estimated similarly. We perform a numerical simulation
on the whole procedure of the state injection protocol
and determine the logical error probability of the pre-
pared ancilla state |mθ⟩. Fig. 5 shows the logical Z error
probability of |mθ⟩ obtained by the simulation. We can
see an expected behavior in Fig. 5 that the logical error
probability approaches 2p/15 by decreasing the physical
error probability. As a result, the available number of
the rotation gates is estimated as Nrotation ≈ 3.75 × 104

for p = 10−4.

Figure 5: Logical Z error probability of the ancilla state
prepared in the surface code patches with d = 3, 5, 7, 9.
The dashed line shows the leading-order behavior ex-
pected under the circuit-level noise model, PL,Z(p) =
2p/15.

The number of logical qubits we can allocate is deter-
mined by the code distance. In general, one logical patch
requires ≈ 2d2 physical qubits. Therefore, by employing
the compact arrangement shown in Fig. 1, (1.5n+5)×2d2

physical qubits are needed in total. For N = 104 and
d = 7, we can allocate n ≈ 64 logical data qubits.

The STAR architecture may be compatible with appli-
cations of quantum many-body simulations and quantum
approximation optimization algorithm (QAOA) since the
time-evolution operator can be implemented easily by
analog rotation gates. A detailed examination of the use-
ful applications is an important future issue.

4 Conclusion

In this work, we propose a quantum computing archi-
tecture suitable for the early-FTQC devices, the STAR
architecture. In the STAR architecture, universal quan-
tum computation is achieved by error-corrected Clifford
gates and analog rotation gates. The analog rotation gate
is implemented by the RUS protocol with an appropriate
ancilla state. To reduce logical errors in the rotation gate,
we carefully design the ancilla state injection protocol
by combining the [[4, 1, 1, 2]] subsystem code and post-
selection. As a result, we achieve a small logical error
rate of PL = 2p/15 + O(p2) under the circuit-level noise
model, which is verified numerically. Clifford operations
are performed by the standard lattice surgery protocol
based on the rotated surface code. Finally, we estimate
a computational resource in the STAR architecture un-
der the assumption of typical early-FTQC devices, where
N = 104 physical qubits can operate with a gate fidelity
of p = 10−4. Our resource estimation shows that we can
act 3.75×104 analog rotation gates and 1.72×107 Clifford
gates on 64 logical qubits encoded in the d = 7 rotated
planar surface code. Such computations cannot be real-
ized by the existing NISQ and FTQC architectures on
the same device, as well as classical computers.

We hope that our proposal and the corresponding de-
velopment of quantum algorithms will bring new insights
to realizing practical quantum computers in future.

70



References

[1] Y. Akahoshi et al., Partially Fault-tolerant Quan-
tum Computing Architecture with Error-corrected
Clifford Gates and Space-time Efficient Analog Ro-
tations. arXiv:2303.13181, (2023).

[2] J. Preskill, Quantum computing in the NISQ era
and beyond. Quantum 2, 79 (2018).

[3] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hy-
brid quantum-classical algorithms and quantum er-
ror mitigation, Journal of the Physical Society of
Japan 90, 032001 (2021).

[4] S. Bravyi and J. Haah, Magic-state distillation with
low overhead, Physical Review A 86, 052329 (2012).

[5] C. Gidney and M. Ekera, How to factor 2048
bit RSA integers in 8 hours using 20 million noisy
qubits, Quantum 5, 433 (2021).

[6] N. Yoshioka et al., Hunting for quantum-
classical crossover in condensed matter problems,
arXiv:2210.14109 (2022).

[7] M. Reiher et al., Elucidating reaction mechanisms
on quantum computers, in Proceedings of the na-
tional academy of sciences 114, 7555 (2017).

[8] J. J. Goings et al., Reliably assessing the electronic
struc- ture of cytochrome p450 on today’s classical
comput- ers and tomorrow’s quantum computers,
arXiv:2202.01244 (2022).

[9] C. Horsman et al., Surface code quantum comput-
ing by lattice surgery, New Journal of Physics 14,
123011 (2012).

[10] D. Litinski, A Game of Surface Codes: Large-Scale
Quantum Computing with Lattice Surgery, Quan-
tum 3, 128 (2019).

[11] D. Bacon, Operator quantum error-correcting
subsystems for self-correcting quantum memories,
Physical Review A 73, 012340 (2006).

[12] L. Lao and B. Criger, Magic state injection on the
rotated surface code, in Proceedings of the 19th
ACM International Conference on Computing Fron-
tiers, CF ’22 (Association for Computing Machinery,
New York, NY, USA, 2022) p. 113–120.

[13] K. Temme, S. Bravyi, and J. M. Gambetta, Error
mitigation for short-depth quantum circuits, Phys.
Rev. Lett. 119, 180509 (2017).

[14] S. Endo, S. C. Benjamin, and Y. Li, Practical quan-
tum error mitigation for near-future applications,
Phys. Rev. X 8, 031027 (2018).

71



Generalised Susskind-Glogower coherent states
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Abstract. This work is based on J. Math. Phys. 62 (2021). Susskind–Glogower coherent states,
whose Fock expansion is characterised by Bessel functions, have recently attracted considerable attention
for their optical properties. A shortcoming of these states is that it is not known if there exists a measure
for which they resolve the identity. To this end, the modified Susskind–Glogower coherent states have
been introduced as an alternative family of states that resolve the identity at the expense of modifying
the expansion coefficients. In this work, the quantisation map related to the modified Susskind–Glogower
coherent states is exploited, which naturally leads to a particular representation of the su(1, 1) Lie algebra
in its discrete series where the index of the discrete series can be identified with the index of the Bessel
function. We can go a step further by modifying expansion coefficients to be Bessel functions of the second
kind, in which case we find a representation of the su(2) Lie algebra. This enables us to define two families
of generalised coherent states which exhibit interesting non-classical properties.

Keywords: Quantum optics, Generalised coherent states, Susskind-Glogower operators

1 Introduction

In the context of nonlinear f -deformed ladder opera-
tors [1], let us consider the set of operators {V,V†} in-
troduced by Susskind-Glogower [2], and recently studied
in [3, 4], which are defined in terms of the conventional
boson and number operators a, a†, n = a†a, through the
relations

V =

∞∑
n=1

|n− 1⟩⟨n| ≡ 1√
n+ 1

a ,

V† =

∞∑
n=0

|n+ 1⟩⟨n| ≡ a†
1√

n+ 1
. (1)

Moreover, I is the identity operator in the Fock Hilbert
space H = Span{|n⟩}∞n=0, i.e. the closure of all finite lin-
ear combinations of the number states |n⟩, also known as
Fock states [5]. The operators V and V† satisfy the com-
mutation relation [V,V†] = |0⟩⟨0|, which is a projector
onto the vacuum state. This property has been exploited

to construct an exponential operatorDSG(x) = ex(V
†−V),

with x ∈ R, whose action on the vacuum state |0⟩ leads
to a nonlinear family of unit-norm coherent states known
as Susskind-Glogower coherent states [6], given by

|α⟩SG = DSG(α)|0⟩ =
∞∑

n=0

αn(n+ 1)
Jn+1(2r)

rn+1
|n⟩ , (2)

with α ∈ C and r = |α|. Above, Jn(z) is the Bessel
functions of the first kind [7], defined by the power series

Jν(z) =
(z
2

)ν ∞∑
m=0

(−1)m
(
z
2

)2m
m!Γ(ν +m+ 1)

. (3)

The Susskind-Glogower CS have been extensively dis-
cussed in the literature, where their nonclassical prop-
erties have been studied and documented. See [3, 4] for

∗jamesmoran@kias.re.kr

details. Nevertheless, to the best of the authors’ knowl-
edge, the resolution of the identity remains an open prob-
lem, that is, the existence of a weight function w(α) such
that

I =

∞∑
n=0

|n⟩⟨n| =?

∫
α∈C

d2α

π
w(r)|α⟩SGSG⟨α| , (4)

is unknown or might not exist. It is not known either
if this set defines a continuous frame in the sense given
in [8]. A workaround for this issue was addressed in [9,
10], where the authors introduced the modified Susskind-
Glogower coherent states, obtained after modifying the
expansion coefficients of the coherent states (2) as

|α⟩mSG =

∞∑
n=0

αnhn(r)|n⟩ , hn(r) =

√
n+ 1

N (r)

Jn+1(2r)

rn+1
,

(5)
where α ∈ C. The states |α⟩mSG have unit norm, while
the resolution of the identity

I =

∫
d2α

π
w(r)|α⟩mSGmSG⟨α| , (6)

is fulfilled with the weight function w(r) = N (r), where
N (r) stands for the normalisation constant given by

N (r) =
1

r

∞∑
n=0

n[Jn(2r)]
2 = 1F2

(
1/2

2, 2

∣∣∣∣∣− 4r2

)
. (7)

This result ensures that the set {|α⟩mSG}α∈C forms an
overcomplete basis in the Fock space H.

The unmodified and modified Susskind-Glogower co-
herent states are related through

|α⟩mSG =
1√

N (|α|)
1√

n+ 1
|α⟩SG . (8)
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Hence, apart from the normalisation factor, the modified
Susskind-Glogower coherent states result from the ac-
tion of the compact operator 1/

√
n+ 1 on the Susskind-

Glogower coherent states. Contrary to the conventional
Susskind-Glogower coherent states, it is still unknown
whether a unitary operator construction exists for the
modified Susskind-Glogower coherent states. Recently,
some progress has been made in [11], where a non-unitary
construction from a fiducial vector has been introduced.

2 Susskind-Glogower-I coherent states

We can make a further generalisation by introducing an
arbitrary parameter κ into the index of the Bessel func-
tions of the modified Susskind-Glogower coherent states,
that is, we consider the change Jn+1(2r) → Jn+κ(2r) in
(5). Thus, we introduce the family of Susskind-Glogower-
I coherent states (SGI CS) constructed through the linear
combination [12]

|α;κ⟩I :=
∞∑

n=0

αnhn;κ(r)|n⟩ , hn;κ(r) =

√
Cn;κ
Nκ(r)

Jn+κ(2r)

rn+κ
,

(9)
where r = |α|, Nκ(r) stands for the normalisation con-
stant, and Cn;κ are unknown coefficients to be deter-
mined. The linear combination (9) must satisfy two basic
properties, normalisability for α ∈ C and they must sat-
isfy a resolution of the identity. First, we focus on the
resolution of the identity so that the unknown coefficients
Cn;k are uniquely defined.
Making use of Bessel function integrals [13], the reso-

lution of the identity associated with the linear combina-
tion (9) is determined from

I =

∫
α∈C

d2α

π
wκ(r)|α;κ⟩I I⟨α;κ|

=

∞∑
n=0

2Cn;κDκ

∫ ∞

0

dr r−(2κ−1) [Jn+κ(2r)]
2 |n⟩⟨n| , (10)

with the weight function fixed as wκ(r) = DκNk(r), and
Dκ is a proportionality factor independent of n. The
integral in (10) is satisfied by

Cn;κ = (n+ 1)2κ−1 =
Γ(2κ+ n)

n!
, Dκ =

(2κ− 1)Γ(κ)

22κ−1(1/2)κ
.

(11)
From the convergence conditions of the integrals, we
conclude that the matrix elements (10) converge for all
n = 0, 1, · · · provided that κ > 1

2 . From (11), we have
completely characterised the SGI CS given in (9). Notice
that the coefficients Cn;κ correspond to the weighting fac-
tors of a negative binomial distribution. The latter is also
a common property of the SU(1, 1) Perelomov CS [14, 9],
but with different weighting factors.
Now, we must verify the normalisability of the SGI CS.

Interestingly, an analytic expression can be determined
for Nκ, which is computed after expanding the Bessel
functions in power series, and after arranging the result-

ing summations in a convenient form, we obtain

Nκ(r) =
Γ(2κ)

[Γ(κ+ 1)]2
1F2

(
1/2

κ+ 1, κ+ 1

∣∣∣∣∣− 4r2

)
, (12)

where pFq is the generalised hypergeometric function [15].
Therefore, the SGI CS constructed by the linear com-

bination |α;κ⟩ =
∑∞

n=0 c
(I)
n;κ(r)|n⟩, with expansion coeffi-

cients

c(I)n;κ(r) =

√
(2κ)n
n!

Γ(κ+ 1)
einϕJn+κ(2r)

rk

×

[
1F2

(
1/2

κ+ 1, κ+ 1

∣∣∣∣∣ − 4r2

)]−1/2

, (13)

define an overcomplete and normalisable set {|α;κ⟩}α∈C.

3 Susskind-Glogower-II coherent states

Now we consider an alternative set of coherent states,
which are a further generalisation of the SGI CS. This is
achieved by modifying the functional coefficients hn,κ(r),
where κ ∈ N+/2, with N+ = {1, 2, · · · }, and introducing
the modified Bessel functions of the second kind Kν(r),
defined as [7]

Kν(z) =
π

2

I−ν(z)− Iν(z)

sinπν
, Iν(z) = e−iπν/2Jν(iz) ,

(14)
with Iν(z) the modified Bessel function of the first kind.
The function Kν(z) behaves, in the asymptotic limit z →
∞, as Kν(z) →

√
π/(2z)e−z. For z → 0, the modified

Bessel function of the second kind has branch points for
all ν ∈ C [15]. Moreover, Kν(z) is analytic in C\(−∞, 0].
Analogously to the functions hn;κ(r) of (5), we introduce
the new functions hn;κ written in terms of Kν(z). We
thus introduce the Susskind-Glogower-II coherent states
(SGII CS) defined as

|z;κ⟩II =
2κ∑
n=0

znhn;κ(r)|n⟩ , hn;κ(r) =

√
Cn;κ

Nκ(r)

Kn−κ(2r)

rn−κ
,

(15)
where ∈ C, r = |z|, Nκ(r) stands for the normalization
factor, and the coefficients Cn;κ are independent of z so
that the set {|z;κ⟩}z∈C fulfils the resolution of the iden-
tity

I2κ+1 :=

2κ∑
n=0

|n⟩⟨n| =
∫
z∈C

d2z

π
wk(r)|z;κ⟩II II⟨z;κ| ,

(16)
with wk(r) the respective weight function. In this form,
the set {|z;κ⟩}z∈C generates the 2κ + 1-dimensional
Hilbert subspace H(2κ) = Span{|n⟩}2κn=0 ⊂ H. Notice
that the coherent states (15) are defined through a finite
linear combination, for which the normalisation constant
Nκ(r) converges in the complex-plane as long as hn;κ(r)
is free of singularities for r ∈ R+∪{0}. From the asymp-
totic behavior previously discussed, we can guarantee the
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Figure 1: Mandel parameter (a), together with the physical variances (∆x)2 (b) and (∆p)2 (c) for the SGI CS (9) as
a function of the average number of photons for several values of κ.
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Figure 2: Quadrature variances (∆x)2 (solid-red), (∆p)2 (dashed-blue), and the product (∆x)(∆p) (dotted-black)
associated with the SGII CS. The inset denotes the respective variances for the SU(2) coherent states.

finite-norm condition for n = 0, 1, · · · , 2κ. It is worth
mentioning that hn;κ(r) leads to singularities either at
r = 0 or r → ∞ for n = 2κ+1. For that reason, we have
truncated the linear combination in (15) and restricted
the values of κ to non-negative integers or half-integers.
The resolution of the identity (16), together with Cn;κ,

are determined through Bessel function identities [13].
Doing the calculations shows that (16) holds for

Cn;κ =

(
2κ

n

)
, wκ(r) = DκNκ(r) , Dκ =

4(2κ+ 1)

[Γ(k + 1)]2
,

(17)
where

(
a
b

)
is the binomial coefficient. Thus, the expansion

coefficients in the SGII CS define a binomial-like distribu-
tion weighted by a modified Bessel function of the second
kind rather than the conventional binomial parameter.
Considering half-integer values of κ, that is, κ = L +

1/2 for L ∈ N, we can exploit the symmetry of the modi-
fied Bessel functions of the second kind Kν(z) = K−ν(z),
together with the symmetry of the binomial coefficient(
2L+1

n

)
, in order to write the SGII CS as

|z;L⟩II =
1

[NL(r)]1/2

L∑
n=0

einϕc
(II)
n;L(r)

×
[
|n⟩+ ei(2L−2n+1)ϕ|2L− n⟩

]
, (18)

where the expansion coefficients are given by

c
(II)
n;L(r) :=

√(
2L+ 1

n

)
Γ(L−n+1/2)rn 1F1

(
n− L

2n− 2L

∣∣∣∣∣ 4r
)

.

(19)

Given that NL(r) is a finite sum, and using the fact that
Kn−L−1/2(2r) is an entire function for n = 0, 1, · · ·L, we
conclude that normalisation function is well-defined on
the whole complex-plane.

4 Outlook

Nonlinear coherent states may provide a useful re-
source in continuous variable quantum information tasks.
At present it is not clear what the form of the Hamilto-
nians which generate the SGI CS and SGII CS described
here, while for the original Susskind-Glogower coherent
states, the Hamiltonian is known, but it is not clear
whether they resolve the identity. Work is ongoing in
both of these directions

It is also interesting to consider multiphoton represen-
tations, particularly of the SGI CS. These most closely
resemble the single-mode squeezed vacuum states, and
defining a two-photon representation of the SGI CS may
unlock some additional analysis to compare the role of
squeezing and other resources obtained from the nonlin-
earities, and how these resources can be used in quantum
computing tasks.
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I. OVERVIEW

We present a set of methods to generate less complex error channels by quantum circuit parallelisation.
The resulting errors are simplified as a consequence of symmetrisation and randomisation. Initially, the
case of a single error channel is analysed; this is then generalised to multiple channels. The error sim-
plification for each method is shown to be either constant, linear, or exponential in terms of system size.
Finally, some example applications are provided, along with experiments run on superconducting quantum
hardware. These applications are: (1) reducing the sample complexity of matrix-inversion measurement
error mitigation by error symmetrisation, (2) improving the effectiveness of noise-estimation circuit error
mitigation by error randomisation, and (3) improving the predictability of noisy circuit performance by
error randomisation.

II. BACKGROUND

A consequence of scaling up quantum hardware is increasing complexity of the errors. Highly complex
error behaviour unpredictably degrades the quality of the output of a quantum computation. This work
addresses this problem by presenting techniques that simplify the effects of errors on the output of noisy
quantum circuits. Previous work on simplifying circuit noise has primarily involved the twirling of noise
channels. For example, randomized compiling is a compilation technique that may be used to Pauli twirl
general noise and so transform it to Pauli stochastic noise without changing the logic of the computation
[1, 2]. In this work we present a framework based on using quantum circuit parallelisation to simplify the
effects of stochastic Pauli errors on the output of a given computation. Where parallelisation refers to
the action of running a quantum circuit in parallel across multiple sets of qubits [3–9]. Parallelisation is
usually implemented to provide a linear speed-up in algorithm run-time, the key contribution of this work
is to instead apply it to simplify noisy circuit errors.

We define the error complexity of a stochastic Pauli channel to be the cardinality of its set of Pauli
coefficients, |{cP }P∈P⊗n |, i.e. the number of distinct Pauli coefficients needed to fully describe the channel.
For a given error channel, coefficients for different Pauli operators that are identical are counted as a single
coefficient. For example, a global depolarizing channel, D, is fully defined by a single error coefficient,
so the error complexity of this channel is |{cD}| = 1. And a general stochastic Pauli channel, P , has
complexity |{cP }| = 4n. This definition of error complexity is used to refer to both the errors channels of
individual parallel circuits and the effective error channels. And by error complexity reduction, we refer
to the process by which an effective stochastic Pauli channel is generated with fewer coefficients than the
original error channels of the parallel circuits. The techniques we propose generate less complex errors by
averaging over the effects of the noise channels of the different parallel circuits. We refer to these averaged
error channels, induced by the combination of circuit output results, as effective error channels. In the
first approach, this is achieved by error symmetrisation; and in the second by error randomisation. For the
symmetry reductions, simplification comes from coefficients of operators that can be mapped to each other
by a given symmetry transformation being the same in the effective error channel. For randomisation,

1
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simplification instead comes from the coefficients of operators which act non-trivially on the same subset
of qubits becoming the same. Initially the case of a single error channel is examined, this analysis is
then extended to to multiple channels. For each method, a number of different types of error complexity
reduction are presented and analysed. Further reductions in error complexity are afforded by combining
together different methods. In terms of system size, the error complexity reductions for the different
methods are either constant, linear or exponential.

III. MAIN RESULTS

The methods presented in this work effect a reduction in the total number of coefficients required to fully
describe the parallelised effective error channel. We now give informal statements of the error complexity
reduction results for symmetry parallelisation, randomisation parallelisation and symmetry randomisation
parallelisation. And finally we describe some applications of the error simplification techniques, along with
experiments performed on superconducting hardware.

Symmetry Parallelisation

FIG. 1: Error simplification schematic. An input
quantum circuit is run in parallel on multiple sets
of noisy qubits. The computational outputs of the
parallel circuits are then combined such that the ef-
fects of the errors are simplified. This simplification
is achieved by the symmetrisation and randomisa-
tion of the noisy parallel circuit errors.

In symmetry parallelisation the error complexity re-
ductions follow from symmetrisation of the effective chan-
nel. The same set of qubits is used for each of the different
circuit parallelisations. In this case we use the term par-
allelisation as referring to circuits run on the same set
of qubits at different times, with the different circuits
still described as parallel circuits. The difference between
these parallel circuits solely being the different qubit as-
signments on the device topology. The circuit mappings
chosen result in symmetries being created in the effective
error channel. The types of symmetry created were reflec-
tion, rotation, reflection and rotation, and permutation
symmetry respectively.

Theorem 1. (Informal statement). Reflection paralleli-
sation results in an effective stochastic Pauli channel with
O(4n/2) distinct Pauli coefficients.

Theorem 2. (Informal statement). Rotation parallelisa-
tion results in an effective stochastic Pauli channel with
O(4n/n) distinct Pauli coefficients.

Theorem 3. (Informal statement). Reflection and rota-
tion parallelisation results in an effective stochastic Pauli
channel with O(4n/2n) distinct Pauli coefficients.

Theorem 4. (Informal statement). Permutation paralli-
sation results in an effective stochastic Pauli channel with
O(n3/6) distinct Pauli coefficients.

2
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Randomisation parallelisation

The next approach is to use randomisation to simplify the errors in the effective channel. Here par-
allelisation is in space rather than time, as was the case with symmetry parallelisation. We show that
by parallelising a circuit across multiple subsets of qubits with different stochastic Pauli channels, it is
possible to obtain randomised effective error channels of lower complexity relative to the channels of the
original circuits. To prove the randomisation parallelisation error complexity reductions we assume one
of two error models. The first, referred to as (r, 1), is a theoretically convenient model that allows for a
reduction to global depolarizing noise. The second, referred to as (r, 2), is a physically motivated model
that allows for a reduction to an error channel consisting of a convex combination of depolarizing channels.

Theorem 5. (Informal statement). Randomisation parallelisation with the (r,1) error model results in an
effective stochastic Pauli channel which is convergent upon a channel with O(1) Pauli coefficients, which

is a global depolarizing channel with depolarizing parameter λ = η(|{P⊗n}|−1)
|{P⊗n}| .

Theorem 6. (Informal statement). Randomisation parallelisation with the (r,2) error model results in an
effective stochastic Pauli channel which is convergent upon a channel with O(2n) Pauli coefficients. Each
coefficient relates to a depolarizing channel acting on a subset of qubits qj, for j ∈ {0, . . . , 2n − 2}, and
the relation between Pauli coefficient ηqj and depolarizing parameter λqj is λqj =

ηqj (|{P
⊗n}|−1)

|{P⊗n}| .

Symmetry randomisation parallelisation

Since symmetry and randomisation parallelisation apply different approaches to achieve error complexity
reductions, combining the two methods results in greater reductions than that possible when each is
applied individually. Only the (r, 2) error model is used for the combined reductions, since no further error
complexity reduction is possible for the (r, 1) error model after randomisation parallelisation.

Sub-Theorem 6.1. (Informal statement). Reflection and randomisation parallelisation using the (r, 2)
error model results in an effective stochastic Pauli channel with O(2n/2) distinct Pauli coefficients.

Sub-Theorem 6.2. (Informal statement). Rotation and randomisation parallelisation using the (r, 2)
error model results in an effective stochastic Pauli channel with O(2n/n) distinct Pauli coefficients.

Sub-Theorem 6.3. (Informal statement). Reflection, rotation and randomisation parallelisation using the
(r, 2) error model results in an effective stochastic Pauli channel with O(2n/2n) distinct Pauli coefficients.

Sub-Theorem 6.4. (Informal statement). Permutation and randomisation parallelisation using the (r, 2)
error model results in an effective stochastic Pauli channel with O(n) distinct Pauli coefficients.

Applications

There are many ways these methods might be usefully applied. We provide some example applications
along with experiments on superconducting hardware. The first involves applying symmetry error simpli-
fication to reduce the sample cost of measurement error mitigation. In this case, the sampling overhead to
perform the mitigation is reduced from 160000 to 60000 samples, with no loss of mitigation effectiveness.
The second application leverages randomisation to enhance the effectiveness of noise-estimation circuit
mitigation. In experiments on superconducting hardware, this the improved error mitigation effective-
ness of the technique by ∼ 41%. The final application is in applying error randomisation to make noisy
circuit performance for stable and predictable, increasing robustness to unpredictable noise accumulation
and time-dependent errors. The randomisation parallelisation achieves this by making circuit noise more
closely approximate depolarizing noise, and also by reducing time-dependent variation of the errors.

3
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Abstract. Obtaining more resourceful quantum states, which are required for certain quantum processes
and protocols, from less resourceful noisy states has been a keen topic of interest especially in the Noisy
Intermediate-Scale Quantum (NISQ) era. Noisy states are generally states that have lost their quantum
advantage to environmental factors and decoherence and may be discarded due to their lessened usefulness.
While virtual resource distillation as a means to obtain more resourceful quantum states has been explored
for discrete variable systems, less is known about virtual distillation in continuous variable systems, which
have relevance in quantum communication and sensing. Current bounds in discrete variables will prove
insufficient for the continuous variable regime. This project aims to explore a new figures of merit and
provide examples for the viability of this protocol.

Keywords: probabilistic error cancellation, error mitigation, continuous variables

1 Introduction

Quantum computation often requires an input state to
be put through a quantum circuit, where after which the
resulting state is measured classically to obtain a mea-
surement of interest. This quantum circuit may require
some resourceful quantum state, which may be difficult
to synthesize. However, measurement on this resourceful
state can be simulated by manipulating measurements
on a set of less resourceful (inferior) states that undergo
their own quantum circuits. This is known as simulation
or virtual resource distillation.
Quasiprobability sampling is a form of virtual distilla-

tion whereby a quantum circuit’s measurement outcome
probabilities are estimated using quasiprobability distri-
butions. The method of quasiprobability then estimates
the outcomes for quantum circuits whose quasiprobabili-
ties may be negative, by making use of a non-negative
representation of freely available quantum circuit ele-
ments that efficiently classically simulates and provides
an unbiased estimator of the original quantum circuit
[4]. In other words, quasiprobability sampling guaran-
tees that its expectation value is always equal to the true
mean of the distribution it attempts to simulate.
In essence, this protocol is used as a means to esti-

mate the expectation value of a measurement on some
resourceful state, by instead making measurements on
free states that are available to us.
This method of quasiprobability sampling has been

carried out in different situations in discrete variables,
including simulating measurements on quantum magic
states using free, classical stabilizer states [3]. In this
manner, one might more loosely refer to this as the sim-
ulation of a quantum state, while more specifically re-
ferring the simulation of a quantum circuit involving a
measurement on such a quantum state.

∗nura0089@e.ntu.edu.sg
†gumile@ntu.edu.sg
‡ryuji.takagi@phys.c.u-tokyo.ac.jp

2 Virtual Resource Distillation Proce-
dure

The sampling procedure involves first a quasiproba-
bilistic decomposition of the desired quantum circuit in
terms of the freely available circuit elements,

ρ =
∑
i

siσi (1)

Where si ∈ R can be negative. Quasiprobability sam-
pling allows the simulation of a measurement on ρ by
measuring on our constituent states σi and then applying
some post-processing on these measurement outcomes.
To do so, a classical probability distribution can be de-
rived from the quasiprobability distribution of the desired
quantum circuit si,

pi :=
|si|∑
i |si|

pi > 0 (2)

Sampling from this discrete, classical distribution, one
obtains some i value. Consequently, one measures on the
corresponding freely available circuit element εi to ob-
tain a measurement outcome, mi. However, the value
of sign(si) based on the sampling outcome i must also
be tracked and included in the final simulation output,
M = sign(si)mi

∑
i |si|. Through repetition of this sam-

pling process multiple times one obtains the average of
N samples M̄ . This has been shown to provide an unbi-
ased estimation of the output of the original circuit, since
E[M ] is equivalent to the original circuit’s measurement
outcome. However, it should be noted that the modified
output of the simulation results in an increased variance
of the random variable [3, 4].

3 Re-Expressing Figure of Merit In Dis-
crete Variables

In discrete variables, the sampling procedure should
output M , which is a random variable that is
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bounded as [−max (mi)
∑

i |si|,max (mi)
∑

i |si|], given
that sign (si) can take on values ±1. Depending the mea-
surement and its measurement outcomes, the value of
maxmi can vary.
Moreover, this maximum measurement outcome can

be related to the operator norm of said measurement’s
operator, which should be Hermitian operator for a phys-
ical observable. Since the maximum measurement out-
come should correspond to the largest eigenvalue, this
is exactly given by the operator norm of the Hermitian
operator corresponding to our measurement.

max(mi) = ∥A∥op (3)

where

∥A∥op := inf{c ≥ 0 : ∥Av∥ ≤ c∥v∥, ∀ v ∈ V } (4)

Using Hoeffding’s inequality, one can bound the proba-
bility that the average of N samples, M̄ are within E[M ]
by some amount δ. Hoeffding’s inequality [2] states that
for Bernoulli (independently distributed) random vari-
ables X1, . . . , Xn, bounded as a ≤ Xi ≤ b, yields

Pr(|X̄ − E[Xi]| ≥ δ) ≤ 2 exp

[
−2N2δ2

N(b− a)2

]
(5)

This can be applied to our virtual resource distilla-
tion protocol, which involves independent random vari-
ables obtained through the sampling procedure elabo-
rated above. One obtains then

ε : = Pr(M̄ − E[M ] ≥ δ) (6)

≤ 2 exp

[
−2Nδ2

(2max(mi)
∑

i |si|)2

]
(7)

= 2 exp

[
−Nδ2

2(∥A∥op
∑

i |si|)2

]
(8)

Thus the probability that the average of N samples, M̄
are within E[M ] by some amount δ is given by 1−ε. This
Hoeffding bound can be rearranged to yield the simula-
tion cost, related to the number of samples, N ,

N ≥ 2

δ2
(∥A∥op

∑
i

|si|2) ln
(ε
2

)
(9)

Thus, we see that the simulation time cost scales
quadratically with the sum of the absolute values of the
quasiprobabilities and the maximum measurement out-
come [3, 4]. Here, we extend the figure of merit used in
prior literature, derived from Hoeffding’s inequality, to be
expressed in terms of the operator norm of the desired
measurement operator.

4 Discrete Variable Bound that Tends to
Infinity in Infinite Limit

In continuous variables, a state may still be similarly
expressed in a quasiprobabilistic sum of free states, and
the above sampling method may be applied. However,
the analysis on the sampling cost would no longer hold

in continuous variables, where the Hilbert space becomes
infinite-dimensional.

In particular, the use of Hoeffding’s inequality has an
assumption that the random variables from the sampling
method are bounded, which in general is not the case
for continuous variable systems. In the case of contin-
uous variables, the eigenvalues of a measurement can
in general be unbounded, i.e. range between (−∞,∞)
[5]. As a result, generally ∥A∥op → ∞ in the continu-
ous variable, infinite-dimensional limit. This means that
the lower bound for the number of samples N , also tends
to infinity, rendering this figure of merit inadequate for
the analysis of virtual resource distillation in continuous
variable systems.

Thus, a new figures of merit must be determined to
benchmark virtual resource distillation in the continuous
variable regime.

5 Refined Figure of Merit

Consequently, in the application of virtual resource dis-
tillation to continuous variables, one cannot use Hoeffd-
ing’s inequality to capture the cost of virtual resource
distillation in continuous variable systems. Thus, a new
figure of merit must be introduced.

To do so, we consider the quasiprobability sampling
process for an arbitrary measurement it simulates. This
process has a (one-shot) quasiprobability sampling dis-
tribution which gives the probability distribution for the
sampling outcome, M , with mean E[M ].

Moreover, as a probability distribution, this sampling
distribution will have an associated variance, ∆2M . This
variance is positively related to not only the sum of neg-
ativities,

∑
i |si|, but the variance of the free states in-

volved in the protocol as well. Thus, a higher value of
sum negativity and/or variance of the free states, the
higher the variance ∆2M .
This can be applied together with the Central Limit

Theorem which states that given a satisfactory minimum
number of samples N , one can approximate the proba-
bility distribution of the average of N samples (M̄) as
a normal distribution with mean µ = E[M ] and stan-

dard deviation σQP
CLT =

√
∆2M/N , even if the original

sampling distribution is not normal distribution.
This in turn allows us to determine the probability of

successfully obtaining within some defined error bound δ
in continuous variables. Moreover, through the Central
Limit Theorem, one can also find an expression for the
number of samples, N to satisfactorily obtain M̄ within
some error δ of E[M ] with a minimum probability of suc-
cess.

6 Example

By availing ourselves to non-Gaussian states, we con-
sider how to distill a superior squeezed state from inferior
squeezed states. In particular, we turn to a particular
case of a non-Gaussian state, τ = sσ0 + (1 − s)σ1, com-
posed of the convex sum of two different Gaussian states,
σ0 and σ1 as illustrated in Figure 1. The constituent
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Figure 1: Plot of the Wigner function of the non-
Gaussian state τ in 3-dimensions in the phase-space. The
state is a convex sum of two Gaussian states,σ0 and σ1

with different levels of squeezing in the x-quadrature,
yielding distinct variances such that ∆2Xsq

1 < ∆2Xsq
0 .

Gaussian states are not equally squeezed, with σ0 being
the less squeezed of the two. Given this non-Gaussian
state together with the less squeezed Gaussian state, σ0,
one can obtain the more superior squeezed state of the
two through some process. While this was introduced
in the Heersink paper [1], their case was limited to both
Gaussian states σ0 and σ1 having the same variance along
the x- and p-quadratures (i.e. the two states are equally
squeezed along the x-quadrature). As a result, there was
not an actual distillation of a more resourceful squeezed
state, since their final distilled state would have a squeez-
ing that is roughly equivalent to the free state available
to them. Thus in this project, the case was adapted and
generalized to one where the variances of the two are not
equal, such that we restrict ourselves to less resourceful
states in an attempt to obtain a more resourceful, more
squeezed Gaussian state.
Using the refined figure of merit introduced in the pre-

vious section, we can compare the probability of suc-
cessfully distilling a more resourceful state via the tra-
ditional post-selection method against the new virtual
resource distillation protocol put forth here. Virtual re-
source distillation, through analytical expressions, have
been shown to provide advantage over the post-selection
method, particularly when a minimum squeezing amount
for the Gaussians have been reached, as seen in Figure 2.
The probability of success for virtual resource distillation
is greater than that for post-selection, across the range
of post-selection threshold, pth.

7 Conclusion

We identified problems porting this virtual resource
distillation protocol from discrete variables to continuous
variables, and address them by introducing a new Figure
of Merit for the continuous variable regime. With this
new Figure of Merit, we also show how it can be used

Figure 2: The ability for virtual resource distillation
(green) to become the dominant protocol compared to
post-selection (blue) requires a minimum amount of
squeezing. In the figure, quasiprobability dominates with
small Gaussian variances.

to compare virtual resource distillation and a traditional
post-selection protocol. virtual resource distillation in
continuous variables has been shown here to not only be
a viable protocol, but one that can potentially provide
advantage against post-selection.
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Mark B. Myers II1 ∗

1 Centre for Quantum Technologies, National University of Singapore

Abstract. As quantum devices emerge with increasing qubit counts, implementations with fault-tolerant
quantum error correction (FTQEC) are of particular significance; however, such systems are difficult to
verify and validate due to difficulties associated with simulating large systems under the effects of realistic
noise. We aim to expand the understanding of quasi-probabilistic methods, for simulating non-stabilizer
noise in quantum circuits, by investigating the method in the context of FTQEC simulations. We were
able to achieve improved simulation efficiency by tailoring the method using domain knowledge, which was
found to be consistent across the various non-unitary and unitary noise channels we investigated.
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1 Introduction

In our study we consider the method proposed by Ben-
nink et al., which extends stabilizer simulations to in-
clude non-stabilizer channels. This method allows for any
completely-positive trace-preserving channel in a circuit
to be represented exactly as a quasi-probability distribu-
tion over stabilizer operations [1]. These decompositions
are used in conjunction with Monte Carlo techniques to
analyse various properties of a circuit. Crucially, Ben-
nink et al. proposed that the efficiency of their method
depends on both the number of non-stabilizer channels
in a circuit and the negativity of the non-stabilizer chan-
nels being modeled; where negativity is a measure of how
close the channel is to being a stabilizer channel. No-
tably, Hakkaku et al. have previously used this method
to analyze the surface code under the effects of non-
stabilizer noise. Their investigation focused on a sin-
gle non-stabilizer channel that mixed over-rotation and
bit-flip noise; wherein, they focused on more idealized
noise models[2]. In this study we take a deeper look at
this quasi-probability method, exploring the suitability
of this method for obtaining metrics from FTQEC sim-
ulation where non-stabilizer noise is present. We high-
light how Bennink’s method can be tailored to FTQEC
simulations for improved efficiency; whereby, we exploit
several general properties of noise and error correction
codes (ECCs).

2 Simulation Setup

Simulations can be employed to study and evaluate
the performance of ECCs in the presence of noise. Dur-
ing an FTQEC simulation, various aspects of the code’s
performance can be analyzed, such as its ability to detect
and correct specific types of errors, its code distance, or
the fidelity of the ECC. When constructing an FTQEC
simulation, there are five main aspects that must be con-
sidered:

• Error Correction Code - the error correction cir-
cuits

∗mbmyersii@u.nus.edu

• Decoding Algorithm - the algorithm that deter-
mines where to apply correction operations

• Noise Model - the set of circuit locations where
noise is applied

• Noise Channel - the type of noise being applied in
the circuit

• Circuit Metric - the property being measured in the
simulation

Each component of the simulation is chosen based on
the research objectives. In the case of this study, we are
interested in how ECCs behave under the effects of non-
stabilizer noise, so we will be fixing the ECC to be the
surface code, decoding algorithm to be minimum weight
perfect matching, noise model to be circuit level noise,
and circuit metric to be the logical infidelity; only varying
the noise channels. It is important to clearly detail our
choices when constructing simulations; so our approach
is easier to understand and replicate.

3 Quasi-Probability Method Modifica-
tions

In our study we set out to investigate whether the
quasi-probabilistic method for simulating non-stabilizer
noise could be applied to FTQEC simulations to obtain
valuable statistics like the logical infidelity; however, dur-
ing the implementation process we found there were sev-
eral properties of FTQEC simulations that lent them-
selves to improved simulation efficiency.

The first modification we made was related to the error
correction capacity of a code; where an ECC can correct
t faults. We can use this information to improve the esti-
mator for the logical infidelity, because we can calculate
the exact values for the portion of the estimator where t
or fewer faults occur.

The second modification we made was related to the
fact that we are predominantly focused on weak noise
regimes, meaning that most of the noise-prone circuit el-
ements will only experience an identity noise operation
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in a given trial. In the base method, each identity op-
eration still contributed to the magnitude of the trial’s
weight; however, by changing our sampling probabilities,
we where able to reduce the average weights for each trial,
and by extension reduce the variance of the estimator for
the logical infidelity.
Our third modification was also related to the selection

of the sampling distribution, which we optimized across
all non-identity channel terms in the decomposition to re-
duce the variance of the estimator. The degree to which
our modifications were able to reduce the variance dif-
fered slightly amongst the channels; however, it varied
greatly with the channel infidelity.

4 Results and Conclusions

In this study we considered the distance 3, distance
5, and distance 7 surface codes; investigating them un-
der the effects of the amplitude damping channel, ran-
dom non-unitary channels, and random unitary channels.
Across our tests, we were able to obtain the most accurate
results when testing the amplitude damping and random
non-unitary noise channels. Our results from the tests for
unitary noise channels did not provide tight bounds on
the estimators for the logical infidelity. As we increased
the distance of the code the bound of our estimators in-
creased, due to the increased number of trials necessary
to achieve the same accuracy as smaller distance tests.
Subsequently, we were unable to obtain tight bounds on
any non-stabilizer channels for the distance 7 surface code
and beyond, due to the increasing simulation costs.
This would indicate that this method is only suitable

for analyzing FTQEC codes where the number of noise-
prone operations is comparable to that of the distance 5
surface code, with approximately 5000 potentially noisy
circuit operations. Such capabilities may be useful in
some experimental applications, as long as the noise is
non-unitary, or the number of noise-prone operations are
limited. Crucially, we believe that these modifications
were the most valuable aspect of this study, since all of
the efficiency improvements we proposed will generalize
to other FTQEC codes. Additionally, we believe that
there is potential for further investigation about how ad-
ditional information, relating to the noise channel and
error correction code, could be incorporated into the sim-
ulation method for further efficiency improvements.
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Abstract. The Quantum Approximate Optimization Algorithm (QAOA) is a method for find-
ing approximate solutions to the Max-Cut problem. This study examines Dynamical Lie algebra
(DLA) for three QAOA ansatzes: the standard, orbit (orb), and multi-angle ansatzes, focusing
on the reductive Lie algebra they represent and their isotypic decompositions. For the multi-
angle we can fully characterize the DLA for all possible graphs, and show that this ansatz is
extremely prone to barren plateaus even with a single-layered circuit. For the orb and standard
ansatzes we provide an efficiently computable upper bound.
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1 Introduction

The quantum approximate optimization algo-
rithm (QAOA) [1, 2] has been recently proposed as
a promising candidate to make practical use of near-
term quantum computers for solving combinatorial
optimization problems. For example, one can find
approximate solutions to the Maximum-Cut (Max-
Cut) problem by encoding a graph’s edges as inter-
action terms in an Ising-type Hamiltonian, and then
using the QAOA to train a parametrized quantum
circuit aimed at preparing the ground states of said
Hamiltonian.
Not surprisingly, QAOA has been extensively

studied in the past few years [3, 4, 5, 6, 7, 8], with
many different variants of the QAOA parametrized
quantum circuit ansatz being proposed [9, 10, 11,
12, 13, 14, 15]. Despite the tremendous atten-
tion QAOA has received, most of our understand-
ing of this algorithm comes in the form of heuris-
tics. This approach is at odds with recent advances
in the field, as it has been shown that theoreti-
cally studying the underlying Dynamical Lie Al-
gebra (DLA) [16] associated with a parametrized
quantum circuit is fundamental to understand its
performance. In particular, the presence of barren
plateaus [17, 18, 19, 20, 21, 22] (i.e., exponentially
vanishing gradients), and spurious local minima in
the parameter optimization landscape can be linked
to certain properties of the DLA (e.g., the dimen-
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sion of the DLA is connected to the gradient scal-
ing, such that exponential-sized DLAs are associ-
ated with barren plateaus) [20, 23, 24]. Hence, it
appears that the DLA is the mathematical object
that allows one to understand or predict the train-
ing landscape in QAOA.
Unfortunately, little-to-nothing is known about

the DLA for QAOA Max-Cut applications. This
issue gets amplified from the fact that QAOA is
not immune to barren plateaus [20], indicating
that a more precise understanding of its DLA is
paramount. This motivates our work, which is the
first comprehensive study of the DLA for various
QAOA ansatzes and Max-Cut graphs.

2 Main results

We recall the Max-Cut problem and define the
notation that will be used throughout this abstract.
First, we recall that a graph G is defined by its ver-
tex set V = {1, . . . , n} and its edge set E consisting
of unordered pairs {k, ℓ} of vertices {k, ℓ} ∈ V with
k ̸= ℓ. Given a graph G, the (optimization variant
of the) Max-Cut problem, is to find a partition of
its vertices into two complementary sets, such that
the number of edges between those sets is as large
as possible (see Fig. 1(a)). It has been shown that
quantum computers can be used to find approxi-
mate solutions for the Max-Cut problem [1, 26, 8]
by mapped it to the task of calculating the ground
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Figure 1: Max-cut, and QAOA. a) Given a graph, the Max-Cut problem is to determine partition of
the vertices into two complementary sets, such that the number of edges between those sets is as large as
possible. b) The QAOA algorithm is a hybrid quantum-classical algorithm that can be used to approximately
solve the Max-Cut problem. The success of QAOA hinges on one’s ability to optimizes the parameters in
a quantum circuit U(γ,β) as in Eq. (3). c) While there are exists several ansatzes for U(γ,β). Here we
consider the standard , orb [14] , and multi-angle (or free) [15, 25] ansatzes. In the image, a gate with
ZZ indicates a two-qubit entangling gate generated by a ZkZℓ interaction, while the X gate indicates a
single-qubit rotation around the x-axis. Boxes with the same color share the same parameter. One can see
the the standard ansatz has less parameters per layer than the orb of free ansatzes.

state energy of the n-qubit Ising Hamiltonian

Hp =
∑

{k,ℓ}∈E

ZkZℓ/2 , (1)

where Zk denotes the Pauli-z operator acting on the
k-th qubit. One can therefore attempt to obtain the
Max-Cut variationally by defining the cost function

C(γ,β) = ⟨ψ(γ,β)|Hp|ψ(γ,β)⟩ , (2)

and solving the optimization task
argminγ,β C(γ,β). As shown in Fig. 1(b),
|ψ(γ,β)⟩ is obtained by initializing n qubits to the
fiduciary state |+⟩⊗n and sending it through an
L-layered parametrized quantum circuit of the form

U(γ,β) =

L∏
j=1

e−iHm(βj)e−iHp(γj) . (3)

Here, γ = (γ1 . . . ,γL) and β = (β1, . . . ,βL) are
vectors of trainable parameters, while Hp(γj) and
Hm(βj) are respectively known as the problem and
mixer Hamiltonians.
Our studies are focused on three particular

ansatzes, i.e., choices for Hp(γj) and Hm(βj). The
first is the standard ansatz as defined in the orig-
inal QAOA manuscript [1]. The second and third
ansatzes attempt to fix the drawbacks of the stan-
dard ansatz that it only contains a single parameter
per layer. Particularly, we consider the orbit (orb)
ansatz proposed in [14] where one borrows inspira-
tion from the field of geometric quantum machine
learning [27, 28] and ties the parameters in a layer

according to the graph’s automorphism group. Fi-
nally, we also study the multi-angle [15, 25], or free
ansatz, where one assigns a single parameter to each
gate in the standard ansatz. We present an example
of these three ansatzes in Fig. 1(c). We will hence-
forth, denote the DLA of these circuits as gstd, gorb
and gfree.
For the multi-angle QAOA ansatz we are able to

fully characterize the circuit’s DLA for any possible
graph and prove that it only falls within one of six
families. That is, we can prove the following theo-
rem:

Theorem 1 (Mult-angle Lie algebra) Given a
connected graph, the DLA for the multi-angle QAOA
ansatz gfree fall into one of the six families depicted
in Table 1.

In particular, we find that for most graph families
(except for the cycle and path graphs) the dimen-
sion of the DLA grows exponentially with the num-
ber of nodes n in the graph. Such scaling implies
that the multi-angle QAOA can be extremely prone
to exhibiting barren plateaus, even when using a sin-
gle layer of the ansatz. For instance, we can show
that the following corollary holds:

Corollary 1 Consider a graph in the “other” cate-
gory of Table 1. Then, let ∂µC(γ,β) be the partial
derivative of the cost. Given enough depth, we find

Varγ,β[∂µC(γ,β)] =
2n|E|

8(22n − 4)(2n + 2)
, (4)

where |E| is the number of edges.
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Table 1: Multi-angle ansatz. Six families of
connected graphs with n vertices with an example,
their bipartiteness, Lie algebra (reductive decompo-
sition), DLA (isotypic decomposition), and dimen-
sion. Here, rff denotes a d

2 -dimensional free fermion
representation while triv and std respectively denote
the trivial and standard representations. Moreover,
Dim refers to the algebra’s dimension, i.e., the num-
ber of linearly independent terms in its basis.

In the the orb and standard cases, we argue that
a full characterization of the DLA for any graph
is likely not possible. To make such a claim, we
take a take a closer look at the DLA’s symme-
tries [16], i.e., the set of operators that commutes
with the parametrized unitary. Firstly, we show how
the symmetries of the Max-Cut task get promoted
to symmetries at the quantum level, and find that
while the standard and orb ansatzes respect them,
the multi-angle does not (and this is precisely why
we can characterize it so well). Then, we show that
the orb and standard ansatzes artificially introduces
additional symmetries not related to the Max-Cut
task. These “hidden symmetries” arise from the
fact that we use local gates in the circuit, and make
the DLA graph-dependent and harder to study. At
this point, we introduce a DLA gAut that solely re-
spects the Max-Cut symmetries. Here we show that

Theorem 2 (DLA hierarchy) For any graph G,
the following chain of inclusions holds

gstd ⊆ gorb ⊆ gAut ⊆ gfree . (5)

The power of this hierarchy resides in the fact that
gAut and can be characterized efficiently and there-
fore provide an accessible upper bound to the dimen-
sion of the orb and standard DLS. In particular, we
can obtain the following result.

Theorem 3 Given a graph G in the other family,
we have

gAut ⊕ u(1)⊕ u(1) =
⊕
λ

u(mλ) . (6)

where λ is here an index that runs over the irreps
of the maximal symmetric subalgebra of u(d) which
respects the Max-Cut parity Z2 and automorphism
Aut(G) symmetries.

Theorem 3 shows that gAut is semi-universal [29, 30].
The importance of the previous results is that we

can leverage the bound in Theorem 2, along with
the characterization in Theorem 3 to prove an ex-
ponential separation between the dimensions of the
orb/standard DLAs, and the multi-angle DLA. For
instance:

Proposition 1 Let, G be (i) the complete graph,
or (ii) G be a bipartite complete graphs. In
these cases dim(gstd),dim(gorb) ∈ O(poly(n)), while
dim(gfree) ∈ Ω(2n).

As mentioned, Proposition 1 shows a clear sepa-
ration between between the multi-angle ansatz, and
the orb and standard ones.

3 Conclusions and Outlook

In this manuscript we have presented the first the-
oretical study of the Lie algebraic properties of the
QAOA for Max-Cut. Our results have several im-
portant implications. First, we show that the large
expressive power of the multi-angle ansatz leads to
DLAs which are (for the vast majority of graphs)
exponentially large. Thus, the multi-angle QAOA
circuit is extremely prone to have barren plateaus.
For instance, we can find examples where the gradi-
ents are exponentially vanishing even when using a
single layer of thie multi-angle circuit. For the orb
and standard circuit, we show that the circuits arti-
ficially introduce additional symmetries. While we
provide an initial characterization of those symme-
tries, we open the door for studying them in future
works. Finally, we present a DLA which only con-
tains the appropriate symmetries, and which we can
fully characterize. Critically, it is unknown to us if
this DLA can be efficiently implemented in a quan-
tum circuit (which opens up another research direc-
tion). Regardless, we argue that such ansatz is the
appropriate one to use in QAOA for Max-Cut. In
all cases, our work takes an important step forward
towards characterizing the expressiveness of QAOA
circuits, and paves the way towards Lie-algebraic-
ansatz-design.
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mathematical physics 52, 113510 (2011).

[17] J. R. McClean, S. Boixo, V. N. Smelyanskiy,
R. Babbush, and H. Neven, Nature Communi-
cations 9, 1 (2018).

[18] M. Cerezo, A. Sone, T. Volkoff, L. Cincio,
and P. J. Coles, Nature Communications 12,
1 (2021).

[19] Z. Holmes, K. Sharma, M. Cerezo, and P. J.
Coles, PRX Quantum 3, 010313 (2022).

[20] M. Larocca, P. Czarnik, K. Sharma, G. Mu-
raleedharan, P. J. Coles, and M. Cerezo, Quan-
tum 6, 824 (2022).

[21] K. Sharma, M. Cerezo, L. Cincio, and P. J.
Coles, Physical Review Letters 128, 180505
(2022).

[22] M. Cerezo and P. J. Coles, Quantum Science
and Technology 6, 035006 (2021).

[23] M. Larocca, N. Ju, D. Garćıa-Mart́ın,
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Sequential maximum confidence measurements
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Abstract. Sequential state discrimination is a form of state discrimination in which multiple parties aim
to determine, through repeated measurement of the same quantum system, which state was prepared from
some ensemble. Previous schemes have been based on unambiguous state discrimination, which is limited
in its application. Here, we present a new sequential scheme based on maximum confidence measurements,
which generalise unambiguous approaches. We characterise both the scenarios in which it can perform
optimally, propose an alternative scheme which is applicable to all ensembles and analyse the latter’s
performance in some concrete examples.

Keywords: quantum information, quantum measurements, state discrimination

If a quantum system is projectively measured, it will
be left in a pure state different from that it initially had.
One may thus interpret that no more information can be
extracted about the initial state. One surprising result,
due to Bergou et al. [1], shows that this intuition is incor-
rect. In a sequential measurement scheme, any number of
parties are able to determine which state was prepared,
up to the same limits imposed in the single measurement
scenario, from a given ensemble. This result gives rise
to the topic of sequential state discrimination, in which
any number of parties can attempt to determine which
state was prepared by repeated measurement of the same
system.

Bergou et al’s scheme, however, is based upon un-
ambiguous state discrimination (USD) and, thus, is re-
stricted in the ensembles it can be applied to. Chefles’
criterion, in particular, states that USD can be performed
only for ensembles which form a linearly independent set
[3].

In contrast with USD, maximum confidence measure-
ments (MCMs) are state discrimination schemes with a
universal applicability [2]. Consider an ensemble of N
states, {qi, ρi}Ni=1. We can construct a positive operator
valued measure (POVM) such that each element πi max-
imises the confidence C that a state was prepared given
the relevant outcome:

C(i) = PP |M (ρi|πi) =
qiPM |P (πi|ρi)

P(πi)
, (1)

taken from the standard Bayesian probability rule. The
confidence-maximising operators may not form a com-
plete set and so an inconclusive outcome π0 will some-
times be necessary.Typically the rate of this outcome
should be minimised. USD can then be defined as an
MCM for which all confidences can reach C(i) = 1, and
indeed the formalism will output the latter scheme for
linearly independent ensembles.

In recent work, we have introduced the first analysis
of sequential maximum confidence measurements. These
have a wider range of applicability and therefore richer

∗kflatt@kaist.ac.kr
†hanwool283@kaist.ac.kr
‡joonwoo.bae@kaist.ac.kr

structure than the previous sequential state discrimina-
tion schemes. Our result characterise firstly the ensem-
bles to which each party can obtain the same maximum
confidence as would be available to a single measur-
ing party. We then look at the most general scenario,
and construct a universal sequential state discriminaton
scheme, for which all parties are able to obtain some in-
formation about the initially prepared state. A trade-off
is introduced between the confidence available to later
parties and the inconclusive outcome rate of earlier par-
ties. In fact, it turns out then all parties will be able
to get arbitrarily close to the absolute maximum, at the
cost, of course, of an arbitrarily high error rate for pre-
vious parties.

Let us quickly define the relevant terms and notation.
The general scheme is depicted in Fig. 1. One party
prepares a quantum system in a state chosen from some
ensemble {qi, ρi}Ni=1. This system is sent to a party who
performs a measurement defined by the Kraus operators

K
(1)
i which aims to determine the initial state. This mea-

surement leaves the system in a state ρ
(1)
i ∝ K(1)

i ρiK
(1)†
i ,

and this is sent to a third party who measures with a
different set of Kraus operators. The scheme can be ex-
tended in an obvious manner to M parties. The task is to
construct the measurement in such a way that all parties
learn something about the state. The mth party’s Kraus

operators are labelled K
(m)
i . Results from the theory of

state discrimination tell us that POVM elements with
rank greater than one will only decrease the confidence.
Measurements outcomes are labelled i = 0, 1...N , where
0 denotes the inconclusive outcome.We call the “abso-
lute maximum confidence” that which would be available
for a single measuring party who is able to optimise her
measurement with no further considerations and label it
max[C(i)].

Our first result concerns the rangle of ensembles for
which each party is able to get the absolute maximum
confidence. We prove that this is always possible if the
number of states N in the ensemble is less than or equal
to the dimension of the Hilbert space. This is a weaker
condition than the requirement of linear independence,
which, for example, also enforces that all states are pure
in the qubit case. Sequential MCMs therefore allow a
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Figure 1: A multiple party state discrimination scenario
includes a number of parties who each measure the same
quantum system, prepared by an initial party in a state
chosen from some ensemble.

wider ranger of sequential state discrimination scenarios
than would otherwise be possible.

Our second result is to show that, even if the above
condition does not hold, a scheme exists in which al par-
ties are still able to gain information about the initially
prepared state. In fact, they can get arbitrarily close
to the maximum. Let us denote by Πi the POVM ele-
ments which result inthe absolute maximum confidence
and Ki =

√
Πi the associated Kraus operators. We then

give all parties a weakened former of the measurement

defined by the operators K̃
(m)
i =

√
αKi for i = 1...N

and K̃
(m)
0 = (I − α

∑
i=1 Πi)

1/2. The weakening pa-
rameter α is directly related to the inconclusive outcome
rate. The intuition for the measurement is that, as α be-
comes small, the resultant state will be ρ̃i ≈ ρi + O(α),
and so the optimal measurement will be close to that
for the original ensemble. In the small α limit, we find
P(π0) ≈ 1 − α and C(i) ≈ (1 − α)max[C(i)]. The par-
ties can therefore obtain an arbitrarily high confidence,
at the cost of an arbitrarily high probability of failure for
earlier parties.

We can finish our analysis by looking at a concrete
example. The case we consider is that of the so-called
GU states, defined as any N states symmetrically dis-
tributed around a great circle of the Bloch sphere. These
ensembles have the two following properties: they form
a decomposition of the identity; their absolute maximum
confidence measurement is a rank-one measurement in
the same direction as the state. These properties sim-
plify the analysis and allow us to calculate the following
trade-off between confidence for party m and success rate
of the first m− 1 parties:

Cm(i) = max[C(i)]
1

2

(
1 + Π

(m−1)
k=1

1

2
(1 + Pk(π0))

)
(2)

where Pk(π0) is the probability of the kth party’s incon-
clusive outcome. Interestingly, this does not depend on
the number of states in the ensemble.

We have introduce and analysed sequential maximum
confidence measurements. First, we analysed the domain
of applicability of absolute maximum confidence mea-
surements, and then present a more general scheme which
has universal applicability. As in the single measurement
case, we find that the more general structure of MCMs
allows for a more rich dynamics than USD, which is after
all a special case of the former. It can also be said that
our approach is more practical than the previous scheme,
as USDs will in principle be impossible in the presence of
detector noise and losses. These can be naturally taken

into account in the wider framework of MCMs. There is
scope to further explore our scheme, including the possi-
bility of optimising over various parameters which were
already assumed.
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Abstract. Maximally entangled single-particle states (MESPS) can encode more information and are
robust to decoherence compared to their nonlocal counterparts. Using discrete-time quantum-walks on
k-cycles where k ∈ {3, 4, 5, 8} and by using either a single coin or effective-single coin or two coins in
deterministic sequences, we generate MESPS for recurring time-steps, with periods 4, 6, 9, 12, and 15.
For the first time, we reveal single coins like Hadamard can generate periodic MESPS on 4 or 8-cycle.
This resource-saving scheme has a straightforward experimental realization and can be used in quantum
cryptography with a MESPS public key.

Keywords: Entanglement, Single particle, Quantum walks, Cryptography

1 Introduction and our scheme

Quantum walks (QWs) are promising prime candidates
for universal quantum computation, quantum simula-
tions and efficient quantum algorithms [1, 2, 3, 4]. More-
over, QWs are used to explore and simulate exotic topo-
logical phases (edge states, Majorona modes etc.) [5]
and to understand various complex physical and biolog-
ical processes [6, 7]. QWs are achievable in labs using
photons [8, 9, 10], trapped ions [11, 12], superconducting
qubits [13, 14], neutral atoms [15, 16], NMR quantum
information processors [17] and ultra-cold Rubidium-87
atoms [18].
Hybrid or single particle entanglement (SPE) enables

encoding huge information even at a single particle level,
as the entanglement is between different degrees of free-
dom like polarization, spatial mode and orbital angu-
lar momentum etc., belonging to the same particle [19].
Thus, SPE is resource-saving as well as it is more ro-
bust against decoherence and dephasing than its non-
local counterparts. It has applications in analysis of
states of photons, quantum liquids, and elementary par-
ticles as well as in the engineering of single photon quan-
tum devices, and photonic quantum information. SPE
is also a useful resource for quantum technologies such
as quantum communication and quantum key distribu-
tion or QKD [19, 20, 21]. Exploiting QWs to generate
controlled SPE is of phenomenal importance. In a re-
cent work [22] we generate recurrent SPE via discrete
time QWs on k-cycle (i.e., cyclic graph with k number
of sites), using various deteministic evolution sequences
with single coin, effective single coin or two coins.

2 Results

In our scheme, the QW evolve from the separable
and pure initial state, |ψ(t = 0)⟩ = cos

(
θ
2

)
|0p, 0c⟩ +

eiϕ sin
(
θ
2

)
|0p, 1c⟩ with θ ∈ [0, π] and ϕ ∈ [0, 2π]. Here,

the QW coin space has computational basis {|0c⟩ , |1c⟩},
∗dineshkumar.quantum@gmail.com
†colin.nano@gmail.com

whereas, the position space has computational basis
{|xp⟩ : xp ∈ {0, 1, 2, ..., k − 1}}. The full evolution op-

erator of the QW is, Uk = Ŝ.[Ik ⊗ Ĉ2] where, Ŝ and Ĉ2

are respectively be the shift and general coin operators,
see [22]. Entanglement entropy (E) is used to quantify
the entanglement between the coin and position degrees
of freedom of the time-evolved quantum state |ψ(t)⟩ [23].
We find several single-coin , effective single coin and
two-coin evolution sequences which yield maximally en-
tangled single particle states(MESPS) via the QW from
the separable initial state with ϕ = π, π2 . For MESPS,
Eav = 1, where Eav is E averaged over θ. Along with
general coins, we also use commonly used coin operators
like Hadamard (Ĥ), Fourier (F̂ ), Grover (X̂), identity
(Î) etc., in the QW evolution.

H4H4H4 H8H8H8 C4C4C4

0 5 10 15 20 25 30 35
t0.0

0.2

0.4

0.6

0.8

1.0

Eav

Figure 1: Average entanglement entropy Eav versus time
steps(t) with single coin evolution sequences H4H4H4...,
C4C4C4... for 4-cycle and H8H8H8... for 8-cycle.

We for the first time, we report the single coin evolu-
tion sequences H4H4H4... and C4C4C4... which individ-
ually yields recurrent MESPS on a 4-cycle with periods
4 and 12 respectively, see Fig. 1. Apart from that, we
showed that the single coin evolution sequenceH8H8H8...
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Figure 2: Eav versus time steps(t) with sequences:
H3I3I3..., H3I3..., H3H3X3..., H3X3..., for 3-cycle.

generates periodic MESPS at t = 1, 13, 25, ... (with pe-
riod 12) on a 8-cycle. These sequences renders periodic
or ordered QW too. An analytical proof for periodic QW
supports the recurrent MESPS generation has been es-
tablished and more than one MESPS can occur within
the period of the QW, see [22].
We also see that employing the evolution sequeces

H3H3X3..., H3I3I3..., andH3X3H3X3... on a 3-cycle one
can obtain MESPS at all time steps up to 10, whereas
on a 4-cycle their analogues give MESPS at all odd time
steps t ≤ 10, see Fig. 2. As these sequences also beget
periodic QWs; thus, one obtains MESPS at larger time
steps (t > 10) as well. Moreover, it is interesting to ob-
serve that with just evolution sequences H5H5X5... and
H5I5I5..., one can generate MESPS for all time steps
t ≤ 10 and also at larger t, on a 5-cycle. In fact,
only H5H5X5... by itself yields MESPS at time steps
t = 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, ... with period 15.

Use in quantum cryptography–The periodically
generated MESPS via our scheme can be used in quan-
tum cryptography. We use the MESPS as the public key
and we encode the message using it and the decryption
requires a measurement based on the evolution sequence
that generates the periodic MESPS. For details, see [22].

3 Summary

Our work [22] provides a novel scheme to generate
maximally entangled single particle states or MESPS
via DTQWs on both odd (3,5)- and even (4,8)-cycles,
with just a single coin and with both resource-saving
effective-single coin and two-coin deterministic evolution
sequences. These deterministic sequences, along with
generating MESPS for recurring time-steps yield the
MESPS with periods 4, 6, 9, 12, and 15. For the first
time, we reveal single coins like Hadamard that can gen-
erate periodic MESPS on a 4 or 8-cycle. This resource-
saving scheme has a straightforward experimental real-
ization and can be used in quantum cryptography with
a MESPS public key.

One can experimentally implement our proposed

scheme using linear optical elements, wherein the pho-
ton’s polarization degree of freedom encodes the coin
state with the position state is encoded into different
time bins of the photon [24, 25]. Apart from opening
a unique avenue for MESPS generation, our work sig-
nificantly outperforms other existing schemes in terms
of model simplicity and resource-saving architecture and
periodically yields MESPS at both small and large time
steps [22]. We provide a Python code for numerical ex-
periments in [22].

Our findings naturally raise new intriguing research
questions: What is the interplay between disorder and
entanglement (both hybrid and nonlocal) generation for
1D or higher dimensional walkers? Can this scheme be
adapted to further improve existing cryptography pro-
tocols [26, 27]? Investigations into these directions may
lead to significant results which foster new local or non-
local entanglement generation schemes and their appli-
cations.

Our presented work will significantly contribute to-
wards state-of-art controlled (maximal) entanglement
generation protocols, which is a fundamental resource
in quantum computing, teleportation, and cryptography
and hence, a prerequisite to constructing reliable devices
for quantum information processing tasks.
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Operational quasiprobability approach
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Abstract. We characterize a bipartite entanglement in a realistic silicon double quantum dot platform.
Arbitrary two-qubit entangled states are generated by conducting a single-qubit rotation and a controlled-
NOT operation. To quantify the entanglement, we employ a marginal operational quasiprobability (OQ)
function, which serves as a reliable entanglement witness even in the presence of significant noise. We here
discuss how the entanglement characteristic of the Si DQD structure are affected by charge noises which
is omnipresent in semiconductor devices.

Keywords: Entanglement, Silicon quantum dot, Operational quasiprobability

1 Introduction

Quantum correlations, such as entanglement, play a
crucial role in quantum information technologies, pro-
viding advantages over classical counterparts in quantum
computing, quantum communication, quantum metrol-
ogy, and so on. Thus, the quantification of the quantum
correlations is important as it can be used to explore the
potential practicality in information processing e.g., suit-
able states of certain quantum circuits. Especially, we
here study the characterization of the quantum entan-
glement. To this end, we employ a marginal operational
quasiprobability (OQ) function that allows negative val-
ues of the function if a given state is entangled [1]. We ap-
ply the marginal OQ method to the electron-spin qubits
in a silicon (Si) double quantum dot (DQD) platform,
where a single-qubit rotation and a two-qubit controlled-
NOT operation are conducted sequentially in time to gen-
erate arbitrary two-qubit entangled states.

2 Method

We use a newly defined quasiprobability function for
discrete systems, which is linked to experimental situ-
ations in which incompatible observables are measured
consecutively. It turns out that the OQ function method
identifies the nonclassicality of quantum systems in an
operational way. Furthermore, for multipartite systems
the marginal OQ function can be used as an entangle-
ment witness. In principle, the OQ approach is advan-
tageous over the entanglement verifications involving the
full state tomography process in a sense that our method
can be calculated with directly measurable quantities in
laboratory and requires less number of measurements to
characterize the entanglement.

The N -qubit OQ function is defined by applying a
discrete Fourier transform on the composite expectation

∗elec1020@kisti.re.kr

value C(n1, . . . ,nN ) ≡ C(n1)⊗ · · · ⊗ C(nN ) as

W(a1, . . . ,aN ) ≡ 1

2NK

∑
n1,...,nN

(−1)−a1·n1···−aN ·nN

× C(n1, . . . ,nN ), (1)

where a tuple ni = (ni1, n
i
2, . . . , n

i
K) represents possible

measurement configurations for i-th subsystem having K
measurement operators and ai · ni =

∑
k a

i
kn

i
k. The ex-

pectation value C(n1, . . . ,nN ) represents the measure-
ment configurations that are implemented in a laboratory
(see Ref. [2] for more details). We consider the following
formula to quantity the entanglement

N ≡ 1

2

∑
a

(|W(a)| −W(a)) . (2)

The value N indicates the sum of the negative compo-
nents of the OQ function, thus the case of N > 0 can be
regarded as the indicator of the entanglement for given
quantum systems.

Our working example is the two-qubit time responses
that are generated from a Si DQD system. A 2D simu-
lation domain of DQD structure reported in [3] encodes
qubits to electron spins that are created with quantum
confinement driven by biases imposed on top electrodes,
see Figure 1(a). The DQD system is initialized to a |↓↓〉
state by filling the ground down-spin state of the left and
right quantum dot with a single electron. To this end,
we set the left (VL) and right gate bias (VR) to 555mV.
For the middle gate bias (VM), we consider two cases:
(a) 400mV with an exchange energy (J) of 76KHz (weak
interaction) and (b) 407.5mV with 18.4MHz (strong in-
teraction) respectively, as shown in Figure 1(b). A spatial
distribution of the static magnetic field that is generated
by a horseshoe-shaped cobalt micro-magnet in the real
case [3] is utilized as an input of simulations. The result-
ing Zeeman-splitting energy of the left (EZL) and right
spin (EZR) turn out to be 18.31GHz and 18.45GHz re-
spectively. All these conditions imply that we are able to
implement a single-qubit rotation and a two-qubit gate
operation to the initial state by controlling the middle
gate bias (VM).
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Figure 1: (a) A 2D simulation domain for our case. The real DQD structure [3] is long along the Z([001])-direction,
thus it is described in a 2D manner with a periodic boundary condition along the Z-direction. (b) J given as a function
VM for VR = VL = 555mV. In our case, J ∼ 76KHz and 18.4MHz when VM = 400mV and 407.5mV, respectively.
(c) (i) For the strong interaction (VM = 407.5mV), the fastest CNOT operation can be achieved in ∼1.05×10−7 (λ)
seconds upon the system intialization. The gate fidelity of the CNOT operation becomes 98.35%. (ii) For the weak
interaction (VM = 400mV), we can make only the right spin oscillate by setting the frequency of AC pulse equal to
the Zeeman-splitting energy of the right spin. (iii) A conceptual illustration for time-dependent control of VM and
resulting two-qubit unitary gate that generates the entangled states. (d, e) The fidelity of the two-qubit unitary and
the corresponding output state at τ = 4.99×10−8 seconds (the time spot when the output state is maximally entangled)
are shown as a function of δJ , which represents the unintentional variation of J with respect to its noise-free value.

3 Results

In order to characterize the entanglement, we em-
ploy the marginal OQ method with the two measure-
ment operators. In general, the OQ function can be
constructed by using the positive operator-valued mea-
sure (POVM) measurements, but we here consider only
two projective measurements defined by the Pauli ma-
trices for cost-efficient calculations [1]. By calculating
the negative values of the marginal OQ function, we can
quantify the entanglement. The states are generated by
the sequential application of a Rx(α) and a CNOT op-
eration, thus the output can be expressed by |ψ(α)〉 =
cos(α/2) |00〉 − i sin(α/2) |11〉. The noise-driven charac-
teristic of entanglement is also investigated by changing
the noise-free exchange interaction J to J×(1+δJ) as we
treated to simulate the fidelity shown in Figure 1(c) and
Figure 1(d).

Figure 2(a) shows the results of the noise-free case
(δJ = 0) as a function of the time τ . The blue (nor-
malized) and green (raw) lines indicate the entangle-
ment strength calculated with the marginal OQ method,
and the red line is the one obtained with the negativity

method. The maximal strength reads 0.2348 (green line)
at τ = 4.99×10−8 seconds. Note that there exist the in-
tervals of τ where our method cannot characterize the en-
tanglement precisely, which is because the marginal OQ
function is constructed by using only two measurement
operators for the cost-efficient calculations.

We also explore the behavior of the entanglement char-
acteristic when the Si DQD platform suffers from the
charge noises (δJ 6= 0), which is omnipresent in semicon-
ductor devices. Figure 2(b) shows the results of the noise-
driven degradation in fidelity and in the marginal OQ
method. The noise-driven pattern of entanglement char-
acterization does not necessarily follow that of fidelity,
and the output state of the noisy two-qubit operation
still has meaningful strength of entanglement. We find
that while the charge noise causes huge degradation in
the state fidelity, it has a weaker effect on the entan-
glement resource. In a highly noisy environment, the
state fidelity drops to around 20%, but more than 70%
of the resource can be retained for maximally entangled
Bell states. It should be noted that as shown in Figure
1(d) and 1(e), the gate and state fidelity are sensitive to
charge noises, and are sharply reduced as δJ increases.
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Figure 2: (a) The results of the noise-free case (δJ = 0)
as a function of the time τ . (b) The results of the noise-
driven degradation in state fidelity and OQ method.

However, Figure 2(b) clearly shows that when the noise
is too strong the results we present can be still fairly solid
enough to claim the utility of the marginal OQ method as
a cost-efficient indicator of entanglement strength, where
the cost-efficiency of our method against the negativity
method will sharply increase as the size (in qubits) of
targeted quantum states increases.
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Abstract. Two-photon absorption (TPA) is a non-linear optical process with wide-ranging applications
from spectroscopy to super-resolution imaging. Discrete-variable quantum states are optimised to maximise
the quantum Fisher information (QFI) for given losses to find optimal probes for TPA parameter estima-
tion. Our found optimal probes yield a quantum advantage compared to both the coherent state classical
benchmark and the single-mode squeezed vacuum state, while also having a relatively simple structure and
loss-dependent character. Further, photon counting is demonstrated to offer optimal or nearly optimal
performance compared to the QFI bound and our findings help to explain the already-known behaviours
of Gaussian probes.

Keywords: two-photon absorption, parameter estimation, quantum metrology, optimisation

1 Introduction

The study and use of non-classical quantum states of
light is ubiquitous in quantum technologies, providing
a potential resource for achieving a quantum enhance-
ment in tasks such as metrology [1, 2], imaging [3] and
spectroscopy [4]. Of particular interest are their possi-
ble role within non-linear light-matter interactions with
one example, the subject of this work, being two-photon
absorption (TPA). Notably, squeezed light sources have
particular significance since their absorption probabil-
ity scales linearly with the intensity of the light field,
as opposed to the quadratic scaling observed with laser
light [5, 6, 7, 8, 9, 10]. This effect may thus potentially
enable non-linear spectroscopy and microscopy at low
photon fluxes, in turn enabling the exploitation of TPA-
based protocols for the interrogation of photosensitive
samples or even living organisms [11, 12, 13, 14, 15, 16]
while mitigating their degradation.
Recent years have seen a multitude of ongoing devel-

opments in quantum-enhanced protocols using states of
light, owing to greater interest in quantum sensing and,
alongside it, a greater wealth of experimental tools pro-
viding access to new quantum light sources and means
for their utility [17, 18]. With respect to quantum-
enhanced absorption measurements, first interest was in
the regime of single-photon absorption [19, 20] finding
that Fock states at any fixed photon number (n̄) satu-
rate the ultimate bound of precision given by 1/4n̄ for a
single run [21, 22].
More recently interest has been targeted towards

TPA [23, 24] focusing on the quantum metrological prop-
erties of Gaussian states of light, namely squeezed vac-
uum and coherent states, for TPA parameter estimation.

∗athena.karsa@gmail.com
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Detection

ρ̂0 ρ̂ε

TPA

Figure 1: Schematic diagram of two-photon absorption
(TPA). An input quantum state ρ̂0 is prepared and sub-
sequently evolves via propagation through some TPA
medium into output state ρ̂ε before being measured.

Such states can straightforwardly be expressed in terms
of a unitary operation acting on the vacuum, which in
turn allows for a simplification of the TPA analysis which
is valid only in the regime of extremely low TPA rates.
While it is possible to consider this regime a valid one,
since typical TPA cross-sections are generally small, it
fails to allow for the study of arbitrary quantum states
whose generation from the vacuum are non-trivial. Fur-
ther, it fails to enable one to compare their metrological
potential across all possible scales of loss, which is crucial
for making accurate, practical comparisons which may
also factor in experimental inefficiencies.

In this work, a general discrete-variable quantum state
is optimised to maximise the QFI for fixed TPA pa-
rameter value. We propose a prospective, theoretically-
optimal single-mode quantum probe; the properties
of which provide insight into the loss-dependent be-
haviours for three particular quantum states, the coher-
ent, squeezed vacuum and Fock state, to which our opti-
mal probe is compared. While it turns out that for TPA
the Fock state is not optimal for all losses and energies,
superpositions of definite photon number states are and
their underlying constituents are a direct function of the
TPA loss parameter.
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2 Quantum metrology of two-photon ab-
sorption

2.1 Limits on measurement sensitivities

Parameter estimation theory states that the error of
an estimator ε̂ of the true value of parameter ε is given
by the mean-square error ∆2ε = ⟨(ε̂− ε)

2⟩, where ⟨. . . ⟩
denotes the average over all measurement results. For
an unbiased estimator, its precision ∆ε is limited by the
quantum Cramér-Rao bound (CRB), ∆2ε ≥ 1

NFQ
, where

N is the number of repetitions of a given measurement
and FQ is the quantum Fisher information (QFI).
For a given positive-operator-valued measure (POVM)

{Π̂k}, with Π̂k ≥ 0 and
∑

k Π̂k = 1̂, one is generally able
to achieve the classical Fisher information (CFI),

FC(ρ̂ε, Π̂k) =
∑
k

Pk(ε)

(
d

dε
logPk(ε)

)
, (1)

where Pk(ε) = Tr
[
Π̂kρ̂ε

]
is the probability of measure-

ment outcome k. Then, the CRB becomes

∆2ε ≥ 1

NFC
≥ 1

NFQ
, (2)

where the second inequality is saturated for an optimal
measurement choice, i.e., FQ = max{Π̂k} FC.
Given a parameter dependent state ρ̂ε the correspond-

ing QFI may be readily computed as

FQ = Tr
[
L̂2
ερ̂ε

]
, ∂ερ̂ε =

1

2

(
L̂ερ̂ε + ρ̂εL̂ε

)
, (3)

where L̂ε is symmetric logarithmic derivative (SLD),

L̂ε = 2
∑
k,l

⟨l| (Lρ̂) |k⟩
λk + λl

|l⟩⟨k| , (4)

defined for all λk + λl > 0. The optimal measurement
setup which saturates the quantum CRB is one consti-
tuting the POVM made up by a set of projectors over
the eigenbasis of the SLD operator, L̂ε.

2.2 Master equation

Consider the transmission of a quantum state of light
through a TPA medium, as depicted in Fig. 1, whose sub-
sequent dynamical evolution is modelled by the Marko-
vian Lindblad equation

˙̂ρ = γLρ̂ =
γ

2

(
2L̂ρ̂L̂† − L̂†L̂ρ̂− ρ̂L̂†L̂

)
. (5)

Here, the Lindblad operator is given by the two-photon
loss operator L̂ = â2/

√
2 and its Hermitian conjugate

where â(â†) denotes the photon annihilation(creation)
operator of the field. The goal for metrological appli-
cations of TPA is to measure the absorbance ε ≡ γt,
where t is the propagation time of the illuminating field
of light through the medium and γ is its loss rate.
Two-photon field dissipation, governed by Eq. (5) [25,

26, 27, 28], has a algebraic solution which yields the out-
put density matrix after a certain loss ε (see Ref. [29]).
For arbitrary input quantum states ρ̂0, this form can be
used to compute the corresponding output states ρ̂ε after
TPA evolution in terms of its Fock state representation.

3 Results and Discussion

3.1 Optimal states for TPA quantum metrology

Consider an optimisation procedure whose goal is to
maximise the QFI by varying the coefficients of some ar-

bitrary quantum state |ψ⟩ =
∑Ñ

n=0 cn |n⟩, with n ≥ 0.
The mean value is fixed, i.e.,

∑
n nc

2
n = n̄ and, physi-

cality in terms of unit trace is preserved. A nested opti-
misation algorithm is used whose first part searches for
a global optimum, based on the evolutionary algorithm
library EvoTorch [30], and the output forms the seed of a
subsequent ADAM optimiser which fine-tunes the result
through gradient descent.

The results of the optimisation are shown in Fig. 2 for
mean photon numbers n̄ = 2 and 3. Note the reparam-
eterisation Γ = 1 − exp(−ε) ∈ [0, 1], which physically
represents the probability of TPA for a two-photon Fock
state input, under which, the time evolution of the den-
sity operator, Eq. (5), is recast as ˙̂ρ → 1

1−Γ
˙̂ρ. The lower

panels plot the expectation values |cn|2, with maximum
occupation number set to Ñ = 10, across all losses, Γ, re-
vealing a definite, loss-dependent behaviour on the form
of the optimal probes and an underlying discrepancy be-
tween the behaviours of even and odd photon number
states. Our choice of plotting |cn|2 as opposed to cn is
due to the fact that QFI is phase-invariant.

For even n̄, the optimal quantum state takes the form

|ψ⟩opt =
√
1− n̄

Ñ
|0⟩+

√
n̄

Ñ

∣∣∣Ñ〉
, (6)

where Ñ ≡ Ñ(Γ), varying across loss values such that
Ñ(Γ = 0) → ∞ and Ñ(Γ = 1) → n̄. In the limit ε → 0,
the QFI of |ψ⟩opt scales as

FQ(|ψ⟩opt) ≃
n̄(Ñ − 1)

2ε
. (7)

In the case where n̄ is odd, the optimal probe for short
to intermediate losses is the same as in Eq. (6). In the
asymptotic limit of large losses, however, the optimal
probe is an equal superposition of the lowest-lying even
number states available for maintaining n̄, given by

|ψ⟩opt =
1√
2
(|n̄− 1⟩+ |n̄+ 1⟩) . (8)

These findings provide further insight into prior liter-
ature’s noted behaviour for coherent and squeezed vac-
uum states: in the limit of ε→ 0, the coherent state QFI
and photon-counting CFI saturates at n̄3 + 1

2 n̄
2 while

the squeezed vacuum state’s CFI is ∼ 10n̄2. For rela-
tively low energies, n̄ ≲ 10, the squeezed vacuum is able
to obtain higher precision than the coherent state even
with sub-optimal photon counting. At these energies,
however, the heavy-tailed distribution of the squeezed
vacuum state naturally emulates our proposed optimal
probe while the coherent state remains narrowly dis-
tributed around its mean. As the mean energy is pro-
gressively increased, the optimal probe becomes closer in
distribution to the pure Fock state to which the coherent
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Figure 2: Panels (a) and (b) plot the QFI of the Fock
state (F), coherent state (CS) and squeezed vacuum state
(SV) compared to the optimal probe. Panels (c) and (d)
show the associated coefficients cn of the computationally

derived optimal probe |ψ⟩ =
∑Ñ

n=0 cn |n⟩ which yields
maximal QFI for TPA parameter estimation, across all
loss Γ. Results are given for mean values of n̄ = 2, for
(a) and (c), and n̄ = 3, for (b) and (d). Also shown in
(b) is the optimal probe in the limit of large loss which is
an equal superposition of the lowest-lying even number
states available to yield the required mean.

state’s photon number distribution more closely resem-
bles, allowing it to out-scale the squeezed vacuum. This
behaviour can also be seen outside the limit of vanishing
loss: intermediate to high losses show the optimal probe
comprising of Fock states becomes increasingly centered
around its mean; here the coherent state yields higher
precision than the squeezed vacuum.
When the probe is of the form of Eq. (6) the opti-

mal measurement is, remarkably, simple photon count-
ing. The only non-zero off-diagonal terms in the den-
sity matrix are between the state with Ñ photons and
the vacuum. In turn, the corresponding SLD opera-
tor is, in the Fock basis, identical to that as for the
non-superposition (mixture) state except for terms corre-
sponding to the vacuum from which no information can
be obtained. This applies to all possible states with even
and sub-unity means. When the mean photon number is
odd, however, correlations exist between the lowest lying,
non-zero even-number states which all contribute to the
QFI. However, in the large loss limit where these states
are truly optimal, those contributions become negligible
and photon counting is very nearly optimal.
Finally, the discrepancy that exists between the be-

haviours of odd and even Fock states, illustrated in Fig. 3,
can be explained through the decay rate of their respec-
tive contributions to the QFI as loss increases. For any
state |n⟩, the probability that TPA does not occur is

e−
n(n−1)

2 ε. For Fock states with n ≥ 4, multiple transi-
tions are available adding to the overall transition prob-

abilities, but the decay rates are, at most, ∝ n(n−1)
2 . To

illustrate this further, first note that the QFI takes the
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Figure 3: TPA parameter estimation QFIs for even and
odd Fock states, weighted for means: (a) n̄ = 2 and (b)
n̄ = 3 (states with Ñ = n̄, . . . , 6)). Differing behaviours
between even and odd Ñ across Γ are responsible for the
crossovers seen in Gaussian states and the form of the
optimal probe.

simplified form (for states diagonal in the Fock basis),

FQ =
∑
k

L̂2
kρ̂ε,k =

∑
k

1

hk
g2k =

∑
k

1

hk

(
∂hk
∂ε

)2

, (9)

hk =

k∑
l=0

(−1)l

(k − l)!l!

n!

(n− 2k)!

e−
ε
2 (n−2k+2l)(n−2k+2l−1)

Fkl(n− 2k)
.

(10)
Then, the square of this decay rate yields a minimal

pre-factor such that the limited number of transitions
available can, in the large loss limit, never compensate
for their respective decay rates. For intermediate losses,
it is sufficient to dominate the increased decay rate allow-
ing odd Fock states to yield higher QFIs in this region.
At maximal loss (Γ → 1) we observe a stark contrast
between even and odd number state QFIs: the former

again diverges ∼ n(n−1)
2ε , while the latter goes to zero.

4 Conclusion

We have extended the analysis of quantum-enhanced
TPA parameter estimation to consider behaviours across
all scales of loss and have included results for non-
Gaussian probes, specifically the Fock state. This study
reveals a striking difference in behaviours of even and
odd Fock states: the latter’s QFI dominates in the inter-
mediate regime while in the limit of infinite loss, tends
towards zero. Here the QFI of even number states di-
verge, as both do in the limit of small loss.

Optimal probes for TPA parameter estimation for fixed
means are discovered. They take the form of a super-
position of the vacuum and, for increasing absorbance,
progressively decreasing-energy odd Fock states, reduc-
ing to the pure Fock state in the large loss limit. Here
photon counting is shown to saturate the QFI/ In the
case of odd or sub-unity means, the optimal probe for
large losses is an equal superposition of the lowest-lying
even number states which maintain the mean and photon
counting forms a very nearly optimal measurement.

Future research could extend this to uncover the ef-
fects of further loss arising from potential experimental
inefficiencies. In addition, an analytical solution for the
form of the optimal truncation number as a function of
loss, as well as its precision limit, would be of value in
guiding potential future implementations.
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Intrinsic randomness under general quantum measurements
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Abstract. Quantum measurements can produce unpredictable randomness arising from the uncertainty
principle. When measuring states with projection measurements, the intrinsic randomness can be quantified
by block coherence. Unlike projection measurements, there are additional and possibly hidden degrees of
freedom in apparatus for generic measurements. We propose an adversary scenario to characterize the
intrinsic randomness of general measurements with arbitrary input states. Interestingly, we discover that
certain measurements generate nonzero randomness for all states, which suggests a new approach for
designing source-independent random number generators without state characterization. Furthermore,
our proposed intrinsic randomness can quantify coherence under general measurements.

Keywords: Intrinsic randomness, general measurements, quantum random number generators, quantum
coherence

Introduction. — Quantum measurements can pro-
duce randomness arising from the uncertainty principle
[1]. As shown in Figure 1, a measurement process is
typically composed of a source characterized by a quan-
tum state [2, 3] and a detector calibrated by a quan-
tum measurement [4, 5]. Randomness generation can
be put in an adversary scenario. Roughly speaking, in-
trinsic randomness represents a part of the measurement
results about which the adversary, Eve, has no informa-
tion. When measuring a state with projection measure-
ments, Eve might have a certain correlation with the sys-
tem. The intrinsic randomness can be quantified by the
quantum coherence of the state on the measurement ba-
sis [6, 7, 8, 9, 10, 11, 12]. Yet for a general measure-
ment described by a positive operator-valued measure
(POVM), Eve might also have a correlation with the
measurement device. How to quantify intrinsic random-
ness of the outcomes from a generic measurement is a
basic problem in quantum information theory. From an
experimental perspective, as noise is inevitable, random-
ness evaluation from POVM is also of practical interest.
But unlike projection measurements, there are additional
and possibly hidden degrees of freedom in apparatus for
generic measurements, making it a difficult problem.

To solve the intrinsic randomness quantification prob-
lem under general measurements, we propose an adver-
sary scenario for general measurements with arbitrary
input states, based on which, we characterize the in-
trinsic randomness. Interestingly, we discover that un-
der certain measurements, such as the symmetric and
information-complete (SIC) measurement, all states have
nonzero randomness, inspiring a new design of source-
independent random number generators without state
characterization. Furthermore, our results show that in-
trinsic randomness can quantify coherence under general
measurements, which generalizes the result in the stan-

∗dhao@mail.tsinghua.edu.cn
†chen-by19@mails.tsinghua.edu.cn
‡zhang-xj18@mails.tsinghua.edu.cn
§xma@tsinghua.edu.cn

dard resource theory of state coherence.

Figure 1: The source sends quantum signals in the state
of ρ to the measurement device, which outputs a sequence
of random numbers. Eve could have a certain correlation
with the devices, where she could possess the purification
of ρ on the source side and know the construction of the
detection on the measurement side.

Figure 2: From Alice’s perspective, the measuring pro-
cess is described by POVM M, depicted as the dashed
box. Alice inputs state ρA and obtains classical outputs
from the box. The ancillary system is generally in a
mixed state σQ. Both the source and the ancilla could
be entangled with Eve.

Process modelling. — For a POVM M =
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{M1, · · · ,Mm} on d-dimensional Hilbert space H, each

element can be expressed as Mi = AiA
†
i , where Ai is

called a POVM operator and generally not a square ma-
trix. When measuring a state ρ, the probability of ob-
taining the outcome i is given by tr(Miρ) and the cor-

responding post-measurement state is AiρA
†
i/ tr(Miρ).

The set of operators {Ai} uniquely determines the im-
plementation of the measurement — instrument. When
M is a projection measurement, also called projection-
valued measure (PVM), Mi = Ai, which means that the
implementation is unique. A general POVM generally
corresponds to many possible implementations or differ-
ent sets of operators, {Ai}. This is the challenging part
of the randomness quantification of POVMs.

To quantify the amount of intrinsic randomness, the
first task is to construct an adversarial perspective and
examine what side information Eve may use in eavesdrop-
ping. In a quantum random number generator (QRNG),
Alice first prepares a state, ρA, and then measures it with
the POVM, M. Apart from her knowledge of the form of
these operators, Eve may correlate her system to ρA and
M as well. For ρA, the best Eve can achieve is to hold
the purified system [13]. Similarly, for M, Eve can also
hold a “purified” process which means that the measure-
ment on the joint system is a PVM. In the most general
scenario, Eve puts a state σQ in the measurement device
and holds the purification of σQ. Then, Alice’s device
actually performs an extended measurement on both ρA

and σQ, as shown in Figure 2.
From Alice’s viewpoint, the measurement is calibrated

to act on system A; in other words, Alice is unaware
of σQ hidden in her measurement device. Generally, as
Alice can change her input state, one would expect the
measurement device to enjoy a consistent description for
all possible input states on system A, or, the same POVM
elements [14]. Mathematically, the consistency condition
can be formulated as ∀i,

Mi = trQ[Pi(1
A ⊗ σQ)]. (1)

For simplicity, we shall omit the superscript A and Q
when there is no confusion in the following discussions
and denote the states ρ and σ as Alice’s state and the
ancillary state, respectively.

With the adversarial scenario in hand, we can see that
Eve has the freedom to choose an extended PVM, P, and
the corresponding ancillary state σ satisfying the consis-
tency condition. In the randomness analysis, we need
to minimize over all possible Eve’s strategies, and the
intrinsic randomness is now given by

R(ρ,M) = min
P,σ

R(ρ⊗ σ,P),

s.t. ∀i, Mi = trQ[Pi(1
A ⊗ σQ)],

(2)

where R(%,P) is a specific randomness function of PVMs.
For example, R(%,P) can be taken as relative entropy of
block coherence or block coherence of formation.
Main results. — Let us first check out a special case

where the POVM is extremal, which cannot be decom-
posed into a linear mixture of other POVMs and includes

PVMs [15]. This is an analog to a pure state, which is
often considered to be decoupled from the environment.

Theorem 1 For an extremal POVM M and a fixed in-
put state ρ, all the generalized Naimark extensions give
the same amount of randomness.

Then, we can skip the minimization problem in Eq. (2)
and employ any extension for the randomness function.
In practice, we can take a canonical extension of M [16],
denoted by Pc,

R(ρ,M) = R(ρ⊗ |0〉〈0| ,Pc). (3)

A general POVM can be decomposed to extremal ones,
just like a mixed state can be decomposed to pure states.
In the generalized Naimark extension as shown in Figure
2, assume Eve performs measurements on her system F .
Then the ancillary state can be decomposed into a mix-
ture of pure states and the POVM can be decomposed
correspondingly. As a result, Eq. (2) gives a convex-roof
construction of intrinsic randomness, as presented in the
following theorem.

Theorem 2 When Eve performs a measurement on her
system F , the intrinsic randomness of POVM outcomes
is given by,

Rcf (ρ,M) = min
{Nj ,rj}

∑
j

rjR(ρ,Nj),

s.t. M =
∑
j

rjN
j ,

(4)

where the decomposed POVMs {Nj} are all extremal and
the randomness function R(ρ,Nj) is given by Eq. (3).

Table 1: Existing randomness evaluation and coherence
measures. In the last column, we show a simple example
of a specific POVM, under which no randomness or co-
herence should be generated. A measure cannot quantify
randomness or coherence properly for general measure-
ments if it gives a non-zero evaluation result for some
states.

Ref. randomness coherence measurement {1/2,1/2}
[11] X X von Neumann not applicable
[17] X × POVM failed
[18] X × POVM qubit only

[19, 20] × X POVM failed
Our work X X POVM succeed

Comparison with previous works. — In the liter-
ature, there are some attempts on randomness evaluation
[17, 18] and coherence measures [19, 20] under POVMs,
as listed in Table 1. Unfortunately, the existing measures
cannot properly quantify randomness or coherence under
the most general measurements. Consider a the POVM
M = {1/2,1/2}, the outcome is independent of input
states. Then, it can be seen as a classical random variable
taking values 0 and 1 with an equal probability. Thus, all
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states should have zero randomness or coherence under
this measurement. Yet for this seemingly simple exam-
ple, the existing measures either fail to accord with our
intuition or suffice only for the qubit case. On the other
hand, our results provide a consistent quantification for
the general cases.
Applications. — Quantification of intrinsic random-

ness has direct applications in QRNGs. After quantifying
randomness for the measurement outcomes with respect
to a given POVM, we find that non-random states may
not exist for certain measurements. For example, there
does not exist a non-random state for SIC measurement.
Moreover, we can evaluate the lower bound of intrinsic
randomness, R(M) = minρR(ρ,M).

Theorem 3 For a SIC measurement M, a lower bound
of intrinsic randomness is given by,

R(M) > log

(
d+ 1

2

)
, (5)

where d is the dimension of the corresponding space.

Theorem 3 inspires a new design of source-independent
random number generators without state characteriza-
tion.
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Abstract. Quantum embedding is the essential first step in quantum machine learning, and has sub-
stantial impacts on performance outcomes. In this study, we present Neural Quantum Embedding (NQE),
a novel approach that efficiently optimizes quantum embedding by harnessing classical deep learning tech-
niques. By employing NQE, we effectively enhance the lower bound of the empirical risk, leading to
substantial improvements in classification performance. Moreover, NQE enhances algorithmic robustness
against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices for
image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96.

Keywords: Quantum machine learning, Variational quantum classifier, Quantum feature mapping,
Quantum error mitigation

1 Introduction

Quantum machine learning (QML) is a rapidly grow-
ing field that focuses on developing quantum algorithms
and techniques to solve various machine learning prob-
lems. To apply QML algorithms on tasks involving clas-
sical data, the data must be mapped into a quantum
state [1–18]. This process is called quantum embedding,
and it is important as it can vastly affect the performance
of the algorithms [19–21]. A well-designed quantum em-
bedding can reduce the number of qubits required to rep-
resent the data, which can also reduce the computational
cost of the algorithm. Furthermore, quantum embedding
has the potential to represent feature-related correlations
that may not be explicitly present in the classical data.
These additional features can contribute to enhancing
the classification accuracy of quantum machine learning
algorithms.
For quantum binary classification tasks, the optimal

lower bound of the empirical risk is determined by the
trace distance between the two data ensembles (Sec-
tion 2). As the trace distance between two quantum
states is contractive under all quantum operations, hav-
ing a large trace distance in the initial quantum embed-
ding phase is crucial for successful classification. More-
over, it makes training robust against the noise as the
data are separated further from the decision boundary. In
this study, we present neural quantum embedding (NQE),
which utilizes the power of classical neural network and
deep learning to achieve trainable quantum embedding
that is optimized for the given problems. With the
numerical simulations, we demonstrate that NQE suc-
cessfully improves quantum embedding by increasing the
trace distance between the embedded ensembles. Exper-
iments with IBM quantum devices further support the
effectiveness of NQE on the performances of QML algo-
rithms under noisy environments.

∗takh0404@yonsei.ac.kr
†ifa@yonsei.ac.kr
‡dkd.park@yonsei.ac.kr

2 Quantum Supervised Learning

In supervised learning, the primary objective is to iden-
tify a prediction function f that minimizes the true risk
R(f) = E[l(f(X), Y )] with respect to some loss function
l, whereX,Y are drawn from an unknown distributionD.
Given the sample data (xi, yi), the goal of learning algo-
rithms is to find the optimal function f∗ that minimizes
the empirical risk, f∗ = argminf∈F

1
N

∑N
i=1 l(f(xi), yi)

among a fixed function class F . Quantum supervised
learning algorithms aim to efficiently find prediction func-
tions with improved performance by exploiting the com-
putational power of the quantum device.

A quantum neural network is a widely used method for
quantum supervised learning. In quantum neural net-
work, a classical input data x is first embedded into a
quantum state by applying a quantum embedding circuit
to an initial ground state |x⟩ = Φ(x) |0⟩⊗n

. Then param-
eterized unitary U(θ) is applied to transform the em-
bedded quantum states, and the state is measured with
an observable O. The measurement outcome is used as
a prediction function for supervised learning algorithms,
expressed as f(x; θ) = ⟨x|U†(θ)OU(θ) |x⟩ . Then, by
the gradient descent or its variant, we search for the op-
timal parameter θ∗ that minimizes the empirical risk.
For a binary classification task with label y ∈ {1,−1},
we can predict the label of the new data x̃ by the rule
ynew = sign[f(xnew; θ

∗)].
We can alternatively consider this procedure as a quan-

tum two-state discrimination problem with two parame-
terized POVMs E±(θ) =

1
2 (I ± U†(θ)OU(θ)). Here, we

denote a probability of measuring ±1 given an input data
x as P (E±(θ)|x), which can be expressed as ⟨x|E±(θ) |x⟩.
Then, the previous decision rule on the new data becomes
ynew = sign[P (E+(θ

∗)|xnew)− P (E−(θ
∗)|xnew)].

In such a scenario, a natural loss function is a prob-
ability of misclassification, expressed as l(f(x; θ), y) =
P (E¬y(θ)|x). Considering 2N numbers of balanced sam-
ples S = {x−

i ,−1}Ni=1 ∪ {x+
i , 1}Ni=1, the empirical risk
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Figure 1: Overview of the NQE training. The goal of the training is to produce mapping functions that can separate
the two classes of data into two orthogonal subspaces. Efficient calculation of the normal fidelity between the two
state vectors produced by the feature map is performed using a quantum computer.

becomes,

Ls =
1

2N

[
N∑
i=1

P (E+(θ)|x−
i ) +

N∑
i=1

P (E−(θ)|x+
i )

]

=
1

2
[1− Tr(E+(θ)(ρ+ − ρ−))]

≥ 1

2
[1−Dtr(ρ

−, ρ+)],

where ρ± = 1
N

∑∣∣x±
i

〉 〈
x±
i

∣∣ and Dtr(·, ·) is a trace dis-
tance operator. Here, we want to emphasize two crucial
points.

1. The empirical risk is lower bounded by the trace
distance between two data ensembles ρ− and ρ+.
This is determined by the initial quantum embed-
ding circuit, regardless of the structure of the pa-
rameterized unitaries U(θ) applied afterwards.

2. The minimum loss is achieved when E±(θ) is a Hel-
strom measurement. Hence, training of a quantum
neural network can be viewed as a process of finding
the Helstrom measurement that optimally discrim-
inates two data ensembles.

Thus, choosing a quantum embedding circuit that maxi-
mizes the trace distance is critical, as it pushes the lower
bound of the empirical risk further below. Also, max-
imizing the trace distance is particularly important for
NISQ (Noisy Intermediate-Scale Quantum) applications
as non-unitary quantum operations strictly contracts the
trace distance between two quantum states [22]. How-
ever, none of the existing quantum embeddings, includ-
ing Hamiltonian, amplitude, and angle embeddings, can
guarantee the effective separation of two data ensembles

in the Hilbert space with a large distance. This illus-
trates the necessity of trainable, data-dependent embed-
ding that can maximize the trace distance.

3 Neural Quantum Embedding

Neural Quantum Embedding utilizes a classical neural
network to maximize the trace distance between two data
ensembles. It can be expressed as

Φnqe : x → |x⟩ = Φ(g(x)) |0⟩⊗n
, (1)

where Φ is a general quantum embedding circuit and
g : Rd → Rm is a trainable classical neural network
that transforms the input data x. There is no restric-
tion on the choice of quantum embedding circuit and the
neural network structure, and we test several combina-
tions in the numerical studies. By choosing m < d, we
can bypass additional classical feature reduction meth-
ods, such as PCA or autoencoders, typically employed
prior to quantum embedding due to the current limi-
tations on the number of reliably controllable qubits in
quantum devices.

Prior to training the quantum neural network, we train
the NQE to increase the trace distance between two en-
sembles Dtr(ρ

−, ρ+). Although training with the trace
distance as a loss function is ideal, calculating it is com-
putationally expensive even with the quantum computer.
Instead, we used an implicit loss function derived from a
fidelity measure, which is expressed as

lfid(x, x̃) = (| ⟨x|x̃⟩ | − 1[yx = yx̃])
2
. (2)

This fidelity loss can be efficiently computed using the
swap test [23] or directly measuring the overlap.

106



(a) (c)

(b) (d)

Figure 2: Summary of proof-of-principle results. (a) Structure of the QCNN circuits used in numerical studies. (b)
Trace distance history during the NQE training. (c) Noiseless simulation of the QCNN Loss History and classification
accuracy with and without NQE. (d) Experimental results of the QCNN loss history and classification accuracy with
and without NQE, obtained through executions on IBM quantum devices.

We particularly focus on improving ZZ feature embed-
ding, which is widely adopted due to its classically in-
tractable feature mapping. It is expressed as,

Φ(x) = (3)H⊗n exp

i
∑
i

Ziϕi(x) + i
∑
i,j

ZiZjϕi,j(x)

L

The most commonly used functions for ϕ are ϕi(x) = xi

and ϕi,j(x) =
1
2 (π−xi)(π−xj) [19,24], but these choices

are made without justifications. Although Ref. [21] nu-
merically illustrates that the choice of ϕ can impact the
performance of the QML algorithms, it fails to explain
how to choose an appropriate ϕ for the problem at hand.
NQE effectively solves this by replacing mapping func-
tions with a trainable classical neural network.

4 Numerical Studies

Setup The numerical studies were performed with
classes 0 and 1 of the MNIST dataset. To observe an
effectiveness of NQE on performances of the QML algo-
rithms, we used 4-qubit Quantum Convolutional Neu-
ral Network (QCNN) [25, 26] (Figure 2(a)). For the
NQE, a fully connected RELU network of the dimension
4 → 16 → 16 → 8 was used. We compared NQE methods
against the aforementioned function ϕi(x) and ϕi,j(x).
The training of NQE and QCNN, and the accuracy eval-
uation of QCNN, were performed on the ibmq toronto,

ibmq jakarta, and ibm lagos quantum devices, respec-
tively.

Results With the ZZ feature embedding, two embed-
ded quantum ensembles are separated with the trace dis-
tance of 0.273. This sets the lower bound of the empiri-
cal risk as 0.364. In contrast, the trained NQE achieves
a separation distance of 0.876, significantly reducing the
empirical risk lower bound to 0.062. The trace distance
history is summarized in Figure 2(b).

The training of the QCNN circuit is additional evi-
dence supporting the effectiveness of NQE in QML. In the
noiseless simulation (Figure 2(c)), we observed the empir-
ical risk converging to the theoretical minimum in both
cases, whether NQE was employed or not. This indicates
that the trained QCNN circuit successfully approximates
the optimal Helstrom measurements. With NQE, signifi-
cant improvements were achieved, as evidenced by lower
empirical risk and higher classification accuracy.

In the experiments implemented on IBM quantum de-
vices (Figure 2(d)), the presence of noise prevents the em-
pirical risk from converging to the theoretical minimum.
However, despite the noise, the utilization of the NQE
method resulted in an improved loss history. Remark-
ably, in some instances, the empirical risk achieved with
NQE in the experiment is even lower than the theoreti-
cal limit of the previous method without NQE. Further-
more, a substantial enhancement in classification accu-
racy was observed, reaching 0.96 compared to the conven-
tional method’s 0.52. These results illustrate how NQE
enhances the robustness of QML against noise.
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Optimizing Gaussian Elimination-based NNA-compliant Circuit
Synthesis Method by Simulated Annealing-based CNOT Gates Insertion
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Abstract. Quantum circuits should be implemented on a so-called Nearest Neighbor Architecture (NNA)
that only supports two-qubit operations between adjacent qubits. Thus, we usually convert a quantum
circuit to an NNA-compliant circuit by inserting SWAP gates. Without that, we can usually generate a
smaller NNA-compliant quantum circuit by utilizing Gaussian Elimination. This paper reveals that we
can improve the Gaussian Elimination-based method by inserting CNOT gates before and/or after the
target circuit in many cases. We also utilize Simulated Annealing (SA) method to get an optimal circuit.
This paper shows that we can reduce the number of CNOT gates by about 19% compared to the original
Gaussian Elimination-based method by inserting CNOT gates into initial circuits.

Keywords: Nearest Neighbor Architecture (NNA)-compliant, Gaussian Elimination, Inserting CNOT
gates, Simulated Annealing (SA)

1 Introduction

The pursuit of practical quantum computation requires
designing optimized quantum circuits that conform to
quantum computers’ physical limitations. This work is
more difficult than conventional circuit design and re-
quires efficient methods even before practical quantum
computers are available. One frequent focus is creating
Nearest Neighbor Architecture (NNA)-compliant quan-
tum circuits, supporting operations on single qubits and
physically adjacent qubits [1]. The reason for this is
that most major quantum computers (for example, su-
perconducting qubits-based ones) only support such op-
erations [2].

Designing an NNA-compliant quantum circuit typi-
cally refers to decomposing a more large quantum cir-
cuit into single-qubit gates and CNOT gates. When
a CNOT gate is non-NNA-compliant, qubits’ locations
are adjusted by introducing SWAP gates to make the
CNOT gate NNA-compliant. Finding the smallest NNA-
compliant circuit with the fewest SWAP gates is an NP-
hard task, but an alternative approach called the Gaus-
sian Elimination-based NNA-compliant circuit synthesis
or GE-based method by reworking the CNOT gate-only
sub-circuit to reduce the number of CNOT gates in the
NNA-compliant circuit [3].

The GE-based synthesis method typically yields
smaller circuits than the SWAP gate approach. Despite
the GE-based synthesis result being unique for a fixed or-
der of qubits, this method can be improved by transform-
ing the state by inserting CNOT gates before applying
it, yielding a smaller circuit. We also need to add an ad-
ditional sub-circuit after the designed circuit to restore
the functionality of the initial circuit. That is, we can
improve the result by the GE-based synthesis method if
the additional cost of the above procedure is smaller than
the reduced cost of the designed circuit by the GE-based
synthesis method after the above transformation. In this
paper, we show that such cases indeed happen if we trans-
form a circuit by inserting NNA-compliant CNOT gates.

∗goose@ngc.is.ritsumei.ac.jp
†Y@ngc.is.ritsumei.ac.jp
‡ger@cs.ritsumei.ac.jp

2 Premilary

2.1 Representing qubit state with matrix

In a quantum circuit, a CNOT gate behaves similarly
to a classical XOR gate but requires the number of inputs
and outputs to be the same. The matrix representation in
Fig.1 demonstrates this behavior. For example, a CNOT
gate with inputs q0 and q1 results in outputs q0 and q0 ⊕
q1.

A matrix can be used to represent the functionality
of a quantum circuit consisting only of CNOT gates, as
shown in Fig.1. In this matrix, each row is determined
by the state of qubits, as shown in Fig.1 (c).

The functionality of a CNOT gate also can be rep-
resented by a matrix, as shown in Fig.1 (d). In this
matrix representation, the control bits’ functionality are
used to modify the target bit’s functionality by an XOR
opeartion.

For example, the first gate (G1) in Fig.1 (d) is a CNOT
gate with control bit q0 and target bit q3. This gate
changes the matrix representation by operating the cur-
rent function with XOR in 4th and 1st rows. In the
resulting matrix, the first element of the fourth row cor-
responds to the target bit q3 and the control bit q0, indi-
cated by a 1 in the leftmost matrix of Fig.1 (d).

By multiplying the three matrices in Fig.1 (d) by re-
versal order, we obtain the matrix depicted in Fig.1 (c),
which represents the functionality of the entire circuit.

2.2 Gaussian Elimination-based NNA-
compliant circuit synthesis

In this section, we want to explain how the GE-based
synthesis method [3] converts the circuit as shown in
Fig. 2 (a) to be NNA-compliant. First, the GE-based
synthesis method takes a Boolean matrix that represents
the functionality of the circuit which we want to convert
to the NNA-compliant circuit, as depicted in Fig. 2 (b).
It then applies Gaussian Elimination to transform the
matrix into the Identity matrix. This transformation in-
volves replacing the i-th row with the XOR operation
result between the i-th and j-th rows. This operation
can be viewed as a CNOT gate, where the i-th and j-th
qubits serve as the target and control bits, respectively.
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(a) A CNOT gate
(b) A CNOT-based circuit

(c) A matrix to represent a cir-
cuit

(d) Matrices to represent CNOT
gates

Figure 1: Boolean matrices to represent a circuit and CNOT gates

(a) A circuit
which is con-
verted to NNA-
compliant

(b) A matrix to
represent a circuit

(c) The Gaussian-
down circuit

(d) The upper tri-
angular matrix

(e) The Gaussian-
up circuit

(f) The finale cir-
cuit

Figure 2: An example for the GE-based synthesis method

(a) The circuit which is converted to NNA-compliant

(b) The circuit after inserting the first CNOT gate

(c) The circuit after inserting the second CNOT gate

(d) The final result

Figure 3: An example for the proposed method

The GE-based synthesis process comprises two main
steps. Firstly, the ”Gaussian-down” step transforms the
initial matrix into an upper triangular form by iteratively
eliminating 1’s below the diagonal, each operation corre-
sponding to a CNOT gate, forming a ”Gaussian-down
circuit” (Fig.2 (c)). Secondly, the ”Gaussian-up” step
eliminates the remaining 1’s off the diagonal, resulting
in the circuit in Fig.2 (e). Finally, the NNA-compliant
circuit is generated by reversing the combined Gaussian-
down and Gaussian-up circuits, transforming the initial
state to the final state (Fig. 2 (f)).

3 Our proposed method

In this section, we show that there is a possibility
to reduce the number of CNOT gates in the designed
NNA-compliant circuit by the GE-based circuit synthe-

sis method. Our idea to do so is to try to insert NNA-
compliant CNOT gates before and/or after a target cir-
cuit which we want to convert to NNA-compliant so that
we can get the smaller result by the GE-based circuit
synthesis method. In the following, we explain this idea
by using Fig. 3.

Suppose we want to convert the circuit as shown in
Fig. 3 (a) to be NNA-compliant. If we apply the GE-
based circuit synthesis method to the circuit, there are
20 CNOT gates in the converted NNA-compliant circuit.

If we add only one NNA-compliant CNOT gate before
the circuit as shown in Fig. 3 (a), we get the circuit as
shown in Fig. 3 (b). The difference between the two
circuits as shown in Fig. 3 (a) and (b) is only one CNOT
gate. However, if we apply the GE-based circuit synthesis
method to the circuit as shown in Fig. 3 (b), there are
only 18 CNOT gates in the converted NNA-compliant
circuit. This is our motivation to propose our method in
this paper.

Because we can cancel the effect of the added CNOT
gate by adding the same CNOT gate before the circuit
which is shown in Fig. 3 (b), the above means that we
can convert the circuit as shown in Fig. 3 (a) to an NNA-
compliant circuit consisting of 19 CNOT gates.

Based on the above idea, we propose the following
method.

Step 0: We apply the GE-based synthesis method to
the target circuit, and let C be the converted NNA-
compliant circuit. Let the number of CNOT gates
in G be Cost G. Let Added Gates and g be a set
of gates whose initial value is an empty set. Init
the initial temperature T and annealing round K.

Step 1: Add one NNA-compliant CNOT gate, g′, be-
fore or after G to get G′. Apply the GE-based
synthesis method to G′ to get Converted G′. Let
the number of CNOT gates in Converted G′ be
Cost G′. Let ∆C is Cost G′ − Cost G

Step 2: If ∆C < −1−length (g) (Cause we must cancel
the CNOT gates we inserted), we go to Step 1 after
the following update.

• Insert g′ into g

• Replace Added Gates with g.

• Replace Cost G with Cost G′.
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• Replace G with G′.

Otherwise, if Random (0, 1] ≤ F (∆C, T )
(F (∆C, T ) is a function generating a number be-
tween (0,1], deciding to choose or not choose the
worse result), we go to Step 1 after the following
update.

• Insert g′ into g

• Replace G with G′.

Otherwise, if do not insert any CNOT gates until
n times, go to Step 3, else, go to Step 1.

Step 3: If T ≤ t, go to Step 4. Otherwise, let T = k ∗T
(k is a number between (0,1]), and go to Step 1.

Step 4: Add the same gates in Added Gates to G to
get the converted circuit.

If we want to convert the circuit as shown in Fig. 3 (a),
the above procedure works as follows. First at Step
0, we count the number of CNOT gates in the NNA-
compliant circuit generated by the GE-based synthesis
method and the number is 20; we set Cost G to be 20
and Added Gates to be an empty set and init the T and
K.

Then, at Step 1 we try to insert an NNA-compliant
CNOT gate, g′, such that the converted NNA-compliant
circuit from circuit G′ has been changed by adding g′. In
this example, g′ is the first gate in Fig. 3 (b); we get G′

as shown in Fig. 3 (b) from G as shown in Fig. 3 (a) by
adding g′.

Because Cost G′ is 18 for this example, we consider
that it is good to add g′. Thus we perform the following
update and go to Step 1 to improve the cost further.

• Insert g′ into g

• Replace G with G′ as shown in Fig. 3 (b).

• Replace Cost G to be Cost G′ = 18.

• Replace Added Gates with g (the g′ as shown in
Fig. 3 (b)).

Then at Step 1 of the second round, we find the best
gate, g′, to be added to the circuit as shown in Fig. 3 (b);
g is the last gate in Fig. 3 (c) for this example, and so
G′ is the circuit as shown in Fig. 3 (c). Then Cost G′

becomes 17 for this case. The Cost G′ becomes 17 for
G′. Therefore,Cost G′ − Cost G = −1 is equal to the
−1 − 1 (length (g) is 1), But Random(1, 0] ≤ F (−1, T ).
So we insert g′ into g and replace G with G′ as shown in
Fig. 3 (c), and go to Step 1 again.

Lastly, we can not insert any CNOT gate to reduce
any cost many times, and the temperature is too small
to continue this work. Then in Step 4, we add the
gates in Added Gates to the current G. In this example,
Added Gates contains the gates which are g in Fig. 3 (d).
That is, our converted final circuit can be shown as in
Fig. 3 (d) where ‘Compiled NNA circuit’ in the center is
the current G. Thus, the total cost is 14+4 = 18 which
is reduced from 20 obtained by the original GE-based
synthesis method.

4 Experimental result

To verify the validity of our idea, we performed an ex-
periment with our method and the greedy-based method
we proposed before by using random circuits consisting
of only CNOT gates. The results of the experiments are
shown in Table. 1.

As shown in Table. 1, the number of CNOT gates is re-
duced by either the greedy-based or the SA-based method
than the Gaussian Elimination-based method. The op-
timal method which is SA-based, is more effective than
our improving method which is greedy-based. We also
can confirm that the reduction rate by our method would
increase when the number of qubits of a circuit increases.

Table 1: Experimental result

[3] greedy-based method SA-based method
#qubits cost cost rate (%) cost rate (%)

5 18.6 16.2 12.9 15.2 17.2
6 31.5 26.8 14.9 25.7 18.4
7 40.8 33.8 17.1 32.7 19.8
8 50.3 42.4 15.7 41.1 18.2
9 75.6 64.7 14.4 63.4 16.1
10 90.3 75.0 16.9 72.8 19.3
11 106.3 86.2 18.9 85.8 19.3
12 134.9 106.8 20.8 105.9 21.5

5 Conclusion

In this paper, we considered an improved Gaus-
sian Elimination-based NNA-compliant circuit synthesis
method by inserting CNOT gates before/after the quan-
tum circuit. We also proposed an optimization technique
for this method. Experimental results confirmed that
our proposed method could reduce the number of CNOT
gates compared to the original Gaussian elimination-
based method. Moreover, we demonstrated that the re-
duction rate by our method would increase when the
number of qubits of a circuit increases.

For future work, we plan to explore improvements to
our method on a two-dimensional lattice. Additionally,
since the optimization technique of our proposed method
can become computationally intensive, it would be a fu-
ture challenge to investigate methods such as deep learn-
ing to reduce the computation time.
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Due to the incompatibility of the optimal measurements for different parameters, the multi-

parameter quantum Cramér-Rao bound is in general not achievable. Tradeoffs among the precisions

of different parameters have to be made. Quantifying such tradeoff is now one of the main subjects

in quantum metrology[1–24].

Here we provides a framework to study the precision under general p-local measurements, which

are the measurements that can be performed collectively on at most p copies of quantum states.

This approach leads to new multi-parameter precision bounds which include the Holevo bound[25]

and the Nagaoka bound[26, 27] as special cases. We also provide a systematic way to generate hi-

erarchical analytical tradeoff relations under general p-local measurements. The obtained tradeoff

relations provide a necessary condition for the saturation of the multi-parameter quantum Cramér-

Rao bound under p-local measurements, which recovers the partial commutative condition[28] at

p = 1 and the weak commutative condition at p =∞. Our study thus not only provides a frame-

work that can generate new analytical bounds on the tradeoff under general p-local measurements,

but also provides a coherent picture for the existing results on the extreme cases.

The multi-parameter quantum Cramér-Rao bound is given by

Cov(x̂) ≥ 1

ν
F−1Q , (1)

where Cov(x̂) is the covariance matrix for locally unbiased estimators, x̂ = (x̂1, · · · , x̂n), with the

jk-th entry given by Cov(x̂)jk = E[(x̂j−xj)(x̂k−xk)], ν is the number of copies of quantum states,

FQ is the quantum Fisher information matrix. In this article, we assume FQ is non-singular so

F−1Q exists, in which case Cov(x̂) ≥ 1
νF
−1
Q > 0 is also non-singular.

Different from the single-parameter quantum estimation, the multi-parameter quantum Cramér-

Rao bound is in general not saturable. This is due to the incompatibility of the optimal measure-

ments for different parameters. Such incompatibility is rooted in the prohibition of simultaneous
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measurement of non-commutative observables and its manifested effect in multi-parameter estima-

tion is the tradeoff on the precision limits for the estimation of different parameters.

Here we list the analytical upper bounds and the necessary condition for the saturation of

QCRB under general p-local measurements.

1. For pure states, we have

1

ν
Tr[F−1Q Cov−1(x̂)] ≤n− f(n)‖F−

1
2

Q FImF
− 1

2
Q ‖

2
F , (2)

here ‖ ‖F is the Frobenius norm and n is the number of parameters, f(n) = max{ 1
4(n−1) ,

n−2
(n−1)2 ,

1
5}

2. For mixed states under p-local measurements, we have

Γp ≤n− f(n)‖
F
− 1

2
Q F̄ImpF

− 1
2

Q

p
‖2F , (3)

where f(n) = max{ 1
4(n−1) ,

n−2
(n−1)2 ,

1
5}, F̄Imp is the imaginary part of F̄ =

∑
q F̄uq with each

F̄uq equal to either Fuq or F Tuq , here Fuq is a n× n matrix with the jk-th entry given by

(Fuq)jk = 〈uq|
√
ρ⊗px LjpLkp

√
ρ⊗px |uq〉, (4)

Ljp is the SLD of ρ⊗px corresponding to the parameter xj , and {|uq〉} are any set of vectors

in H⊗pd that satisfies
∑

q |uq〉〈uq| = Idp with Idp denote the dp × dp Identity matrix.

3. For mixed states under p-local measurements, we obtain another bound as

Γp ≤ n−
1

4(n− 1)
‖Cp
p
‖2F , (5)

here

(Cp)jk =
1

2
‖
√
ρ⊗px [L̃jp, L̃kp]

√
ρ⊗px ‖1, (6)

L̃jp is the SLD of ρ⊗px under the reparametrization such that the QFIM of ρx equals to the

Identity, specifically L̃jp =
∑

q(F
− 1

2
Q )jqLqp with Lqp as the SLD of ρ⊗px corresponding to the

original parameter xq.

4. From the above bound, we obtain a necessary condition for the saturation of the QCRB under

p-local measurements, which is
Cp

p = 0. For p = 1, this reduces to the partial commutative

condition. For p→∞, we prove that

lim
p→∞

(Cp)jk
p

=
1

2
|Tr(ρx[L̃j , L̃k])|. (7)
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The condition,
Cp

p = 0, thus reduces to the weak commutative condition, Tr(ρx[L̃j , L̃k]) = 0,

∀j, k, at p → ∞. This clarifies the relation between the partial commutative condition and

the weak commutative condition, which solves an open question[28].

5. We provide another simpler bound for mixed states which can be calculated with operators

only on a single ρx.

Given ρx =
∑m

q=1 λq|Ψq〉〈Ψq| with λq > 0 in the eigenvalue decomposition, under p-local

measurements we have

Γp ≤ n−
1

4(n− 1)
‖Tp
p
‖2F , (8)

where Tp is a n× n matrix with the jk-th entry given by

(Tp)jk =
1

2
E(|

p∑
r=1

〈Φr|[L̃j , L̃k]|Φr〉|), (9)

here E(·) denotes the expected value, each |Φr〉 is randomly and independently chosen from

the eigenvectors of ρx with a probability equal to the corresponding eigenvalue, i.e., each

|Φr〉 takes |Ψq〉 with probability λq , q ∈ {1, · · · ,m}. L̃j =
∑

µ(F
− 1

2
Q )jµLµ and L̃k =∑

µ(F
− 1

2
Q )kµLµ.

For large p, this bound is almost as tight as the bound with
Cp

p , the difference between
Tp
p

and
Cp

p is at most of the order O( 1√
p) with

(Tp)jk
p
≤

(Cp)jk
p

≤
(Tp)jk
p

+O(
1
√
p

). (10)

The presented framework provided a versatile tool to obtain bounds on the precision limit

in multi-parameter quantum estimation under general p-local measurements, which significantly

increased our knowledge on the incompatibility in multi-parameter quantum estimation. Therefore,

we believe that our work makes a substantial contribution to quantum metrology and quantum

information processing, and will be of interest to the general audience of AQIS.
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Quantum error reduction with deep neural network
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Abstract. Deep neural networks (DNN) can be applied at the post-processing stage for the improvement
of the results of quantum computations on noisy intermediate-scale quantum (NISQ) processors. Here, we
propose a method based on this idea, which is most suitable for digital quantum simulation characterized
by the periodic structure of quantum circuits consisting of Trotter steps. A key ingredient of our approach
is that it does not require any data from a classical simulator at the training stage. The network is trained
to transform data obtained from quantum hardware with artificially increased Trotter steps number (noise
level) towards the data obtained without such an increase. The additional Trotter steps are fictitious, i.e.,
they contain negligibly small rotations and, in the absence of hardware imperfections, reduce essentially
to the identity gates. This preserves, at the training stage, information about relevant quantum circuit
features. Two particular examples are considered that are the dynamics of the transverse-field Ising chain
and XY spin chain, which were implemented on two real five-qubit IBM Q processors. A significant error
reduction is demonstrated as a result of the DNN application that allows us to effectively increase quantum
circuit depth in terms of Trotter steps.

Keywords: AQIS, quantum simulation, quantum computation, neural networks,machine learning, error
mitigation, NISQ

Quantum information is a fast developing field that
aims to utilize quantum properties, such as quantum in-
terference and entanglement [1]. State-of-the-art quan-
tum computers are already capable of solving many prob-
lems, which, however, are not of practical importance
yet, because of relatively high quantum hardware error
rates. Particularly, such processors can be useful for solv-
ing evolutionary problems. However, the simulation of
the dynamics of such systems at long times requires a
large number of Trotter decomposition steps of evolution
operator. This leads to the fact that a large number of
quantum gates are required for simulation, which means
that the outcomes from the quantum computer become
too noisy [2].

Figure 1: The feed-forward DNN architecture used in our
problems for improving simulation results.

In our work, we have proposed a method for the appli-
cation of classical neural networks for the improvement
of the outcomes of noisy quantum computers at the post-

∗zugazoid@gmail.com

processing stage. In contrast to other suggestions, using
our approach, it is possible to get data for training a
neural network without relying on a classical simulator
or any other source of ideal data.

Our method is based on artificial increase of the
quantum circuits depth on the training stage that can
be done by incorporation of fictitious Trotter blocks
formally equivalent to identity gates into the circuit (see
Fig. 2). Their role is to increase noise level due to the
hardware imperfections while preserving the circuit’s
general structure and its relevant features.

Figure 2: Schematic view of our approach: generation of
quasi-ideal data with relatively shallow circuit (a); train-
ing the DNN – the data with artificially increased Trotter
steps number are transformed towards quasi-ideal data
(b); the trained DNN is applied to raw experimental data
with the same Trotter step number as at the second stage
(c).
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After being trained, the network can be applied to new
data with the same Trotter step number, i.e., increased
in the same way as at the training stage, but without
fictitious Trotter steps. The amount of noise in this case
is similar to that at the training stage. This trick al-
lows for the effective increase of the Trotter number due
to the post-processing, in the sense that errors become
suppressed and results of simulations, which must have
error rates below a given level, start to include data with
larger Trotter step number.
We have demonstrated the basic ingredients of our ap-

proach using two examples [3]: digital quantum simula-
tions of the dynamics of the transverse-field Ising chain
and XY chain. Deep neural network with simple archi-
tectures were used at the post-processing stage. For XY
chain, an additional post-selection of the results at the
training stage was applied by discarding a part of the
data, which does not conserve the excitation number, as
required by the Hamiltonian. The proof-of-principle re-
sults obtained on a real 5-qubit IBM Athens and Bogota
quantum processors show that our method allows us to
increase the number of Trotter steps while maintaining
the same level of errors. The significant error reduction
is the main result of our demonstration. A single neural
network is able to improve the data for different initial
conditions.
The significant error reduction is the main result of

our demonstration. A single neural network is able to
improve the data for different initial conditions.
Fig. 3 shows MSE between ideal simulation data for

a given Trotter step number and experimental data im-
proved by the network with post-selection (o-shape sym-
bols) and without post-selection (triangle-shape symbols)
as well as raw data (x-shape symbols and dashed line). It
is seen from this figure that neural network is able to sig-
nificantly improve the quality of the data by decreasing
MSE in several times for N2 = 4 and 6. Post-selection
leads to a further improvement. In the case for N2 = 8
there is almost no improvement in the results due to the
fact that the IBM Bogota quantum processor used has
too high error rate (CNOT errors ≈ 2%) to enable quan-
tum simulation with so long quantum circuit depth. As a
result, the training data for N2 = 8 is very noisy, so that
the magnetization as a function of time is flat, since the
probability of each qubit to be in the state 1 is close to
0.5 for any time. Such a data can not be used effectively
to train a neural network.
Our method does not require a complete tomography

of quantum states, which allows it to be scaled. The rea-
son is that the network is trained to improve the data
for a restricted number of quantum mean values such as
spins magnetizations along different axes, order parame-
ters, or characteristic correlators.
We believe that the proposed approach can be useful

in the context of error mitigation in noisy quantum de-
vices (especially of next generations with hardware errors
decreased and qubit number increased). Particularly, it
can be used in the case of periodic quantum circuits and
in combination with other error reduction tools, such as

Figure 3: MSE between ideal simulation data for a given
Trotter step number and experimental data from an IBM
Bogota 5-qubit quantum processor improved by the net-
work with post-selection (o-shape symbols) and without
post-selection (triangle-shape symbols) as well as raw
data (x-shape symbols and dashed line). The errors were
averaged over time and all initial states from the compu-
tational basis.

post-selection or partial error correction.
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Abstract. We prove state-independent contextuality for Majorana fermions via graph theory and demon-
strate that contextuality gives lower bounds on the memory cost of simulating restricted classes of quantum
computation. Specifically, we apply these results to two models of quantum computation based on the braid-
ing of Majorana fermions: Topological Quantum Computation (TQC) with Ising anyons and Fermionic
Linear Optics (FLO), finding saturable lower bounds on the memory cost that scales, respectively, log-
linearly and quadratically with the number of fermionic modes. Showing those pre-existing simulation
algorithms based on the stabilizer and matchgate formalism asymptotically saturate the above bounds on
the memory cost.
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Quantifying the classical resources required to simu-
late quantum processes is a crucial step in understanding
the distinction between quantum and classical systems.
Contextuality, which has been identified as a resource
in certain models of quantum computation with magic
states [1], is analogous to non-locality, which is a known
resource for quantum communication and cryptography
[2]. Previous work by [3] has demonstrated that the pres-
ence of contextuality imposes a lower bound on the mem-
ory cost of classically simulating quantum processes [4, 5],
specifically for simulating Clifford operators.

However, the techniques employed in the aforemen-
tioned study were limited to a specific class of quantum
processes known as "closed subtheories." These subtheo-
ries only allow measurable quantities and their products
to be measurable, thus excluding quantum processes in-
volving local measurements that are commonly encoun-
tered in quantum communication or measurement-based
quantum computation.

In this work, we address these limitations and extend
the connection between contextuality and classical simu-
lation to non-closed families of observables. We adopt the
approach proposed by Abramsky and Brandenburger[6],
which provides a more general proof of contextuality. To
establish this connection, we consider a set of measur-
able observables (denoted as O) and a set of possible
outcomes (Ω) for each measurement. A context (M)
is defined as a subset of O, and M represents the set
of all possible contexts. For each context M ∈ M, a
"section over" M is defined as a function ν : M → Ω,
and we denote ν(M) as the set of outcomes observed
for the measurements in M . The "event" corresponding
to a particular measurement outcome sequence can be
represented as Pν(M) =

∏
O∈M PO

ν(O), where PO
ν(O) de-

notes the projection operator associated with outcome
ν(O) for observable O. A global section is a function
s : O → Ω that is consistent with compatible local
sections over all contexts, i.e., s(M) = ν(M) for all

∗calegari@cft.edu.pl

M ∈ M. The existence of a global section implies the ex-
istence of a non-contextual value assignment (NCVA) for
O. Notably, for closed subtheories, the non-contextual
constraints mentioned above are equivalent to the con-
ventional proof of (non)contextuality that relies on the
criterion ν(O1)ν(O2) = ν(O1O2) for commuting mea-
surements O1, O2, and their product O1O2. However,
our framework extends to non-closed subtheories where
products of measurable quantities may not be measur-
able.

In the implementation of a quantum algorithm, one is
limited to specific sets of quantum states (Σ), quantum
channels (T ), and measurable observables (O) with out-
comes belonging to the set Ω. Since multiple experiments
may yield the same information, we define a "subtheory"
as a triple (Σ, T ,O) without specifying its physical im-
plementation.

To simulate quantum statistics, we employ an ontolog-
ical model in the classical simulation that reproduces the
Born rule probabilities of a quantum subtheory. In this
classical simulation, the density matrix is represented by
a probability distribution µρ(λ) over the state space Λ,
and measurements are modeled as sub-stochastic maps
ΓO(λ

′, k|λ). After a measurement, the probability dis-
tribution µρ(λ) is updated to µρ′(λ′) with probability
Pr(O, k|ρ, λ) =

∑
λ,λ′ ΓO(λ

′, k|λ)µρ(λ). The internal
state λ ∈ Λ contains all the information necessary to
characterize the statistics of all measurements allowed in
the subtheory. The lower bound on the memory required
for this simulation is determined by finding a lower bound
on the size of the state space Λ necessary to simulate the
subtheory.

One of the main contributions of our work is establish-
ing a connection between the memory cost of classically
simulating quantum processes and state-independent
contextuality. We demonstrate that the size of the on-
tological space Λ describing the subtheory is at least
|Σ|/α∗, where α∗ ∈ Σ represents the largest subset
of states with overlapping supports. In other words,
α∗ = |Z| is defined as the largest subset of states for
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which
⋂

ρ∈Z supp(µρ) ̸= ∅. Furthermore, since every
measurable observable O ∈ O in the subtheory contains
at least one eigenstate ρ ∈ Σ, we prove that if O is con-
textual, then

⋂
ρ∈Σ supp(µρ) = ∅. These results provide

a lower bound on the size of the ontological space, which
depends on the largest subset of states in the subtheory
that satisfies the non-contextuality condition imposed by
its stabilizer group.

Theorem 1 Let Σ be the set of quantum states and O
the set of measurable observables in a subtheory. The size
of the state space Λ describing this subtheory is at least
|Σ|/β∗, where

β∗ = max
Z⊂Σ

{
|Z|

∣∣∣OZ is non-contextual}, (1)

and OZ ⊆ O is the stabilizer group of the states in Z.

In our research, we specifically focus on the sim-
ulation of the restricted model of quantum computa-
tion based on Majorana Fermions, known as "Topolog-
ical quantum computation with Ising Anyons" (TQC)
[7] and "Fermionic linear optics" (FLO). We establish
state-independent contextuality for Majorana fermions
using the sheaf-theoretic approach introduced by Abram-
sky and Brandenburger. In the TQC framework, ini-
tial states can be transformed into other states using
braid gates and measurable observables. The allowed
states in the TQC subtheory can be stabilized by pairs
of Majorana operators, represented as Stab( |0 ⟩⊗n

) =
(−im1m2,−im3m4, . . . ,−im2n−1m2n). Majorana oper-
ators obey commutation rules mimj + mjmi = 2δijI,
where m†

i = mi for any i, j ∈ [2n]. In a simple
undirected graph G = ([2n], E), each Majorana mode
({mj}2nj=1) corresponds to a vertex in G, and each ob-
servable Xi,j ∈ OTQC corresponds to an edge (i, j) ∈ E.
For a given set of fixed-parity TQC states, Σ, the corre-
sponding observables form O =

⋃
ρ∈Σ Stab(ρ). Similarly,

the set of edges is E =
⋃

M∈MM , where M represents
the set of perfect matchings that represents the stabilizer
group of states in Σ. We prove the following theorem:

Theorem 2 (NCVA for TQC ⇔ Pfaffian graph)
There exists a non-contextual value assignment (NCVA)
for O ⊆ OTQC if and only if the graph representing O is
Pfaffian.

Our analysis identifies a minimal proof of contextuality
represented by a set of 9 Majorana observables forming a
magic square, which can be depicted as a K3,3 graph [8].
For the TQC subtheory, |ΣTQC| = (2n)!/n!, and we can
upper bound β∗ using properties of Pfaffian graphs. This
leads to the following lemma: "A classical simulation of
TQC requires at least n log(n) classical bits of memory."

The TQC model lies at the intersection of two com-
putational models: the Clifford group/stabilizer formal-
ism model and the Fermionic Linear Optics (FLO) [9].
Quantum computation with fermionic linear optics ex-
tends the TQC model by allowing unitaries, called FLO
gates, that are not restricted to the π/4 angle. Con-
sequently, the FLO model is also contextual, and the

lower bound computed for TQC can be extended to FLO.
The states allowed in the FLO subtheory can be approx-
imated within ϵ and require a state space size of at least
|Λ| ≥ 1

ϵn22n−2
. As a result, the lower bound on the mem-

ory cost of classically simulating the ϵ-approximate FLO
model is n2 log (1/ϵ).

In summary, our work establishes a connection be-
tween contextuality and memory cost in simulating quan-
tum circuits. We develop novel techniques to derive
lower bounds on the memory cost of simulating physical
subtheories, focusing particularly on fermionic systems.
These findings have implications for understanding Ma-
jorana Fermions through graph theory and for designing
contextuality witnesses for experimental tests in these
subtheories.

Comment – An earlier version of this work was ini-
tially presented at AQIS 2020, which was held exclu-
sively in an online format, with presentations delivered
through uploaded YouTube videos. Since then, signifi-
cant progress has been made on this project, surpassing
our initial expectations. Notably, we have successfully
established a comprehensive proof of contextuality for
Majorana Fermions, establishing a groundbreaking con-
nection between contextuality and non-Pfaffian graphs.
Given these remarkable advancements, we believe our
work warrants consideration for a speaking opportunity
at AQIS 2023.
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A Introduction
This manuscript is based on two unpublished works.

Here, we provide a brief comment on the method and
the results presented in this extended abstract.

B Ontological model
To precisely state our results let us formally introduce

what we mean by classically simulating a subtheory. The
implementation of a quantum algorithm is always re-
stricted to a specific set of quantum states Σ, a set of
quantum channels T , and, a set of measurable observ-
ables O, with outcomes belonging to the set Ω, that one
can use in a class of experiments. Since there may be
different experiments that allow us to obtain the same

information, we define a subtheory as a triple (Σ, T ,O)
without specifying its physical implementation.

Quantum channels are completely positive and trace-
preserving maps (CPTP maps). Unitary channels, rep-
resented by U(ρ), are the conjugated action of the uni-
tary U ∈ U(H), U(ρ) := UρU†. The quantum mea-
surements are described by quantum instruments[10, 11],
a set of completely positive linear maps (CP maps)
{Ek}k, whose sum is trace-preserving (CPTP map), i.e.,
tr(
∑

k Ek(ρ)) = tr(ρ). The label k is the outcome
of a measurement which occurs with probability pk =
tr(Ek(ρ)), given the condition that the density matrix is
mapped to ρ 7→ Ek(ρ)/pk. For von Neumann instruments
Ek(ρ) = PkρPk, where Pk is the projector corresponding
to the k-th outcome of the measurement. We denote PO

k

or P(k,O) as the projector associated to a von Neumann
measurement of an observable O with outcome k ∈ Ω. In
this paper, we consider closed state spaces, i.e., the quan-
tum channels and measurements can only map ρ 7→ ρ′,
where ρ, ρ′ ∈ Σ.

In the framework of ontological theories, the statis-
tics of a quantum algorithm can be reproduced by using
probability distributions over a space of hidden variables,
and, stochastic and sub-stochastic matrices that trans-
form these distribution. We consider a classical state-
space Λ, where λ ∈ Λ is an internal state that encodes
the information needed to determine the statistics of the
subtheory [12]. The density matrix is represented, in the
classical simulation, by a probability distribution µρ(λ)
over the state space. The classical counterpart of the
set of quantum channels is a a set of stochastic ma-
trices ΓU , that map the probability distribution µρ(λ)
to µρ′(λ′) =

∑
λ∈Λ ΓU (λ

′|λ)µρ(λ). A set of von Neu-
mann instruments, {PO

k }k, become a set of classical in-
struments (sub-stochastic maps, i.e.

∑
λ′ ΓO,k(λ

′|λ) ≤ 1,
for all λ, and the sum of the sub-stochastic maps over
k is stochastic map), {ΓO,k(λ

′|λ)}k. After a measure-
ment the probability distribution µρ(λ) is updated to
µρ′

k
(λ) =

∑
β∈Λ ΓO,k(λ|β)µρ(β)/Pr(k|ρ,O), with proba-

bility Pr(k|ρ,O) =
∑

β,β′ ΓO,k(β
′|β)µρ(β). The stochas-

tic and sub-stochastic maps are updating the probability
distributions on the ontological space, such that,

ρ 7→ ρ′ =⇒ λ ∈ supp(µρ) 7→ λ′ ∈ supp(µρ′). (2)

For the subtheories considered in this work, the clas-
sical simulation can be summarized by these four ob-
jects (Λ, {µρi

}i,ΓU , {ΓO,k}k): the state space, the set of
probability distributions over the state space, and the
stochastic and sub-stochastic maps. These tools allow
us to classically simulate sequences of measurements in
the subtheory. The cardinality of the state-space, |Λ|,
determine the size of the memory of the simulation, i.e.,
⌈log |Λ|⌉ is an upper bound on the number of classical
bits of memory required for the classical simulation.

If possible, within the subtheory, to perform a measure-
ment that perfectly distinguishes between two different
states ρ and ρ′, then, we say these states are single-shot
distinguishable (SSD). Accordingly, in the classical sim-
ulation of this subtheory, the support of the probability
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distributions of SSD states must be disjoint, i.e.,

SSD =⇒ supp(µρ) ∩ supp(µσ) = ∅. (3)

In other words, no internal state can be in the support
of two states that are SSD.

C Contextuality
In this section, we introduce the notion of state-

independent contextuality used in our results. In Ref. [6],
Abramsky and Brandenburger use sheaf theory to show
that contextuality correspond exactly to obstructions to
the existence of global sections. This notion is more gen-
eral than the one considered in Ref. [3] and allows us to
study non-closed subtheories.

We fix a set of measurable observables O and a set Ω
of possible outcomes for each measurement. A measure-
ment context is a set of commuting observables M ⊆ O.
The set of all contexts M ⊆ O is denoted as M.

Definition 3 (Event) For each context M ∈ M a sec-
tion over M is a function ν : M → Ω. We denote
ν(M) := {(O, ν(O)) |O ∈ M}. Such a section describes
the event in which the measurements in M were carried
out, and the outcomes ν(M) were observed. The event
can be represented as a projective measurement of the
section over M ,

Pν(M) =
∏

O∈M

PO
ν(O). (4)

For every context M ∈ M there exists a set of local
sections, Γ(M) = {ν(M)}. This set includes all possible
outcomes for this measurement context.

Let s : O → Ω be a function that assigns a definite out-
come to each observable in O, independent of the mea-
surement context in which it appears, and, for every sub-
set X ⊆ O, we define s(X) := {(O, s(O)) |O ∈ X}. The
assignment s is a global section over O if it is consistent
with a family of local section over all contexts, i.e., there
exists one local section ν(M) ∈ Γ(M), such that,

s(M) = ν(M), ∀M ∈ M. (5)

Definition 4 (NCVA) Let s : O → Ω be a global sec-
tion over O. Then, the non-contextual value assignment
(NCVA) for events is defined as

λs(Pν(M)) = δs(M),ν(M) (6)

=
∏

O∈M

δs(O),ν(O) (7)

If no NCVA exists for O, then O is called “contextual”,
which provides proof of state independent contextuality.

We point out that, for closed subtheories, the above
non-contextual constraints are equivalent to the usual
proof of (non)contextuality that relies on the criterion
ν(O1)ν(O2) = ν(O1O2) for triples of commuting mea-
surements of the form M = {O1, O2, O1O2}. However,
our framework also applies to subtheories that are non-
closed, i.e., where products of measurable quantities may
not be measurable in the subtheory.

D Lower bound in the memory cost
Here, we show our main results connecting a lower

bound in the memory cost for classically simulating quan-
tum processes by ontological models and contextuality.
The following lemma presents a lower bound for the size
of the ontological space Λ that depends on the largest
subset of states in the subtheory that have overlapping
supports:

Lemma 5 Let Σ be the set of all states in a subtheory.
The size of the ontological space Λ describing the subthe-
ory is at least |Σ|/α∗, where

α∗ = max
Z⊂Σ

{
|Z|

∣∣∣ ⋂
ρ∈Z

supp(µρ) ̸= ∅
}
. (8)

Proof. For every state ρ ∈ Σ there exist at least one
λ ∈ Λ in support of the corresponding probability distri-
bution µρ. Therefore, we can upper bound the number
of states by summing the cardinality of the support of
each state

|Σ| ≤
∑
ρ∈Σ

| supp(µρ)| =
∑
ρ∈Σ

 ∑
λ∈supp(µρ)

1

 . (9)

One can then rewrite the right-hand side of the above
equation as a sum over all λ ∈ Λ and, for specific λ,
over the states ρ that have the internal state λ in their
supports. This gives us

|Σ| ≤
∑
λ∈Λ

 ∑
{ρ:λ∈supp(µρ)}

1

 . (10)

Since the internal sum above can be upper bounded by
α∗, we get |Σ| ≤ α∗|Λ|, which is the desired inequality.

□

For any set of states that contain SSD states, {ρj}j∈J ,
we necessarily have

⋂
j∈J supp(µρj

) = ∅, and hence car-
dinality of such a set J puts a lower bound on the size of
Λ: |Λ| ≥ |J |. However, some non-SSD states must also
have non-intersecting supports of µρ(λ).

Theorem 6 Consider a set of quantum states Σ =
{ρj}j∈J . Let O be the set of all measurable observables
that have at least one eigenstate in Σ. If O is contextual,
then

⋂
j∈J supp(µρj

) = ∅, for any simulation of this sub-
theory.

Proof. We prove the theorem by contradiction i.e. we
will assume that

⋂
j∈J supp(µρj

) ̸= ∅ and show that this
condition implies the existence of a non-contextual value
assignment for O.

From the definition of O, we know that for every O ∈ O
exists at least one state ρ ∈ Σ with eigenvalue s(O), such
that, PO

s(O)ρP
O
s(O) = ρ. By our assumption, the support

of {µρj
}j∈J are nonempty, consequently, all states in Σ

are non-SSD. This implies that all eigenstates in Σ of a
given observable O ∈ O have the same eigenvalue s(O),
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where s : O → Ω is a well-defined function. Since the
measurement of O cannot perfectly discriminate between
ρ and any other state in Σ, this measurement acts as a
map

ρj 7→ σO,j =
PO
s(O)ρjP

O
s(O)

tr(PO
s(O)ρj)

, ∀j ∈ J , (11)

with non-zero probability Pr(s(O)|ρj , O) = tr(PO
s(O)ρj).

From the update rule 2, all post-measurement
states {σj}j∈J , for this particular measurement pro-
cess, are also non-SSD. Specifically, we know that⋂

j∈J supp(µρj
) ⊂ supp(µρ) and that PO

s(O) preserves
ρ. Thus, there exists an internal state λ̃, such that,
ΓO,s(O)(λ̃|λ) ̸= 0, and λ is mapped to λ̃,

λ ∈
⋂
j∈J

supp(µρj ) 7→ λ̃ ∈
⋂
j∈J

supp(µσj ). (12)

Consequently,
⋂

j∈J supp(µσj
) ̸= ∅ which implies that all

states in {σj}j∈J are non-SSD. By repeating the above
arguments for two commuting observables O and O′, we
obtain tr(PO′

s(O′)P
O
s(O)ρj) ̸= 0, ∀j ∈ J . Furthermore, for

any commuting set of observables M ⊆ O, and corre-
sponding outcomes s(M) := {(O, s(O)|O ∈ M)}, we
have

tr(Ps(M)ρj) ̸= 0, ∀j ∈ J . (13)

Thus, the set O is non-contextual, since the function
s is a global section over O that is compatible with local
sections given by the measurement contexts. □

From the theorem above we know that if O is contex-
tual then the states in Σ cannot share an internal state,
therefore that the largest subset of states, such that, O
is non-contextual is an upper bound for α∗ in Eq. 8, i.e.

α∗ ≤ max
Z⊂Σ

{
|Z|

∣∣∣OZ is non-contextual}. (14)

The above result can be use to find a non-trivial lower
bound in the memory cost of classical simulation.

E Majorana Fermions
In this work, we apply the method of finding the

lower bound in the memory cost of classically simulat-
ing two models of quantum computation based on Ma-
jorana fermions: TQC with Ising anyons and FLO. Here
we briefly review these two models.

Majorana fermions are described by a set Majorana op-
erators {mi}2ni=1 that satisfy the relation {mi,mj} = 2δi,j
and m†

i = mi. The braiding of two Majorana fermions
results in a unitary Bi,j = exp(−π

4mimj) called braid
gate that maps a Majorana operator to another as

Bi,jmkB
†
i,j =


mk if k /∈ {i, j}
mj if k = i

−mi if k = j,

(15)

for i < j.
We can use the stabilizer formalism to characterize the

set of quantum states that can the prepared by TQC

formalism from a free state. The stabilizer group of the
initialization states |0 ⟩⊗n is

Stab( |0 ⟩⊗n
) = (X1,2, X3,4, . . . , X2n−1,2n), (16)

where Xi,j = −imimj , for i < j, are the measurable
observables with eigenvalues ±1. Applying any sequence
of unitary gates Bi,j maps the state |0 ⟩⊗n to the state
|ψ ⟩, which is equivalent to update the stabilizer group
by some permutation π ∈ S2n on the indexes [2n],

Stab( |ψ ⟩) = (Xπ(1),π(2), . . . , Xπ(2n−1),π(2n)). (17)

Thus, the set of all states that can be prepared by TQC
operations is

ΣTQC = { |ψ ⟩ : Stab( |ψ ⟩) = (Xπ(1),π(2), . . . ,

Xπ(2n−1),π(2n)), π ∈ S2n} (18)

Every state in TQC have a well-defined parity, Q |ψ ⟩ =
sgn(π) |ψ ⟩, where Q = (−i)n

∏2n
i=1mi is the parity oper-

ator, and sgn(π) is the sign of the permutation π. Braid
gates preserve the parity, consequentely, the set of states
with positive parity, Σ+ can be generated by apply se-
quences of braid gates on a positive parity state, e.g.
|0 ⟩⊗n, similarly for the negative parity set Σ−.

The braid gates, Bi,j , are a special case of unitary
transformations U = exp

(∑
i,j hi,jmimj/2

)
, where hi,j

is a real antisymmetric matrix. These unitary transfor-
mations are used in the context of fermionic linear optics
(FLO) and called FLO gates [9, 13]. The conjugate ac-
tion of the FLO gates acts on Majorana operators as

mk 7→ UmkU
† =

2n∑
j=1

Rk,jmj , (19)

where by choosing an appropriate matrix h one can im-
plement an arbitrary rotation R ∈ SO(2n). A state
of the subtheory is a fermionic Gaussian states and
is uniquely described by its correlation matrix C(ρ),
a 2n × 2n real anti-symmetric matrix with elements
Ci,j(ρ) = i

2 tr(ρ[mi,mj ]). Applying an FLO gate in a
fermionic Gaussian state is equivalent to mapping the
correlation matrix as C 7→ RCRT . Thus, any free Gaus-
sian state ρ can be brought to block-diagonal form by a
real orthogonal transformation R ∈ SO(2n)

C(ρ) = R

n⊕
i=1

(
0 αi

−αi 0

)
RT , (20)

for αi = ±1, ∀j.

F Contextuality for Majorana Fermions
Any TQC operation preserves the parity of the initial

states. Consequentely, it is natural to consider the fixed-
parity sector q = ±1. The set of states with fixed-parity
q is defined as

Σq = { |ψ ⟩ : |ψ ⟩ ∈ ΣTQC and Q |ψ ⟩ = q |ψ ⟩}. (21)
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Consequently, the local section over every maximum con-
text M ∈ Mn is restricted to

ν(M) = {ν(O) : O ∈ M, sgn(M)
∏

O∈M

ν(M) = q}. (22)

The local sections are independent of the state |ψ ⟩ ∈ Σq

in which the context is measured.

Theorem 7 (NCVA for TQC ⇔ Pfaffian graph)
There exists a NCVA for O ⊆ OTQC if and only if the
graph that represent O is Pfaffian.

Proof. If exists a NCVA for O, then exists a compatible
family of local sections for all M ∈ Mn and a global
section s over O, such that,

λs(Pν(M)) = 1, ∀M ∈ Mn. (23)

Let the global assignment s be the orientation of the di-
graph D = ([2n],

−→
E ), then (i, j) ∈

−→
E if s(Xi,j) = 1 and

(j, i) ∈
−→
E if s(Xi,j) = −1. Since the local sections have

the restriction given by Eq. 22, the weight of any perfect
matchings in D is sign(M) = q, which means the graph
is Pfaffian.

Now, let us consider the Pfaffian graph G that repre-
sents the observables in O. If G if Pfaffian, then there
exists a Pfaffian orientation D for G, such that, all per-
fect matchings have the same weight sign(M) = w,∀M ∈
Mn. Then, the Pfaffian orientation

−→
E is a global assig-

ment of O. □

G Application
This method of finding the memory required for the

simulation can be applied to several contextual subtheo-
ries that are relevant to quantum computing. The first
example that comes to mind is the qubit stabilizer. In
Ref. [14], it was shown that for any subset of qubit stabi-
lizer states S with cardinality larger than 2n

2/4+7n/2 con-
tain three states such that their stabilizers form a Peres-
Mermin magic square. Thus, the minimum number of
classical bits required to simulate this subtheory scales
quadratically with the number of qubits. This proves
that the Gottesman-Knill algorithm [15] is asymptoti-
cally optimal for qubit stabilizers.

Here we apply our method to two models of quantum
computation based on Majorana fermions, the TQC with
Ising anyons and the FLO model.

For the TQC model, the set of states allowed in the
subtheory, ΣTQC, have cardinality (2n)!/n!. The lower
bound in the memory cost for a classical simulation of
this subtheory can be computed by find the largest subset
of states with non-contextual stabilizer group, see Eq. 14
and lemma 5.

In F, TQC subtheory was shown to be contextual for
n > 2 using graph theory. A graph G is Pfaffian is there
exist a orientation in which all perfect matchings have

the same sign, i.e.,

sgn(M) = sgn(πM )

n∏
i=1

aπ(2i−1),π(2i) = q, (24)

where q = ±1 and A = (ai,j) is a skew symmetric matrix
assigning ±1 values simultaneously for every observable
independently of the measurement context. This condi-
tion is equivalent to a global section that assigns value to
each observable, such that, for every maximum context
we have the constraint

s(M) := {(O, s(O)) | sgn(πM )
∏

O∈M

s(O) = q}, (25)

where q is the parity of the states in the set Σq ⊂ ΣTQC.
Consequently, a set of states with non-contextual stabi-
lizer group must be represented by a Pfaffian graph. This
is enough to formulate the following Lemma:

Lemma 8 (Memory cost for TQC) A classical sim-
ulation of TQC requires at least n log(n) classical bits of
memory.

Proof. From Lemma 5, we know that the classical mem-
ory require is log(|Λ|) ≤ log(|ΣTQC|)−log(α∗). For TQC,
|ΣTQC| = (2n)!/n!, and α∗ can be upper bound as shown
in Eq. 14 using Pfaffian graphs, as shown in Theorem 7.

Let O ⊂ OTQC be a non-contextual subset of observ-
ables and As be a skew-symmetric matrix representing a
global section over α∗. Then, Pfaffian of the matrix As

is Pf(A) =
∑

M∈M sgn(M) = |M|, where M is the set
of perfect matchings in O. Since det(As) = (Pf(As))

2,
we can use the Hadamard’s inequality[16, 17] to give an
upper bound to the Pfaffian

(Pf(As))
2 = |det(As)|

≤

(
2n∏
i=1

deg(mi)

)1/2

≤ 1

2

2n∑
i=1

deg(mi) = |O|, (26)

, where deg(mi) is the number of observables in O con-
taining mi. Since the cardinality of O is at most

(
2n
2

)
,

we obtain the inquequality |Pf(As)| = |M| ≤ 2n. Conse-
quently, α∗ ≤ 2n. □

TQC lies in the intersection of two computational
modes: the Clifford group/stabilizer formalism model
and the Fermionic Linear Optics (FLO)[7]. One can see
the FLO model as a generalization of TQC, as a result,
the FLO model is also contextual. In this section, we
apply the method for computing the lower bound in the
memory cost for the classical simulation of FLO.

The states allowed in the FLO subtheory are obtained
by a continuous rotation in SO(2n), however for a clas-
sical simulation of the model is enough to ϵ-approximate
the states, covering the space of the states with an ϵ-net.
The ϵ-covering net approximate the states with accuracy

∥C(ψ)− C(ψ′)∥ ≤ ϵ =⇒ ∥ψ − ψ′∥1 ∝ ϵ, (27)
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where the ψ is the free state that we want to ϵ-
approximate with ψ′. Since the volume of the ϵ-ball is
ϵD, where D is the dimension of the space. The number
of the ϵ-balls required to cover the space of free Gaus-
sian states is ϵ−D. Since C(ψ) are 2n×2n antisymmetric
real matrices, the dimension D = n(2n− 1). Hence, the
cardinality of the set of ϵ-approximate states Sapprox is

|Sapprox| ∝
(
1

ϵ

)θ(n2)

. (28)

Since the TQC subtheory is a subset of the FLO subthe-
ory the same upper bound on α∗, O(2n), can be used.
Accordingly, the lower bound in the size of the memory
required is

|Λ| ≥ 1

ϵn22n−2
. (29)

Consequently, the lower bound in the memory cost of
classicaly simulating the FLO model is Ω(n2 log2

(
1
ϵ )
)
.
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Noise mitigation with a quantum autoencoder
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Abstract. Noise present in quantum states has a significant impact on their ability to be used
as a quantum information resource for many applications. A quantum autoencoder is a quantum
neural network, which uses machine learning to compress quantum data. It is established that
classical autoencoders can denoise classical data and theoretical work predicts the same is true
for quantum data. In our work, the aim is demonstrating an optical quantum autoencoder
that denoises four-dimensional quantum states (ququarts), by compressing them into a two-
dimensional representation and decoding them back to the original space.

Keywords: Autoencoder, quantum machine learning, denoising, quantum optics

1 Introduction

Autoencoders are feedforward (one where the in-
puts to one layer all come from the previous layer)
neural networks that output their input at the fi-
nal layer. Their topology is typically such that they
have inner bottleneck layers. Via machine learning
techniques they are trained to compress input data
into a smaller latent space and discarding superflu-
ous information[1]. This mapping can be reversed
to obtain the input data—so-called lossless compres-
sion.
The autoencoder is originally a classical tool, us-

ing machine learning to reduce the dimension of
classical data. The same concept can be applied
to quantum information with a quantum autoen-
coder (QAE), which falls under quantum machine
learning[2]. A QAE can learn in an unsupervised
manner to compress quantum information in a space
with N +K dimensions onto a smaller latent space
ofN dimensions. Thereby quantum information can
be stored more efficiently in fewer resources, and it
also enables one to perform noise mitigation, also
called denoising.
Recent theoretical works [3], explore QAEs with

different topologies, which were simulated to demon-
strate mitigation of unitary noise, dephasing noise
and random bit-flip errors in GHZ, W, Dicke and
cluster states. It is further shown that these quan-
tum autoencoders can denoise input states both
within and outside the training data. Identifying the
contributing sources of noise present in experimen-
tal preparations of quantum states is often a diffi-

∗dominick.joch@griffithuni.edu.au

cult task. By employing quantum machine learning
techniques, this task can be automated to correct
for noise without the need for any prior knowledge
of its nature.
In this work we aim to experimentally demon-

strate this novel approach to quantum noise mit-
igation via quantum machine learning. Prior ex-
perimental works with single photons have demon-
strated encoding of two two-qubit states into two
single-qubit states[2], and the encoding of qutrits
to qubits[4]. As yet, the complete QAE, including
the decoding step, has yet to be demonstrated in
the photonic platform, as has the use of a QAE for
denoising.

2 Experiment

Our QAE has a [4,2,4] topology—dimension re-
duction from ququarts to qubits—and we use single
photons to encode quantum information. The states
we use are qubit states embedded into a ququart
space. These ququart states thus occupy all four
modes but by design they are in a subspace that al-
lows them to be compressed by the QAE to qubits.
We choose the input states such that in the absence
of noise, the QAE can be trained to implement loss-
less compression and decompression where the orig-
inal states are recovered.
The encoding unitary is trained via a classical al-

gorithm to minimize the probability of the photon
occupying the optical modes corresponding to the
junk space. We begin with a set of target train-
ing states that are corrupted by noise to obtain
the input states. A parameterized unitary operator
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Figure 1: The experimental realization of this quantum autoencoder consists of four parts: state preparation,
Encoder, Decoder and output measurement. The first pairs of waveplates and polarizing beamsplitter are
used to prepare the ququart states in both the polarization and path degrees of freedom of the single photons.
The next two beam splitters and four pairs of waveplates implement the parametrized encoding unitary.
The decoding unitary is simply the inverse of the encoder and consists of the same optical components but
in reverse order. The measurement section consists of the final interferometer and wavelates, a waveplate
pair, polarizing beamsplitter and a pair of avalanche photodiode detectors.

U(θ1, θ2, ..., θn), is iteratively optimized to find the
optimal set of parameters θ⃗—those which minimize
the occupation of the junk modes—using Adam gra-
dient descent in our work.
In the ideal noiseless case, a set of states are en-

coded such that they all only occupy the qubit sub-
space that is the latent space, and in the decod-
ing reverses that encoding unitary to produce the
original states (lossless compression). If we con-
sider the noisy case, when the decoder attempts to
reconstruct the original input data from the com-
pressed data, the component of the noise present in
the orthogonal junk space is not reintroduced, but
is instead discarded. The output state will have less
noise than the input, and so a fidelity improvement
with the noisless target states should be observed.
For validation purposes and to test the noise mitiga-
tion properties, the trained QAE will be applied to
a set of noisy test states where a significant fidelity
improvement can be achieved. The QAE approach
is also more generally applicable to other dimension-
alities and can be extended to other physical plat-
forms.
The experimental realization of this quantum au-

toencoder is shown in Fig. 1, which is conceptually
equivalent to the actual setup. We encode quan-
tum information in the polarization and path de-
grees of freedom of 808 nm single photons produced
by by type-I spontaneous parametric downconver-
sion. The measurement part of the setup is used to
perform quantum state tomography of the ququart
states. Simulations of this experimental setup show

that denoising can be achieved even when imperfec-
tions are accounted for. Preliminary results indicate
that the training algorithm can succesfully minimize
the cost function and output states can be minimally
impacted by imperfections at the output tomogra-
phy. The ongoing work is to now demonstrate the
fidelity improvement of the output states when noise
is introduced at the input.

3 Outlook

Quantum machine learning is a field drawing in-
creasing interest due to the power of machine learn-
ing techniques that have already been shown in clas-
sical machine learning. Though quantum encoders
are still in an early stage of study and development
with few experimental implementations, they are a
very promising tool for quantum information pro-
cessing in much the same way as their classical coun-
terparts are for data compression and denoising.
Our goal is to construct an experimental implemen-
tation of a complete quantum autoencoder and then
apply it to noise corrupted input states to demon-
strate the noise mitigation capabilities. This would
be an important step in developing automated quan-
tum data compression and denoising for more effi-
cient use of quantum resources.
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In this work, we derive Robertson-Heisenberg like uncertainty relation for two incompatible observables in a
pre- and post-selected (PPS) system. The newly defined standard deviation and the uncertainty relation in the
PPS system have physical meanings which we present here. We demonstrate two unusual properties in the PPS
system using our uncertainty relation. First, for commuting observables, the lower bound of the uncertainty
relation in the PPS system does not become zero even if the initially prepared state i.e., pre- selection is the
eigenstate of both the observables when specific post-selections are considered. This implies that for such case,
two commuting observables can disturb each other’s measurement results which is in fully contrast with the
Robertson-Heisenberg uncertainty relation. Secondly, unlike the standard quantum system, the PPS system
makes it feasible to prepare sharply a quantum state (pre- selection) for non-commuting observables. Some
applications of uncertainty and uncertainty relation in the PPS system are provided: (i) detection of mixedness
of an unknown state, (ii) stronger uncertainty relation in the standard quantum system, (iii) “purely quantum
uncertainty relation” that is, the uncertainty relation which is not affected (i.e., neither increasing nor decreasing)
under the classical mixing of quantum states, (iv) state dependent tighter uncertainty relation in the standard
quantum system, and (v) tighter upper bound for the out-of-time-order correlation function.

I. INTRODUCTION

The uncertainty relation, which Heisenberg discovered, is
one of the most well-known scientific findings [1, 2]. It as-
serts that it is impossible to accurately measure the position
and the momentum of a particle. In other words, measuring
the position of a particle always affects the momentum of that
particle and vice versa. Robertson developed the uncertainty
relation known as “Robertson-Heisenberg Uncertainty Rela-
tion” (RHUR) [3] in the very later years to describe the dif-
ficulty of jointly sharp preparation of a quantum state [4] for
incompatible observables. This relation not only limits the
joint sharp preparation for non-commuting observables but
also proved it’s usefulness: to formulate quantum mechanics
[5, 6], for entanglement detection [7, 8], for the security anal-
ysis of quantum key distribution in quantum cryptography [9],
as a fundamental building block for quantum mechanics and
quantum gravity [10], etc.

On the one side, we have the standard quantum systems
where the RHUR hold while pre- and post-selected (PPS) sys-
tems, on the other side, are different kind of quantum mechan-
ical systems that were developed by Aharonov, Bergmann,
and Lebowitz (ABL) [11–13] to address the issue of temporal
asymmetry in quantum mechanics. Recently, in the references
[14, 15], the authors generalized the probabilities of obtain-
ing the measurement results of an observable in a PPS system
given by ABL [11].

In the later years, Aharonov, Albert, and Vaidman (AAV)

∗ sahilmd@imsc.res.in
† sohail@hri.res.in
‡ sibasish@imsc.res.in

[16] introduced the notion of “weak value” defined as

⟨Aw⟩ϕψ =
⟨ϕ|A|ψ⟩
⟨ϕ|ψ⟩

, (1)

in a pre- and post-selected system when the observable ‘A’ is
measured weakly. Here, |ψ⟩ and |ϕ⟩ are pre- and post-selected
states, respectively. Weak values have strange features for be-
ing complex and its real part can lie outside the max-min range
of the eigenvalues of the operator of interest when the pre- and
post-selections are nearly orthogonal.

In order to obtain the real and imaginary parts of the
weak value of A [17, 18], first the system of interest and a
pointer (ancilla) is prepared in the product state |ψ⟩ ⊗ |ξ⟩.
Then the system-pointer is evolved under the global unitary
U = exp(−iHt), where H = gA ⊗ Px is the von Nuemann
Hamiltonian, A is the measurement operator of the system,
Px is the pointer’s momentum observable, ‘g’ is the coupling
coefficient between system and pointer and ‘t’ is the interac-
tion time. Now after the time evolution of the system-pointer,
the system is projected to |ϕ⟩ and as a result, the state of
the pointer collapses to the unnormalized state |ξ̃ϕ⟩ ≈ (1 −
igt ⟨Aw⟩ϕψ Px) |ξ⟩ in the limit g ≪ 1, i.e., weak interaction.
Now, it can be shown that the average position and momen-

tum shifts of the pointer in state |ξϕ⟩ = |ξ̃ϕ⟩√
⟨ξ̃ϕ|ξ̃ϕ⟩

are ⟨X⟩ξϕ =

gtRe(⟨Aw⟩ϕψ) and ⟨Px⟩ξϕ = gt
2σ2 Im(⟨Aw⟩ϕψ), respectively

with the Gaussian pointer ⟨x|ξ⟩ =
(

1√
2πσ

)1/2

e−x
2/4σ2

, σ

is the rms width of the position distribution | ⟨x|ξ⟩ |2 of the
pointer and thus providing the full knowledge of the weak
value of A.

Recently, a lot of attention was paid to these aspects [19–
40]. The measurements involving weak values are known as
“Weak Measurements” or “weak PPS measurements”. Since
it depends on probabilistic post-selection |ϕ⟩, a weak value
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2

can be thought of as conditional expectation value. Moreover,
when the post-selection is same as pre- selection i.e., |ϕ⟩ =
|ψ⟩, it becomes

⟨A⟩ψ = ⟨ψ|A|ψ⟩ , (2)

the expectation value in the standard quantum system. The
PPS systems can therefore be thought of as being more gen-
eral than the so-called standard quantum systems.

As pre- and post-selected systems are already useful prac-
tically as well as fundamentally, then an immediate question
can be asked whether there exists any uncertainty relation like
the RHUR which can give the limitations on joint sharp prepa-
ration of the given pre- and post-selected states when non-
commuting observables are measured.

In the present study, we demonstrate the existence of such
uncertainty relations in PPS systems, which are expected as
PPS systems are more generalised versions of standard ones.
We first define the standard deviation of an observable in the
PPS system for the given pre- and post-selections with ge-
ometrical as well as physical interpretations. After that, we
derive our main result of this paper “uncertainty relations in
pre- and post-selected systems” using the well known Cauchy-
Schwarz inequality.

We provide the following physical applications of our re-
sults: (i) detection of the purity of an unknown state of any
quantum systems (e.g., qubit, qutrit, two qubit, qutrit-qubit,
etc) using two different definitions of the uncertainty of an ob-
servable in the PPS system, (ii) stronger uncertainty relation
in the standard quantum system (i.e., the uncertainty relation
that can not be made trivial or the lower bound can not be
made zero for almost all possible choices of initially prepared
systems) using the uncertainty relation in the PPS system, (iii)
purely quantum uncertainty relations that is, the uncertainty
relations which are not affected (i.e., neither increasing nor
decreasing) under the classical mixing of quantum states using
the uncertainty relations in PPS systems. (iv) state dependent
tighter uncertainty relation in the standard system by intro-
ducing the idea of post-selection, and finally (v) tighter upper
bound for the out-of-time-order correlation function. More-
over, as the RHUR has a plenty of applications, uncertainty
relation in the PPS systems can also be applied in quantum
optics, information, technologies, etc.

This paper is organized as follows. In sec. II, we discuss
uncertainty relations in standard quantum systems. In sec. III,
we derive our main results of this paper. Application of our
results are given in sec. IV and finally we conclude our work
in sec. V.

II. UNCERTAINTY RELATION IN STANDARD QUANTUM
SYSTEM

In this section, we first interpret the standard deviation of an
observable in standard quantum systems from geometrical as
well as information-theoretic perspective. For establishing the
standard deviation in a PPS system, we will introduce a sim-
ilar interpretation. The RHUR’s well-known interpretation is

also provided here.

A. Standard deviation

We consider the system Hilbert space to be H and let |ψ⟩
be a state vector in H. Due to the probabilistic nature of the
measurement outcomes of the observable A, the uncertainty
in the measurement is defined as the standard deviation:

⟨∆A⟩ψ =

√
⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2. (3)

Geometric interpretation.— Standard deviation can be given
a geometrical interpretation using the following Proposition.

Proposition 1. If |ψ⟩ ∈ H is an initially prepared state of
a standard quantum system and A ∈ L(H) is a hermitian
operator, then we can decompose A |ψ⟩ ∈ H as

A |ψ⟩ = ⟨A⟩ψ |ψ⟩+ ⟨∆A⟩ψ |ψ⊥
A⟩ , (4)

where |ψ⊥
A⟩ = 1

⟨∆A⟩ψ
(A− ⟨A⟩ψ) |ψ⟩, and ⟨A⟩ψ = ⟨ψ|A|ψ⟩.

Eq. (4) is sometimes known as the “Aharonov–Vaidman iden-
tity” [41].

Proof. Let A |ψ⟩ and |ψ⟩ are two non-orthogonal state vec-
tors. Using Gram-Schmidt orthonormalization process, we
find the unnormalized state vector |ψ̃⊥

A⟩ ∈ H orthogonal to
|ψ⟩ as

|ψ̃⊥
A⟩ = A |ψ⟩ − (⟨ψ|A)|ψ⟩

⟨ψ|ψ⟩
|ψ⟩ = (A− ⟨A⟩ψ) |ψ⟩ , (5)

where ⟨ψ|ψ⟩ = 1 and after normalization, Eq. (5) becomes

A |ψ⟩ = ⟨A⟩ψ |ψ⟩+ ⟨∆A⟩ψ |ψ⊥
A⟩ , (6)

where |ψ⊥
A⟩ = |ψ̃⊥

A⟩/
√
⟨ψ̃⊥
A |ψ̃⊥

A⟩ and
√

⟨ψ̃⊥
A |ψ̃⊥

A⟩ =√
⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2 = ⟨∆A⟩ψ and ⟨A⟩ψ = ⟨ψ|A|ψ⟩.

So, Eq. (4) can be interpreted as the unnormalized state
vector A |ψ⟩ which has two components and these are ⟨A⟩ψ
along |ψ⟩ and ⟨∆A⟩ψ along |ψ⊥

A⟩. Here we interpret ⟨∆A⟩ψ
as disturbance of the state vector due to the measurement
of the operator A or as the measurement error (or standard
deviation) of that operator when the system is prepared in the
state |ψ⟩. For instance, if we set up the system in one of the
eigenstates of the observable A, then from Eq. (4), it can be
seen that the standard deviation of A is zero.
Information-theoretic interpretation.— From an
information-theoretic approach, Eq. (3) can be written
as

⟨∆A⟩ψ =

√√√√d−1∑
i=1

∣∣⟨ψ⊥
i |A|ψ⟩

∣∣2, (7)
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where {|ψ⟩ , |ψ⊥
1 ⟩ , |ψ⊥

2 ⟩ , · · · , |ψ⊥
d−1⟩} forms an orthonormal

basis such that I = |ψ⟩ ⟨ψ|+
∑d−1
i=1 |ψ⊥

i ⟩ ⟨ψ⊥
i | and ‘d’ is the

dimension of the system. So, the origin of the non-zero stan-
dard deviation ⟨∆A⟩ψ in the standard quantum system can
also be thought of due to the non-zero contributions of the un-
normalized fidelities {|⟨ψ⊥

i |A|ψ⟩|}
d−1
i=1 which can be viewed

as the spread of the information of the observable A along
{|ψ⊥

i ⟩}
d−1
i=1 directions.

B. RHUR

The well known RHUR for two non-commuting operators
A and B on a Hilbert space H when the system is prepared in
the state |ψ⟩ is given by

⟨∆A⟩2ψ ⟨∆B⟩2ψ ≥
[
1

2i
⟨ψ|[A,B]|ψ⟩

]2
, (8)

where ⟨∆A⟩ψ and ⟨∆B⟩ψ are the standard deviations of the
operators A and B, respectively, and [A,B] = AB − BA
is the commutator of A and B. The derivation of Eq. (8)
using the Aharonov–Vaidman identity can be found in [41, 42].
The stronger version is obtained by adding the “Schrödinger’s
term” in Eq. (8) as

⟨∆A⟩2ψ ⟨∆B⟩2ψ ≥
[
1

2i
⟨ψ|[A,B]|ψ⟩

]2
+

[
1

2
⟨ψ|{A,B}|ψ⟩ − ⟨A⟩ψ ⟨B⟩ψ

]2
. (9)

The RHUR is usually interpreted as the following: it puts
bound on the sharp preparation of a quantum state for two
non-commuting observables. Hence, a quantum state in which
the standard deviations of the two non-commuting observ-
ables are both zero cannot exist.

III. MAIN RESULTS

The idea of the standard deviation or information dispersion
(see preceding section) is a crucial component of the theory in
a preparation-measurement situation. Pre- and post-selected
systems are typical examples, therefore we define the stan-
dard deviation (uncertainty) of an observable and show that
for such systems, there exist RHUR-like uncertainty relations
for two non-commuting observables.

A. Standard deviation in PPS system

Geometric definition.— It is well known that when the pre-
selection and the post-selection are same, the PPS system be-
comes the standard quantum system (see introduction). The
following proposition generalizes Eq. (4) for the PPS system.

Proposition 2. If a PPS system is in a pre- selected state |ψ⟩
and post-selected state |ϕ⟩, then for a hermitian operatorA ∈

L(H), we can decompose A |ψ⟩ as

A |ψ⟩ = ⟨ϕ|A|ψ⟩ |ϕ⟩+ ⟨∆A⟩ϕψ |ϕ⊥Aψ⟩ , (10)

where

⟨∆A⟩ϕψ =
√
⟨ψ|A2|ψ⟩ − | ⟨ϕ|A|ψ⟩ |2 (11)

and |ϕ⊥Aψ⟩ = 1

⟨∆A⟩ϕψ
(A |ψ⟩−⟨ϕ|A|ψ⟩ |ϕ⟩), a normalized state

vector which is orthogonal to |ϕ⟩.

Proof. We assume that A |ψ⟩ and |ϕ⟩ are two non-orthogonal
state vectors. The unnormalized state vector |ϕ̃⊥Aψ⟩ ∈ H
which is orthogonal to |ϕ⟩ is obtained using Gram-Schmidt
orthonormalization process as

|ϕ̃⊥Aψ⟩ = A |ψ⟩ − ⟨ϕ|(A|ψ⟩)
⟨ϕ|ϕ⟩

|ϕ⟩ = A |ψ⟩ − ⟨ϕ|A|ψ⟩ |ϕ⟩ ,

(12)
where ⟨ϕ|ϕ⟩ = 1 and after normalization, Eq. (12) becomes

A |ψ⟩ = ⟨ϕ|A|ψ⟩ |ϕ⟩+ ⟨∆A⟩ϕψ |ϕ⊥Aψ⟩ ,

where |ϕ⊥Aψ⟩ = |ϕ̃⊥Aψ⟩/
√
⟨ϕ̃⊥Aψ|ϕ̃⊥Aψ⟩ and

√
⟨ϕ̃⊥Aψ|ϕ̃⊥Aψ⟩ =√

⟨ψ|A2|ψ⟩ − | ⟨ϕ|A|ψ⟩ |2 = ⟨∆A⟩ϕψ .

To define the standard deviation of the observable A in the
PPS system, we now present an argument which is similar to
the one used to describe the standard deviation of an observ-
able in a standard quantum system. So, Eq. (10) can be inter-
preted geometrically as the unnormalized state vector A |ψ⟩
which has two components ⟨ϕ|A|ψ⟩ along the post-selection
|ϕ⟩ and ⟨∆A⟩ϕψ along |ϕ⊥Aψ⟩. Here we define ⟨∆A⟩ϕψ as the
standard deviation of the observableAwhen the system is pre-
selected in |ψ⟩ and post-selected in |ϕ⟩.

The standard deviation ⟨∆A⟩ϕψ can be realized via the weak
value of the observable A as

⟨∆A⟩ϕψ =
√

⟨ψ|A2|ψ⟩ − |⟨Aw⟩ϕψ|2|⟨ϕ|ψ⟩|2 (13)

=
√

⟨∆A⟩2ψ + ⟨A⟩2ψ − |⟨Aw⟩ϕψ|2|⟨ϕ|ψ⟩|2, (14)

where ⟨Aw⟩ϕψ is the weak value of the observableA defined in
Eq. (1) and we have used Eq. (3) to derive Eq. (14). |⟨ϕ|ψ⟩|2
is the success probability of the post-selection |ϕ⟩. Eq. (13)
is no longer a valid expression if pre- and post-selected states
are orthogonal to one another because in this situation, weak
value is not defined. Then, go back to Eq. (11). It should be
noted that Eq. (11) holds true whether the measurement is
strong or weak.
Information-theoretic definition.— Another ex-
pression of the standard deviation ⟨∆A⟩ϕψ in the
PPS system can be derived by inserting an iden-
tity operator I = |ϕ⟩ ⟨ϕ| +

∑d−1
i=1 |ϕ⊥i ⟩ ⟨ϕ⊥i |, where

{|ϕ⟩ , |ϕ⊥1 ⟩ , |ϕ⊥2 ⟩ , · · · , |ϕ⊥d−1⟩} forms an orthonormal basis,
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in the first term of the right hand side of Eq. (13) as

⟨∆A⟩ϕψ =

√√√√d−1∑
i=1

∣∣∣⟨Aw⟩ϕ⊥
i

ψ

∣∣∣2 |⟨ϕ⊥i |ψ⟩|2. (15)

From an information-theoretic perspective, Eq. (15) may
now be understood as follows: non-zero standard deviation
in the PPS system arises as a result of the non-zero contribu-

tions from the weak values {⟨Aw⟩
ϕ⊥
i

ψ }d−1
i=1 along the orthog-

onal post-selections {|ϕ⊥i ⟩}
d−1
i=1 . Note that two consecutive

measurements are taken into account in a PPS system: the op-
erator of interest A and the projection operator Πϕ = |ϕ⟩ ⟨ϕ|
which corresponds to the post-selection |ϕ⟩. As a result, it
is hard to tell whether or not A has been measured when the
weak value is zero. Because of this, it is crucial to have non-
zero weak values which carry the information about the ob-
servable A. Null weak values have recently been given a
useful interpretation [43]: if a successful post-selection oc-
curs with a null weak value, then the property represented by
the observable A cannot be detected by the weakly coupled
quantum pointer. In other words, the pointer state remains
unchanged when the weak value is zero (see introduction sec-
tion). Thus, one should anticipate that the standard deviation
in the PPS system should be zero if we obtain null weak values
for the post-selections {|ϕ⊥i ⟩}

d−1
i=1 , that means the information

about the observable A is not dispersed throughout the post-
selections {|ϕ⊥i ⟩}

d−1
i=1 .

In addition to the standard deviation’s geometrical and
information-theoretical explanations (Eqs. (10) and (15),
respectively) in the PPS system, we now study the mini-
mum (zero) and maximum uncertainty (or standard deviation)
which provide additional insights to understand the standard
deviation.
Zero uncertainty.— The uncertainty ⟨∆A⟩ϕψ defined in Eq.
(11) in the PPS system is zero if and only if

A |ψ⟩ = ⟨ϕz|A|ψ⟩ |ϕz⟩ , (16)

or |ϕz⟩ ∝ A |ψ⟩. We have used the notation |ϕz⟩ as the post-
selection for which uncertainty in PPS system becomes zero.
The zero uncertainty in the PPS system can now be realised in
the following way: the weak value ⟨Aw⟩ϕzψ becomes non-zero

i.e., ⟨ψ|A2|ψ⟩
⟨ψ|A|ψ⟩ ̸= 0 when we post-select the system to |ϕz⟩, and

the weak values for all post-selections {|ϕz⊥i ⟩}d−1
i=1 orthogo-

nal to |ϕz⟩ are zero. As a result, the right side of Eq. (15)
is reduced to zero. It should be noted that all post-selections
orthogonal to |ϕz⟩ are “legitimate post-selections,” meaning
that their weak values are clearly specified. Equivalently, we
can state that the information about the observable A is not
dispersed along the post-selections {|ϕz⊥i ⟩}d−1

i=1 as null weak
values do not carry informations about the observable A (ac-
cording to the above information-theoretic definition). Hence,
it is guaranteed that in a particular direction there will be one
and only one non-zero weak value ofA in a PPS system if and
only if the condition (16) is met.

Usefulness of zero uncertainty state: In this paragraph we

provide the following usefulness of the zero uncertainty post-
selected state |ϕz⟩.
1) In a parameter estimation scenario, where the task is to
obtain the precision limit in the estimation of interaction co-
efficient ‘g’ in the interaction Hamiltonian H = gA ⊗ p
(‘p’ is the pointer’s momentum variable), Fisher information
plays an important role whose maximum value is given by
Fmax(g) = 4∆2 ⟨ψ|A2|ψ⟩, where ∆ is the standard devia-
tion of initial distribution of the pointer state and |ψ⟩ is the ini-
tially prepared state of the system [44]. In an arbitrarily post-
selected state |ϕ⟩, Fisher information is given by Fϕ(g) =
4∆2|⟨ϕ|A|ψ⟩|2 ≤ Fmax(g) [44]. Recently it was shown that
in a generalized PPS system with negative quasiprobability
distribution of an arbitrary quantum state, this limit can be vi-
olated [45]. Violation of such limit implies that error that oc-
curs in estimating the unknown parameter can be reduced sig-
nificantly using negative quasiprobability distribution based
Fisher information compared to the usual quantum Fisher in-
formation. One can immediately see using Eq. (11) that
Fϕ(g) = 4∆2[⟨ψ|A2|ψ⟩− (⟨∆A⟩ϕψ)2]. Now it is obvious that
for the zero uncertainty post-selected state |ϕz⟩ as appeared
in Eq. (16), we have Fϕz (g) = Fmax(g). Hence, to achieve
the maximum Fisher information Fmax(g) in the PPS system,
one must post-select the system in |ϕz⟩ = A |ψ⟩ /

√
⟨ψ|A2|ψ⟩

which corresponds to the zero uncertainty.
2) The post-selection |ϕz⟩ alone has the ability to provide

the information (e.g., ⟨∆A⟩ψ and ⟨A⟩ψ) about the observ-

able A. Indeed by noting that ⟨ψ|A2|ψ⟩ = pz(⟨Aw⟩ϕzψ )2

and ⟨ψ|A|ψ⟩ = pz ⟨Aw⟩ϕzψ , we have ⟨∆A⟩2ψ = (1 −
pz)pz(⟨Aw⟩ϕzψ )2, where pz = |⟨ϕz|ψ⟩|2 is the probability of
obtaining the post-selection |ϕz⟩ = A |ψ⟩ /

√
⟨ψ|A2|ψ⟩.

Maximum uncertainty.— To achieve the maximum value
of ⟨∆A⟩ϕψ , the weak value ⟨Aw⟩ϕψ in Eq. (13) has to be
zero i.e., when the post-selection |ϕ⟩ is orthogonal to A |ψ⟩
and hence max(⟨∆A⟩ϕψ) =

√
⟨ψ|A2|ψ⟩. Note that, in a

preparation-measurement scenario, maximum measurement
error is also found to be

√
⟨ψ|A2|ψ⟩ whether the measure-

ment of the observableA is performed in standard system (see
Eq. (3)) or while performing the best estimation the operator
A from the measurement of another hermitian operator [46].

B. Uncertainty relation in PPS system

After defining the standard deviation of an observable in a
PPS system, interpreting it geometrically and informationally,
and maintaining a parallel comparison and connection with
the standard deviation in the standard system, we are now
in a position to provide an uncertainty relation in a PPS
system for two incompatible observables. One can formulate
many different types of uncertainty relations in PPS systems
(for example, [47]), but our interpretation of an uncertainty
relation in a PPS system is based on the standard deviation
defined in Eq. (11) or (13). Since the weak value of the
observable A in the standard deviation Eq. (13) in the PPS
system replaces the average value of the same observable
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A in the standard deviation Eq. (3) in standard quantum
system, it is not surprising that the mathematical expression
of the uncertainty relation in the PPS system is a modified
version of the RHUR (8), where the average values of the
incompatible observables A and B in Eq. (8) will be replaced
by the weak values of the respective observables when the
system is pre-selected in |ψ⟩ and post-selected in |ϕ⟩. The
explicit form of the uncertainty relation in the PPS system is
provided in the following theorem.

Theorem 1. Let A, B ∈ L(H) be two non-commuting hermi-
tian operators which are measured in the PPS system of our
interest with |ψ⟩ and |ϕ⟩ being pre- and post-selected states,
respectively, then the product of their standard deviations sat-
isfies(
⟨∆A⟩ϕψ

)2(
⟨∆B⟩ϕψ

)2

≥
[
1

2i
⟨ψ|[A,B]|ψ⟩ − Im (WAB)

]2
,

(17)

where WAB = ⟨ψ|A|ϕ⟩⟨ϕ|B|ψ⟩ =
(
⟨Aw⟩ϕψ

)∗
⟨Bw⟩ϕψ |⟨ϕ|ψ⟩|2

(using the definition of the weak value defined in Eq. (1)).

Proof. Cauchy-Schwarz inequality for two unnormalized
state vectors |ϕ̃⊥Aψ⟩ and |ϕ̃⊥Bψ⟩ in H becomes

⟨ϕ̃⊥Aψ|ϕ̃⊥Aψ⟩⟨ϕ̃⊥Bψ|ϕ̃⊥Bψ⟩ ≥
∣∣∣⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩∣∣∣2 , (18)

Now, as
∣∣∣⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩∣∣∣2 = [Re(⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩)]2 +

[Im(⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩)]2 and hence∣∣∣⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩∣∣∣2 ≥ [Im(⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩)]2, (19)

where Im(⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩) = 1
2i

(
⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩ − ⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩

)
and Re(⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩) = 1

2 (⟨ϕ̃
⊥
Aψ|ϕ̃⊥Bψ⟩ + ⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩). Now

put |ϕ̃⊥Aψ⟩ = A |ψ⟩ − ⟨ϕ|A|ψ⟩ |ϕ⟩ defined in Eq. (12) for
operator A and similarly for operator B also, then we have

⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩ = ⟨ψ|AB|ψ⟩ − ⟨ψ|A|ϕ⟩ ⟨ϕ|B|ψ⟩ . (20)

Note that ⟨ϕ̃⊥Aψ|ϕ̃⊥Aψ⟩ =
(
⟨∆A⟩ϕψ

)2

is square of the standard
deviation of the observable A in the PPS system defined in

Eq. (11) and similarly ⟨ϕ̃⊥Bψ|ϕ̃⊥Bψ⟩ =
(
⟨∆B⟩ϕψ

)2

is square of
the standard deviation of the observable B in the PPS system.
Finally, putting these values and using Eqs. (19) and (20) in
Eq. (18), it becomes Eq. (17).

Eq. (17) is always true for any strong PPS systems [11–
13] or weak PPS systems [16]. For weak PPS measurements
[16], WAB is expressed in terms of weak values of both the
observables. If the pre- and post-selected states are same i.e.,
|ϕ⟩ = |ψ⟩, then one gets back the RHUR (8) as argued before.

Eq. (17) with “Schrödinger’s term” becomes(
⟨∆A⟩ϕψ

)2(
⟨∆B⟩ϕψ

)2

≥
[
1

2i
⟨ψ|[A,B]|ψ⟩ − Im (WAB)

]2
+

[
1

2
⟨ψ|{A,B}|ψ⟩ − Re (WAB)

]2
.

(21)

The uncertainty relation (17) can be interpreted in the same
way as we did for the RHUR (8). That is, it bounds the sharp
preparation of the pair for pre- and post-selections (|ψ⟩, |ϕ⟩)
for two non-commuting observables. The lower bound con-
tains an additional term Im(WAB) compared to the RHUR
(8). So even if [A,B] ̸= 0, the bound on the right hand side of
Eq. (17) can become zero implying the possibility of both the
standard deviations being zero implying further the possibility
of sharp preparation of a pair of pre- and post-selected states.
Below, we provide the necessary and sufficient condition for
such case (see Observation 2). Recently, the authors of the
references [48, 49] confirmed that in a PPS system using the
ABL- rule [11–13], it is possible to go beyond the standard
lower bound in the RHUR for position and momentum ob-
servables. Not exactly, but a similar property i.e., achieving
arbitrary small lower bound (which depends on the pre- and
post-selections) of the product of standard deviations of two
non-commuting observables in a PPS system is possible in the
relations (17). We now explore two peculiar characteristics of
the uncertainty relations (17) and (21) that cannot be observed
in standard quantum systems.

Observation 1. If the lower bound in an uncertainty rela-
tion in any quantum system is non-zero, then we say that two
incompatible observables disturb each others’ measurement
results. Now consider the following case. If |ψ⟩ is a common
eigenstate of both A and B, then ⟨∆A⟩ψ = 0, ⟨∆B⟩ψ = 0
implying that the measurement of one doesn’t disturbs the out-
come of the other. Surprisingly, this property doesn’t hold in
the PPS system. Note that, even if |ψ⟩ is a common eigen-
state of both A and B, the lower bound of the relation (21)
doesn’t become zero for specific post-selections which im-
plies ⟨∆A⟩ϕψ ̸= 0, ⟨∆B⟩ϕψ ̸= 0. Hence we can say that the
measurement ofA is invariably disturbed by the measurement
of B or vice versa in a PPS system. In the Ref. [50], Vaid-
man demonstrated the same property in a PPS system using
the ABL- rule.

Observation 2. With two non-commuting observables in
the standard quantum system, sharp preparation of a quantum
state is impossible. Or equivalently, for an initially prepared
state |ψ⟩, it is impossible to have ⟨∆A⟩ψ = 0, ⟨∆B⟩ψ = 0 if
[A,B] ̸= 0. But in the PPS system, we can prepare any quan-
tum state |ψ⟩ which can give ⟨∆A⟩ϕψ = 0, ⟨∆B⟩ϕψ = 0 for
a specific choice of post-selection implying sharp preparation
of |ψ⟩ for non-commuting observables A and B. It is easy to
show that both the uncertainties ⟨∆A⟩ϕψ and ⟨∆B⟩ϕψ are zero
for the common post-selection |ϕz⟩ if and only if

|ϕz⟩ ∝ A |ψ⟩ , |ϕz⟩ ∝ B |ψ⟩ .
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After the normalization, we find the common post-selection
condition

|ϕz⟩ =
A |ψ⟩√
⟨ψ|A2|ψ⟩

=
B |ψ⟩√
⟨ψ|B2|ψ⟩

, (22)

upto some phase factors.

Example. Now, consider an example of two non-
commuting observables A = 1√

2
(I + σx) and B = 1√

2
(σz +

σx) with the initially prepared state |0⟩. With these specific
choices, it is possible to show that condition (22) is satis-
fied. Recall that in order to conduct the experiment using
weak values, the average values of the observables must not
be zero; for this reason, we did not take into account the
Pauli observables σx and σy with initially prepared state |0⟩.
Nonetheless, if one does not adhere to weak values, this ex-
ample is still true. So, the common post-selection for this
case is |ϕe⟩ = (|0⟩ + |1⟩)/

√
2 and hence both the uncertain-

ties ⟨∆A⟩ϕe0 and ⟨∆B⟩ϕe0 of the non-commuting observables
A and B, respectively are zero for the given initially prepared
state |0⟩ and the conditioned post-selection |ϕe⟩ in Eq. (22).
In the PPS system, it is now feasible to do the hitherto impos-
sibly difficult task of jointly sharply preparing a quantum state
for two non-commuting observables.

The aforementioned Observations 1 and 2 demonstrate that
PPS systems are capable of being even stranger than their
well-known unusual results e.g., quantum Cheshire Cats [24],
measurement of a component of a spin 1/2 particle which can
reach 100ℏ [16], etc.

Comments.— The characteristics of the uncertainty rela-
tions (17) and (21) in PPS systems as compared to the RHUR
(8) and Eq. (9) are substantially altered by the post-selections.
These uncertainty inequalities (17) and (21) will undoubt-
edly have applications like the RHUR for quantum founda-
tions, information and technologies. For instances, (i) they
can be used for information extraction using commuting ob-
servables because the inequalities do not become trivial for
particular choices of post-selections, (ii) one can obtain a se-
ries of uncertainty inequalities by changing the post-selections
and that is advantageous for practical purposes (see stronger
uncertainty relations in sec. IV), (iii) existing applications
of uncertainty relations (8) and (9) in standard systems, such
as entanglement detection [7], quantum metrology [51, 52],
etc., can be revisited using uncertainty relations (17) and (21)
in the PPS systems, (iv) PPS system based spin squeezing:
spin-squeezed states are a class of states having squeezed spin
variance along a certain direction, at the cost of anti-squeezed
variance along an orthogonal direction. This is done by using
the RHUR (8) in the standard quantum system [53–56]. Such
analysis can be reintroduced in the light of PPS systems. As
there is no unique definition of spin squeezing in the standard
quantum systems, it is, by means of Eq. (17), also possible
to define the spin squeezing non uniquely in the PPS system.
A very careful analysis is required to see whether there exists
some states in the PPS systems for which ⟨∆A⟩ϕψ = ⟨∆B⟩ϕψ
and inequality (17 is saturated similar to coherent spin states
in the standard quantum systems.

1. Intelligent pre- and post-selected states

In the standard quantum system, the states for which the
equality condition holds in the RHUR (8) are known as intelli-
gent states or minimum-uncertainty states [57–59]. Minimum
uncertainty states have been proposed to improve the accu-
racy of phase measurement in quantum interferometer [60].
Minimum-uncertainty states in the PPS systems can also be
defined based on the following condition.

One can find the condition for which the inequality (17)
saturates (see Appendix A) is given by

A|ψ⟩−⟨ϕ|A|ψ⟩|ϕ⟩ = ±i
⟨∆A⟩ϕψ
⟨∆B⟩ϕψ

(B|ψ⟩ − ⟨ϕ|B|ψ⟩|ϕ⟩) . (23)

If the sign of ‘i’ on the RHS of Eq. (23) is taken to be positive
(negative) when the observable A appears on the LHS of the
Eq. (23), then the sign of ‘i’ on the RHS of Eq. (23) is taken be
negative (positive) when the observableB appears on the LHS
of the Eq. (23). So, the pre- and post-selected states which
satisfy the condition (23, can be referred as the “intelligent
pre- and post-selected states”. For the given pre-selection and
observables in Eq. (23), one can find the post-selection which
will make the Eq. (17) the most tight i.e., equality.

C. Uncertainty equality in PPS system

Recently, in the reference [61], the authors have shown that
there exist variance-based uncertainty equalities from which
a series of uncertainty inequalities with hierarchical structure
can be obtained. It was shown that stronger uncertainty re-
lation given by Maccone and Pati [62] is a special case of
these uncertainty inequalities. Here we show such uncertainty
equalities in the PPS systems. We provide interpretation of the
uncertainty inequalities derived from the uncertainty equali-
ties. Further, in Application section IV, we use uncertainty
equalities in PPS systems to obtain stronger uncertainty rela-
tions and state dependent tighter uncertainty relations.

Theorem 2. The product of standard deviations of two non-
commuting hermitian operators A, B ∈ L(H) in a PPS sys-
tem with pre- and post-selected states |ψ⟩ and |ϕ⟩, respec-
tively satisfies

⟨∆A⟩ϕψ ⟨∆B⟩ϕψ=
∓
(

1
2i ⟨ψ|[A,B]|ψ⟩ − Im(WAB)

)
1− 1

2

∑d−1
k=1

∣∣ ⟨ψ| A

⟨∆A⟩ϕψ
± i B

⟨∆B⟩ϕψ
|ϕ⊥k ⟩

∣∣2 ,
(24)

where we have assumed that ⟨∆A⟩ϕψ and ⟨∆B⟩ϕψ are non-
zero, and the sign should be considered such that the nu-
merator is always real and positive. Here {|ϕ⟩ , |ϕ⊥k ⟩

d−1

k=1} is
an complete orthonormal basis in the d-dimensional Hilbert
space.

Proof. Consider an orthonormal complete basis
{|ϕ⟩ , |ϕ⊥k ⟩

d−1

k=1} in the d-dimensional Hilbert space H.
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Now, define the projection operator Π = I − |ϕ⟩ ⟨ϕ| and the
unnormalized state vector |ξ±⟩ =

(
A

⟨∆A⟩ϕψ
± i B

⟨∆B⟩ϕψ

)
|ψ⟩.

Then we have the following identity

⟨ξ∓|Π|ξ∓⟩=⟨ξ∓|ξ∓⟩ − ⟨ξ∓|ϕ⟩ ⟨ϕ|ξ∓⟩

=

⟨ψ|A2|ψ⟩(
⟨∆A⟩ϕψ

)2 +
⟨ψ|B2|ψ⟩(
⟨∆B⟩ϕψ

)2 ∓ i ⟨ψ|[A,B]|ψ⟩
⟨∆A⟩ϕψ ⟨∆B⟩ϕψ


−

|⟨ϕ|A|ψ⟩|
2(

⟨∆A⟩ϕψ
)2 +

|⟨ϕ|B|ψ⟩|2(
⟨∆B⟩ϕψ

)2 ± 2Im(WAB)

⟨∆A⟩ϕψ⟨∆B⟩ϕψ


= 2± 2

(
1
2i ⟨ψ|[A,B]|ψ⟩ − Im(WAB)

)
⟨∆A⟩ϕψ ⟨∆B⟩ϕψ

, (25)

where we have used Eq. (11) and WAB = ⟨ψ|A|ϕ⟩ ⟨ϕ|B|ψ⟩.
Now, we use another expression of Π =

∑d−1
k=1 |ϕ⊥k ⟩ ⟨ϕ⊥k | to

calculate the same identity

⟨ξ∓|Π|ξ∓⟩ =
d−1∑
k=1

∣∣∣ ⟨ψ| A

⟨∆A⟩ϕψ
± i

B

⟨∆B⟩ϕψ
|ϕ⊥k ⟩

∣∣∣2. (26)

So, from the Eqs. (25) and (26), we obtain the uncertainty
equality (24) in the PPS system.

Theorem 3. The sum of the variances of two non-commuting
hermitian operators A, B ∈ L(H) in a PPS system with pre-
and post-selected states |ψ⟩ and |ϕ⟩, respectively satisfies(

⟨∆A⟩ϕψ
)2

+
(
⟨∆B⟩ϕψ

)2

=±
(
i ⟨ψ|[A,B]|ψ⟩− 2Im(WAB)

)
+

d−1∑
k=1

|⟨ϕ⊥k |(A∓ iB)|ψ⟩|2. (27)

Here, the ‘±’ sign is taken suitably such that the first term in
right side is always positive.

Proof. Consider an orthonormal complete basis
{|ϕ⟩ , |ϕ⊥k ⟩

d−1

k=1} in the d-dimensional Hilbert space H
and hence I − |ϕ⟩⟨ϕ| =

∑d−1
k=1 |ϕ⊥k ⟩ ⟨ϕ⊥k |. By equating the

following two

Tr
(
(A∓ iB) |ψ⟩⟨ψ| (A± iB)(I − |ϕ⟩ ⟨ϕ|)

)
,

T r
(
(A∓ iB) |ψ⟩⟨ψ| (A± iB)(

d−1∑
k=1

|ϕ⊥k ⟩ ⟨ϕ⊥k |)
)
,

we have Eq. (27).

An inequality can be obtained by discarding some of the
terms in the summation corresponding to ‘k’ or all the terms
except one term in Eq. (24) or Eq. (27). It is also possible
to obtain an arbitrarily tight inequality by discarding the mini-
mum valued term inside the summation in the denominator of
Eq. (24) for a particular value of ‘k’. . Note that we have to

optimize the minimum
∣∣ ⟨ψ| A

⟨∆A⟩ϕψ
± i B

⟨∆B⟩ϕψ
|ϕ⊥k ⟩

∣∣2 over all

possible choice of basis {|ϕ⊥k ⟩
d−1

k=1} in the subspace orthogo-
nal to |ϕ⟩.

In an experiment, let’s assume that a few post-selected
states from {|ϕ⊥k ⟩}

d−1
k=1 are not detected by the detector be-

cause of certain technical difficulties. Using such imprecise
experimental data, one may still be able to obtain an uncer-
tainty relation. In that case, the terms corresponding to the
unregistered post-selections in Eq. (24) or Eq. (27) are to be
eliminated.

D. Uncertainty relation for mixed pre- selection in PPS system

So far, we have only considered the pre- selected state to be
pure in a PPS system. Let us now generalize the definition of
the standard deviation and derive the uncertainty relations for
mixed pre-selected state in the PPS system. A direct general-
ization of the standard deviation Eq. (11) is given by(

⟨∆A⟩ϕρ
)2

= Tr(A2ρ)− ⟨ϕ|AρA|ϕ⟩ . (28)

If ρ =
∑
i pi |ψi⟩ ⟨ψi|, where

∑
i pi = 1, then(

⟨∆A⟩ϕρ
)2

=
∑
i

pi

(
⟨∆A⟩ϕψi

)2

. (29)

Eq. (29) demonstrates the intriguing fact that, the variance
of A in PPS system i.e., ⟨V arA⟩ϕρ = (⟨∆A⟩ϕρ)2 does not in-
crease under the classical mixing of quantum states. Mathe-
matically, classical mixing of quantum states are represented
by a density operator. By taking advantage of this property,
one can obtain a purely quantum uncertainty relation when
the pre- selection ρ is a mixed state (see sec. IV). In standard
quantum systems, the variance V arA = ⟨∆A⟩2ρ increases in
general under the classical mixing of quantum states.

To realize the standard deviation in PPS system via weak
value for mixed pre- selected state, we introduce another def-
inition of the standard deviation as follows(

⟨∆Aw⟩ϕρ
)2

= Tr(A2ρ)− | ⟨Aw⟩ϕρ |
2 ⟨ϕ|ρ|ϕ⟩ , (30)

where ⟨Aw⟩ϕρ = ⟨ϕ|Aρ|ϕ⟩
⟨ϕ|ρ|ϕ⟩ is the weak value of the operator A

when the pre- and post-selections are ρ and |ϕ⟩, respectively.

Proposition 3. The standard deviation based on weak value
defined in Eq. (30) always increases under the classical mix-
ing of quantum states that is

⟨∆Aw⟩ϕρ ≥ ⟨∆A⟩ϕρ , (31)

where the equality holds if ρ is a pure state.

Proof. Let ρ =
∑
i pi |ψi⟩ ⟨ψi|, then Eq. (30) becomes (after
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TABLE I: Comparison of different properties between standard quantum systems and PPS systems.

Properties Standard quantum systems Pre- and post-selected systems

Standard
deviation

⟨∆A⟩ψ =
(
⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2

)1/2
⟨∆A⟩ϕψ =

(
⟨ψ|A2|ψ⟩ − |⟨Aw⟩ϕψ|2|⟨ϕ|ψ⟩|2

)1/2

Zero standard
deviation

Only if |ψ⟩ is an eigenstate of A i.e.,
|ψ⟩ ∝ A |ψ⟩

Only if |ϕ⟩ ∝ A |ψ⟩

Uncertainty
relation

⟨∆A⟩2ψ ⟨∆B⟩2ψ ≥
[
1
2i ⟨ψ|[A,B]|ψ⟩

]2 (
⟨∆A⟩ϕψ

)2 (
⟨∆B⟩ϕψ

)2

≥
[

1
2i ⟨ψ|[A,B]|ψ⟩ − Im (WAB)

]2
Joint sharp
preparation If |ψ⟩ is the eigenstate of both A and B If |ϕ⟩ = A|ψ⟩√

⟨ψ|A2|ψ⟩
= B|ψ⟩√

⟨ψ|B2|ψ⟩
, up to some phase factors

using the definition of the weak value for mixed pre- selection)(
⟨∆Aw⟩ϕρ

)2

= Tr(A2ρ)− | ⟨ϕ|Aρ|ϕ⟩ |2

⟨ϕ|ρ|ϕ⟩

=
∑
i

pi ⟨ψi|A2|ψi⟩ −
|
∑
i

√
pi ⟨ϕ|A|ψi⟩

√
pi ⟨ψi|ϕ⟩ |2

⟨ϕ|ρ|ϕ⟩

≥
∑
i

pi⟨ψi|A2|ψi⟩−
(∑

i pi|⟨ϕ|A|ψi⟩|2
)(∑

i pi⟨ϕ|ψi⟩⟨ψi|ϕ⟩
)

⟨ϕ|ρ|ϕ⟩

=
∑
i

pi ⟨ψi|A2|ψi⟩ −
∑
i

pi| ⟨ϕ|A|ψi⟩ |2

=
∑
i

pi

(
⟨∆A⟩ϕψi

)2

=
(
⟨∆A⟩ϕρ

)2

,

where we have used the Cauchy-Schwarz inequality for the
complex numbers in the first inequality and Eq. (29) in the
last line. As ⟨V arA⟩ϕρ = (⟨∆A⟩ϕρ)2 does neither increase
nor decrease under classical mixing of quantum states, the in-
equality ⟨∆Aw⟩ϕρ ≥ ⟨∆A⟩ϕρ clearly implies that under clas-
sical mixing of quantum states, the standard deviation based
on weak value defined in Eq. (30) is always non-decreasing.
When ρ is pure, equality automatically holds.

It is important to note that, in general the equality in Eq.
(31) does not imply that the pre- selection ρ is pure. In sec.
IV A (see below), we show that only in the qubit system,
equality of Eq. (31) implies that the pre- selection is a pure
state. To make an equality in Eq. (31) in higher dimensional
systems, we need to put conditions on the observable and post-
selection (see below in sec. IV A ).

The uncertainty relation (17) or (21) can be generalized for
mixed pre- selection ρ also which is given by(

⟨∆A⟩ϕρ
)2 (

⟨∆B⟩ϕρ
)2

≥
[
1

2i
⟨[A,B]⟩ρ − ImWAB

]2
,

(32)

where WAB = ⟨ϕ|BρA|ϕ⟩. See the derivation Eq. (32)
in Appendix B. Eq. (32) holds also when the definition of

standard deviation defined in Eq. (30) is considered due the
Proposition 3.

See TABLE I for the comparison of different properties be-
tween standard quantum systems and PPS systems.

IV. APPLICATIONS

Suitably post-selected systems can offer some essential in-
formation regarding quantum systems. Below, we provide a
few applications of standard deviations and uncertainty rela-
tions in PPS systems.

A. Detection of mixedness of an unknown state

Practically, partial information about a quantum state is of-
ten of great help. For example, whether an interaction has
taken place with the environment, one must verify the purity
of the system’s state. Quantum state tomography (QST) is the
most resource intensive way to verify the purity of a quantum
state but here we provide some results that can be used to de-
tect purity of the quantum state using less resources compared
to the QST.

We will use the inequality (31) in Proposition 3 to detect the
mixedness of an unknown pre- selected state in a PPS system.
The proofs of the following Lemmas are given in Appendix C.

Lemma 1. Qubit system: In the case of a two-level quantum
system (i.e., a qubit), equality in Eq. (31) holds if and only if
the pre- selected state ρ is pure irrespective of choice of the
observable A and the post-selected state |ϕ⟩.

Lemma 2. Qutrit system: If for an observable A and a com-
plete orthonormal basis {|ϕk⟩}3k=1 (to be used as post- se-
lected states) of any three-level quantum system (i.e., a qutrit),
and the condition ⟨ϕ1|A|ϕ2⟩ = 0 also holds good, then equal-
ity in Eq. (31) holds good if and only if the pre- selected state
ρ is pure.

Lemma 3. Qubit-qubit system: Consider any two non
orthogonal post-selections |ϕB⟩ and |ϕ′B⟩ in the subsys-
tem B. For any observable A, equality of ⟨∆(A⊗I)w⟩ϕABρ
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and ⟨∆(A⊗I)⟩ϕABρ and separately of ⟨∆(A⊗I)w⟩ϕ
′
AB

ρ and

⟨∆(A⊗I)⟩ϕ
′
AB

ρ hold only when the 2 ⊗ 2 pre- selected state
ρ is pure, where |ϕAB⟩ = |ϕA⟩ |ϕB⟩ and |ϕ′AB⟩ = |ϕA⟩ |ϕ′B⟩.
Two non orthogonal post-selections |ϕB⟩ and |ϕ′B⟩ in the sub-
system ‘B’ are required here due to the fact that there exists an
unique 2⊗ 2 mixed density matrix which satisfies the equality
of Eq. (31)

Lemma 4. Qubit-qutrit system: If for an observable A
and any complete orthonormal basis {|ϕkA⟩}3k=1 (to be
used as post-selected states) for a qutrit, and the con-
dition ⟨ϕ1A|A|ϕ2A⟩ = 0 is considered, then equality
of ⟨∆(A⊗I)w⟩ϕABρ and ⟨∆(A⊗I)⟩ϕABρ and separately of

⟨∆(A⊗I)w⟩ϕ
′
AB

ρ and ⟨∆(A⊗I)⟩ϕ
′
AB

ρ hold if and only if the
3⊗ 2 pre- selected state ρ is pure.

Extension of this method for higher dimensional systems
will require more conditions to be imposed on the observable
and post-selections. So it might be difficult to apply our
method for higher dimensions. To overcome this difficulties,
Eq. (17) or (21) can be used to detect the mixedness of the
initially prepared states. Note that, Mal et al. have used the
stronger version of the RHUR (9) to do so [63].

B. Stronger Uncertainty Relation

Motivation. If, for example, the initially prepared state of
the system is an eigenstate of one of the two incompatible ob-
servables A and B, both the sides of the RHUR (8) becomes
trivial (i.e., zero). For certain states, a trivial lower bound
is always possible because the right side of the relation (8)
contains the average of the commutator of incompatible ob-
servables. For such cases, the RHUR (8) does not capture
the incompatibility of the non-commuting observables. One
can think of adding Schrödinger’s term in the RHUR but still
this can be become trivial (e.g., when the prepared states is
an eigenstate of either A or B). So, none of them are un-
questionably appropriate to capture the incompatibility of the
non-commuting observables.

It is Maccone and Pati [62] who considered a differ-
ent uncertainty relation, based on the sum of the variances
⟨∆A⟩2ψ + ⟨∆B⟩2ψ , that is guaranteed to be nontrivial (i.e.,
having non-zero lower bound) whenever the observables are
incompatible on the given state |ψ⟩. But there are short-
comings in the Maccone-Pati Uncertainty Relations (MPUR).
It is easy to show that in two dimensional Hilbert space
[64], if, for example, the initial state |ψ⟩ of the system
is an eigenstate of the observable A, then one finds that
the first inequality ⟨∆A⟩2ψ + ⟨∆B⟩2ψ ≥ ±i ⟨ψ|[A,B]|ψ⟩ +∣∣⟨ψ|(A± iB)|ψ⊥⟩

∣∣2 in MPUR becomes ⟨∆B⟩2ψ ≥ ⟨∆B⟩2ψ ,
where |ψ⊥⟩ is arbitrary state orthogonal to |ψ⟩. Similarly, it
can be shown that the second inequality ⟨∆A⟩2ψ + ⟨∆B⟩2ψ ≥
1
2

∣∣⟨ψ⊥
A+B |(A+B)|ψ⟩

∣∣2 in MPUR becomes ⟨∆B⟩2ψ ≥
1
2 ⟨∆B⟩2ψ , where |ψ⊥

A+B⟩ = (1/ ⟨∆(A+B)⟩ψ)(A +

B − ⟨A+B⟩ψ) |ψ⟩ and ⟨∆(A+B)⟩2ψ = ⟨(A+B)2⟩ψ −
⟨A+B⟩2ψ for arbitrary dimensional Hilbert space if the initial
state of the system is an eigenstate of the observable A [65].
It indicates that the first and second inequalities in MPUR for
two and arbitrary dimensions, respectively, contain no infor-
mation about the observable A and are therefore of no practi-
cal significance. In other words, we learn nothing new about
the quantum system other than the trivial fact that ⟨∆B⟩ψ is
non-negative. In addition, if the initially prepared state |ψ⟩
is unknown, then |ψ⊥⟩ is likewise unknown in the MPUR in-
equalities and, so is the lower bound of MPUR. The first in-
equality in MPUR may be useful in a quantum system with
Hilbert spaces of more than two dimensions.

Here, we demonstrate that relations (17) and (21) can be
used to solve the triviality problem of the RHUR and the prob-
lem with MPUR that we have mentioned above, i.e., these un-
certainty relations can provide non-trivial information about
the observable A. Even if the initially prepared state (pre-
selection) |ψ⟩ is unknown, the lower bound of our stronger
uncertainty relation can be calculated.

Consider the relation (17) which, using Eq. (14), becomes(
⟨∆A⟩2ψ+ ϵA

)(
⟨∆B⟩2ψ+ ϵB

)
≥
[
1

2i
⟨ψ|[A,B]|ψ⟩− Im(WAB)

]2
,

(33)

where ϵX = ⟨X⟩2ψ − |⟨Xw⟩ϕψ|2|⟨ϕ|ψ⟩|2, with X = A or B.
Now suppose |ψ⟩ is an eigenstate of A then, the Eq. (33) is
nontrivial unless |ϕ⟩ = |ψ⟩, as, in the case when |ϕ⟩ ≠ |ψ⟩,
the inequality (33) becomes

ϵA

(
⟨∆B⟩2ψ + ϵB

)
≥ [Im (WAB)]

2
. (34)
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● LHS & RHS of relation (8)

▲ LHS & RHS of relation (35)

■ RHS of relation (33)

-π -
π

2

π

2
π

θ

1

2

1

Fig. 1. Comparison between the RHURs (8) and (9), and the un-
certainty relations (33) and (35). We choose A = σx, B = σy
for a spin-1/2 particle and |ψ⟩ = cos(θ/2) |0⟩ + eiξ sin(θ/2) |1⟩,
|ϕ⟩ = cos(ω/2) |0⟩ + eiη sin(ω/2) |1⟩ with ξ = 0, ω = π/3 and
η = π/5. The blue curve is the LHS of the RHUR and for this par-
ticular case, it coincides with its lower bound i.e., RHS of RHUR.
The orange curve is the LHS of Eq. (35) and for this particular case,
it coincides with the RHS of Eq. (35). The green curve is the RHS
of Eq. (33). Now, notice that, for θ = −π/2 and π/2, the RHUR
becomes trivial while for the same values of θ, the relation (33) as
well as the relation (35) are nontrivial. For this particular choice of
post-selection, both the relations (33) and (35) are stronger than the
RHUR (8). Note that, the relation (35) is the strongest under this con-
dition as it is non-trivial for all the values of θ. If, for the fixed values
of θ and ξ, the relations (33) and (35) is trivial, then one should keep
changing the values of ω and η (i.e., by choosing the post-selection
suitably) until they become nontrivial which is our main goal.

Notice that, in the both sides of Eq. (34), there is a quan-
tum state |ϕ⟩ which can be chosen independently in the stan-
dard quantum system. So, it is always possible to choose
a suitable |ϕ⟩ such that the relation (33) is nontrivial. With
“Schrödinger’s term”, the relations (33) and (34) becomes(
⟨∆A⟩2ψ+ ϵA

)(
⟨∆B⟩2ψ+ ϵB

)
≥
[
1

2i
⟨ψ|[A,B]|ψ⟩− Im(WAB)

]2
+

[
1

2
⟨ψ|{A,B}|ψ⟩−Re(WAB)

]2
,

(35)

ϵA

(
⟨∆B⟩2ψ+ ϵB

)
≥ [Im (WAB)]

2

+

[
1

2
⟨ψ|{A,B}|ψ⟩−Re(WAB)

]2
,

(36)

respectively. As ϵA and ϵB can also be negative, the left hand
side of relation (33) can become lower than the left hand side
of relation (8). The same holds true for the right-hand side
as well. So, for a fixed |ψ⟩, we always want to have a non-
trivial lower bound from the relations (8) and (33) which can
be combined in a single uncertainty relation i.e., the stronger

uncertainty relation

max {LRH ,LPPS} ≥ max {RRH ,RPPS} ,

where LRH = ⟨∆A⟩2ψ⟨∆B⟩2ψ , LPPS =(
⟨∆A⟩2ψ+ ϵA

)(
⟨∆B⟩2ψ+ ϵB

)
, RRH =

[
1
2i ⟨ψ|[A,B]|ψ⟩

]2
and

RPPS =
[
1
2i ⟨ψ| [A,B] |ψ⟩ − Im (WAB)

]2
.

In FIG. 1, comparison between the relations (8) and, both
(33) and (35) is shown. Eqs. (34) and (36) capture the in-
formations about the operator A when the initially prepared
state |ψ⟩ is one of the eigenstates of A, while MPUR fails to
capture such informations which we have already discussed.

Moreover, even if the initial state (i.e., pre- selection) is un-
known, the lower bound of the uncertainty relation (33) can be
calculated experimentally and in that case we need the aver-
age value of the hermitian operator 1

i [A,B] and weak values
of the operators A and B.

Sum uncertainty relation in the PPS system can also be used
to obtain stronger uncertainty relation in the standard quantum
system. One can easily show that(

⟨∆A⟩2ψ+ ϵA

)
+
(
⟨∆B⟩2ψ+ ϵB

)
≥ ±

(
i ⟨ψ|[A,B]|ψ⟩

−2Im(WAB)
)

holds in Eq. (27) in Theorem 3 by discarding the summation
part which is always a positive number. This inequality re-
mains strong against when |ψ⟩ is one of the eigenstates of A
by suitably choosing post-selection |ϕ⟩.

C. Purely quantum uncertainty relation

Motivation. In practice, it is not always possible to carry
out quantum mechanical tasks with pure states because of in-
teractions with the environment. Because the mixed initial
prepared state is a classical mixture of pure quantum states,
any task or measurement involves a hybrid of classical and
quantum parts. In modern technologies, it is considered that
quantum advantage is more effective and superior to classi-
cal advantage. Hence, a hybrid of a quantum and classical
component may be less advantageous than a quantum compo-
nent alone. For example, the uncertainty of an observable A
in standard quantum system increases in general under clas-
sical mixing of quantum states i.e., ⟨∆A⟩2ρ ≥

∑
i pi ⟨∆A⟩

2
ψi

(where ρ =
∑
i pi |ψi⟩ ⟨ψi|) and this is disadvantageous in

the sense that the knowledge about the observable is more un-
certain than only when the average of the pure state uncer-
tainties are considered. The uncertainty that one gets to see
due to (classical) mixing of pure states is considered here as
‘classical uncertainty’. The standard deviation ⟨∆A⟩ρ can be
referred as the hybrid of classical and quantum uncertainties
and hence the RHUR (8) can be considered as the hybrid un-
certainty relation in the standard quantum systems.

Purely quantum uncertainty relation, a crucial component
of the quantum world, may be very useful, but in order to ob-
tain it, the classical uncertainty must be eliminated from the
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hybrid uncertainty relation. To do this, we first need to deter-
mine the purely quantum uncertainty of an observable, which
can be done in a number of ways, such as by eliminating the
classical component of the hybrid uncertainty or by specifying
a purely quantum uncertainty straight away.

Any measure of purely quantum uncertainty should have at
least the following intuitive and expected property (below ‘Q’
represents sometimes quantum observables, sometimes states,
etc for different type of quantum mechanical systems. For
example, if the system is a PPS system, then ‘Q’ is the post-
selection |ϕ⟩. If the system is a standard quantum system, then
the term ‘Q’ disappears):
(i) Quantum uncertainty should not be affected (neither in-
creasing nor decreasing) by the classical mixing of quantum
states i.e.,

Q(ρ,A,Q)=
∑
i

piQ(ψi, A,Q), where ρ =
∑
i

pi |ψi⟩ ⟨ψi| .

Here Q(ρ,A,Q) is some measure of purely quantum uncer-
tainty of the observable A for a given ρ. There might exist
some other properties depending upon the nature of the sys-
tem (e.g., standard systems, PPS systems, etc) but we em-
phasize that the most important property of a purely quantum
uncertainty should be (i).

It is seen that the variance of A in PPS system i.e.,
⟨V arA⟩ϕρ = (⟨∆A⟩ϕρ)2 is a purely quantum uncertainty which
satisfies the property (i). Now the purely quantum mechanical
uncertainty relation in this regard is Eq. (32).

As can be seen from Eq. (31) for mixed states, the second
definition of the variance of A i.e., ⟨V arAw⟩ϕρ = (⟨∆Aw⟩ϕρ)2
in the PPS system defined in Eq. (30) is a hybrid uncertainty.
Hence, the uncertainty in PPS system based on weak value
has both classical and quantum parts. When measurement is
carried out in the PPS system and weak values are involved,
classical uncertainty may be crucial in determining how much
classicality (in the form of classical uncertainty) the mixed
state ρ possesses. Mixed states with less classicality should
have more quantumness (in the form of quantum uncertainty),
and vice versa. To distinguish classical uncertainty from the
hybrid uncertainty ⟨V arAw⟩ϕρ , we subtract the quantum un-

certainty ⟨V arA⟩ϕρ from it i.e.,

C(ρ,A, ϕ) =
(
⟨∆Aw⟩ϕρ

)2

−
(
⟨∆A⟩ϕρ

)2

. (37)

This is one of the good measures of classical uncertainty
which should have some intuitive and expected properties:
(i) C(ρ,A,Q) ≥ 0 for a quantum state ρ,
(ii) C(ρ,A,Q) = 0 when ρ = |ψ⟩ ⟨ψ| (absence of classical
mixing),
(iii) Total classical uncertainty of disjoint systems should be
the sum of individual systems’s classical uncertainties:

C(ρ,A1⊗I + I⊗A2, Q) = C(ρ,A1⊗I,Q) + C(ρ, I⊗A2, Q),

when ρ = ρ1 ⊗ ρ2.
One can show that all the properties (i)-(iii) of classical un-

certainty are satisfied by C(ρ,A, ϕ) defined in Eq. (37). Par-
ticularly, property (iii) is satisfied by taking Q = |ϕ1⟩ |ϕ2⟩.
Here, |ϕ1⟩ and |ϕ2⟩ are post-selections of the two disjoint sys-
tems, respectively.

There are some works by Luo and other authors regarding
the purely quantum uncertainty relation. Initial attempt was
made by Luo and Zhang [66] to obtain uncertainty relation
by using skew information (introduced by Wigner and Yanase
[67]) but it was found to be incorrect in general [68]. Later,
another attempt was made by Luo himself [69], which is ob-
tained by discarding the classical part from the hybrid uncer-
tainty relation using skew information. But this uncertainty
relation can’t be guaranteed to be an intrinsically quantum un-
certainty relation (according to property (i)) as the uncertainty
they claim to be a quantum uncertainty is a product of skew
information (which is a convex function under the mixing of
quantum states) and a concave function under the same mix-
ing. After that a series of successful and failed attempts was
performed by modifying the works of Luo and other authors
[70–73].

Instead, we have given a quantum uncertainty relation al-
though it is based on pre- and post-selections which is differ-
ent from the standard quantum mechanics but a quantumness
can be seen in the relation (32).

D. State dependent tighter uncertainty relations in standard
systems

The RHUR (8) or (9) is known not to be the tight one. Some
existing tighter bounds are given in [61, 62, 74]. The draw-
back of these tighter uncertainty relations is that their lower
bounds depend on the states perpendicular to the given state
of the system. If the given state is unknown, then the lower
bound of these uncertainty relations also remain unknown.

Here we show that by the use of arbitrary post-selected state
|ϕ⟩, the lower bound of the RHUR based on sum uncertainties
can be made arbitrarily tight and even if the given state (i.e.,
pre- selection here) is unknown, the lower bound of our tighter
uncertainty relation can be obtained in experiments.

Theorem 4. Let ρ ∈ L(H) be the density operator of the stan-
dard quantum system, then the sum of the standard deviations
of two non-commuting observables A, B ∈ L(H) satisfies

⟨∆A⟩2ρ + ⟨∆B⟩2ρ ≥ ± i T r([A,B]ρ) + ⟨ϕ|C†
±ρC±|ϕ⟩ , (38)

where C± = A± iB−⟨A± iB⟩ρ I and the ‘±’ sign is taken
in such a way that the first term in the right hand side is always
positive.

Proof. Considering Eq. (27) for pre- selection |ψj⟩ and mul-
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tiply by ‘pj’, and then after summing over ‘j’, we have∑
j

pj

(
⟨∆A⟩ϕψj

)2

+
∑
j

pj

(
⟨∆B⟩ϕψj

)2

= ±i
∑
j

pj⟨ψj |[A,B]|ψj⟩ ∓ 2Im
(∑

j

pj⟨ϕ|B|ψj⟩⟨ψj |A|ϕ⟩
)

+

d−1∑
k=1

∑
j

pj⟨ϕ⊥k |(A± iB)|ψj⟩⟨ψj |(A∓ iB)|ϕ⊥k ⟩ , (39)

where we have used WAB = ⟨ϕ|B|ψj⟩⟨ψj |A|ϕ⟩. By using
Eq. (29) for A and B when ρ =

∑
j pj |ψj⟩⟨ψj |, we have(

⟨∆A⟩ϕρ
)2

+
(
⟨∆B⟩ϕρ

)2

= ±iTr([A,B]ρ)∓ 2Im
(
⟨ϕ|BρA|ϕ⟩

)
+

d−1∑
k=1

⟨ϕ⊥k |(A± iB)ρ(A∓ iB)|ϕ⊥k ⟩

= ±iTr([A,B]ρ)+⟨ϕ|(A± iB)ρ(A∓ iB)|ϕ⟩−⟨ϕ|AρA|ϕ⟩

− ⟨ϕ|BρB|ϕ⟩+
d−1∑
k=1

⟨ϕ⊥k |(A± iB)ρ(A∓ iB)|ϕ⊥k ⟩ , (40)

where ∓2Im(⟨ϕ|BρA|ϕ⟩) = ±i(⟨ϕ|BρA|ϕ⟩ − ⟨ϕ|AρB|ϕ⟩)
= ⟨ϕ|(A± iB)ρ(A∓ iB)|ϕ⟩− ⟨ϕ|AρA|ϕ⟩− ⟨ϕ|BρB|ϕ⟩ has

been used. Now put
(
⟨∆A⟩ϕρ

)2

= Tr
(
A2ρ

)
− ⟨ϕ|AρA|ϕ⟩

defined in Eq. (28) (similarly forB also) and after subtracting
Tr(Aρ)

2
+ Tr(Bρ)

2 from both sides of Eq. (40) and using
|ϕ⟩⟨ϕ|+

∑d−1
k=1

∣∣ϕ⊥k 〉〈ϕ⊥k ∣∣ = I , we have

⟨∆A⟩2ρ + ⟨∆B⟩2ρ
= ±iTr([A,B]ρ) + Tr[(A± iB)(A∓ iB)ρ]

− Tr(Aρ)
2 − Tr(Bρ)

2

= ±iTr([A,B]ρ) + Tr[(A± iB)(A∓ iB)ρ]

− Tr[(A± iB)ρ] Tr[(A∓ iB)ρ]

= ±iTr([A,B]ρ) + Tr
(
M†

∓M∓ρ
)
− |Tr(M∓ρ)|2

= ±iTr([A,B]ρ) + Tr
[
(M∓ −⟨M∓⟩ρI)

†(M∓ −⟨M∓⟩ρI)ρ
]
,

(41)

where M∓ = A ∓ iB. Now let C± = M± − ⟨M±⟩ρ I then
Eq. (41) can be rewritten as

⟨∆A⟩2ρ + ⟨∆B⟩2ρ =± iTr([A,B]ρ) + ⟨ϕ|C†
±ρC±|ϕ⟩

+

d−1∑
i

⟨ϕ⊥i |C
†
±ρC±|ϕ⊥i ⟩ ,

where {|ϕ⟩, {|ϕ⊥i ⟩}
d−1
i=1 } is an orthonormal basis in H. By dis-

carding the summation term which is always a positive num-
ber in the above equation, we obtain the inequality (38).

Notice that, the lower bound of Eq. (38) has different
non-zero values depending on different choices of the post-
selections |ϕ⟩. The inequality (38) becomes an equality when
|ϕ⟩ ∝ (A ± iB − ⟨A± iB⟩ρ I) |ψ⟩, where ρ = |ψ⟩ ⟨ψ| is
a pure state. In the references [61, 62, 74], the lower bound
of the sum uncertainty relation depends on the state orthogo-
nal to the initial pure state, and if the initial state is a mixed
state, then the lower bound can not always be computed at
least for the full rank density matrix. The reason is that we
can not find a state which is orthogonal to all the eigenstates
of a full rank density matrix. Moreover, if the initial den-
sity matrix is unknown then computing the lower bound will
be hard. In contrast, Eq. (38) doesn’t have such issues as
the first and second terms in right hand side of Eq. (38)
are the average values of the hermitian operators i[A,B] and
(A±iB−⟨A± iB⟩ρ I) |ϕ⟩ ⟨ϕ| (A∓iB−⟨A∓ iB⟩ρ I) in the
state ρ, respectively, where ⟨A± iB⟩ρ = ⟨A⟩ρ ± i ⟨B⟩ρ. All
of them can be obtained in experiments even if ρ is unknown.

E. Tighter upper bound for out-of-time-order correlators

Recently Bong et al. [75] used the RHUR for unitary
operators to give upper bound for out-of-time-order correla-
tors (OTOC) which is defined by F = Tr[(W †

t V
†WtV )ρ],

where V and Wt are fixed and time dependent unitary op-
erators, respectively. The OTOC diagnoses the spread of
quantum information by measuring how quickly two com-
muting operators V and W fail to commute, which is quanti-
fied by ⟨|[Wt, V ]|2⟩ρ = 2(1 − Re[F ]), where |X|2 = X†X .
The OTOC has strong connection with chaos and information
scrambling [76–78] and also with high energy physics [79–
82]. It is known that OTOC’s upper bound is essential for
limiting how quickly many-body entanglement can generate
[79–81]. The standard upper bound for modulus of the OTOC
given by Bong et al. [75] is |F | ≤ cos(θVWt

− θWtV ), where
θVWt

= cos−1|Tr(ρVWt)|, θWtV = cos−1|Tr(ρWtV )|.
Here, we show that uncertainty relation in PPS system for

unitary operators can be used to derive tighter upper bound for
the OTOC.

Theorem 5. Let ρ ∈ L(H) be the system’s state and |ϕ⟩
be any arbitrary state, then modulus of the OTOC F =

Tr[(W †
t V

†WtV )ρ] for fixed and time dependent unitary op-
erators V , Wt ∈ L(H), respectively is upper bounded by

|F | = | ⟨W †
t V

†WtV ⟩ | ≤ cos(θϕVWt
− θϕWtV

), (42)

where θϕVWt
= cos−1||√ρ(VWt)

† |ϕ⟩ || and θϕWtV
=

cos−1||√ρ(WtV )† |ϕ⟩ ||. Here, ||.|| defines a vector norm.

Proof. For a given mixed state ρ and arbitrary state |ϕ⟩ which
we consider to be pre- and post-selections, respectively, the
standard deviation ⟨∆X⟩ϕρ of any operator X in the PPS sys-

tem is defined as
(
⟨∆X⟩ϕρ

)2

= Tr(XX†ρ)−⟨ϕ|X†ρX|ϕ⟩ =

Tr
(
(
√
ρXϕ

0 )
†√ρXϕ

0

)
= ||√ρXϕ

0 ||2F , where Xϕ
0 = X −
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X |ϕ⟩ ⟨ϕ| and ||A||F =
√
Tr(A†A) denotes the Frobenius

norm of the operator A. When X is a hermitian operator,
⟨∆X⟩ϕρ becomes the standard deviation of X defined in Eq.
(28). Now consider X to be unitary operators U and V . So,
we can derive uncertainty relation for two unitary operators
U and V using the Cauchy-Schwarz inequality for operators
with Frobenius norm when the system is in pre- and post-
selections ρ and |ϕ⟩, respectively as

⟨∆U⟩ϕρ ⟨∆V ⟩ϕρ ≥
∣∣∣Tr [(√ρUϕ0 )†√ρV ϕ0 ]∣∣∣

=
∣∣Tr(V U†ρ)− ⟨ϕ|U†ρV |ϕ⟩

∣∣ , (43)

where ⟨∆U⟩ϕρ =
√
1− ⟨ϕ|U†ρU |ϕ⟩ and similarly for V also.

Now, by replacing U → V †W †
t and V → W †

t V
†, (43) be-

comes

|Tr(W †
t V

†WtV ρ)|

≤ | ⟨ϕ|(V †W †
t )

†ρW †
t V

†|ϕ⟩ |+ ⟨∆(V †W †
t )⟩

ϕ

ρ ⟨∆(W †
t V

†)⟩
ϕ

ρ

≤ ||√ρV †W †
t |ϕ⟩ ||||

√
ρW †

t V
† |ϕ⟩ ||

+

√
1− ||√ρV †W †

t |ϕ⟩ ||2
√
1− ||√ρW †

t V
† |ϕ⟩ ||2,

(44)

where we used the Cauchy-Schwarz inequality for vec-

tors and ⟨∆(V †W †
t )⟩

ϕ

ρ =
√

1− ||√ρV †W †
t |ϕ⟩ ||2 and

⟨∆(W †
t V

†)⟩
ϕ

ρ =
√

1− ||√ρW †
t V

† |ϕ⟩ ||2, where || |χ⟩ || =√
⟨χ|χ⟩ denotes vector norm.
Now, by setting ||√ρ(VWt)

† |ϕ⟩ || = cosθϕVWt
and

||√ρ(WtV )† |ϕ⟩ || = cosθϕWtV
in (44), the inequality (42) is

proved.
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Fig. 2. For both the figures, the blue curve is the standard upper
bound for |F | given by Bong et al. [75] and the green curve is |F |.
We have considered V = σz and Wt =

1√
2

(
1 1
−i i

)
for a fixed time.

Initially prepared state is |ψ⟩ = cos(θ/2) |0⟩+ eiπ/11sin(θ/2) |1⟩.
Now in the left figure, the orange curve is the upper bound of |F |
given in Eq. (42) when the post-selection is |ϕ1⟩ = cos(π/2) |0⟩ +
eiπ/2sin(π/2) |1⟩. In the right figure, the orange curve is the upper
bound of |F | given in the Eq. (42) when the post-selection is |ϕ2⟩ =
cos(π/4) |0⟩+ eiπ/2sin(π/4) |1⟩. Here for two (or more) different
post-selections, it is clearly seen that the upper bound given in Eq.
(42) is tighter than the standard upper bound given by Bong et al.
[75].

In Fig. 2, it is shown that by suitably choosing |ϕ⟩, the
upper bound of |F | in Eq. (42) can be made tighter than the
standard upper bound given by Bong et al. [75]. Hence, we
conclude that the tighter upper bound for the modulus of the
OTOC is

|F |≤ min

{
min
ϕ

{cos(θϕVWt
− θϕWtV

)}, cos(θVWt − θWtV )

}
.

V. CONCLUSION

We have defined standard deviation of an observable in
a PPS system, interpreted it geometrically as well as infor-
mationally from the perspective of weak PPS measurements
and subsequently derived the Robertson-Heisenberg like un-
certainty relation for two non commuting observables. Such
uncertainty relations in PPS system impose limitations on the
joint sharp preparation of pre- and post-selected states for two
incompatible observables. We provided the necessary and suf-
ficient condition for zero uncertainty of an observable and
show its usefulness in achieving optimized Fisher information
in quantum metrology. We have derived both product and sum
uncertainty equalities from which a series of uncertainty in-
equalities can be obtained. The generalization of uncertainty
relation for mixed pre- selection in PPS system has also been
discussed. We have demonstrated that the PPS system can
exhibit more bizarre behaviors than the usual ones. For in-
stances, it is possible in PPS system that measurement of two
compatible observables can disturb each other’s measurement
results i.e., the lower bound in the uncertainty relation can be
made non zero by suitably choosing post-selections. A simi-
lar property in PPS system was first shown by Vaidman [50].
It is also possible that a quantum state (pre-selection) can be
prepared in a PPS system for which both of the standard de-
viations of incompatible observables are zero although this is
not possible in a standard quantum system (see section III B).

The standard deviation and uncertainty relation in the PPS
system have been used to provide physical applications. (i)
We have used two different definitions of the standard de-
viations in the PPS system to detect purity of an unknown
state. (ii) The uncertainty relation in the PPS system is used
to derive the stronger uncertainty relation (i.e., nontrivial for
all possible choices of initially prepared states) in the stan-
dard quantum system. For two dimensional quantum system,
the stronger uncertainty relation by Maccone-Pati [62] fails to
provide the informations about the incompatible observables
when the system state is an eigenstate of either observables.
We have shown that our stronger uncertainty relation over-
comes this shortcoming of Maccone-Pati uncertainty relation.
(iii) Since the variance in the PPS system remains unaffected
(i.e., neither increases nor decreases) by the classical mixing
of quantum states, we have concluded that the uncertainty re-
lation in the PPS system is a purely quantum uncertainty re-
lation. In contrast, variance in the standard system increases
in general under the classical mixing of quantum states. Fol-
lowing this observation we have provided a measure of clas-
sical uncertainty whose less value implies more purely quan-
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tum uncertainty. (iv) Tighter sum uncertainty relation in the
standard quantum system has been derived where the tight-
ness depends on the post-selection. (v) Uncertainty relation
in PPS system for two unitary operators has been used to pro-
vide tighter upper bound for out-of-time-order correlators.

Future directions: (i) it will be interesting if the global min-
imum for sum of uncertainties of non-commuting observables
in the PPS system exists because that can be used to detect
entanglement by suitably choosing post-selections, Similar to
the work by Hofmann and Takeuchi [7]. (ii) Applications
and implications of the ideas like ‘zero uncertainty’ and ‘joint
sharp preparation of a quantum state for non-commuting ob-
servables’ need more attention. (iii) Tt is a matter of further
study if the uncertainty relation (17) in PPS systems has ap-
plications similar to the RHUR (8), such as quantum metrol-
ogy, spin squeezing, improving the accuracy of phase mea-
surement in quantum interferometers, etc. (iv) We have de-
rived the condition for the “intelligent pre- and post-selected
states” to achieve the minimum bound of the uncertainty rela-
tion in the PPS system and intelligent pre- and post-selected
states can be exploited to get highly precise phase measure-
ments because many theoretical and experimental efforts have
been made in recent years involving the minimum uncertainty
states (for which the RHUR saturates) and the spin-squeezing
states in the standard quantum systems (see, for example,
[52, 56, 60]) for precise phase measurements.
Acknowledgment: We would like to thank Klaus Mølmer
and David R. M. Arvidsson-Shukur for bringing the refer-
ences [14, 15, 48, 49] and [45], respectively to our attention.

VI. APPENDICES

Appendix A

Here we derive the condition for which the inequality (17)
saturates. In the Cauchy-Schwarz inequality Eq. (18), the
remainder and the real term to be vanished for the equality
condition of Eq. (17) i.e.,

|ϕ̃⊥Aψ⟩ −
⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩
⟨ϕ̃⊥Bψ|ϕ̃⊥Bψ⟩

|ϕ̃⊥Bψ⟩ = 0, (A1)

⟨ϕ̃⊥Aψ|ϕ̃⊥Bψ⟩+ ⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩ = 0. (A2)

Now take the inner product between ⟨ϕ⊥Aψ| and Eq. (A1), and
use the condition (A2), then we have

⟨ϕ̃⊥Aψ|ϕ̃⊥Aψ⟩+

(
⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩

)2

⟨ϕ̃⊥Bψ|ϕ̃⊥Bψ⟩
= 0. (A3)

Now using ⟨ϕ̃⊥Xψ|ϕ̃⊥Xψ⟩ =
(
⟨∆X⟩ϕψ

)2

, where X={A,B}; the
Eq. (A3) becomes

⟨ϕ̃⊥Bψ|ϕ̃⊥Aψ⟩ = ±i ⟨∆A⟩ϕψ ⟨∆B⟩ϕψ . (A4)

Finally, use Eqs. (A4) and (12) in Eq. (A1) to obtain the
condition (23).

Appendix B

To show that the uncertainty relation (17) or (21) is also
valid for mixed pre- selected state ρ, we consider the follow-
ing operator

T = Aϕ0 + (γ + iϵ)Bϕ0 , (B1)

where Aϕ0 = A − A |ϕ⟩ ⟨ϕ| and Bϕ0 = B − B |ϕ⟩ ⟨ϕ|. And
γ, ϵ are some real parameters. Now for any operator T , the
inequality

Tr(ρTT †) ≥ 0, (B2)

holds. Using Eq. (B1), we have

Tr(ρTT †) =
(
⟨∆A⟩ϕρ

)2

+
(
γ2 + ϵ2

) (
⟨∆B⟩ϕρ

)2

+ γ
(
⟨{A,B}⟩ρ − 2ReWAB

)
− iϵ

(
⟨[A,B]⟩ρ − 2ImWAB

)
≥ 0, (B3)

where
(
⟨∆A⟩ϕρ

)2

= Tr(ρAϕ0A
ϕ
0

†
) is defined in Eq. (28),

⟨[A,B]⟩ρ = Tr(ρ[A,B]), ⟨{A,B}⟩ρ = Tr(ρ{A,B})
and WAB = Tr(ΠϕBρA). Now one finds the quantity

Tr(ρTT †) is minimum for γ = − ⟨{A,B}⟩ρ−2ReWAB

2(⟨∆B⟩ϕρ)
2 and

ϵ =
i(⟨[A,B]⟩ρ−2iImWAB)

2(⟨∆B⟩ϕρ)
2 . Hence, minγ,ϵTr(ρTT †) ≥ 0

becomes(
⟨∆A⟩ϕρ

)2 (
⟨∆B⟩ϕρ

)2

≥
[
1

2i
⟨[A,B]⟩ρ − ImWAB

]2
+

[
1

2
⟨{A,B}⟩ρ −ReWAB

]2
.

(B4)

By discarding the second term which is a positive number in
the right hand side of Eq. (B4), the uncertainty relation (32)
is achieved.

Appendix C

Here we show the proofs of all the Lemmas to detect mixed-
ness of an unknown state in qubit, qutrit, qubit-qubit and
qubit-qutrit systems. Let us recall the mathematical expres-
sion of the statement of the Proposition 3 which is given by

⟨∆Aw⟩ϕρ ≥ ⟨∆A⟩ϕρ . (C1)

In the following, we will use Eq. (C1) to prove all the Lem-
mas.

142



15

The general form of a mixed state is ρ =
∑
i pi |ψi⟩ ⟨ψi|

and the condition for which the equality of Eq. (C1) holds is
(see proof of the Proposition 3)

⟨ϕ|A|ψi⟩ = λ ⟨ϕ|ψi⟩ , (C2)

where ‘λ’ is some constant which depends on the index of |ϕ⟩
(e.g., for |ϕk⟩, it is λk).
The proof of Lemma 1:

Proof. We first assume that each |ψi⟩ is distinct and hence
from Eq. (C2), we have a set of equations

⟨ϕ| (A− λI) |ψi⟩ = 0, (C3)

for each |ψi⟩. Denote the unnormalized state vector |ϕ̃λA⟩ =

(A−λI) |ϕ⟩. As |ϕ̃λA⟩ is a unnormalized state vector different
from |ϕ⟩ and the |ψi⟩, ∀i are orthogonal to |ϕ̃λA⟩, it implies
that {|ψi⟩}i=1 are confined in one dimensional Hilbert space.
Hence each |ψi⟩ is the same initially prepared state that is ρ is
a pure state in a qubit system.

The proof of Lemma 2:

Proof. The qubit argument can not be generalized for the
higher dimensional systems. The reason is simply because
in three dimensional Hilbert space (for example) all the |ψi⟩
can be confined in a two dimensional subspace of the Hilbert
space which is orthogonal to |ϕ̃λA⟩. To make an “if and only
if” condition, we consider the orthogonal basis {|ϕk⟩}3k=1
as valid post-selections. Here valid post-selections are those
post-selections for which weak values are defined.

As there are three post-selections in three dimensional
Hilbert space, we have three sets of equations like (C2) for
the equality of the inequality (C1)

{⟨ϕ1| (A− λ1I) |ψi⟩ = 0}i=1, (C4)
{⟨ϕ2| (A− λ2I) |ψi⟩ = 0}i=1, (C5)
{⟨ϕ3| (A− λ3I) |ψi⟩ = 0}i=1. (C6)

Now, there are three possibilities which is implied by (C4),
(C5) and (C6):
(i) The state vectors {|ϕ̃λkkA⟩ = (A − λkI) |ϕk⟩}3k=1 span the
whole 3-dimensional Hilbert space H,
(ii) {|ϕ̃λkkA⟩}3k=1 span a 2-dimensional Hilbert space H,
(iii) {|ϕ̃λkkA⟩}3k=1 span a 1-dimensional Hilbert space H.

Below, we will show that possibility-(i) is discarded natu-
rally whereas to discard possibility-(iii), we need a condition
on observable A and post-selection |ϕ⟩. Then, possibility-(ii)
will automatically indicate that all the {|ψi⟩}i=1 are same i.e.,
ρ is pure.

To start with possibility-(i), let’s assume that possibility-(i)
is true, then {|ψi⟩}i=1 has to be orthogonal to {|ϕ̃λkkA⟩}3k=1
according to (C4), (C5) and (C6) implying |ψi⟩ = 0 ∀ i i.e.,
ρ = 0. So we discard this possibility.

Possibility-(iii) implies

N1(A− λ1I)|ϕ1⟩ = N2(A− λ2I)|ϕ2⟩ = N3(A− λ3I)|ϕ3⟩ ,
(C7)

along z-axis (for example) and hence {|ψi⟩}i=1 span 2-
dimensional xy-plane (see Fig. 4). Here Nk are nomalization
constants. Now the inner product of (C7) with |ϕ1⟩, |ϕ2⟩ and
|ϕ3⟩, respectively gives

N1(⟨ϕ1|A|ϕ1⟩ − λ1) = N2 ⟨ϕ1|A|ϕ2⟩ = N3 ⟨ϕ1|A|ϕ3⟩ ,
(C8)

N1 ⟨ϕ2|A|ϕ1⟩ = N2(⟨ϕ2|A|ϕ2⟩ − λ2) = N3 ⟨ϕ2|A|ϕ3⟩ ,
(C9)

N1 ⟨ϕ3|A|ϕ1⟩ = N2 ⟨ϕ3|A|ϕ2⟩ = N3(⟨ϕ3|A|ϕ3⟩ − λ3).
(C10)

Now, the particular choice

⟨ϕ1|A|ϕ2⟩ = 0 (C11)

implies that Eq. (C8) and (C9) do not hold if ⟨ϕ1|A|ϕ3⟩ ̸= 0
and ⟨ϕ2|A|ϕ3⟩ ̸= 0, respectively. If either of Eq. (C8) and
(C9) does not hold then possibility-(iii) is discarded. But, if
⟨ϕ1|A|ϕ3⟩ = 0 and ⟨ϕ2|A|ϕ3⟩ = 0, then we have to proceed
further. Note that, by setting ⟨ϕ1|A|ϕ2⟩ = 0 from Eq. (C11),
⟨ϕ1|A|ϕ3⟩ = 0 and ⟨ϕ2|A|ϕ3⟩ = 0 in Eqs. (C8), (C9) and
(C10), we have

λk = ⟨ϕk|A|ϕk⟩ for k = 1, 2, 3. (C12)

Now, it is easy to see that with the values of λk from
Eq. (C12), {⟨ϕk|ϕ̃λkkA⟩ = 0}3k=1 holds. This implies that
{|ϕ̃λkkA⟩}3k=1 can not be confined in one dimensional Hilbert
space i.e., along a particular axis and in our assumption it is
the z-axis. But according to Eq. (C7), {|ϕ̃λkkA⟩}3k=1 are along
the z-axis. Hence it shows the contradiction and we discard
the possibility-(iii) when the condition ⟨ϕ1|A|ϕ2⟩ = 0 is con-
sidered.

Finally the possibility-(ii) implies that {|ψi⟩}i=1 must be
spanned in 1-dimensional Hilbert space H that is, each |ψi⟩ is
the same initially prepared state which is a pure state.

So, we conclude that if for an observable A and a complete
orthonormal basis {|ϕk⟩}3k=1 (to be used as post-selected
states) of any three-level quantum system (i.e., a qutrit), the
condition ⟨ϕ1|A|ϕ2⟩ = 0 is considered, then equality in Eq.
(C1) holds good if and only if the pre- selected state ρ is pure.

The proof of Lemma 3:

Proof. For this bipartite system, we consider the observable
and the post-selection to be A ⊗ I and |ϕAB⟩ = |ϕA⟩ |ϕB⟩,
respectively. The standard deviations defined in Eq. (28) and
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(30) for the given bipartite state ρ become(
⟨∆(A⊗I)w⟩ϕABρ

)2

= Tr[(A⊗I)2ρ]− |⟨ϕAB |(A⊗I)ρ|ϕAB⟩|2

⟨ϕAB |ρ|ϕAB⟩

= Tr[A2ρA]−
|⟨ϕA|AρϕBA |ϕA⟩|2

⟨ϕA|ρϕBA |ϕA⟩
,

(C13)

(
⟨∆(A⊗I)⟩ϕABρ

)2

= Tr[(A⊗I)2ρ]−⟨ϕAB |(A⊗I)ρ(A⊗I)|ϕAB⟩

= Tr[A2ρA]− ⟨ϕA|AρϕBA A|ϕA⟩ , (C14)

respectively, where ρϕBA = ⟨ϕB |ρ|ϕB⟩ is the collapsed den-
sity operator of the subsystem A when a projection operator
ΠϕB = |ϕB⟩ ⟨ϕB | is measured in the subsystem B. In a qubit-
qubit system, the subsystem A is two dimensional and hence
⟨∆(A⊗I)w⟩ϕABρ from Eq. (C13) and ⟨∆(A⊗I)⟩ϕABρ from Eq.
(C14) are equal “if and only if” ρϕBA is pure. Now, ρϕBA be-
ing pure can be from ρ being both pure and mixed. If ρ is
pure then ρϕBA is always pure but if ρ mixed, then it is easy
to see that ρϕBA is pure only when ρ =

∑2
i=1 pi |ψiA⟩ ⟨ψiA| ⊗

|ϕiB⟩ ⟨ϕiB |, where |ϕ1B⟩ = |ϕB⟩ and
∑2
i=1 |ϕiB⟩ ⟨ϕiB | = I .

So, let us consider another post-selection |ϕ′B⟩ (which is not
orthogonal to {|ϕiB⟩}2i=1) and if we find ρ

ϕ′
B

A to be pure
which is equivalent to the equality of ⟨∆(A⊗I)w⟩ϕ

′
AB

ρ and

⟨∆(A⊗I)⟩ϕ
′
AB

ρ , then we are sure that the bipartite state ρ is a
pure state (due to the virtue of qubit system discussed above),
where |ϕ′AB⟩ = |ϕAϕ′B⟩.

So, here is the conclusion: Consider any two non orthogo-
nal post-selections |ϕB⟩ and |ϕ′B⟩ in the subsystem B. For any
observable A, equality of ⟨∆(A⊗I)w⟩ϕABρ and ⟨∆(A⊗I)⟩ϕABρ
and separately of ⟨∆(A⊗I)w⟩ϕ

′
AB

ρ and ⟨∆(A⊗I)⟩ϕ
′
AB

ρ hold
only when the 2⊗ 2 pre- selected state ρ is pure.

The proof of Lemma 4:

Proof. The treatment above with the condition of the qutrit
system, we have the conclusion: if for an observable
A and any complete orthonormal basis {|ϕkA⟩}3k=1 (to
be used as post-selected states) for a qutrit, the con-
dition ⟨ϕ3A|A|ϕ1A⟩ = 0 is considered, then equality
of ⟨∆(A⊗I)w⟩ϕABρ and ⟨∆(A⊗I)⟩ϕABρ and separately of

⟨∆(A⊗I)w⟩ϕ
′
AB

ρ and ⟨∆(A⊗I)⟩ϕ
′
AB

ρ hold if and only if the
3⊗2 pre-selected state ρ is pure, where |ϕ′AB⟩ = |ϕAϕ′B⟩.
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The shareability of steering in two-producible states
Qiu-Cheng Song1 ∗ Travis J. Baker1 † Howard M. Wiseman1 ‡
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Abstract. Quantum steering was originally introduced as the phenomenon whereby one
party (Alice) can steer the quantum system of another party (Bob) into distinct ensembles of
states by performing different measurements on her subsystem. Here, we investigate steer-
ing in a network scenario involving n parties, where the global quantum state shared between
them is produced using only two-party entangled states |ψα〉 and mixing with ancillary sep-
arable states. We introduce three scenarios which can be straightforwardly implemented
on standard quantum optics architecture, which we call random n

2 -pair entanglement, ran-
dom pair entanglement and semi-random pair entanglement (SRPE). For example, the SRPE
scenario is where, among n parties, a fixed party shares the entangled state with a random
party, and other n−2 parties are prepared in single-qubit pure states. We derive analytically
necessary and sufficient steering criteria for the states in the three scenarios under different
measurement settings. Strikingly, using the SRPE construction, one party can steer any one
of the n− 1 other parties, for arbitrarily large n, using only two measurements. Then, ex-
ploiting symmetry, we study various small network configurations for three- and four-parties
in the three scenarios, under different measurements and parameter α in the state |ψα〉. Mo-
tivated by these results, we investigate whether the phenomenon of collective steering could
be observed in the SRPE scenario, where two parties must cooperate in order to steer a third.
This is known to have applications in quantum secret sharing schemes. Using semi-definite
programming techniques, we find collective steering possible, and robust to noise.

Keywords: shareability, steering, small network, collective steering

We come to the conclusion by studying the
shareability of steering in three different sce-
narios of 2-producible multipartite entangled
qubit states, which we call n

2 -pair entanglement
(R n

2 PE), random pair entanglement (RPE), and
semi-random pair entanglement (SRPE). As well
as considering steerability under all projective
measurements, we consider more limited mea-
surement strategies, for which we find the neces-
sary and sufficient steering criterion analytically
for the relevant class of reduced two-qubit states,
which are two-qubit X-states. Most strikingly, in
the SRPE scenario, where the n-qubit state can be
produced from a single entangled pair of qubits
plus n−2 product states, one party (Alice) can si-
multaneously steer all n−1 Bobs, for arbitrary n,
using only two measurements. Finally, we study
the properties of small networks in the three sce-
narios and collecive steering in SRPE. In this ex-
∗songqiucheng19@gmail.com
†dr.travis.j.baker@gmail.com
‡h.wiseman@griffith.edu.au

tended abstract, we show the most interesting sce-
nario we called Semi-Random Pair Entanglement
(SRPE).

SRPE is the scenario that among n parties a
fixed party shares the entangled state |ψα〉 =√

1−α|0〉|0〉 +
√

α|1〉|1〉 with a random party
and other parties are prepared in single-qubit pure
state |0〉 each. Fig. 1 illustrates the examples
n = 3,4.

Figure 1: SRPE. e.g. n = 3,4. The green ball
represents an arbitrary party. The yellow denotes
represents the fixed party, which randomly shares
the entangled state |Ψα〉 with an arbitrary party.
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Figure 2: The steerability of the bipartite reduced
SRPE state. (a) Steering from Alice to Bob. (b)
Steering from Bob to Alice. The dashed green and
dashed magenta curves denote the entanglement
bounds with noise µ = 0.02,0.002, respectively.
The blue, red, black lines represent the steering
bounds for two, three and equatorial measure-
ment schemes, respectively. The green and ma-
genta joined dots denote the steering bounds (in-
cluding lower bound and upper bound) with noise
µ = 0.02,0.002 for all projective measurements,
respectively. The orange joined dots denote the
steering lower bound without noise for all projec-
tive measurements, but the upper bound cannot
be found by the numerical method. The shaded
region corresponds to the states where numerical
imprecision prevents distinguishing whether the
state is steerable or non-steerable.

Figure 3: Small steering networks of SRPE state
with noise µ . The measurement scheme (all
projective measurements) is considered. Subfig-
ure (a) shows network properties of the tripartite
SRPE state with a linear scale on both axes, while
subfigure (b) displaying the properties of the 4-
partite SRPE state with a log scale on both axes.
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Figure 4: Collective steering of tripartite SRPE
state with noise. (a) The blue and red curves rep-
resent one-way and two-way steering bounds, re-
spectively, which are same as bounds in Fig. 3.
The magenta and purple curves represent collec-
tive steering bounds which are obtained by mak-
ing measurement strategies Z−ZX (or Z−ZY)
and ZX−ZXY (or ZY−ZXY), respectively. The
blue solid arrow denotes collective steering made
by Bob1 and Bob2 with classical communication
(CC). The blue dashed arrow with question mark
indicates that the collective steering of this re-
gion is uncertain. (b) Various collective steering
bounds obtained by different measurement strate-
gies.
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I. MOTIVATION AND SUMMARY

One of the central problems in quantum technology is to establish control and understanding of unwanted

noise, since an accumulation of errors may eventually spoil the practical advantage of quantum devices. Two

representative approaches are quantum error correction and quantum error mitigation (QEM); the former

performs measurement and feedback so that the logical information is constantly protected from external

environment [1–5], while the latter is more oriented to offload the burden on the quantum device in a

sense that one aims to mitigate the errors by constructing appropriate POVM elements via postprocessing.

While a wide variety of QEM methods has been proposed and demonstrated in recent years [6–26], little

is known about their fundamental aspects. For instance, in the context of QEC, it has been shown under

local depolarizing noise that the noisy quantum state converges to the maximally mixed state exponentially

with the depth L [27, 28], while the argument cannot be extended straightforwardly for QEM due to the

variation of the circuit structures and the postprocessing allowed in the mitigation operations.

In this work, we address two outstanding questions: (i) the lowest sampling overhead required to perform

unbiased QEM, (ii) provably optimal QEM method for sufficiently deep quantum circuits. Our strategy

is to extend the applicability of quantum estimation theory, which has been argued to provide the lower

bound on the sample complexity N to perform unbiased estimation on a traceless observable X̂, given a

noisy quantum state that undergo a single error channel as E(ρ) [29]. The technical contribution made in

the present work is to bridge the quantum estimation theory and QEM by proposing a virtual quantum

circuit such that (i) noisy quantum states may differ in noise strength or gate parameters (ii) noisy output

state is generated from arbitrary depth of layered quantum circuit. Combining this with the quantum

Cramér-Rao inequality, which states that the quantum Fisher information of the (noisy) quantum state

relates the sample complexity N with the standard deviation ε of an unbiased estimator [30], we arrive at

our main results stated as Theorem 1 and 2 in the following.

II. UNIVERSAL COST BOUNDS ON ERROR MITIGATION

Bounds in generic circuit.— By analyzing the quantum Fisher information of a generic layered noisy quan-

tum circuit with depth L, we derive the following Theorem on the sample complexity for unbiased QEM:

Theorem 1. Suppose that all noise channels are both injective and full-rank. Then, no matter how we

construct the unbiased QEM that works for arbitrary quantum state, there is exponential growth with depth

L in the number of copies N of the layered noisy quantum circuit required to perform unbiased estimation

of 〈X̂〉.

For instance, consider the case where each layer of unitary gates is followed by the global depolarizing

noise E : ρ 7→ (1 − p)ρ + pI/2n. By applying Theorem 1, we can show that the cost N , or the number of

circuit execution of the layered noisy quantum circuit, required for the unbiased estimator of the expectation
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2

value 〈X̂〉 constructed from QEM shall satisfy

N ≥ tr[X̂2]

2nε2
(
1 − (1 − p)L

)( 1

1 − p

)2L

(1)

∼ tr[X̂2]

2nε2

(
1

1 − p

)2L

. (2)

Strikingly, we can show that there exists a simple QEM technique that saturates Eq. (2) in the limit of

large L. Namely, the global depolarizing noise affects the expectation value as 〈X̂〉noisy = (1−p)L 〈X̂〉, and

thus we achieve unbiased estimation by rescaling the measurement result as (1 − p)−L 〈X̂〉noisy. Since the

estimation variance on 〈X̂〉noisy approaches 2−ntr[X̂2] in the limit of large L, the sampling cost to estimate

〈X̂〉 approaches tr[X̂2]
2nε2

(
1

1−p

)2L
, which satisfies the lower bound of Theorem 1. As we numerically confirm

in Fig. 1(a), the rescaling method achieves the lower bound which cannot be saturated by other unbiased

methods such as the probabilistic error cancellation [7] or the generalized quantum subspace expansion [18].

Bounds in scrambling circuit.— It is noteworthy that the lower bound stated in Theorem 1 is for a generic

layered quantum circuit. Since it also involves circuits that only weakly entangle qubits, the lower bound

(e.g. Eq. (2)) does not depend on the qubit count n. However, if the quantum circuit scrambles the quantum

state strong enough, we expect that every noise affects the measurement outcome; we must pay overhead to

eliminate every local noise and thus encounter dependence on n. In fact, under local noise we can tighten

the bound:

Theorem 2. Let U1, U2, ..., UL−1, UL be n-qubit unitary gate constructing the layered circuit, which are

drawn from a set of random unitary that form unitary 2-design, and El be a local noise following the l-th

unitary gate. Then, there is exponential growth with both qubit count n and depth L in the average over the

number of copies N required to perform unbiased estimation of 〈X̂〉 over {U1, ..., UL}.

Concretely, if we consider the case of local depolarizing and amplitude damping noise, we can show that
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FIG. 1. Scaling of the cost to perform QEM methods for random Clifford circuit of n = 2 qubits under (a) global depolarizing
noise, (b) local depolarizing noise, and (c) local amplitude damping noise with error rate p = 0.01. The red, blue, and
green lines denote the sampling overhead of generalized subspace expansion [18] using power subspace, the probabilistic error
cancellation as derived in Ref. [31], and the rescaling technique as explained in the main text. The rescaling factor is (1− p)−L

and (1 − p)−3nL4n−1/(4n−1) for global and local depolarizing noise, and (1 − p)−2nL4n−1/(4n−1) for amplitude damping noise,
respectively. Bound (Thm. 1) and Bound (Thm. 2) represent the lower bound of the cost obtained from Theorem 1 and
Theorem 2, respectively. Note that GSE and the rescaling methods do not completely eliminate the errors for (b) and (c),
while we confirm a significant reduction of bias.
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FIG. 2. Convergence of (a) local depolarizing, (b) local dephasing, and (c) amplitude damping into the global depolarizing
noise under random circuits of n = 6 qubits with error rate p = 0.0001. Here, we denote by (1− p)kL the singular values of the
unital part of the Pauli transfer matrix for the effective noise channel at each depth, where k for the maximal and minimal ones
are plotted in this figure. As is highlighted in the inset, we find that all k’s approach the geometric mean kmean of the singular
values for each noise channel with its fluctuation scaling as O(1/

√
L), implying the convergence to the global depolarizing noise.

For instance, kmean = 3n4n−1/(4n−1) for local depolarizing and kmean = 2n4n/(4n−1) for both local dephasing and amplitude
damping. Here, we consider three class of random circuits: hardware-efficient ansatz with linear connectivity, 2-qubit random
unitary between random pairs, and Haar random unitary.

the cost bound is given as

E[N ] ≥


O

((
1 + 3

2
4n

4n−1p
)nL

)
(local dep.)

O

((
1 + 4n

4n−1p
)nL

)
(amp. damping)

(3)

which we numerically confirm to be saturated at large-L regime (Fig. 1(b)(c)).

III. TOWARDS OPTIMAL QUANTUM ERROR MITIGATION

While the scaling of Eq. (3) is derived under the assumption of unitary 2-design, we conjecture that the

bound shall hold for even wider class of quantum circuits and local noise. Concretely, as is presented in

Fig. 2, the effect of each noise becomes indiscriminable from that of the global depolarizing noise whose

error rate grows exponentially with n in the large-L regime, even when any layer of unitary gate does not

constitute unitary 2-design. Note that the demonstration involves quantum circuit structure even with

only linear connectivity. These results are in agreement with the phenomenological argument provided in

Ref. [32] that, noise in deep layered circuits shall be modeled by global depolarizing noise with its strength

fluctuating as O(1/
√
L).

These facts not only give us another evidence for scaling as in Eq. (3) but also imply that, although

we cannot remove bias completely, we may optimally suppress the effect of noise by just rescaling the

measurement results as in the case of global depolarizing noise. We have also numerically investigated

other noise structure that does not satisfy the conditions in the Theorems (e.g. local dephasing) and have

confirmed that such a picture holds as well. We envision that such a picture becomes even more important

in the regime of early fault-tolerance quantum computing. In such a regime, one shall aim to run longer

quantum circuits than in near-term regime so that the scrambling effect becomes sufficiently strong to assure

the convergence to the global depolarizing noise.
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Harrow-Hassidim-Lloyd algorithm without ancilla postselection

D. Babukhin1 ∗

1 Dukhov Automatics Research Institute (VNIIA), 127055 Moscow, Russia

Abstract. Harrow-Hassidim-Lloyd algorithm (HHL) is a quantum algorithm for solving systems of linear
equations with exponential speed up. Originally, this algorithm requires postselection of ancilla qubit,
which makes this algorithm probabilistic. Here we show, that under certain conditions, the HHL algorithm
can work without postselection of ancilla qubit, which makes the algorithm deterministic.

Keywords: Harrow-Hassidim-Lloyd Algorithm, Systems of Linear Equations, Quantum Computing

The HHL algorithm [1] allows for solving systems of
linear equations on a quantum computer with an expo-
nential speed up due to use of the quantum phase esti-
mation. This algorithm was applied to many practical
problems, which will potentially be enhanced with use of
quantum computer - quantum machine learning or solv-
ing differential equations, to name a few.
This algorithm requires postselection of an ancillary

qubit, which makes the result of the algorithm probabilis-
tic. The need for postselection increases running time
to obtain the calculation result of the HHL algorithm,
as well as any algorithm, based on the HHL. Postselec-
tion requires O(κ) amplitude amplifications to make a
success probability sufficiently high, where κ is a condi-
tional number of the input matrix A. The overall com-
plexity of the HHL is O(log(N)s2κ2/ϵ) [1], where one κ
comes from the amplitude amplification step. There are
methods to overcome this postselection issue, developed
over the years since the HHL was invented. One solution
is to use a variable-time amplitude amplification algo-
rithm [2] to increase the probability of measuring ancilla
in |1⟩, which reduces the overall complexity of the HHL
to O(κ log3 κ) in conditional number. The other way is
using polynomial decomposition into linear combinations
of unitary operators [3], which allow reducing complexity
to O(κ log κ). There are other solutions for the quantum
linear system problem, based on adiabatic quantum com-
puting.
In the work [4], we demonstrate that the HHL works

without postselection, when an input matrix A and a
measurement matrix M satisfy the commutator identity
K = 1

2 [[M,AC ], AC ] − 1
2 [[M,

√
A2

C − I],
√
A2

C − I] = 0.
When this relation is satisfied, the algorithm produces
quantum states for two ancilla measurement outcomes
(|0⟩ or |1⟩), in which expectation values deviate from
each other only by a constant. This connection of expec-
tation values allows using both output states to obtain
an expectation value of M on the solution of the linear
system. The result reduces the overall HHL complexity
to O(log(N)s2κ/ϵ).
We provide a particular example of a matrix, which

∗dv.babukhin@gmail.com

satisfies this condition. The matrix has a following form

A =



a b 0 . . . 0 0 0
b a b . . . 0 0 0
0 b a . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . a b 0
0 0 0 . . . b a b
0 0 0 . . . 0 b a


where a and b are parameters which come from a problem
under the scope. This matrix satisfies K = 0 with an
observable

M = X ⊗X ⊗ · · · ⊗X

The result is verified numerically by calculating a
norm value |K|: in a region of parameters a and b,

Figure 1: Heatmaps of conditional values of an input matrix
A (left) and |K| values (right). A dimension of the input
matrix is 26.

where the matrix A is invertible - i.e., the HHL al-
gorithm works - the |K| value is zero, which means
the HHL works postselection-free. There can be other
practically-interesting classes of matrices, which satisfy
the postselection-free condition and thus lead to improve-
ment of the HHL.
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Abstract. Quantum Support Vector Machine is a kernel based approach for classification problems. We
studied the applicability of quantum kernel to financial data, specifically our self-curated Dhaka Stock
Exchange (DSEx) Broad Index dataset. To the best of our knowledge, this is the very first systematic
research work on this dataset on the application of quantum kernel. We report empirical quantum advan-
tage in our work where we have used several quantum kernels and proposed the best one for this dataset
while providing the verification of Phase Space Terrain Ruggedness Index metric. We have estimated the
resources needed to carry out these types of investigations on a larger scale for future practitioners.

Keywords: QSVM, DSEx Broad Index, PTRI verification, Quantum Resource Estimation

1 Results and Discussion

This study focused on a binary classification problem
using the Dhaka Stock Exchange (DSEx) Broad Index
dataset and we conducted experiments on both classi-
cal and quantum methods simultaneously across various
data sizes. To the best of our knowledge, this is the
first comprehensive investigation of QSVM based on the
DSEx Broad Index dataset, and this work provides a ro-
bust comparison of several quantum kernels for this type
of dataset. This study provides valuable insights into the
performance of quantum kernels on financial datasets.
These findings can inform further research on quantum
machine learning applications in the finance industry.

Figure 1: Comparing average Balanced Accuracy of
quantum kernels with classical SVM on datasets where
classical SVM performance is closest to mean perfor-
mance, across varying dataset sizes and 7 features.

From figure 1, we have observed that the quantum
kernel built using the Pauli Y YY feature map is the
most suitable one for this particular dataset. We no-
ticed that the kernels generated using the kernels built
using Pauli Y YY feature map consistently outperformed
all other quantum kernels and classical Support Vector
Machine (SVM) models for every point in the feature-
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dataset configuration space. We have run the experi-
ments on datasets ranging from 200 to 400 and using 5
to 7 features.

For further investigation, we have run the same ex-
periments on datasets where the performance of classical
SVMs were closest to its maximum and minimum per-
formance respectively. Our findings show that the kernel
built using Pauli Y YY feature map also outperform clas-
sical SVMs.

The Pauli Y YY feature map performs significantly
better in every configuration space where the classical
SVM performs worse than its average performance. By
comparing the position of the data points with the hori-
zontal “zero-advantage line” in Figure 2, we observe EQA
for all of the problem instances in the configuration space.

Figure 2: Difference of average Balanced Accuracy of
classical SVM vs Pauli Y YY Kernel on datasets where
classical SVM performance is closest to minimum perfor-
mance, across varying sizes and 5 to 7 number of features.

Figure 2 implies the impact and importance of quan-
tum approach in real world scenarios where we face the
scarcity of stock market data and where the classical
SVM performs worse than the average performance.

We curated the dataset through a comprehensive col-
lection of features from various online resources, which
we merged to create a cohesive dataset. We conducted
Exploratory Data Analysis on the dataset to provide ini-
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tial insights. We have added more economical features
that usually have a direct impact on the change of stock
market’s trend.
This study provides valuable insights into the perfor-

mance of quantum kernels on financial datasets and these
findings can inform further research on quantum machine
learning applications in the finance industry. Regarding
the resources required for quantum kernel classification,
we can minimize the number of qubits required to per-
form experiments with a fixed number of features using
Bloch Sphere Encoding [2]. This approach has the po-
tential to reduce the resources needed for these exper-
iments. Additionally, exploring the impact of different
hyper parameters and regularization techniques on the
performance of the algorithm can further improve its ac-
curacy and generalizability.

2 PTRI Verfication

PTRI serves to systematically identify machine learn-
ing problems where quantum kernels may exhibit empiri-
cal superiority [1]. A geophysics-inspired strategy is pro-
posed to delineate regions of potential Empirical Quan-
tum Advantage (EQA) within datasets, in order to facil-
itate the selection of the subset of problems that could
benefit from a quantum kernel. To this end, one viable
strategy involves analyzing the ruggedness of the mani-
fold via PTRI. To ascertain the PTRI values for the entire
configuration space, we evaluated the balanced accuracy
metric, and represented the results graphically in Figure
3.

Figure 3: PTRI Scores for classical SVM and QSVM in
a 15 point configuration space.

In figure 3, we presented a comparison of PTRI scores,
with the purple-colored surface depicting Classical com-
puting, and the peach-colored surface representing Quan-
tum computing.

The data points for each configuration space coordi-
nate were averaged over two selected datasets, result-
ing in a total of 15 points for each plotted configuration
space. The z-axis depicts the metric, while the x- and
y-axes represent the number of features and data size, re-
spectively. We verified the PTRI metric for this dataset
and observed that classical SVM’s balanced accuracy did
not fluctuate significantly, even as the size of the training
set increased. We noted that quantum kernels performed
better on smoother terrain.

3 Resource Estimation

We conducted a thorough assessment of the resources
required to construct the circuit essential for developing
the quantum kernel using the Y YY feature map.

Our findings provide a framework for future researchers
to estimate resources for conducting similar experiments
in a more comprehensive manner. The number of gates
and circuit depth increases as the number of features or
circuit repetition increases.

The total number of gates needed in an experiment run
in quantum can be calculated by the following equation,
where F defines the number of features and R defines the
repetition number of circuit.

Total = (11× F − 7)×R

Here, the circuit consists of four different types of gates
which are H,Rx, P and Cx gates. The total number of
H,Rx, P and Cx gates needed individually can be found
by the following equations respectively:

H = F ×R

Rx = (6× F − 4)×R

P = (2× F − 1)×R

Cx = (2× F − 2)×R

We have also provided the equation to calculate the
quantum circuit dept for this kinds of experiments that
will be a framework for quantum practitioners. The
depth of a quantum circuit can be calculated using the
following equation:

Depth = (5× F − 1)×R

The number of qubits required is independent of the
number of repetitions in the circuit. The required num-
ber of qubits precisely matches the number of features,
regardless of the number of repetitions.
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4 Variability and Errors

The visualization of how the balance accuracy is dis-
tributed for the Classical model is illustrated in the figure
4.

Figure 4: Examining Balanced Accuracy Variability on
Configuration Space Coordinate with 200 Samples and 5
Features through 200 different experiments.

Here, to illustrate the distribution of balanced accu-
racy in classical SVM, we have run 200 numbers of sepa-
rate experiments where the data size was 200 and num-
ber of features was 5. It showed a 2.1% standard devia-
tion while predicting the trend in classical domain which
makes this a prime candidate for the application of quan-
tum algorithms.
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Abstract. Linear optical quantum computation using time-frequency degree of freedom has advantages
in terms of error susceptibility and extensibility to high-dimensional encodings. However, time-bin and
frequency-bin encodings typically require high-speed switches and electro-optic modulators, respectively,
and the uses of such active devices would make scaling up difficult. Here, we propose a new scheme based on
the encoding of a qubit into single-photon frequency combs. By combining qubit generators, time-resolving
detectors, optical interleavers, and beam splitters, universal quantum computation can be achieved with
the robustness against temporal and spectral errors. we also show the experimental feasibility of this
scheme according to the error analysis.

Keywords: linear optics, frequency comb, time-resolving detector, optical interleaver

1 Introduction
Photons and their manipulations using linear optics

play an indispensable role in quantum information pro-
cessing [1, 2]. Photons have multiple degrees of freedom
(DoF) such as polarization, path, time-frequency [3, 4],
and angular-momentum [5]. The properties of qubits de-
pends on what DoF of photons is used to form the qubits.
Taking polarization qubits as an example, computational
errors are caused by birefringence and the dimension of
the encoding is limited to two. By construct, qubits
formed by time-frequency DoF are usually less suscep-
tible to errors because most optical components do not
depend on small temporal and spectral differences. In ad-
dition, it is possible to realize high-dimensional encoding
because time-frequency DoF is a continuous variable.

An encoding using time-frequency DoF is time-bin en-
coding in which the temporal peaks of a photon form the
computation basis. Universal quantum computation can
be achieved with high-speed switches and operations on
another DoF such as polarization [6] or path [7, 8, 9]. An-
other encoding using time-frequency DoF is frequency-
bin encoding in which the spectral peaks of a photon form
the computation basis. Universal quantum computation
can be achieved combining electro-optic modulators and
pulse shapers [10, 11, 12, 13, 14, 15]. However, the use of
many active devices in these approaches is prone to errors
and losses and poses challenges in scaling up. Although
recently proposed is to use time-resolving detectors for
manipulation of frequency-bin qubits [16], the finite res-
olution of these detectors causes serious errors because
frequency-bin qubit are susceptible to temporal shift er-
rors.

In this study, we propose a new scheme of linear opti-
cal quantum computation (LOQC) using time-frequency
DoF. We use encoding in which single-photon frequency
combs form the computational basis. The state in
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this encoding is called the time-frequency Gottesman-
Kitaev-Preskill (TFGKP) state [17, 18] from the ana-
log of Gottesman-Kitaev-Preskill code [19] for quadra-
ture amplitudes of light [20]. The TFGKP state is dis-
cretized in both the time and frequency domains be-
cause of its comb-shaped spectrum. Thus, it is robust
against time- and spectral-shift errors. We show that
universal quantum computation can be achieved using
TFGKP-state generators, time-resolving detectors, op-
tical interleavers, beam splitters. Thus, active devices
such as high-speed switches and electro-optic modula-
tors are not required. TFGKP-state generators can be
efficiently realized using a cavity-enhanced nonlinear op-
tical process [21, 22, 23, 24, 25, 26, 27]. Futhermore,
in contrast to the passive scheme that use frequency-
bin encoding and time-resolving detectors [16], quantum
computation can be performed robustly despite the de-
tector’s finite resolutions and other temporal and spec-
tral errors. We estimate the errors occurring in this
scheme and show that the experimental requirements for
fault-tolerant quantum computation are almost achiev-
able with current state-of-the-art technologies. This work
has been published in Physical Review Letters [28].

2 Result
Each frequency basis state of a TFGKP qubit is defined

as a single-photon frequency comb with the same comb
spacing. The basis states differ from each other by the
frequency shifts from a fixed central frequency. The time
basis of a TFGKP qubit is defined by the discrete Fourier
transform of the frequency basis. Because of its comb-
shaped spectrum, TFGKP qubit is discretized in not only
frequency domain but also time domain. Figure 1 shows
an example of probability distribution of a TFGKP qubit.
In practice, TFGKP qubits have a finite bandwidth of
the spectral envelope and a non-zero linewidth of each
spectral peak. However, we can approximately consider
the frequency basis as the computational basis {|0〉, |1〉}.
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Time basis

Frequency basis

 

Figure 1: Probability distributions of a time-frequency
Gottesmann-Kitaev-Preskill qubit in the frequency and
time bases. The blue and orange lines in the frequency
basis correspond to |0〉 and |1〉, and ones in the time
basis correspond to (|0〉 + |1〉)/

√
2 and (|0〉 − |1〉)/

√
2,

respectively.

Then, the time basis is approximately equivalent to the
basis of {(|0〉 ± |1〉)/

√
2}.

The heralded generation of a TFGKP qubit is possi-
ble using a broadband time-frequency entangled photon
pair and a cavity. When one of the two photons passes
through the cavity and is detected by a time-resolving
detector, the state of the other photon corresponds to a
TFGKP state as the transmission spectrum of the cavity
is reflected to the spectrum of the remaining photon. In
particular, cavity-enhanced nonlinear optical process is
suitable to the efficient generation of a TFGKP-state.

In addition to TFGKP-state generator, we use beam
splitters, optical interleavers, time- and frequency-
resolving detectors. We suppose the spatial beam split-
ters, especially 50:50 beam splitters, that are independent
of time-frequency and other DoFs. Optical interleavers
are spectrally periodic filter that spatially combines or
separates frequency combs as shown in Fig. 2. Espe-
cially, we use 2:2 OIs that have two input and output
ports. Time- and frequency-resolving detectors are used
to distinguish time and spectral basis states, respectively.
Although these detectors have finite resolutions, we still
be able to distinguish the basis states as long as the prob-
ability distributions of the basis states are well separated.
In addition, a frequency-resolving detector can be substi-

Figure 2: Graphical representation of 2:2 optical inter-
leaver. Orange and blue spectral peaks represent |0〉 and
|1〉, respectively.
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(b)

T BS

T

OI

OI

OI

(c)

OI T
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Figure 3: Concrete setups for quantum operations. All
detectors, beam splitters (BSs), and optical interleavers
(OIs) are time-resolving detectors, 50:50 beam splitters,
and 2:2 optical interleavers, respectively. (a) Measure-
ment in the cos( θ2 )X + sin( θ2 )Y basis. θ is adjustable by
changing the relative lengths between the two arms. (b)
Bell-state generation, which succeeds when detectors de-
tect two photons in different states. The states of input
single qubits are (|0〉 + |1〉)/

√
2. The optical interleaver

enclosed by the dotted lines denotes a feed-forward op-
eration required in 1/3 of the success cases. Its total
success probability is 3/16. (c) Type-I fusion gate, which
succeeds when a detector detects a photon with a proba-
bility 1/2. (d) Type-II’ fusion gate, which succeeds when
a detector or detectors detect |0〉 and |1〉 with a probabil-
ity of 1/2. (e) Type-I’ fusion gate, which succeeds when
a detector detects a photon with a probability of 1/4.

tuted by combining a 1:d OI with d detectors.
Next, we show the quantum computational univer-

sality of the above toolbox. The time- and frequency-
resolving detectors correspond to the measurement in
the X and Z bases, respectively. An arbitrary phase
gate can be realized by spatially separating each compu-
tational basis by a 1:2 OI, adding a small relative time
delay, and then combining them with a 2:1 optical in-
terleaver. As shown in Fig. 3(a), the phase gate fol-
lowed by the measurement in the X basis corresponds
to the measurement in the cos(θ/2)X + sin(θ/2)Y basis.
Fault-tolerant quantum computation can be performed
with single-qubit measurements in the bases X, Z, and
(X+Y )/

√
2 on a three-dimensional cluster state [29, 30].

Thus, the remaining part is how to generate the cluster
state. This is accomplished by combing Bell-state gen-
eration setups, type-I fusion gates, type-II’ fusion gates,
and type-I’ fusion gates that are shown in Fig. 3(b), 3(c),
3(d), 3(e), respectively. First, we generate Bell states by
using Bell-state generation setups and then generate a
three-qubit cluster state from two Bell states by using a
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type-I’ fusion gate. Once we obtain three-qubit cluster
states, we can generate larger cluster states according to
a similar procedure to the protocol for polarization en-
coding in Ref. [31] That is, we use type-I fusion gates
to generate one-dimensional cluster states and use type-
II’ fusion gates to generation higher-dimensional cluster
states. As a result, it is shown that our toolbox is suffi-
cient for the universal quantum computation.

Finally, we consider the amount of computational er-
rors caused by the temporal and spectral broadening.
The temporal and spectral broadening can be classified
to the coherent and incoherent ones, respectively. We call
the insufficient separation between states corresponding
to the different basis states “factor I,” while we call the
insufficient overlap between states corresponding to the
same basis state “factor II.” Factor I is related to errors
on the one-qubit measurements and characterized by the
total amount of coherent and incoherent broadening. On
the other hand, factor II is related to errors on the entan-
gling gates and characterized by the amount of incoher-
ent broadening relative to that of coherent broadening.
In our scheme, we use frequency-resolving measurements
only for one-qubit measurements; therefore, we do not
have to consider factor II on the frequency basis. On the
time basis, there is an optimal amount of coherent tem-
poral broadening owing to a tradeoff between factors I
and II.

Under several experimental assumptions, we can derive
the experimental requirements to make the major error
probabilities lower than 0.01. In particular, we suppose
the temporal resolution of detectors as the major tem-
poral error source. From the best value among the de-
tectors for telecom wavelengths [32], the upper bound
of the spectral comb spacing and the lower bound of
the finesse of TFGKP qubits are derived. These val-
ues are in the same order of magnitudes as the com-
mercially available optical interleavers and biphoton fre-
quency combs generated by nonlinear optical waveguide
resonators [26, 27, 33]. Thus, the current state-of-the-
art technologies largely meet the experimental require-
ments for fault-tolerant quantum computation based on
our scheme.

3 Conclusion
We proposed a LOQC scheme with TFGKP state gen-

erators, time-resolving detectors, beam splitters, and op-
tical interleavers. The discretization in both the time and
frequency domains owing to TFGKP qubits leads to er-
ror robustness against both temporal and spectral errors.
Furthermore, by treating the time and frequency basis
asymmetrically, we realized universal quantum computa-
tion without active devices. Although we consider the
case of qubits in this paper, TGKP states and their ma-
nipulations can readily be extended to the case of qudits.
Thus, the considered toolbox is a good platform for re-
alizing the recently developed field of high-dimensional
LOQC using qudits [34, 35, 36]. This scheme has high
error robustness and ease of operations because of its
use of time–frequency DoF and passive devices, respec-

tively. Therefore, this is a practical approach, especially
for quantum computation with integrated photonic cir-
cuits [37] and quantum communication requiring multi-
photon entangled states [38, 39, 40].
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1 Introduction

Predicting future based on the observation of the past
is a fundamental task in science and engineering. The
predictive models are widely used in various fields, such
as weather forecasting, stock market prediction, and nat-
ural language processing. While the future may depends
on a long history of the past, the computational tools
for prediction can only store limited information. As the
result, people are interested in how to predict the fu-
ture faithfully while compressing the past information as
much as possible.

While the observations of the process exhibit a strong
causal order, the predictive models are often designed to
adapt the sequential nature of the process. With an addi-
tional assumption that the process is stationary, the pre-
dictive models can be constructed with alternating steps.
At each step, the memory interact with the environment
with a fixed dynamics and generate the output, and then
the updated memory is been carried to the next step.
Such models, take ε-machine [2] as an example, are study
extensively in the classical region. But the construction
of the minimal predictive models in the quantum region
is still in its infancy.

Here we propose a variational method to construct
quantum recurrent models for predicting the future of
a stochastic process. By using a quantum memory and a
quantum interaction between the memory and the envi-
ronment, we show that, with the same amount of mem-
ory, the quantum model has a less distortion from the
real process than the classical model. Also, we compared
our method to a full quantum circuit model, which cov-
ers all possible distributions of the finite past and future.
We show that our method is less likely to overfit the data
than the full quantum circuit model as it contains much
less number of tunable parameters. In addition, with a
proper designed cost function, the training of the model
is efficient, which makes the algorithm practical for NISQ
devices.

2 Framework

Stochastic process – Stochastic processes lay at the
core of information theory since the establishment of

∗ximing001@e.ntu.edu.sg
†cr.yang@nus.edu.sg
‡ceptryn@gmail.com

this field [1]. A stochastic process is defined as a (bi-
infinite) sequence of random variables {Xt}t∈Z,taken val-
ues xt from a finite alphabet Γ. A stochastic process
is stationary if the marginal probability of any consec-
utive subsequences of the random variables Xt:t+L :=
(Xt, Xt+1, . . . , Xt+L−1) are invariant under time transla-
tions, i.e.,

P (Xt:t+L) = P (Xt:t+L) , (1)

for all time t, t′ and any sequence length L.
Predictive models use the past information ←−x :=

x−∞:0 to predict the future
−→
X := X0:∞ with the prob-

ability P (
−→
X |←−x ). Storing the entire past is source-

consuming and unnecessary for various processes, thus
predictive models encode the past ←−x information into
classical states si = fε(

←−x ) and save it as its memory for
further prediction. The model generates future statistics
according to a set of transition rules between the clas-
sical states si. That is, given the memory in the state
si, the predictive model will generate output x and up-
date its memory to state sj with probability P (sj , x|si).
Repeating the transition rules allow predictive models to
sequentially generate the outputs of stochastic processes.
Among all classical models, the ε-machine requires the
least amount of memory dc – the least number of classi-
cal states,

dc = #{si}. (2)

Reducing the amount of memory inevitably intro-
duces the distortion of predictive models’ outputs. KL-
divergence has operational significance in diverse con-
texts. We use the KL-divergence rate De to quantify
the distortion, which is defined as the divergence rate
between two stochastic processes P,Q,

De(P ||Q) := lim
L→∞

1

L

∑
←−x

P (←−x )DKL(P (X0:L|←−x )||Q(X0:L|←−x ))

(3)
where DKL(P (x)||Q(x)) is the KL-divergence rate
DKL(P (x)||Q(x)) :=

∑
x P (x) logP (x)/Q(x).

Quantum model – A variational quantum circuit is
a quantum circuit with tunable parameters, which can
be described as a composition of several parameterized
unitary operators, each is constructed with parameter-
ized quantum gates. The parameters are usually trained
to minimize a cost function that is chosen according to
the task.
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To simulate a stochastic process, we construct quan-
tum models with a recurrent quantum circuit as shown
in figure 1. Our model consists of two systems:

1. A memory system carries the information between
different times steps, and

2. an output system that is measured and reset in the
computational basis at each step.

With a proper training on the quantum model, the prob-
ability distribution of the measured output can approx-
imate an information source better than any classical
model with the same size of memory systems.

Figure 1: The recurrent quantum circuit that simulates
an information source. The same unitary U(~θ) is applied
recurrently at each time step. This model consists of two
systems, the output system O and the memory system
M . While the memory system carries information be-
tween time steps, the output system is reset to |0〉 at
each step.

Despite the fruitful applications of variational quan-
tum circuits, the training of the circuits remains an ob-
stacle due to the large size of the parameter space. It
is necessary to reduce the number of parameters for bet-
ter training of the quantum models, where the reduc-
tion of the parameter space can help to relax the prob-
lem of barren plateaus. A general quantum circuit U(~θ)
in figure 1 is unnecessarily too complex for simulating
stochastic processes. To simplify the circuit, we propose
a universal circuit with fewer parameters that can sim-
ulate all stochastic processes as universal quantum cir-
cuits. A simple model with 1-qubit-output is given in
figure 2, which is constructed with controlled Ry gates
and controlled local unitary gates acting on the mem-
ory system. This model is generated by the CS decom-
position [4]. Given a unitary matrix U represented in
the computational basis, the matrix can be decomposed
into block matrices, where each block is corresponding
to a given classical input and output on the output sys-
tem. In a 1-qubit-output model, the CS decomposition
decompose each block into a product of Ry rotations
acting on outputs controlled by the memory and local
unitary on the memory controlled by the classical input
and output string. And the n-qubit-output model can
be constructed decompose each controlled unitary as a
n− 1-qubit-output model. More specifically, for the sim-
ple model in figure 2, at each time step, a controlled Ry
gate

∑
s |s〉〈s|

M ⊗ ROy (θs) is applied, and the output is
measured immediately after the controlled Ry gate. This
Ry gate is controlled on the computational basis {|s〉} of
the memory system. After the output is measured, a local
unitary U0 or U1 is applied to the memory system based

on whether the output is 0 or 1. For a 2-dimensional-
memory model, a universal circuit only requires 8 pa-
rameterized gates instead of 15 parameterized gates as
for universal 2-qubit unitaries.

U0/U1

|0〉 Ry(θs) xt

Figure 2: Universal circuit for 2-output quantum model.
The unitary operators U0 and U1 at time t are applied
conditioned on the measured output xt. The Ry gate
is controlled on the computational basis of the memory
system.

3 Methods

Choice of the cost function –
As supervised learning, the training of the quantum

model requires sufficient information about the original
information source.

Although the diverge rate Dd is operationally mean-
ingful, the computation of the KL-divergence is not easy,
where the probability of each possible future have to be
evaluated separately. The number of different futures
grows exponentially with the length L of the future to
be considered. That means the number of samples re-
quired to evaluate Dd also grows exponentially. In order
to make the training practical, here we choose to replace
the KL-divergence DKL with a geometric mean fidelity
inspired measure FGM [6, 3], where

FGM

(
P
(

(
−→
X ′)L0 |←−x

)∥∥∥P(−→XL
0 |←−x

))
:=

∑
−→x L

0 ∈ΓL p(
−→x L0 |←−x )q(−→x L0 |←−x )√∑

−→x L
0 ∈ΓL p2(−→x L0 |

←−x )
√∑

−→x L
0 ∈ΓL q2(−→x L0 |

←−x )
.

(4)

This measure FGM ∈ [0, 1] approaches to 1 if and only

if (
−→
X ′)L0 =

−→
XL

0 for every possible history. This mea-
sure is also referred to as cosine similarity in the context
of information retrieval [5]. As the result, by assuming
the information source has a finite Markov order k, such
that the causal state s is uniquely determined by the last
k outputs ←−x k−1, the quantum model that minimize the

FGM

(
P
(

(
−→
X ′)k0 |←−x k−1

)∥∥∥P(−→Xk
0 |←−x k−1

))
is a good approx-

imation of the information source.
There are two characteristics that makes FGM a prac-

tical cost function.

1. each value of the
∑
pq,

∑
p2 and

∑
q2 in FGM

can be evaluated from the statistics of the outputs
efficiently;

2. with proper design of the variational circuit, its
derivative can be evaluated efficiently with the help
of parameter shift rule.
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As the result, for a source with Markov order k, instead
of evaluate the probabilities of all 2k×2k combinations of
correlated history and future outputs with high precision,
only 3 quantities needs to be measured.
Training quantum models – The quantum mod-

els are trained based on the consecutive outputs of the

original source
←→
X . Two independent set of samples are

obtained from
←→
X . The first set of data are split to M

sequences with length 2k, where k is the Markov order
of the source. The values of B←−x k =

∑
−→x k

0
q2(−→x k0 |←−x k−1)

is first evaluated by pick out the sequences whose first k
outputs equals to ←−x k−1. Then by randomly pairing the
sequences and count the fraction of the pairs where the
two sequences are equal. This fraction is an estimation
of the value B←−x k .

At each step of the training, the values of A←−x k =∑
−→x k

0
q2(−→x k0 |←−x k−1) is evaluated by running the quantum

model for M times, each contains 2k steps. A←−x k can
be estimated in the same method as B←−x k . Similarly,
C←−x k =

∑
−→x k

0
p(−→x k0 |←−x k)q(−→x k0 |←−x k) for all←−x k can be eval-

uated by running the quantum model and count the frac-

tion of the outputs that matches the outputs from
←→
X

given the past ←−x k.
Each of the partial derivative of A and C can be eval-

uated by repeat above process with randomized param-
eters. As the result, FGM = C

AB and its derivatives can
be computed from the evaluated values. With the deriva-
tives of FGM , we can use ADAM method to update the
parameters of the quantum model and maximize FGM .
This training process is summarized in Algorithm 1.

Algorithm 1 Training quantum model

1: Evaluate B←−x k =
∑
−→x k

0
q2(−→x k0 |←−x k) for all ←−x k;

2: Initialize the parameterized quantum model U(θ);
3: repeat
4: Evaluate A←−x k =

∑
−→x k

0
p2(−→x k0 |←−x k) for all ←−x k;

5: Evaluate C←−x k =
∑
−→x k

0
p(−→x k0 |←−x k)q(−→x k0 |←−x k) for

all ←−x k;
6: for every parameter θi do
7: Evaluate ∂

∂θi
A←−x k for all ←−x k;

8: Evaluate ∂
∂θi
C←−x k for all ←−x k;

9: Compute FGM and ∂
∂θi
FGM from

A,B,C, ∂
∂θi
A and ∂

∂θi
A;

10: Update θi with ADAM method;

11: until FGM changes less than ε between two epochs;
12: return all θi;

4 Results

Numerical experiments – We have implemented
our method in the training of a quantum model that sim-
ulates a renewal process with 3 causal states as shown
in figure 3. The optimal divergence rate a 2-state ε-
machine can achieve is about 0.04. But the quantum
model with a 2-dimensional memory trained with out
method can achieve the divergence rate of about 0.028,
which is shown as the slope in figure 4.

Figure 3: 3-state renewal process

Figure 4: The averaged relative entropy plotted against
the length of future. By definition, the divergence rate is
the slope of the curve at L→∞.

4.1 4-state process

We also applied our algorithm to a 4 state ε-machine
as shown in Fig. 5, whose Markov order is 2. For the
choice of p00 = 0.8, p01 = 0.1,p10 = 0.4,p11 = 0.1, the
optimal average diverge rate De of a 2 state classical
machine is about 0.0131, while a quantum model with
a 2-dimensional memory trained with our method can
simulate the information source with divergence rate of
0.0009.

00 01

1110

Figure 5: 4 state example

We also compare the performances of the quantum
model trained with our method to a full quantum cir-
cuit that may simulate all possible distributions of a fi-
nite sequence. By varying pij several times, the results
are summarized and plotted in figure 6. Although the
full circuit can easily achieve a good performance on the
training set, the quantum model trained with our method
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can achieve a better generalization performance than the
full quantum circuit.

Figure 6: The distribution of the performances for i. re-
current circuit trained with the conditional distributions;
ii. recurrent circuit trained with the stationary distri-
bution; iii. the full circuit trained with the stationary
distribution; are demonstrated in the three columns re-
spectively. The red symbols represent the performances
with respect to the real distribution, while the blue sym-
bols represent the performances with respect to the dis-
tribution estimated from the samples. The performances
are measured by the fidelity between the outputs of the
circuit and the stationary distributions.
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[4] M. Möttönen, J. J. Vartiainen, V. Bergholm, and
M. M. Salomaa. Quantum circuits for general mul-
tiqubit gates. Physical review letters, 93(13):130502,
2004.

[5] A. Singhal et al. Modern information retrieval: A
brief overview. IEEE Data Eng. Bull., 24(4):35–43,
2001.

[6] X. Wang, C.-S. Yu, and X. Yi. An alternative quan-
tum fidelity for mixed states of qudits. Physics Letters
A, 373(1):58–60, 2008.

166



Fundamental limits on quantum cloning from the no-signalling principle

Yanglin Hu1 ∗ Marco Tomamichel1 2 †

1 Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583,

Singapore

Abstract. The no-cloning theorem is a cornerstone of quantum cryptography. Here we generalize and
rederive under weaker assumptions various upper bounds on the maximum achievable fidelity of proba-
bilistic and deterministic cloning machines. Building on ideas by Gisin [Phys. Lett. A, 1998], our results
hold even for cloning machines that do not obey the laws of quantum mechanics, as long as remote state
preparation is possible and the non-signalling principle holds. We apply our general theorem to several
subsets of states that are of interest in quantum cryptography.
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The no-cloning theorem states that within the frame-
work of quantum mechanics, there does not exist any
universal procedure that can replicate an unknown quan-
tum state reliably. This fundamental principle was ini-
tially formalized in 1982 [1, 2] and later extended in
various directions [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
The no-cloning theorem has rich implications in quantum
cryptography, ensuring the security of primitives such as
quantum money [14, 15], quantum key distribution [16]
and quantum secret sharing [17, 18, 19].
However, quantum mechanics still has unsolved

problems[20, 21] and may need further refinement [22,
23, 24, 25, 26, 27, 28]. It is essential to question whether
the no-cloning theorem and consequentially the security
of quantum cryptographic primitives still hold even if
quantum mechanics is modified. The no-signalling princi-
ple states that information cannot be transmitted faster
than light. It is believed to be a fundamental physical
principle which will remain solid even if quantum me-
chanics is replaced by a more refined theory. It has been
noticed that the no-cloning theorem remains true in dif-
ferent situations as long as the no-signalling principle is
respected [29, 30, 31, 32, 33]. However, these works are
restricted to specific situations.
This paper presents a general scheme to obtain bounds

on the worst-case fidelity of any probabilistic or deter-
ministic cloning machine from the no-signalling princi-
ple. Here we assume that the predictions of quantum
mechanics are correct so that we can, in particular, per-
form a remote state preparation protocol, but we do not
assume that the cloning machine itself adheres to the
laws of quantum mechanics. Thus, we can restrict to
cloning machines that are not necessarily linear in their
input and are not necessarily positive or trace-preserving
on general mixed input states.
This general scheme is versatile and can be employed

to study fundamental limits for cloning machines that
only attempt to clone various specific subsets of states
and unitary gates. Moreover, the no-cloning bounds we
derive from the no-signalling principle can sometimes re-

∗yanglin.hu@u.nus.edu
†marco.tomamichel@nus.edu.sg

produce the strongest no-cloning bounds that are derived
assuming that the cloning machines are obeying the rules
of quantum mechanics.

Probabilistic cloning machines. We consider prob-
abilistic n-to-m cloning machines (or cloning oracles)
CS
n,m,p for a set of pure states S = {U |ψ0⟩⟨ψ0|U† : U ∈ V}

for some |ψ0⟩ ∈ Cd and some unitary group V acting
on Cd. These machines map an n-fold tensor product
of identical quantum states |ψ⟩⟨ψ| ∈ S into a quantum
state and a flag qubit denoting the success of the cloning
machine with a non-zero success probability p, i.e.

CS
n,m,p(|ψ⟩⟨ψ|⊗n) = pRS

n,m(|ψ⟩⟨ψ|⊗n)⊗ |0⟩⟨0|
+(1− p)ρ⊥ ⊗ |1⟩⟨1| . (1)

Here, |0⟩⟨0| and |1⟩⟨1| are flags for success and failure,
respectively, RS

n,m(|ψ⟩⟨ψ|⊗n) is the output state in case
of success and is expected to be an approximation to
|ψ⟩⟨ψ|⊗m, and ρ⊥ is an arbitrary failure state. We do
not assume that the mapRS

n,m is linear, positive or trace-
preserving, as long as it maps an n-fold quantum state
from S to a valid quantum state on Cdm . (Our framework
uses the formalism of quantum mechanics to describe the
input and output spaces of the cloning machine but not
the cloning machine itself.)

The performance of the cloning machine for a set S
of states can be characterized by the worst-case global
cloning fidelity, which is defined as

Fwc(RS
n,m) := min

ψ∈S
F (RS

n,m(|ψ⟩⟨ψ|⊗n), |ψ⟩⟨ψ|⊗m), (2)

where F is the Uhlmann fidelity.

Remote identical state preparation. Let W be a
subset of S with weights pϕ for ϕ ∈ W. If there exists a
constant density matrix ρ0 such that

(1− ϵ)ρ0 ≤ V ⊗nρnW(V †)⊗n ≤ (1 + ϵ)ρ0,∀V ∈ V, (3)

where ρlW =
∑
ϕ∈W pϕ|ϕ⟩⟨ϕ|⊗l, we can construct a re-

mote identical state preparation protocol with ϵ accuracy
in which Bob can remotely prepare identical states in S
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for Alice as follows. Initially Alice and Bob share an
entangled state

|Φn⟩AB = C(I⊗ LB)|Ψd,n⟩AB,

where |Ψd,n⟩ is the maximally entangled state on AB ≃
Cd

n ⊗Cdn and C is the normalization factor. Alice and
Bob measure {PA, I−PA} and {PB, I−PB} respectively.
Their measurement outcomes are perfectly correlated.
Either Alice obtains PA and Bob obtains PB respectively
and both proceed, or Alice obtains I − PA and Bob ob-
tains I − PB respectively and both abort. When both
proceed, Bob further chooses a unitary V ∈ V according
to the Haar measure on V. Based on V , Bob measures
ϕ by pϕ(L

−1
B )†

(
(V |ϕ⟩⟨ϕ|V †)⊗n

)⊺
L−1
B for ϕ ∈ W. Alice

gets (V |ϕ⟩⟨ϕ|V †)⊗n if Bob gets ϕ.

Protocol 1 Remote identical state preparation

Require: Alice and Bob share |Φn⟩AB
Ensure: Alice gets (V |ϕ⟩⟨ϕ|V †)⊗n if Bob gets ϕ, or both

abort
1: Alice measures {PA, I− PA} on A
2: Bob measures {PB, I− PB} on B
3: if Alice and Bob obtain PA and PB respectively then
4: Both know the success of the protocol
5: Bob chooses V ∈ V
6: Bob measures ϕ 7→pϕ(L

−1
B )†((V |ϕ⟩⟨ϕ|V †)⊗n)⊺L−1

B

7: else
8: Both know the failure of the protocol
9: end if

No signaling principle. The no-signalling principle
states that information cannot be transmitted between
two separate parties without transmitting a physical sys-
tem. Consider our remote identical state preparation
protocol. The no-signalling principle forbids Alice to dis-
tinguish Bob’s choice of measurement without communi-
cation. Thus, without knowing Bob’s outcome, Alice’s
local state under any post-processing (including a prob-
abilistic cloning machine conditioned on success, RS

n,m)
is independent of Bob’s choice of measurement, i.e.,∑

ϕ∈W

pϕ|V R
(
(V |ϕ⟩⟨ϕ|V †)⊗n

)
= σR, (4)

where pϕ|V is the probability of Bob measuring ϕ using V
and the average output state σR is constant independent
of V . Eq. 4 is the no-signalling condition we will rely on.

Main result. Our main result is a general bound on
the worst-case global cloning fidelity.

Theorem 1 Let S be the set of quantum states generated
by some unitary group V and W be a subset of S with
weights pϕ for ϕ ∈ W. If there exists a constant ρ0 such
that

(1− ϵ)ρ0 ≤ V ⊗nρnW(V †)⊗n ≤ (1 + ϵ)ρ0,∀V ∈ V, (5)

then Fwc(RS
n,m) is upper bounded by

Fwc(RS
n,m) ≤ (1 + ϵ)2F (σV , ρ

m
W), (6)

where σV =
∫
dµ(V )(V †)⊗mσRV

⊗m (the integration is
over the Haar measure) and ρlW =

∑
ϕ∈W pϕ|ϕ⟩⟨ϕ|⊗l.

The proof, using the remote identical state preparation
protocol, is given in the full text.

The intuition behind this bound is as follows. The
resulting state σV has symmetry in the m-fold space be-
cause [V ⊗m, σV ] = 0, while the state ρlW only exhibits
symmetry in the n-fold space when l = n rather than in
the m-fold space when l = m. This difference in sym-
metry between σV and ρmW is leveraged to further upper
bound the resulting fidelity, which we will explore in some
examples below.

The main technical difficulties we overcome in the
proof were the following. The first is constructing a gen-
eral remote state preparation protocol where Bob can re-
motely prepare n identical quantum states for Alice. The
second is reproducing the best known bounds that can be
achieved assuming quantum-mechanical behaviour of the
cloning machine. The latter requires a thorough under-
standing of the properties of S and V. We achieve this
for arbitrary states, multi-phase states, arbitrary Choi
states (for 1-to-2 only) and multi-phase Choi states.

Example applications. Our general scheme is versa-
tile to various subsets of quantum states S generated by
V by choosing suitable LB, PA, PB, and W. These in-
clude arbitrary states, multi-phase states, spin coherent
states, stabilizer states, Choi states of arbitrary unitaries,
and Choi states of multi-phase unitaries. For illustra-
tion purposes, we present the result for arbitrary states,
multi-phase states and Choi states of arbitrary unitaries.

Arbitrary states. For the set of arbitrary states
S(d) generated by the set of arbitrary unitaries U(d),
we can choose (p,W) to be a weighted ϵ-approximate
quantum n-design [34, 35]. A quantum n-design satisfies

(1− ϵ)Pnsym ≤ V ⊗nρnW(V †)⊗n ≤ (1 + ϵ)Pnsym,∀V ∈ U(d),

where Pnsym is the projector to the n-fold symmetric sub-
space. As Eq. (3) is satisfied, we can construct the remote
identical state preparation protocol as follows: let

PA = PB = Pnsym, LB = I.

It is straight forward to check the correctness of the pro-
tocol. In later examples we will omit the remote identical
state protocol. We can thus apply Theorem 1 to upper

bound Fwc(RS(d)
n,m ). Besides, the high symmetries impose

that both σV and ρmW in Eq. (6) are block-diagonalized,
which makes an explicit no-cloning bound possible. By
further optimizing σV and ρmW over all possible block-
diagonalized matrices under the constraint imposed by
the m-fold and n-fold symmetries respectively, we can

upper bound Fwc(RS(d)
n,m ) by the size of the weighted ϵ-

approximate quantum n-design divided by the dimension
of the m-fold symmetric subspace.
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Corollary 2 Fwc(RS(d)
n,m ) for S(d) is upper bounded by

the size of an ϵ-approximate quantum n-design |W|

Fwc(RS(d)
n,m ) ≤ (1 + ϵ)2

|W|
d[m]

. (7)

Using the size of quantum n-design [34], for large

d and fixed n and m, we obtain Fwc(RS(d)
n,m ) ≤

O(dn−m polylog d) from the no-signalling principle while

the optimal quantum mechanical bound is Fwc(RS(d)
n,m ) ≤

O(dn−m) [5].

Multi-phase states. A d-dimensional multi-phase
state on Cd is defined as a state in the form of |ϕθ⟩ =
1√
d

∑
i e

iθi |i⟩. We consider

M(d) =

{
|ϕθ⟩ =

1√
d

∑
i

eiθi ,∀θ ∈ [0, 2π)×d

}
,

T (d) =

{
Vθ =

∑
i

eiθi |i⟩⟨i|,∀θ ∈ [0, 2π)×d

}
.

Let α ∈ Z×d
n+1 with

∑
i αi = n. We define |α⟩ =

D
∑
π∈Perm(n) π(|i1⟩...|in⟩) on Cd

n

where Perm(n) is the

permutation group, |i1⟩...|in⟩ is a state with αi subsys-
tems in state |i⟩ and D is the normalization factor. Let
β ∈ Z×d

m+1 with
∑
i βi = m and similarly define |β⟩ on

Cd
m

. Let θ0 = 2π
n+1 . Readers may check that for the

equally weighted set

W =

{
|ϕk⟩ =

1√
d

∑
i

eiθ0ki |i⟩,∀k ∈ Z×d
n+1

}
,

we have

V ⊗
θ ρ

n
W(V †

θ )
⊗n =

1

dn

∑
α

n!

α1!...αd!
|α⟩⟨α|,∀Vθ ∈ T (d).

Therefore, Eq. (3) holds. Then we can obtain an upper

bound on Fwc(RM(d)
n,m ) following Theorem 1.

Corollary 3 Fwc(RM(d)
n,m ) for M(d) is upper bounded by

Fwc(RM(d)
n,m ) ≤

∑
ν

max
β≡ν mod (n+1)

1

dm
m!

βν1 !...β
ν
d !
. (8)

In the asymptotic limit for large n and m and fixed d,
the right-hand side of Eq. (8) can be approximated by
the error function, and we obtain

Fwc(RM(d)
n,m ) ≤

√
d

(
1− 1

d

)d−1

erf

(
dn

2
√
2(d− 1)m

)d−1

.

Our bound shows that multi-phase states can be super-
replicated (i.e. n-to-m cloned) probabilistically only if
m = O(n2) for fixed d, which reproduces the quantum
mechanical upper bound [11, 12].

Choi states for arbitrary unitaries. The set of
Choi states for the unitary group U(d) on Cd is

JU(d) =
{
|JU ⟩ = (U ⊗ I)|Ψd,1⟩,∀U ∈ U(d)

}
(9)

where |Ψd,1⟩ is the maximally entangled state onCd⊗Cd.
The Schur-Weyl duality [36] states that

Cd
n

≃
⊕
λ

Pnλ ⊗Qn
λ, (10)

where Pnλ are irreducible representations (irreps) of the
unitary group U(d) and Qn

λ are irreps of the permu-
tation group Perm(n). We denote the Schur basis
by {|pnλ, qnλ , λ⟩,∀λ, pnλ, qnλ} ≃ {|pnλ, λ⟩|qnλ , λ⟩,∀λ, pnλ, qnλ},
where {|pnλ⟩,∀pnλ} and {|qnλ , λ⟩,∀qnλ} are basis of Pnλ and
Qn
λ respectively. We denote the projector on Pnλ and Qn

λ

by Pnλ and Qnλ as well as the dimension of Pnλ and Qn
λ by

|Pnλ| and |Qn
λ|. Let

Πnλ = Pnλ ⊗ Pnλ ⊗ |Ψnλ⟩⟨Ψnλ|, (11)

be a projector on Cd
2n

where

|Ψnλ⟩ =
1√
|Qn

λ|

∑
qnλ

|qnλ , λ⟩|qnλ , λ⟩, (12)

the maximally entangled state on Qn
λ ⊗ Qn

λ. Readers
may verify that for the weighted set of Choi states (p,W)
for the weighted relative ϵ-approximate unitary n-design
(p,Un) [37, 38, 39, 40], it holds

(1− ϵ)
∑
λ

|Qn
λ|

dn|Pnλ|
Πnλ ≤ (V ⊗n ⊗ I)ρnW((V †)⊗n ⊗ I)

≤ (1 + ϵ)
∑
λ

|Qn
λ|

dn|Pnλ|
Πnλ,∀V ∈ U(d).

Eq. (3) immediately follows. We can thus construct the
remote identical state preparation protocol. An upper

bound on Fwc(R
JU(d)
n,m ) then follows from Theorem 1.

Corollary 4 Fwc

(
RJU(d)
n,m

)
is upper bounded by the size

of an ϵ-approximate unitary n-design |W| via

Fwc

(
RJU(d)
n,m

)
≤ (1 + ϵ)2

|W|
d2m

∑
λ

|Qm
λ |2. (13)

The above upper bound is implicit, due to the hard sum-
mation. However, an explicit upper bound can be further

derived for the special case Fwc(R
JU(2r)

1,2 ).

Corollary 5 Fwc(R
JU(2r)

1,2 ) is upper bounded by

Fwc

(
RJ (2r)

1,2

)
≤ 2r +

√
22r − 1

23r
. (14)

This explicit bound exactly reproduces the quantum

mechanical upper bound Fwc(R
JU(d)

1,2 ) ≤ d+
√
d2−1
d3 for

d = 2r [41] . When d ̸= 2r, numerical calculations with
small d’s and sub-optimal unitary 2-designs indicate that
our bound approximates the quantum mechanical bound
well.
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Abstract. In a standard Quantum Sensing (QS) task one aims at estimating an unknown parameter θ,
encoded into an n-qubit probe state, via measurements of the system. The success of this task relies on
the ability to correlate changes in the parameter to changes in the response function, R(θ). While cases
have known forms of the response function, realistic scenarios lack a general closed-form expression. Our
approach characterizesR(θ) by measuring the response at 2n+1 parameters, enabling inference of unknown
parameters and determination of scheme sensitivity. We demonstrate that the inference error is likely
smaller than δ with a number of shots scaling as Ω(log3(n)/δ2). The framework accommodates arbitrary
probe states, measurement schemes, and quantum noise. We validate the method through experiments on
real quantum hardware and numerical simulations.

Keywords: Quantum Sensing

1 Introduction

Quantum Sensing (QS) is a rapidly growing field of
study and plays a crucial role in practical quantum tech-
nologies [1]. In QS tasks, the objective is to estimate
an unknown parameter θ, which is encoded in an n-
qubit probe state, by making measurements of the sys-
tem. The success of this task relies on the ability to
observe how changes in the parameter affect the mea-
surement outcomes. In simpler cases, such as an ideal-
ized magnetometry experiment, the mathematical rela-
tionship, known as the response function R(θ), between
the system and the parameter is well-established. The
commonly used probe state is the n-qubit GHZ state,
combined with parity measurement [2, 3]. This leads
to a response function given by R(θ) = cos(nθ), from
where one can determine the magnetic field and sensitiv-
ity [4]. However, in realistic scenarios, the explicit func-
tional form of R(θ) may not be readily accessible and
would require complete characterization of the device.
While recent research has attempted to address the lim-
itations of implementing QS schemes on noisy quantum
hardware [8, 6, 9, 10, 11, 12, 13], methods for recovering
the true R(θ) in real-time are still lacking.
In this work [14] we present a novel data-driven infer-

ence approach to recover the true response of the system
in an efficient and scalable manner. We provide rigorous
theoretical guarantees for the performance of our frame-
work, which we verify with numerical simulations and
experiments on IBM quantum computers.

2 Results

Leveraging tools from variational quantum algorithms,
quantum machine learning and polynomial interpolation

∗aldehuer@lanl.gov

[15, 16, 17], we characterize the exact functional form of
R(θ) for a general class of unitary families. We focus on
the case of unitary families where the parameter encoding
mechanism is of the form Sθ(ρ) = e−iθH/2ρ eiθH/2 = ρθ.
Here, H is a Hermitian operator such that H =

∑
j hj

with h2
j = 1, and [hj , hj′ ] = 0, ∀j, j′ and ρ = E(ρin) is a

n-qubit probe state prepared by sending a fiduciary state
ρin through a state preparation channel E . Assumptions
made over the Hamiltonian include the well-know mag-
netometry tasks. We allow for the possibility of sending
ρθ through a second pre-measurement channel D, over
which we measure the expectation value of an observ-
able O. That is, we consider that the system response
is of the form R(θ) = Tr[D ◦ Sθ ◦ E(ρin)O]. This setting
encompasses cases where E or D are noisy channels, as
well as cases of imperfect parameter encoding where a
θ-independent noise channel acts after Sθ [14].

Our first main result is to show that the system re-
sponse can be exactly expressed as a trigonometric poly-
nomial of degree n. That is,

R(θ) =

n∑
s=1

[as cos(sθ) + bs sin(sθ)] + c (1)

with {as, bs}ns=1 and c being real valued coefficients. This
exact functional form provides a relationship between the
encoded parameter θ and the system response, which
can be used to improve accuracy in tasks of parameter
estimation, as well as to faithfully determine the sen-
sitivity of the experimental set-up [18]. Since R(θ) is
a trigonometric polynomial of degree n, one can fully
learn the system response by only measuring it at a set
of 2n + 1 known θ parameters: {R(θk)}2n+1

k=1 . In prac-
tice, however, one cannot exactly evaluate each R(θk),
but rather can only estimate them up to some statistical
uncertainty resulting from finite sampling. If we use the
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Figure 1: Magnetometry task on IBM hardware. a) Inferred response R̃(θ) for n = 8, 16 qubits. The fields used
to train (red point) and test (blue star) the inference scheme, were estimated on the IBM Montreal quantum computer.

We depict the inferred response R̃(θ) (red solid curve) as well as the fit g(θ) = α cos(βθ+ γ)+ ζ (black dotted curve).
b) Relative response error versus n. Statistics were obtained over 74 test fields and 7 experiment repetitions. The
relative error is defined as the difference between the fit or inferred value and the measurement response, normalized
by the average test expectation value. The red (black) points correspond to R̃(θ) (g(θ)), while solid (dashed) lines
represent the median (upper quartile) error. c) Parameter prediction error versus n, with green dots denoting the
worst possible prediction.

N -shot estimates R(θk) (with θk = 2π(k − 1)/(2n + 1)
and k = 1, . . . , 2n+ 1) to construct an approximated in-

ferred response function R̃(θ), we can rigorously show

that for all θ, |R(θ) − R̃(θ)| ∈ O (ε log(n)), where we
recall that R(θ) is exact response function, where we de-
fined ε = maxθk∈P |R(θk) − R(θk)|. The maximum es-
timation error ε is fundamentally related to the number
of shots N , which enables us to derive the following the-
orem.
Theorem 1: The number of shots N , necessary to

ensure that with a (constant) high probability, and for all

θ, the error |R(θ)− R̃(θ)| ≤ δ, for an inference error δ,
is in Ω

(
log3(n)/δ2

)
.

Theorem 1 implies that for fixed δ, a poly-logarithmic
number of shots N ∈ Ω(log3(n)) suffices to guarantee

that R̃(θ) will be a good approximation for the true re-
sponse R(θ).

Once the inferred response R̃(θ) is obtained, it can
be employed for two tasks of central importance in QS:
parameter estimation and characterization of the sensi-
tivity for a sensing apparatus. Theoretical guarantees
of the performance in these two tasks is sketched below.
When predicting the value of an unknown parameter θ′,
we assume that an estimate of the system response R(θ′)
is provided, and the promise that θ′ is sampled from a
known domain Θ. In such a case, the unknown parameter
can be estimated as θ∗ = argminθ∈Θ|R̃(θ) − R(θ′)|. In
many cases of interest, such as high-precision estimation
of small magnetic fields, Θ will be small enough such that
R̃(θ) is bijective, ensuring that the solution θ∗ is unique.
Theorem 2: Let ϵ′ be the estimation error in R(θ′)

for some θ′ in a known domain Θ where the system re-
sponse is bijective. Let χ be the error introduced when
estimating θ′ via R̃(θ) relative to the case when the exact
response R(θ) is used. The number of shots, N , neces-

sary to ensure that with a (constant) high probability χ
is no greater than δ′ is Ω(log3(n)/(δ′ + ε′)2).

Theorem 2 certifies that R̃(θ) can be used to in-
fer an unknown parameter from a measured system re-
sponse without incurring additional uncertainties as long
as enough shots are used. In fact, for fixed δ′ and ε′, one
only needs a poly-logarithmic number of shots.

As previously mentioned, given R(θ) one can also di-
rectly compute the sensitivity of the QS scheme at a field
θ = θl via the error propagation formula [18]. In partic-
ular, the N -shot inferred response function leads to an
approximate sensitivity ∆θ̃l = (∆R̃(θl))/(|∂θR̃(θ)|θ=θl |).

Theorem 3: Let R(θ) be the exact response function,

and let R̃(θ) be its approximation obtained from the N -
shot estimates R(θk) with θk. Defining the maximum
estimation error ε = maxθk∈P |R(θk) − R(θk)|, and the

slope of R(θ) at a field θk Dl = |∂θR̃(θ)|θ=θl |, then |∆θ−
∆θ̃| ∈ O

(
ε log(n)

Dl

)
.

The above theorem indicates that using the inferred
response to estimate the sensitivity leads to an error that
scales linearly ε and log(n), but inversely proportional
to Dl (which is expected as sensing schemes with flat
response functions lead to high estimation errors). Which
leads to the following corollary exploring how the error
scales with the number of shots:

Corollary 1: The number of shots N , necessary to
ensure that with a (constant) high probability the error in

the sensitivity |∆θ − ∆θ̃| ≤ δ′′ at parameter θ = θl, for

an inference sensitivity error δ′′, is in Ω
(

log3(n)
(Dlδ′′)2

)
.

Hence, we show that using an inference based approach
to QS allows for good characterization of the systems per-
formance with a resource requirement that scales poly-
logarithmically in the system size. The proofs for the
above results are included in [14].
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Figure 2: Numerical results for QS tasks. a) Sys-
tem response versus θ for n = 8 qubits in all three QS
setups described in the main text. The exact response
R(θ) (black curve), and its value at the training fields
R(θk) (black points), were obtained with no finite sam-
pling. In contrast, the response estimated at the train-
ing fields R(θk) (red crosses), and the resulting inferred

function R̃(θ) (red curve), was obtained with a poly-
logarithmic number of shots. b) Median (solid) and max-

imum (dashed) of the error |R(θ) − R̃(θ)| (red) and the
bound of O (ε log(n)) (blue) for 104 test fields uniformly
sampled over (0, 2π). The statistics were obtained over
30 repetitions of the experimental setups. c) The black
(red) curves depict the exact (inferred) sensitivity versus
θ.

To showcase our method we implement a QS task on
the IBM Montreal quantum hardware for systems of up
to n = 22 qubits, and complement our findings with nu-
merical simulations. The experimental implementation
in the IBM device consists in preparing the GHZ state
with H =

∑n
j=1 Zj , and measuring the parity operator

O =
⊗n

j=1 Xj . Here, Zj and Xj are the Pauli z and x
operators acting on the j-th qubit, respectively.
The 2n+1 training field estimates are used to infer the

response R̃(θ), as well as to fit a first order approximation
of a noisy response g(θ) = α cos(βθ + γ) + ζ, where the
coefficients α, β, γ and ζ account for the first order effects
of hardware noise. To evaluate the ability of these two
functions to recover the true response of the system, we
compare their predictions against the measured system
response at a set of random test fields.
In Fig. 1(a) we display inference results for n = 8 and

n = 16 qubits, indicating that our method (red solid
curve) is clearly able to fit the training and test fields
better than the cosine response (black dotted curve).
More quantitatively, in Fig. 1(b), we show the scaling
of the error as a function of the system size. One can see
that for all problem sizes considered our method leads to

smaller response prediction error. We note that for larger
n the effect of noise becomes more prominent, as the
hardware noise suppresses the measured expectation val-
ues [19, 20, 21]. In this regime both methods are equally
limited by finite sampling noise which becomes of the
same order as the magnitude of the response. Still, even
for system sizes as large as n = 22 qubits, the infer-
ence method reduces the relative error by a factor larger
than two when compared to that of the g(θ) fit. Fi-

nally, we also use R̃(θ) and g(θ) for parameter estimation,
i.e., to determine an unknown magnetic field encoded in
the quantum state. As shown in Fig. 1(c), the g(θ) fit
matches the worst possible prediction for n = 8 qubits
whereas our inference method can outperform the g(θ)
fit by up to one order of magnitude.

We further explore the applicability of the inference
based framework with numerical results from a density
matrix simulator and a realistic ion trap noise model, but
where finite sampling can be included or omitted. We
emulate three different sensing setups. First, once again
we study the standard GHZ magnetometry setting. Sec-
ond, we characterize the squeezing in a system where the
probe state is a spin coherent state, H =

∑
j<k XjXk

is the one-axis twisting Hamiltonian [22], and O = Zn.
Finally, we study a scenario where the probe state is con-
structed by a unitary composed of 4 layers of a hard-
ware efficient ansatz with random parameters [23, 24],

H =
∑n−1

j=1 ZjZj+1 and O = 1
n

∑n
i=1 Xi, relevant for

variational quantum metrology [8, 13, 6, 9, 12], where one
wishes to prepare a probe state via some parameterized
quantum circuit. As motivated in [14], R̃(θ) is inferred
with N = ⌈5× 102 log(n)2 log(2× 102(2n+1))Reil shots
per θk. Figure 2(a) shows that the inferred response (red
curve) closely matches the exact one (black curve) in all
three QS settings considered. In Fig. 2(b) we further

show the scaling of the error |R(θ)− R̃(θ)| with respect
to the system size. Indeed, we can see that allocating
a number of shots N that increases poly-logarithmically
with n allows the error to decrease with increasing sys-
tem size. Finally, in Fig. 2(c), we use R̃(θ) to estimate
the sensitivity of the three experimental setups. The
sensitivity diverges in parameter regions where the ex-
perimental setup is insensitive to the field (when the re-
sponse function tends to a zero) otherwise, our method
(red curves) recovers the behavior of the exact sensitivity
(black curves).

Conclusions. Leveraging techniques from quantum
machine learning and polynomial interpolation [15, 16,
17], we have introduced a novel inference-based scheme
for QS which fully characterizes the response R(θ) for
a general class of unitary families by only measuring
the system at 2n + 1 known parameters. Overall, this
framework leads to new insights and methodology for
the characterization, implementation and benchmarking
of sensing protocols. One of the main advantages of
our protocol is that it can be readily combined with ex-
isting sensing schemes. For instance, further research
could explore the use of the inferred response function
in a variational setting, involving an optimization of
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the experimental setup to maximize the sensitivity and
parameter prediction accuracy. This promises a new
approach in data-driven quantum machine learning for
QS where the optimization procedure does not require
knowledge of the classical or quantum Fisher informa-
tion [6, 9, 11, 10, 12, 13, 25, 26, 27, 28, 29, 30].
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[18] Luca Pezzè, Augusto Smerzi, Markus K.
Oberthaler, Roman Schmied, and Philipp Treut-
lein, Quantum metrology with nonclassical states
of atomic ensembles, Rev. Mod. Phys. 90, pages
035005 ( 2018)

[19] Samson Wang, Enrico Fontana, M. Cerezo, Kunal
Sharma, Akira Sone, Lukasz Cincio, and Patrick J
Coles, Noise-induced barren plateaus in variational
quantum algorithms, Nature Communications 12,
pages 1–11 ( 2021a).

[20] Daniel Stilck França and Raul Garcia-Patron, Lim-
itations of optimization algorithms on noisy quan-
tum devices, Nature Physics 17, pages 1221–1227
( 2021)

[21] Samson Wang, Piotr Czarnik, Andrew Arrasmith,
M. Cerezo, Lukasz Cincio, and Patrick J Coles,
Can error mitigation improve trainability of noisy
variational quantum algorithms? arXiv preprint
arXiv:2109.01051 (2021b).

[22] Masahiro Kitagawa and Masahito Ueda, Squeezed
spin states, Physical Review A 47, pages 5138–5143
(1993).

[23] Abhinav Kandala, Antonio Mezzacapo, Kristan
Temme, Maika Takita, Markus Brink, Jerry M.
Chow, and Jay M. Gambetta, Hardware-efficient

175



variational quantum eigensolver for small molecules
and quantum magnets, Nature 549, pages 242–246
(2017).

[24] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz
Cincio, and Patrick J Coles, Cost function depen-
dent barren plateaus in shallow parametrized quan-
tum circuits, Nature Communications 12, pages
1–12 (2021c).

[25] Johannes Jakob Meyer, Fisher Information in Noisy
Intermediate-Scale Quantum Applications, Quan-
tum 5, pages 539 (2021).

[26] Iris Cong, Soonwon Choi, and Mikhail D Lukin,
Quantum convolutional neural networks, Nature
Physics 15, pages 1273–1278 (2019).

[27] Arthur Pesah, M. Cerezo, Samson Wang, Tyler
Volkoff, Andrew T Sornborger, and Patrick J
Coles, Absence of barren plateaus in quantum con-
volutional neural networks, Physical Review X 11,
pages 041011 (2021).

[28] Kunal Sharma, M. Cerezo, Lukasz Cincio,
and Patrick J Coles, Trainability of dissipative
perceptron-based quantum neural networks, Phys-
ical Review Letters 128, 180505, (2022).

[29] Jeffrey Marshall, Filip Wudarski, Stuart Hadfield,
and Tad Hogg, Characterizing local noise in QAOA
circuits, IOP SciNotes 1, pages 025208 ( 2020).

[30] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and
Guo-Ping Guo, Effects of quantum noise on quan-
tum approximate optimization algorithm, Chinese
Physics Letters 38, pages 030302 (2021).

176



On the performance for the block-encoding of the matrix functions
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Abstract. Matrix functions such as the matrix logarithm log(A) and the matrix fractional power Ar can
be represented by contour integrals. A quadrature method for this representation is proposed in [N. Hale,
N.J. Higham, and L.N. Trefethen, SIAM J. Numer. Anal., 46, 5, 2505-2523, (2008)]. In this study, we
apply this method to the quantum algorithm, which is described as the block-encoding framework, and
evaluate its performance numerically, where the performance means the number of uses of block-encoding
of A and the sub-normalization factor. We consider the matrix logarithm and matrix fractional power as
examples. As a result, the order of the performance is evaluated numerically by using the maximum and
minimum eigenvalues of the matrix A.

Keywords: Quantum algorithm, matrix logarithm, matrix fractional power, contour integral

1 Introduction

For a complex function f(z) = a0+a1z+a2z
2+· · · and

a square matrix A, the matrix f(A) = a0I+a1A+a2A
2+

· · · is called a matrix function. Matrix functions appear
in many fields of science and technical computations. It
is known that the matrix function can be represented as
the contour integral

f(A) =

∫
Γ

f(z)(zI −A)−1dz, (1)

where Γ is a closed contour that encloses all eigenvalues of
the matrix A and f is a complex function that is analytic
on the inside region of Γ. Several quadratures to compute
the matrix function have been proposed. For example, if
f(z) is an exponential function, then we can take a circle
as the contour Γ and can use the trapezoidal rule. In this
case, the quadrature formula fN (A) approximates f(A)
with exponential accuracy with respect to the number of
integration points.

On the other hand, if the complex function f has a
singularity, it is difficult to treat the contour integral in
a näıve method. For example, f(z) = log(z) has a singu-
larity at z = 0 and so we can not apply the trapezoidal
rule to log(A). A method to treat such a function has
been proposed in [1].

There are several quantum algorithms for matrix func-
tions f(A) based on integral representations. For exam-
ple, [2, 3, 4, 5]. In [2], we have considered the case where
the closed contour is a circle centered at the origin. Fur-
thermore, in [5], we have considered the case where the
closed curve can be represented as a circle or even more in
general quadrature . In addition, we described the struc-
ture of the algorithm in the framework of block-encoding
[6]. However, our previous study [2, 5] only treated gen-
eral cases, and so does not deal with concrete matrix

∗takahira@meijo-u.ac.jp

functions. Therefore, it is necessary to consider concrete
functions.

In this study, we consider matrix logarithmic function
and matrix fractional powers. Specifically, we first calcu-
late quadrature formulas for these matrix functions using
the numerical method proposed in [1]. Next, we apply
the obtained quadrature formulas to the quantum algo-
rithm described as block-encoding. Then, we evaluate
the order of the subnormalization factor and the number
of uses for the block-encoding of the input matrix A that
is given as an oracle.

2 Preliminaries

2.1 The quadrature formula

In this study, we use method 2 in [1] to obtain a
quadrature formula. Method 2 can be applied when
the complex function f has no singularity on C\(∞, 0].
Therefore, method 2 can treat logarithmic function log(z)
and fractional power zr. The quadrature formula by
the method 2 is as follows: Suppose that the eigen-
value of the matrix A is positive. Let m and M be
the lower and upper bounds on the eigenvalues, where
0 < m < M . The quadrature formula fN (A) is defined
as fN (A) = AIm(T ), where

T =

N−1∑
j=0

fj(wjI −A)−1, (2)

and

fj =
1

N
· −4K(mM)1/4

πk
· f(w(tj)

2)cn(tj)dn(tj)

w(tj)2(k−1 − u(tj))
, (3)

wj = w(tj)
2. (4)

The meaning of the symbols is the same as in [1]. For
more details, see [1]. The quadrature formula fN (A) is
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exponentially accurate to the original matrix function
f(A). That is, ∥fN (A) − f(A)∥ = O(e−2π2N/(log κ+6))
holds [1, Theorem 3.1]. where κ = M/m. In the below,
we assume that N = 2n (n ∈ N).

2.2 Block-encoding

We explain the block-encoding that is useful to deal
with the linear algebra operations on the quantum com-
puter.

Definition 1 ([6]) Suppose that A is a matrix A ∈
C2s×2s and α, εA ∈ R+. Then, a unitary operation UA

is (α, a, εA)-block-encoding of A if

∥A− α(⟨0|⊗a ⊗ Is)UA(|0⟩⊗a ⊗ Is)∥2 ≤ εA. (5)

Here, Is is a 2s-by-2s identity matrix. The number α is
a subnormalization factor. In this study, we assume that
the block-encoding UA of the input matrix is given.

By combining some block-encodings, we obtain a
block-encoding for the matrix operations of the en-
coded matrices on them. Let UA be an (α, a, εA)-
block-encoding and UB be a (β, b, εB)-block-encoding
of B. Then, (Ib ⊗ UA)(Ia ⊗ UB) is an (αβ, a +
b, αεB + βεA)-block-encoding of AB. Furthermore,
the linear combination is obtained as follows: Let
Uj be an (α, a, εA)-block-encoding of Aj and let
c = (c0, c1, . . . , c2n−1). We define unitary op-

erations PL|0⟩⊗n =
∑N−1

j=0

√
c′j |j⟩ and PR|0⟩⊗n =∑N−1

j=0

√
c′∗j |j⟩ where c′j = cj/∥c∥1. The pair of uni-

taries (PL, PR) is called state-preparation pair for c.

Then, (P †
L ⊗ Ia+s)

(∑2n−1
j=0 |j⟩⟨j| ⊗ Uj

)
(PR ⊗ Ia+s) is an

(α∥c∥1, a+ n, ∥c∥1ε)-block-encoding of the linear combi-

nation
∑2n−1

j=0 cjAj .
According to the quantum singular value trans-

formation (QSVT), if there is an angle sequence

Φ = (ϕ0, . . . , ϕd) such that ⟨0|eiϕjZ
∏d

j e
iθXeiϕjZ |0⟩ =

P (x) (θ = arccos(x), x ∈ [−1, 1]), then the block-
encoding of the d-degree matrix polynomial P (A) of UΦ

A

can be constructed by using O(d) uses of UA, and O(d)
primitive gates [6]. Using the polynomial that approxi-
mates the reciprocal function in a range [1/κ, 1] (κ > 1),
we can compute the angle sequence Φ(inv) that corre-
sponds to the inverse matrix [6, 7, 8]. In other words, if
we have UA and Φ(inv), we can obtain the block-encoding

UΦ(inv)

A of A−1. For more specific, suppose that the sin-
gular values of A is within [1/β, α] and satisfy κ > αβ.
Then we can construct (4β, a + 1, 4d

√
εA/α + ε)-block-

encoding of A−1, where d = O
(
αβ log

(
β
ε

))
.

2.3 The constuction of the block-encoding

The purpose of this study is to implement the matrix
function, Therefore, we consider to construct a block-
encoding of the quadrature formula fN (A) = AIm(T )
defined in Equation (2). The block-encoding of this ma-
trix is constructed as follows:

UfN (A) = (UA ⊗ In+a+4)(UImT ⊗ Ia), (6)

UImT = |+⟩⟨+| ⊗ UT − |−⟩⟨−| ⊗ U∗
T ,

where

UT = (Ia+3 ⊗ F †
L ⊗ Is)U

Φ(inv)

B (Ia+3 ⊗ FR ⊗ Is), (7)

and (FL, FR) is the state-preparation-pair for f =

(f0, f1, . . . , fN−1) and U
(inv)
B is block-encoding of the in-

verse of a block-diagonal matrix B =
∑

j |j⟩⟨j| ⊗ (wjI −
A) = diag(w0, w1, . . . , wN−1)⊗I−I⊗A. In addition, the
(wmax +α, a+2, 0)-block-encoding of B is constructed as
follows:

UB = (eiY θ ⊗ I1+a+n+s)Vw,A(eiY θ ⊗ I1+a+n+s), (8)

where θ = arccos(wmax/(wmax + α)) and

Vw,A = |0⟩⟨0| ⊗ Uw ⊗ Ia+s − |1⟩⟨1| ⊗ I1+s ⊗ UA. (9)

Here, Uw is a (wmax, 1, 0)-block-encoding of the diagonal
matrix diag(w0, w1, . . . , wN−1) constructed as follows:

Uw =

2n−1∑
j=0

|j⟩⟨j| ⊗ ei arccos(wj/wmax)Y , (10)

where wmax = maxj |wj |.
From the above, we can summarize the block-encoding

of fN (A) as like the following.

Lemma 2 (Block-encoding of fN (A)) Suppose that
UA is an (α, a, 0)-block-encoding of A. Let 1/β be the
lower bound of the singular values of wjI −A. Then, we
can construct a (ν, 2a+n+4, ε)-block-encoding UfN (A) of
the quadrature formula fN (A). Further UfN (A) consists
of O(d) uses UA and O((1 + N)d + N) primitive gates,
where

ν = 4αβ∥f∥1, (11)

d = O

(
(max

j
|wj | + α)β log

(
αβ∥f∥1

ε

))
. (12)

3 Numerical result

We have described the quadrature formula and the con-
struction of the quantum algorithm. In this section, we
consider applying the quadrature formula for matrix log-
arithmic functions and matrix fractional powers to the
quantum algorithm. Specifically, we first calculate each
parameter of the quadrature formula using a numerical
method. From the obtained parameters, we numerically
evaluate the subnormalization factor ν given by Equa-
tion (11), which relates the performance of the block-
encoding of fN (A), and the number of uses d to UA given
by Equation (12).

The settings for matrix A are as follows: First, we
calculate the unitary matrix Q by using the QR decom-
position for the random matrix that the each elements is
generated by the uniform distribution on [0, 1]. Then, we
set matrix A as

A = QDQ† ∈ R20×20, (13)

where D = diag(d0, d1, . . . , d19) and di = m + (M −
m)i/20. In order for the quadrature formula to be suf-
ficiently accurate, all computation were performed with
N = 64. The MATLAB code written in [1] was used
as the numerical method. The version of MATLAB is
R2023a.
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Table 1: wmax

m
M 1 0.1 0.01 0.001

1 - 3.3 3.8 3.9
10 33.4 37.9 39.3 39.7

100 379.4 393.1 397.2 398.2
1000 3930.6 3971.5 3982.4 3983.4

Table 2: β
m

M 1 0.1 0.01 0.001
1 - 14.3 135.7 1339.4

10 1.4 13.6 133.9 1334.0
100 1.4 13.4 133.4 1331.9

1000 1.3 13.3 133.2 1330.0

3.1 Computation result for wmax and d

First, we calculate wmax and 1/β related with d. The
computation results are shown in Tables 1 and 2. From
Tables 1 and 2, we see that wmax = O(M) and β = O(m),
respectively. Therefore, the subnormalization factors ν
and d are ν = O(κ∥f∥1) and d = O(κ log(κ∥f∥1/ε)),
respectively.

3.2 Computation result for ∥f∥1
Both the subnormalization factor and the number of

uses to UA are related to f . Therefore, in the follow-
ing, we compute ∥f∥1 for each case of matrix logarithm
function and matrix fractional power.

3.2.1 The matrix logarithm

We consider the matrix logarithm function log(A). In
this case, f(z) = log(z) and f has a singularity z = 0.
Then, method 2 of [1] can be applied. The computation
results of ∥f∥1 are shown in Table 3. From this table, we
can see that ∥f∥1 = O(log(κ)). Thus, we have

ν = O(κ log(κ)), d = O(κ log(κ log(κ)/ε)). (14)

Table 3: Numerical computation result of
∑

j |fj | where
fj is defined by eq. (3), f(z) = log(z), and N = 64.

m
M 1 0.1 0.01 0.001

1 - 4.9855 10.9238 18.0700
10 4.9855 9.5357 15.2164 22.2226

100 10.9238 15.2164 20.7723 27.7191
1000 18.0700 22.2226 27.7191 34.6404

3.2.2 The matrix fractional power

We consider the matrix fractional power Ar with r =
1/4, 2/4, and 3/4. In this case, f(z) = zr and f has a
singularity z = 0. Then, method 2 of [1] can be applied.
The computation results of ∥f∥1 are shown in Tables 4
to 6. From this table, we can see that ∥f∥1 = O(Mr).
Thus, we have

ν = O(Mrκ), d = O(κ log(κMr/ε)). (15)

Table 4: Numerical computation result of
∑

j |fj | where

fj is defined by eq. (3), f(z) = z
1
4 , and N = 64.

m
M 1 0.1 0.01 0.001

1 - 1.7575 2.1008 2.2369
10 3.1253 3.7359 3.9778 4.0864

100 6.6434 7.0736 7.2667 7.3604
1000 12.5788 12.9222 13.0888 13.1742

Table 5: Numerical computation result of
∑

j |fj | where

fj is defined by eq. (3), f(z) = z
2
4 , and N = 64.

m
M 1 0.1 0.01 0.001

1 - 1.6538 1.8974 1.9681
10 5.2298 6.0000 6.2238 6.2929

100 18.9737 19.6812 19.8997 19.9684
1000 62.2375 62.9285 63.1455 63.2139

Table 6: Numerical computation result of
∑

j |fj | where

fj is defined by eq. (3), f(z) = z
3
4 , and N = 64.

m
M 1 0.1 0.01 0.001

1 - 1.7337 2.0259 2.1156
10 9.7495 11.3923 11.8968 12.0571

100 64.0636 66.9009 67.8022 68.0895
1000 376.2112 381.2800 382.8953 383.4091

4 Conclusion

In this study, we evaluate numerically the performance
of quantum algorithms for matrix functions represented
by contour integrals when using the quadrature method
of [1]. Specifically, block-encoding of the matrix loga-
rithm function log(A) and the matrix fractional power Ar

are considered, and their subnormalization factors and
the number of uses to UA are evaluated numerically. Usu-
ally, the quantum singular value transformation (QSVT)
is considered as the quantum algorithm for matrix func-
tions. The QSVT computes a generalized matrix func-
tion, which coincides with a standard matrix function
when the input matrix is a normal matrix. On the other
hand, our method can handle standard matrix functions
even if the input matrix is not a normal matrix. How-
ever, in this method, the eigenvalues have to be positive
real numbers.

In addition, for the subnormalization factor of block-
encoding obtained by our method, a factor of κ is always
required caused by employing the block-encoding of the
inverse. Therefore, the order of complexity will be in-
creased compared to QSVT. On the other hand, it is not
necessary to compute the angle sequence numerically for
each function. That is, it is sufficient to compute the one
related to the reciprocal function. Further theoretical
study are left for future works.
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A Riemannian Genuine Measure of Entanglement for Pure States
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While several measures exist for entanglement of multipartite pure states, a true entanglement
measure for mixed states still eludes us. A deeper study of the geometry of quantum states may
be the way to address this issue, on which context we come up with a measure for pure states
based on a geodesic distance on the space of quantum states. Our measure satisfies all the desirable
properties of a “Genuine Measure of Entanglement” (GME), and in comparison with some of the
other existing measures, shows better smoothness and discriminance.

I. INTRODUCTION

Entanglement, the property of non-separability of mul-
tipartite quantum states, has come to the forefront in
recent times as an important resource in quantum com-
puting and communication protocols. The necessity to
quantify multi-party entanglement has become impera-
tive, from the view point of both as a measure of quan-
tum correlations and as a unit of resource consumption.
This has led to the formulation of various entanglement
measures from different standpoints. Some of the earliest
measures such as negativity [1] and reshuffling negativ-
ity [2] are straightforward and have been proven to be
computationally inexpensive. Operational measures of
entanglement including entanglement cost [3] and distill-
able entanglement are based on the quantity of resources
required to generate entanglement. Among different ap-
proaches there have been measures of entanglement based
on operator algebra [4] and more recently, coherence of
an entangled state in the Schmidt basis [5].

Entanglement is such a fundamental property of quan-
tum systems that it needs to be understood from the
basic notions of quantum state-space. While the geome-
try of quantum states has been a topic of research for a
few decades [6] it was the work pioneered by Amari and
Nagaoka [7] that showed that the application of differ-
ential geometry to information theory would give mean-
ingful insights. The Riemannian structure of quantum
state space was studied in great detail by Morozova and
Çentsov [8]. Later along with the contribution of Petz [9],
a concrete definition of a metric on quantum state space
was formulated.

Using this geometric viewpoint, several authors [10–12]
have attempted to provide entanglement measures using
different metrics on quantum state space to find the clos-
est separable state. However, such measures share a lim-
itation of being computationally hard for higher dimen-
sional state spaces, since they are based on minimisation
over the infinite set of states.

In an attempt to overcome these limitations, we work
with the geometry of the space of reduced density oper-

∗ p20200040@goa.bits-pilani.ac.in
† radhika@goa.bits-pilani.ac.in

ators, which is a subspace of a hypersphere. Similar con-
siderations for entanglement entropy have been have been
studied before [13]. The spherical geometry of the Bloch
sphere helps us define a Riemannian measure of two-qubit
entanglement in a relatively straightforward way, avoid-
ing minimization procedures. This can be generalised to
bipartite systems of higher dimensions. We then extend
this method to define a genuine measure of entanglement
for multipartite systems of higher dimensions.

II. GEOMETRY OF QUANTUM STATE SPACE

A quantum state of an n-qubit system is a non-
negative Hermitian operator ρ̂ with unit trace on the
d-dimensional Hilbert space Hd, d = 2n. This operator,
the statistical operator or density matrix, is instrumen-
tal in extracting probabilities of all possible measurement
outcomes on the system.

A unit-trace d × d Hermitian matrix can be written
in terms of the identity and a set of d2 − 1 traceless,
Hermitian, mutually orthogonal operators σi [14]:

ρ̂(x) =
1

d
1 +

√
d− 1

d

d2−1∑
i=1

xiσi,

Tr (σiσj) = δijd with real coefficients xi. Further, a
necessary (but not sufficient) condition for non-negativity
of ρ̂ is that coefficients xi satisfy [15–17]d2−1∑

i=1

x2i

 1
2

≤ 1. (1)

The xi thus form a d2 − 1-dimensional real vector ~x,
spanning a space in the form of a hyperspherical ball
of radius r = |~x|. We will call this the parameter space
P(Hd) ≡ Pn of unit trace, Hermitian operators on Hd.
For pure states, we have the condition

Tr ρ2 = 1 =⇒ r = 1. (2)

For the single qubit space, Eq. (1) is also a sufficient
condition for non-negativity. The parameter space is a
unit ball: the Bloch ball, with the surface representing
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2

pure states and mixed states represented by points in
the interior representing, with the center r = 0 being the
maximally mixed state.

However, for n > 1, the condition Eq. (1) is not suffi-
cient to ensure non-negativity. Further restrictions ([17])
select a subset Qn ⊂ Pn as the space of n-qubit density
operators. While all n-qubit pure states lie on the bound-
ary ∂Pn, not all points on the surface r = 1 correspond
to states in Qn. Pure states are extreme points of Pn, not
just boundary points. However, for all n, the center of
the hypersphere, r = 0 represents the maximally mixed
state, from which all pure states are equidistant.

The xi can be regarded as Cartesian coordinates of a
point in Pn, that can be transformed to hyper-spherical
coordinates[18, 19]:

r ∈ (0, 1),

θi ∈ (0, π), (3)

φ ∈ (0, 2π),

(i = 1, ..., d2 − 3), which are natural for parametrizing
points in a sphere. We can then define a metric on Qn
using these coordinates.

Example: metric on single-qubit state space

The parameter space of the single qubit states is the
same as the state space: the Bloch ball (P1 ∼ Q1), and
the coordinates of a state ρ(x) can be determined by

xi = Tr(ρσi), (4)

where σi are the Pauli spin operators. The spherical
polar coordinates for this point are

r = (x1
2 + x2

2 + x3
2)1/2,

θ = cos−1
x3
r
, (5)

φ = tan−1
(
x2
x1

)
.

Riemannian metrics on this space are given by [20]

ds2 =
1

4

 dr2

1− r2
+

1

f
(

1−r
1+r

) r2

1 + r
dΩ2

 , (6)

where dΩ2 is the metric on the unit sphere. The function
f(.) is the Morozova-Čencov (MC) function [21], which
is defined as any f(t) : R+ → R+ satisfying three prop-
erties:

1. f is an operator monotone,

2. f is self-inverse,

3. f(1) = 1.
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FIG. 1: Geodesic distance from the origin to a point at
radial coordinate r in the Bloch Ball.

For simplicity of calculation and due to its popularity
in literature, we use the MC function [22] corresponding
to the Bures metric:

f(t) =
1 + t

2
, where t =

1− r
1 + r

. (7)

Using this in Eq. (6), a metric in the Bloch ball is defined
by

Gij =


1

1− r2
0 0

0 r2 0
0 0 r2 sin2 θ

 . (8)

This reduces to the Fubini-Study metric on the surface,
corresponding to the space of pure single-qubit states.
The geodesic distance along a curve parametrized by λ
connecting two states u and v, is defined by

luv =

∫ λv

λu

√
Gij u̇iv̇jdλ. (9)

The behaviour of l0r, distance between the origin and
a point at r as plotted in Fig. (1) clearly indicates the
non-Euclidean nature of this metric, and brings out the
curvature of the space of quantum states.

III. ENTANGLEMENT MEASURE

We wish to construct a measure of entanglement E(ρ),
a positive real function of the quantum state ρ, that is re-
quired to satisfy [21]: (E1) Monotonocity under SLOCC,
(E2) Discriminance: E(ρ) = 0 iff ρ is separable and
(E3) Convexity as primary among other desirable prop-
erties such as asymptotic continuity, normalizability and
computability. Given a distance measure d(., .) on the
state space, a geometric entanglement measure for a pure

182



3

0 π/4 π/2 3π/4 π

θ

0.2

0.4

0.6

0.8

1
E

M

REM

S

C

FIG. 2: Comparison of REM, von Neumann entropy (S)
and concurrence (C) for |ψ1(θ)〉, superpositions of the

2-qubit symmetric and antisymmetric states.

state |ψ〉 is defined as the distance to the closest separable
state |φ〉 ∈ S, the set of separable states [23]:

E(ψAB) = min
φ∈S

d(ψ, φ). (10)

We first consider two-qubit pure states, for which a
measure of entanglement is the purity of the reduced den-
sity operators. The purity of the reduced density opera-
tor ρ is related to its radial coordinate in Q1. Levay [24]
has discussed in detail how the state space Q1 of single
qubit density operators can be mapped to the space of
two-qubit purifications (boundary of Q2). Therefore, dis-
tances between states on the surface of Q2 are related to
distances in Q1. We can use this correspondence to con-
struct a geometric measure of two-qubit entanglement in
terms of distances in Q1.

The reduced density operators ρA and ρB represent
pure states if and only if ψAB is separable. The partial
trace operation maps the pure state ψAB to a point a in
the single qubit Bloch ball corresponding to ρA. Since
all separable states are mapped to the surface of Q1,
the closest separable state to ρA will be at the radially
outward point p on its surface. If lap is the geodesic
distance to this point, then we can define a normalised
Riemannian entanglement measure as

REM(ψAB) =
lap
N
. (11)

Since the metric Eq. (6) blows up at the surface r = 1
(Fig. 1), we need to adopt a limiting procedure to com-
pute the integral Eq. (9) for lap. We take p very close to
the surface and take the limit r → 1. The normalization
constant N is the distance between the center u(0, θ, φ)
and a point on the surface v(r → 1, θ, φ).

The REM defined in (11) overcomes the computational
difficulty involved in calculating the the distance to the

closest separable state by a minimization procedure. An-
other common measure for two qubit pure state entan-
glement is the largest Schmidt coefficient. Finding it in-
volves solving the characteristic equation, which again is
computationally less efficient than finding the REM.

Two qubit examples.
We test our measure by comparing with standard

measures such as the von Neumann entropy S(ψAB) =

−Tr(ρA log ρA) and concurrence C(ψ) =
√

(1− Trρ2A.

Example 1: Superposition of symmetric and asymmetric
states

|φ0〉 = |00〉 ,
|φ1〉 =

1√
2

(
|01〉+ |10〉

)
|φ2〉 = |11〉 ,

 Symmetric,

|φ3〉 =
1√
2

(
|01〉 − |10〉

)
antisymmetric;

|ψ1(θ)〉 =
cos θ√

3

(
|φ0〉+ |φ1〉+ |φ2〉

)
+ sin θ |φ3〉 .

Figure (2) shows a comparison of the three measures of
entanglement as functions of θ.
Example 2: Superposition of a Bell state and a product

of non-orthogonal states
(
|+〉 = (|0〉+ |1〉)/

√
2
)

, which

is useful in information theoretic tasks[25]:

|e〉 =
1√
2

(|00〉 − |11〉),

|p〉 = |++〉 ,
|ψ2(θ)〉 = cos θ |e〉+ sin θ |p〉 .

Figure (3) compares the three entanglement measures for
such states as a function of θ.
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FIG. 3: Comparison of REM, von Neumann entropy (S)
and concurrence (C) for |ψ2(θ)〉, superpositions of
2-qubit entangled states and product states in a

non-orthogonal basis.
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For both examples, the behaviour of REM is consistent
with the behaviour of the other measures. This encour-
ages us to move on to higher number of qubits.

IV. MULTI-QUBIT ENTANGLEMENT

For more than two qubits, the treatment of entangle-
ment becomes more involved since there are several types
of entanglement that are inequivalent[26, 27]. For in-
stance, 3-qubit states fall under two SLOCC inequivalent
classes: the GHZ-type (states equivalent under LOCC to
|000〉+ |111〉) and the W-type (superpositions of states in
which only one qubit in the state |1〉). We aim to define
a measure that picks genuine entanglement, i.e. not even
biseparable in any way.

An n-qubit entanglement monotone is called a Gen-
uine Measure of Entanglement (GME) if it satisfies the
following properties ([28, 29]):

(P1) GME= 0 for all product states and for all bisepa-
rable states.

(P2) GME6= 0 for all non-biseparable states.

(P3) GME ranks GHZ state as more entangled than W
state.

These three conditions present an interesting challenge
to the existing entanglement measures. The multi-qubit
entanglement measure given by Meyer et al [30] and in-
terpreted by Brennen [31] satisfies P2 and P3, but is
non-zero for biseparable states. Later Love et al [32] gave
a correction to this measure which qualified it as a GME.
In works by Li et al [33], Xi et al [34], Sab́ın et al [35]
and Markiewicz et al [36], bipartite measures have been
utilised to construct a GME. The measures given by Pan
et al [37] and by Carvalho et al [38] use addition of bi-
partite measures, which in general are non-zero for bisep-
arable states and thus do not satisfy P1. Cai et al [39]
have defined a GME based on von Neumann entropy.
The well-known measure 3-tangle, which is an algebraic
extension of concurrence given by Coffman et al [40] and
later extended by Miyake [41], does not satisfy P2 and
is always zero for W-class entangled three qubit states.
Bounds on geometric measures of entanglement using z-
spectral radius for some classes of pure states were given
by Xiong et al [42]. Haddadi et al [43] give an overview
of different geometric measures of multi-qubit entangle-
ment.

Now it was pointed out in by Love et al [32] and Yu
et al [44] that any bipartite measure can be used to de-
fine a GME. We use this idea to define a GME, using a
geometric measure for bipartite entanglement.

A. Bipartite measure of n-qubit entanglement

Along the same lines as our two qubit entanglement
measure, we construct an REM for non-biseparability of

tripartite states. Let us consider the bipartition (AB)C
of a three qubit pure state ψABC . The bipartite mea-
sure of entanglement between the subsystems AB and C
is the distance between the state ψABC and the closest
biseparable state φ ∈ SC , the set of all biseparable states
in the (AB)C bipartition.

E
(
ψ(AB)C

)
= min
φ∈SC

d(ψ, φ). (12)

Calculating this by minimization is computationally
hard. Using a generalization of the REM we can reduce
this complexity.

The reduced density operator ρAB lives in the param-
eter space P2. The closest biseparable state ρp is radially
outward on the surface of this hypersphere. We measure
this distance using the Bures measure DB( , ) [45, 46],
to define a bipartite Riemannian entanglement measure
for (AB)C as

bREM
(
ψ(AB)C

)
=
DB

(
ρAB , ρp

)
N2

, (13)

N2 being the normalization. It is sometimes computa-
tionally easier to evaluate this distance as the comple-
ment of the distance from the state at r = 0 to ρAB . We
use the same definition for the other two bipartitions.

Normalizing bREM

The 3-qubit GHZ state (14) possesses the maximum
entanglement with respect to which we normalize our
measure. While we might expect the maximum value to
be 1, we find that the distance measure is typically less
than 1. This is mainly because the rank of the 3-qubit
state is less than the dimensionality of the AB Hilbert
space. This can be seen using a generalised Schmidt de-
composition to explicitly cast the many qubit state into
bipartite form[47]. The AB subspace of the 3-qubit en-
tangled ABC system is four dimensional, but the gen-
eralised Schmidt form of the GHZ state has only two
vectors:

|GHZ〉ABC =
1√
2

(|000〉+ |111〉) (14)

=
1√
2

(|0′0〉+ |1′1〉) (15)

with redefined basis vectors for AB subsystem:

{|00〉 , |11〉 , |01〉 , |10〉}
≡ {|0′〉 , |1′〉 , |2′〉 , |3′〉}.

The entanglement of (AB)C bipartition is then the “two-
qubit” entanglement of the state expressed as Eq. (15).
Since it resembles the two qubit Bell state in the gener-
alised Schmidt basis, we expect the GHZ state to possess
maximal entanglement. But there is a major difference
between an actual Bell state and the state in Eq. (15).
The measurement outcomes in the AB subsystem are
maximally random, equivalent to those of a Bell state,
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only for the projections {|0′〉 〈0′| and |1′〉 〈1′|}. However,
projections along the other two basis vectors {|2′〉 , |3′〉}
are always definite (i.e they are always zero!). Thus al-
though the (AB)C entanglement of the |GHZ〉 state is
maximal, some determinacy still exists in the system.
This is borne out by the value of the un-normalized bipar-

tite measure DB(ρAB , ρp) =

(
1−

√
2−
√

2

)
< 1. We

use this value of N2 to normalize the measure bREM.

B. GME based on bREM

We define a GME by taking the geometric mean of
bREMs of all possible bipartitions. We call this the GBR
(Geometric mean of Bipartite Riemannian measures of
entanglement):

GBR(ψABC) = (b1b2b3)
1
3 (16)

where bi is the bREM for the ith bipartition. This GME
is readily generalised to the n-qubit case. The number m
of unique possible bipartitions is given by[33],

m =



(n−1)/2∑
i=1

(
n

i

)
for odd n,

(n−2)/2∑
i=1

(
n

i

)
+

1

2

(
n/2

n

)
for even n.

(17)

For each bipartition, we calculate bi using the Bures dis-
tance from the reduced density operator of the larger
partition, to its closest pure state. We then take the
geometric mean:

GBR
(
ψn
)

=

m∏
i=1

(bi)
1
m . (18)

It is easily verified that this measure satisfies all the prop-
erties of a GME. For instance, (P1) and (P2) follow
since GBR is defined using the product of bipartite mea-
sures. Calculations show that GBR(GHZ) = 1, while
GBR(W ) = 0.94, satisfying P3. Some useful features of
this measure are discussed next.

V. DISCUSSION

Calculation of GBR avoids cumbersome minimization
procedures to find the closest separable state. Since it
is based on the radial distance in the space of the re-
duced density operators, this measure is guaranteed to be
monotonic under SLOCC. One way to see this is that the
Bures distance to the radially outward state is a positive
function of the radial coordinate of the reduced density
operator, which is monotonic under SLOCC[3].

Another interesting feature of our measure is that it
takes into account the curvature of the space of states

as opposed to other measures that depend on the radial
(Euclidean) distance in the space of states.

We expect these features to result in properties that
distinguish this measure from some of the other measures
in the literature.

Comparison with recent GMEs

In recent times, several GMEs have been proposed,
such as Generalised Geometric Mean (GGM)[48, 49], Ge-
niunely Multipartite Concurrence (GMC)[50], Concur-
rence Fill (F)[51] and Geometric Mean of Bipartite Con-
currence (GBC)[33].

Concurrence Fill is an elegant and visualisable measure
for 3-qubit systems, but is hard to generalize to higher
number of qubits. Though there are beautiful entangle-
ment polygon inequalities[52], there is no reason in gen-
eral to expect the GME based on bipartite concurrences
to obey volume or area laws for the n-qubit case[53].

An aspect for comparison is the effectiveness of dif-
ferent measures in discriminating between entanglement
of states that belong to LU-inequivalent classes. There
are only two SLOCC inequivalent classes of three qubit
states namely the GHZ-type and W-type[27]. All valid
GME’s including GMC and GGM can differentiate the
degree of entanglement between these two classes. How-
ever, there are further six sub-classes[35, 54] based on
the entanglement between different subsystems. Among
these are four classes of genuinely entangled states, which
form LU-equivalence classes. They can be identified by
the non-zero coefficients in their Generalised Schmidt De-
composition (GSD). The GSD of a 3-qubit pure state
takes the canonical form

|ψ〉 = λ0 |000〉+ λ1 |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 .

In all these classes, λ0 and λ4 are always non-zero.

Class 1: all of λ1, λ2, λ3 zero, (GHZ-class);

Class 2: any two of λ1, λ2, λ3 zero;

Class 3: any one of λ1, λ2, λ3 zero

Class 4: none of λ1, λ2, λ3 zero. (W-class).

For example, GGM and GMC, both of which use the
minimum entanglement among all bipartitions, are rela-
tively poor at discriminating certain states that belong
to LU-inequivalent classes. A similar argument has been
put forward by Xie et al[51], where they show by exam-
ple that GMC and GGM fail to differentiate the entan-
glement content of two states belonging to two different
sub-classes, while concurrence fill successfully differenti-
ates them. We demonstrate that GBR is also successful
in discriminating these classes, using two example fami-
lies of states:

|χ1(θ)〉 = cos
θ

2
|000〉+ sin

θ

2
|111〉 ,

|χ2(θ)〉 =
1√
2

(sin θ |000〉+ cos θ |110〉+ |111〉) . (19)
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FIG. 4: GME for states χ1(θ) (Class 1) and χ2(θ) (Class 2) of Eq (19): (a) GGM and (b) GMC fail to distinguish
these two classes, while the difference shows up in (c) Concurrence Fill and (d) GBR.

|χ1(θ)〉 and |χ2(θ)〉 belong to Class 1 and Class 2 re-
spectively for θ ∈ (0, π/2]. Fig. 4(a) and (b) show that
GMC and GGM put them on equal footing, whereas con-
currence fill in Fig. 4(c) and GBR in Fig. 4(d) distinguish
their entanglement contents.

Entanglement being an intrinsic property of a quantum
system, it is expected to vary smoothly with any single
parameter of a family of states. For instance, consider
the state:

|χ3(θ)〉 = cos θ |001〉+
1√
2

sin θ
(
|010〉+ |100〉

)
. (20)

We plot GGM, GMC, GBC and GBR for this class in
Fig. 5. GGM and GMC contain undesirable sharp peaks,
a limitation of measures involving non-analytic functions
such as the minimum. In contrast, we see that GBC
and GBR are smooth. Fig. 5(b) is a zoomed-in view to
highlight the difference between GBC and GBR, though

they appear to overlap in Fig. 5(a).

VI. CONCLUSION

In this work we give a measure for genuine pure state
entanglement using the Riemannian structure of quan-
tum state space. The two-qubit measure REM is a com-
putationally efficient method of calculating the distance
to the closest separable state. This inspired an extension
to multi-party systems through bipartitions. We con-
struct a function of the n-qubit state (GBR) that satis-
fies all the requisite properties of a Genuine Measure of
Entanglement.

It is noteworthy that this measure uses entanglement
information from all bipartitions. Therefore it is better at
discriminating different LU-invariant sub-classes of three
qubit states than some of the existing GME’s in liter-
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FIG. 5: (a) Comparison of GBR with other GME’s for
the state of class χ3(θ). In this scale, GBR and GBC

appear to overlap, but their formulations are completely
different. (b) highlights the difference between the

curves in higher resolution.

ature that are based on minimum entanglement among
bipartitions.

GBR explicitly uses the Riemannian structure of state
space, and consequently varies smoothly with state pa-
rameters. Entropic measures for instance, are functions
of the Euclidean distance, and do not pick up the curva-
ture of the state space.

While measures like concurrence fill do not easily gen-
eralise to n-qubits, GBR by its definition can be con-
structed for all finite dimensional pure states.

As for mixed states, this measure can be readily ex-
tended using convex roof construction. A detailed anal-
ysis of computational cost reduction is work in progress.
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[54] A. Aćın, A. Andrianov, L. Costa, E. Jané, J. I. Latorre,
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Catalytic and asymptotic equivalence for quantum entanglement
Ray Ganardi1∗ Tulja Varun Kondra1† Alexander Streltsov1‡

1 Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw,
Poland

Abstract. Many quantum information processing tasks rely on singlets, but obtaining them is challenging due to
the presence of noise. Typically, procedures involving asymptotically many copies of a state are considered to distill
singlets from noisy states. When it comes to manipulating entangled systems on a single copy level, using entangled
states as catalysts can significantly broaden the range of achievable transformations. Our results demonstrate a full
equivalence between the asymptotic and catalytic settings for all distillable states. As an important consequence, we
demonstrate that using an entangled catalyst cannot enhance the asymptotic singlet distillation rate of a distillable
quantum state.

Keywords: Entanglement theory, distillable entanglement, entanglement catalysis

Entanglement is a key feature of quantum mechanics,
and it plays a vital role in many areas of quantum
information science. Being a strong form of correlations
between quantum systems, entanglement enables a
wide range of applications and protocols that have
the potential to revolutionize information processing
and communication [BBC+93, Eke91]. The study of
entanglement and its properties has led to significant
advancements in our understanding of quantum mechanics,
and it has provided insights into how to manipulate and
harness its power for practical applications [HHHH09].

To understand the pivotal role of entanglement as a resource
in quantum information processing, we can consider the
distant lab paradigm [BBP+96, BDSW96]. This scenario
involves two parties, Alice and Bob, who are located in
different quantum laboratories and can exchange classical
messages to communicate with each other. In this setting,
entangled states shared between Alice and Bob become a
valuable resource, allowing them to perform tasks that would
otherwise be impossible [HHHH09].

One of the most significant applications of entanglement is
in the field of quantum communication, including quantum
teleportation [BBC+93] and quantum cryptography [Eke91].
These tasks typically rely on singlets, which are pure highly
entangled states of two qubits. However, in practice, Alice
and Bob may only have access to noisy states. In order
to use noisy states for singlet-based protocols, they can
employ entanglement distillation [BBP+96, BBPS96], which
is a special case of asymptotic state transformations. In
this process, n copies of an initial state are transformed
approximately into rn copies of the final state, where r is the
transformation rate. Quantum states which can be distilled
into singlets at a nonzero rate are called distillable. There exist
noisy entangled states which cannot be distilled into singlets,
a phenomenon known as bound entanglement [HHH98].

Another way how Alice and Bob can gain access to singlets
from noisy states is to use entanglement catalysis. In this
process, an auxiliary entangled state, known as a catalyst,
is employed to aid in the transformation of one entangled
state to another without altering the catalyst itself [JP99].
∗r.ganardi@cent.uw.edu.pl
†t.ko@cent.uw.edu.pl
‡a.streltsov@cent.uw.edu.pl

Recent work [KDS21, LBS21, RT22, DKMS22b] extended
this idea to approximate catalysis, where the transformation
can be achieved with a certain degree of inaccuracy. This
concept has proven to be instrumental in advancing our
understanding of catalytic entanglement manipulation and its
potential applications [DKMS22a].

At first glance, catalytic and asymptotic transformations
may seem like distinct concepts, but recent research has
uncovered a strong connection between them. Initial evidence
for a connection between these concepts was presented
in [DFY05, DFLY05], and subsequent work has made
significant progress in this direction, particularly through the
use of approximate catalysis [KDS21, RT22]. Furthermore,
it has been shown that in quantum thermodynamics,
catalysis and many-copy transformations with a unit
rate are fully equivalent [SS21, Wil21]. Given the
shared features between quantum entanglement and
thermodynamics [HOH02, PSW06, BP08, LR23], it is
plausible that a similar equivalence may exist in entanglement
theory.

In this article, we resolve this question by considering
catalytic and asymptotic protocols which can establish a non-
vanishing amount of correlations. This provides a more
flexible and practical approach for studying catalysis and
asymptotic transformations and their applications in quantum
information processing. In this setting, we prove that for
distillable states, catalysis and asymptotic transformations
with unit rate are fully equivalent notions of entangled
state manipulation. We discuss several applications of our
results, including the crucial finding that the addition of a
catalyst cannot increase the distillable entanglement of a noisy
distillable state.

Asymptotic entanglement manipulations and catalysis
As previously discussed, asymptotic transformations

are a powerful tool for understanding the structure and
manipulation of quantum entanglement. For instance,
consider two bipartite pure states |ψ⟩ and |ϕ⟩. The objective is
to use local operations and classical communication (LOCC)
to transform n copies of |ψ⟩ into m copies of |ϕ⟩, allowing
for an error margin that vanishes in the limit of large n.
The maximal ratio m/n defines the transformation rate. This
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framework is particularly useful if the target is the singlet state
|ψ−⟩ = (|01⟩ − |10⟩)/

√
2, in which case the optimal rate is

known as distillable entanglement [BBP+96, BBPS96, PV07].
It coincides with the entanglement entropy E(|ψ⟩) = S (ψA) of
the initial state, and S (ρ) = −Tr[ρ log2 ρ] is the von Neumann
entropy [BBPS96]. In a similar way, it is possible to define
transformation rates for noisy states, we refer to the Methods
section for more details. A state is called asymptotically
reducible onto another state if the transformation can be
achieved with a rate at least one [BPR+00]. This reflects the
intuition that if |ψ⟩ is reducible onto |ϕ⟩, then |ψ⟩ is at least as
valuable as |ϕ⟩ for any application that allows for asymptotic
transformations.

Entanglement catalysis is a phenomenon where an
entangled catalyst is used to facilitate the single-copy
transformation of an entangled state into another without
changing the state of the catalyst [JP99, EW00]. Given an
entangled state |ψ⟩ and a target state |ϕ⟩, the aim is to find a
catalytic state |η⟩ such that the transformation |ψ⟩⊗|η⟩ → |ϕ⟩⊗
|η⟩ is possible by LOCC. The catalyst is particularly useful if it
enables the transformation of |ψ⟩ into |ϕ⟩which is not possible
without the catalyst. Recently, the notion of catalysis has been
extended to approximate catalysis in [KDS21, LBS21, RT22,
DKMS22b], which allows for some degree of inaccuracy
in the catalytic transformation. The notion of approximate
catalysis provides a more realistic model for practical
implementations of catalytic entanglement manipulation and
enables a broader range of applications [DKMS22a]. It has
been demonstrated in [KDS21] that transformations between
bipartite pure states in this scenario are fully determined
by the entanglement entropy of the corresponding states.
Therefore, for bipartite pure states approximate catalysis
is fully equivalent to reducibility. Catalytic phenomena
have been extensively studied not only in the context of
entanglement, but also in other areas of quantum physics,
such as quantum thermodynamics [BHN+15, M1̈8, SS21,
BEG+19, Wil21], where they are essential for understanding
and manipulating quantum systems subject to constraints
imposed by energy conservation.

As has been shown in [KDS21], there is a close
connection between asymptotic state transformations and
catalysis. More precisely, if a state ρ is asymptotically
reducible to another state σ, then a transformation from ρ
into σ can also be achieved on the single-copy level with
approximate catalysis [KDS21]. However, it has remained
a crucial open question whether the converse is also true,
i.e., whether catalysis and asymptotic reducibility are fully
equivalent notions for entangled state transformations. In this
article, we introduce the frameworks of marginal asymptotic
transformations and correlated catalysis, which allows us to
resolve this question and establish the equivalence between
catalysis and reducibility for all distillable quantum states.

Correlated catalysis and marginal reducibility
In the context of entanglement catalysis, an important

generalization is to consider correlated catalysis, where the
catalyst is allowed to have non-vanishing correlations with the
system throughout the transformation process. This means
that the system and the catalyst can remain correlated in the

final state. More precisely, we say that ρ can be converted into
σ via correlated catalysis if for any error margin ε > 0 there
is an LOCC protocol Λ and a catalyst state τ such that

µS C = Λ(ρS ⊗ τC),

||µS − σS ||1 < ε, µ
C = τC .

(1)

Here, S denotes a possibly multipartite system, C denotes
the catalyst, and ||M||1 = Tr

√
M†M is the trace norm.

In other words, the state µS C is obtained by applying an
LOCC protocol Λ to the state ρS ⊗ τC , such that the
marginal on C is preserved and the resulting state on S can
be made arbitrarily close to the target state σ. Previous
studies in quantum thermodynamics have explored the
significance of correlations for catalytic state transformations,
revealing that the presence of correlations between the system
and catalyst can increase the transformation power of the
procedure [WGE17, BEG+19, Wil21, SS21].

We now introduce the notion of marginal reducibility. We
say that ρ can be reduced into σ in the marginals if for
any arbitrarily small error margin, there exists an LOCC
protocol which can transform n copies of ρ into a state with
approximately m marginals, and each marginal being close to
the desired state σ. Specifically, we require for any ε, δ > 0
there exists an LOCC protocol Λ and integers m ≤ n such that
the following conditions hold for all i ≤ m:

Λ
(
ρ⊗n
)
= µm,∥∥∥µ(i)

m − σ
∥∥∥

1 < ε, (2)
m
n
+ δ > 1.

Here, µm is a state on m subsystems, each shared by Alice and
Bob, and µ(i)

m is the reduced state of µm on i-th subsystem.
Marginal asymptotic transformations have been previously
studied in continuous variable systems in [FLTP23].

It is worth to discuss the difference between marginal
reducibility and the notion of reducibility introduced
in [BPR+00]. The latter is more stringent as it requires that
the final state µm is close to m copies of σ as a whole.
However, for many quantum information processing tasks that
rely on pure states |ϕ⟩, such as singlets in the bipartite case
or GHZ states in the multipartite case, small perturbations
of the state do not significantly affect its usefulness. For
marginal reducibility, it suffices that ρ⊗n can be approximately
converted into µ⊗n

ε for any ε > 0, which as we have
argued above is enough for many tasks based on pure
states. Therefore, we suggest that the framework of marginal
reducibility is particularly suitable when one aims to produce
pure entangled states of high quality that are intended to be
used independently.

In the remainder of this article we will focus on
the relationship between correlated catalysis and marginal
reducibility. Unless otherwise specified, we will refer to these
concepts simply as catalysis and reducibility, respectively.

Catalysis-reducibility equivalence
As previously noted, there have been indications that

catalysis and reducibility are interchangeable concepts for
entangled state transformations [DFY05, KDS21, RT22,
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DFLY05]. The key contribution of this article is to
establish this equivalence for any pair of distillable states,
using the notions of catalysis and reducibility which include
correlations, as outlined above in this article. We recall that a
distillable state is a quantum state which can be converted into
singlets at nonzero rate in the asymptotic limit.

Theorem 1. For any pair of distillable states ρ and σ
reducibility and catalysis are fully equivalent.

We present a brief overview of the techniques employed
for proving the theorem, more details can be found in the
Methods section and the Supplementary information. Firstly,
we demonstrate that if the state ρ can be reduced to the state
σ, then it is possible to achieve a catalytic transformation
from ρ to σ, using techniques similar to those presented in
prior works [SS21, KDS21, LBS21, RT22]. Subsequently, we
establish the converse by explicitly constructing a reduction
protocol that utilizes a catalytic conversion protocol from a
distillable state ρ into σ. This involves several technical steps
that are described in detail in the Supplementary information.
By combining these two results, we conclusively demonstrate
the full equivalence of reducibility and catalysis for any pair
of distillable states ρ and σ.

Since all entangled two-qubit states are
distillable [HHH97], Theorem 1 implies that catalysis
and reducibility are fully equivalent for all two-qubit states.
For states beyond two qubits, Theorem 1 also applies if
the target state σ is not distillable. Moreover, catalysis is
generally at least as powerful as reducibility. With this in
mind, Theorem 1 leaves open the possibility that there exist
bound entangled states ρ that cannot be reduced to some
state σ, yet a catalytic conversion from ρ to σ is possible.
Thus, if catalysis and reducibility are not equally powerful
on all quantum states, catalysis must show an advantage
on some bound entangled initial states. This underscores
the importance of investigating the relationship between
these concepts in the general case, as it can provide insights
into the nature of bound entanglement and the power of
entanglement catalysis. Additionally, our findings can have
practical implications for quantum information processing
tasks where bound entangled states are known to play a
significant role [HHH99, SST01, VB14].

Going one step further, we investigate the role of catalysis
for asymptotic transformation rates. Our findings reveal
that the addition of a catalyst does not alter the asymptotic
rate of transformation from a distillable state ρ into another
state σ, again under the assumption that correlations can be
established in the procedure. An important application of this
result pertains to the scenario where the target state is a singlet
|ψ⟩−. In this context, our analysis reveals that the correlations,
which are typically established in the catalytic and asymptotic
procedures considered earlier, vanish. This property allows
us to explore the features of distillable entanglement when a
catalyst is incorporated into the transformation, bringing us to
the second main result of this article.

Theorem 2. Catalysis cannot increase the distillable
entanglement of a distillable state.

The proof of the theorem combines the previously mentioned
results on asymptotic transformation rates with the additional

finding that correlations usually established in the involved
procedures disappear if the target state is pure. We refer
to the Methods section for the proof and more details.
Recalling that all entangled two-qubit states can be distilled
into singlets [HHH97], it follows that Theorem 2 applies to
all two-qubit states. In general, our results leave open the
possibility that bound entangled states could be activated into
singlets through catalysis.

Our results have implications also beyond the scope of
bipartite systems. It is worth noting that Theorem 1 can
be generalized to the multipartite scenario. To this end,
we consider multipartite distillable states, which are those
multipartite states that can be distilled into singlets between
each pair of parties with some nonzero rate in the asymptotic
limit This includes all pure states which are entangled across
any bipartition [SVW05, HOW05]. With this in mind,
we can extend Theorem 1 to state that for any pair of
multipartite distillable states, reducibility and catalysis are
fully equivalent. Furthermore, Theorem 2 is also applicable to
this scenario, indicating that the addition of a catalyst cannot
enhance the multipartite distillable entanglement of any
multipartite distillable state, we refer to the Methods section
for more details. The results obtained in the multipartite
setting are in line with those in the bipartite setting and imply
that if catalysis offers any benefit over reducibility, it can only
be observed when the initial state is not distillable.

These findings offer a better understanding of the
relationship between entanglement catalysis and many-copy
transformations, and can have practical implications for
the exploitation of entanglement in quantum information
processing tasks.
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Detecting entanglement of multipartite quantum states is an inherently probabilistic process, typ-
ically with a small number of measured samples. The level of confidence in entanglement detection
can be used to quantify the validity of the detection scheme via the probability that the measured
signal is coming from a separable state, and provides a meaningful figure of merit for big data sets.
Yet, for limited sample sizes, to avoid serious misinterpretations of the experimental results, one
should not only consider the probability that a separable state gave rise to the measured signal but
should also include information about the probability that the signal came from an entangled state,
i.e. the efficiency of the detection scheme. We demonstrate this explicitly and propose a general
method to optimise both the validity and the efficiency in small data sets. The method is applicable
to arbitrary entanglement witnesses and is based on an analytical model of finite statistics effects
on correlation functions. As an example, we derive the optimal number of measurement settings
and distribution of clicks per setting that guarantee high validity and efficiency of entanglement
verification with only 20 copies of a state. The analysis takes into account both a Frequentist as
well as Bayesian approach.

Quantum entanglement is long recognised as an important prerequisite of modern quantum technologies. Its
detection is accordingly a well studied topic with a plethora of different methods available. The field has evolved
towards strategies directly applicable to experimental data which inevitably is limited to a finite number of detection
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FIG. 1. Illustration of finite statistics effects on entanglement verification. The plot shows the probability distributions
to obtain a specific value of a certain nonlinear entanglement witness S. The witness uses only two correlation measurements,
each estimated either with n = 10 (squares) or n = 100 (circles) copies of the states. The probability distribution given an
entangled state is marked in red. The probability in blue is computed for a separable state that saturates the value of the
witness in the case of infinite data sets, i.e. a separable state that tends to yield large values of S. For larger statistics (see
circles), the two distributions have small overlap making it easy to verify that entangled state was prepared. For smaller
statistics (see squares) the overlap is very significant and care has to taken even if big values of the witness are observed.
Because of this issue, we have developed universal tools, applicable to any entanglement witness, that extend it to the domain
of finite statistics and can be employed to efficiently use every single copy of a state.
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events. If this number is large, various forms of entanglement witnesses [1, 2] provide practically deterministic
entanglement verification [3]. Interestingly, also the analysis of smaller data sets allows to detect entanglement [4],
most recently with quantum state verification methods [5, 6] and tailored game-like protocols in which particles
are measured one by one [7–10]. These methods are of high practical relevance in all cases where only a limited
amount or only partial data is accessible. The finiteness of data sets used to derive a conclusion about entanglement
inevitably leads to a probabilistic nature of this conclusion. The finiteness of data sets used to derive a conclusion
about entanglement inevitably leads to a probabilistic nature of this conclusion. By far the two most prominent ways
to quantify the validity of such a probabilistic statement are the confidence and the credibility, respectively related
to the Frequentist and Bayesian approaches. Both of these measures capture different important aspects of statistical
validity.

We showed explicitly that for small data sets it is necessary to consider not only P (Q|sep), i.e. the probability
of a separable state to yield particular values of the witness Q, but also P (Q|ent) of entangled states. This is
illustrated in Fig. 1, which shows that for smaller statistics one is required to go to more and more strict criteria to
reliably distinguish between results compatible with entangled states and results compatible with separable states. In
consequence, due to the increased strictness it becomes also more and more improbable that an entangled state will
pass the test. Thus, especially in the case of small statistics, confidence or credibility is not the only figure of merit
and we argue that one also has to ensure the efficiency of the method quantifying what fraction of entangled systems
is expected to pass the criterion. A discussion of this parameter has to be an integral part of any useful measurement
scheme. Only with these two quantifiers it becomes possible to optimize the usage of the available experimental
resources. We have introduced a universal procedure that allows the extension of any entanglement witness to the
domain of finite statistics. It is based on an analytical calculation of probability distributions over possible outcomes
when estimating correlation functions experimentally with finite resources. Based on these probability distributions
we defined the measures of validity and efficiency, applicable to any entanglement detection scheme, from the points
of view of both Frequentist and Bayesian interpretation. We provide illustrative examples based on linear as well as
nonlinear witnesses and broad families of states. The methods introduced are directly applicable to raw data and
should be especially helpful for a resource-efficient estimation of the performance of a known apparatus subject to
variations of external parameters or in multipartite experiments with rare detection events, e.g., multi-photon setups
based on coincidence clicks. As an example, our scheme could be employed to quickly certify the quality of a large
quantum processor before a time-consuming computation task.
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Indefinite causal key distribution
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Abstract. We propose a quantum key distribution (QKD) protocol that is carried out in an indefinite
causal order (ICO). In QKD, one considers a setup in which two parties, Alice and Bob, share a key with
one another in such a way that they can detect whether an eavesdropper, Eve, has learnt anything about the
key. To our knowledge, in all QKD protocols proposed until now, Eve is detected by publicly comparing
a subset of Alice and Bob’s key and checking for errors. If operations can be applied in an indefinite
causal order, we show that, interestingly, the presence of Eve can be detected by Alice alone, without
publicly comparing any information about the key with Bob. Indeed, we prove that both correlated and
uncorrelated eavesdroppers cannot extract any useful information about the shared key without inducing
a nonzero probability of being detected.

Keywords: Indefinite causal order, quantum cryptography, quantum information

Introduction

In our everyday, classical world, we are used to events
occurring in a well defined order: A happens before B or
vice versa. Remarkably, it appears that, in the quantum
world, events can happen in a superposition of orders [1,
2, 3]. This phenomenon has been termed indefinite causal
order (ICO) and, aside from the foundational interest in
this topic, a number of applications have been proposed
that show differences when compared to their definite
causal counterparts [1, 4, 5, 6, 7]. Here, we propose an-
other such application, this time in the well established
field of quantum key distribution (QKD).
QKD is concerned with the scenario in which two par-

ties, conventionally named Alice and Bob, would like to
share a private key (a string of 0s and 1s) in such a
way that they are confident an eavesdropping third party,
called Eve, has not been listening in. There have been
a number of protocols proposed [8, 9, 10, 11, 12, 13,
14], the first by Charles Bennett and Giles Brassard in
1984 (BB84) [8]. The security of these protocols comes
from the fact that Eve can be detected. This is possible
because, when Eve is present, due to the quantum phe-
nomenon of measurement disturbance, a non-zero prob-
ability of error in Bob’s key, with respect to Alice’s, is
induced. So, if one could somehow detect these errors
induced by Eve, assuming noiseless and lossless trans-
mission, it could be concluded that an eavesdropper had
been listening in. These errors are normally detected
by Alice and Bob publicly comparing a subset of their
respective keys. Now public information, this subset is
subsequently discarded regardless of whether they con-
clude Eve is there or not.
To our knowledge, this public comparison is a feature

of all QKD protocols so far proposed. In this work, pre-
sented fully in [15], we show that using ICO, it is possi-
ble to determine whether eavesdroppers are there or not
without having to publicly compare, and subsequently
discard, a subset of the distributed key. This work there-
fore highlights a new area in quantum information science
that appears to exhibit different features in a world that
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allows ICO compared to one that does not.

Quantum key distribution

Suppose two parties, Alice and Bob, would like to share
a private key to use for some cryptographic task. This is
often done, as in BB84, by having Alice prepare qubits
in states that correspond to the 0s and 1s of the private
key and sending them to Bob to be measured. Indeed,
in BB84, Alice and Bob respectively prepare and mea-
sure, independently and randomly, in one of two non-
orthogonal bases. In this work, we will use the Pauli x
and z-bases: {|0⟩, |1⟩} and {|+⟩, |−⟩} respectively, where
|±⟩ := (|0⟩±|1⟩)/

√
2. If Alice (Bob) prepared (measured)

the qubit to be in the state |0⟩ or |+⟩, she (he) will have
a corresponding key bit of 0. Likewise, if |1⟩, |−⟩ the cor-
responding key bit will be 1. Once Bob has measured
the qubit Alice sent him, the two parties publicly discuss
which bases they chose. If they chose different bases,
there is only a 50% chance of them agreeing on the key
bit value, so they discard the corresponding key bit. If,
however, they chose the same basis, when no eavesdrop-
pers are present, Bob’s measurement result is guaranteed
to correspond to the state that Alice prepared, assuming
noiseless and lossless transmission, as we will do through-
out. Therefore, Alice and Bob can use the corresponding
ordered set of key bit values as their shared key.

To make this protocol secure, notice that when an
eavesdropper, Eve, intercepts the transmission from Alice
to Bob and tries to learn the key bit value being shared,
she disturbs the quantum state being sent with non-zero
probability. This means that, even if Alice and Bob agree
on the basis chosen, there is a non-zero probability that
they disagree on the state of the qubit, meaning that
there is a chance of an error in Bob’s key with respect
to Alice’s. To detect these errors, Alice and Bob take
a subset of their final keys and compare them publicly.
Let us now see how this protocol can be adapted to an
indefinite causal ordered setting.
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Figure 1: Indefinite causal key distribution with no eaves-
droppers. A key is shared between Alice and Bob by
sending a qubit ρ to them in a superposition of orders
controlled by the qubit ω. Alice and Bob perform pro-
jective measurements randomly in either the Pauli x or
z-basis. After discarding cases in which Alice and Bob
measured in different bases, they are left with identi-
cal keys. Regardless of the superposition of orderings,
ω never changes when there are no eavesdroppers.

Quantum key distribution in an indefinite causal
order

In BB84, Alice would prepare the qubits to be sent to
Bob in a certain state. When considering an indefinite
causal ordered scheme, Alice is simultaneously sending
and receiving the qubit from Bob, so having one party
prepare the state makes no sense. To avoid this, both Al-
ice and Bobmeasure the qubit being used, which, because
of how states are updated following projective measure-
ments, allows them to both be the preparer and measurer
of the shared qubit. This method has similarities to how
the key is generated in protocols like E91 [9]. Taking
this approach, the key would be made up of the results
of a projective measurement on some qubit ρ, but only
when Alice and Bob agree they had performed the same
projective measurement.
Thinking of the key generation in this way, we can con-

sider a scheme in which a key is distributed in an indefi-
nite causal order. Here, we send a state ρ to two parties,
Alice and Bob, in a superposition of two orders: Alice
before Bob and Bob before Alice. As shown in FIG. 1,
this superposition is controlled by the qubit state ω: if
ω = |0⟩⟨0|, ρ travels around the loop in one direction, if
ω = |1⟩⟨1|, ρ travels around the loop in the opposite di-
rection, and if ω = |φ⟩⟨φ| is in some superposition of |0⟩
and |1⟩, ρ travels around the loop in a superposition of
both directions. Alice and Bob then both make a random
choice to measure either in the Pauli z-basis {|0⟩, |1⟩} or

x-basis {|+⟩, |−⟩}. We can therefore think of Alice and
Bob as acting on the state by putting it through a quan-
tum channel A, defined by the Kraus operators

A0/1 =
1√
2
|0/1⟩⟨0/1|,

A+/− =
1√
2
|+ /−⟩⟨+/− |,

(1)

where the factors of 1/
√
2 arise because we are assuming

Alice and Bob are both equally likely to measure in the
x or z-basis. For convenience, define the set containing
the Kraus operator indices by I := {0, 1,+,−}.

Following their measurements, Alice and Bob then
publicly discuss the basis they chose for each measure-
ment and only keep the measurement outcomes in which
they measured ρ in the same basis. Assuming no er-
rors occur between Alice and Bob’s measurements, their
keys, made up of the measurement outcomes they kept,
should be identical. In what follows, similarly to what
we discussed earlier, a measurement outcome of 0 and
+ will correspond to a 0 in the key. Likewise, 1 and −
correspond to a 1 in the key.

Let’s see in more detail out what happens to the state
ρ when it is put through the setup in FIG. 1. Following
[7], the channel that ρ goes through, corresponding to a
superposition of being measured by Alice first then Bob,
and vice versa, is given by

Sω(A,A)(ρ) =
∑
i,j∈I

Sijρ⊗ ωS†
ij , (2)

where

Sij = AiAj ⊗ |0⟩⟨0|+AjAi ⊗ |1⟩⟨1|. (3)

After some algebra and index relabelling, it can be shown
that, following the public discussion of basis used,

Sω(A,A)(ρ) → 1

2

∑
S∈B

∑
i,j∈S

(
{Ai, Aj}ρ{Ai, Aj}† ⊗ ω

+ [Ai, Aj ]ρ[Ai, Aj ]
† ⊗ σzωσz

)
(4)

where the prefactor is found by requiring normalisation,
σz is the z Pauli operator and B = {{0, 1}, {+,−}}. Not-
ing the form of Ak given in Eq. (1), the terms in these
sums have the following properties

{Ai, Aj} =
√
2Aiδij ,

[Ai, Aj ] = 0,
(5)

for all i, j, where δij is the Kronecker delta. This confirms
that Alice and Bob must agree in their measurement out-
comes. Overall, we have that

Sω(A,A)(ρ) →
∑
i∈I

AiρA
†
i ⊗ ω. (6)

So, when there are no eavesdroppers present, the control
qubit ω stays in its original state and this situation is
ultimately no different from that when the causal order
is definite. Let us introduce an eavesdropper to see what
changes.
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Figure 2: In this protocol, there are two places eaves-
droppers can reside, indicated by Eve and Yves. Indeed,
these eavesdroppers can work together, depicted here as
some hypothetical “superlab”.

Introducing eavesdroppers

Notice that, unlike in BB84, there are two places an
eavesdropper can reside (see FIG. 2). Having said this,
to obtain some intuition as to how eavesdroppers change
things, let us first consider introducing just a single eaves-
dropper, Eve, between Alice and Bob. Denote the chan-
nel corresponding to Eve’s measurement by E , defined by
the Kraus operators {Ei}. As before, allowing a qubit
ρ to be acted on by Alice, Eve and Bob in an indefi-
nite causal order controlled by ω, the channel ρ passes
through is given by

Sω(A, E ,A)(ρ) =
∑
i,j,k

Sijkρ⊗ ωS†
ijk, (7)

where

Sijk := AiEjAk ⊗ |0⟩⟨0|+AkEjAi ⊗ |1⟩⟨1|. (8)

Note that Ej is always in the middle since Eve is in be-
tween Alice and Bob. Again, after some algebra and
index relabelling, and after basis comparison,

Sω(A, E ,A)(ρ) → 1

2

∑
S∈B
j

i,k∈S

[
(A{iEjAk})ρ(A{iEjAk})

†⊗ω

+ (A[iEjAk])ρ(A[iEjAk])
† ⊗ σzωσz

]
. (9)

Here,
A{iEjAk} := AiEjAk +AkEjAi, (10)

and analogously for the commutator brackets.
From this, we can see that, like before, the ω terms

survive. But more interestingly, notice that the σzωσz

terms can survive too. For example, suppose Alice and
Bob measure in the z-basis and Eve measures in the x-
basis, then it is possible for Alice to obtain an outcome

of 0, and Bob an outcome of 1. This combination allows
for [A0, E±, A1] ̸= 0.
We may therefore hypothesise that if Eve attempts to

extract information about the state when in between Al-
ice and Bob, she induces a nonzero σzωσz term. So,
if we were to let ω = |+⟩⟨+| (and therefore σzωσz =
|−⟩⟨−|), if someone were to perform the measurement
{|+⟩⟨+|, |−⟩⟨−|} on the control qubit ω, and obtain an
outcome of −, they could conclude that there was an
eavesdropper in between Alice and Bob.

Main result

It may be shown that both correlated and uncorrelated
attacks by the two possible eavesdroppers, Eve and Yves,
can be detected. By taking the probability of detection
Pdetect to be the probability of the control qubit, initially
in the state ω = |+⟩⟨+|, being measured to be in the
state |−⟩⟨−|, we can state the main result of this work.

Theorem 1. For both correlated and uncorrelated at-
tacks of Eve and Yves, Pdetect = 0 if and only if Eve and
Yves gain no information about the key shared between
Alice and Bob.

Conclusion and discussion

In the work, presented fully in [15], we have shown
that, with the use of indefinite causal order, it is possi-
ble to detect eavesdroppers during a QKD task without
publicly comparing any subset of a shared private key be-
tween the two parties involved, Alice and Bob. As far as
we are aware, this differs from all other QKD protocols
which require a public comparison to detect eavesdrop-
pers. In contrast to some of these other protocols, how-
ever, there are two locations eavesdroppers can reside,
allowing for correlated and uncorrelated attacks. These
have both been considered and it was shown that the
eavesdroppers can be detected if they extract any useful
information about the shared key.

It is natural to ask whether this protocol is physically
realisable, let alone practical. The difficulties lie in that ρ
must go through (projective) measurement apparatuses
and carry on around the loop while simultaneously doing
the same in the opposite direction along the same loop.
When it comes to practicality, consider using a Sagnac
interferometer or something similar to create an indefi-
nite causal ordering of operations [16]. In order for the
ICO to be legitimate, the coherence length of the light
used must be considerably larger than the path length
of the interferometer [3], perhaps indicating a limit to
how practical such a protocol would be. Another thing
to notice is that, in practical QKD, in order for privacy
amplification to be performed, error rates are required,
which don’t seem to be accessible without public com-
parison.

Having mentioned these limitations, the purpose of this
work is not necessarily to propose a new practical proto-
col, rather, it is to explore an interesting new connection
between indefinite causal structures and QKD. Indeed, it
is a connection that yields a unique feature not observed
in other QKD protocols.
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Abstract. During the noisy intermediate-scale quantum (NISQ) era, quantum computational approaches
refined to overcome the challenge of limited quantum resources are highly valuable. A comprehensive
benchmark for a quantum computational approach in this spirit could provide insights toward further
improvements. In this work, we present such an investigation by benchmarking harmonic vibrational fre-
quencies for 43 diatomic molecules via the variational quantum eigensolver algorithm. Using the accurate
Hamiltonian constructed from Kohn-Sham orbitals expanded in the Daubechies wavelet basis set, we show
that the results from the exact diagonalization of the corresponding qubit Hamiltonian in great agreement
with the experimental data, and the chemistry-inspired UCCSD ansatz could achieve the same accuracy
except for systems whose Mayer bond order indices are larger than 2. For those systems, we then demon-
strate that the heuristic hardware-efficient RealAmplitudes ansatz can provide significant improvement over
the UCCSD ansatz, verifying that the harmonic vibrational frequencies could be calculated accurately by
quantum computation in the NISQ era.

Keywords: quantum computing, quantum chemistry, VQE, Daubechies wavelet, vibrational frequency

1 Introduction

Quantum computation of quantum chemistry has been
considered as a promising application of quantum com-
puting [1, 2]. With the quantum nature of wavefunc-
tions, quantum computing makes use of superposition,
entanglement and interference to prepare and manipu-
late quantum states, offering the potential for exponen-
tial speedup over classical computing. The method of
the unitary coupled cluster with single and double ex-
citations (UCCSD) can be efficiently implemented on a
quantum computer [3, 4], making UCCSD a powerful tool
for quantum computing on chemical systems.
In the noisy intermediate-scale quantum (NISQ) era

[5], quantum computers with a limited number of qubits
are noisy without error correction. As a result, the num-
ber of consecutive quantum gates that can be reliably
run on the NISQ machines is also restricted. Therefore,
reducing the requirement on the number of qubits and
thus the depth of the quantum circuit is one of the major
strategies in the NISQ era. To address this challenge, a
hybrid quantum-classical algorithm called the variational
quantum eigensolver (VQE) [3] has been proposed and
widely used. However, the circuit depths of VQE UCCSD
are still too deep for current NISQ devices. Therefore,
a heuristic hardware-efficient ansatz is proposed to take
advantage of its shorter circuit depth than that of the
chemistry-inspired UCCSD ansatz on NISQ devices [6].
Besides the variational ansatz encoded in the trial

∗goan@phys.ntu.edu.tw

wavefunction, high-quality representation of the molec-
ular Hamiltonian is essential for accurate predictions of
chemical properties, which was often overlooked in the
quantum computing community. Recently, Hong et al.
[7] demonstrated that a minimal basis (MB) set con-
structed from Daubechies wavelet (DW) molecule or-
bitals (MOs) basis calculated from BigDFT [8] can yield
accurate results in harmonic vibrational frequencies for
H2, LiH, and BeH2 on quantum simulator with noisy
model implemented from the real devices. That is, VQE
quantum computations with accuracy comparable with
that of the full configuration interaction calculation us-
ing the cc-pVDZ basis set, whereas the computational
cost the same as that of a STO-3G calculation, has been
achieved for this small set of molecules. It is necessary
at this moment to carry out a benchmark study in or-
der to evaluate the true performances of quantum algo-
rithms and to point out the possible directions of im-
provements. Such benchmark should be comprehensive
and able to compare with the experimental data so that
the results may be extended to more general situations.
Here, we propose to represent the Hamiltonian using DW
MOs with different exchange-correlation (XC) function-
als, where an active space based on the MP2 energy cri-
terion is selected to further reduce the required number
of qubits. We perform the VQE benchmark on harmonic
vibrational frequencies for 43 diatomic molecules with re-
sults in great agreement with the experimental data. We
find that the approach of using the MB set of DW MOs
[7] does not provide adequate results of vibrational fre-
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quencies by always giving smooth potential energy curves
for all the 43 molecules, and also has significantly larger
root-mean-square deviation (RMSD) values, even though
the number of active MOs used is considerably higher
than our approach. We attribute the great performance
of our approach to three factors: (i) a better description
of the Hamiltonian by introducing the DW MOs, (ii) in-
corporating the electron correlation effect into the MOs
via the XC functional of PBE0, (iii) a suitable selection
of active space by MP2.

2 Results

2.1 Accuracy of the represented Hamiltonian

The performance of the proposed approach is bench-
marked against the classical CASCI and CCSD(T) meth-
ods in the cc-pVDZ basis set on 43 diatomic harmonic
vibrational frequencies, where RMSDs are presented in
Figure 1. The dataset considered consists of diatomic
molecules that are neutral, closed-shell and formed by
row 1 to row 4 atoms, excluding the transition metal ele-
ments, K atom, some molecules containing Na atom (no
smooth curve calculated from BigDFT), and those whose
experimental data are unavailable. Besides, C2 and F2

owing to severe static correlation are also excluded. Our
notation reads “Method[active space selection method]-
XC/Basis Set”, and EDQC denotes the exact diagonal-
ization method of quantum computing (after the qubit
Hamiltonian is constructed) whose results are regarded
as the best results achievable by quantum computation.
As clearly seen from Figure 1, our proposed approach
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Figure 1: RMSDs of the harmonic vibrational frequencies
(in cm−1) obtained by comparing the results to their cor-
responding experimental values for a variety of methods,
where [MB] stands for imitating the size of minimal ba-
sis set, NO and NOON for nature orbital and occupation
number, and MP2NO sources from MP2 wavefunction.

of EDQC[MP2]-PBE0/Wavelet has the best performance
among all the methods.

2.2 VQE(UCCSD) Benchmark

After equipped with the [MP2]-PBE0/Wavelt Hamil-
tonian, we present the UCCSD calculations using VQE,
denoted as VQE(UCCSD), in Figure 2 (see the blue
points). The results show that VQE(UCCSD) can be as
accurate as the exact diagonalization except for the BeO
family, the CO family, and some of the N2 family. Previ-
ous study [9] showed that for systems with strongly corre-
lated electrons, UCCSD would not give results achieving
chemical accuracy even in the region near the equilibrium
point. In strongly correlated systems, the states result-
ing from the action of the UCCSD cluster operators that
include only single and double excitations might not en-
compass all those important configurations. We choose
the Mayer bond order [10], a good electron correlation
descriptor applicable to strongly correlated systems, cal-
culated by DFT-PBE0/cc-pVDZ to present the relation
with the harmonic vibrational frequencies calculated by
VQE(UCCSD) in Figure 2. The results show that sys-
tems for which UCCSD does not yield accurate results
have the Mayer bond order indices > 2.
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Figure 2: Mayer bond order indices calculated by
DFT-PBE0/cc-pVDZ versus the error (difference) in the
harmonic vibrational frequencies (in cm−1) calculated
by VQE(UCCSD)[MP2]-PBE0/Wavelet with respect to
those by EDQC[MP2]-PBE0/Wavelet for diatomics in
the benchmark dataset. The orange dots denote the vi-
brational frequency results for the specified molecules cal-
culated by VQE(RealAmplitudes)[MP2]-PBE0/Wavelet.
The relation between blue and orange dots is from Table
1, and the green arrows point toward the directions of
improvement from UCCSD to RealAmplitudes.

2.3 VQE(UCCSD) VS VQE(RealAmplitudes)

For those systems whose Mayer bond order indices are
larger than 2, we then consider a heuristic hardware-
efficient ansatz, the RealAmplitudes ansatz implemented
in Qiskit [11], since it can go beyond the restriction
of the accessible Hilbert space of the chemistry-inspired
UCCSD ansatz. In Table 1, the results of the harmonic
vibrational frequencies between UCCSD and RealAm-
plitudes with linear entanglement using SLSQP and L-
BFGS-B optimizers of SciPy [12] are compared. Despite
having shallower circuit depths, RealAmplitudes could
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Table 1: Comparisons of the harmonic vibrational frequencies and the relevant circuit information between the
VQE(UCCSD) and VQE(RealAmplitudes) calculations using the Hamiltonian in the [MP2]-PBE0/Wavelet approach
for the systems whose Mayer bond order indices are larger than 2 with the required number of qubits up to 10. Here
the indices [n;m] denote n electrons and m MOs (2m spin orbitals) in the active space for the molecule, and with
parity encoding the number of qubits used is 2m − 2. The value inside the parenthesis in the harmonic vibrational
frequency denotes the difference between VQE and EDQC.

VQE(UCCSD) State VQE(RealAmplitudes) Depa State

Mol. [MP2]-PBE0/Wavelet Depa Nθb Fidelityc [MP2]-PBE0/Wavelet (Repd) Nθb Fidelityc

BeO [6,6]1,508.87 ( 72.15) 8,460 92 0.98634 [6,6]1,435.63 ( -1.09) 99(30) 310 0.9990823
BeS [6,6] 983.82 ( 34.27) 8,460 92 0.99086 [6,6] 955.98 ( 5.39) 99(30) 310 0.9981542

CO [8,6]2,336.76 ( 87.90) 8,460 92 0.99729 [8,6]2,249.18 ( 3.49) 84(25) 260 0.9999526
SiSe [6,6] 613.98 ( 31.75) 8,460 92 0.99515 [6,6] 584.19 ( 1.96) 99(30) 310 0.9996153
GeO [6,6]1,066.79 ( 67.18) 8,460 92 0.99068 [6,6]1,012.25 ( 2.59) 84(25) 260 0.9988251

N2 [4,4]2,402.52 ( 3.10) 1,480 26 0.99991 [4,4]2,400.07 ( 0.65) 35(10) 66 0.9999982
PN [4,4]1,372.77 ( -3.21) 1,480 26 0.99775 [4,4]1,376.12 ( 0.14) 35(10) 66 0.9999997
P2 [4,4] 798.40 ( 19.87) 1,480 26 0.99988 [4,4] 777.54 ( -0.99) 35(10) 66 0.9999974
AsN [4,4]1,055.19 ( -33.35) 1,480 26 0.99785 [4,4]1,088.34 ( -0.20) 35(10) 66 0.9999982
As2 [4,4] 414.10 ( -0.18) 1,480 26 0.99971 [4,4] 414.31 ( 0.03) 35(10) 66 0.9999996

a Dep denotes the circuit depths.
b Nθ denotes the number of tunable circuit parameters.
c State fidelity denotes the average state fidelity over points employed to calculate the vibrational frequency.
d Rep denotes the number of repetitions of the unit pattern circuit.

still achieve higher state fidelities than UCCSD, and for
the cases with a smaller number of qubits outstanding
performance can be achieved more easily. This is a clear
indication that a heuristic hardware-efficient quantum
circuit can span a state space larger than that spanned by
UCCSD. To the best of our knowledge, our investigation
is the first systematical benchmark study to demonstrate
that a heuristic hardware-efficient ansatz could outper-
form a chemistry-inspired UCCSD ansatz in predicting
accurate molecular properties by quantum computation.

3 Conclusion

We propose a quantum computational approach that
combines DW MOs with the XC functional and an op-
timal active space determined by MP2 energy criterion,
resulting in a significantly reduced qubit number require-
ment while maintaining excellent accuracy. Our calcula-
tions show that a quantum computer capable of carrying
out calculations on 10 qubits with circuit depth < 100
can accurately predict the vibrational frequencies of neu-
tral closed-shell diatomic molecules, and these quantum
resource requirements should be able to be achieved on
near-term NISQ devices (e.g., IBM 100×100 Challenge
in 2024). Our benchmark investigation here provides a
critical assessment on the power of quantum computation
of molecular properties and insights on further improve-
ments.
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The Variational Quantum Eigensolver (VQE) algorithms are one of the most popular solution approaches for quantum optimization problems in the era of Noisy-Intermediate State Quantum (NISQ) devices, but 
there are certain limitations with the toolset and software libraries used for creating initial circuit states that rarely consider constraints specific to the problem itself. Our objective is to create circuit libraries for an 
open-source quantum software development tool called Qiskit that will take into consideration the different types of constraints for different problem cases when creating an initial circuit guess for our VQE algorithm, 
and improve upon existing performance benchmarks. This project will eventually allow users to improve performance for their own optimization problems ranging from simulating complex molecules to solving graph 
and network problems using VQE. For this research undertaking, we will solve a simple model of the protein folding problem, which is a highly complex computational task and has major applications in biochemical 
fields such as material discovery and designing targeted molecules. By utilizing these tools, we will be able to accurately calculate important information about a desired protein system such as accurate energy 
values and reduced computation time.

For this project we use Qiskit, which is an open-source quantum development platform designed by 
IBM Quantum primarily utilizing the Python language and libraries to run code and algorithms on real 
quantum hardware and simulators. We will be collaborating with IBM Quantum services and the Qiskit 
toolkit to make additions to the Qiskit Applications modules. [2]

Limitations:
(1) Very few types of entangler circuits are known or available. Even the state-of-the-art library for 
quantum computers has only four types of entangler circuits such as Ry, RyRz, SwapRz and UCCSD. 
They are all general entangler circuits with static structures and are used generically for most 

problems. 
(2) Existing entangler circuits do not take into account the feasibility of output answers, and they often 
output infeasible answers. Results must be feasible answers of corresponding optimization problems 
when using the VQE algorithm for optimization problems.

We initiate by writing an entangler library for problem-specific VQE circuits as described in [5] to 
improve upon the limitations of current systems defined earlier. The overall vision is to create 
multiple libraries for different kinds of constraints and for different problems, and combine them into 
a single circuit library.

Variational Quantum Eigensolver (VQE):
Variational principle/method states that the expectation value (probability) of any wave function (our 
initial guess of the solution) will always greater or equal to the minimum eigenvalue (solutions of 
system) associated with its Hamiltonian, which is a matrix that describes the possible energies of a 
physical system. To give a brief example of how we use this, we can select a random circuit which 
represents a state for our selected system, described as an eigenstate “psi”, and we write down a 
Hamiltonian matrix which describes our selected system, and calculating the probability values of such 
a system will get us closer and closer to the actual value of the system. 
The Variational Quantum Eigensolver 
algorithm is a quantum computing 
algorithm based on this principle that 
helps to estimate the ground state energy 
of a given quantum mechanical system. 
This is well suited for solving certain 
classes of optimization problems.
The basic idea is simply a feedback loop 
that starts with an initial guess for the 
eigenstate, measures the differences in 
the resulting expectation values, and 
adjusts the initial guess until it reaches a 
saturation point or minima.

Fig.1 Variational Principle
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We then start preparing our PQC class for this protein folding problem by incorporating multi-qubit 
entanglement schemes to represent our constraints. One such method is to use the W-state circuits 
which is a superposition of states where exactly one qubit is in state |1> while all others are in state 
|0>, i.e. hamming weight is 1. Finally we create multiple qubit registers to accommodate for 
different Hamiltonian constraints and deploying multi-qubit entanglement for each set of identified 
constraints.
Once the ProblemSpecificVQE class is prepared, we pass a QuadraticProgram instance to this 
class. It will make an ansatz for our VQE algorithm based on constraints defined above, using 
circuits in the circuit library and checking for each constraint. If it matches to the specific pattern, it 
can then call for corresponding circuits in the circuit library.

Expected Results 

[1] Fig.2 VQE Architecture

A Protein-Folding Entangler for the 
Variational Quantum Eigensolver

Once we complete all steps involving designing code, merging libraries with source, and running 
simulations over different hardware to benchmark our results against existing solutions, we expect to 
achieve two milestones. One is to have initiated a circuit library that creates dynamic entanglers to 
reflect the constraints of a simple protein folding model, which in the future can allow additions to the 
overall library itself to provide other users the flexibility to create improved solutions for their own 
optimization problems using similar approaches. The other one would be in the simulation results 
themselves where we expect lower conformational energy values of the system, indicating improved 
accuracy of the algorithm, and lower optimization time, indicating overall computational speed-up.

Entanglers / 
Variational Forms 
/ Parametrized 
Quantum Circuits 
(PQCs):

We optimize our initial state or "ansatz" by using a 
parametrized circuit with a fixed form, interchangeably called 
entanglers or variational forms, which is applied to our initial 
state and generate an output state which on further iteration 
will give an expectation value close to the minimum 
eigenvalue.

[4] Fig.3 Energy landscape for protein 
folding

[6] Fig.5 Scheme representation of 2D 
hydrophobic models

Fig.6 Initial circuit schematic for 
ProblemSpecificVQE_class using parameterized W states

For our project we want to solve the protein 
folding problem for a very simple protein chain. 
We start by encoding the different constraints 
for our sample Hamiltonian. Two of the 
constraints that we identify are configuration or 
geometrical constraints, which describe the 
relative positions of each molecule in the chain 
and governs its growth, and interaction 
constraints, which represents energy values 
that emerge due to electronic interactions 
between neighbouring molecules in a chain. 
We will also want to encode penalty terms for 
representing physical constraints such as local 
overlap between molecules in a chain, avoiding 
redundant rotations over an axis, and chirality 
terms. See Fig. 5 for an example of how these 
constraints might look like in 2D space.

Fig.4 Circuit library schematic for protein folding class

Protein-Folding:
Proteins “fold” in nature to their native 3D 
conformation which enables them to become 
biologically functional. The structure and functions of 
many proteins are still not well understood, which 
means that processes that make use of the 
knowledge of proteins such as material discovery 
and designing targeted molecules for applications 
such as vaccinations, is also heavily 
underdeveloped.
This is a challenge because unfolded proteins have 
a very high degree of freedom and thus an 
enormous number of potential configurations in 3D 
space which grows exponentially upto the order of 
1047, which makes them a computationally intensive 
task for classical devices alone.
Using quantum computers however, we can solve 
this problem linearly as N4 in the number of our 
Hamiltonian terms, where the number of protein 
molecules is N, thus providing with an exponential 
speed-up. [3] The number of qubits required to map 
these conformations scales quadratically.
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Abstract. Nonlocality makes quantum theory nontrivially sacred and useful in the information process-
ing paradigm. Aside fromBell nonlocality, there is a different kind of quantumnonlocalitywhich is associ-
ated with indistinguishability of orthogonal multipartite quantum states by local operations and classical
communication (LOCC). Based on such nonlocality, we propose a distributed task, namely, local subset
identification that calls for identification of subsets of a known set of orthogonal multipartite states by spa-
tially separated agents using LOCC. Failure to accomplish this task results in a previously unexplored form
of quantum nonlocality, called local subset unidentifiability. This is a stronger quantum nonlocality than its
predecessors, such as local indistinguishability and local unmarkability. Further, we present a multipar-
tite version of this nonlocality, namely, genuine unidenifiability - where a set of states remain unidentifiable
unless all the agents come together and perform global measurement. We also demonstrate an intriguing
application of this nonlocality in a certain secret password distribution protocol, where this form of nonlocal-
ity serves as a more useful resource than its predecessors.

Keywords: Quantum communication, Quantum protocols, Nonlocality, Quantum information process-
ing

1 Introduction
Recently, stronger forms of quantum nonlocality, such

as local state irreducibility and local unmarkability, have
been developed in addition to local indistinguishabil-
ity [1, 3, 2]. These nonlocalities arise from the impos-
sibility of locally realizing certain distributed tasks. Two
paradigms exist for these tasks: (i) local state discrim-
ination and (ii) local state elimination. The former in-
cludes examples like local indistinguishability and un-
markability [7], while the latter is represented by local
state irreducibility [2]. This work focuses on the first
paradigm and introduces an even stronger form of quan-
tumnonlocality found in sets ofmutually orthogonal en-
tangled states. To demonstrate this, a distributed task
called Local Subset Identification (LSI) is introduced. In
LSI, multiple spatially separated agents share more than
one state chosen from a known set of mutually orthogo-
nal states. The objective is to identify these shared states
perfectly using LOCC (Local Operations and Classical
Communication). This work shows that the incapabil-
ity of accomplishing this task exhibits a stronger nonlo-
cality compared to existing literature. For instance, con-
sidering a set of bipartite orthogonal states, if any two
states from the set are shared between spatially sepa-
rated agents, LSI requires the agents to locally recog-
nize the identity of the given states perfectly, i.e., iden-
tify which two states they were given using LOCC. The
inability to accomplish this task perfectly demonstrates
a form of quantum nonlocality known as Local Subset
Unidentifiability. This proposed nonlocality arises from
the inability to perfectly distinguish certain sets of sub-

spaces of rank more than one using LOCC. Since ad-
dressing the (in)distinguishability of sets of subspaces
is inherently more complex than that of sets of vectors,
this proposed nonlocality stands out compared to previ-
ous nonlocalities. Furthermore, this work also presents
an information processing application of the proposed
nonlocality.

Any nonlocal feature of quantum systems gets more
intricate when multipartite scenario comes into the pic-
ture. In case of LSI, we also explore scenarios involving
more than two spatially separated agents. Interestingly,
we come upwith a further stronger version of the nonlo-
cality we are introducing here. In particular, we present
sets ofmultipartite states that shows local subset uniden-
tifiability (or locally unidentifiable)when all the agents are
spatially separated. We show that these sets retain local
unidentifiablity in all possible bi-partitions. Therefore,
to perfectly accomplish the LSI task, all the agents need
to come together or must resort to additional quantum
resources. We term it asGenuine Unidentifiablity. We also
illustrate that any set that is genuinely locally unidentifi-
ble must also show genuine unmarkability which is hith-
erto a uncharted notion.

Definition 1 ((n,S ′)-Local Subset Identification)
Consider a set S = {|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩} ⊂

⊗N
k=1 Cdk

of n N -party orthogonal quantum states. A subset S ′ ⊂ S
containing 1 ≤ S ′ < n quantum states is randomly chosen
and distributed among spatially separated agents keeping its
identity hidden. The task of (n,S ′)-local identification is to
perfectly determine the elements of the set S ′.

Observation 1 For a given set S the task of (n, 1)-LSI cor-
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responds to the well-known task of Local State Discrimination
(LSD) [?].

Observation 2 If a set S is (n,m)-markable, then it readily
follows that it is also (n,m)-identifiable.

2 Theorems
Theorem 2 If a set S is (n,m)-identifiable, then it is not nec-
essarily (n,m)-markable.

Theorem 3 The set of four two-qubit maximally entangled
states is (4,2)-unidentifiable.

Theorem 4 Consider a complete basis set S of maximally en-
tangled states (MES) in Cd ⊗ Cd. There are

(
d2

k

)
possible

subsets, each containing k distinct states from S. The set S
is (d2, k)-unidentifiable, if

(
d2

k

)
> dk. Moreover, the set of

D maximally entangled states (D < d2) will also be (D, k)-
unidentifiable, provided

(
D
k

)
> dk.

Genuine tripartite unidentifiability: Consider a set
of eight 3-qubit GHZ states, S := { 1√

2
(|000⟩ ±

|111⟩), 1√
2
(|001⟩ ± |110⟩), 1√

2
(|010⟩ ± |101⟩), 1√

2
(|100⟩ ±

|011⟩)}.

Theorem 5 The set S is locally (D, k)-unidentifiable if(
D
k

)
> 22k (where D ∈ (2, 8] and k ∈ (1, D)) even when

two out of three parties come together in a same lab (collabo-
rate).

Genuine four party unidentifiability: Consider the
set S := {|Ωα⟩}16α=1, where

|Ω1,2⟩ = 1
2
(|0000⟩ ± |0111⟩+ |1010⟩ ± |1101⟩),

|Ω3,4⟩ = 1
2
(|0000⟩ ± |0111⟩ − |1010⟩ ∓ |1101⟩),

|Ω5,6⟩ = 1
2
(|0001⟩ ± |0110⟩+ |1011⟩ ± |1100⟩),

|Ω7,8⟩ = 1
2
(|0001⟩ ± |0110⟩ − |1011⟩ ∓ |1100⟩),

|Ω9,10⟩ = 1
2
(|0010⟩ ± |0101⟩+ |1000⟩ ± |1111⟩),

|Ω11,12⟩ = 1
2
(|0010⟩ ± |0101⟩ − |1000⟩ ∓ |1111⟩),

|Ω13,14⟩ = 1
2
(|0011⟩ ± |0100⟩+ |1001⟩ ± |1110⟩),

|Ω15,16⟩ = 1
2
(|0011⟩ ± |0100⟩ − |1001⟩ ∓ |1110⟩).

Theorem 6 The set S is locally (D, k)-unidentifiable if(
D
k

)
> 23k (whereD ∈ (2, 16] and k ∈ (1, D)) in all 1 : 3 as

well 2 : 2 bi-partitions.

Remark 1 Theorem 5 and Theorem 6 implies necessary and
sufficient condition genuine tripartite and four party local
unidentifiability for the given set S.

3 Application in secret password distribu-
tion

Suppose a sender wants to distribute some hidden in-
formation (a locked password, for example) among several
spatially separated receivers, who can send classical in-
formation among themselves. The sender desires that
the receivers cannot know the identity of the password

Alice Bob

a
b
c

z

E
n
co

d
er

random password: 

"bengal"

password

generator

b:
e:

l:

Figure 1: A random password-string ofm letters is gen-
erated from a known alphabet of n > m letters, to be dis-
tributed among spatially separated parties. The sender
wishes to keep the identity of the password hidden un-
less all the parties physically come together in a common
location. If the letters of the alphabet are encoded into
a set of multipartite orthogonal states such that the set
is locally (n,m)-unidentifiable, then the spatially sepa-
rated parties cannot locally reveal the hidden password
(not even the letters) with certainty. This provides a
tighter security condition than encoding the letters into a
locally unmarkable set, where the receivers may locally
predict the identity of each letter in the password with
certainty.

as long as they are spatially separated. Precisely, con-
sider that the sender wish to share a password – a string
X := x1x2 · · ·xm of m letters, xi being the ith letter
in the string – among the receivers. Each letter in the
string is to be chosen without repetition from an alpha-
bet A = {ak}nk=1 of n > m letters which is known to
the receivers as well. Now, the sender and the receivers
agree upon an encoding scheme: the letters of the alpha-
bet A are encoded in a set S := {|ψk⟩}nk=1 of pairwise
orthogonal pure multipartite quantum states. Accord-
ingly, the sender encodes their password X into a string
of quantum states: X 7→ |ξ1⟩ ⊗ |ξ2⟩ ⊗ · · · ⊗ |ξm⟩, where
the state |ξi⟩ can be any state from S with the only re-
striction that |ξi⟩ ≠ |ξj⟩ ,∀i, j. Subsequently, the sender
shares this composite state among the receivers (see Fig.
1). If S is locally (n,m)-unmarkable, then the spatially
separated parties will not be able to perfectly discrim-
inate the received string from the nPm = n!

(n−m)! pos-
sible strings of quantum states by LOCC. However, it
may so happen that the receivers can perfectly predict
the identity of them individual states {|ξi⟩} if the encod-
ing is done in a locally (n,m)−unmarkable, but locally
(n,m)−identifiable set of quantum states. Then, they
will be able to guess the correct permutation of the letters
with success probability 1

m! . Another alternative which
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they may opt for is to imperfectly discriminate (i.e., with
a nonzero probability Pimp < 1, bounded by an upper
limit discussed in [?]) the received string. The encod-
ing set S determines which of the success probabilities
is higher.
Nevertheless, if the sender encodes the password in

a locally (n,m)-unidentifiable set of states, then the re-
ceivers will not be able to even identify the individ-
ual letters perfectly by LOCC, and hence they will not
follow the former strategy. Furthermore, if, for such
sets, Pimp < 1

m! , then the security of the password
is enhanced significantly. We have found examples of
(n,m)−unidentifiable sets, Sd ⊂ Cd ⊗ Cd containing
maximally entangled states for which Pimp < 1

m! (fol-
lows from Theorem 4) as long as |Sd| ≥ d+ 1 .

4 Discussion
We come up with a new distributed task – LSI. We

show that impossibility of accomplishing this task gives
birth to a unique version of quantum nonlocality – lo-
cal subset unidentifiability. We show that this is by-
far the strongest quantum nonlocality in the state dis-
crimination paradigm, that arises from the impossibil-
ity of discriminating certain mutually orthogonal sub-
spaces of rank more than one. In the multipartite frame-
work, we introduce the notion of genuine unidentifiabil-
ity which says that a set of quantum states may remain
locally unidentifiable even in all possible bi-partitions.
Along this line, we also introduce the notion of gen-
uine unmarkability in multipartite scenarios. Interest-
ingly, we also propose a cryptographic application of this
proposed nonlocality. In secret password distribution
scheme, we demonstrate that local unidentifiability pro-
vides a strictly better encoding for protecting password
secrecy than its predecessors. While we explore local
unidentifiability only in entangled states, we believe it
is not necessarily an exclusive characteristic of entangle-
ment. Exploring the same feature in orthogonal product
states would be quite intriguing.
This paper is available in arXiv:2209.10954v2 [quant-

ph].
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Abstract. For deployable quantum communication in urban environments, the quantum channel in the
form of telecommunication optical fiber (confirming to ITU G.652D standards) are available, but practical
semiconductor-based detectors in this range typically have low efficiency. We demonstrate polarization
entanglement distribution using non-degenerate entangled photon pairs of wavelength in the near infrared
through standard telecommunication fiber. This technique benefits from the high efficiency of the NIR
single photon detectors and the mature design of setups around these wavelengths. Here we obtain high
quality entanglement after an overall distance of 12 km, corresponding to about -36 dB of fiber induced
loss.

Keywords: Entanglement, near infrared, quantum communication, quantum network

1 Introduction

Quantum entanglement has emerged as the pivotal
concept in a variety of applications, such as quantum
teleportation[1], quantum key distribution (QKD)[2],
quantum metrology[3], distributed quantum sensing and
quantum computation. It is also going to play an im-
portant role in the emerging field of quantum networks
which would involve entanglement distribution across the
network and the teleportation of quantum states between
nodes[4, 5]. In all these applications of entanglement, the
quality of entanglement being distributed over a network
will have a significant impact.
The choice of wavelength is a significant consideration

when integrating high efficiency entangled photon sources
with existing optical fiber communication infrastructure
that is designed to benefit from the low-loss transmission
window around 1550 nm. However, existing semicon-
ductor detectors like InGaAs single photon detectors de-
signed for these wavelengths suffer from lower efficiency,
a higher dark count rate and longer effective dead time.
It might be possible to perform entanglement distribu-

tion with photons generated in the near infrared region
when the use-case is for relatively short distances, e.g.
within a campus or data-centre. This is due to the fact
that although the shorter wavelengths experience higher
levels of attenuation in these fibers (-3 dB/km compared
to -0.22 dB/km), the greater efficiency of silicon-based
single photon detectors can be used to offset the effect
of fiber attenuation for short distances. In fact, it has
been shown[6, 7] that this translates to a lower system
loss suffered by 800 nm photons compared to 1550 nm
photons over a transmission distance of about 2.4 km.
The use of NIR wavelengths in fibers optimised for

telecom wavelength introduces additional complication.
These fibers are no longer single-mode for the shorter
wavelengths. This leads to excitation of higher order
modes giving rise to mode dispersion effects. This can
affect the quality of the quantum signal resulting in re-
duced entanglement visibility.

∗cqtab@nus.edu.sg

The following results demonstrate that polarization
entanglement could be robustly distributed through
telecommunication fiber using near-infrared non-
degenerate entangled photons. We show that, only
with temporal filtering applied in the form of narrow
coincidence window of 1 ns, high quality entanglement
after a transmission distance of 12 km, corresponding to
fiber losses of -36 dB, could be obtained.

2 Methods
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Figure 1: The cross-correlation measurement with both
signal and idler photons transmitted through equal dis-
tance of fiber. (a) Degenerate situation. The distance
between the fundamental mode and higher order mode
is proportional to the fiber length. (b) Non-degenerate
situation. The side peaks are absent and the main peak
has a reduced full-width at half-maximum.
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A type-0 periodically poled potassium titanyl phos-
phate (PPKTP) crystal under collinear phase-matching
condition is used for generating polarization-entangled
photon pairs[8] in the following Bell state:

|Φ+⟩ = 1√
2

(
|HAHB⟩ ± eiϕ|VAVB⟩

)
(1)

The spectrum of the emitted pair of photons can be
controlled via temperature tuning of the crystal. Non-
degenerate phase matching is achieved at a temperature
of 34 ◦C, generating signal photon at 774 nm and idler
photon at 850 nm while degenerate phase matching oc-
curs at a crystal temperature of 26.5 ◦C. A wavelength
division multiplexer (WDM) is used to separate the sig-
nal and idler photons into two arms which are then sent
through equal lengths of SMF-28 fiber in each arm.

3 Results

The fiber in the experiment conforms to the ITU
G.652D standard [9] and behaves as a few-mode fiber
for near-infrared photons[10]. The total number of modes
that can exist in the fiber for the NIR photons can be ob-
tained from the normalized frequency Vnorm of the fiber.
The calculated Vnorm number is 4.3. This means multi-
ple modes could exist inside the fiber [11] with the most
likely ones being the LP01 and LP11 modes. Results
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Figure 2: Comparison of the relationship between the de-
tected pair rate for a given transmission distance using
different wavelengths for the entangled photons. Telecom
degenerate refers to an entangled photon source operat-
ing in the degenerate situation with similar parameters as
the NIR entangled photon source used in this work. The
vertical green dashed line marks the distance at which the
non-degenerate NIR system would no longer outperform
a telecom system purely from a loss perspective. The
red vertical line mark the same for degenerate NIR en-
tangled photons. The values corresponding to the black
and yellow stars are obtained experimentally and are in
excellent agreement with the predicted values.

of the cross correlation measurement between the signal
and idler arms are shown in Fig. 1 for the degenerate
and non-degenerate cases. Multiple peaks signal the pres-
ence of higher order modes in case of degenerate phase
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Figure 3: Polarization correlation in both H/V and D/A
bases measured after 6 km telecom fiber in each arm cor-
responding to -36 dB of fiber loss and an estimated de-
tector efficiency of 50%. The slight reduction in observed
visibility is due to polarization mode dispersion. This ef-
fect can be further minimised if the linewidth of the NIR
photons were further reduced.

matching, while no such modes were excited in the case
of non-degenerate phase matching.

Typically, only when the photon pair is in the funda-
mental mode can their entanglement be readily measured
and used. The presence of higher order modes is there-
fore detrimental to detection rates, because photons are
removed from the fundamental mode by intermodal dis-
persion.

Next, we model the performance of NIR and telecom
systems (including source, channel losses and detector
efficiencies) and present the results in Fig. 2. We as-
sume an entangled photon source produces polarization
entangled photons in the telecom wavelength of 1550 nm
with the same source brightness as in the NIR regime.
Additionally, we assume Si GM-APD efficiency of about
50% for the NIR signal and commercial state of the art
InGaAs GM-APD efficiency of 25% [12] for telecom wave-
length. This model selects only the fraction of photons
that remain within the fundamental mode.

The transmission losses can be grouped into three cat-
egories: intrinsic loss due to fiber attenuation, losses aris-
ing from intermodal dispersion and, detector inefficiency
losses. Our model shows non-degenerate NIR entangled
photon systems compare favorably with a telecom system
for up to -18 dB of fiber loss.

Finally, the quality of entanglement was verified by
measuring the entanglement visibility[13]. Raw coinci-
dences were recorded by using the coincidence window as
a temporal filter. Following our model, 6 km fiber spools
were installed in each arm of the experiment. This re-
sulted in a separation of 12 km or a total of -36 dB of fiber
loss between the signal and idler measurement stations.
The pump power and the coincidence window were set at
0.5 mw and 1 ns respectively. The visibility measurement
is shown in Fig. 3. In the H/V basis, the raw visibilities
were 97.1% and 97.2% while in the D/A basis, they were
94.0% and 90.8%. This leads to an average visibility of
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94.6%, without any spatial filtering. For comparison, the
average entanglement visibility was recorded to be 98.1%
at source and 96.1% after 4 km separation.

4 Conclusion

These results highlight that high quality entanglement
can be preserved over an effective distance of 12 km using
non-degenerate NIR photons through telecom fiber. This
can be useful in campus-type implementations or short
metropolitan networks, for example in the deployment of
entanglement based QKD.
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Abstract. Simon’s problem is one of the most important problems demonstrating the power of quantum
algorithm. In this paper, we propose an exact quantum algorithm for solving Simon’s problem in distributed
scenario. Our algorithm combines distributed Simon’s quantum algorithm with the quantum amplitude
amplification technique to ensure its determinism. Compared with the current best distributed quantum
algorithm for solving Simon’s problem, our algorithm has the advantage of exactness.

Keywords: Simon’s problem, distributed quantum algorithms, amplitude amplification, circuit depth

1 INTRODUCTION

Quantum computing [1] has been proved to have great
potential in factorizing large numbers [2], searching un-
ordered database [3] and solving linear systems of equa-
tions [4]. At present, quantum technology has been en-
tered to the noisy intermediate-scale quantum (NISQ)
era [5], which makes it possible to implement quantum
algorithms on middle-scale circuits.

Distributed quantum computing is a novel comput-
ing architecture, which combines quantum computing
with distributed computing [6, 7, 8, 9, 10, 11, 12]. In
distributed quantum computing architecture, multiple
quantum computing nodes communicate with each other
and cooperate to complete computing tasks. Compared
with centralized quantum computing, the size and depth
of circuit can be reduced by using distributed quantum
computing, which is beneficial to improve the perfor-
mance of circuit against noise.

Simon’s problem is one of the most important prob-
lems in quantum computing [13]. For solving Simon’s
problem, quantum algorithms have the advantage of ex-
ponential acceleration over the best classical algorithms
[14]. Simon’s algorithm greatly inspired the proposal of
Shor’s algorithm [2].

Tan, Xiao and Qiu et al. [10] proposed a distributed
quantum algorithm to solve Simon’s problem. Their al-
gorithm has the advantage of exponential acceleration
compared with the distributed classical algorithm for Si-
mon’s problem. However, their algorithm is not exact.

We apply quantum amplitude amplification technique
to design an exact distributed quantum algorithm for
solving Simon’s problem [15], which has the advantage
of exactness compared with the current best distributed
quantum algorithm for Simon’s problem [10]. See the Ap-
pendix for the proof of the correctness of our algorithm.

∗This work is supported in part by NSFC (No. 61876195).
†Corresponding author: issqdw@mail.sysu.edu.cn

2 PRELIMINARIES

Simon’s problem is a special kind of hidden subgroup
problem [16], which can be described as follows. Con-
sider a function f : {0, 1}n → {0, 1}m, where we promise
that there is a string s ∈ {0, 1}n with s 6= 0n, such that
f(x) = f(y) if and only if x = y or x⊕y = s. We have an
oracle that can query the value of function f . In classical
computing, for any x ∈ {0, 1}n and any y ∈ {0, 1}m, if
we input (x, y) into the oracle, then (x, y ⊕ f(x)) is out-
putted. In quantum computing, for any x ∈ {0, 1}n and
any y ∈ {0, 1}m, if |x〉|y〉 is inputted into the oracle, we
will get |x〉|y⊕f(x)〉. Our goal is to find s by performing
the minimum number of queries (using oracle) to f .

3 Exact distributed quantum algorithm
for Simon’s problem

Simon’s problem in distributed scenario is described as
follows. Suppose there are 2t people, each of whom has an
oracle Ofw(w ∈ {0, 1}t is each person’s unique identifier)
that can query fw(u) = f(uw) for any u ∈ {0, 1}n−t.
Each person can access 2n−t values of f . They need to
find the hidden string s by querying their own oracle and
exchanging information as few times as possible.

Let s be the target string to be found in Simon’s prob-
lem, and denote s = s1s2, where the length of s1 is n− t,
the length of s2 is t. Since s1 may be 0n−t or not, we
discuss it in two cases. Firstly, assume s1 = 0n−t, and
then we apply Algorithm 2 to find s2. If s2 6= 0t, then
s = 0n−ts2. Otherwise, s1 6= 0n−t, then we use Algo-
rithm 4 to find s1 and Algorithm 2 to find s2.

See the Appendix for definitions of function S(u) and
operator Usort in Algorithm 1, and a related theorem for
S(u). To make Algorithm 1 exact, we can do this by mak-
ing sure (Y \{0n−t})∪{z} is always linearly independent
when we get the measured result z of the first register.
Let K = {0n−t, s1}, making sure the measured result
of the first register is in K⊥ but not in 〈Y 〉. First, we
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Algorithm 1 Distributed quantum algorithm for finding
s1 (2t distributed computing nodes)

1: procedure DistributedSimon(integer n, integer t,
integer m, operator Ofw)

2: Y ← {0n−t};
3: repeat

4: |ψ0〉 = |0n−t〉

( ⊗
w∈{0,1}t

|0m〉

)∣∣∣02tm〉;

5: |ψ1〉 =
(
H⊗n−t ⊗ I⊗2t+1m

)
|ψ0〉

=
1√

2n−t

∑
u∈{0,1}n−t

|u〉

( ⊗
w∈{0,1}t

|0m〉

)
∣∣∣02tm〉;

6: Each computing node queries its own oracle
under the control of the first register:

|ψ2〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉

( ⊗
w∈{0,1}t

|fw(u)〉

)
∣∣∣02tm〉

7: The (2t+2)-th register performs its own USort
under the control of the middle 2t registers:

|ψ3〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉

( ⊗
w∈{0,1}t

|fw(u)〉

)
|S(u)〉;

8: Each computing node queries its own oracle
under the control of the first register:

|ψ4〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉

( ⊗
w∈{0,1}t

|0m〉

)
|S(u)〉;

9: |ψ5〉 =
(
H⊗n−t ⊗ I⊗2t+1m

)
|ψ4〉;

10: Measure the first register, get the result z;
11: if z /∈ 〈Y 〉 then
12: Y ← Y ∪ {z};
13: end if
14: until |Y | = n− t;
15: Solve the system of exclusive-or equations, get

s1 ∈ 〈Y 〉⊥ \ {0n−t};
16: return s1.
17: end procedure

can use Algorithm 1 to ensure that the measured result
of the first register is in K⊥. Then, we can utilize quan-
tum amplitude amplification technique to ensure that the
measured result of the first register is not in 〈Y 〉.

Note that {0, 1}n−t can be partitioned into 2n−t−1

pairs of strings of the form {x, x⊕s1} (x ∈ {0, 1}n−t). Let
T be a subset of {0, 1}n−t consisting of exactly one repre-

sentative from each of these pairs. Let
∣∣∣K⊥, 02tm, S(T )

〉
be the registered state after line 9 of Algorithm 1. Let
A denote the combined unitary operators from line 5
to line 9 in Algorithm 1. We define operators R0(φ) :

{0, 1}n−t+2t+1m → {0, 1}n−t+2t+1m and RA(ϕ, Y ) :
{0, 1}n−t → {0, 1}n−t as follows.

R0(φ) |x, b〉 =

{
|x, b〉 , x 6= 0n−t or b 6= 02

t+1m;

eiφ |x, b〉 , x = 0n−t and b = 02
t+1m.

(1a)

RA(ϕ, Y ) |x〉 =

{
eiϕ |x〉 , x /∈ 〈Y 〉;
|x〉 , x ∈ 〈Y 〉.

(1b)

With the definitions of R0(φ) and RA(ϕ, Y ), we define
the quantum amplitude amplification operator as follows.

Q = −AR0(φ)A†
(
RA(ϕ, Y )⊗ I⊗2

t+1m
)
. (2)

Let
X = K⊥ \ 〈Y 〉. (3)

Definition 1 Let |ΨX〉 and |ΨY 〉 denote the projections
onto the good and bad state subspaces, respectively, i.e.,
the subspaces spanned by

{
|x, b〉 | x ∈ X, b ∈ {0, 1}2t+1m

}
and

{
|y, b〉 | y ∈ 〈Y 〉, b ∈ {0, 1}2t+1m

}
.

Denote by∣∣∣K⊥, 02tm, S(T )
〉

= |ΨX〉+ |ΨY 〉 . (4)

For a related lemma and a theorem on the quantum
amplitude amplification operator Q, see the Appendix.

Algorithm 2 Distributed quantum algorithm for finding
s2 (2t distributed computing nodes)

1: Query each oracle Ofw once in parallel to get
f(0n−tw) (w ∈ {0, 1}t);

2: Query oracle Of0t once to get f(s10t);
3: Find a v ∈ {0, 1}t such that f(0n−tv) = f(s10t);
4: Obtain s2 = v;

Combining Algorithm 1 with Algorithm 3, we obtain
Algorithm 4, whose proof of correctness see the Ap-
pendix.

Figure 1: The circuit for the quantum part of exact dis-
tributed quantum algorithm for finding s1 (2t computing
nodes) (Algorithm 4).
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Algorithm 3 Quantum amplitude amplification for
measuring good states

Require: Input parameters satisfy associated defini-
tions

Ensure: z ∈ X
1: procedure QAmpAmp(registers

∣∣∣K⊥, 02tm, S(T )
〉

,

integer n, integer t, integer m, operator A, set Y )
2: l← |Y |;
3: φ← 2 arctan

(√
2n−t−l

3·2n−t−l−4

)
;

4: ϕ← arccos
(

2n−t−l−1−1
2n−t−l−1

)
;

5: Apply Q to
∣∣∣K⊥, 02tm, S(T )

〉
where

Q = −AR0(φ)A†
(
RA(ϕ, Y )⊗ I⊗2t+1m

)
;

6: Measure the first register, get the result z;
7: return z.
8: end procedure

Algorithm 4 Exact distributed quantum algorithm for
finding s1 (2t computing nodes)

1: procedure ExactDistributedSimon(integer n,
integer t, integer m, operator Ofw)

2: Y ← {0n−t};
3: repeat

4: Prepare |0n−t〉
(⊗

w∈{0,1}t |0m〉
) ∣∣∣02tm〉;

5: Apply A to the registers where A denote the
combined unitary operators from line 5 to line 9 in
Algorithm 1;

6: z ← QAmpAmp(
∣∣∣K⊥, 02tm, S(T )

〉
, n, t, m,

A, Y );
7: Y ← Y ∪ {z};
8: until |Y | = n− t;
9: Solve the system of exclusive-or equations, get
s1 ∈ 〈Y 〉⊥ \ {0n−t};

10: return s1.
11: end procedure

4 Comparison with other algorithms

The comparison of our algorithm with the distributed
classical algorithm for Simon’s problem, the distributed
quantum algorithm for Simon’s problem[17] and the Si-
mon’s algorithm is the same situation as the comparison
of the algorithm in [10].

We compare our algorithm with the current best quan-
tum algorithm for solving Simon’s problem in distributed
scenario [10]. The algorithm in [10] is not exact. Our al-
gorithm combines the algorithm in [10] with quantum
amplitude amplification technique, which can solve Si-
mon’s problem in distributed scenario exactly.

5 Conclusion

In this paper, we have designed an exact distributed
quantum algorithm to solve Simon’s problem, which com-
bines the current best quantum algorithm for solving Si-
mon’s problem in distributed scenario with quantum am-

plitude amplification technique. By means of multiple
quantum computing nodes processing in parallel, each
node needs to query their own oracle with fewer times.
This reduces the depth of query complexity for each ora-
cle, and therefore it reduces circuit noise and likely makes
it easier to be implemented in the current NISQ era.
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6 Appendix

In the following, we introduce the function S(u) in Al-
gorithm 1 and its associated theorem [10].

Definition 2 For any u ∈ {0, 1}n−t, let S(u) represent
a string of length 2tm by concatenating all strings fw(u)
(w ∈ {0, 1}t) according to lexicographical order, that is,

S(u) = fw0
(u)fw1

(u) · · · fw2t−1
(u), (5)

where fw0(u) ≤ fw1(u) ≤ . . . ≤ fw2t−1
(u) ∈ {0, 1}m with

wi ∈ {0, 1}t(i = 0, 1, . . . , 2t − 1) where wi 6= wj for any
i 6= j.

The following theorem concerning S(u) is useful and
important, which is proved in [10].

Theorem 3 Suppose function f : {0, 1}n → {0, 1}m,
satisfies that there is a string s ∈ {0, 1}n with s 6= 0n,
such that f(x) = f(y) if and only if x = y or x⊕ y = s.
Then ∀u, v ∈ {0, 1}n−t, S(u) = S(v) if and only if
u⊕ v = 0n−t or u⊕ v = s1, where s = s1s2.

In the following, we describe the operator USort in Al-
gorithm 1. The effect of USort in Algorithm 1 is to sort
the values in the 2t control registers by lexicographical
order, and XOR to the target register. When t = 1, the
effect of operator USort is:

USort|a〉|b〉|c〉 =|a〉|b〉|c⊕ (min(a, b) max(a, b))〉

=

{
|a〉|b〉|c⊕ (ab)〉, a ≤ b,
|a〉|b〉|c⊕ (ba)〉, a > b,

(6)

where a, b ∈ {0, 1}m and c ∈ {0, 1}2m.
In order to make Algorithm 1 work, the crucial step

is to eliminate all states in 〈Y 〉 from the first register.
In quantum amplitude amplification process, one can ac-
complish this by choosing appropriate φ, ϕ ∈ R such that

after applying Q on
∣∣∣K⊥, 02tm, S(T )

〉
, the amplitudes of

all states in 〈Y 〉 of the first register become zero.
In the following, we introduce a related lemma and a

theorem on the quantum amplitude amplification opera-
tor Q [14].

Lemma 4 Let A denote the combined unitary opera-
tors from line 5 to line 9 in Algorithm 1. Let Q =

−AR0(φ)A†
(
RA(ϕ, Y )⊗ I⊗2t+1m

)
. Then

Q |ΨX〉 =eiϕ
(
(1− eiφ)(1− 2l−n+t)− 1

)
|ΨX〉+

eiϕ(1− eiφ)(1− 2l−n+t) |ΨY 〉 ,
Q |ΨY 〉 =(1− eiφ)2l−n+t |ΨX〉−(

(1− eiφ)(1− 2l−n+t) + eiφ
)
|ΨY 〉 ,

where l = |Y |.

Proof. From Eq. (1a), we can write R0(φ) as follows:

R0(φ) =I⊗n−t+2t+1m

−
(
1− eiφ

) ∣∣∣0n−t, 02t+1m
〉〈

0n−t, 02
t+1m

∣∣∣ . (7)

From the definitions of RA(ϕ, Y ), |ΨX〉 and |ΨY 〉, we
have: (

RA(ϕ, Y )⊗ I⊗2
t+1m

)
|ΨX〉 = eiϕ |ΨX〉 . (8)

(
RA(ϕ, Y )⊗ I⊗2

t+1m
)
|ΨY 〉 = |ΨY 〉 . (9)

Let U(A, φ) = −AR0(φ)A†, then according to Eq. (2),
Q can be written as:

Q = U(A, φ)
(
RA(ϕ, Y )⊗ I⊗2

t+1m
)
. (10)

For U(A, φ), we have:

U(A, φ) =−AR0(φ)A†

=−A
(
I⊗n−t+2t+1m −(

1− eiφ
) ∣∣∣0n−t, 02t+1m

〉〈
0n−t, 02

t+1m
∣∣∣)A†

=
(
1− eiφ

) (
A
∣∣∣0n−t, 02t+1m

〉〈
0n−t, 02

t+1m
∣∣∣A†)

− I⊗n−t+2t+1m

=
(
1− eiφ

) ∣∣∣K⊥, 02tm, S(T )
〉〈

K⊥, 02
tm, S(T )

∣∣∣
− I⊗n−t+2t+1m

=
(
1− eiφ

) (
|ΨX〉+ |ΨY 〉

)(
〈ΨX |+ 〈ΨY |

)
− I⊗n−t+2t+1m.

(11)

Because |〈Y 〉| = 2l−1and |K⊥| = 2n−t−1, according to
the definition of |ΨX〉 and |ΨY 〉, we have:

〈ΨX |ΨX〉 = 1− 2l−n+t.

〈ΨY |ΨY 〉 = 2l−n+t.

〈ΨX |ΨY 〉 = 0.

(12)

Then we can get:

Q |ΨX〉 =U(A, φ)
(
RA(ϕ, Y )⊗ I⊗2

t+1m
)
|ΨX〉

=eiϕU(A, φ) |ΨX〉

=eiϕ
( (

1− eiφ
) (
|ΨX〉+ |ΨY 〉

)(
〈ΨX |+ 〈ΨY |

)
− I⊗n−t+2t+1m

)
|ΨX〉

=eiϕ
(
1− eiφ

) (
|ΨX〉+ |ΨY 〉

)(
〈ΨX |+ 〈ΨY |

)
|ΨX〉 − eiϕ |ΨX〉

=eiϕ
(
1− eiφ

)
〈ΨX |ΨX〉

(
|ΨX〉+ |ΨY 〉

)
− eiϕ |ΨX〉

=eiϕ
(
1− eiφ

) (
1− 2l−n+t

) (
|ΨX〉+ |ΨY 〉

)
− eiϕ |ΨX〉

=eiϕ
(
(1− eiφ)(1− 2l−n+t)− 1

)
|ΨX〉

+ eiϕ(1− eiφ)(1− 2l−n+t) |ΨY 〉 .
(13)
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Q |ΨY 〉 =U(A, φ)
(
RA(ϕ, Y )⊗ I⊗2

t+1m
)
|ΨY 〉

=U(A, φ) |ΨY 〉

=
( (

1− eiφ
) (
|ΨX〉+ |ΨY 〉

)(
〈ΨX |+ 〈ΨY |

)
− I⊗n−t+2t+1m

)
|ΨY 〉

=
(
1− eiφ

) (
|ΨX〉+ |ΨY 〉

)(
〈ΨX |+ 〈ΨY |

)
|ΨY 〉

− |ΨY 〉
=
(
1− eiφ

)
〈ΨY |ΨY 〉

(
|ΨX〉+ |ΨY 〉

)
− |ΨY 〉

=
(
1− eiφ

)
2l−n+t

(
|ΨX〉+ |ΨY 〉

)
− |ΨY 〉

=(1− eiφ)2l−n+t |ΨX〉
−
(
(1− eiφ)(1− 2l−n+t) + eiφ

)
|ΨY 〉 .

(14)

�

Theorem 5 Let A denote the combined unitary op-
erators from line 5 to line 9 in Algorithm 1.

Let Q = −AR0(φ)A†
(
RA(ϕ, Y )⊗ I⊗2t+1m

)
, φ =

2 arctan
(√

2n−t−l

3·2n−t−l−4

)
, ϕ = arccos

(
2n−t−l−1−1
2n−t−l−1

)
. Then

Q
∣∣∣K⊥, 02tm, S(T )

〉
= Q(|ΨX〉+ |ΨY 〉) = |ΨX〉 .

Proof. By making sure the resulting superposition
Q(|ΨX〉 + |ΨY 〉) has inner product zero with |ΨY 〉, ac-
cording to Eq. (13) and Eq. (14) of Lemma 4, we can
obtain the following equation.

eiϕ(1−eiφ)(1−2l−n+t) = (1−eiφ)(1−2l−n+t)+eiφ. (15)

We denote b = (1 − 2l−n+t), then according to Eq.
(15), we have:

b = e−iϕ
(
b+

1

e−iφ − 1

)
= e−iϕ

(
b+

1

cosφ− 1− i sinφ

)
= e−iϕ

(
b+

cosφ− 1

(cosφ− 1)
2

+ sin2 φ

+i
sinφ

(cosφ− 1)
2

+ sin2 φ

)

= e−iϕ
(
b− 1

2
+ i

sinφ

2− 2 cosφ

)
.

(16)

Taking the square of b, we can further have:

b2 =

(
b− 1

2

)2

+
sin2 φ

4 (1− cosφ)
2 . (17)

Arrange Eq. (17) to get:

4b− 1 =
sin2 φ

(1− cosφ)
2 = cot2

φ

2
. (18)

From Eq. (18), we can obtain:

φ = 2 arctan

(√
1

4b− 1

)

= 2 arctan

√ 2n−t−l

3 · 2n−t−l − 4

. (19)

Since b is a real number, then the Eq. (16) also needs
to be a real number, so we can obtain:

ϕ = arccos

(
b− 1

2

b

)
= arccos

(
2n−t−l−1 − 1

2n−t−l − 1

)
. (20)

�

Since 1 ≤ l ≤ n− t−1, we can always obtain φ, ϕ ∈ R.
Thus we get Algorithm 3. Actually, it is easy to see that
for all 1 ≤ l ≤ n − t − 1, 〈ΨX |ΨX〉 ≥ 1/2. That is, the
success probability for measuring good states is already
greater than or equal to 1/2 without amplitude ampli-
fication. Therefore, we only need a constant number of
iterations of amplitude amplification to make the success
probability exactly 1 in our cases, and our analysis above
further shows that this “constant” is 1. That is the rea-
son why only one iteration of amplitude amplification is
needed in our case.

In the following, we prove the correctness of Algorithm
4. First, we write out the state after the first step of
Algorithm 4 in FIG. 1.

|ψ1〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉

 ⊗
w∈{0,1}t

|0m〉

∣∣∣02tm〉
=

1√
2n−t

∑
u∈{0,1}n−t

|u〉 |0m〉 . . . |0m〉︸ ︷︷ ︸
2t

∣∣∣02tm〉 .
(21)

Then Algorithm 4 queries each oracle to get the fol-
lowing state:

|ψ2〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉 |f(u0t)〉 . . . |f(u1t)〉︸ ︷︷ ︸
2t

∣∣∣02tm〉 .
(22)

After sorting by using USort, we have the following
state:

|ψ3〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉 |f(u0t)〉 . . . |f(u1t)〉︸ ︷︷ ︸
2t

|S(u)〉 .

(23)
After that, we query each oracle again and restore the

state of the 2t m-bit registers to |0m〉. Then we obtain
the following state:

|ψ4〉 =
1√

2n−t

∑
u∈{0,1}n−t

|u〉 |0m〉 . . . |0m〉︸ ︷︷ ︸
2t

|S(u)〉

=
1√

2n−t

∑
u∈{0,1}n−t

|u〉
∣∣∣02tm〉 |S(u)〉 .

(24)
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From Theorem 3, we know that the structure of Si-
mon’s problem exists in function S.

After Hadamard transform on the first register, we get
the following state:

|ψ5〉 =
(
H⊗n−t ⊗ I⊗2

t+1m
)
|ψ4〉

=
1√

2n−t

∑
u∈{0,1}n−t

(
H⊗n−t|u〉

) ∣∣∣02tm〉 |S(u)〉

=
1√

2n−t+2

 ∑
u∈{0,1}n−t

(
H⊗n−t|u〉

) ∣∣∣02tm〉 |S(u)〉

+
∑

u∈{0,1}n−t

(
H⊗n−t|u〉

) ∣∣∣02tm〉 |S(u)〉


=

1√
2n−t+2

 ∑
u∈{0,1}n−t

(
H⊗n−t|u〉

) ∣∣∣02tm〉 |S(u)〉

+
∑

u∈{0,1}n−t

(
H⊗n−t|u⊕ s1〉

) ∣∣∣02tm〉 |S(u⊕ s1)〉


=

1√
2n−t+2

 ∑
u∈{0,1}n−t

(
H⊗n−t|u〉

) ∣∣∣02tm〉 |S(u)〉

+
∑

u∈{0,1}n−t

(
H⊗n−t|u⊕ s1〉

) ∣∣∣02tm〉 |S(u)〉


=

1√
2n−t+2

∑
u∈{0,1}n−t

[
H⊗n−t (|u〉+ |u⊕ s1〉)

]
∣∣∣02tm〉 |S(u)〉

=
1√

2n−t+2

∑
u∈{0,1}n−t

 1√
2n−t

∑
z∈{0,1}n−t

×
[
(−1)u·z + (−1)(u⊕s1)·z

]
|z〉

)∣∣∣02tm〉 |S(u)〉

=
1√

2n−t+2

∑
u∈{0,1}n−t

 1√
2n−t

∑
z∈{0,1}n−t

(−1)u·z [1 + (−1)s1·z] |z〉

)∣∣∣02tm〉 |S(u)〉 .

(25)

Note that if s1 ·z = 1 we have 1+(−1)s1·z = 0 and the
basis state |z〉 vanishes in the above state. If s1 · z = 0,

we have 1 + (−1)s1·z = 2, so we have:

|ψ5〉 =
1√

2n−t+2

∑
u∈{0,1}n−t

 1√
2n−t

∑
z∈{0,1}n−t

(−1)u·z [1 + (−1)s1·z] |z〉

)∣∣∣02tm〉 |S(u)〉

=
1√

2n−t

∑
u∈{0,1}n−t

 1√
2n−t

∑
z∈s⊥1

(−1)u·z|z〉

∣∣∣02tm〉
|S(u)〉

=
1

2n−t

∑
u∈{0,1}n−t

∑
z∈s⊥1

(−1)u·z|z〉
∣∣∣02tm〉 |S(u)〉

=
1

2n−t

∑
z∈s⊥1

|z〉
∑

u∈{0,1}n−t

(−1)u·z
∣∣∣02tm〉 |S(u)〉

=
1

2n−t−1

∑
z∈s⊥1

|z〉
∑
u∈T

(−1)u·z
∣∣∣02tm〉 |S(u)〉

=
∣∣∣K⊥, 02tm, S(T )

〉
= |ΨX〉+ |ΨY 〉 .

(26)

Apply Q to |ψ5〉, then we have:

|ψ6〉 = Q
∣∣∣K⊥, 02tm, S(T )

〉
= Q(|ΨX〉+ |ΨY 〉), (27)

where Q = −AR0(φ)A†
(
RA(ϕ, Y )⊗ I⊗2t+1m

)
, φ =

2 arctan
(√

2n−t−l

3·2n−t−l−4

)
, ϕ = arccos

(
2n−t−l−1−1
2n−t−l−1

)
.

According to Theorem 5, we have:

|ψ6〉 = |ΨX〉 . (28)

After measurement on the first register, we can get a
string that is in K⊥ \ 〈Y 〉. After n − t − 1 repetitions
of the Algorithm 4, we can obtain n − t elements in the
K⊥ \〈Y 〉. Then, using the classical Gaussian elimination
method, we can obtain s1.

If we have already found s1, we can use Algorithm 2
to find out s2. Since f(s10t) = f((s10t) ⊕ s), we have
f(s10t) = f(0n−ts2). So we can find a v such that
f(s10t) = f(0n−tv). Then we can obtain s2 = v. At
last, we can obtain s = s1s2.

Remark 1 Note that the oracle query of each quantum
computing node in Algorithm 1 and Algorithm 4 can ac-
tually be completed in parallel. With the help of aux-
iliary (2t − 1)(n − t) qubits, they can change the state
of the control register after the first Hadamard transform

1√
2n−t

∑
u∈{0,1}n−t |u〉 to 1√

2n−t

∑
u∈{0,1}n−t |u〉|u〉 . . . |u〉︸ ︷︷ ︸

2t

.

In fact, after the first Hadamard transform, they can tele-
port each group of n − t control bits to every quantum
computing node and use this to control the oracle of the
computing node.
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Commutation simulator for open quantum dynamics
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Abstract. Recent progress in quantum simulation and algorithms has demonstrated a rapid expansion in
capabilities. The search continues for new techniques and applications to exploit quantum advantage. Here
we propose an innovative method to investigate directly the properties of a time-dependent density operator
ρ̂(t). Using generalised quantum commutation simulators, we can directly compute the expectation value of
the commutation relation and thus of the rate of change of ρ̂(t). The approach can be utilised as a quantum
eigen-vector solver for the von Neumann equation and a decoherence investigator for the Lindblad equation,
by using just the statistics of single-qubit measurements. A simple but important example is demonstrated
in the single-qubit case and we discuss extension of the method for practical quantum simulation with many
qubits, towards investigation of more realistic quantum systems.

Keywords: Quantum simulation, Open quantum dynamics

1 Introduction

A century ago, very early in the development of quan-
tum mechanics, commutation relations emerged in var-
ious crucial roles [1, 2]. Pairs of non-commuting oper-
ators (e.g., the position and momentum operators for
a particle) describe the complementary nature of their
corresponding physical properties, leading to uncertainty
relations between these quantities for quantum systems.
Commutators also underpin the time evolution of quan-
tum systems, whether this be of general operators in
the Heisenberg picture (or the relevant part of the In-
teraction picture), or the system density operator in the
Schrödinger picture, where the time dependence resides
in the quantum state or density operator. In this latter
picture, the quantum state of a system given by |ψ(t)⟩
evolves according to the Schrödinger equation (with units
where ℏ = 1) [3], given by

Ĥ|ψ(t)⟩ = i
∂

∂t
|ψ(t)⟩ , (1)

where Ĥ is the system Hamiltonian. For an initial state
defined as |ψ(0)⟩ = |ψ0⟩ at t = 0 and a time-independent
Ĥ, the evolution from 0 to t is determined by the unitary

operator Û(t), such that |ψ(t)⟩ = Û(t)|ψ0⟩ = e−iĤt|ψ0⟩.
An equivalent alternative description is via the density

operator, so defining this as ρ̂(t) = Û(t)|ψ0⟩⟨ψ0|(Û(t))†

the evolution is given by the von Neumann equation [4]
as

d

dt
ρ̂(t) = i[ρ̂(t), Ĥ] , (2)

where the commutation relation between x̂ and ŷ is given
by [x̂, ŷ] = x̂ŷ − ŷx̂.
The form of the von Neumann equation is very in-

teresting because the time-dependence of the system is
expressed directly in terms of the commutation relation
between the density operator and the Hamiltonian. The
density operator approach provides a direct statistical
representation because the diagonal parts of d

dt ρ̂(t) give

∗jaewoo.joo@port.ac.uk

the rate of change of the system probability density.
These always correspond to real numbers, which can be
measured for the actual physical system, either through
repeated measurements on an identically prepared and
evolved single pure system, or through measurements on
an ensemble of identical systems all equivalently prepared
and evolved. We refer to these equivalent approaches
as an “ensemble measurement”. The density matrix ap-
proach can also be used to incorporate classical uncer-
tainty (lack of knowledge), in addition to quantum super-
position, via (finite-entropy) mixtures of pure quantum
states. In this work we will use the density operator ap-
proach ρ̂(t), both from the perspective of the reversible
von Neumann equation (2) but also to provide scope for
the inclusion of classical uncertainty and irreversible evo-
lution.

In quantum theory, the irreversibility inherent in open
systems—those coupled to additional environment de-
grees of freedom—can be modelled by modification and
addition of noise terms to either the Heisenberg equa-
tion for system operators or the Schrödinger equation
for system states [5]. However, the density matrix ap-
proach forms a very important method for investigating
the dynamics of open quantum systems, beyond just the
Schrödinger equation. The Lindblad master equation is
a very widely used and applicable example. This com-
monly describes an open system interacting weakly with
its environment, describing the effects of the environment
on the system (generally, decoherence mechanisms) using
Lindblad operators L̂j . These operators modify the von
Neumann equation (2) to

d

dt
ρ̂(t) = i

[
ρ̂(t), Ĥ

]
+

∑
j

(
L̂j ρ̂(t) L̂†

j −
1

2

{
ρ̂(t) , L̂†

jL̂j

})
, (3)

where the anti-commutation relation between x̂ and ŷ is
given by {x̂, ŷ} = x̂ŷ + ŷx̂ [6, 7]. In general the Lind-
blad operators are not Hermitian and act to introduce
decoherence to the system, changing its entropy. The
particular case of Hermitian Lindblad operators can be
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used to model quantum measurements, or noisy exter-
nal source terms in the system Hamiltonian. For L̂j = 1̂
(1̂: identity operator), the Lindblad terms disappear and

only the unitary term i
[
ρ̂(t), Ĥ

]
survives, thus returning

to the von Neumann equation and the unitary evolution
of a closed quantum system in time.
In this work, we propose a novel method to directly

compute, or simulate, matrix elements of d
dt ρ̂(t), by mea-

suring expectation values of the commutation relation
in the von Neumann equation (2) and the more general
Lindblad equation (3). Consider the case where the sys-
tem of interest comprises L qubits, so the density opera-
tor ρ̂(t) can be represented by a 2L×2L matrix. Our ap-
proach provides the (diagonal and off-diagonal) matrix el-
ements d

dtρn,m(t) = ⟨n| ddt ρ̂(t)|m⟩ with n,m = 0, ..., 2L−1
ranging over a suitable basis of the system. So, for ex-
ample, if we seek the expectation of the rate of state
change in time, given by ⟨Φ| ddt ρ̂(t)|Φ⟩ for some chosen
reference state |Φ⟩, we can perform quantum process-
ing to determine this by measuring the expectation value
of the commutator in the von Neumann equation (2),
given by i⟨Φ|[ρ̂(t), Ĥ]|Φ⟩ in the case of closed quantum
systems. For the off-diagonal terms, we can compute
i⟨Φ|[ρ̂(t), Ĥ]|Φ′⟩ by a sum of expectation values given
by another controlled-operator gate, with operator Â for
|Φ′⟩ = Â|Φ⟩. For the case of open quantum systems, it
is required to perform additional quantum processing to
compute the extra Lindblad terms that depend on the
L̂j .

2 Algorithm for quantum commutation
simulation

We first provide the protocol describing the algorithm,
followed by a detailed explanation of the quantum com-
mutation simulator. The simulation is built upon the
following resources, as employed in Fig. 1: The system
S, assumed to be of dimension 2L, or 2L × 2L in density
matrix form; a separate reference system M of the same
size as the system; a separate control qubit C. The state
of the total system is denoted by |Ψ⟩. With reference to
the full quantum circuit shown in Fig. 1, the protocol for
the simulation runs as follows.

( )R̂  Ĥ

( )Û t

C
+

0 S


M
 M̂

1 2
3

4

N̂

Â

Ẑ

0

Figure 1: Schematic of the generalised quantum circuit
to simulate the expectation value of the commutation re-
lation. Three controlled-operators are given by operators
N̂ , Â and M̂ and the total number of qubits required in
the simulator is 2L + 1 to describe an L-qubit system.
The detailed protocol is described in Section 2.1.

2.1 Protocol

1. Initialise the total system state |Ψ0⟩ as a product
of system state |ψ0⟩S , reference |Φ⟩M and control
qubit |+⟩C .

2. Perform a single-qubit gate R̂ (χ) on |+⟩C and sys-
tem unitary evolution operator Û(t) on |ψ0⟩S to
produce |Ψ1⟩.

3. Apply controlled-operator gate N̂ between control
C and system S as well as two controlled-operator
gates Â and M̂ between C and reference M to pro-
duce |Ψ2⟩.

4. Apply a block controlled-SWAP gate from control
C between system S and reference M to produce
|Ψ3⟩ [8].

5. Apply a Hadamard gate Ĥ to control C to produce
|Ψ4⟩.

6. Measure a single qubit in C in the Pauli-Z gate
(the computational) basis, to obtain the expecta-
tion value ⟨Ẑ⟩.

2.2 Quantum commutation simulator

Using qubit terminology, we first explain the opera-
tion of the generalised quantum commutation simulator,
shown in Fig. 1. Generally, by default, qubits are as-
sumed to be initialised in |0⟩ for a quantum circuit, but
here we assume some additional preparation. The con-
trol qubit C is prepared in the state |+⟩C = Ĥ|0⟩C using
a Hadamard gate Ĥ. As shown in Fig. 1, there are two
L-qubit states, for the system S and the reference M .
For the system S, the initial state |ψ0⟩ is assumed to be
created by a suitable prior quantum circuit, specified by
the chosen initial conditions of the target problem to be
simulated at t = 0. For the reference M , we can simply
utilise one of the computational basis states (e.g., |0⟩⊗L),
or any other interesting reference state |Φ⟩ to be evolved
dynamically. Note that only the control qubit C is mea-
sured at the end of the process and thus the outcome
provides us with the expectation value of a quantum op-
erator for the other degrees of freedom, effectively given
by a 2L × 2L matrix for each of system S and reference
M .

At the end, ensemble measurement of the control qubit
C in the computational basis will generate the probabil-
ities of the outcomes |0⟩C and |1⟩C , defined respectively
as P0 and P1. The expectation value of Pauli operator

Ẑ is equal to
〈
Ψ4

∣∣∣Ẑ∣∣∣Ψ4
〉

= P0 − P1. Since the re-

sults are given as a difference of scalar values (details in
arXiv:2206.00591), we can interchange these to reformu-
late the expectation value of Ẑ for qubit C as〈

Ψ4
∣∣∣Ẑ∣∣∣Ψ4

〉
≡ ⟨Φ|Ẑχ

A|Φ⟩, (4)

defining a new quantum operator as

Ẑχ
A =

1

2

(
eiχN̂ ρ̂(t)M̂Â+ e−iχÂ†M̂† ρ̂(t) N̂†

)
. (5)
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Note that this new operator contains actions of the con-
trolled gates Â and M̂ , in a manner that depends on the
chosen rotation angle χ.
As an example, for an identity N̂ = Â = 1̂ and M̂

being a Hermitian operator M̂† = M̂ , the value of χ can
then determine whether the result delivers the expecta-
tion value of the commutation or anti-commutation re-
lation between the time-dependent density matrix ρ̂(t)
and the operator M̂ . These follow from the statistics of
single-qubit measurements through〈

Φ
∣∣∣{ρ̂(t), M̂}∣∣∣Φ〉 = 2 ⟨Φ|Ẑ0

1̂
|Φ⟩, (6)

i
〈
Φ
∣∣∣[ρ̂(t), M̂]∣∣∣Φ〉 = 2 ⟨Φ|Ẑπ/2

1̂
|Φ⟩ . (7)

For N̂ ̸= 1̂ and Â ̸= 1̂, we are further able
to utilise the outcome of the expectation value to

evaluate both ℜ
(〈

Φ
∣∣∣N̂ ρ̂(t)M̂ ∣∣∣Φ′

〉)
= ⟨Φ|Ẑ0

A|Φ⟩ and

ℑ
(〈

Φ
∣∣∣N̂ ρ̂(t)M̂ ∣∣∣Φ′

〉)
= −⟨Φ|Ẑπ/2

A |Φ⟩, for |Φ′⟩ = Â|Φ⟩,
where ℜ() and ℑ() represent real and imaginary parts
respectively.

3 Summary and Remarks

In summary, we have proposed a new quantum algo-
rithm to simulate the dynamics of open and closed quan-
tum systems in quantum circuits. Two interesting appli-
cations of this approach are investigations of: (i) steady
states in a closed quantum system, via the von Neu-
mann equation; and (ii) decoherence mechanisms in an
open quantum system, via the Lindblad equation. For
a large quantum system, the von Neumann method is
beneficial for computing a transition rate between two
specific quantum states and this result can be also used
for the study of its open quantum system. For example,
although the sizes of the system qubits state |ψ0⟩ and the
reference qubits state |Φ⟩ is each given by a 2L × 1 col-
umn vector for L qubits, the probability transition rate
between two specific states is always given by the ex-
pectation value of the off-diagonal elements in a 2 × 2
matrix form. Correspondingly, the changes of each state
probability follow from the diagonal elements.

Clearly in general Lindblad evolution is irreversible,
with a change in mixture (entropy) of the density ma-
trix. In the simulation approach this changing mixture
is introduced because the outputs of different simulations
have to be combined, and each of these simulations in-
volve measurements, to compute the expectation values
that comprise the various matrix elements of the (rate of
change of the) density matrix.

Extensions of the Lindblad equation simulation
method have the potential to generate innovative ap-
proaches for general purpose master equations. This is
because the simulation approach preserves a probabilis-
tic interpretation for the system even for open systems,
generating the evolution of the system probabilities from
the diagonal elements of a density. The investigation of
possible quantum advantage in such open system appli-
cations will be an interesting topic for future study, for

example to investigate the quantum speed limit of simu-
lating an open quantum system [9, 10] and the study of
quantum channels [11].
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Abstract. In this study, we present a variational approach to address the unique determinedness (UD)
problem in pure-state tomography. Our algorithm effectively differentiates between UD and non-UD mea-
surement schemes by minimizing a specialized loss function, resulting in the discovery of optimal pure-state
Pauli measurement schemes across various dimensions. We also observe an alignment between unique de-
terminedness among pure states (UDP) and all states (UDA) in qubit systems. This work advances our
understanding of UD in quantum state tomography, providing valuable insights for experimental applica-
tions while emphasizing the importance of balancing mathematical optimality with practical considerations.

Keywords: Pure-state tomography, Unique determinedness, Variational approach

1Quantum state tomography (QST) is a pivotal tech-
nique in quantum information science since it enables the
accurate reconstruction and characterization of quantum
states [1, 2, 3, 4]. As an essential tool in quantum de-
vices and protocols, QST has far-reaching implications in
various domains, including quantum computing [5, 6, 7],
quantum communication [8, 9, 10], and quantum cryp-
tography [11, 12, 13].
General QST necessitates d2 measurement outcomes

to recover an arbitrary d-dimensional state. Several pos-
itive operator-valued measure (POVM) schemes, such as
symmetric informationally complete POVM [14] and mu-
tually unbiased bases POVM [15], offer satisfactory state
recovery. As for many-body systems, it has been demon-
strated that a minimum of 3n separable projective mea-
surement settings are required for n-qubit systems [16].
This number can be reduced to 2n + 1 by allowing non-
separable measurements [17]. However, these measure-
ment schemes for general QST can be prohibitively costly
for experimental implementation due to the exponential
complexity.
In the realm of quantum information tasks, there is

a strong emphasis on pure states, stemming from both
theoretical and experimental interests. The former can
be traced back to the famous Pauli’s problem [18], which
questions whether the position and the momentum distri-
butions can uniquely determine the wave function, while
the latter leads to various experimental realizations [19,
20, 21, 22]. The presence of prior information can sig-
nificantly reduce the number of measurements needed to
achieve state recovery, giving rise to a new concept known
as pure-state tomography, which can also be extended to
rank-r states [23, 24, 25, 26] or matrix product states
[27].
In this study, we primarily focus on the problem about

unique determinedness (UD) of pure states, given the
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specific measurement scheme A consists of observables
{A0 = I, A1, A2, ..., Am}. A measurement scheme A is
classified as UD if any pure state |ψ⟩ is uniquely de-
termined among pure states (UDP) or among all states
(UDA) by measuring the given observables, i.e., any other
pure state or mixed state cannot have the same mea-
surement results as those of |ψ⟩. These definitions are
consistent with the notions of (strictly) informationally
complete measurements [28, 14, 29].

Necessary and sufficient conditions for UD measure-
ment have been established by investigating the eigen-
value structure of the orthogonal space with respect to
A. It is known that one condition for a UDP measure-
ment scheme is that any nonzero Hermitian operator be-
longing to the orthogonal space has at least 2 nonzero
eigenvalues. In the case of UDA, the condition requires
the operator to have at least 2 negative and 2 positive
eigenvalues. This analysis led to the discovery of a gap
between UDA and UDP concerning the number of re-
quired observables [23, 30]. A similar gap is also present
for projective measurements [31, 32]. Furthermore, ex-
perimental aspects have been examined, such as the sta-
bility of state recovery comparing UDP and UDA [21,
33].

However, systematically constructing UD measure-
ment schemes proves to be quite challenging, primarily
due to the complexity of verifying UD’s conditions about
the eigenvalue structure. Here, we propose an effective
algorithm to determine whether a given measurement
scheme is UD by minimizing a suitably defined loss func-
tion. Specifically, we construct a variational Hermitian
matrix that lacks the aforementioned eigenvalue struc-
ture to search for counterexamples that violate those UD
conditions. The loss function is then defined associat-
ing with the orthogonality between our variational ma-
trix and measurement space of A. If a counterexample
is found, the minimum loss approaches a value close to
zero, subject to calculational precision. Conversely, if
no counterexample is present, the loss function yields a
distinct nonzero value.

In n-qubit systems, the numerical results show a clear
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gap in minimized loss between UD and non-UD mea-
surement schemes using Pauli measurement. The former
exhibits a discernibly non-zero value, while the latter
approaches zero within the machine precision. Conse-
quently, we can set a threshold δ based on the non-UD’s
minimum loss to determine whether a minimized loss is
effectively zero or non-zero; if the value is above δ, we
can regard the scheme as UD.
Furthermore, with the assistance of random sampling

techniques, we successfully identify numerous optimal
pure-state Pauli measurement schemes across various di-
mensions, including previous minimum operator sets for
2, 3-qubit UDA Pauli measurement [20] (see Table 1).
Here, ”optimal” means the size of the operator set is a
local (global) minimum through our search algorithm.
Intriguingly, our findings reveal that in qubit systems,
UDP invariably aligns with UDA when employing Pauli
measurements, a phenomenon not commonly observed in
other contexts. This insight implies that UD Pauli mea-
surement schemes intrinsically possess a convex property
owned by UDA, shedding light on the underlying mecha-
nism of robustness in quantum compressed sensing [33].

Table 1: UDP/UDA scheme with Pauli measurements.
The columnm×n denotes we findm different UDP/UDA
Pauli measurement schemes with n Pauli operators (in-
cluding the identity), which could be Clifford equivalent.
The minimized loss function L is evaluated for the scheme
with the least operators.

#qubits UDA L UDP L m× n
2 1 2 6× 11, 19× 13
3 0.519 2 176× 31, 258× 32
4 0.280 1.788 3× 106, 14× 107
5 0.202 1.951 1× 393, 1× 395

Nevertheless, our numerical results also indicate that
for most types of optimal UD measurement schemes, the
non-zero minimum loss tends to decay toward zero as the
dimension increases. This trend is also observed in Pauli
measurements, albeit not significantly. In other words,
the gap between non-UD and UD schemes in terms of
their minimum losses becomes increasingly less distinct,
which poses the challenge of finding optimal schemes in
higher dimensions. It inspires us to explore what the
decay of the minimum loss signifies and what impact it
may have.
We successfully establish a connection between our loss

function and the stability of UD measurement schemes.
Firstly, we prove that the systematic noise error allowed
for a specific UD scheme is bounded by the square root of
minimum loss. When the noise error exceeds that thresh-
old, the measurement scheme can no longer qualify as
UD. Secondly, we define a stability coefficient related to
the fidelity of the reconstructed state, which exhibits an
inverse relationship with the square root of the minimum
loss. A larger stability coefficient corresponds to lower
constructed fidelity in the presence of noise. These two
observations suggest that an optimal UD measurement
scheme with a lower minimum loss is more vulnerable to

noise and results in suboptimal state recovery. revealing
a clear trade-off between mathematical optimality and
experimental pragmatism in higher dimensions.

Taking the UD scheme constructed by polynomial
bases [31, 32] as an example, we have verified that this
d-dimensional optimal scheme displays minimum losses
that decay towards zero considerably as the dimension
increases, leading to instability in state recovery. We
also identify the most vulnerable state during the re-
covery process. Although for random states, the state
recovery remains stable against noise, in the worst case,
the fidelity deteriorates considerably as the dimension in-
creases, e.g., the fidelity drops to around 0.5 for d = 9.
For comparison, we also investigate the stability of the
optimal UD schemes constructed by Pauli operators (in
Table 1), which exhibits a less pronounced decay in the
minimum loss. This kind of UD scheme yields perfect
state recovery, even in the worst case.

In contrast to the unextendible mathematical tech-
niques commonly employed in other works, we intro-
duce a variational approach to investigate the specific
eigenvalue structure of a certain matrix space. This ap-
proach applies to various measurement schemes and can
even be extended to measurement settings [34], deter-
mining whether a given measurement scheme fulfills the
conditions for pure-state tomography. In lower dimen-
sions, this method can be utilized to construct optimal
UD measurement schemes with relatively large minimum
losses. However, in higher dimensions, the minimum loss
for optimal measurement schemes inevitably decays to-
ward zero, posing a potential risk of instability. Exper-
imentalists can establish a reasonable threshold δ based
on the instruments’ noise levels to identify suitable mea-
surement schemes for pure-state tomography, even if they
may not be mathematically optimal.

Our study not only propels the understanding of UD
in quantum state tomography forward but also delivers
valuable practical insights for experimental applications,
highlighting the need for a balanced approach between
mathematical optimality and experimental pragmatism.
The applicability of the proposed algorithm transcends
pure-state tomography, extending to other quantum in-
formation tasks, such as entanglement detection [35] and
super-activation [36]. This method holds the potential
to develop into a comprehensive framework for examin-
ing the unique structure of a space, which could consist
of desired elements like operators, matrices, and states.
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Abstract. The implementation of Grover’s Search, on real quantum devices is impeded by significant
challenges arising from a high gate count. Grover’s algorithm is particularly susceptible to such issues,
which can lead to computation inaccuracies due to quantum decoherence. In this paper, we address
this problem by leveraging the mathematical framework of the ZX-calculus to optimize Grover’s Search
algorithm. The ZX-calculus offers an effective and graphical language for reasoning about quantum circuits,
enabling the simplification and optimization of quantum algorithms. Our study focuses on the application
of ZX-calculus for optimizing the quantum gate count of the diffuser part of Grover’s Search algorithm.

Keywords: Quantum computing, Quantum algorithm, ZX-calculus

1 Introduction

Grover’s algorithm is an important quantum search al-
gorithm that guarantees quadratic speed-up in unstruc-
tured searches over classical methods. This quantum al-
gorithm works on amplitude amplification which allows
finding a targeted element in

√
N iterations. In princi-

ple, Grover’s algorithm requires an oracle to mark the
target element and a diffusion operator to amplify the
amplitude of the marked element.
There are many applications that use Grover’s algo-

rithm to solve problems such as finding the minimum
of an unsorted list [1], image pattern matching [2] or
string matching [3]. However, when the problems become
more complex, Grover’s algorithm needs more qubits and
quantum gates to operate the amplitude amplification,
leading to expensive implementation.
This study aims to study single-qubit gate and two-

qubit gate reduction in the diffusion part of Grover’s al-
gorithm by using ZX calculus. We use the PyZX Python
library to perform ZX calculus. We also compare the
results of circuit reduction using ZX calculus and those
using the transpilers from QISKIT.

2 Background

Grover’s search algorithm: The algorithm, invented
by Lov Grover in 1996 [4, 5], is a quantum algorithm
that significantly improves the efficiency of unstructured
searches. It locates a specific item in a list of N items in
roughly

√
N queries, compared to N queries in a classical

setting. It achieves this by using a quantum operator to
amplify the probability of the target item, resulting in a
high likelihood of locating the item after approximately√
N iterations. This algorithm runs on amplitude am-

plification, which marks the target element and amplifies
the marked element.

∗natchapol.pat@gmail.com
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ZX-calculus: The ZX-calculus is a graphical language
[6] developed for simplifying and automating the reason-
ing about quantum circuits and protocols. In ZX calculus
language, the typical primitive of the quantum circuit is
consist of CNOT gate, Hadamard gate, Z-phase gate, and
X-phase gate. The qubits in the primitive circuit will be
mapped to the wires, and the quantum gates will be de-
composed to the boxes in ZX language. With ZX rules,
we can connect the diagram to reduce the quantum gates
in the primitive circuit.

3 Methodology

In this research, we reduced the quantum gates in the
diffusion part of Grover’s algorithm by using ZX calculus.
The diffusion operator contains the Toffoli gate, which
can be decomposed into multiple single-qubit gates and
two-qubit gates (CNOT gate, Hadamard gate, T gate,
and RZ gate). The decomposed circuit will be converted
to ZX language by using The PyZX package. We examine
the algorithm’s complexity and performance, particularly
in the count of single-qubit gates and two-qubit gates
with different numbers of qubits, ranging from 3 to 10
qubits. We compared the results from ZX calculus with
those from the transpiler at level 1 to level 3 in QISKIT
package.

4 Result and Discussion

The results indicate that ZX-calculus was more effec-
tive in reducing the number of single-qubit gates in the
diffusion operator than Qiskit’s transpiler at all optimiza-
tion levels. However, when it comes to the optimization
of two-qubit gates, Qiskit’s transpiler showed better per-
formance at every level, consistently optimizing the num-
ber of two-qubit gates, than ZX calculus. This suggests
that ZX calculus is effective in reducing single-qubit gates
in a diffusion operator, but it has low performance in two-
qubit gates reduction.

222



Figure 1: Comparison between Qiskit’s transpiler at levels 1-3 and PyZX optimized circuits in terms of A) the number
of single-qubit gates and B) the number of two-qubit gates
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Abstract. Device independent detections of quantum non-locality like Bell-CHSH inequality are impor-
tant methods to detect quantum non-locality because the whole protocol can be implemented by uncertified
local observables. However, this detection is not sufficient for the justification of standard quantum theory,
because there are theoretically many types of beyond-quantum non-local states in General Probabilistic
Theories. One important class is Entanglement Structures (ESs), which contain beyond-quantum non-local
states even though their local systems are completely equivalent to standard quantum systems. This paper
shows that any device independent detection cannot distinguish beyond-quantum non-local states from
standard quantum states. To overcome this problem, this paper gives a device dependent detection based
on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
Especially, we give a way to detect any beyond-quantum non-local state in two-qubit ESs by observing
only spin observables on local systems.

Keywords: beyond-quantum state, general probabilistic theories, Bell’s inequality, device-independent
detection

Introduction—Bell’s inequality [1] (or CHSH in-
equality [2]) is one of the important ways to detect quan-
tum non-locality in our physical systems. Bell-CHSH
inequality (hereinafter, CHSH inequality) consists of bi-
partite players and their local operations. It is especially
important that the protocol of CHSH inequality can be
implemented by local observables. In other words, by
implementing the protocol of CHSH inequality as a bi-
partite communication task, we can experimentally de-
tect quantum non-locality of our physical systems when
Bell-CHSH inequality is violated. Actually, the violation
of CHSH inequality is confirmed in physical experiments
[3, 4, 5, 6, 7, 8]. Moreover, CHSH inequality can be
implemented without certification of measurement de-
vices. Such detection without certification of measure-
ment devices is called device independent (DI) detection
[10, 11, 12, 13, 14, 15, 16, 17, 18]. These remarkable
results played an important role in the early studies of
quantum physics and quantum information theory to en-
sure that our physical systems truly possess quantum
non-locality.

However, it is not sufficient for the strict verification of
quantum theory to detect standard quantum non-locality
because there are many other theoretical models with
non-locality than quantum systems. Such models can
be described as General Probabilistic Theories (GPTs)
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 45]. GPT is a framework for
general theoretical models with states and measurements,
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including classical and quantum theories. Important
models are called Entanglement Structures (ESs) with lo-
cal quantum subsystems [32, 37, 38, 39, 40, 45], including
not only the Standard Entanglement Structure (SES),
i.e., the standard quantum model defined by the tensor
product but also many other models. Some ESs have
fewer non-local states than the SES [37, 39], and also,
some ESs has beyond-quantum non-local states, i.e., non-
local states that do not belong to the SES [42, 38, 40, 45].
In order to ensure that our physical systems obey truly
standard quantum theory, it is also necessary to verify
whether beyond-quantum non-local states exist or not.
However, preceding studies [43, 44, 45] have revealed that
all ESs satisfy Tirelson’s bound, i.e., CHSH inequality
cannot distinguish the SES from any beyond-quantum
non-local state in ESs.

Furthermore, as we show in this paper, not only CHSH
inequality, but also any DI detection cannot distinguish
any beyond-quantum non-local state from the SES. Al-
though a similar statement was shown by the reference
[18], this paper also shows a corresponding statement in
our setting with GPTs as Theorem 2. Therefore, this
paper deals with a device dependent detection of an ar-
bitrary beyond-quantum non-local state in ESs by an ex-
perimental protocol. First, we give a device dependent
detection separating an arbitrary given beyond-quantum
state from all standard quantum states as an inequality
defined by local observables (Theorem 3). Next, we give a
bipartite protocol to implement the above detection. Our
protocol consists of local operations by bipartite play-
ers Alice and Bob and classical communication by them.
In the protocol, Alice and Bob detect whether a target
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state is beyond-quantum or not. If the target state is
truly beyond-quantum, Alice and Bob conclude that the
target state is beyond-quantum with high probability.

Our criterion and protocol are implemented by a com-
plicated sequence of local observables in general. How-
ever, in the 2-qubits case, we give a simple detection of
a beyond-quantum non-local state by observing Pauli’s
spin observables in a specific order. Moreover, like Bell’s
scenario, any beyond-quantum non-local “pure” state can
be detected by sequential local observables biased in the
same way as σx, σy, σz (Theorem 4). As a result, we
give a convenient detection for beyond-quantum non-
local pure states like Bell’s inequality in the 2-qubits case.
Settings and Definition of Beyond-Quantum

States—As a preliminary, we denote the set of Hermi-
tian matrices and the set of positive semi-definite matri-
ces on a finite dimensional Hilbert space H as LH(H) and
L+
H(H), respectively.
This paper deals with bipartite composite models of

GPTs whose local systems are equal to standard quan-
tum systems. In the setting of GPTs, there exist in-
finitely many such composite models, and they called
Entanglement Structures (ESs). In ESs, we can regard
certain non-positive Hermitian matrices as states in the
setting of GPTs.

Definition 1 (Beyond-Quantum States) We say
that a Hermitian matrix ρ ∈ LH(HA ⊗ HB) is a
beyond-quantum state if ρ ∈ SEP∗ (A;B) \ SES(A;B)
and Tr ρ = 1, where the sets SES(A;B) and SEP∗ (A;B)
are defined as

SES(A;B) := L+
H(HA ⊗HB), (1)

SEP∗ (A;B) :=
{
x ∈ LH(HA ⊗HB)∣∣∣Trxy ≥ 0 ∀y ∈ L+

H(HA) ⊗ L+
H(HB)

}
.

(2)

We denote the set of all beyond-quantum states and
all standard quantum states as S(SEP∗ (A;B)) and
S(SES(A;B)), respectively.

Here, we simply give the definition of beyond-quantum
states, but the definition is derived from the standard
setting of GPTs and local quantum structures [21, 32, 38,
42]. You can check the detailed setting in our preprint
[53].

Except for beyond-quantum states, this paper deals
with standard objects in local standard quantum sys-
tems, for example, local Positive Operator Valued Mea-
sures (POVMs) and local standard quantum observables.
Then, our interest is how we detect beyond-quantum
states by local operations if they exist.
Impossibility of Device-Independent Detection

for Beyond-Quantum States—First, we consider the
possibility of the Device-Independent (DI) detection of
a beyond-quantum state (Figure 1). In the device-
independent detection, we have no certificate of mea-
surement devices. Therefore, it is natural to consider
that a beyond-quantum state ρ0 is distinguished device-
independently by local measurements MA

a := {MA
a;i}i ∈ I

and MB
b := {MB

b;j}j ∈ J from all standard quantum states
when no pair of a standard quantum state and local
POVMs simulates the pair of the state ρ0 and local
POVMs MA

a := {MA
a;i}i ∈ I and MB

b := {MB
b;j}j ∈ J , i.e.,

there does not exist a pair of a standard quantum state
ρ1 ∈ S(SES(A;B)) and local POVMs MA

a := {MA ′
a;i}i ∈ I

and MB
b := {MB ′

b;j}j ∈ J such that the relation

Tr ρ0M
A
a;i ⊗MB

b;j = Tr ρ1M
A ′
a;i ⊗MB ′

b;j (3)

holds for any a, b, i, j. In other words, a beyond-quantum
state ρ0 is distinguished device-independently from all
standard quantum states when there exist local mea-
surements MA

a := {MA
a;i}i ∈ I and MB

b := {MB
b;j}j ∈ J to

satisfy the above condition. Therefore, the above device-
independent detectability is equivalent to the impossibil-
ity of the simulation by a pair of a standard quantum
state and local POVMs.

Alice’s System

Bob’s System

Uncertified
Local Measurement

Outcome

Target State

OutcomeInput

Input Uncertified
Local Measurement

Figure 1: In DI detection, Alice and Bob apply uncerti-
fied local measurements MA

a := {MA
a;i}i ∈ I and MB

b :=

{MB
b;j}j ∈ J to a given non-local state ρ. Then, Alice

and Bob determine whether ρ is beyond-quantum by the
probability Tr ρMA

a;i ⊗MB
b;j .

However, previous studies [43, 44, 45] showed that
CHSH inequality cannot detect any beyond-quantum
states by noticing steering condition. Furthermore, the
following theorem holds.

Theorem 2 For any pair of a beyond-quantum state
ρ0 and local POVMs MA

a := {MA
a;i}i ∈ I and MB

b :=

{MB
b;j}j ∈ J , there exists a pair of a standard quan-

tum state ρ1 ∈ SES(A;B) and local POVMs MA
a :=

{MA′
a;i}i∈ I and MB

b := {MB ′
b;j}j ∈ J to satisfy the condition

(3).

Although the reference [18] proved a similar statement,
it does not formulate the problem with GPTs. Further,
while the proof in [18] has a problem caused by an in-
verse of a key operator, our proof does not have such
a problem because our proof is straightforward and dif-
ferent from that of the reference [18], as shown in our
preprint [53, Appendix]. Due to Theorem 2, it is im-
possible to distinguish a beyond-quantum state from all
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standard quantum states. To resolve this problem, in-
stead of measurement devices without certification, we
need to employ measurement devices that are identified
with certifications. This problem setting is called device-
dependent (DD) detection.
Device Dependent Detection of Beyond-

Quantum State and Its Implementation—
Now, we discuss a DD detection of an arbitrary given

beyond-quantum state in ESs. In the following analy-
sis, instead of the joint distribution, as a simple indica-
tor, we focus on the sum of an expectation of a function
f(a, i, b, j), i.e.,

∑
a,i,b,j f(a, i, b, j) Tr ρMA

a;i⊗MB
b;j so that

the magnitude relationship of this indicator makes the
required discrimination. For our simple analysis, we as-
sume f(a, i, b, j) = f(a, i)f(b, j). Then, this value can be
rewritten as

∑
a,i,b,j

f(a, i, b, j) Tr ρMA
a;i ⊗MB

b;j

=
∑
a,b

Tr ρOA
a ⊗OB

b ,
(4)

where OA
a :=

∑
i f(a, i)MA

a;i, OB
b :=

∑
j f(b, j)MB

b;j . The

Hermitian matrices OA
a and OB

b can be regarded as stan-
dard quantum observables with the POVMs MA

a;i, M
B
b;j

and outcomes f(a, i), f(b, j), respectively. Therefore, the
value Tr ρOA

a ⊗OB
b corresponds to the expectation value

of the standard quantum observable OA
a ⊗ OB

b with the
state ρ. Hereinafter, we abbreviate the pair of POVMs
and outcomes in the left-hand side of (4) to the right-
hand side of (4) by using observables, according to this
correspondence.

Based on the sum of the expectation of standard quan-
tum local observables, the following theorem gives a DD
detection of any beyond-quantum state from all standard
quantum states.

Theorem 3 Given an arbitrary state ρ0, there exist
families of local observables {OA

k }mk=1 and {OB
k }mk=1 and

a real number α satisfying the following two properties:

1. Tr ρ0
∑m

k=1 OA
k ⊗OB

k > α.

2. sup
ρ1 ∈S (SES(A;B))

Tr ρ1

m∑
k=1

OA
k ⊗OB

k ≤ α.

The proof of Theorem 3 can be available in our preprint
[53, Appendix], but we remark that we can find {OA

k ⊗
OB

k }mk=1 and α by a deterministic way. Theorem 3 guar-
antees that the joint distribution with ρ0 cannot be sim-
ulated by the joint distribution with any standard quan-
tum state ρ1 under the common local measurements.
The above discussion can be understand in terms of the
Semi-Definite Programing (SDP) with the target func-
tion Tr ρ1

∑m
k=1 OA

k ⊗OB
k and the trace 1 condition. The

second relation in Theorem 3 shows that the solution of
the SDP is upper bounded by α. The first relation in
Theorem 3 states that ρ0 attains a strictly larger value
than the solution, and therefore, ρ0 is not positive semi-
definite, i.e., beyond-quantum.

In our preprint [53], we give a protocol to implement
the detection given as Theorem 3 based on local standard
observables. Therefore, any beyond-quantum state can
be detected by a finite number of certified local quantum
observables with large probability. In general cases, this
detection require large costs because we need to certify
a number of local quantum observables dependent on a
target state. However, in the 2 × 2 dimensional case, we
give a detection of any beyond-quantum pure state with
the certification of only three observables of Pauli’s spin
observables.

Let us consider an arbitrary ES of two local quan-
tum systems with dimension 2, i.e., we consider the case
dim(HA) = dim(HB) = 2. First, we define the following
function A Pauli(ρ;UA, UB) using Pauli’s spin matrices:

A Pauli(ρ;UA, UB)

:=
∑

c=x,y,z

Tr (UA ⊗ UB) ρ
(
U †
A ⊗ U †

B

)
σc ⊗ σc, (5)

where UA, UB and σx, σy, σz denote unitary matrices on
HA,HB , Pauli’s spin observables defined as

σx : =

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
,

σz : =

(
1 0
0 −1

)
,

(6)

respectively.
The value A Pauli(ρ;UA, UB) detects all beyond-

quantum pure states, i.e., all beyond-quantum states
that cannot be written as any convex mixtures of other
beyond-quantum states.

Theorem 4 The following two properties hold:

1. For any beyond-quantum pure state ρ0, there
exist unitary matrices UA, UB such that
A Pauli(ρ0;UA, UB) > 1.

2. sup
UA ,UB : unitary
ρ1 ∈S (S E S (A;B))

A Pauli(ρ1;UA, UB) ≤ 1.

The proof of Theorem 4 can be available in our preprint
[53, Appendix]. Theorem 4 implies that in 2 × 2 dimen-
sional case, if a target state ρ is beyond-quantum pure,
there exists a pair of unitary matrices UA and UB such
that A Pauli(ρ;UA, UB) detects the beyond-quantum pure
state ρ0 from all standard quantum states ρ1. If we can
apply the unitary operations in the whole protocol, it is
not necessary to certify the description of unitary matri-
ces. In other words, we only need to certify the observ-
ables σx, σy, σz for all detections of any beyond-quantum
pure state.
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Abstract. Ridgelet transform has been a fundamental mathematical tool in the theoretical studies of
neural networks, but the practical applicability of ridgelet transform to conducting learning tasks was
limited since its numerical implementation by conventional classical computation requires an exponential
runtime exp(O(D)) as data dimension D increases. To address this problem, we develop a quantum
ridgelet transform (QRT), which implements the ridgelet transform of a quantum state within a linear
runtime O(D) of quantum computation. As an application, we also show that one can use QRT as a
fundamental subroutine for QML to efficiently find a sparse trainable subnetwork of large shallow wide
neural networks without conducting large-scale optimization of the original network. This application
discovers an efficient way in this regime to demonstrate the lottery ticket hypothesis on finding such a
sparse trainable neural network. These results open an avenue of QML for accelerating learning tasks with
commonly used classical neural networks.

Technicial version [1] is to appear in the proceeding of ICML2023.

Keywords: quantum machine learning, lottery ticket hypothesis, neural network, quantum algorithm,
ridgelet transform

Quantum machine learning (QML) is an emerging field
of research to take advantage of quantum computation
for accelerating tasks in machine learning [2]. Quantum
computation can achieve significant speedups compared
to the best existing algorithms with conventional classical
computation in solving various computational tasks, but
it is still challenging to establish its application to com-
mon tasks in machine learning. QML indeed has advan-
tages in learning data obtained from quantum states [3],
yet machine learning commonly deals with classical data
rather than quantum states. For a classical dataset con-
structed carefully so that its classification reduces to a
variant of Shor’s algorithm, QML is known to achieve
the classification superpolynomially faster than classical
algorithms [4]; however, the applicability of such QML to
practical datasets has been unknown. Meanwhile, moti-
vated by the success of neural networks, various attempts
have been made to apply quantum computation to more
practical tasks for neural networks. For example, one
widely studied approach in QML is to use parameter-
ized quantum circuits, often called “quantum neural net-
works”, as a potential substitute for conventional clas-
sical neural networks; however, problematically, the pa-
rameterized quantum circuits do not successfully emulate
essential components of the neural networks, e.g., percep-
trons and nonlinear activation functions, due to linearity
of the transformation implemented by the quantum cir-
cuits [2]. Thus, a significant challenge in QML has been
to develop a novel technique to bridge the gap between
quantum computation and classical neural networks, so
as to clarify what advantage QML could offer on top of

∗hayata.yamasaki@phys.s.u-tokyo.ac.jp

the empirically proven merit of the classical neural net-
works.

To address this challenge, we here develop a fundamen-
tal quantum algorithm for making the tasks for classical
neural networks more efficient, based on ridgelet trans-
form. Ridgelet transform, one of the well-studied integral
transforms in signal processing, is a fundamental math-
ematical tool for studying neural networks [5]. Let f :
RD → R denote a function with D-dimensional input, to
be learned with a neural network. For an activation func-
tion g : R→ R such as the rectified linear unit (ReLU), a
shallow feed-forward neural network with a single hidden
layer is represented by f(x) ≈

∑N
n=1 wng(a>nx − bn),

where N is the number of nodes in the hidden layer,
and wn is the weight of the map g(a>nx − bn) param-
eterized by (an, bn) at node n ∈ {1, . . . , N}. In the
over-parameterized (continuous) limit N → ∞, the rep-
resentation simplifies into an integral representation of
the neural network, i.e.,

f(x) = S[w](x) :=

∫
RD×R

da dbw(a, b)g(a>x− b), (1)

where (a, b) runs over all possible parameters in the con-
tinuous space, and w : RD × R→ R at each (a, b) corre-
sponds to the weight wn at the node n with parameter
(an, bn) = (a, b). With a ridgelet function r : RD → R
that we appropriately choose corresponding to g, the D-
dimensional ridgelet transform R[f ] is defined as an
inverse transform of S[w] given by [6]

w(a, b) = R[f ](a, b) :=

∫
RD

dx f(x)r(a>x− b), (2)

which characterizes a weight w to represent f . A wide
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class of function f is representable in terms of the inte-
gral representation; moreover, as long as g and r satisfy
a certain admissibility condition, we can reconstruct f
from the ridgelet transform of f , i.e., f ∝ S[R[f ]], up to
a normalization factor [6]. For theoretical analysis, an es-
sential benefit of the integral representation is to simplify
the analysis by the linearity; that is, we can regard the
right-hand side of the above definition of S[w](x) as the
linear combination of an non-orthogonal over-complete
basis of functions, i.e., {g(a>x − b) : (a, b) ∈ RD × R}.
The meaning of the ridgelet transform of f is the weight
w(a, b) of the nodes in the hidden layer of this linearized
large neural network S[w](x) to represent f(x).

Progressing beyond using the ridgelet transform for
theoretical analysis, our key idea is to study its use
for conducting tasks for neural networks. However, D-
dimensional ridgelet transform has been computationally
hard to use in practice since the existing classical algo-
rithms for ridgelet transform require exp(O(D)) runtime
as D increases [7]. After all, the D-dimensional ridgelet
transform is a transform of D-dimensional functions in
an exp(O(D))-size space, and classical algorithms for
such transforms conventionally need exp(O(D)) runtime;
e.g., fast Fourier transform may be a more established
transform algorithm than that for the ridgelet transform
but still needs O(n log(n)) = exp(O(D)) runtime for the
space of size n = exp(O(D)). To solve these problems,
we discover that we can employ quantum computation.
Our results are as follows.

1. To make exact implementation of ridgelet trans-
form possible for computer with a finite number
of bits and qubits, we formulate a new discretized
version of ridgelet transform, which we call dis-
crete ridgelet transform (Sec. 2.1 of Technical
Version [1]). We identify the conditions for the dis-
crete ridgelet transform to be an isometry trans-
form. We prove that our discrete ridgelet transform
can be used for exactly representing any function on
the discretized domain (Sec. 2.2 of Technical Ver-
sion [1]).

2. We develop a quantum algorithm to apply the D-
dimensional discrete ridgelet transform to a quan-
tum state of O(D) qubits, i.e., a state in an
exp(O(D))-dimensional space, only within linear
runtime O(D) (Algorithm 1 in Sec. 3 of Techni-
cal Version [1]). We call this quantum algorithm
quantum ridgelet transform (QRT). QRT is
exponentially faster in D than the exp(O(D)) run-
time of the best existing classical algorithm for
ridgelet transform in the exp(O(D))-size space,
in the same spirit as quantum Fourier transform
(QFT) being exponentially faster than the corre-
sponding classical algorithm of fast Fourier trans-
form.

3. As an application, we demonstrate that we can use
QRT to learn a sparse representation of an un-
known function f by sampling a subnetwork of a
shallow wide neural network to approximate f well.

We analytically show the advantageous cases of our
algorithm and also conduct a numerical simulation
to support the advantage (Sec. 4 of Technical Ver-
sion [1]). This application is important as a demon-
stration of the lottery ticket hypothesis, as ex-
plained below.

Technical contributions in developing QRT.— For the
purpose of QML, we formulate the discrete ridgelet
transform. Our key development is a Fourier slice
theorem that characterizes our discrete ridgelet trans-
form using Fourier transform. Although multiple defini-
tions of discrete versions of ridgelet transform have been
proposed, none of them has such Fourier expression [7].
By contrast, the significance of the Fourier slice theo-
rem is that it makes the ridgelet analysis tractable with
the well-established techniques for the Fourier transform,
which we will use for constructing the quantum algorithm
as well.

Using the discrete ridgelet transform, we show that any
function f on the discretized domain has an exact rep-
resentation in terms of a shallow neural network with
a finite number of parameters in the discretized space.
In the continuous case, any square-integrable function f
is represented as the shallow neural network in the over-
parameterized (continuous) limit, i.e., f = S[w], with
the weight given by the ridgelet transform w ∝ R[f ], as
explained in (1) and (2). With discretization, it is non-
trivial to show such an exact representation due to finite
precision in discretizing the real number. Nevertheless,
we prove that any function f(x) on a discretized domain
can be exactly represented as f(x) = S[w](x) using our
discretized version S of the integral representation S as
well, with the weight given by our formulation of the dis-
crete ridgelet transform w ∝ R[f ]. We call this exact
representation a discretized neural network.

Furthermore, we introduce QRT, an efficient quantum
algorithm for applying the discrete ridgelet transform to
a given quantum state. In various quantum algorithms,
we may use QFT as a fundamental subroutine. In ad-
dition to QFT, various discrete transforms are known to
be implemented efficiently with quantum computation,
such as wavelet transform, Radon transform, fractional
Walsh transform, Hartley transform, and curvelet trans-
form. However, the existing discrete versions of ridgelet
transform [7] were lacking implementation by quantum
computation, due to the lack of the Fourier slice theo-
rem. In contrast, our QRT opens a way to use the dis-
crete ridgelet transform as a fundamental subroutine for
QML to deal with tasks for classical neural networks.

The advantage of QRT is its linear runtime O(D) in
the data dimension D, which is exponentially faster than
the best existing classical algorithm for ridgelet trans-
form in the exp(O(D))-size space requiring exp(O(D))
runtime. This advantage is in the same spirit as QFT
being exponentially faster than the corresponding classi-
cal algorithm of the fast Fourier transform. On top of
our development of QRT, we further clarify that QRT
has an application to accelerate the task of finding the
winning ticket of neural networks, as explained below.
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Impact on QML with neural networks.— State-of-the-
art neural networks have billions of parameters to attain
high learning accuracy, but such large-scale networks may
be problematic for practical use, e.g., with mobile devices
and embedded systems. Pruning techniques for obtain-
ing neural networks with a smaller number of parameters
are gaining growing importance in learning with neural
networks. The lottery ticket hypothesis claims that,
given a large-scale neural network, one can find a sparse
trainable subnetwork, which has been nominated as the
best paper in one of the top conferences of machine learn-
ing (ICLR2019) and attracts significant attention in the
community of machine learning [8].

Learning a general class of function f : RD → R would
be inevitably demanding, since a neural network to rep-
resent f would require exp(O(D)) parameters to specify
the values f(x) for exponentially many points x in the
worst case as the data dimension D increases. Indeed, as
explained above, any function f can be represented by
our discretized neural network f(x) = S[w](x), but this
network is exponentially wide in D. By contrast, the goal
of our demonstration of the lottery ticket hypothesis is
to achieve an approximation of this exponentially large
original neural network S[w] feasibly with much fewer pa-
rameters, using a subnetwork of the original network. To
this goal, it is conventional in statistical learning theory
to consider a reasonably restricted class of functions, e.g.,
those with bounded norms; correspondingly, we work on
a setting where the norm of the weights in the original
network for representing f should be bounded.

However, still in such a setting, it is computationally
demanding to search for the appropriate subnetwork hid-
den in the large-scale neural network. One existing way
to find a trainable subnetwork to approximate the origi-
nal network is to train the overall large original network
and then perform masking to eliminate the low-weight
nodes while keeping those with higher weights [8]. This
approach is inefficient since one needs large-scale opti-
mization to train the large original network before the
pruning. Then, more recent studies have suggested that
one should be able to find the subnetwork only by prun-
ing the initial network directly, even without the opti-
mization for training. Still, to perform this pruning ap-
propriately, the existing classical methods need to store
the parameters of the large-scale network in the classical
memory, to perform a large-scale search for the subnet-
work within the parameter space of the large original
neural network. Thus, as D increases, it would become
infeasible to deal with the exponentially large original
network in D for training or searching, as long as we use
the existing methods based on classical computation.

To apply QML to this pruning problem, our idea is
to use QRT for preparing a quantum state so that,
by measuring the state, we can sample the parame-
ters of the important nodes for the subnetwork with
high probability. This quantum algorithm is presented
in Sec. 4.2 and Appendix D of Technical Version [1]
(Algorithm 2). To see how this quantum algorithm
works, recall that the weights of the nodes of the neu-

ral network to represent f can be given by the ridgelet
transform of f . Given M examples of input-output
pairs (x1, f(x1)), . . . , (xM , f(xM )), as the input model,
our algorithm uses preparation of O(D)-qubit quantum
states that represent f(x) and the empirical distribution
p̂data(x) by their amplitude. Then, roughly speaking, our
quantum algorithm performs QRT of this input state and
measure it; in this way, we can sample parameters of the
high-weight nodes with high probability since the ampli-
tude of the state to be measured are the weights given by
the QRT of f . By repeating this sampling, we can col-
lect the set of high-weight nodes (i.e., important nodes
for learning f) efficiently in our setting.

Using this quantum algorithm, we further clarify the
overall algorithm for finding the sparse subnetwork to
approximate the original network with accuracy ε, as de-
scribed in Sec. 4.3 and Appendix E in Technical Ver-
sion [1] (Algorithm 3). The overall runtime for find-

ing this sparse trainable subnetwork is Õ(D× poly(1/ε)),
avoiding exp(O(D)) runtime. The advantage of our
quantum algorithm over a conventional classical algo-
rithm is also verified with numerical simulation.

These quantum algorithms are designed to avoid the
overhead of input and output throughout achieving the
learning task. Regarding the input model, we explicitly
show how to prepare the required input state by quan-
tum circuit within O(D polylog(M)) depth (see Sec. 4.2
and Appendix D of Technical Version [1] for our assump-
tion). Note that M dependency does not matter for our
quantum speedup in D. To make this QML algorithm
efficient, we never store all parameters of the large origi-
nal neural network in the classical memory but represent
them by the amplitude of the quantum state prepared
directly from given data. Also for the output, our al-
gorithm finds a high-weight node per single state prepa-
ration and measurement. If one were using some algo-
rithms that estimate expectation values of observables
or classical description of the prepared quantum state,
their overheads could cancel out the speedup in QML,
but our algorithm is designed to avoid these overheads.

Consequently, these results show that QRT can be
used as a fundamental subroutine for QML to accelerate
the tasks for the classical neural networks. Remarkably,
our algorithms have the theoretical guarantee in a con-
ventional learning setting, progressing beyond heuristic
QML for neural networks. Quantum computation often
uses QFT to achieve large quantum speedups for various
search problems, such as period finding and more recent
“verifiable quantum advantage without structure”. By
contrast, we make quantum computation applicable to
searching in the parameter space of neural networks, by
developing QRT to be used in place of QFT. A potential
drawback may be that our current technique is designed
simply for the shallow neural networks with a single hid-
den layer; however, studies of shallow networks capture
various essential features of neural networks. We leave
the generalization to deep neural networks for future re-
search, but our development opens a promising route in
this direction.
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On the universality of Sn-equivariant k-body gates
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Abstract. The importance of symmetries has recently been recognized in quantum machine
learning from the simple motto: if a task exhibits a symmetry (given by a group G), the learning
model should respect said symmetry. In this work we study how the interplay between symme-
try and locality in the generators of a parametrized quantum circuit affect its expressiveness.
We focus on the case of G = Sn, the symmetric group acting on an n-qubit system by qubit
permutation. We find that if the Quantum Neural Network (QNN) is generated by arbitrary
one- and two-body Sn-equivariant gates, the it is semi-universal but not universal. Universality
can only be achieved by employing up-to-n-body generators.

Keywords: Quantum Circuits, Universality, Symmetry, Representation Theory

1 Introduction

Numerous endeavors have been undertaken to cre-
ate learning models that are tailored specifically to a
given task. Among these, Geometric Quantum Ma-
chine Learning (GQML) has emerged as one of the
most promising approaches [1, 2, 3, 4, 5, 6, 7]. The
fundamental idea behind GQML is to leverage the
symmetries present in the task to develop sharp in-
ductive biases for the learning models. The GQML
program consists of several steps. First, one needs to
identify the group G of transformations preserving
some important property of the data (e.g., a sym-
metry that preserves the labels in supervised learn-
ing). While the theoretical foundations for GQML
have been established, it is still unclear what the
true expressive power of group-invariant QNNs is.
In this work, we will focus on G = Sn, the sym-
metric group of permutations, with its action on
n qubits. This group is of special interest as it
is the relevant symmetry group for a wide range
of learning tasks related to problems defined on
sets, graphs and grids, molecular systems, multipar-
tite entanglement, and distributed quantum sens-
ing [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Consider n-qubit systems with d = 2n-

dimensional state space H = (C2)⊗n. A QNN is
a parametrized quantum circuit

U(θ) =

M∏
m=1

e−iθmHm , (1)

where Hm are Hermitian operators taken from a
given set of generators G, and θ = (θ1, . . . θM ) ∈ RM

∗larocca@lanl.gov
†cerezo@lanl.gov

are trainable parameters. As shown in Fig. 1, we
consider the case where the QNN contains only up-
to-k-body gates, i.e., gates acting non-trivially on
at most k qubits. Such restriction is usually physi-
cally motivated and arises when working with gates
that are native to some specific hardware [18]. At
this point, we find it convenient to recall that in
the absence of symmetries, 2-local gates are suffi-
cient to generate any d-dimensional unitary. How-
ever, the same is generally not true when the oper-
ators in G are local, but also chosen to respect cer-
tain symmetry group G [19, 20]. Hence, given these
constraints, it is critical to quantify the QNN’s ex-
pressiveness, i.e., the breadth of unitaries that U(θ)
can generate when varying the parameters θ (see
Fig. 1(b)). While several measures of expressive-
ness exist [21, 22, 23], here we will focus on the
so-called Dynamical Lie Algebra (DLA) [24], which
captures the potential expressiveness of the QNN.
Given a set of Hermitian generators G, the DLA
is the subspace of operator space u(d) spanned by
the repeated nested commutators of the elements
in G. That is, g = ⟨iG⟩Lie, where ⟨ · ⟩Lie denotes
the Lie closure. Notably, the DLA fully determines
the ultimate expressiveness of the QNN, as we have
U(θ) ∈ G = eg ⊆ U(d).

The main ingredient to build symmetry respecting
circuits is through the concept of equivariance.

Definition 1 (Equivariance) Given a compact
group G, an operator H is G-equivariant if it com-
mutes with every group element.

Note that if all the generators in G are equivariant,
the QNN can be readily shown to be equivariant
itself [4, 2]. We also highlight the fact that Defini-
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Figure 1: a) We study the impact of both symmetry
and locality constraints on parametrized circuit gen-
erators. We focus on the case of permutation invari-
ance and one and two qubit gates (same color share
a common parameter). b) Imposing Sn-equivariance
can appropriately reduce the QNN’s expressiveness
to a region of unitaries respecting the task’s symme-
try. Imposing additional restrictions, such as few-
bodyness, further restricts its expressiveness.

tion 1 implies H ∈ comm(G), where comm(G) de-
notes the commutant algebra of the (representation
R of the) group G, i.e., the associative matrix al-
gebra of linear operators that commute with every
element in G:

comm(G) = {A ∈ B(H) | [A,R(g)] = 0 , ∀g ∈ G} . (2)

Here, B(H) denotes the space of bounded linear op-
erators in H.

Next, it is fundamental to recall that the repre-
sentation R admits an isotypic decomposition

R(g ∈ G) ∼=
L⊕

λ=1

rλ(g)⊗ 1mλ
, (3)

where rλ is a dλ = dim(rλ)-dimensional irreducible
representation (irrep) of G, and 1mλ

is an identity
of dimension mλ. Using Pν

λ to denote the projector
onto the subspace associated with each irrep, we can
focus on the part of the DLA that acts non-trivially
on each Hν

λ, given by gνλ = {Pν
λ iH , iH ∈ g}.

The previous motivates us to define three im-
portant Lie subalgebras of u(d). First, we de-

fine the maximal G-symmetric subalgebra uG(d) =
comm(G) ∩ u(d) as

uG(d) = Q

(
L⊕

λ=1

u(mλ)

)
=

L⊕
λ=1

1dλ ⊗ u(mλ) , (4)

where Q is a representation defined by the right-
hand-side of Eq. (4). We then define the maximal
special subalgebra suG(d) = comm(G) ∩ su(d), as

suG(d) = s

[
L⊕

λ=1

1dλ ⊗ u(mλ)

]
, (5)

where s[·] denotes keeping the operators with van-
ishing trace. Finally, we also define the maximal
centerless G-symmetric subalgebra

suGcless(d) = Q

(
L⊕

λ=1

su(mλ)

)
=

L⊕
λ=1

1dλ
⊗ su(mλ) . (6)

We now introduce three key definitions that will
allow us to study controllability and degrees of uni-
versality when there are symmetries in play.

Definition 2 The QNN, or its associated DLA,
is said to be: i) Subspace controllable, if for all
λ, su(mλ) ⊆ gλ ⊆ u(mλ), ii) Semi-universal, if
suGcless(d) ⊆ g ⊆ uG(d), and iii) Universal, or com-
pletely controllable, if suG(d) ⊆ g ⊆ uG(d).

Given a Lie algebra h ⊆ u(d), its center z(h) is
composed of all the elements in h that commute with
every element in h, i.e.,

z(h) = {iH ∈ h | [H,H ′] = 0 , ∀iH ′ ∈ h} . (7)

In particular, z(uG(d)) = Q
(⊕L

λ=1 u(1)
)

and to-

gether with the centerless su they form the maximal
G-symmetric unitary subalgebra

uG(d) = suGcless(d) ∪ z(uG(d)) . (8)

2 Results

We consider G to be the symmetric group Sn
and R the qubit-permuting representation of Sn on
n qubits, R(π ∈ Sn)

⊗n
i=1 |ψi⟩ =

⊗n
i=1 |ψπ−1(i)⟩ .

Given a set of equivariant k-local generators, it is
natural to ask: can we achieve subspace controlla-
bility, or even (semi-)universality? In particular,
consider the following set of one and two body Sn-
equivariant generators (see Fig. 1).

G2 =


n∑

j=1

Xj ,

n∑
j=1

Yj ,

n∑
j1<j2

Zj1Zj2

 . (9)

The expressiveness of G2 is captured by the following
theorem.
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Figure 2: Here we review the main results of our
work.

Theorem 1 G2 The DLA for G2 is

g2 = suSn
cless(d)⊞Q (u(1)) , (10)

where ⊞ denotes the Minkowski sum1 and where
Q(u(1)) ⊂ z(uSn(d)).

Theorem 1 suggests the set G2 is semi-universal
(and thus subspace controllable) according to Def-
initions 2. We now present the main steps in its
derivation. In addition, we can infer from this
theorem that the dimension of g2 is dim(g2) =(
n+3
3

)
−
⌊
n
2

⌋
.

Our previous results proved that sets of genera-
tors with Sn-equivariant 1-body and 2-body opera-
tors are not sufficient to generate suSn(d). A natural
question then is whether this can be fixed by includ-
ing in the set of k-body Sn-equivariant generators
(for k ≥ 3). Defining as gk the DLA associated with
a set of generators containing all Sn-equivariant k-
body gates, we have

Theorem 2 The DLA for the set Gk is

gk = suSn
cless(d)⊞Q

u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
⌊k/2⌋

 , (11)

where Q (u(1)⊕ · · · ⊕ u(1)) is a ⌊k/2⌋-dimensional
subalgebra of z(uSn(d)).

Theorem 2 shows that one element in the center
is generated in the DLA every time one adds a gen-
erator with even bodyness.

1Given two sets A and B, their Minkowski sum is defined
as A⊞B = {a+ b | a ∈ A, b ∈ B}.

Corollary 1 Any set consisting of at-most-k-body
Sn-equivariant operators will always be insufficient
to generate suSn(d) unless k = n for n even or k ≥
n− 1 for n odd.

Theorem 2 and Corollary 1 show that in order for
a QNN with Sn-equivariant k-body gates to be uni-
versal, one needs to include in the set of generators
up-to-n-body gates (for n even) or up-to-(n − 1)-
body gates (for n odd). Hence, this corollary im-
poses a fundamental limitation of the universality
of QNNs with Sn-equivariant k-local gates.

3 Discussion

Sn-equivariant QNNs hold unique properties such
as the absence of barren plateaus, generalization
with few training points, and the capacity for ef-
ficient overparameterization [5]. However, the influ-
ence of locality constraints on the gate generators
could limit their power. Our work shows that Sn-
equivariant QNNs constructed with elementary k-
body gates exhibit semi-universality and subspace
controllability, but not universality.
This might appear to be a restriction; however,

the fact that Sn-equivariant QNNs with only 2-body
gates achieve semi-universality is a significant result.
Importantly, our findings dictate that for achieving
universality, one must include up-to-n-body inter-
actions for even n, and up-to-(n − 1)-body interac-
tions for odd n. This outcome carries several im-
plications: it not only reveals a fundamental limita-
tion in reaching universality with local permutation-
invariant gates, but it also corrects a previously held
belief that universality can be attained with one-
and two-body Sn-equivariant gates.
Furthermore, our work establishes an intrinsic

connection with the study in Ref. [25] through the
Schur-Weyl duality. This relationship offers an in-
sightful lens for exploring how central projections
condition impacts generators on each ”side” of the
duality. Moreover, it highlights the potential of sim-
ilar results for dual reductive pairs.
As a final note, both our work and those

in Refs. [19, 25, 26, 20] focus primarily on ob-
structions to universality coming from the cen-
tral projections condition. We thus believe that a
more general investigation into the failure modes
for gate sets with additional constraints (be-
yond symmetry-equivariance) to generate the full
symmetry-invariant algebra will be a fruitful area
of study.
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No-Regret Learning in Quantum Games:
Equilibration, Correlation and Entanglement
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Abstract. Recent works have studied quantum versions of Nash and correlated equilibria, but the ability
of distributed quantum agents to reach such equilibria is poorly understood. We study no-regret learning
in quantum games through the notion of quantum coarse correlated equilibria (QCCE), which we introduce
in this work. We show that the time-average behavior of no-regret learning dynamics converges in time-
average to the set of separable QCCE. In the special case of quantum zero-sum games, no-regret learning
implies time-average convergence of the players’ marginal distributions to quantum Nash equilibria. Finally,
we show that QCCE computation is reducible to a semidefinite programming formulation.

Keywords: Quantum game theory, no-regret learning, coarse correlated equilibrium

1 Introduction and Preliminaries
In this work, we study the following questions: What

new solution concepts emerge at the intersection of on-
line learning, game theory and quantum information the-
ory? How do agents that combine online optimization
and regret minimization with quantum information be-
have when interacting in multi-agent systems?

Our results. We form a connection between no-regret
learning and quantum games, introducing the notion
of quantum coarse correlated equilibrium (QCCE). We
provide structural and computational characterizations
for QCCEs, providing a semidefinite programming for-
mulation thereof. Moreover, we study in more detail
the convergence properties of algorithms that satisfy the
no-external-regret property. Specifically, for two-player
quantum zero-sum games, we show that the time-average
behaviour of both players using no-external-regret algo-
rithms converges to the set of quantum Nash equilibria
(QNE). On the other hand, for general quantum games
we show that the time-average behaviour if all players
use no-external-regret algorithms converges to the set of
separable QCCEs.

Classical game theory and equilibrium notions.
A powerful mathematical framework for modeling and
studying the interactions among strategic agents is
normal-form game theory. A normal-form game consists
of a set of players N = {1, ..., k} where player i may select
from a finite set of pure strategies Si. Each player has a
payoff function ui : S ≡

∏
i Si → R assigned over pure

strategy profiles s = (s1, . . . , sk). The expected payoff of
the i-th player using joint strategy (i.e. probability dis-
tribution over pure strategies) p ∈ ∆(S1× . . . Sk) is given
by ui(p) =

∑
s1∈S1,...,sk∈Sk

p(s1, . . . , sk)ui(s1, . . . , sk),
where p(s1, . . . , sk) is the probability the system is in
the pure state (s1, . . . , sk).

∗wayne_lin@mymail.sutd.edu.sg
†georgios@sutd.edu.sg
‡ryann_sim@mymail.sutd.edu.sg
§antonios@sutd.edu.sg

The analysis of normal-form games typically involves
studying if the players converge to an equilibrium. The
most famous form of equilibrium is the Nash equilibrium
[23], defined as a product distribution wherein players
cannot increase their utilities by unilateral deviations.
However, in recent years doubt has been cast on the prac-
ticality of the Nash equilibrium as a solution concept
for strategic interaction. This is because even though
a Nash equilibrium (in mixed strategies) always exists,
computing them (even approximately) is intractable [8].
Several alternative equilibrium concepts have been pro-
posed. The first is the notion of a correlated equilibrium
(CE) [1], defined as a mixed strategy p ∈ ∆(S1× . . .×Sk)
so that for all players i and si, s

′
i ∈ Si:∑

s−i

p(s−i|si)ui(s−i, si) ≥
∑
s−i

p(s−i|si)ui(s−i, s
′
i), (CE)

where p(s−i|si) denotes the conditional distribution
player i computes on ×−iSi given that they received rec-
ommendation si. A second important alternative is the
coarse correlated equilibrium (CCE) [22], defined as a
joint strategy p ∈ ∆(S1 × . . .× Sk) satisfying:

ui(p) ≥
∑
si

xisi

∑
s−i,s′i

p(s′i, s−i)ui(si, s−i), (CCE)

for all players i and xi = {xisi} ∈ ∆(Si). Unlike Nash
equilibria, optimization over the sets of CE and CCE is
tractable. Additionally, many algorithms have been pro-
posed to compute them efficiently in a variety of game-
theoretic settings (see e.g. [10, 17, 12, 6, 3, 30, 31, 7, 27]).

Learning in games via online optimization. Mod-
ern machine learning applications call for efficient algo-
rithms that learn from data as they arrive. A mathemati-
cal framework that has emerged in recent years for study-
ing real-time decision making is online optimization [29],
where at each epoch t = 1, . . . , T the optimizing agent
commits to a decision xt in a (typically compact con-
vex) set X without prior knowledge of the loss function
and receives feedback with which they use to improve the
quality of their decisions over time.
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A well-studied measure of the performance of an online
algorithm A is the notion of (external) regret [16], defined
as the difference between the expected cumulative loss of
the algorithm after T iterations and the loss incurred
by the best fixed decision in hindsight. In the learning
in games setting where players obtain utilities at each
timestep, regretTi (A) = maxpi

∑T
t=1 u

t
i(pi)−

∑T
t=1 u

t
i(p

t
i).

An algorithm is called no-external-regret if it performs
on average as well as the best fixed strategy in hindsight,
i.e., 1

T regretT (A) = o(T ). If all players in a normal-form
game employ external regret-minimizing algorithms to
select their strategies, the players’ time-average behavior
converges to a coarse correlated equilibrium [28, 17]. In
the setting of two-player zero-sum games, the product
of the marginals of the players’ individual time-averaged
strategies converges to the set of Nash equilibria [11, 24].

The no-external-regret benchmark considers what
would have happened if at every time t = 1, . . . , T the
agent replaces xt with ϕ(xt) where ϕ is any admissible
deviation mapping. In the same spirit, for any set Φ of
deviation mappings, [14] defines a corresponding notion
of Φ-regret, which for the game-theoretic setting gives
regretΦ,T

i (A) = maxϕ∈Φ

∑T
t=1 u

t
i(ϕ(pi)) −

∑T
t=1 u

t
i(p

t
i),

and show that for any family Φ of linear deviation maps,
no-Φ-regret algorithms exist. Moreover, the time-average
behavior of players using a no-Φ-regret algorithm con-
verges to the corresponding notion of Φ-equilibria in gen-
eral normal-form games. This line of work has helped us
better understand the landscape of regret minimization
in games and beyond [13, 30, 2, 25].

Learning in quantum games. Recently, the concept
of quantum games, where players process and exchange
quantum information, has garnered much interest in the
literature [9, 15, 5, 34, 33]. Recent works such as [19], [5],
[34] and [32] have formulated and studied quantum ver-
sions of Nash equilibria and correlated equilibria, explor-
ing the advantages players can derive by playing quantum
strategies. However, the ability of players to reach such
equilibria in a distributed, online fashion is not well un-
derstood. Previously, [19] studied Matrix Multiplicative
Weights Update (MMWU) in two-player zero-sum quan-
tum games and showed time-average convergence to the
quantum Nash equilibrium. Recently, [18] study a con-
tinuous time variant of MMWU, showing that the dy-
namics exhibit a cyclical behaviour known as Poincaré
recurrence. This mirrors results classical results which
show that regret minimization alone does not suffice for
convergence to equilibria [26, 4, 21]. Beyond the zero-sum
setting, [20] studies a version of MMWU in quantum po-
tential games. Other than that, little is known about the
behaviour of learning algorithms in quantum games.

Quantum preliminaries. Given a finite-dimensional
Hilbert space H = Cn, we denote by L(H) the set of lin-
ear operators acting on H. When two quantum registers
with associated spaces A and B of dimension n and m re-
spectively are considered as a joint quantum register, the
associated state space is given by the density operators

on the tensor product space, i.e., D(A ⊗ B). A linear
operator that maps matrices to matrices, i.e., a map-
ping Θ : L(B) → L(A), is called a super-operator. The
adjoint super-operator Θ† : L(A) → L(B) is uniquely
determined by the equation ⟨A,Θ(B)⟩ = ⟨Θ†(A), B⟩.
A super-operator Θ : L(B) → L(A) is positive if it
maps PSD matrices to PSD matrices. There exists a
linear bijection between matrices R ∈ L(A ⊗ B) and
super-operators Θ : L(B) → L(A) known as the Choi-
Jamiołkowski isomorphism. For a super-operator Θ its
Choi matrix is: CΘ =

∑
1≤i,j≤m Θ(Ei,j) ⊗ Ei,j ∈ L(A⊗

B), where {Ei,j}mi,j=1 is the standard orthonormal ba-
sis of L(B) = Cm×m. Conversely, given an operator
R =

∑
1≤i,j≤m Ai,j ⊗ Ei,j ∈ L(A ⊗ B), we can define

ΘR : L(B) → L(A) by setting ΘR(Ei,j) = Ai,j from
which it easily follows that CΘR

= R. Explicitly, we have
ΘR(B) = TrB(R(1A ⊗ B⊤)), where the partial trace
TrB : L(A ⊗ B) → L(A) is the unique function that sat-
isfies: TrB(A ⊗ B) = ATr(B), ∀A,B. Moreover, the
adjoint map is Tr†B(A) = A ⊗ 1B. Lastly, a superopera-
tor Θ is completely positive (i.e., 1m⊗Θ is positive for all
m ∈ N) iff the Choi matrix of Θ is positive semidefinite.

Quantum games. In a quantum game (QG), there are
k players and each player i has register Hi and selects a
density matrix ρi ∈ D(Hi). A joint strategy is given
by a joint state ρ ∈ D(

⊗
i Hi) and the utility function

for each player is the (multilinear) expected value of an
observable Ri on the joint state, i.e.,

ui(ρ) = Tr(ρRi) (QG)

for some Hermitian Ri ∈ L(⊗iHi). We henceforth re-
fer to Ri as player i’s utility tensor. If ρ = ρi ⊗ ρ−i

for some i ∈ [k], ρ−i ∈ D(
⊗

i′ ̸=i Hi′), we can write the
utility (QG) in the alternative form ui(ρ) = Tr(ρRi) =〈
ρi,Θi(ρ

⊤
−i)

〉
where Θi : L(

⊗
i′ ̸=i Hi′) → L(Hi) and

Ri ∈ L(
⊗

i′ Hi′) = L(Hi ⊗ (
⊗

i′ ̸=i Hi′)) are related via
the Choi-Jamiołkowski isomorphism. Finally, if a state
ρ ∈ D(

⊗
i Hi) can be written as a convex combination

of product states i.e., ρ =
∑

j λj

⊗
i ρi,j , then it is called

separable, and otherwise it is entangled.

Definition 1 (QNE) We call a product state ρ = ρ1 ⊗
ρ2 ⊗ . . .⊗ ρk a quantum Nash equilibrium (QNE) if ∀i ∈
[k], ρ′i ∈ D(Hi),

ui(ρ) ≥ ui

(
ρ′i ⊗

(⊗
i′ ̸=i

ρi′
))

(QNE)

Moreover ρ is called an ϵ-approximate quantum Nash
equilibrium (ϵ-QNE) if the inequality is satisfied up to
an additive error of ϵ.

2 Quantum Coarse Correlated Equilibria
By taking the non-commutative extension of the Φ-

regret framework to the space of density strategies and
setting Φ to be constant CPTP maps on this space, we
have that ρ is a quantum coarse correlated equilibrium if

ui(ρ) ≥ ui((ϕi ⊗ I−i)(ρ)) (dev-QCCE)
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for all replacement channels ϕi : L(Hi) → L(Hi), X 7→
Tr(X)ρ′i for some ρ′i ∈ L(Hi). We can equivalently ex-
press dev-QCCE using partial traces.

Definition 2 (QCCE) A state ρ is called a quantum
coarse correlated equilibrium (QCCE) if for each player
i ∈ [k] and ρ′i ∈ D(Hi), we have:

ui(ρ) ≥ ui(ρ
′
i ⊗ Tri ρ) (QCCE)

where Tri : L(
⊗

i′ Hi′) → L(
⊗

i′ ̸=i Hi′) is the partial
trace with respect to player i’s subsystem. Moreover ρ is
an ϵ-approximate quantum coarse correlated equilibrium
(ϵ-QCCE) if the inequality is satisfied up to an additive
error of ϵ. Finally, if a QCCE ρ is a separable state (i.e.,
it can be expressed as a convex combination of product
states), we call it a separable QCCE.

Spectrahedral characterization of QCCEs. Anal-
ogous to the classical setting, the set of QCCEs of a game
can be described as the feasible set of a semidefinite pro-
gram (SDP). For each i ∈ [k], Θi : L(

⊗
i′ ̸=i Hi′) → L(Hi)

and Ri ∈ L(
⊗

i′ Hi′) = L(Hi ⊗ (
⊗

i′ ̸=i Hi′)) are related
via the Choi-Jamiołkowski isomorphism which allows us
to write the following characterization:

QCCEs = {ρ∗ ∈ H : Tr(Riρ
∗)I −Θi((Tri ρ

∗)
⊤
) ⪰ 0

∀i ∈ [k], Tr ρ∗ = 1, ρ∗ ⪰ 0}.

These conic inequality constraints can be combined
into a single, block-diagonal LMI in terms of the entries
of ρ∗, giving us an SDP characterization of the set of
QCCEs of a given game. Hence, the set of QCCEs is a
spectrahedron, which mirrors the classical result that the
set of CCEs is a polyhedron.

3 Quantum Zero-Sum Games
In this section, we consider the special case of quan-

tum zero-sum games, where the utility is defined such
that the sum of all players’ utilities is always zero. More-
over, let us restrict ourselves to the two-player case
in order to present an analogue of a standard classi-
cal result - no-regret algorithms converge to Nash in
two-player zero-sum games. In our setting, two play-
ers Alice and Bob play density matrices ρ ∈ D(A) and
σ ∈ D(B) respectively. For notational simplicity, Alice’s
payoff is uA(ρ, σ) = ⟨ρ,Θ(σ)⟩ = Tr

(
R(ρ⊗ σ⊤)

)
, where

Θ : L(B) → L(A) and R ∈ L(A ⊗ B) are related by the
Choi-Jamiołkowski isomorphism. The main result in this
section shows that no-regret algorithms converge to the
set of QNE in two-player quantum zero-sum games.

Theorem 3 If both players in a two-player quantum
zero-sum game update their strategies with a no-regret
algorithm that guarantees a time-averaged regret of ≤ ϵ
after T timesteps, then the product of the time-averages
of their individual sequences of play after T timesteps is a
2ϵ-QNE. In particular, the set of limit points of the prod-
uct of these time-averaged sequences with infinite time
horizon is equal to the the set of QNEs, and the utility

attained by the time-averaged strategies converges to the
value of the game.

Corollary 4 Suppose a two-player quantum zero-sum
game satisfies

−1 ≤ min
ρ∈D(A),
σ∈D(B)

⟨ρ,Θ(σ)⟩ ≤ max
ρ∈D(A),
σ∈D(B)

⟨ρ,Θ(σ)⟩ ≤ 1,

and let n be the larger of the dimensions of their regis-
ters. For any ϵ ≤ 4, the players are guaranteed to have
the product of their time-averaged play after T = 16 lnn

ϵ2

timesteps be an ϵ-QNE if they use MMWU with fixed
stepsize η = ϵ

4 to select their strategies.

4 Beyond Quantum Zero-Sum Games
Main Theorem. For any quantum game (QG), the set
of separable QCCEs is equal to the limit points of the
time-averaged history of joint play of players using no-
regret algorithms.

Theorem 5 If all players in a quantum game update
their strategies with a no-regret algorithm that guarantees
a time-averaged regret of ≤ ϵ after T timesteps, then the
time-averaged joint history of play after T timesteps is a
separable ϵ-QCCE. In particular, the limit points of the
time-averaged joint history of play generated by no-regret
algorithms are separable QCCEs.

Corollary 6 Suppose a k-player quantum game satisfies

|Tr
(
R(⊗k

i=1ρi)
)
| ≤ 1

for all ρ1 ∈ D(H1), ρ2 ∈ D(H2), . . . , ρk ∈ D(Hk), and
let n be the largest dimension of the players’ registers.
For any ϵ ≤ 2, the players are guaranteed to have the
their time-averaged joint history of play after T = 4 lnn

ϵ2

timesteps be a separable ϵ-QCCE if they each use MMWU
with fixed stepsize η = ϵ

2 to select their strategies.

Theorem 7 For any separable QCCE ρ∗, there exist no-
regret algorithms for each player such that, if all play-
ers follow them, their time-averaged joint history of play(

1
T

∑T
t=1

⊗
i ρ

t
i

)
T

converges to ρ∗ as T → ∞.

Combining Theorems 5 and 7 suffices to complete the
proof for the Main Theorem.

5 Conclusion
In this work we provide a general class of quantum

games that fits with and subsumes prior formulations.
We introduce and focus on quantum coarse correlated
equilibria and show that for general quantum games, the
set of separable QCCEs is actually the set of limits points
of the time-averaged distribution of joint play when play-
ers use no-regret algorithms. Moreover, in the two-player
zero-sum case, no-regret algorithms result in convergence
to quantum Nash equilibria. Overall, this indicates a rich
connection between the worlds of online optimization,
learning in games, and quantum information theory.

Full version of paper attached as appendix.
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Abstract. To achieve reliable measurement-based quantum computation, it is crucial to verify whether
the resource graph states are accurately prepared in the adversarial scenario. Previous verification protocols
for this task are resource consuming or noise susceptible. Here, we propose a robust and efficient protocol
for verifying arbitrary graph states with any prime local dimension in the adversarial scenario, which can
be applied immediately to verifying measurement-based quantum computation. Our protocol requires only
local Pauli measurements and is easy to realize with current technologies. It achieves the optimal scaling
behaviors with respect to the system size and the target precision, and exponentially enhances the scaling
behavior with the significance level.
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1 Introduction

Quantum computation offers the promise of exponen-
tial speedups over classical computation on certain im-
portant problems [1–3]. The very power of quantum com-
putation raises the challenging problem of verifying the
correctness of computation results. This problem lies at
the heart of the active research field of quantum char-
acterization, verification, and validation (QCVV) [4–9].
However, it is extremely difficult to construct robust
and efficient verification protocols that apply to noisy,
intermediate-scale quantum (NISQ) devices [3, 10,11].

Measurement-based quantum computation (MBQC)
[12–16] is a powerful and flexible model of quantum com-
putation, where graph states are used as resources and
local projective measurements on qudits are used to drive
the computation. Compared with the preparation of mul-
tipartite entangled states, it is in general much easier
to perform local projective measurements accurately. So
the main challenge in the verification of MBQC lies in
the verification of the underlying resource states.

In this paper, we consider the problem of verifying
the resource graph states in the following adversarial sce-
nario [17–23], which is pertinent to blind and cloud quan-
tum computing [19,24–26]: Alice is a client who can only
perform single-qudit projective measurements, and Bob
is a server who can prepare arbitrary quantum states. To
perform MBQC, Alice delegates the preparation of the
resource graph state |G〉 ∈ H to Bob, who then prepares
a state ρ on the whole system H⊗M and sends it to Alice
qudit by qudit. If Bob is honest, then he is supposed to
generate M copies of |G〉; while if he is malicious, then he
can mess up the computation of Alice by generating an
arbitrary correlated or even entangled state. To obtain
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reliable computation results, Alice needs to verify the re-
source state prepared by Bob with suitable tests on some
systems of ρ. If the test results satisfy certain conditions,
then she can guarantee that the reduced state on the re-
maining system is close enough to |G〉, and can safely use
it for MBQC; otherwise, she rejects Bob’s state. Since
there is no communication from Alice to Bob after the
preparation of ρ, the client’s privacy is kept against the
server by the no-signaling principle [24]. Hence, the pro-
cedure above is also suitable to verifying blind MBQC.

According to the above discussion, the problem of ver-
ifying MBQC reduces to the problem of verifying the re-
source graph state in the adversarial scenario [17,19,27].
However, it is highly nontrivial to construct robust and
efficient verification protocols in the adversarial scenario.
Although various protocols have been proposed [17–23],
most protocols known so far are too resource consuming.
Moreover, most protocols are not robust to experimental
noise: the state prepared by Bob will be rejected with
a high probability even if it has a very small deviation
from the ideal state |G〉. However, in practice, it is unre-
alistic to ask honest Bob to generate the perfect resource
state. In addition, if the state deviation from |G〉 is small
enough, then it is still useful for MBQC [21, 22]. There-
fore, a practical protocol should accept nearly ideal quan-
tum states with a sufficiently high probability. Other-
wise, Alice needs to repeat the verification protocol many
times to accept such states, which may substantially in-
crease the sampling complexity. Unfortunately, no proto-
col known in the literature can achieve this goal. A fault-
tolerant verification protocol [26] that accepts noisy but
still error-correctable states has been proposed, but it is
robust only to certain correctable errors, and is difficult
to realize in the current era of NISQ devices [3, 10,11].

In this work, we propose a robust and efficient protocol
for verifying blind MBQC. To achieve this goal we pro-
pose a robust and efficient protocol for verifying general
qudit graph states with a prime local dimension in the
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adversarial scenario. Our protocol is appealing to prac-
tical applications because it only requires stabilizer tests
based on local Pauli measurements, which are easy to im-
plement with current technologies. It is robust against
arbitrary types of noise in state preparation, as long as
the fidelity is sufficiently high. Moreover, our protocol
can achieve optimal scaling behaviors with respect to the
system size and target precision, and the sampling cost
is comparable to the counterpart in the nonadversarial
scenario. As far as we know, such a high efficiency has
never been achieved before when robustness is taken into
account. In addition to verifying MBQC, our approach
can also be applied to verifying many other important
quantum states in the adversarial scenario.

2 Verification of MBQC

Recently, a homogeneous strategy [17, 27] for testing
qudit stabilizer states was proposed [17,28]. Here we use
a variant strategy for testing qudit graph states (d is a
prime), which serves as an important subroutine of our
verification protocol. The strategy is based on stabilizer
tests with local Pauli measurements (see the technical
version for details), and can be characterized by a two-
outcome measurement {Ω, I− Ω}, where the outcome Ω
corresponds to passing the test, and the outcome I − Ω
corresponds to the failure. The operator Ω is called a
strategy, and can be constructed as the form

Ω = |G〉〈G|+ λ(I− |G〉〈G|) (1)

for any 1/d ≤ λ < 1. We denote by ν := 1 − λ the
spectral gap of Ω from the largest eigenvalue.

Suppose Alice intends to perform MBQC on the graph
state |G〉 prepared by Bob. Our verification protocol runs
as follows. First, Bob produces a state ρ on the whole
space H⊗(N+1) with N ≥ 1 and sends it to Alice. After
receiving the state, Alice randomly permutes the N + 1
systems of ρ (due to this procedure, we can assume that
ρ is permutation invariant without loss of generality) and
applies the strategy Ω in Eq. (1) to the first N systems. If
at most k failures are observed among the N tests, Alice
accepts the reduced state σN+1 on the remaining system
and uses it for MBQC; otherwise, she rejects it. Here the
integer k is called the number of allowed failures, which
is chosen by Alice before performing the tests.

With this verification protocol, Alice aims to achieve
three goals: completeness, soundness, and robustness.
The completeness means Alice does not reject the cor-
rect state. Since |G〉 can always pass each test, this goal
is automatically guaranteed. The soundness means the
following: once accepting, Alice needs to ensure with a
small significance level δ that her state σN+1 for MBQC
has a sufficiently high fidelity (at least 1 − ε) with |G〉.
The threshold ε is called the target infidelity, which to-
gether with δ characterize the target verification preci-
sion. Among all known verification protocols, only the
protocol of Refs. [17, 27] achieves the optimal sampling
complexity with respect to all δ, ε, and the qudit num-
ber n of |G〉, even without considering the robustness.
Although the condition of soundness looks simple, it is

highly nontrivial to determine the degree of soundness.
Even in the special case k = 0, this problem was resolved
only very recently after quite a lengthy analysis [17,27].

To characterize the robustness of a protocol, we need
to consider the case in which honest Bob prepares in-
dependent and identically distributed (i.i.d.) quantum
states, that is, ρ = τ⊗(N+1) with τ ∈ D(H). Due to
inevitable noise, τ may not equal the ideal state |G〉〈G|.
Nevertheless, if the infidelity ετ := 1−〈G|τ |G〉 is smaller
than ε, then τ is still useful for MBQC. For a robust ver-
ification protocol, such a state should be accepted with
a high probability. On the other hand, the probability
that Alice accepts τ reads

piidN,k(τ) = BN,k
(
1− tr(Ωτ)

)
= BN,k(νετ ), (2)

where N is the number of tests, k is the number of al-
lowed failures, and BN,k(p) :=

∑k
j=0

(
N
j

)
pj(1 − p)N−j is

the binomial cumulative distribution function.
To construct a robust verification protocol, k should

be sufficiently large, so that piidN,k(τ) is sufficiently high.
However, most previous protocols can only reach a mean-
ingful conclusion when k = 0 [17–20, 27], in which case
the probability piidN,k=0(τ) = (1 − νετ )N decreases expo-
nentially withN , which is not satisfactory. Consequently,
many repetitions are necessary to ensure that Alice ac-
cepts the state τ at least once. When ετ = ε/2 for exam-
ple, the number of repetitions is at least Θ(exp[1/(4δ)])
for the protocol in [19] and Θ(δ−1/2) for the protocol
in [17, 27] as shown in the technical version, which sub-
stantially increases the actual sampling cost. Therefore,
although some protocols known in the literature are rea-
sonably efficient in achieving the soundness, they are not
useful in verifying blind MBQC in a realistic scenario.

3 Results

3.1 Guaranteed infidelity

Suppose ρ is permutation invariant. Then the proba-
bility that Alice accepts ρ reads

pk(ρ) =

k∑
i=0

(
N

i

)
tr
([

Ω⊗(N−i) ⊗ Ω
⊗i ⊗ I

]
ρ
)
, (3)

where Ω := I − Ω. Denote by σN+1 the reduced state
on the remaining system when at most k failures are ob-
served. The fidelity between σN+1and the ideal state |G〉
reads Fk(ρ) = fk(ρ)/pk(ρ) [assuming pk(ρ) > 0], where

fk(ρ) =

k∑
i=0

(
N

i

)
tr
([

Ω⊗(N−i) ⊗ Ω
⊗i ⊗ |G〉〈G|

]
ρ
)
. (4)

The actual verification precision can be characterized by
the following figure of merit with 0 < δ ≤ 1,

ε̄λ(k,N, δ) := 1−min
ρ
{Fk(ρ) | pk(ρ) ≥ δ} , (5)

where λ is determined by Eq. (1), and the minimization
is taken over permutation-invariant states ρ on H⊗(N+1).
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If Alice accepts the state prepared by Bob, then she
can guarantee (with significance level δ) that the reduced
state σN+1 has infidelity at most ε̄λ(k,N, δ) with |G〉.
Consequently, the deviation of any measurement out-
come probability from the ideal value is not larger than√
ε̄λ(k,N, δ). In the technical version we present the ana-

lytical formula and many useful properties of ε̄λ(k,N, δ).

3.2 Verification with a fixed error rate

Now we set the number k to be proportional to the
number of tests, that is, k = bsνNc, where 0 ≤ s < 1
is the error rate. In this case, when Bob prepares i.i.d.
states τ with infidelity ετ < s, the acceptance probability
approaches one as N increases. In addition, we have the
following theorems as proved in the technical version.

Theorem 1 Suppose 0 < s, λ < 1, 0 < δ ≤ 1/4. Then

s− 1

νN
< ε̄λ(bνsNc, N, δ)

≤ s+
1

νλ

√
s ln δ−1

N
+

ln δ−1

2ν2λN
+

2

λN
. (6)

Theorem 1 implies that ε̄λ(bνsNc, N, δ) converges to s
when the number N of tests gets large. To achieve a given
ε and δ, which means ε̄λ(bνsNc, N, δ) ≤ ε, it suffices to
set s < ε and choose a sufficiently large N .

Theorem 2 Suppose 0 < δ ≤ 1/2, 0 ≤ s < ε < 1, and
0 < λ < 1. Then we have ε̄λ(bνsNc, N, δ) ≤ ε as long as

N ≥ ε

[λν(ε− s)]2
(
ln δ−1 + 4λν2

)
. (7)

Notably, if the ratio s/ε is a constant, then the sampling
cost is only O(ε−1 ln δ−1), which is optimal with respect
to all parameters ε, δ, and the qudit number n.

3.3 Sampling complexity of robust verification

Let ρ be the state on H⊗(N+1) prepared by Bob and
σN+1 be the reduced state after Alice performs suitable
tests and accepts the state ρ. To verify the target state
within infidelity ε, significance level δ, and robustness r
(with 0 ≤ r < 1) entails the following two conditions.

1. (Soundness) If the infidelity of σN+1 with the |G〉 is
larger than ε, then the acceptance probability < δ.

2. (Robustness) If ρ = τ⊗(N+1) with τ ∈ D(H) and
ετ ≤ rε, then the acceptance probability ≥ 1− δ.

Let k be the number of allowed failures; then the condi-
tions of soundness and robustness can be expressed as

ε̄λ(k,N, δ) ≤ ε, BN,k(νrε) ≥ 1− δ. (8)

Denote by Nmin(ε, δ, λ, r) the minimum positive integer
N such that Eq. (8) holds for some k ≤ N − 1. Then
Nmin(ε, δ, λ, r) is the minimum number of tests required
for robust verification; it can be calculated numerically
by using Algorithm 1 presented in the technical version.

Our following theorem provides an informative upper
bound for Nmin(ε, δ, λ, r) and clarifies the sampling com-
plexity of robust verification.

  
    

        
               

        
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Figure 1: Number of tests required to verify a qudit
graph state in the adversarial scenario within infidelity
ε = 0.01, significance level δ, and robustness r = 1/2.
The red dots correspond to Nmin(ε, δ, λ, r) with λ = 1/2;
the red dashed curve corresponds to the RHS of Eq. (10),
which is an upper bound for Nmin(ε, δ, λ, r). The blue
curve corresponds to the protocol in [19]; and the green
curve corresponds to the protocol in [17] with λ = 1/2.
The performances of the protocols in [21, 22] are not
shown since the numbers of tests required are too large.

Theorem 3 Suppose 0 < λ, ε < 1, 0 < δ ≤ 1/2, and
0 ≤ r < 1. Then the conditions in Eq. (8) hold as long as

k =

⌊(
λ
√

2ν + r

λ
√

2ν + 1

)
νεN

⌋
, (9)

N ≥

⌈[
λ
√

2ν + 1

λν(1− r)

]2
ln δ−1 + 4λν2

ε

⌉
. (10)

For given λ and r, the minimum number of tests is only
O(ε−1 ln δ−1), which is independent of the qudit number
n of |G〉 and achieves the optimal scaling behaviors with
respect to the infidelity ε and significance level δ. If we
choose r = λ = 1/2 for example, then Theorem 3 implies
that Nmin(ε, δ, λ, r) ≤ d144 ε−1(ln δ−1 + 0.5)e, while nu-
merical calculation shows Nmin(ε, δ, λ, r) ≤ 67 ε−1 ln δ−1.
Compared with previous protocols [17, 19, 27], our pro-
tocol improves the scaling behavior with respect to the
significance level δ exponentially and even doubly expo-
nentially, as illustrated in Fig. 1.

4 Discussion

We have proposed a highly robust and efficient proto-
col for verifying qudit (d is a prime) graph states in the
adversarial scenario, which can be applied immediately
to verifying blind MBQC. In addition to graph states, our
protocol can also be used to verify many other important
pure quantum states in the adversarial scenario (see the
technical version for details), where the state preparation
is controlled by a potentially malicious adversary, who
can produce an arbitrary correlated or entangled state ρ
on the whole systemH⊗(N+1). Therefore, our verification
protocol is of interest not only to blind MBQC, but also
to many other tasks in quantum information processing
that entail high-security.
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Reliability criteria for quantum data propagation on noisy quantum
processors
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Abstract. The quantum imaginary time evolution algorithm is efficient in finding the ground state of a
quantum Hamiltonian. This algorithm involves solving a system of linear equations in a classical computer.
The solution is then used to propagate a quantum wavefunction across several timesteps. However, owing
to the noisy nature of current quantum processors, we prove that such a quantum algorithm or the family
of quantum algorithms that require classical computation of inverting a sparse matrix with high condition
numbers will require very high fidelity single- and two-qubit gates. Failure to meet such criteria will result
in erroneous quantum data propagation even for a relatively small quantum circuit ansatz.

Keywords: Quantum channels, quantum imaginary time evolution, noisy quantum hardware, probabilis-
tic unitary errors

1 Introduction

Quantum computers promise quantum advantage in
many applications such as factoring [1], linear systems
solver [2], quantum simulations [3], and quantum chem-
istry/material discovery [4]. The aforementioned killer
quantum applications sometimes require millions of phys-
ical qubits and gates, which current quantum hardware
does not possess and hence hinders the direct experi-
ence of proposed practical quantum speedup [5]. In
the current noisy intermediate-scale quantum (NISQ) era
[6], many interesting practical applications are evaluated
through hybrid quantum-classical quantum algorithms
otherwise known as NISQ algorithms [7, 8, 9]. These al-
gorithms are designed for short-depth quantum circuits
with limited qubits and gates. One such important class
of algorithms are variational quantum simulators (VQS).
VQS simulate quantum systems by mapping the Hamil-
tonian of the system in question to a qubit/qudit Hamil-
tonian and simulating time evolution by trotterizing the
time evolution operator into a sequence of one and two
qubit gates [10].
In this work, we focus on the quantum imaginary time

evolution algorithm that can efficiently find the ground
state of a given Hamiltonian [11, 12, 13]. Imaginary time
evolution or a Wick rotation [14] involves mapping to
the time coordinate τ = it. The technique establishes
correspondences between Euclidean and Minkowskian ge-
ometry and between quantum mechanics and statistical
mechanics. Imaginary time evolution has been a staple
across many disciplines of physics like condensed matter,
statistical mechanics, quantum field theory and cosmol-
ogy, to name a few. While simulating imaginary time
evolution can be done classically, the resources required
scale exponentially with the size of the Hilbert space in
question. On the other hand, quantum computing is
a natural candidate for simulating quantum mechanics.
However, since quantum computing involves performing
unitary operations via quantum gates, quantum proces-

∗gaurav.saxena@lge.com
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sors can not implement non-unitary time evolution as
required for the imaginary time evolution.

To address these limitations, the quantum imaginary
time evolution was proposed using a hybrid quantum-
classical variational approach [11, 12, 13]. Imaginary
time evolution of the Wick-rotated Schrödinger equa-
tion is implemented by encoding an initial quantum state
as a parameterized quantum state |φ(τ)⟩ ≈ |ϕ(θ(τ))⟩
where θ is a real valued parameter vector θ(τ) =
(θ1(τ), θ2(τ), . . . , θN (τ)). To simulate non-unitary dy-
namics, an equivalent formulation of imaginary time evo-
lution derived from a generalized McLachlan’s variational
principle is used to evolve the parameterized variational
circuit [15]. The final step is to solve a linear equation of
the form

Mθ̇ = Y

which involves inverting the matrix M to solve for the
imaginary time evolution of the circuit. The matrix M
and the vector Y depend on the ansatz circuit (used to
evolve the parameters) and the given Hamiltonian [15].

The central question that we raise in our work is how
well the quantum imaginary time evolution algorithm
performs in the absence of any error correction or mitiga-
tion technique. In particular, what is the impact of errors
incurred during each iteration on the classical matrix in-
version process to solve for the vector of paramaterzing
angles of the circuit, θ̇.

To answer the above question, we have allowed for
probabilistic errors after the application of every gate.
That is, we have considered the errors of the following
form:

E(ρ) := pN (ρ) + (1− p)ρ . (1)

By considering these types of errors, we have worked on
the evolution of general mixed states under QITE. We
further demand that the channel N ∈ CPTP(A0 → A1)
is such that ∥N (X)∥2 ≤ ∥X∥2 ∀X ∈ L(A0) where
∥ · ∥2 denotes the Frobenius norm 1, L(A0) denotes the

1We denote ∥ · ∥2 to indicate the Frobenius norm defined as

∥A∥2 =
√

Tr(A∗A), whereas ∥ · ∥ is used to indicate the matrix
2-norm defined as ∥A∥ =

√
λmaxA∗A.
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set of all linear operators in the Hilbert space A0, and
CPTP(A0 → A1)

2 denotes the set of completely posi-
tive and trace preserving maps that map operators in
system A0 to operators in system A1. By imposing
this extra condition, we are avoiding replacement chan-
nels. Notice that the set of all channels N that obey
∥N (X)∥2 ≤ ∥X∥2 ∀X ∈ L(A0) contain the set of all
probabilistic unitary channels, i.e., channels of the form

N (ρ) =
∑
i

piUi(ρ) =
∑
i

piUiρU
†
i (2)

where pi ≥ 0 and
∑

i pi = 1. By allowing for such er-
rors, we are accounting for all the probabilistic unitary
errors that occur in NISQ devices. These probabilistic
unitary errors also contain the set of random Pauli er-
rors, the special cases of which are the (partially and
completely) dephasing and depolarizing channels, which
are considered very important in quantum computation
and communication.
Considering the noise (of the form in Eq. (1)) after ev-

ery gate in an arbitrary circuit with N parameters (this
implies that the depth of the circuit is less than or equal
to N), we derive analytical expressions for M and Y for
the ideal and erroneous cases. Using the analytical ex-
pressions obtained, we derive tight upper bounds (given
in Section 2) on the absolute error of the rate of change
of θ̇. We show that the bound depends on the probabil-
ity of error, the number of parameters, and the condi-
tion number of the matrix M . As noted previously, this
bound is valid for all probabilistic unitary errors which

include the important case of random Pauli errors, the
partially dephasing errors and the partially depolarizing
errors. Moreover, we were able to derive a tighter upper
bound on the error incurred during each iteration in the
presence of partially depolarizing noise.

2 Main results

For a given circuit that is used to evolve a parameter-
ized quantum state with N parameters, we can find the
matrixM and the vector Y (using that same circuit) that
are used to update the vector of parameters θ̇ using the
equation Mθ̇ = Y [15]. To understand how the errors
affect the evolution of the parameters, let D(A0) denote
the set of all density matrices in A0 and let |+̃⟩⟨+̃| denote
the N × N matrix with all entries to be one. Then, by
considering some finite probability of error occuring after
every gate, we get the following results.

Theorem 1 For probabilistic errors E ∈ CPTP(A0 →
A1) of the form:

E(ρ) = pN (ρ) + (1− p)ρ (3)

where ρ ∈ D(A0), 0 ≤ p ≤ 1, and the channel N is
such that ∥N (X)∥2 ≤ ∥X∥2 ∀X ∈ L(A0), the upper
bound in the error ϵ := ∥∆θ̇∥ in computing θ̇ from
Mθ̇ = Y using a noisy quantum circuit is given by

ϵ ≤ ∥θ̇∥cond(M)

1− cond(M)
(
(1− (1− p)2N )

∥ 1
2 |+̃⟩⟨+̃|−M∥

∥M∥

) ((1− (1− p)2N )
∥ 1
2 |+̃⟩⟨+̃| −M∥

∥M∥
+ (1− (1− p)N )

∥ 1√
2
|+̃⟩ − Y ∥
∥Y ∥

)
(4)

if

cond(M) ≤ ∥M∥
(1− (1− p)2N )∥ 1

2 |+̃⟩⟨+̃| −M∥
(5)

where cond(M) represents the condition number of M and
|+̃⟩⟨+̃| is a matrix whose entries are all 1.

Remark 1 Note that the set of channels {N :
∥N (X)∥2 ≤ ∥X∥2 ∀X ∈ L(A0)} contains the set of
probabilistic unitary channels which contains the set of
random Pauli errors and which in turn contains partially
dephasing and partially depolarizing errors. One example
of the set of channels that don’t obey ∥N (X)∥2 ≤ ∥X∥2
are replacement channels.

For partially depolarizing channels, we were able to find
tighter bounds as given in the theorem below.

2We denote a system and its corresponding Hilbert space using
an uppercase letter with a numerical subscript, like A0 or A1.

Theorem 2 For partially depolarizing channels, i.e.,
channels of the form

E(ρ) = p
I

|A0|
+ (1− p)ρ (6)

where |A0| denotes the dimension of the Hilbert space A0,
the upper bound in the error ϵ := ∥∆θ̇∥ is given by

ϵ ≤ ∥θ̇∥cond(M)

1− cond(M) (1− (1− p)2N )

(
2− (1− p)2N − (1− p)N

)
(7)

if

cond(M) ≤ 1

1− (1− p)2N
. (8)

2.1 Numerical analysis

We now provide some numerical analysis for the de-
polarizing error to understand the above bounds more
clearly. We first plot in Fig. 1, the condition of Eq. (8)
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Figure 1: Maximum condition number allowed for a given
probability of error (for different number of parameters)

Figure 2: An example ansatz with 5 parameters

that bounds the condition number for which the upper
bounds on error can be found given the probability of er-
ror. The maximum allowed condition number falls very
rapidly as the probability is increased and approaches
one as the probability tends to one. This implies that
calculating the error bounds on ∥∆θ̇∥ for circuits whose
M have high condition number require very high fidelity
gates.
Now, to investigate the error bound of Eq. (7), let us

consider a very simple ansatz as given in Fig. 2. We ran-
domly generate the angles (in radians): θ̇1 = 1.5249, θ̇2 =
2.5142, θ̇3 = 0.4457, θ̇4 = 1.3250, θ̇5 = 2.8769. The vec-
tor θ̇ = (θ̇1, θ̇2, θ̇3, θ̇4, θ̇5)

T . Using these values, we found,
∥θ̇∥ = 4.3447 and the matrix M to be

M =


0.5000 0 0 0 −0.0533

0 0.5000 0 0 −0.1918
0 0 0.4958 0 −0.0039
0 0 0 0.0483 0.1058

−0.0533 −0.1918 −0.0039 0.1058 0.3816


Using the above M , we calculated cond(M) = 66.9551.
Note that condition number of M is dependant on θ̇ and
changes for different θ̇.
Now, to understand how the error would scale with

probability and the number of parameters, we plot in
Fig. 3, the error with respect to probability by keeping
the condition number and the norm of θ̇ same. Note that
the maximum probabilities for which we can bound the
errors are different for different number of parameters.
Also, notice how the error increases with the probability.

Figure 3: Plot of error vs probability under partially de-
polarizing errors for different number of parameters N
and keeping cond(M) and ∥θ̇∥ fixed.

3 Conclusions

In this work we derived an upper bound on the error
incurred during an iteration of quantum imaginary time
evolution in the presence of probabilistic unitary errors.
We assume that the error can occur after every gate in
the ansatz circuit (assumed arbitrary) with a probabil-
ity p. Furthermore, we derived a tighter upper bound
for the errors incurred specifically due to partially de-
polarizing channels. Our results primarily show that to
implement the variational imaginary time algorithm, we
would require gates with very high fidelity due to the
sensitivity of matrix inversion to perturbations. We also
show that scalability is a problem with this algorithm
because of how the error scales with the number of pa-
rameters in the circuit. Moreover, when implementing
variational algorithms in general, one of the difficulties
is choosing the appropriate ansatz circuits that can span
the Hilbert space of the system in question while still
maintaining a shallow circuit depth. While several met-
rics have been proposed to formalize choosing ansatz cir-
cuits [16], our work provides another important criterion
for choosing effective ansatz circuits (since the matrix
M is constructed from the structure of the ansatz cir-
cuit). Our work challenges the mainstream notion of hy-
brid quantum-classical quantum algorithms being able to
perform certain computations under short-depth circuits
and noisy environments while we show such algorithms
in fact require very good quality quantum circuits to get
reliable computational outcomes.
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Kieferová, Ian D. Kivlichan, Tim Menke, Borja Per-
opadre, Nicolas P. D. Sawaya, et al. Quantum Chem-
istry in the Age of Quantum Computing. Chem.
Rev., 119(19):10856–10915, October 2019.

[5] Thomas Hner Torsten Hoefler. Disentangling Hype
from Practicality: On Realistically Achieving Quan-
tum Advantage. May 2023. [Online; accessed 18.
May 2023].

[6] John Preskill. Quantum Computing in the NISQ era
and beyond. arXiv, January 2018.

[7] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw,
Tobias Haug, Sumner Alperin-Lea, Abhinav Anand,
Matthias Degroote, Hermanni Heimonen, Jakob S.
Kottmann, Tim Menke, et al. Noisy intermediate-
scale quantum algorithms. Rev. Mod. Phys.,
94(1):015004, February 2022.

[8] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario
Picozzi, Kanav Setia, Ying Li, Edward Grant,
Leonard Wossnig, Ivan Rungger, George H. Booth,
et al. The Variational Quantum Eigensolver: A re-
view of methods and best practices. Phys. Rep.,
986:1–128, November 2022.

[9] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jar-
rod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, et al. Variational quantum algorithms. Nat.
Rev. Phys., 3(9):625–644, September 2021.

[10] Roeland Wiersema, Cunlu Zhou, Yvette de Sere-
ville, Juan Felipe Carrasquilla, Yong Baek Kim,
and Henry Yuen. Exploring Entanglement and
Optimization within the Hamiltonian Variational
Ansatz. PRX Quantum, 1(2):020319, December
2020.

[11] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li,
Simon C. Benjamin, and Xiao Yuan. Variational
ansatz-based quantum simulation of imaginary time
evolution. npj Quantum Inf., 5(75):1–6, September
2019.

[12] Mario Motta, Chong Sun, Adrian T. K. Tan,
Matthew J. O’Rourke, Erika Ye, Austin J. Minnich,
Fernando G. S. L. Brandão, and Garnet Kin-Lic
Chan. Determining eigenstates and thermal states
on a quantum computer using quantum imaginary
time evolution. Nat. Phys., 16(2):205–210, February
2020.

[13] Hirofumi Nishi, Taichi Kosugi, and Yu-ichiro Mat-
sushita. Implementation of quantum imaginary-time
evolution method on NISQ devices by introducing
nonlocal approximation. npj Quantum Inf., 7(85):1–
7, June 2021.

[14] G. C. Wick. Properties of bethe-salpeter wave func-
tions. Phys. Rev., 96:1124–1134, Nov 1954.

[15] Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and
Simon C. Benjamin. Theory of variational quantum
simulation. Quantum, 3:191, October 2019.

[16] Sukin Sim, Peter D. Johnson, and Alán Aspuru-
Guzik. Expressibility and Entangling Capabil-
ity of Parameterized Quantum Circuits for Hy-
brid Quantum-Classical Algorithms. Adv. Quantum
Technol., 2(12):1900070, December 2019.

249



PHYSICAL REVIEW A 106, 042424 (2022)

Robust one-sided self-testing of two-qubit states via quantum steering

Yukun Wang ,1,2 Xinjian Liu,1 Shaoxuan Wang,1 Haoying Zhang,1 and Yunguang Han3,*

1Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum, Beijing 102249, China
2State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

(Received 26 May 2022; revised 26 September 2022; accepted 27 September 2022; published 18 October 2022)

Entangled two-qubit states are the core building blocks for constructing quantum communication networks.
Their accurate verification is crucial to the functioning of the networks, especially for untrusted networks.
In this work we study the self-testing of two-qubit entangled states via steering inequalities, with robustness
analysis against noise. More precisely, steering inequalities are constructed from the tilted Clauser-Horne-
Shimony-Holt inequality and its general form, to verify the general two-qubit entangled states. The study
provides a good robustness bound, using both local extraction map and numerical semidefinite-programming
methods. In particular, optimal local extraction maps are constructed in the analytical method, which yields the
theoretical optimal robustness bound. To further improve the robustness of one-sided self-testing, we propose a
family of three measurement settings steering inequalities. The result shows that three-setting steering inequality
demonstrates an advantage over two-setting steering inequality on robust self-testing with noise. Moreover, to
construct a practical verification protocol, we clarify the sample efficiency of our protocols in the one-sided
device-independent scenario.

DOI: 10.1103/PhysRevA.106.042424

I. INTRODUCTION

Quantum entangled states are the key resource of quan-
tum information technologies, such as quantum networks [1],
cryptography [2], computation [3], and metrology [4]. As
we advance towards the second quantum revolution [5], the
characterization and certification of quantum devices become
extremely important topics in practical applications of quan-
tum technologies [6,7].

To ensure the proper functioning of a quantum network,
it is essential to certify the entangled state deployed in
the network accurately and efficiently. Besides the tradi-
tional quantum state tomography method, various methods
have been proposed to improve the efficiency and apply
to different scenarios such as direct fidelity estimation [8],
compressed sensing tomography [9], and shadow tomogra-
phy [10]. In the past few years, quantum state verification
(QSV) has attracted much attention by achieving remarkably
low sample efficiency [11,12]. One drawback of the quantum
state verification method is that it requires perfect charac-
terization of the measurements performed by the quantum
devices, and thus it is device dependent and not applica-
ble to the untrusted quantum network. Self-testing [13,14]
is a prominent candidate of quantum state certification in
the device-independent (DI) scenario, in which all quantum
devices are treated as black boxes. Taking advantage of Bell
nonlocality [15], many important results on self-testing have
been achieved such as self-testing various quantum entangled
states [16–18], self-testing entangled quantum measurement

*hanyunguang@nuaa.edu.cn

[19,20], and parallel self-testing [21,22]. Self-testing has wide
applications in device-independent quantum information tasks
such as device-independent quantum random number genera-
tion [23,24] and quantum key distribution [25,26].

Lying between standard QSV and self-testing, there is a
semi-device-independent (SDI) scenario [27] in which some
parties are honest while some others may be dishonest. The
certification in this scenario can be called SDI self-testing
or SDI state verification. This scenario has wide applica-
tions in quantum information processing such as one-sided
device-independent (1SDI) quantum key distribution [28],
quantum random number generation [29], verifiable quantum
computation [30], and anonymous communication [31–33].
Meanwhile, the certification in the SDI scenario is closely
related to the foundational studies on quantum steering in the
untrusted quantum networks [34–37]. However, not much is
known about the quantum certification in the SDI scenario
despite its significance. In [30,38] the authors studied the
one-sided self-testing of a maximally entangled two-qubit
state based on two-setting quantum steering inequality. In
[39] the authors proposed various verification protocols for
a Bell state based on multiple settings. For nonmaximally
entangled two-qubit states, the authors in [40] realized the
one-sided certification by combining fine-grained inequality
[41] and analogous Clauser-Horne-Shimony-Holt (CHSH) in-
equalities [42], which is more complicated than traditional
self-testing. In [27] the authors proposed a tilted steering
inequality analogous to the tilted CHSH inequality [43] for
one-sided self-testing of two-qubit states. Then they general-
ized the one-sided certification to general pure bipartite states
by adopting the subspace method in the DI scenario [18]. In
Ref. [44] a class of steering inequalities concentrating on the

2469-9926/2022/106(4)/042424(16) 042424-1 ©2022 American Physical Society
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nonmaximally entangled bipartite-qudit state was constructed,
where they achieve the bipartite-qudit state self-testing by per-
forming only two measurements, while in Ref. [45] steering
inequalities with d + 1 measurement settings were used for
self-testing the same states. However, the robustness analysis
there follows the norm inequality method in [16,38] (if it is
not missed); thus the result is quite weak. For the multipartite
case, the studies of SDI certification are mainly focused on
Greenberger-Horne-Zeilinger (GHZ) states as the generaliza-
tion of the Bell state [39,46,47].

In this paper we focus on the robust one-sided self-testing
of two-qubit entangled states. We construct two types of two-
setting steering inequalities for general two-qubit entangled
states based on tilted CHSH inequality and its general form.
For the first type, an analytical and optimal robustness bound
is obtained using the local extraction channel method intro-
duced in [48]. For the second type, we get a nearly linear
robustness bound using a numerical method based on the
SWAP trick [17] and semidefinite programming (SDP). To put
our work in perspective, we compare the robustness result
in the 1SDI scenario with both DI and device-dependent
scenarios. Our result can be applied to the certification of
high-dimensional quantum devices as building blocks.

Furthermore, we construct three measurement settings
steering inequalities for general two-qubit states, which is
beyond the conventional one-sided self-testing based on two
settings. In [39] the authors studied the optimal verification of
the Bell state and GHZ states in the 1SDI scenario using mul-
tiple measurement settings. However, their study is limited
to the maximally entangled state in the bipartite case. Based
on the three-setting steering inequalities, it is shown that the
robustness bound can be further improved. This opens the
question of how much the resistance to noise can be improved
using multiple measurement settings. Finally, to construct
a practical verification protocol, we clarify the sample effi-
ciency for our protocols in the 1SDI scenario. It is shown
that approximately optimal sample efficiency can be obtained
based on the steering inequalities we construct.

II. PRELIMINARIES

A. Steering scenario and steering inequalities

Let us start by recalling the steering theory. Two distant
parties, Alice and Bob, are considered, and between them are
many copies of the state ρAB ∈ HA

⊗
HB. Bob performs two

measurements, labeled y, on his particle and obtains the bi-
nary outcome b. Meanwhile, Alice receives the corresponding
unnormalized conditional states ρb|y and performs measure-
ments randomly, labeled x, and obtains the binary outcome
a. If Alice cannot explain the assemblage of received states
by assuming preexisting states at her location and some pre-
shared random numbers with Bob, she has to believe that Bob
has steerability of her particle from a distance. To determine
whether Bob has steerability of her, Alice asks Bob to run
the experiment many times with her. Finally, they obtain the
measurement statistics. If the statistics admit the description

p(a, b|x, y; ρAB) =
∑

λ

p(λ)p(a|x, ρλ)p(b|y, λ), (1)

then Alice knows Bob does not have steerability of her. This
nonsteerable correlation model is the so-called local hidden
variable (LHV)–local hidden state (LHS) model [42]. The
LHV-LHS decomposition is based on the idea that Bob’s
outcomes are determined by a local hidden random λ and
Alice’s outcomes are determined by local measurements on
quantum state ρλ.

The combination of the statistics will give a steering in-
equality, where the LHV-LHS model can be used to establish
local bounds for the steering inequality; violation of such in-
equalities implies steering. In Ref. [36] the authors introduced
a family of steering inequalities for the Bell state

Sn ≡ 1

n

n∑
k=1

〈
σ̂ A

k Bk
〉
� Cn, (2)

where Cn is the LHS bound

Cn = max
{Ak}

{
λmax

(
1

n

n∑
k=1

σ̂ A
k Bk

)}
, (3)

with λmax(Ô) denoting the largest eigenvalue of Ô.
An approach to constructing this family of steering in-

equalities is transforming from Bell inequalities. Bell states
are shown to maximally violate the analogous CHSH in-
equality [30,38,42]. For partially entangled two-qubit states,
the authors in Ref. [27] constructed tilted steering inequal-
ities from tilted CHSH inequalities [43]. In this paper we
study the more general tilted steering inequalities constructed
from tilted CHSH inequalities and study the robustness
of one-sided self-testing based on analogous steering in-
equalities. Furthermore, we consider the construction of
three-measurement-setting steering inequalities for general
two-qubit states.

B. SDI certification and local extraction channel

In this paper we focus on a one-sided self-testing two-qubit
entangled state based on the steering inequalities. To this end,
we first review the concept of self-testing.

Self-testing was originally known as a DI state verification,
where some observed statistics p(a, b|x, y) from quantum de-
vices can determine uniquely the underlying quantum state
and the measurements, up to a local isometry. As an example,
the maximal violation of CHSH inequality uniquely identi-
fies the maximally entangled two-qubit state [14,16]. Usually,
self- testing relies on the observed extremal correlations. If
the quantum systems that achieve the extremal correlations
are unique up to local isometries, we say the extremal correla-
tions p(a, b|x, y) self-test the target system {|ψ̄〉, M̄a|x, N̄b|y}.
Defining the local isometry as � = �AA′ ⊗ �BB′ , self-testing
can be formally defined as

�|ψ〉AB|00〉A′B′ = |junk〉AB|ψ̄〉A′B′ ,

�Ma|x ⊗ Nb|y|ψ〉AB|00〉A′B′ = |junk〉ABM̄a|x ⊗ N̄b|y|ψ̄〉A′B′ .

(4)
For the 1SDI scenario, only the existence of an isometry �B

on Bob’s side is required,

�|ψ〉AB|0〉B′ = |junk〉B ⊗ |ψ̄〉AB′ ,

�Mb|y|ψ〉AB|0〉B′ = |junk〉B ⊗ M̄b|y|ψ̄〉AB′ ,
(5)

where Mb|y acts on HB and M̄b|y acts on HB′ .
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In addition to the above ideal definition of self-testing,
it is essential to study the robustness of self-testing in the
imperfect case when the obtained data deviate from the ideal
value. There are two frameworks in the robustness analysis of
self-testing. The first approach is based on the SWAP method
by introducing an ancilla system. The desired state can be
swapped out of the real quantum system and then the distance
from the target state can be calculated. One way to calcu-
late this closeness is based on the analytic method involving
mathematical inequality techniques first proposed in [16]. The
second one is the numerical method based on semidefinite
programming combining the hierarchy strategy, which is pro-
posed by Navascués, Pironio and Acín in Ref. [49] and called
Navascués-Pironio-Acín (NPA) method. Usually, the numeri-
cal method gives much higher robustness.

The second approach is based on operator inequalities first
introduced in Ref. [48], which is now widely used in the
robustness analysis of self-testing. For a self-testing Bell state
using CHSH inequality and a self-testing GHZ state using
Mermin inequality, the operator inequalities give a nearly op-
timal bound. Robustness analysis of self-testing with operator
inequalities can recur for local extraction map, which hinges
on the idea that local measurements can be used to virtually
construct a local extraction channel to extract the desired state
from the real quantum system. The local extractability of the
target ψAB from ρAB is quantified

�(ρAB → ψAB) := max
�A,�B

F ((�A ⊗ �B)(ρAB), ψAB), (6)

where the maximum is taken over all possible local channels
constructed with local measurements. For the 1SDI scenario,
Alice’s side is trusted, and thus the extraction channel on Al-
ice’s side is �A = IA. The lower bound of the fidelity between
ρ and the target state under the observed steering inequality
can be defined as one-sided extractability

F (ρAB, ψAB) := inf
ρAB:S(ρ)�Sobs

max
�B

F (�B(ρAB), ψAB), (7)

where S(·) is the steering expression and Sobs is observed
violation. To derive a linear bound of the fidelity about the
observed steering inequality violation, real parameters s and
τ must be fixed such that F � sSobs + τ . This is equivalent to
finding �B (constructed by Bob’s local measurement opera-
tors Mb

y ) to make
K � sS + τI, (8)

where K := (IA ⊗ �+
B )(ψAB) and �+ refers to the dual chan-

nel of quantum channel �. By taking the trace with the input
state ρAB on both sides of Eq. (8), one can get F � sSobs + τ ,
in view of 〈�+

B (ψAB), ρAB〉 = 〈ψAB,�B(ρAB)〉.
In the 1SDI scenario, Bob’s side is untrusted; thus Eq. (8)

is required to hold for Alice in two dimensions and Bob in
arbitrary dimension. Since the measurements we consider in
this paper is dichotomic, consideration in qubit space will be
sufficient on Bob’s side.

III. ONE-SIDED SELF-TESTING BASED ON
TWO-SETTING STEERING INEQUALITIES

In the device-independent scenario, a general pure entan-
gled two-qubit state

|�〉 = cos θ |00〉 + sin θ |11〉 (9)

has been proven to be self-tested [50,51] by the maximal
violation of tilted CHSH inequalities [43], which can be
parametrized as

Îα = αA0 + A0B0 + A0B1 + A1B0 − A1B1 � α + 2, (10)

where sin 2θ =
√

4−α2

4+α2 . The maximum quantum value is√
8 + 2α2. The quantum measurements used to achieve

the maximal quantum violation are {σz; σx} for Alice
and {cos μσz + sin μσx; cos μσz − sin μσx} for Bob, where
tan μ = sin 2θ and σx,z are Pauli X and Z measurements.

Having α = 0 corresponds to CHSH inequality and the
state can be self-tested as a Bell state. The self-testing cri-
terion based on this tilted CHSH inequality is robust against
noise. The best robustness bound to date can be found in
[48,51], in which the authors introduced the local extraction
channel method. However, as claimed in [48], the theoretical
optimal upper bound is not achievable. Theoretically, the op-
timal bound is tied to the maximum classical violation which
starts to achieve nontrivial fidelity. The nontrivial fidelity that
demonstrates entanglement for the target state is F > cos2 θ .
Kaniewski guessed that it might be related to the fact that
the quantum value of the CHSH inequality does not reach its
algebraic limit of 4. Here in the 1SDI scenario, we will show
that the theoretical optimal bound can be achieved.

To achieve the 1SDI self-testing criterion, we construct two
types of two-setting steering inequalities, which are based on
above tilted CHSH inequality by taking the measurements on
Alice’s side as trusted.

A. One-sided self-testing based on standard tilted CHSH
steering inequality

Taking the measurements on Alice’s side as trusted, the
standard tilted CHSH inequality in Eq. (10) can be trans-
formed to the analog of the tilted CHSH steering inequality

Ŝα = αA0 + A0B0 + A0B1 + A1B0 − A1B1

= αZ + Z (B0 + B1) + X (B0 − B1)

� α + 2, (11)

which maintains the maximum quantum violation SQ
α =√

8 + 2α2 as in the DI scenario. We prove that partially entan-
gled two-qubit states can be self-tested using this analogous
tilted CHSH steering inequality in a 1SDI manner. The proof
is similar to DI self-testing using a tilted CHSH inequal-
ity, except that we can trust Alice’s measurements now. The
trustworthiness of Alice’s side can simplify the proof as an
advantage. Another advantage is that the theoretical optimal
robustness bound can be obtained in the 1SDI scenario with
this steering inequality. By contrast, the optimal bound cannot
be achieved in DI self-testing with a tilted CHSH inequality.
In the following we will show both the analytical proof and
the robustness analysis.

1. Self-testing based on analogous tilted CHSH steering inequality

We provide the simple proof here. Though Alice’s side
is trustworthy, by definition only the existence of isome-
try on Bob’s side will be sufficient to determine uniquely
the state and the measurements. However, for simplicity,
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FIG. 1. The SWAP isometry applied on Alice and Bob’s side,
where the operators ZA and XA are exactly the Pauli Z and X
operators.

we also introduce one isometry on Alice’s side, which has
been widely used in the DI scenario, shown in Fig. 1. As
shown in below, with the sum of squares decomposition of
a positive-semidefinite matrix [52], it is easy to find the al-
gebraic relations that are necessarily satisfied by the target
quantum state and measurements to complete the proof.

After the isometry, the systems will be

�(|ψ〉) = 1
4 [(I + ZA)(I + Z̃B)|ψ〉|00〉
+ XA(I + ZA)(I − Z̃B)|ψ〉|01〉
+ X̃B(I − ZA)(I + Z̃B)|ψ〉|10〉
+ XAX̃B(I − ZA)(I − Z̃B)|ψ〉|11〉]. (12)

To derive an underlying state |ψ〉 that is equivalent to the
target one, the algebraic relations between the operators acting
on the state should be given. We notice that the analogous
tilted CHSH steering inequality Ŝα has the maximum quan-
tum value SQ

α . This implies that the operator Ŝα := SQ
α I − Ŝα

should be positive semidefinite (PSD) for all possible quantum
states and measurement operators on Bob’s side. This can
be proven by providing a set of operators {Pi} which are
polynomial functions of Ax (ZA and XA) and By such that
Ŝα = ∑

i P†
i Pi holds for any set of measurement operators

satisfying the algebraic properties A2
x = I and B2

y = I. The de-

composition form of Ŝα = ∑
i P†

i Pi is called a sum of squares
(SOS). By a SOS decomposition one can provide a direct
certificate that the upper quantum bound of Ŝα is SQ

α from
its PSD, as well as some relations between the projectors on
the states, which will be used to give a self-testing statement.
This method was first introduced in [50] for the family of
CHSH-like Bell inequalities. Given SOS decompositions, if
one observes the maximal quantum violation of the steering
inequality (CHSH-like one) under state |ψ〉, then each squared
term in SOS decompositions acting on |ψ〉 should be zero,
i.e., Pi|ψ〉 = 0. Then useful relations for the measurements
operators acting on underlying state can be obtained from
these zero terms.

Similar to the CHSH inequality scenario, two types of SOS
decompositions for the analogous tilted CHSH operator in
Eq. (11) can be given. The first one is

Ŝα = 1

2SQ
α

{
Ŝ2

α + (αXA − S0)2} (13)

and the second one is

Ŝα = 1

2SQ
α

{(
2ZA − SQ

α

B0 + B1

2
+ α

2
S1

)2

+
(

2XA − SQ
α

B0 − B1

2
+ α

2
S2

)2}
, (14)

where

S0 = ZA(B0 − B1) + XA(B0 + B1),

S1 = ZA(B0 + B1) − XA(B0 − B1), (15)

S2 = ZA(B0 − B1) − XA(B0 + B1).

Based on the maximal violation of the analogous tilted CHSH
inequality, the existence of the SOS decomposition for Ŝα

implies that

ZA|ψ〉 − Z̃B|ψ〉 = 0, (16)

sin(θ )XA(I + Z̃B)|ψ〉 − cos(θ )X̃B(I − ZA)|ψ〉 = 0, (17)

where Z̃B := B0+B1
2 cos μ

and X̃B := B0−B1
2 sin μ

. Then with the algebraic
relations (16) and (17) and the fact that ZAXA = −XAZA,
Eq. (12) can be rewritten as

�(|ψ〉) = |junk〉[cos θ |00〉 + sin θ |11〉],
where |junk〉 = 1

2 cos θ
(I + ZA)|ψ〉. This means the underlying

state is unique to the target one up to local isometries, and thus
completes the self-testing statement.

2. Self-testing robustness

Here we mainly focus on the self-testing of quantum states.
For the self-testing of quantum measurements, the analysis
can be related to quantum states according to Ref. [17].
The procedure is similar, starting with �MB(|ψ〉) instead of
�(|ψ〉). In this case, the figure of merit should quantify how
MB|ψ〉 is close to the ideal measurements acting on the target
state.

As introduced in Sec. II B, to obtain a better self-testing
robustness bound for the state, we should find the smallest
value of s while keeping K − sŜ − τI PSD. To this end, we
first give the spectral decomposition of Ŝα . Without loss of
generality, we write Bob’s measurements as

Br = cos μσz + (−1)r sin μσx, (18)

with r ∈ {0, 1} and μ ∈ [0, π/2]. Then the spectral decompo-
sition of Ŝα is

Ŝα =
∑

λi|ψi〉〈ψi|, i = 1, 2, 3, 4, (19)

with λ2
1 + λ2

2 = 8 + 2α2, λ3 = −λ2, and λ4 = −λ1.
According to different value ranges of μ, the following two

cases are discussed.
Case 1: cos 2μ � α2

4 or equivalentlyμ ∈ [0, arcsin
√

4−α2

8 ].

The eigenvalues of Ŝα have the form

λ1/2 = ±
√

α2 + 4 sin2 μ + 2 cos μ.

The eigenvectors and the constraints for γ and μ are

|ψ1〉 = cos γ |00〉 + sin γ |11〉,
|ψ2〉 = sin γ |00〉 − cos γ |11〉,
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|ψ3〉 = cos γ |01〉 + sin γ |10〉,
|ψ4〉 = − sin γ |01〉 + cos γ |10〉,

λ1 cos2 γ + λ2 sin2 γ = α + 2 cos μ,

λ2 cos2 γ + λ1 sin2 γ = −α + 2 cos μ,

(λ1 − λ2) cos γ sin γ = 2 sin μ,

with sin 2γ = 2 sin μ√
α2+4 sin2 μ

.

To obtain the optimal robustness bound, we consider the
following local extraction channel on Bob’s side: With the
probability of q1, he performs the identity operation I on his
qubit; with the probability of q2, he performs σz on his qubit.
By this local extraction channel, the ideal state is transformed
into K = q1|ψ〉〈ψ | + q2σz|ψ〉〈ψ |σz. Denote K − sÎα − τI by
G. The PSD condition of G requires that all the eigenvalues of
it are non-negative, which gives

2 sin μs − C

2 cos θ sin θ
+ 1

2
� q1 � 2 sin μs + C

2 cos θ sin θ
+ 1

2
, (20)

where

C =
√

cos2 θ + [βQ − (α + 2 cos μ)]s − 1

×
√

sin2 θ + [βQ − (−α + 2 cos μ)]s − 1,

with βQ = √
8 + 2α2.

We can choose q1 in the suitable range to saturate its
upper bound, which makes G PSD. Meanwhile, we obtain the
smallest value of s as

s = 1 − cos2 θ

βQ − (2 + α)
(21)

and the corresponding value of τ is

τ = 1 −
√

8 + 2α2s, (22)

which is exactly equal to the theoretical optimal value. Thus
we obtain the optimal robustness bound in the 1SDI scenario
using the given extraction channel. Therefore, it gives the op-
timal robustness bound of self-testing based on the analogous
tilted CHSH steering inequality

F = (β −
√

8 + 2α2)s + 1

= (β −
√

8 + 2α2)
1 −

√
2α√

4−α2

2
√

8 + 2α2 − (4 + 2α)
+ 1 (23)

for observed violation β.
Case 2: 0 � cos 2μ � α2

4 or equivalently μ ∈
(arcsin

√
4−α2

8 , π
4 ]. The following is the local extraction

channel in this case. Bob performs identity operation
I with probability q1 and performs σz with proba-
bility q2. Then the ideal state is transformed into
K = q1|ψ〉〈ψ | + q2σx|ψ〉〈ψ |σx. The PSD condition of
G := K − sÎα − τI � 0 gives

q1=max

{
0,

4 sin2 μs2+(C1s+τ )(C2s−τ )

(βQ+2 sin 2θ sin μ+ cos2 θC2− sin2 θC1)s−1

}
,

where βQ = √
8 + 2α2. It also gives s = 1−cos2 θ

βQ−(2+α) and τ =
1 − √

8 + 2α2s, which turn out to obtain the same robustness
bound as in case 1. (See Appendix A for details.)

In conclusion, the theoretical linear optimal robustness
bound can be obtained for self-testing of two-qubit entangled
states using the analogous tilted CHSH steering inequality.
Different from self-testing in the DI scenario, theoretical
optimal robustness bound can be obtained using the local
extraction channel method. The reason might be that the ex-
traction channel is needed only on one side in the steering
scenario without coordination.

Comparison with the DI and device-dependent scenarios.
To put our work into perspective, we compare the certification
in the 1SDI scenario with both DI and device-dependent (DD)
scenario.

In the DD scenario, the measurements on both sides are
trusted and equal to the ideal measurements. In this case, we
have

Îα = αA0 + A0B0 + A0B1 + A1B0 − A1B1 (24)

= αZ + 2 cos μZZ + 2 sin μXX , (25)

where sin 2θ =
√

4−α2

4+α2 and tan μ = sin 2θ . It could be shown
that

|�〉〈�| � Îα√
8 + 2α2

. (26)

Thus, in the trusted measurement scenario, we have the lower
bound of the fidelity

FDD � β√
8 + 2α2

. (27)

In the DI scenario, the authors in [51] conjectured the lower
bound of fidelity

FDI � sαβ + μα, (28)

with

sα = (
√

8 + 2α2 + 2 + α)(3
√

8 + 2α2 − √
4 − α2 − α

√
2)

4(2 − α)2
√

8 + 2α2
,

(29)

μα = 1 − sα

√
8 + 2α2. (30)

Their comparison with the SDI scenario is given in Fig. 2.
In the case of α = 0, it corresponds to the CHSH inequality
and the target state is a singlet. The two other cases correspond
to the tilted CHSH inequality and partially entangled two-
qubit states. Obviously, it has FDD > F1SDI > FDI for all three
cases. For α = 0, the nontrivial fidelity bound of the singlet
state is 0.5. The results show that the nontrivial fidelity bound
can be obtained in the DI scenario when the quantum value
is larger than 2.105, while for the 1SDI and DD scenarios the
bounds are 2 and

√
2, respectively. For α = 0.5, the nontrivial

fidelity bound of the target state is 0.672. The results show
that the nontrivial fidelity bound can be obtained in the DI
scenario when the quantum value is larger than 2.655, while
for the 1SDI and DD scenarios the bounds are 2.5 and 1.958,
respectively. For α = 1, the nontrivial fidelity bound of the
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FIG. 2. Comparison of robustness bound between the DI (yellow
solid line), 1SDI (red dash-dotted line), and DD (blue dotted line)
scenarios for (a) α = 0 and β = 2.015, (b) α = 0.5 and β = 2.655,
and (c) α = 0.1 and β = 3.103.

target state is 0.816. The results show that the nontrivial
fidelity bound can be obtained in the DI scenario when the
quantum value is larger than 3.103, while for the 1SDI and
DD scenarios the bounds are 3 and 2.581, respectively. It
is shown that with the increase of α, especially for α = 1,
the 1SDI self-testing bound is much better than in the DI
scenario and closer to the DD scenario. Thus our method
achieves significant improvement in the 1SDI certification of
less entangled two-qubit states, which is comparable to the
device-dependent scenario.

B. One-sided self-testing based on general tilted CHSH
inequality

In this section we construct two-setting steering inequali-
ties from the general tilted CHSH inequality [43]

Ŝα,β = αA0 + βA0B0 + βA0B1 + A1B0 − A1B1. (31)

The maximal classical and quantum bounds are α + 2(1 + β )
and

√
(4 + α2)(1 + β2), respectively. The quantum bound can

be achieved by pure two-qubit states (9) and correspond-
ing measurements settings {σz; σx} for Alice and {cos μσz +
sin μσx; cos μσz − sin μσx} for Bob, with sin 2θ =

√
4−α2β2

4+α2

and tan μ = sin 2θ
β

.
Taking the measurements on Alice’s side as trusted, this

Bell inequality can be transformed into

Ŝα,β = αZ + βZ (B0 + B1) + X (B0 − B1), (32)

which is a steering inequality. However, we can also introduce
two other measurements to represent B0 + B1 and B0 − B1,
thus rewriting the steering inequality as

S(1)
α,β = α〈Z〉 + β〈ZB0〉 + 〈XB1〉 �

√
1 + (α + β )2, (33)

with β > 0. The maximal quantum violation is β +√
1 + α2 := SQ.

This form of steering inequality allows us to compare
the construction with the one proposed in Ref. [27], which
changes the marginal term to Bob’s side,

S(2)
α,β = α〈B0〉 + β〈ZB0〉 + 〈XB1〉 � α +

√
1 + β2, (34)

with β2 = α2 + 1, and keeps the quantum bound as in
Eq. (33). It should be remarked that the constraints of β and α

given in [27] can be relaxed to β2 � α2 + 1, which we prove
in Appendix D with SOS decomposition related to the steering
operators.

Both of these steering inequalities of S(1)
α,β and S(2)

α,β can be
used to self-test a pure partially entangled state with sin(2θ ) =

1√
1+α2 . The only difference between our construction and the

one in [27] is the exchanging roles of Alice and Bob. The
advantage of our construction will be shown later. Before that,
we should prove that the maximum violation of both S(1)

α,β and

S(2)
α,β can be used to self-test a pure partially entangled state,

though the proof for self-testing based on S2
α,β was already

given in (33). However, a different proof is provided here
which is based on the SOS decomposition related to the steer-
ing inequality and the isometry given in Fig. 1. The benefit of
this proof is that the constraints of β2 = α2 + 1 can be relaxed
(details are in Appendix D).

In the following we study the robustness of the self-testing
based on these two steering inequalities. In Ref. [27] the
robustness of one-sided self-testing was studied only for max-
imally entangled states based on operator inequalities. For the
case α = 0, when the violation of the steering inequality is
S = 2 − ε, the actual state is 24

√
ε + ε, close to the target

state (see also Ref. [13]). More precisely, the relation between
the fidelity and the steering inequality value is

F � 1 − 24
√

2 − S − (2 − S), (35)

which is quite loose. A nontrivial fidelity bound f > 1
2 can

only be obtained when the violation is larger than 1.999 57,
which makes the robustness analysis in the one-sided self-
testing impractical. Here we have improved this bound to be

F � S − 2

4 − 2
√

2
+ 1, (36)

which is the theoretical optimal linear bound. The local
extraction channel to achieve this bound is constructed in
Appendix B, and this channel coincides with the extraction
channel in the DI scenario introduced in Ref. [48]. However,
the reason this channel is used was not explained in Ref. [48].
Here we point out that the channel is the optimal local channel
that the local party can take.

For the other case of α, we give the robustness analysis of
one-sided self-testing based on the numerical method. The de-
tails are given in Appendix C. The method works for general,
pure two-qubit states and the results show that the robustness
bound is nearly linear.

The comparison of the robustness bound of self-testing
based of Eqs. (33) and (34) is given in Fig. 3, where we take
α = 1 and β = √

2 as an example. As shown, the one with
trusted partial information gives a better robustness bound.
The reason is that construction of the steering inequality (33)
shows a smaller LHS bound compared with the inequality
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FIG. 3. Comparison of the robustness bound of self-testing based
on the two-setting steering inequality Sα,β of Eqs. (33) and (34),
where α = 1 and β = √

2.

(34); however, it keeps the quantum maximum bound. Thus
the inequality (34) demonstrates an advantage for self-testing;
it is more robust than using an untrusted party’s partial mea-
surement expectation. Actually, in addition to the advantage
in self-testing, the steering inequality constructed with trusted
partial expectation can also have fewer constraints on variants
α and β, and thus could provide more reasonable steering
inequalities (see Appendix D for details).

IV. ONE-SIDED SELF-TESTING BASED ON
THREE-SETTING STEERING INEQUALITIES

So far the steering inequalities we have considered are all
of two measurement settings. In this section we introduce
more measurements settings in constructing steering inequal-
ities. Later we show that adding more measurement settings
can help increase the robustness in one-sided self-testing. We
construct a family of three-setting steering inequalities

Iα,β ≡ α〈Z〉 + β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 �
√

2 + (α + β )2,

(37)
where β � 0. These inequalities can be viewed as a general-
ization of analogous tilted CHSH steering inequalities (34).
A third measurement involving the Pauli Y measurement is
added. Similar to the discussion of the two-setting scenario,
the partial expectation in the construction can also be un-
trusted party Bob’s measurement B0. Thus Iα,β ≡ α〈B0〉 +
β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 is constructed. These two slightly
different inequalities have a different LHS bound while keep-
ing the same quantum bound (for a detailed discussion and
their proof for self-testing a two-qubit partially entangled state
see Appendix D).

Here we just consider the first case in the main text for
simplicity and give its self-testing robustness bound. The LHS
bound is the maximum violation that we can have, assuming
Bob has a preexisting state known to Alice, rather than half
of an entangled state shared with Alice. Bob’s system may be
derived from a classical system; thus we can denote his cor-

responding declared result by a random variable Bk ∈ {−1, 1}
for k = 0, 1. As shown in [36], it is easy to see that

ILHS = maxBk λmax(Iα,β ), (38)

where λmax(Ô) denotes the largest eigenvalue of Ô. Then the
LHS bound of Eq. (37) is shown to be

√
2 + (α + β )2.

The maximum quantum bound is β + √
4 + α2 := SQ.

This can be verified by the fact that SQI − Iα,β is PSD. More
precisely,

SQI − Îα,β = β

2
(I − ZB0)2

+
√

α2 + 4

4

(
I− α√

4 + α2
Z− 2√

4 + α2
XB1

)2

+
√

α2 + 4

4

(
I− α√

4 + α2
Z− 2√

4 + α2
Y B2

)2

.

(39)

The quantum systems used to achieve the maximal quan-
tum violation are B0 = Z , B1 = X , B2 = −Y , and |�〉 =
cos θ |00〉 + sin θ |11〉, with sin 2θ = 2√

4+α2 , which in turn can
be self-tested when the maximum violation is reached (see
Appendix D).

Here, for simplicity, we just consider the case of
α = 0 and β = 1. Assuming Bob’s measurements are
untrusted, without loss of generality, they can be writ-
ten as B0,1 = cos μσz ± sin μσx and B2 = cos μ1 cos μ2σz +
cos μ1 sin μ2σx + sin μ1σy. Due to the asymmetry of Iα,β in-
troduced by the form of B2, the spectral decomposition of it is
not easy, which leads to the difficulty in constructing a local
extraction channel making G PSD. We divide G into two parts.
If each part is PSD, then the whole matrix G is PSD,

G := K − [s(ZB0 + XB1 + Y B2) + τI]

= K1 − s(ZB0 + XB1) − τ1I + K2 − sY B2 − τ2I, (40)

where K1 + K2 = K defines the two parts.
We consider the local extraction channel which ensures

the parts of G1 := K1 − s(ZB0 + XB1) − τ1I and G2 := K2 −
sY B2 − τ2I PSD simultaneously (see Appendix F for details
of the channel construction). The following robustness bound
of self-testing in the three-setting steering scenario is ob-
tained:

F � sSobs + τ � 3

12 − 4
√

2
(Sobs − 3) + 1. (41)

It should be noted that here we did not get the expected
robustness bound of F � (Sobs−3)

2(3−√
3)

+ 1. This may be because
the local extraction channel strategy we consider here is not
optimal. It may be possible to find a better extraction strategy
to obtain that bound. However, though the bound we give is
optimal, it is still better than two-setting analogous CHSH
steering scenarios.

For a straightforward comparison between different in-
equalities, we transform the steering inequalities into the
games characterized by the guessing probability which be-
longs to the same interval [ 1

2 , 1]. In the case of α = 0, we
have P = ∑

i=0,1 p(a = b|AiBi ) = 1
2 + S

2SQ
, which is the suc-

cessful probability of the nonlocal game guessing the other
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FIG. 4. Comparison of robustness bounds for one-sided self-
testing of a singlet based on three-setting and two-setting steering
inequalities.

party’s outcomes. For the other case, we can also find a
nonlocal game, namely, the guessing score is related to the
inequalities (33) and (37), respectively. (See Appendix E for
details.) We define the guessing probability as the probability
for untrusted parties to successfully guess the trusted parties’
outcomes, which is also important for the sample efficiency
analysis in the next section. Based on the guessing proba-
bility, we can compare the robustness bound for one-sided
self-testing of a singlet based on three-setting and two-setting
steering inequalities. The result is shown in Fig. 4, where the
three-setting steering inequality we constructed gives a better
robustness bound. It is worth studying whether steering in-
equalities with more measurement settings can be constructed
and further improve the robustness of one-sided self-testing.

V. SAMPLE EFFICIENCY

To construct a practical quantum verification protocol, it is
crucial to study the sample efficiency [11,12,39,53]. Sample
efficiency is used to study the performance of the self-testing
criteria in the finite copy regime in a way that some of the
state copies are measured to warrant the rest of the states being
close to the target state.

Consider a quantum device producing the states
ρ1, ρ2, . . . , ρN in N runs. Our task is to verify whether these
states are sufficiently close to the target state |�〉 ∈ H on
average. Here the one-sided extractability is a natural choice
for quantifying the closeness in the one-sided self-testing
scenario.

For the extraction channel method, we obtain a linear rela-
tion between the extractability and the observed value of the
steering inequalities

F � sSobs + τ. (42)

Since τ = 1 − sSQ, we have

s(SQ − Sobs) � 1 − F. (43)

The first step in constructing the verification protocol is
to view the steering inequalities as testing games. (Details of
the transformation of steering inequalities to testing games
are shown in Appendix E.) Based on this, results of un-
measured copies can be guaranteed based on the measured
copies. Define p as the guessing probability of the game for
a single state. For the steering inequalities in Eqs. (33) and
(37), when α = 0, which corresponds to the singlet state, the
testing game is straightforward based on the outcomes of the
same Pauli measurements. When α > 0, which corresponds
to the nonmaximally entangled state, virtual testing games are
constructed from the steering inequalities in Appendix E. For
these testing games, we have

p = 1

4

∑
i=0,1

p(a = b|AiBi ) = 1

2
+ S

2SQ
. (44)

This relation between the guessing probability and the vi-
olation of steering inequalities is essential for the study of
sample efficiency. For the analogous CHSH steering inequal-
ity in Eq. (11), we have p = 1

4

∑
a⊗b=i j p(a, b|AiBi ) = 1

2 + S
4 .

This probability corresponds to the successful probability to
win the game of a ⊗ b = i j for Alice and Bob. For steering
inequalities in Eq. (11) for α 
= 0 and Eq. (34), we have not
found corresponding testing games. One may resort to other
theories to study its performance in the finite regime, such as
[54].

Defining ε = 1 − F as the infidelity and combining
Eqs. (43) and (44), we have

p � 1 − ε

2sSQ
. (45)

Defining c = 1
2sSQ

, in general we have

p � 1 − cε. (46)

Now for these inequalities which correspond to a testing
game, we are ready to estimate the number of copies suf-
ficient to exceed a certain bound on the average one-sided
extractability. Suppose the states in the test are independently
distributed. The goal is to guarantee that the average one-sided
extractability of the states ρ1, ρ2, . . . , ρN is larger than 1 − ε

with significance level δ (confidence level 1 − δ). According
to Ref. [53], the scaling of sample efficiency depends on
whether the quantum bound and algebraic bound coincide for
the games between participants. When the quantum bound and
algebraic bound coincide, the number of copies satisfies

N � ln δ−1

ln(1 − cε)−1
≈ ln δ−1

cε
. (47)

For all the steering inequalities we have considered in this
paper, the two-setting inequality (33) and the three-setting
inequality (37) satisfy this condition. In that case, the maximal
guessing probability 1 can be obtained in the testing games
according to the strategy given in Appendix E. Thus we obtain
the approximately optimal sample efficiency for one-sided
self-testing of general two-qubit states in both the two-setting
and three-setting cases, which is comparable to the number
needed in quantum state verification.

For the analogous CHSH steering inequality in Eq. (11),
the quantum bound and algebraic bound are different. The
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number of copies needed satisfies

N = O

(
ln δ−1

c2ε2

)
, (48)

according to Ref. [53].
In this section we studied the sample efficiency for one-

sided self-testing of two-qubit entangled states. Based on the
steering inequalities we constructed, approximately optimal
sample efficiency can be obtained in the SDI scenario, which
is comparable to the device-dependent scenario. For the gen-
eral DI scenario, the scaling of testing number is usually in
quadratic form. Thus our strategies demonstrate a significant
advantage over DI self-testing in sample efficiency.

VI. CONCLUSION

In this paper we studied the one-sided self-testing of gen-
eral, pure two-qubit states in the untrusted quantum network
in which one party is not honest. The self-testing strategies
are based on the violation of quantum steering inequalities.
To achieve this goal, we first studied two setting scenarios,
where the steering inequalities can be constructed from stan-
dard tilted CHSH inequalities and its general form. Based
on these steering inequalities, we studied the robustness of
one-sided self-testing using both the local extraction map
method and the numerical semidefinite-programming method.
In particular, the local extraction map method has been shown
to provide the analytical and theoretical optimal linear bound.
Our result also demonstrates an explicit approach to con-
struct the local extraction channel. The comparison with the
device-independent scenario and the device-dependent sce-
nario shows clearly that the robustness of SDI certification lies
in the middle. The numerical method involving SDP and the
SWAP trick gives a nearly linear robustness bound for general,
pure two-qubit states. To construct a practical certification
protocol, we also clarified the sample efficiency of our 1SDI
self-testing protocols. The results show that approximately
optimal sample efficiency can be obtained based on the steer-
ing inequalities we constructed.

Furthermore, we constructed three-measurement-setting
steering inequalities for general two-qubit states, for a par-
tially entangled state. It was shown that the robustness bound

can be further improved by introducing the third measurement
setting. It is worth studying whether steering inequalities with
more measurement settings can be constructed and further im-
prove the robustness of one-sided self-testing. This question
is also of interest in foundational studies on quantum steering.
The improvement of the robustness bound in our work can
be applied to the certification of high-dimensional quantum
devices as building blocks. In the future, our results may be
generalized to generic bipartite pure states, multipartite GHZ
states, and other quantum states.

ACKNOWLEDGMENTS

This research was supported by National Nature Science
Foundation of China (Grants No. 62101600, No. 62201252,
and No. 61901218), Science Foundation of China Univer-
sity of Petroleum, Beijing (Grant No. 2462021YJRC008),
State Key Laboratory of Cryptology (Grant No. MMK-
FKT202109), and Natural Science Foundation of Jiangsu
Province, China (Grant No. BK20190407).

APPENDIX A: LOCAL EXTRACTION CHANNEL
METHOD FOR SELF-TESTING BASED ON AN

ANALOGOUS TILTED CHSH INEQUALITY

This Appendix provides the robust bound of the self-testing
based on an analogous tilted CHSH inequality in case 2,

i.e., 0 � cos 2μ � α2

4 or equivalently μ ∈ (arcsin
√

4−α2

8 , π
4 ].

In this case, the eigenvalues of the decomposition of Ŝα =∑
λi|ψi〉〈ψi| are λ1,2 =

√
α2 + 4 sin2 μ ± 2 cos μ. The con-

straints between γ and μ are

λ1 cos2 γ − λ2 sin2 γ = α + 2 cos μ,

λ2 cos2 γ − λ1 sin2 γ = α − 2 cos μ,

(λ1 + λ2) cos γ sin γ = 2 sin μ.

Still sin 2γ = 2 sin μ√
α2+4 sin2 μ

.

The following is the local extraction channel in this case.
Bob takes rotation operation I with probability q1 and takes
σz with probability q2. Then the ideal state is transformed
into K = q1|ψ〉〈ψ | + q2σx|ψ〉〈ψ |σx. The PSD requirement of
G := K − sÎα − τI � 0 gives

⎛
⎜⎜⎝

q1 cos2(θ ) − C1s − τ 0 0 q1
sin 2θ

2 − 2 sin μs
0 q2 cos2 θ − C2s − τ q2

sin 2θ
2 − 2 sin μs 0

0 q2
sin 2θ

2 − 2 sin μs q2 sin2 θ + C1s − τ 0
q1

sin 2θ
2 − 2 sin μs 0 0 q1 sin2 θ + C2s − τ

⎞
⎟⎟⎠ � 0, (A1)

where C1 = α + 2 cos μ and C2 = α − 2 cos μ. The eigenval-
ues of G are

λ1,2 =
G11 + G44 ±

√
(G11 − G44)2 + 4G2

14

2
, (A2)

λ3,4 =
G22 + G33 ±

√
(G22 − G33)2 + 4G2

23

2
, (A3)

which should be positive to make G PSD,

q1 � 4 sin2 μs2 + (C1s + τ )(C2s − τ )

(βQ + 2 sin 2θ sin μ + cos2 θC2 − sin2 θC1)s − 1
,
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q2 � 4 sin2 μs2 + (C2s + τ )(C1s − τ )

(βQ + 2 sin 2θ sin μ + cos2 θC1 − sin2 θC2)s − 1
,

where βQ = √
8 + 2α2.

We can also set s = 1−cos2 θ
βQ−(2+α) and τ = 1 − √

8 + 2α2s,
keeping q1 in the above range. This gives the same bound as
in case 1. To this end, we take q1 to be the maximum between
0 and the values which saturate the above two inequalities
about q1.

APPENDIX B: LOCAL EXTRACTION CHANNEL
METHOD FOR SELF-TESTING BASED ON REVERSE

CHSH INEQUALITY

The analogous CHSH steering operator Ŝ = ZB0 + XB1

has the spectral decomposition

Ŝ =
∑

λi|ψi〉〈ψi|, (B1)

with λ2
1 + λ2

2 = 4, λ3 = −λ2, and λ4 = −λ1. Precisely,

λ1 =
√

2(cos μ + sin μ), λ2 =
√

2(cos μ − sin μ), (B2)

where Bob’s measurements are written as Br = cos μσz +
(−1)r sin μσx, with r = 0, 1. In the case of μ ∈ (0, π/4] we
have λ1, λ2 � 0 and

|ψ1〉 = |00B〉 + |11B〉√
2

, |ψ2〉 = |00′
B〉 + |11′

B〉√
2

,

|ψ3〉 = |01′
B〉 − |10′

B〉√
2

, |ψ4〉 = |01B〉 − |10B〉√
2

,

(B3)

where

0B = cos
π

8
|0〉 + sin

π

8
|1〉, 1B = sin

π

8
|0〉 − cos

π

8
|1〉,

0′
B = cos

π

8
|0〉 − sin

π

8
|1〉, 1′

B = sin
π

8
|0〉 + cos

π

8
|1〉.

We consider the following local extraction channel. Bob
takes the rotation operation R1 = I on his qubit with the
probability of q1 and takes R2 = σz on his qubit with the
probability of q2. The ideal state is transformed into the mix-
ture of the Bell operator eigenvectors |ψ〉 := q1|ψ1〉〈ψ1| +
q2|ψ2〉〈ψ2|. In this case, G := K − sŜ − τI is diagonal and
the PSD requirement gives

q1 − sλ1 − τ � 0,

q2 − sλ2 − τ � 0,

Tr(ρ) = p1 + p2 = 1,

Tr(ρŜ) = λ1 p1 + λ2 p2 = S,

where we set τ = 1 − 2s. By simplifying, we have sλ1 − 2s +
1 � q2 � −sλ2 + 2s, which gives us s � 1

4−(λ1+λ2 ) � 1
4−2

√
2
.

This gives the following robustness bound of self-testing via
the steering inequality:

F � sS + τ � S − 2

4 − 2
√

2
+ 1. (B4)

In addition, we get the constraints on the rotation probability

(1 +
√

2)(cos μ + sin μ + 1) � q1 � 1. (B5)

FIG. 5. One-sided SWAP isometry applied on Bob’s side.

For the case of μ ∈ ( π
4 , π

2 ), the local extraction channel is
considered as follows. Bob takes the rotation R1 = I with the
probability of q1 and R2 = σx with the probability of q2. This
gives the same robustness bound.

Above we found that the optimal linear bound and nontriv-
ial fidelity can be obtained as long as the steering inequality
is violated. However, as shown in Ref. [48], that nontrivial
fidelity bound could not be obtained for an inequality violation
at 2, with this local extraction channel. The reason might be
that to define the appropriate extraction channel, the two local
sites need coordinating. In the DI scenario, both sides are not
trusted. The decomposition of the Bell operator is related to
both Alice’s and Bob’s local measurement directions.

Once Alice and Bob could inform each other what
measurement directions they choose (do classical communi-
cation), it is possible for them to define the appropriate local
rotation channel which could rotate the idea states to be the
eigenvectors of the Bell operator with positive eigenvalues. It
could make G := K − sÎ − τI PSD. In this case, it is easy
to find that s and t are the optimal ones. However, allowing
communication is not usually device independent. Thus, in
the DI scenario, when coordination is needed, the nontrivial
fidelity could not be reached.
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FIG. 6. Robustness bound of self-testing based on the three-
setting steering inequality for six scenarios of (α, β ), where α = 1, 2
and β = 1, 2, 10.
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APPENDIX C: NUMERICAL RESULTS UTILIZING THE
SWAP ISOMETRY

In this Appendix we consider the numerical method based
on SDP to show the robustness of the self-testing via steering
inequality, which has been widely used in DI frameworks
[17,55]. A detailed robustness analysis is given for three-
setting steering inequalities. For two-setting scenarios, we
only need to remove the third measurement in the code.

The target state is |ψ〉 = cos θ |00〉 + sin θ |11〉. Bob’s mea-
surements can be written as B0 = 2E0|0 − I , B1 = 2E0|1 − I ,

and B2 = 2E0|2 − I , where B2
0 = B2

1 = B2
2. After applying the

isometry given in Fig. 5 to the physical state |ψ ′〉, we obtain
the state

|ψ ′〉 = E0|0|ψ〉|0〉A′ + XE1|0|ψ〉|1〉A′ . (C1)

We trace the desired system out

ρSWAP = trA(|ψ ′〉〈ψ ′|). (C2)

Utilizing the SWAP isometry on Bob’s side, the fidelity can be bounded as

f = 〈ψ |ρSWAP|ψ〉

= cos2 θ〈0|trA(E0|0ρAB)|0〉 + sin2 θ〈1|trA(E1|0ρAB)|1〉 + sin 2θ

2
[〈0|trA(E1|0XE0|0ρAB)|1〉 + 〈1|trA(E0|0XE1|0ρAB)|0〉]

= cos2 θ〈0|trA(E0|0ρAB)|0〉 + sin2 θ〈1|(ρB − trAE0|0)|1〉 + sin 2θ [〈0|trA(E0|1E0|0 − E0|0E0|1E0|0)|1〉
+ 〈1|trA(E0|0E0|1 − E0|0E0|1E0|0ρAB)|0〉]

= cos2 θ〈0|σ0|0|0〉 + sin2 θ〈1|(ρB − σ0|0)|1〉 + sin 2θ [〈0|(σ0|1,0|0 − σ0|0,0|1,0|0)|1〉 + 〈1|σ0|0,0|1 − σ0|0,0|1,0|0|0〉]. (C3)

The goal is now to give a lower bound to f . The numerical method of minimizing the fidelity for a given steering inequality
value is given by the SDP

minimize f := Tr(M�)
(C4)

subject to � � 0, Iα,β = Q,

where M is a zero matrix (14,14), with M2,2 = sin2 θ , M2,9 = M9,2 = sin 2θ , M3,3 = cos2 θ , M4,4 = − sin2 θ , and M9,10 =
M10,9 = − sin 2θ ;

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρC σ0|0 σ0|1 σ0|2 σ0|1,0|0 σ0|2,0|0 σ0|2,0|1
σ0|0 σ0|0 σ0|0,0|1 σ0|0,0|2 σ0|0,0|1,0|0 σ0|0,0|2,0|0 σ0|0,0|2,0|1
σ0|1 σ0|1,0|0 σ0|1 σ0|1,0|2 σ0|1,0|0 σ0|1,0|2,0|0 σ0|1,0|2,0|1
σ0|2 σ0|2,0|0 σ0|2,0|1 σ0|2 σ0|2,0|1,0|0 σ0|2,0|0 σ0|2,0|1

σ0|0,0|1 σ0|0,0|1,0|0 σ0|0,0|1 σ0|0,0|1,0|2 σ0|0,0|1,0|0 σ0|0,0|1,0|2,0|0 σ0|0,0|1,0|2,0|1
σ0|0,0|2 σ0|0,0|2,0|0 σ0|0,0|2,0|1 σ0|0,0|2 σ0|0,0|2,0|1,0|0 σ0|0,0|2,0|0 σ0|0,0|2,0|1
σ0|1,0|2 σ0|1,0|2,0|0 σ0|1,0|2,0|1 σ0|1,0|2 σ0|1,0|2,0|1,0|0 σ0|1,0|2,0|0 σ0|1,0|2,0|1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (C5)

and Iα,β = α〈Z〉 + β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 = Tr[(α −
β )ZρC − (X + Y )ρC + 2βZσ0|0 + 2Xσ0|1 + 2Y σ0|2] or
Iα,β = α〈B0〉 + β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 = Tr[−(α +
βZ + X + Y )ρC + (2αI + 2βZ )σ0|0 + 2Xσ0|1 + 2Y σ0|2].
We constrain � in the optimization to be positive semidefinite
and note that each submatrix of � corresponding to something
like an element of an assemblage is a valid quantum object. It
actually turns out that all assemblages that satisfy no-signaling
can be realized in quantum theory [56]. Discussion of this
point is beyond the scope of this paper, as all we wish to do is
give a lower bound on the value of G; therefore just imposing
� � 0 gives such a bound. Based on the SDP of Eq. (C4), we
show several robustness bounds of self-testing based on the
three-setting steering inequality for six scenarios of (α, β ),
where α = 1, 2 and β = 1, 2, 10 (see Fig. 6).

APPENDIX D: ANALYSIS OF DIFFERENT TYPES OF
TWO-SETTING AND THREE-SETTING STEERING

INEQUALITIES

Here we study the maximal quantum violation of the steer-
ing inequalities involved in the main text and show that the
maximal violation of these inequalities can be used for self-
testing. For the two-setting steering inequality

S2
α,β = α〈B0〉 + β〈ZB0〉 + 〈XB1〉 � α +

√
1 + β2. (D1)

The maximum quantum bound is β + √
1 + α2 := SQ. This

can be confirmed by showing SQI − Ŝ(2)
α,β � 0 to be true for all

the possible underlying states and the measurements. To do so,
we provide the following SOS decompositions of SQI − Ŝ(2)

α,β
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to illustrate its PSD: The first SOS decomposition is

SQI − Ŝ(2)
α,β = α2

1 (I − cB0 − sXAB1)2 + α2
2 (ZA − B0)2

+ α2
3 (−cB1 + sXAB0 + ZAB1)2

+ α2
4

(
SQI − Ŝ2

α,β

)2
, (D2)

where c = α√
1+α2 , s = 1√

1+α2 , α2
4 = 1

4β
, α2

3 = β
√

1+α2

1 α2
4 =

√
1+α2

4 , α2
1 = ( β

√
1+α2

1 − 1+α2

1 )α2
4 , and α2

2 = β−√
1+α2

4 , and the
second one is

SQI − Ŝ(2)
α,β

= α2
1 (I − cB0 − sXAB1)2 + α2

2 (ZA − B0)2

+ α2
3[(� + s2)B0 − (� + 1)ZA + cZAB0 − csXAB1]2

+ α2
4[−(�+s2)B1+s(�+1)XA+�cZAB1−csXAB0)]2,

(D3)

where α1 and α2 are the same as the first SOS decomposition,
α2

3 = �α2
4 , α2

4 = SQ

4sβ(�2+s2 )(�2+1) , and � = β√
1+α2 .

It is easy to verify that the left-hand sides of Eqs. (D2)
and (D3) are equal to the SOS forms on the right. In addi-
tion, to make the SOS decompositions positive semidefinite,
we should have αi � 0, and thus β �

√
1 + α2. Apparently,

SQ is the upper bound of the steering inequality S2
α,β under

this constraint, although we do not know whether the quan-
tum can reach the bound. Provided B0 = Z , B1 = X , and
|�〉 = cos θ |00〉 + sin θ |11〉 with sin 2θ = 1√

1+α2 can make

S2
α,β achieve SQ, we conclude that SQ is the maximum quan-

tum violation.
Next we show that the maximal violation of this steering

inequality will self-test the partially entangled state. The local
isometry used to determine the equivalence of the states is the
same as in the main text, but with Z̃B = B0 and X̃B = B1. As
shown in the main text, the relations required to show that this
isometry works are

ZA|ψ〉 − B0|ψ〉 = 0, (D4)

sin θXA(I + B0)|ψ〉 − cos θB1(I − ZA)|ψ〉 = 0. (D5)

To obtain these relations, we let each side of Eqs. (D2) and
(D3) take action on |ψ〉, a state that is supposed to reach
the maximum violation of the steering inequality. Then seven
terms of Pi|ψ〉 = 0 will be obtained; among them the second
squared term in Eq. (D2) gives Eq. (D4), while the linear com-
bination of the third squared term in Eq. (D2) and the fourth
squared term in Eq. (D3) leads to Eq. (D4). Then, similar to
the proof for the analog of tilted CHSH steering inequality
given in the main text, by the isometry given in Fig. 1, we
complete the self-testing statement via the two-setting steering
inequality S2

α,β .
For the two-setting steering inequality

S(1)
α,β = α〈Z〉 + β〈ZB0〉 + 〈XB1〉 �

√
1 + (α + β )2, (D6)

which keeps the same maximal quantum violation as in
Eq. (D1). For this steering inequality, three different types of
SOS decompositions related to SQI − Ŝ(1)

α,β can be given: The

first one is

β

2
(I − ZAB0)2 +

√
α2 + 1

2
(I − cZA − sXAB1)2, (D7)

the second one is

1

2SQ
(−cXA + sZAB1 + XAB0)2 + β

√
α2 + 1

2SQ

(
SQI − Ŝ(1)

α,β

)2
,

(D8)
and the third one is

α2
1[(� + s2)ZA − (� + 1)B0 + cZAB0 − csXAB1]2

+ α2
2[−(� + s2)XA + s(� + 1)B1 + �cXAB0 − csZAB1)]2,

(D9)

where α2
1 = �α2

2 , α2
2 = (1+α2 )2

2(β2
√

1+α2 )+β(1+α2 )+SQ
, and � =

β√
1+α2 . The PSD requirements only require β > 0. In addition,

each squared term in Eqs. (D7)–(D9) acting on |ψ〉 being zero
can lead to the relations our self-testing proofs heavily rely on,
namely, Eqs. (D4) and (D5) [the first term in Eq. (D7) leads
to Eq. (D4); the first term in Eq. (D7) and the second term in
Eq. (D9) lead to Eq. (D5)]. Then we can complete the proof
of self-testing based on S(1)

α,β .
For the three-setting scenario, the partial part expectation

can be changed into the untrusted part’s measurement. Thus
there are two three-setting steering inequalities: the one in the
main text,

I (1)
α,β ≡ α〈Z〉 + β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 �

√
2 + (α + β )2,

(D10)
and

I (2)
α,β ≡ α〈B0〉 + β〈ZB0〉 + 〈XB1〉 + 〈Y B2〉 � α +

√
2 + β2.

(D11)
The advantage of this change is that its LHS bound is lower
than using Alice’s Z measurement in the three-setting inequal-
ity, while the quantum bound is maintained. It extends the
gap between the LHS bound and steering bound, which is
a benefit of the practical experiment. Denoting Bob’s corre-
sponding declared result by the random variable Bk ∈ {−1, 1}
for k = 0, 1, it is easy to obtain the LHS bound α +

√
2 + β2.

The quantum bounds of the both three-setting steering
inequalities are the same, β + √

4 + α2. However, an extra
condition should be satisfied for I (2)

α,β , that is, β �
√

4 + α2.

For I (2)
α,β it only requires β � 0. This can be obtained from the

following SOS: The first one is

(β +
√

4 + α2)I − Î (2)
α,β

= α2
1 (I − cB0 − sXAB1)2 + α2

2 (ZA − B0)2

+ α2
3 (I − cB0 − sYAB2)2

+ α2
4 (−cB1 + sXAB0 + ZAB1)2

+ α2
5 (−cB2 + sYAB0 + ZAB2)2

+ α2
6 ((β +

√
4 + α2)I − Iα,β )2

+ α2
7 (XAB1 − YAB2)2, (D12)

where c = α√
4+α2 , s = 2√

4+α2 , α2
6 = α2

7 = 1
4β

, α2
4 = α2

5 =
β
√

4+α2

2 α2
6 =

√
4+α2

8 , α2
1 = α2

3 = ( β
√

4+α2

2 − 4+α2

2 )α2
6 , and
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α2
2 = β−√

4+α2

4 , and the second one is

(β +
√

4 + α2)I − Î (2)
α,β

= α2
1 (I − cB0 − sXAB1)2 + α2

2 (ZA − B0)2

+ α2
3 (I − cB0 − sYAB2)2

+ α2
4[(� + s2)B0 − (� + 1)ZA + cZAB0 − csXAB1]2

+ α2
5[(� + s2)B0 − (� + 1)ZA + cZAB0 − csYAB2]2

+ α2
6[−(� + s2)B1 + s(� + 1)XA

+ �cZAB1 − csXAB0)]2

+ α2
7[−(� + s2)B2 + s(� + 1)YA

+ �cZAB2 − csYAB0)]2, (D13)

where c = α√
4+α2 , s = 2√

4+α2 , α2
6 = α2

7 = 1
4s�(�2+s) , α2

4 =
α2

5 = �α2
6 = 1

4s(�2+s) , α2
1 = α2

3 = 1
2S − (� + 1)(� + s2)α2

6 ,

α2
2 = β

2 − �2+1
s(�+1) , and � = 1.

Making the SOS decomposition positive semidefinite re-
quires each αi � 0 and thus β �

√
4 + α2. In addition, some

squared terms in (D12) and (D13) acting on |ψ〉 being zero
also can lead to the relations (D4) and (D5). Thus, with the
isometry given in the main text, we can complete the proof of
self-testing based on S(2)

α,β .
For the first three-setting steering inequality, three types of

SOS decompositions can be given: The first one is

(β +
√

4 + α2)I − Î (1)
α,β

= β

2
(I − ZAB0)2 +

√
α2 + 4

4
(I − cZA − sXAB1)2

+
√

α2 − 4

4
(I − cZA − sYAB2)2, (D14)

the second one is

(β +
√

4 + α2)I − Î (1)
α,β

= α2
1 (−cXA + sZAB1 + XAB0)2

+ α2
2 (−cYA + sZAB2 + YAB0)2 + α2

3

(
SQI − Î (1)

α,β

)2
,

(D15)

where α2
1 = α2

2 = α2+β2+β
√

4+α3+3
4SQ

and α2
3 = 1

2SQ
, and the

third one is

(β +
√

4 + α2)I − Î (1)
α,β

= α2
1[(� + s2)ZA − (� + 1)B0 + cZAB0 − csXAB1]2

+ α2
2[−(�+s2)XA+s(�+1)B1+�cXAB0−csZAB1)]2

+ α2
3[(� + s2)ZA − (� + 1)B0 + cYAB0 − csZAB2]2

+ α2
4[−(�+s2)YA+s(�+1)B2+�cYAB0−csZAB2)]2,

(D16)

where α2
1 = α2

3 = β

4(�+s2 )(�+1) , α2
2 = α2

4 = (1
2s(�+s2 )(�+1) , and

� = β√
1+α2 .

The PSD condition requires β � 0. In addition, the first
squared term in (D14) acting on |ψ〉 being zero (|ψ〉 is the
state which maximally violates the steering inequality) gives
the relations (D4), while the linear combination of the second
squared term in (D15) and the first squared term in (D16)
gives the relation (D5). Thus, with the isometry given in the
main text, we can complete the proof of self-testing based on
S(1)

α,β .
Self-testing for the measurements. Above we mainly

focused on the states self-testing; the self-testing of the cor-
responding measurements (for analysis refer to [17]) will be
similar. We start with �MB(|ψ〉) instead of �(|ψ〉) and show
it for one of the three measurements in three-setting steering
inequality cases, for example. After the isometry, the systems
will be

�(Z̃B|ψ〉) = 1
4 [(I + ZA)(I + Z̃B)Z̃B|ψ〉|00〉
+ XA(I + ZA)(I − Z̃B)Z̃B|ψ〉|01〉
+ X̃B(I − ZA)(I + Z̃B)Z̃B|ψ〉|10〉
+ XAX̃B(I − ZA)(I − Z̃B)Z̃B|ψ〉|11〉]. (D17)

With the relations (D4) and (D5) and the fact that ZAXA =
−XAZA, we find Z̃BX̃B|ψ〉 = −X̃BZ̃B|ψ〉. By using this anti-
commutation relation between Bob’s two measurements, we
move Z̃B to the left in the first, second, third, and fourth lines
while changing the sign of the fourth line. The analysis is then
the same as the state self-testing and the result is

�(Z̃B|ψ〉) = |junk〉[cos θ |00〉 − sin θ |11〉]
= |junk〉[(I ⊗ σz ) cos θ |00〉 + sin θ |11〉]. (D18)

In addition, from the SOS decomposition we can also find the
relation sin θYA(I + B0)|ψ〉 − cos θB2(I − ZA)|ψ〉 = 0. Thus
we have Z̃BỸB|ψ〉 = −ỸBZ̃B|ψ〉. Following the above idea, we
can finally conclude that the measurements on Bob’s side are
B0 = Z , B1 = X , and B2 = −Y .

APPENDIX E: TRANSFORMATION OF A STEERING
INEQUALITY INTO A GAME

In this Appendix we relate the constructed steering in-
equality to a game which two parties play to increase the
score and build the relation between the quantum violation
and success probability of the game defined. This is helpful
for a direct comparison between different steering inequalities
and it is necessary in the analysis of sample efficiency. For
simplicity, here we only consider the three-setting steering
inequality.

In principle, to obtain the maximum violation of the
three-setting steering inequality (37), the state between Al-
ice and Bob should be cos θ |00〉 + sin θ |11〉, which can
be further written as 1√

2
(|ψ0〉|+〉 + |ψ1〉|−〉), where we

define |ψ0〉 = cos(θ )|0〉 + sin(θ )|1〉 and |ψ1〉 = cos(θ )|0〉 −
sin(θ )|1〉. We define two measurements on Alice’s side
{|ψ0〉, |ψ†

0 〉; |ψ1〉, |ψ†
1 〉}, which actually are measurements

introduced to replace the measurements chosen in the
main text in the real experiments. The measurements
can also be written in the Pauli operator form {A0 =
cos(2θ )σz + sin(2θ )σx; A1 = cos(2θ )σz − sin(2θ )σx}.
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We notice that, if Bob gets |+〉, Alice takes A0 and Bob
can conclude that Alice’s qubit must be projected into |ψ0〉;
if Bob gets |−〉, Alice takes A1 and then Bob can conclude
that Alice’s qubit must be projected into |ψ1〉. Since in the
steering scenario Bob can send information to Alice, such
measurements result. Thus, this allows us to define the success
probability of Bob guessing Alice’s measurement result as

Px
virtual = p

(
A0

0, B0
1

) + P
(
A0

1, B1
1

)
, (E1)

which actually is related to the operators in the three-setting
steering inequality (34). More precisely, α

2 Z + XB1 =
( α

2 Z + X )B0
1 + ( α

2 Z − X )B1
1 =

√
4+α2

2 (A0B0
1 + A1B1

1) =√
4+α2

2 (2A0
0B0

1 + 2A0
1B1

1 − IB) for sin(2θ ) = 2√
4+α2 . Thus

Px
virtual is related to α〈Z〉 + 〈XB1〉. Similarly, we can define

Py
virtual for the σy measurement scenario, which is related to

α
2 〈Z〉 + 〈Y B2〉. Together with the guessing probability for
(ZA, B0), we define the total average passing probability as

Pvirtual =
√

4 + α2
(Px

virtual+Py
virtual

2

) + βp(a = b|ZA, B0)√
4 + α2 + β

. (E2)

Thus we have

Pvirtual =
√

4 + α2 + β + S

2(
√

4 + α2 + β )
= 1

2
+ S

2SQ
. (E3)

This relation between the guessing probability and the vio-
lation holds for steering inequalities (30) and (34). Thus the
steering inequalities are transformed to testing games.

APPENDIX F: ROBUST SELF-TESTING OF
THREE-SETTING INEQUALITY

In this Appendix we provide an analytical robustness
bound for self-testing via the three-setting steering inequality.
We first consider the part of G1 := K1 − s(ZB0 + XB1) − τ1I
for μ ∈ (0, π/4]; the spectral decomposition is already given
in Eq. (B3). To make G1 � 0, we consider the following
local extraction channel. Bob takes R1 = I with probability q1

and R2 = σz with probability q2; meanwhile, with the rest of
the probability 1 − q1 − q2 := q3 Bob takes some other local
extraction channel subject to the choice of B2. Then we have

q1 − sλ1 − τ1 � 0,

q2 − sλ2 − τ1 � 0,

sλ(1/2) − τ1 � 0,

Tr(ρ) = q1 + q2 + q3 = 1,

Tr(ρB̂) = λ1q1 + λ2q2 + q3Tr(ρY B2) = S,

where τ1 = 1 − γ s, with γ ∈ [2, 3]. In addition, τ1 should be
less than zero. We obtain s � 1+q3

2γ−(λ1+λ2 ) � 1+q3

2γ−2
√

2
.

Next we determine the value of q3 to make K2 PSD. We
notice sλ1 − τ1 and sλ2 − τ1, which, according to the coeffi-
cients of |ψ3〉 and |ψ4〉, are greater than zero. That is, if only
the coefficients of |ψ1〉 and |ψ2〉 are greater than zero, the K1

part will be PSD. Therefore, we put |ψ3〉 and |ψ4〉 into the K2

part to make it PSD. Now the K2 part becomes

G2 := q3�
+
B (ψ1) + (sλ1 − τ1)|ψ3〉〈ψ3|

+ (sλ2 − τ1)|ψ4〉〈ψ4| − sY B2 − (γ − 3)sI, (F1)

which is equivalent to

G2 := q3�
+
B (ψ1) + (sλ1 − τ1)|ψ3〉〈ψ3|

+ (sλ2 − τ1)|ψ4〉〈ψ4|
− s(γ − 2)(U |φ1〉〈φ1|U T + U |φ2〉〈φ2|U T )

+ s(4 − γ )(U |φ3〉〈φ3|U T + U |φ4〉〈φ4|U T ), (F2)

where U = [V 0
0 V ] and U T = [V ∗ 0

0 V ∗], where

V =
[− sin μ1i−cos μ1 sin μ2 )√

2−2 cos μ1 cos μ2

− sin μ1i−cos μ1 sin μ2√
2+2 cos μ1 cos μ2

cos μ1 cos μ2−1√
2−2 cos μ1 cos μ2

cos μ1 cos μ2+1√
2+2 cos μ1 cos μ2

]
, (F3)

with φ1 = [−1i√
2
, 0, 1√

2
, 0], φ2 = [0, 1i√

2
, 0, 1√

2
], φ3 =

[ 1i√
2
, 0, 1√

2
, 0], and φ4 = [0, −1i√

2
, 0, 1√

2
]. The requirement

of G2 � 0 gives (O denotes overlap)

q3(1 + c)

2
+ (sλ2 − τ1)O2(ψ3,U −1φ1)

+ (sλ1 − τ1)O2(ψ4,U −1φ1) − s(γ − 2) � 0, (F4)

q3(1 − c)

2
+ (sλ2 − τ1)O2(ψ3,U −1φ2)

+ (sλ1 − τ1)O2(ψ4,U −1φ2) − s(γ − 2) � 0, (F5)

that is,

q3(1 − c)

2

+ C2
cos2( π

8 )(sin μ1 − 1)2 + cos2 μ1 sin2( π
8 + μ2)

4

+ C1
cos2( π

8 )(sin μ1 + 1)2 + cos2 μ1 sin2( π
8 − μ2)

4

− s(γ − 2) � 0,

q3(1 + c)

2

+ C2
sin2( π

8 )(sin μ1 − 1)2 + cos2 μ1 cos2( π
8 + μ2)

4

+ C1
sin2( π

8 )(sin μ1 + 1)2 + cos2 μ1 cos2( π
8 − μ2)

4

− s(γ − 2) � 0,

where C1 = sλ1 − τ1 and C2 = sλ2 − τ1. With this channel,
we have

q3(1 + c)

2
+ 2 − √

2

8
(s + γ s − 1) − s(γ − 2) � 0

and

q3(1 − c)

2
+ 2 + √

2

8
(s + γ s − 1) − s(γ − 2) � 0,

which gives us q3c =
√

2
4 (s + γ s − 1) for γ > 2 and q3 �

−5γ+2
√

2+9
−γ+4

√
2−9

. We can choose γ = 3, which gives q3 = 1
2 ; in

addition, s = 3
12−4

√
2

= 0.4730 and τ = 1 − 3s. Thus we give
the following robustness bound of one-sided self-testing based
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on the three-setting steering inequality:

F � sSobs + τ � 3

12 − 4
√

2
(Sobs − 3) + 1. (F6)

Although this does not reach the theoretical bound s =
1

2(3−√
3)

, the result is better than that of the two-setting in-
equality. This shows that adding more measurement settings
can help increase the robustness in one-sided self-testing.
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A complete and operational resource theory of measurement sharpness
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Abstract. We provide a resource theory of sharpness for positive operator-valued measures
(POVMs) where free operations are quantum pre-processing channels and convex mixtures with
POVMs consisting of identity operators. We show that the greatest elements are POVMs where
all POVM elements have at least one real unit eigenvalue. Here, the sharpness is measured
by the degree of perfect correlations between a POVM and all reference POVMs. We say that
our framework is complete in that all measures provide a necessary and sufficient condition for
the existence of a sharpness non-increasing operation, and operational in that the measures are
experimentally accessible.

Keywords: Quantum measurement theory, measurement sharpness, resource theory, perfect
correlation, quantum pre-processing

1 Introduction

One can regard the measurement described by
projection-valued measure (PVM) as a good mea-
surement for considering observable and thus, quan-
tifying the closeness of measurement described by
positive operator-valued measure (POVM), called
“sharpness” is an important task [1, 2, 3, 4, 5, 6].
Given the recent development of quantum re-

source theories (for a review, see, e.g., [7]), one may
naturally regard sharpness as a resource like Ref. [6].
However, this attempt left a problem about what the
“free” operations are in the sense that such opera-
tions do not increase sharpness, which is the crucial
concept to construct a resource theory of sharpness.
In response to these issues, our work clarifies what

a free operation, i.e., a fuzzifying operation is. First,
we define “sharp POVM” as the greatest element of
our ordering of sharpness where all POVM elements
have at least one eigenvalue 1, and this is equivalent
to the existence of repeatable instruments. Next,
we define a fuzzifying operation as a quantum pre-
processing and making a convex mixture with a triv-
ial measurement where all POVM elements are pro-
portional to identity. Then we say that one POVM
is sharper than another POVM if and only if there
is a fuzzifying operation that can convert one into
another.
In terms of sharpness measures, we adopt Ozawa’s

degree of measurement correlation [8, 9]. Then we
give a kind of Blackwell’s theorem [10] concerning
the convertibility between POVMs by using a fuzzi-
fying operation: one POVM is sharper than another

∗buscemi@i.nagoya-u.ac.jp
†kobayashi.kodai.z8@s.mail.nagoya-u.ac.jp
‡minagawa.shintaro@nagoya-u.jp

POVM if and only if (this means that our condition
is complete) all measures for the former POVM are
greater than or equal to the one of the latter POVM.

2 Basic notions

Let us consider a quantum system A associated
with a finite dA-dimensional Hilbert space HA. We
denote all linear operators of HA as L(HA). Quan-
tum states of A are density operators ρA on HA,
which are positive semidefinite matrices and have
unit trace Tr ρA = 1. The pure states of A corre-
spond to a unit vector described as |ψ⟩.
We denote a set that contains all states of the

system A as S(A). A family of positive semidefinite
operators P = {P x

A}x∈X with
∑

x∈X Px = 1A cor-
responds to a measurement on A, called a POVM
measurement.
Next, we consider an evolution of a quantum state

on A to another quantum state, in general, on a
different quantum system B. We can describe this
evolution as a linear and completely positive and
trace-preserving (CPTP) map E : A → B and call
it a quantum channel. The Hilbert-Schmidt dual of
quantum channels are adjoint maps, which is defined
as Tr[E†(Y )X] = Tr[Y E(X)] for all X ∈ L(HA) and
Y ∈ L(HB). The adjoint maps are linear, CP, and
unital that is, E†(1B) = 1A.

3 Sharp POVMs and fuzzifying opera-
tions

First, we define sharp POVMs as follows:

Definition 1 (sharp POVMs [11]) A POVM
P = {P x

A}x∈X is sharp when all its elements contain

266



eigenvalues 1, i.e., there exist normalized vectors
|ψx⟩A such that P x

A |ψx⟩A = |ψx⟩A for all x ∈ X .

An adjoint map of a CPTP linear map E , E† can
convert a POVM to another POVM, which is, in
general, in a different system from the former one.
Note that one can regard the adjoint map as a quan-
tum pre-processing before the measurement. Then
we introduce a pre-processing ordering between two
POVMs PA = {P x

A}x∈X and QB = {Qx
B}x∈X . We

say that PA is post-processing cleaner than QB if
there is a CPTP linear map E : B → A such that
for all x ∈ X , E†(P x

A) = Qx
B holds following the

Ref. [12].
As the following theorem insists, sharp POVMs

are the maximal elements of this ordering (for the
proof, see Ref. [11]):

Theorem 2 (Theorem 1 in [11]) A POVM P =
{P x

A}x∈X is sharp if and only if P is post-processing
cleaner than any other POVM with the same out-
come set X .

Next, we consider sharpness non-increasing oper-
ations or fuzzifying operations that corresponds to
free operations in our resource theory on sharpness,
and based on this, we introduce sharpness preorder.
We say that a POVM is trivial if it consists of only
POVM elements that are proportional to an iden-
tity operator. Since adjoint maps are unital, one can
not convert trivial POVMs to non-trivial POVMs.
Therefore, we regard trivial POVMs as the smallest
elements of the sharpness preorder.
However, since adjoint maps can not convert one

trivial POVM to another trivial POVM, which im-
plies that the all smallest elements are not equivalent
in the sharpness order. To avoid this problem, we
also admit a convex mixture of trivial POVM as a
sharpness non-increasing operation so that all triv-
ial measurements are equivalent in our sharpness or-
der. Based on these observations, we introduce the
sharpness non-increasing operations and sharpness
preorder:

Definition 3 (Sharpness preorder [11]) Given
two POVMs P = {P x

A}x∈X and Q = {Qx
B}x∈X ,

possibly defined on different Hilbert spaces HA and
HB but with the same outcome set X , we say that
P is sharper than Q, and write

P ⪰sharp
X Q , (1)

whenever there exists a quantum channel E : B →
A, a trivial POVM {p(x)1B}x∈X on B, and a num-
ber µ ∈ [0, 1], such that

Qx
B = µE†(P x

A) + (1− µ)p(x)1B (∀x ∈ X ) .

Note that the post-processing of a POVM is not
a fuzzifying operation. Indeed, a rank-one POVM
like{
1

2
|ψ⟩⟨ψ1|A ,

1

2
|ψ⟩⟨ψ1|A ,

1

2
|ψ⟩⟨ψ2|A ,

1

2
|ψ⟩⟨ψ2|A , . . .

}
(2)

is post-processing clean but not sharp because
POVM elements do not have eigenvalue 1 and we
can make sharp POVM

{|ψ⟩⟨ψ1|A , |ψ⟩ ⟨ψ
2|A , . . . , }

from a POVM Eq. (2) by combining outcomes to-
gether. This example simply shows the reason
why the previous research [6] failed to capture the
resource theory of sharpness by regarding post-
processing as free operations.

4 Statistical comparison of measurement
sharpness

In this section, we will give a Blackwell–like theo-
rem which is a necessary and sufficient condition for
one measurement to be sharper than the other.
Firstly, we will introduce the measure of measure-

ment sharpness. We admit the degree of quantum
perfect correlations in the maximally mixed state.
Ozawa introduced these correlations to define EPR
argument [13], that “two observables have the same
value”, in a given state [8, 9] as follows:

Definition 4 Given a state ρA on HA and two
POVMs on A with same outcome set X , P =
{P x

A}x∈X and R = {Zx
A}x∈X , we say that P and R

are perfectly correlated in state ρA if

1. they are jointly distributed in ρA that is,
Tr[P x

AZ
x′
A ρA] ⩾ 0 for all x, x′ ∈ X , and

2.
∑

x∈X Tr[P x
AZ

x
AρA] = 1.

More generally, if two POVMs P and R are jointly
distributed in state ρA, their degree of correlation is
defined as

κρ(P : R) :=
∑
x∈X

Tr[P x
AZ

x
AρA].

In definition 4, we take the state maximally
mixed one u = 1

dR
I and any reference POVM

R = {Zx
R}x∈X on some reference system R with

Hilbert space HR and optimize this quantity over
all fuzzifying operations L as follows

κ∗u(R|P) : = max
L

κu(L(P) : R) (3)

= max
L

1

dR

∑
x∈X

Tr[L(P x
A)Z

x
R] ,
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We admit Eq. (3) as the sharpness measure and call
it tuning degree of P with respect to R. Then, we
introduce the following preorder with respect to the
tuning degree.

Definition 5 (tuning preorder [11]) Given a
reference POVM R = {Zx

R}x∈X and two POVMs
P = {P x

A}x∈X and Q = {Qx
B}x∈X , possibly defined

on different Hilbert spaces HA and HB but with the
same outcome set as the reference R, we say that P
is more tunable that Q with respect to R, and write

P ⪰t
R Q , (4)

whenever κ∗u(R|P) ⩾ κ∗u(R|Q).
Further, given two POVMs P and Q with the

same outcome set X , we say that P is always more
tunable than Q, and write

P ⪰t
X Q , (5)

whenever P ⪰t
R Q for all reference POVMs R with

outcome set X .

Next, we give a necessary and sufficient condition
for one measurement to be sharper than the other
as follows (for the proof, see Ref. [11]):

Theorem 6 (Theorem 3 in [11]) Given two
POVMs P and Q, possibly defined on different
Hilbert spaces HA and HB but with the same
outcome set X , P can be transformed into Q by
means of a fuzzifying operation, that is,

P ⪰sharp
X Q

if and only if P is always more tunable than Q, that
is,

P ⪰t
X Q (6)

Moreover, the comparison (6) can be restricted with-
out loss of generality to reference POVMs defined on
the same Hilbert space as Q, i.e., HB.
Hence, the tuning degrees κ∗u(R|P), for varying

reference POVM R, provide a complete set of mono-
tones for the resource theory of sharpness.

5 Summary

In this section, we summarize the main points of
the resource theory of measurement sharpness which
we introduced in [11].

• The objects of the resource theory are POVMs,
and our resource theory does not depend on
the numerical values of measurement out-
comes.

• The free operations are fuzzifying operations,
which we define as a convex combination of
quantum pre-processing and trivial POVM
(see Definition 3).

• The sharpest measurements in the resource
theory are sharp POVMs, and they can be
transformed into any other sharp POVM with
the same outcome set by a free operation.

• The most unsharp measurements are trivial
POVMs, i.e., POVMs whose elements are all
proportional to the identity operator.

• The sharpness measures are given by the tun-
ing degrees κ∗u(R|P) with respect to reference
POVM R, defined in Eq. (3).

• A Blackwell–like theorem for sharpness, that
is, a necessary and sufficient condition for
transformation from one POVM to another
one by a free operation holds.

Acknowledgements

F.B. acknowledges support from MEXT Quan-
tum Leap Flagship Program (MEXT QLEAP)
Grant No. JPMXS0120319794, from MEXT-JSPS
Grant-in-Aid for Transformative Research Ar-
eas (A) “Extreme Universe” No. 21H05183, and
from JSPS KAKENHI, Grants No. 20K03746 and
No. 23K03230. S.M. would like to take this oppor-
tunity to thank the “Nagoya University Interdisci-
plinary Frontier Fellowship” supported by Nagoya
University and JST, the establishment of university
fellowships towards the creation of science technol-
ogy innovation, Grant Number JPMJFS2120.

References

[1] Claudio Carmeli, Teiko Heinonen, and Alessan-
dro Toigo. Intrinsic unsharpness and approxi-
mate repeatability of quantum measurements.
Journal of Physics A: Mathematical and Theo-
retical, 40(6):1303, jan 2007.

[2] Serge Massar. Uncertainty relations for
positive-operator-valued measures. Phys. Rev.
A, 76:042114, Oct 2007.

[3] Paul Busch. On the sharpness and bias of quan-
tum effects. Foundations of Physics, 39(7):712–
730, 2009.

[4] Kyunghyun Baek and Wonmin Son. Unsharp-
ness of generalized measurement and its effects

268



in entropic uncertainty relations. Scientific Re-
ports, 6(1):30228, 2016.

[5] Yizhou Liu and Shunlong Luo. Quantifying
unsharpness of measurements via uncertainty.
Phys. Rev. A, 104:052227, Nov 2021.

[6] Arindam Mitra. Quantifying unsharpness of
observables in an outcome-independent way.
International Journal of Theoretical Physics,
61(9):236, 2022.

[7] Eric Chitambar and Gilad Gour. Quantum re-
source theories. Rev. Mod. Phys., 91:025001,
Apr 2019.

[8] Masanao Ozawa. Perfect correlations between
noncommuting observables. Physics Letters A,
335(1):11–19, 2005.

[9] Masanao Ozawa. Quantum perfect correla-
tions. Annals of Physics, 321(3):744–769, 2006.

[10] David Blackwell. Equivalent Comparisons of
Experiments. The Annals of Mathematical
Statistics, 24(2):265–272, 1953.

[11] Francesco Buscemi, Kodai Kobayashi, and
Shintaro Minagawa. A complete and opera-
tional resource theory of measurement sharp-
ness. arXiv:2303.07737, 2023.

[12] Francesco Buscemi, Michael Keyl, Gia-
como Mauro D’Ariano, Paolo Perinotti, and
Reinhard F. Werner. Clean positive operator
valued measures. Journal of Mathematical
Physics, 46(8):082109, 2005.

[13] A. Einstein, B. Podolsky, and N. Rosen. Can
Quantum-Mechanical Description of Physical
Reality Be Considered Complete? Physical Re-
view, 47(10):777–780, May 1935.

269



On the role of SIC structures in the data-driven approach

to quantum statistical inference

Michele Dall’Arno1 2 ∗

1Department of Computer Science and Engineering, Toyohashi University of Technology, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University, Japan

Abstract. Quantum tomography is the protocol typically adopted for the reconstruc-
tion of a given quantum device. For instance, if the device corresponds to a quantum
measurement, a tomographic probe (an informationally complete set of states) is fed as
input to the measurement, and the output statistics is collected. Based on the knowl-
edge of both the probe and the statistics, the measurement is then reconstructed. This
approach is problematic in that, while the statistics is directly accessible, the knowledge
of the probe requires a tomographic reconstruction to be applied to the probe itself, and
so on, in a never-ending chain of tomographic reconstructions.

Here, we introduce a protocol that breaks such a chain by performing the statistical
inference of a quantum measurement solely based on the output statistic, without requir-
ing any knowledge of the input probe. Hence our protocol, that we refer to as data-driven
inference, can bootstrap quantum tomography. Similarly to Jaynes’ MAXENT principle,
data-driven inference is based on a minimality criterion according to which, among all
the reconstructions that can explain the observed statistics, the one which explains as
little else as possible should be preferred. We solve such a minimality problem by showing
that the minimally-committal reconstruction for the unknown measurement is the one
that would have generated the statistics upon the input of a symmetric, informationally
complete (SIC) probe.

This presentation is based on Refs. [6, 7].

Keywords: quantum data-driven inference, quantum measurement, quantum statistical
inference

Quantum Bayesianism [1, 2, 3, 4] (or QBism
for short) is an interpretation of quantum the-
ory, introduced by Fuchs and Schack, in which
a fundamental role is played by the observer’s
ability to reconstruct reality by a process known
as tomographic reconstruction. A major role in
QBism is played by symmetric, informationally
complete structures (SICs), which can be used
as tomographic probes for such a reconstruction
process. The importance of SICs’ role in QBism
is typically justified by the fact that the sym-
metry of such structures induces an analogous
elegant symmetry in the formula for the tomo-
graphic reconstruction.

However, SICs are by far not the only struc-
tures suitable as probes for the tomographic re-
construction process, and indeed such a task can
be accomplished by any structure within the
broader class of informationally complete (non

∗michele.dallarno.mv@tut.jp

necessarily symmetric) structures. In fact, the
possibility to be used as a universal probes for
tomographic reconstruction is what defines (and
justifies the name of) the class of informationally
complete structures. Therefore, elegance aside,
what is the actual criterion that should single out
SICs as the “standard bureau of measurements”
in quantum theory?

In this contribution, we answer this question
by presenting a new type of reconstruction [5, 6],
alternative to the usual tomographic reconstruc-
tion, and by showing that SICs play a pivotal
role in such a reconstruction. Most importantly,
we show that, in contrast to the case of to-
mographic reconstruction, SICs are the unique
structures that play such a role: for instance,
no other informationally complete structure can
replace SICs for the reconstruction process we
consider.

The reconstruction process we consider is an
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instance of statistical inference. In contrast to
tomographic reconstruction, which requires the
a-priori knowledge of the tomographic probe,
thus leading to a never-ending chain of recon-
structions, the inferential process we propose is
data-driven, that is, it is solely based on ob-
servable data. In this sense, data-driven infer-
ence breaks the chain of reconstructions implied
by quantum tomography, and can be regarded
as a bootstrap for the latter. Analogously to
Jaynes’ maximum entropy principle, data-driven
inference is based on a minimality criterion that,
among all possible quantum descriptions of the
observed data, singles out the minimally com-
mittal one, that is, the one that explains the ob-
served data and as little else as possible. More
formally, the committal degree of any given mea-
surements is given by the volume of its probabil-
ity range, that is, it is a measure of how many
observable data the measurement is consistent
with.

The (unique) role played by SICs in data
driven inference is two-fold. From the theoretical
point of view (that is, one in which only observ-
able data are accessible), we prove that the re-
construction process based on data-driven infer-
ence is equivalent to treating the observed data
as if they had been generated by a SIC struc-
ture. From the experimental point of view (that
is, one in which control over the devices is as-
sumed), we show that the data-driven inference
process produces the correct output if and only if
SIC probes are utilized. Hence, the data-driven
inference makes it explicit the unique role played
by SICs in quantum theory, in a way that shares
similarities, at least at the formal level, with
the approach recently adopted by Szymusiak and
Slomczyński in the study of morphophoric struc-
tures [8, 9].
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ABSTRACT

1 Introduction
Modern computing techniques could be employed to the problem of separability in specific cases. For example, there was a
number of attempts to train neural networks to distinguish entangled states from separable ones1–13. This approach poses its
own set of challenges. First, as every use of machine learning (ML) techniques is application-specific, relatively little can be
said about the optimality of the topology of the neural network, the form of the activation function, etc.. The other issue is that
the result of ML is dependent on the training data, which can be very limited for the entanglement-vs-separability problem. A
network can become overtrained with a fixation on the presented pattern. Finally, neural networks are not designed to estimate
the missing continuous value of function, which makes them less capable of providing the interpolation of the amount of
entanglement,Algorithm although there were some attempts of such tasks.

Recently, other strategies for classifying states as entangled or separable, based on variational algorithms14 and semi-definite
programming15, were proposed.

In this articles we compare the algorithmic approach described in details below with ML results obtained by Hiesmayr5,
who focused on “the magic simplex”, or Bell-diagonal states of three qubits. The task is to classify states as free entangled,
bound entangled, or separable. Our methodology is described below, followed by a presentation of results and conclusions.

2 Hilbert-Schmidt distance and Gilbert’s algorithm
The Hilbert-Schmidt distance is defined simply as

DHS(A,B) =
√

Tr((A−B)(A−B)†),

=
√

∑
i, j
|(A−B)i, j|2. (1)

Unsurprizingly, it was suggested as a core of entanglement measure by Witte and Trucks16. This entanglement quantifier
shall be defined as

DHS(ρ) = min
σ∈SEP

DHS(ρ,σ), (2)

where the maximum is taken over all separable states.
In 1966 Gilbert17 has introduced an algorithm to estimate the distance between a given point and a convex set. The algorithm

can be outlined as follows.

Algorithm 1 (bipartite case):
Input: Test state ρ0, initial separable state ρ1.
Output: Approximation of CSS ρ1, list of squared distances to subsequent CSS approximations l.

1. Take a random pure ρ2 = |ϕA⟩ |ϕB⟩⟨ϕA| ⟨ϕB|, that will be referred to as a trial state.

1
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2. If the the preselection criterion, Tr(ρ0−ρ1)(ρ2−ρ1)> 0 is not met, go to step 1 or abort if the HALT condition is met.

3. Maximize Tr(ρ0−ρ1)(ρ2−ρ1)> 0 with local unitary transformation (run Algorithm 3)

4. Update ρ1← pρ1 +(1− p)ρ2 for p minimizing D(ρ0, pρ1 +(1− p)ρ2).

5. Every 50 corrections append D(ρ0,ρ1) to l.

6. If the HALT condition is not met, go to step 1, otherwise quit.

The algorithm provides three pieces of information that can be used here to classify states as entangled or separable. The
first is, rather trivially, the last squared distance D2

Last found within a fixed number of corrections. The second indicator is the
distance decay estimate, D2

Est.
The third and final figure of merit considered here is the witness distance estimate DWit,

W = ρ0−ρ1−1 max
|φ1⟩,|φ2⟩

⟨φ1| ⟨φ2|ρ0−ρ1 |φ1⟩ |φ2⟩ , (3)

with the maximum taken over all product states. Then

DWit = max

(
0,

TrWρ0√
Tr(ρ0−ρ1)2

)
. (4)

3 “Magic Simplex” states
Let us consider a maximally entangled state of two qutrits,

|ψ00⟩=
1√
3

2

∑
i=0
|ii⟩ , (5)

and two Weyl operators, X =

 0 1 0
0 0 1
1 0 0

 and Z =

 1 0 0
0 α 0
0 0 α2

 with α = e2πι/3. The Bell basis is given by

{
∣∣ψi j

〉
}2

i, j=0 = {1⊗X iZ j |ψ00⟩}2
i, j=0. (6)

Then the Bell-diagonal states are given by

ρ =
2

∑
i, j=0

pi j
∣∣ψi j

〉〈
ψi j
∣∣ ,

2

∑
i, j=0

pi j = 1, pi j ≤ 0. (7)

In particular, Hiesmayr focused on four families of states. Family A was given by

ρ(α,β ,γ) = (1−α−β − γ)
1

9
+ α |ψ00⟩⟨ψ00|
+ β |ψ01⟩⟨ψ01|
+ γ |ψ02⟩⟨ψ02| , (8)

and it was considered for γ = 0. The other three families are a part of Family B, which includes all the states in form

ρ(α,β ,γ,δ ) = (1−α−β − γ−δ )
1

9

+ α |ψ00⟩⟨ψ00|+
β

2
(|ψ01⟩⟨ψ01|+ |ψ02⟩⟨ψ02|)+

γ

3

2

∑
j=0

∣∣ψ1 j
〉〈

ψ1 j
∣∣+ δ

3

2

∑
j=0

∣∣ψ2 j
〉〈

ψ2 j
∣∣ . (9)

2/4
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Figure 1. 3D plot of DLast for PPT states from family A. Black dots represent studied states.

4 Results
4.1 Family A
We first focus on Family A, in which we studied 1485 PPT states, each with up to 4000 corrections (the algorithm HALTS at
D2(ρ0,ρ1)< 10−7). Figure 1 presents a 3D plot of DEST .

4.2 Family B
Subsequently, we have conducted the analysis for the remaining three families. Within each family we generated 300 states.
For Family B1, B2, and B3 we conducted up to 10000, 8000 and 10000 corrections respectively. The results are presented in
Figure 3 and they seem to adequately reproduce the plots in Ref.5.
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Figure 2. The interpolated plots of DLast (left), DEst (center), and DWit (right) for Families B1 (top), B2 (middle) and B3
(bottom) Shaded areas represent PPT states.

5 Conclusions
The presented technique of “cartography of entanglement” can be used universally applied to identify or estimate the boundary
between separable and entangled states, regardless of the dimension, the number of subsystems, or a type of quantum correlations
in question. For example, it can find a variety of applications in solid state models. Importantly, the algorithm has not been fed
with any information other than the input state. It is irrelevant if the state has free or bound entanglement. The technique could
be combined with machine learning and interpolation techniques, but it can also generate useful results on its own. In contrast
to FREE/SEP/BOUND categorization, it provides a qualitative information about entanglement. While new bound entangled
states can be easily detected, it is the question if their nonclassicality can be meaningful in an experimental realization.
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Abstract. Error amplification circuit (EAC) is a repetition of a sequence of quantum gates,
and it is recently used in advanced tomographic characterization methods. Purpose of the use is
to suppress bias originated from a mismatch of our model on state preparation and measurement
(SPAM) errors. In general, effects of EAC, e.g., how and which part of gate error is amplified
(or not amplified) by the given EAC, was not clear except for specific Hamiltonian dynamics.
Difficulty for analyzing more general settings is mainly originated from (i) co-existence of Hamil-
tonian and decoherence dynamics, (ii) non-commutativity between different gates or between
ideal and error parts of a gate, and (iii) periodic (non-linear) properties of ideal gates. Here we
develop theoretical tools for analyzing effects of EAC for arbitrary finite-dimensional quantum
system, which is based on the first order perturbation with respect to generator (Hamiltonian
or Lindbladian) errors of gates, taking into account all of (i), (ii), and (iii). We numerically
show that, for typical quantum gates, some of our tools give more accurate approximation than
the Baker–Campbell–Hausdorff (BCH) formula. By combining the tools, we can calculate a set
of matrices that quantify the effects of EAC. These results indicate that the tools and method
proposed contribute to deeper and more accurate theoretical understanding of EAC.

Keywords: Error Amplification, Matrix Perturbation Theory, Quantum Tomography

1 Introduction

Development toward realizing practical quantum
computer is accelerated in the past decade since ac-
curacies of one- and two- qubit gates arrived around
surface code’ threshold at a superconducting quan-
tum circuit [1] in 2014, and recently, achievement
of break-even point for surface code with distance-3
and 5 is reported in the system [2]. As shown in
these achievements, accuracies of elementary quan-
tum operations is getting improved, but more than
1-digit improvements is necessary for execution of a
surface code with practical size [3, 4, 5].
Characterization methods for elementary quan-

tum operations such as quantum tomography and
randomized benchmarking are used for improving
accuracies, and take a role to obtain information
of errors of the operations. Tomographic methods
are suitable for obtaining detailed information of
the errors, but its standard protocol suffers from
not-negligible systematic errors originated from mis-
match of our model values on states and mea-
surements, which is called state-preparation-and-
measurement (SPAM) error. Error amplification
circuit (EAC) consists of a repetition of a sequence
of quantum gates (Figure 1). It is used to suppress
such SPAM error in advanced tomographic methods
such as gate-set tomography (GST) [6], idle tomog-

∗sugiyama-taka@fujitsu.com

raphy (IT) [7], and Hamiltonian-Error Amplifying
tomography (HEAT) [8].
Generally speaking, effects of EAC was not clear

except for specific Hamiltonian dynamics [7, 8]. In
this talk, we intoduce theoretical tools for analyzing
effects of EAC on generator (Hamiltonian or Lindla-
dian) error of gate, which is based on the first order
perturbation theory. We derive new formulae for
composition and decomposition of matrix exponen-
tial, and numerically show that these are more ac-
curate than the Baker–Campbell–Hausdorff (BCH)
formula for typical gates. We propose a systematic
method for deriving matrices that describe the ef-
fects of EAC on generator error quantitatively.

…

× n

Figure 1: Quantum circuit diagram of an error am-
plification circuit. The superscript, “×n”, means n
times repetition of the braketed gate sequence.
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2 Results

We introduce elemental tools for analyzing EAC.
We consider a square complex matrix A,B ∈ Cm×m.
A corresponds to an ideal matrix representation of
generator of a gate, e.g., ideal Hamiltonian with
imaginary factor −iH ideal or ideal Lindbladian A =
Lideal. B does to a small perturbation added to A
representing an error on the generator, e.g., B =
−iδH or B = δL. A + B does to an implemented
generator. Note that here terms “Hamiltonian” and
“Lindbladian” are not used for infinitesimal gen-
erator of the dynamics, but are used for accumu-
lated generator during gate operation. Details of
matrix representation of accumulated generator is
explained in [9].
Suppose that A is diagonalisable (not necessar-

illy unitarilly diagonalisable), and A =
∑

i aiPi is
the spectral decomposition, where ai are eigenvalues
(ai ̸= aj if i ̸= j) and Pi are projections satisfying
PiPj = δijPi.

2.1 Decomposition and Composition

We define complex values ℓjk for A as

ℓjk :=

{
1 (j = k)

(eaj−ak − 1)/(aj − ak) (j ̸= k)
. (1)

Let us introduce the following four linear maps.

dclA(B) :=
∑
j,k

ℓjkPjBPk, (2)

dcrA(B) :=
∑
j,k

ℓkjPjBPk, (3)

cmlA(B) :=
∑
j,k

1

ℓ jk
PjBPk, (4)

cmrA(B) :=
∑
j,k

1

ℓkj
PjBPk. (5)

We derived the first order perturbation formulae
with these maps for decomposition and composition
of matrix exponentials.

Theorem 1 For A and B mentioned above, the fol-
lowing decomposition formulae hold.

eA+B = edclA(B)eA +O(∥B∥2), (6)

eA+B = eAedcrA(B) +O(∥B∥2), (7)

If A satisfies eaj−ak ̸= 1 for any j, k (j ̸= k), the
following composition formulae hold.

eBeA = eA+cmlA(B) +O(∥B∥2), (8)

eAeB = eA+cmrA(B) +O(∥B∥2), (9)

where ∥ · ∥ denote the Frobenius norm.

For proving Theorem 1, we used the integral formula
of matrix exponential derivative [10, 11].
A major difference between our result (Theorem

1) and the BCH formula is a treatment of series ex-
pansion orders of A and B. In the BCH formula,
its series expansion order is for both of A and B,
but int our result the order ris only for B (up to
the 1st order). Our result can be interpreted as
the BCH formula with order of A up to the infinity
and that of B up to one. Additionally, in the BCH
formula, both of A and B are assumed to be suffi-
ciently small. There are several sufficient condition
for the convergence of BCH series expantion, and an
explicit inequality [12] is

∥A∥+ ∥B∥ ≤ ln 2 ≈ 0.693147 . . . . (10)

Unfortunately, typical quantum gates like π/4-, π/2-
, and π-pulse gates do not satisfy Eq. (10). For
example, in the cases of ideal Lindbladians of 1-
qubit X90 gate (A = Lideal

X90 ) and 2-qubit ZX90 gate
(A = Lideal

ZX90), which is a popular 2-qubit gate used
at fixed-frequency superconducting qubit [13]) are

∥A∥ =

{
π/

√
2 ≈ 2.22144 . . . (X90)√

2π ≈ 4.44288 . . . (ZX90)
, (11)

and both exceed the R.H.S. of Eq. (10). On the
other hand, in our result the size of A is arbitrary.
We numerically evaluated the approximation errors
of Eqs. (6) to (9) for 1-qubit, 2-qubit, and 1-qutrit
gates, and compared Eqs. (8) and (9) with the BCH
formula. Fig. 2 shows the results for Eq. (9) with
Lindladians of (a) 1-qubit X90 gate and (b) 2-qubit
ZX90 gate. As expected from the discussion above,
our result has much smaller approximation error
than the BCH formula. These examples indicate
that our result is more appropreate for treating typ-
ical quantum gates than the BCH formula.
By combining Eqs. (6) to (9), which are for ideal

and error parts of a gate, we obtain a composition
formula for two gates.

Theorem 2 Suppose that A and A′ ∈ Cm×m are
diagonalizable. Let B and B′ are small perturbations
added to A and A′, respectively. Let C denote the
ideal generator of the composed gate, i.e.,

C := ln(eAeA
′
) (12)

Then, the following composition formula holds.

eA+BeA
′+B′

= eC+cmlC◦dclA(B)+cmrC◦dcrA′ (B′)

+O(∥B∥2, ∥B∥∥B′∥, ∥B′∥2), (13)

where ◦ denote the composition of maps.

277



10 3 10 2 10 1

Size of Perturbation

10 8

10 6

10 4

10 2

Re
la

tiv
e 

Ap
pr

ox
im

at
io

n 
Er

ro
r (a) X90

Proposed
BCH (1st)
BCH (2nd)
BCH (3rd)

10 3 10 2 10 1

Size of Perturbation

10 8

10 6

10 4

10 2

Re
la

tiv
e 

Ap
pr

ox
im

at
io

n 
Er

ro
r (b) ZX90

Proposed
BCH (1st)
BCH (2nd)
BCH (3rd)

Figure 2: Numerical comparison between our tool and the BCH formula for Lindbladians of (a) X90 and
(b) ZX90 gates. For both panels, the vertical axis is the relative approximation error, and the horizontal
axis is the size of perturbation, ∥B∥ = ∥δL∥. Blue solid lines are for our tool (Eq. (9)). Yellow dashed,
green dotted, and red dashed-and-dotted lines are for the 1st, 2nd, 3rd order BCH formulae, respectively.
Error bars are the standard deviations calculated with 100 randomly generated Lindbladian errors δL for
each fixed size, 0.001, 0.005, 0.01, 0.05, and 0.1.

Theorem 2 clarifies how generator errors B and B′

are transformed by the composition of two gates up
to the first order of them, i.e.,

B → cmlC ◦ dclA(B), (14)

B′ → cmrC ◦ dcrA′(B′). (15)

We can treat composition of more than two gates by
applying Eq. (13) to a gate sequence recursively.

2.2 Repetition

Next, we introduce tools for analyzing effect of
gate repetition on generator error. A major diffi-
culty of the analysis is the periodic properties of
ideal generator of typical quantum gates. For ex-
ample, in the case of π/2-pulse gates, whose action
is a 90-degree rotation along with an axis, there is a
periodicity with period four, e.g.,[

eA
]5

= e5A = eA (16)

holds, but this periodicity does not hold directly
when an error exists, e.g.,[

eA+B
]5

= e5(A+B) ̸= eA+5B, (17)

because of the possible non-commutativity between
A and B.
In order to clarify the effect of gate repetition tak-

ing into account the non-commutativity above, we
introduce two linear maps.

sspA(B) :=
∑
j

PjBPj , (18)

sspcA(B) :=
∑

j,k(j ̸=k)

PjBPk (19)

Then we have proved the following theorem.

Theorem 3 Let n denote a repetition number of a
gate, which is a positive integer. Suppose that A +
B is diagonalizable, and ∥B∥ is sufficiently small.
We assume that there exists an integer c satisfying
exp(nA) = exp(cA). Then the following equality
holds,[
eA+B

]n
= ecA+c·sspcA(B)+n·sspA(B) +O(∥B∥2). (20)

In the case of the π/2-pulse gate example above,
c = 1 for n = 5, but Theorem 2 is applicable
for more general cases. Theorem 2 clarifies that
the amplified part, which is proportional to n, by
the repetition is sspA(B), and non-amplified part
is sspcA(B). The former corresponds to change of
eigenvalues by addition of error B, and the later
does to that of eigenvectors.

2.3 Error Amplification Circuit

An EAC consists of a sequence of gates and its
repetition. Therefore, by combining Theorems 2 and
3, we can clarify how and which part of a genera-
tor error is amplified or not-amplified. Such effect is
characterized by six linear maps defined by Eqs. (6),
(7), (8), (9), (18), and (19). The action of a linear
map can be described by its matrix representation,
and the matrix representation is useful for the anal-
ysis of EAC because composition of maps becomes
matrix multiplication in the representation.
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A duplication-free quantum neural network for universal approximation
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Abstract. The universality of a quantum neural network (QNN) refers to the ability to approximate
arbitrary functions. However, conventional universal QNNs may result in a huge quantum register that is
challenging to implement due to noise on a near-term device. To address this, we propose a duplication-
free quantum neural network whose universality can be rigorously proved. Our method relies on a single
quantum register combined with multiple activation functions to achieve universality. Accordingly, our
proposal requires significantly fewer qubits with shallower circuits, and hence substantially reduces the
resource overhead and the noise effect, illustrating a great potential in solving larger-scale learning problems
on near-term devices.

Keywords: quantum computing, quantum machine learning, quantum neural network, universality

1 Introduction

Machine learning (ML) is a powerful data-analyzing
tool that has generated a series of impactful results. In
the meanwhile, quantum machine learning has become
an emerging interdisciplinary subject that combines ma-
chine learning with quantum computing. It studies two
fundamental questions [2], one on applications of classi-
cal ML to quantum problems [4, 8, 10, 29, 9, 21], and the
other on implementations of ML algorithms on a quan-
tum processor. For the latter, a crucial question lies in
how to implement neural networks on quantum devices
while ensuring their performance is equivalent to that of
classical neural networks. A neural network (NN) is a
parameterized composite mapping comprised of activa-
tion functions and excels a great power in data fitting.
The quantum neural network (QNN), including the vari-
ational QNN [19, 26, 6, 14, 17], is an NN implemented
on a quantum device [18, 24, 11, 34, 31]. Its success
in accurately solving the learning problems [35, 7] relies
on several important intrinsic properties of the QNN.
One property is the trainability, which focuses on how
to avoid the occurrence of barren plateaus that cause
the optimization to fail [18]. Another property is the
universality, describing its ability to approximate arbi-
trary nonlinear functions [12, 16]. For classical NNs,
universality is easy to achieve; for QNNs, a smart de-
sign is required to achieve nonlinearity and universality.
Proposals for universality include the data re-uploading
approach [22], the Fourier series method [28] and the
construction of quantum neurons [3, 36, 30, 15, 32, 1].
Another well-known method for universality is to dupli-
cate the quantum data into a tensor product of multiple
copies [27, 33, 19, 26]. For the duplication-based method,
approximating a highly-nonlinear function would require
a tensor product of many data-encoding subsystems, re-
sulting in a large overall system size with a considerable
circuit complexity, conflicting with the principle of NISQ
computing where a relatively small quantum system with
a shallow circuit is preferred.

∗zhoug@uestc.edu.cn
†xiaoting@uestc.edu.cn

To address this problem, we propose a duplication-
free quantum neural network (DQNN) based on a varia-
tional quantum circuit and rigorously prove its universal-
ity. Our model utilizes the classical sigmoid function to
generate nonlinearity without duplicating the quantum
data into a tensor product of multiple copies. Compared
with the CCQ or QCL algorithms, our DQNN signifi-
cantly reduces the system size and gate complexity, and
hence the overall noise effect. Therefore, it is more likely
to be implemented on near-term devices. Numerical sim-
ulations show that our DQNN outperforms the other two
variational QNN algorithms with better performance on
typical regression and classification problems and is more
robust against coherent and decoherence noise. In addi-
tion, through solving a broad range of classical and quan-
tum learning problems, our model has well demonstrated
its wide application potential.

2 DQNN Model

Our DQNN model consists of three parts, a quantum
processor, a classical processor and a classical optimizer.
First, each data point x = [x1, x2, · · · , xd]

T ∈ Rd is en-
coded into a state of an n-qubit register (n = ⌈log d⌉):

|x̄⟩ = 1

γ
[x1, x2, · · · , xd, x̃, 0, · · · 0]T ∈ C⊗n

2 , (1)

using the amplitude encoding method [23, 20, 25], where

x̃ ≡ ∥x∥
1+∥x∥ is a padding term chosen by the user and γ

is a normalization factor. After initial state preparation,
we apply to |x̄⟩ a series of variational quantum circuits

{U (j)(θ(j))}ncir
j=1 according to |x̄(j)

f ⟩ = U (j)(θ(j))|x̄⟩, fol-
lowed by measurements of a set of observables {Bi}nobs

i=1 ,

to obtain the outcomes ⟨Bi⟩θ(j),x̄ = Tr(|x̄(j)
f ⟩⟨x̄(j)

f |Bi).
In particular, {Bi} can be chosen from a generalized k-

local Pauli basis {Pl}, where Pl = A
(l)
1 ⊗A

(l)
2 ⊗· · ·⊗A

(l)
n ,

A
(l)
i ∈ {X,Y, Z, I}, with at most k sites with nontrivial

A
(l)
k . Such choices of {Bi} will help avoid the occurrence

of the barren plateaus [5]. U (j)(θ(j)) comprises L-layers
of quantum circuits. Each layer consists of n parameter-
ized R-rotations (with one on each qubit), and n param-
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Figure 1: Framework of DQNN and the transformation from |x̄⟩ to qθ,a,c,α(x̄). Yellow balls represent the quantum
qubits; green circles represent the classical sigmoid function.

eterized controlled-R gates, as shown in Fig. 2, with

R = R(θ1, θ2, θ3) =

(
eiθ2 cos θ1 eiθ3 sin θ1

−e−iθ3 sin θ1 e−iθ2 cos θ1

)
.

Next, based on ⟨Bi⟩θ(j),x̄ and the sigmoid function
σ(x) = 1/(1+e−x), the classical processor computes and
obtains the output:

qθ,a,c,α(x̄) ≡
ncir∑
j=1

nobs∑
i=1

α
(j)
i σ(a

(j)
i (⟨Bi⟩θ(j),x̄ − c

(j)
i )) (2)

with a
(j)
i > 0, c

(j)
i ∈ [0, 1] where θ and (a, c,α) are pa-

rameters to be trained. The entire process from |x̄⟩ to
qθ,a,c,α(x̄) is summarized in Fig. 1. Finally, one can find
the optimal values of (θ,a, c,α) to solve the given learn-
ing problem through gradient-based optimization using
algorithms.

Figure 2: One layer variational quantum circuit of
U (j)(θ(j))

3 Universality of DQNN

Universality of neural networks refers to the ability of
to approximate any arbitrary function. For our DQNN,
its universality can be proved to be universal based on
L2 approximation, which is summarized in the following
theorem:

Theorem 1. 1 Let Ḡ be a subset of the complex sphere
S in C⊗n

2 , and f(x̄) : Ḡ → R be an arbitrary square-

integrable function on Ḡ. We define the following pa-
rameterized functions:

qz1,··· ,zncir
,a,c,α(x̄) ≡

ncir∑
j=1

αjσ(aj(|⟨x̄|zj⟩|2 − cj)) (3)

and denote Q(Ḡ) ≡ {qz1,··· ,zncir
,a,c,α} as the set of all

such functions, where ncir ∈ N, {|zj⟩}ncir
j=1 ⊂ S, a ∈ Rncir

+ ,

c ∈ [0, 1]⊗ncir , and α ∈ Rncir . Then Q(Ḡ) is dense in
L2(Ḡ) in the following sense: for any ϵ > 0,∫

Ḡ

|qz1,··· ,zncir
,a,c,α(x̄)− f(x̄)|2dµ < ϵ, (4)

where µ is some measure defined on Ḡ.

It turns out that any qz1,··· ,zncir
,a,c,α ∈ Q(Ḡ) in Eq. (3)

can be generated as the output of the DQNN in Eq. (2).
Specifically, given the parameters (z1, · · · , zncir ,a, c,α),
we can design a DQNN with a single observable B ≡
|b⟩⟨b|, nobs = 1, and a series of quantum circuits
{U (j)(θ(j))}ncir

j=1 such that U (j)(θ(j))|b⟩ = |zj⟩. Then the
output of the DQNN in Eq. (2) is reduced to:

qθ,a,c,α(x̄) =

ncir∑
j=1

αjσ(aj(⟨B⟩θ(j),x̄ − cj))

=

ncir∑
j=1

αjσ(aj(|⟨x̄|zj⟩|2 − cj))

= qz1,··· ,zncir
,a,c,α(x̄). (5)

Thus we have proved the following corollary:

Corollary 2. The DQNN designed in Fig. 1 with the
output in Eq. (2) is universal.

4 Comparison among QNN models

To demonstrate that our DQNN has advantage in
solving classical ML problems and in reducing circuit
complexity, we apply DQNN and two well-known du-
plication based QNN models, circuit centric quantum
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Table 1: A comparison of the performance among
DQNN, QCL and CCQ in regression problem. ncopy in-
dicates the number of duplications of the data qubits
storing the classical data. ntot indicates the number of
qubits in each QNN model. C is the complexity of each
QNN model.

Model ncopy ntol nobs C Relative error
DQNN1 1 2 4 48 6.79%
DQNN4 1 2 1 48 5.46%
QCL 1 2 1 48 8.21%
CCQ 1 2 1 51 12.92%
QCL 2 4 1 120 7.35%
CCQ 2 4 1 99 4.74%

classifier (CCQ) [26] and the quantum circuit learn-
ing (QCL) [19], to two typical supervised learning prob-
lems, a regression problem and a classification problem,
and compare their performance. To quantify the com-
plexity of QNN, we define it as C ≡ ngatenobs where
ngate is the number of quantum gates in the variational
quantum circuit and nobs is the number of observables.

(a) (b)

Figure 3: (a) The regression data set generated by a
polynomial function. (b) The classification data set with
the ring-shaped boundaries. The points in the yellow
part are labeled 0; the others are labeled 1.

The first problem is learning from a data set {x⃗(i), y(i)}
to approximate a highly nonlinear polynomial f(x⃗) =
(0.7156 − 1.0125x2

1 + x4
1)(0.7156 − 1.0125x2

2 + x4
2) with

x1, x2 ∈ [−0.8, 0.8]2 (Fig. 3(a)). We compare the opti-
mal relative errors achieved for each model. We choose
two types of DQNN in solving the regression problem.
One has a single-layer variational quantum circuit and
multiple observables. We name it as DQNN1. The other
has 4 single-layer variational quantum circuits and one
observable. We name it as DQNN4. We find that, with
no duplicate, ncopy = 1, the relative error achieved by
DQNN is substantially lower than those achieved by QCL
and CCQ, as shown in Table 1. If we add one more dupli-
cate to both the QCL and the CCQ models, their optimal
relative error will decrease, but their complexity will in-
crease and surpass that of the DQNN.
We apply the three models to a binary classification

problem on a ring-shaped data set in the second task.
The boundaries of the two sub-datasets are determined
by six curves x2

1 + x2
2 = 0.16, x2

1 + x2
2 = 0.81, and

x1 = x2 = ±1 (Fig. 3(b)). Analogous to the first
task, we choose the DQNN with one variational quan-

tum circuit and multiple observables (DQNN1) and the
DQNN with 4 variational quantum circuits and one ob-
servable (DQNN4) for the classification task. After op-
timizing the three QNN models, we find that accuracy
achieved by the DQNN is substantially higher than those
achieved by QCL and CCQ. In addition, increasing the
number of duplicates does help QCL and CCQ to improve
their optimal accuracy, but even a 5-copy model (with 12
qubits) for QCL or CCQ cannot perform equally well as a
DQNN with only two qubits (Table 2). Simulation results
suggest that DQNN can prominently reduce the circuit
complexity compared to QCL and CCQ, but maintain a
good performance in solving classification problems.

Table 2: A comparison of the performance among
DQNN, QCL and CCQ in a classification problem de-
fined on a ring-shaped dataset.

Model ncopy ntol # nobs C Accuracy
DQNN1 1 2 20 240 91.40%
DQNN4 1 2 1 48 97.63%
QCL 2 4 2 240 74.18%
CCQ 2 4 1 243 75.20%
QCL 6 12 2 1440 76.93%
CCQ 6 12 1 723 80.63%

Since the DQNN can reduce the circuit complexity, we
expect that it can achieve a better performance in the
presence of noise, and hence is easier to be implemented
on NISQ devices. We further apply above QNN models
to solve these two learning problems under noisy environ-
ment. We consider two types of noise in this work: one is
the coherent noise caused by the imprecision of the classi-
cal control on the parameter values in the QNN circuits;
the other is the decoherence generated by interactions
between the quantum register and its environment. Nu-
merical results demonstrate that the DQNN can decrease
the influence of noise accumulation in the training pro-
cess and is more likely to be implemented on near-term
devices. More details can be found in Ref. [13].

5 Conclusion

In this work, we present a duplication-free quantum
neural network model and provide it with the universal
guarantee to approximate any arbitrary continuous func-
tion using several variational quantum circuits, multiple
measurement observables and the classical parameterized
sigmoid function. We can enhance its expressibility by in-
creasing the number of quantum circuits and the number
of observables without requiring auxiliary qubits. This
property for the number of qubits makes DQNN more
likely to be implemented on NISQ devices. Without du-
plicates, DQNN significantly reduces the number of re-
quired qubits and decreases circuit complexity compared
with two well-known QNN models and hence weaken the
influence of the circuit noise. These results indicate that
the DQNN is an efficient QNN model which can find the
patterns hidden in the classical and quantum data sets.
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Simple and high-precision Hamiltonian simulation by compensating
Trotter error with linear combination of unitary operations

Pei Zeng Jinzhao Sun Liang Jiang Qi Zhao

Abstract. Trotter and linear-combination-of-unitary (LCU) are two popular Hamiltonian simulation
methods. We propose Hamiltonian simulation algorithms using LCU to compensate Trotter error, which
enjoy both of their advantages. By adding few gates after the Kth-order Trotter formula, we realize a better
time scaling than 2Kth-order Trotter. Our first algorithm exponentially improves the accuracy scaling of
the Kth-order Trotter formula. In the second algorithm, we consider the detailed structure of Hamiltonians
and construct LCU for Trotter errors with commutator scaling. Consequently, for lattice Hamiltonians,
the algorithm enjoys almost linear system-size dependence and quadratically improves the accuracy of the
Kth-order Trotter.

Keywords: Quantum simulation, Trotter, linear-combination-of-unitary operations, random sampling

The complete version of this work can be found in
arXiv:2212.04566.

1 Introduction

Hamiltonian simulation, i.e., to simulate the real-time
evolution U(t) = e−iHt of a physical Hamiltonian H =∑
lHl, is considered to be a natural and powerful appli-

cation of quantum computing [1]. To pursue real-world
applications of Hamiltonian simulation with near-term
quantum devices, we need to design feasible algorithms
requiring small space complexity (i.e., qubit number)
and time complexity (i.e., circuit depth and gate num-
ber). The most natural Hamiltonian simulation method
is based on Trotter formulas [2, 3, 4, 5, 6, 7, 8, 9], which
approximate the real-time evolution operator U(t) by the
product of the evolution of the summands e−iHlt. Besides
its prominant advantage of simple realization without an-
cillas, Trotter methods are recently shown to enjoy com-
mutator scaling [8, 9], i.e., the Trotter error is only related
to the number of commutators related to the Hamiltonian
summands {Hl}. This is very helpful for the Hamiltoni-
ans with strong locality constraints. Hereafter, we refer
to the error analysis utilizing the detailed structure of
Hamiltonians as commutator scaling analysis. For exam-
ple, when we consider n-qubit lattice Hamiltonians, the
gate cost of high-order Trotter methods is almost linear
to the system size n, which is nearly optimal [8]. The ma-
jor drawback of Trotter methods is its polynomial gate
cost to the inversed accuracy 1/ε, Poly(1/ε). In many
applications where the high-precision simulation is de-
manded to obtain practical advantages over the existing
classical algorithms [10], the gate cost of Trotter methods
is large.

In recent years, we have seen developments of “post-
Trotter” algorithms with exponentially improved accu-
racy dependence [11, 12, 13, 14]. These advanced algo-
rithms, however, requires the implementation of linear-
combination-of-unitary (LCU) formulas [15] or block en-
coding of Hamiltonians [13] which often costs many an-
cillary qubits and multi-controlled Toffoli gates. This is
unfavorable in a near-term or early fault-tolerant quan-

tum computer [16]. On the other hand, unlike Trotter
methods, these “post-Trotter” methods are not able to
enjoy the specific structure of Hamiltonians without com-
mutator scaling analysis. Consequently, for instance, for
n-qubit lattice Hamiltonians, their gate complexities are
O(n2), which is worse than those in Trotter algorithms
O(n1+o(1)).

In this work, we develop the theory of composite algo-
rithms that combine the inherent advantages of Trotter
and LCU methods — easy implementation, high pre-
cision, and commutator scaling — by performing the
Trotter method and then compensating the Trotter er-
ror with the LCU methods. We propose two types of
composite algorithms with unique advantages in vari-
ous regions. Our first algorithm is generic, with the
random-sampling implementation, we prove that with
only one ancillary qubit, one can achieve a gate cost
of O((λt)1+o(1)(L+ log(1/ε))) with λ =

∑
l ‖Hl‖, which

is almost linear to the time t and logarithmically depen-
dent on the inversed accuracy 1/ε. In our second al-
gorithm, we consider the detailed structure of Hamilto-
nians and propose a modified composite algorithms with
commutator scaling utilizing nested-commutator analysis
in the Trotter algorithms. Consequently, for the lattice
Hamiltonians, our algorithm enjoys almost linear time
and system-size dependence, and achieves a higher accu-
racy than 2Kth-order Trotter only with Kth-order Trot-
ter’s gate complexity.

2 Trotter-LCU algorithms

The algorithm is based on a series connection of Trotter
and LCU algorithms. We decompose the time evolution
U(t) = e−iHt to ν segments, each with a small evolu-
tion time x = t/ν. In each segment, we first perform the
Kth-order Trotter formula SK(x) (K = 0, 1, 2k, k ∈ N+).
For consistency, we denote the 0th-order Trotter formula
as S0(x) = I. Then, we compensate the multiplicative
Trotter remainder VK(x) := U(x)SK(x)† by implement-
ing the LCU formula of VK(x). A (µ, ε)-LCU formula of
an operator V is defined to be a set of probabilities and
unitaries {pi, Vi} with Ṽ = µ

∑Γ−1
i=0 piVi, such that the
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spectral norm distance ‖V − Ṽ ‖ ≤ ε. We call µ > 0 the
1-norm of this LCU formula.

We consider two ways to implement the LCU formula.
In the random-sampling implementation [17, 18], we sam-
ple the elementary unitaries {Vi} based on the corre-
sponding probability {pi} and embed the realization of
the LCU formula into a Hadamard test [19]. In the coher-
ent implementation [11, 12], we introduce m = dlog2 Γe
ancillary qubits to realize the superposition of different
{Vi}. Our major focus is on the random-sampling im-
plementation, where we can estimate the properties of
the target state U(t) |ψ0〉 with only one ancillary qubit.
Given a (µ, ε)-LCU formula, we can estimate arbitrary
observable with ε accuracy using O(µ4/ε2) sampling re-
source which owns an extra µ4 overhead compared to the
normal Hamiltonian simulation algorithms.

In the naive LCU-construction based on Taylor-series
expansion of U(t) [12], µ grows exponentially. However,
in our composite algorithms, we only randomly imple-
ment the remainder terms in Kth-order Trotter errors,
which makes µ a small constant. For a small time slice
x, we can suppress µ of each segment to the order of
1 +O((λx)K+1). Then we further suppress µ by pairing
the terms by constructing Pauli rotation unitaries [18, 20]

due to the fact I+yP =
√

1 + y2eiθP with θ = tan−1(x),
which could double the x-order, µ = 1 + O((λx)2K+2).
See Theorem 1 and Section VI in Technical manuscript
for more details.
Theorem 1 (Informal) In a Kth-order Paired

Taylor-series compensation (PTSc) algorithm (K =
0 or 2k), the single-round gate complexity is

O
(

(λt)1+ 1
2K+1 (κKL+ log(1/ε)

log log(1/ε) )
)

, where λ =
∑
l ‖Hl‖,

κK = 0 when K = 0, κK = 2 · 5K/2−1 otherwise.
Note that our PTSc algorithms are generic and appli-

cable for any Hamiltonian. When we consider the de-
tailed structure of Hamiltonians and Trotter errors, we
could make the compensation algorithms more efficient.
We propose a Kth-order Nested-commutator compensa-
tion (NCc) algorithm that gives the detailed forms of
Trotter error terms from K + 1 order to 2K order. A
key difference between these two types of algorithms is
that in PTSc algorithms, we compensate the terms in
the remainder up to arbitrary order. While in NCc al-
gorithms, we only compensate Trotter error terms from
(K + 1)th order to (2K + 1)th order, which shrinks the
error from O(xK+1) to O(x2K+2) in one slice with the
sampling cost µ = 1 + O(κKαcx

2K+2) where αc is some
summation of 1-norm of nested commutators. We do not
choose to compensate the higher-order terms because of
the super-exponential growth of the commutator αc. The
gate complexity estimation problem is converted to the
calculation of αc. For instance, n-qubit lattice Hamilto-
nians, αc = O(n) provides a simple and accurate imple-
mentation of NCc algorithms. See Section VII in Techni-
cal manuscript and Theorem 2 for general formulas and
more details.

Theorem 2 (Informal) In a Kth-order nested-
commutator compensation (NCc) algorithm
(K = 1 or 2k) with n-qubit lattice Hamil-

tonians, the single-round gate complexity is

max{O(n1+ 1
K t1+ 1

K ),O(n1+ 2
2K+1 t1+ 1

2K+1 ε−
1

2K+1 )}.
In Table 1, we summarize the advantages and disad-

vantages of 0th-order PTSc, Kth-order PTSc, Kth-order
NCc algorithms with random sampling implementation
of LCU. The 0th-order PTSc algorithm is L-independent
(the number of terms in Hamiltonians), which is espe-
cially useful for many quantum chemistry problem with
many terms; the Kth-order PTSc algorithm owns the

best time dependence of O(t1+ 1
2K+1 ) over all random-

sampling based algorithms, which is suitable for a long-
time high-precision simulation; the Kth-order NC algo-
rithm owns almost linear n and t dependence for the
lattice models.

3 Numerical results

We estimate the gate cost and compare our results of
PTSc algorithms with the advanced methods, includ-
ing Trotter algorithms and quantum signal processing
(QSP). We choose the 4th-order Trotter formula since
it performs the best in all Trotter methods. We first
consider the simulation of generic L-sparse Hamiltonian
without the usage of commutator information, for which
we choose the 2-local Hamiltonian with power-law de-
cay interactions, H =

∑
i,j JijXiXi+1 +

∑
i Zi with

Jij = |i − j|−3, as an example. Figs. 2(a,b) show the
CNOT and T gate counts for the 4th-order Trotter for-
mula, QSP, and our results with different orders with
an increasing system size. The CNOT gate counts of
our 0th- and 2nd-order PTSc algorithms and the T gate
counts of our 2nd and 4th PTSc algorithms are better
than the previous best QSP algorithm, while they only
require 1 ancillary qubit without complicated quantum
circuits of block encoding.

Next, we compare the CNOT gate count for simulating
the Heisenberg Hamiltonian H = J

∑
i ~σi~σi+1 +h

∑
i Zi,

where ~σi := (Xi, Yi, Zi) is the vector of Pauli operators
on the ith qubit, using the nested commutator bounds.
In Fig. 2(c), we choose n = t = 12 and 50 and show
the gate number with respect to the accuracy require-
ment ε. While enjoying near-optimal system-size scaling
similar to the 4th-order Trotter algorithm which is cur-
rently the best one for lattice Hamiltonians [9, 8], our
2nd-order NCc algorithm shows better accuracy depen-
dence than 4th-order Trotter algorithm. Especially, us-
ing the same gate number as the 4th-order Trotter, we
are able to achieve a 3 to 4 orders of magnitudes higher
accuracy ε.
Why AQIS? We set up a unified framework for the

Trotter-LCU algorithms with a series connection of Trot-
ter and LCU algorithms. These composite algorithms
are able to enjoy the advantages of Trotter and LCU
algorithms simultaneously, providing simple and high-
accuracy implementations for Hamiltonian simulation.
Our developed framework represents a significant ad-
vance in designing quantum algorithms and can inspire
other composite or compensation quantum algorithms by
leveraging the advantages of the current advanced algo-
rithms.
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Figure 1: (a) By a series connection of Trotter and LCU formulas, we aims to enjoy the advantages of both algorithms.
(b) Random-sampling implementation of Trotter-LCU algorithms. In each segment, we first perform Kth-order Trotter
formula, and then randomly sample the elementary unitaries Vi based on the LCU formula.
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Figure 2: CNOT gate count for simulating real-time dynamics with an increasing system size n, and t = n. (a,b) The
CNOT gate count (a) and T gate count (b) for 2-local Hamiltonian with power law decay interactions. (c) The results
for Heisenberg model using the nested commutator bound with n = 12 and n = 50.

Algorithm Implementation hardness Simulation accuracy Commutator scaling

Kth-order Trotter [3] Easy Low, O(ε−1/K) Yes, O(n)

Post-Trotter [12, 13] Hard High, O( ˜log(1/ε)) No, O(n2)

0th-order PTSc Easy High, O( ˜log(1/ε)) No, O(n2)

Kth-order PTSc Easy High, O( ˜log(1/ε)) No, O(n2)

Kth-order NCc Easy Medium, O(ε−1/(2K+1)) Yes, O(n)

Table 1: Compare Trotter-LCU methods with former algorithms. The implementation hardness refers to whether one
needs to implement multi-controlled gates with plenty of ancillary qubits. The algorithms with commutator scaling
can use advanced analysis to reduce the gate complexity of n-qubit lattice Hamiltonians from O(n2) to O(n). More
details of the comparisons and gate complexities are in Technical Manuscript.
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Experimental quantum state transfer of an arbitrary single-qubit state
on a cycle with four vertices using a coined quantum random walk
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Abstract. We experimentally demonstrate transfer [1] of an unknown single-qubit state from Alice to
Bob using two-step discrete-time quantum random walk (QRW) on a cycle with four vertices on NMR
QIP. The QRW carried out in two-qubit gaming arena involving Alice and Bob, each having their own
coin qubits. In this scheme, required entangled state is naturally generated through conditional shift
operators during the quantum-walk, eliminating need for prior preparation. By incorporating controlled-
unitary operations based on measurements of Alice’s coin qubit and Arena qubits, we reconstructed Alice’s
randomly generated state at Bob’s end. Our results highlight the efficacy of QRW and high-fidelity state
transfer.

Keywords: Quantum random walk (QRW), Quantum state transfer, Quantum teleportation, Quantum
state and process tomography

1 Introduction

Quantum analogs of classical random walks are a ver-
satile tool to perform quantum information processing
tasks such as universal quantum computing, quantum
search and quantum simulation etc. Standard quantum
teleportation schemes [2] requires a prior entangled state
shared between the two parties. However, conditional
shift operator in quantum random walk can introduce en-
tanglement between position space and coin space during
steps of walk. Using this entanglement resource as quan-
tum channel to perform teleportation, a new scheme was
developed [3].

Since in the NMR scenario, the state is teleported to
another location within the same molecule, we construed
this scheme as not strictly being teleportation but as be-
ing akin to state transfer. We hence recast the entire
theoretical scheme in terms of achieving quantum state
transfer instead of quantum teleportation. In this work,
we experimentally demonstrate the transfer of an un-
known single-qubit quantum state between two parties
(Alice and Bob), via a quantum random walk on a cycle
with four vertices, on a four-qubit NMR quantum infor-
mation processor.

2 Basic Theoretical Framework

Coined Quantum Random Walk on Closed Cycle:
At each step of the quantum walk, the coin is flipped,
and then move coherently depending upon the state of
the coin. The unitary operator for one step of walk is
defined as U = S(I ⊗C) [4], where C is the coin flipping
operator, I is the identity operator (do nothing) and S
is the conditional shift operator, defined on cycle with

∗ph20015@iisermohali.ac.in
†kavita@iisermohali.ac.in
‡arvind@iisermohali.ac.in

n-vertices as:

S± = |i± 1 modn〉〈i|

Ŝ =

n−1∑
i=0

(S+ ⊗ |0〉c〈0|+ S− ⊗ |1〉c〈1|) (1)

In this formulation, if the coin is in the state |0〉, the
walker moves in the anticlockwise direction and if the
coin is in the state |1〉, the walker moves in the clockwise
direction.

1

|φ〉 I • H •

|0〉
|0〉
|0〉 H • Z |φ〉

W1 W2 |ψ〉f

Arena

Ac {

Bc {

1
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0 1
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———————————————————————-
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|0〉
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0 1
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ActorActor

———————————————————————-

Alice

Arena

|φ〉
Bob
|0〉

HI

Figure 1: The two-player ‘Game Arena’ is depicted
by a closed cycle with four vertices representing state
|00〉, |01〉, |10〉 and |11〉. During the game, Alice employs
the identity operator I as her coin operator in first step,
while Bob utilizes the Hadamard gate H as his coin oper-
ator during second step. If the coin qubit is in |0〉 state,
walker moves to the right and if it’s in |1〉 state, walker
moves to the left.

Transferring a single qubit state on a cycle with
four vertices: As mentioned in the introduction, the
protocol is reformulated to transfer the coin state from
Alice to Bob instead of teleportation. The schematic
diagram for QRW on a closed cycle with four vertices,
involving two coins is depicted in Figure 1.

Initial state of Alice’s coin-Arena-Bob’s coin system to
transfer state |φ〉 from Alice to Bob is:

|ψ〉in = |φ〉 ⊗ |00〉 ⊗ |0〉 (2)

289



Where, |φ〉 = a|0〉 + b|1〉 with |a|2 + |b|2 = 1. Following
two steps of the walk, Alice’s coin qubit is measured in
{|+〉, |−〉} basis, while ‘Arena’ qubits are measured in
{|0〉, |1〉} basis. We apply Hadamard gate H to Alice’s
coin qubit so that all the measurements can be performed
in {|0〉, |1〉} basis:

|ψ〉f =
1

2
{|000〉 ⊗ (a|1〉+ b|0〉) + |100〉 ⊗ (a|1〉 − b|0〉) +

|011〉 ⊗ (a|0〉+ b|1〉) + |111〉 ⊗ (a|0〉 − b|1〉} (3)

Table 1: Measurement results on Alice’s coin
qubit,‘Arena’ qubits (Ac) and the corresponding con-
trolled operations M on Bob’s coin qubit (Bc); Z and X
denote the Pauli matrices σz and σx respectively, while
I is the Identity operator (‘do nothing’).

Measurement results on Revised Operation

Ac ‘Arena’ qubits M

0 11 I

1 11 Z

0 00 X

1 00 ZX

After two step of walk, Bob applies controlled unitary
operations M (Table 1) based on measurement results,
to recover the transferred state. Then the state becomes:

|Ψ〉 = {|000〉+ |100〉+ |011〉+ |111〉} ⊗ |φ〉 (4)

The quantum circuit to experimentally realize the trans-
fer of an unknown single-qubit state using a two-step
QRW on a cycle with four vertices is shown in Figure
2.

1

|φ〉 I • H •

|0〉
|0〉
|0〉 H • Z |φ〉

W1 W2 |ψ〉f

Arena

Ac {

Bc {

Figure 2: Quantum circuit to transfer an unknown single-
qubit state |φ〉 using a two-step quantum random walk
on a cycle with four vertices. Ac and Bc denote the coin
qubits of Alice and Bob, respectively, while the two mid-
dle qubits are labeled as the ‘Arena’ qubits. W1 and W2

denote the first and second steps of the quantum walk.
The yellow shaded box represents the implementation of
unitaries corresponding to the controlled operations.

3 Experimental Implementation and Ex-
perimental Results

We used four 13C nuclei of Trans-crotonic acid dis-
solved in acetone-D6 as the four qubit system. All the
experiments were performed at ambient temperature (

≈ 300K) on a Bruker DRX Avance III 600 MHz NMR
spectrometer equipped with a standard 5 mm QXI probe.
The methyl group and other proton spins were decoupled
throughout the experiments. Pseudo-pure state [5] is pre-
pared with total pulse sequence duration ≈ 41 ms with
an experimental fidelity 0.9812± 0.0020.

Experimental quantum state transfer using re-
vised measurements: We choose C1 as Bob’s coin,
C3 as Alice’s coin and C2,C4 as ‘Arena’ qubits. After
implementing the entire NMR pulse sequence, as illus-
trated in Figure 3, for state transfer, with a total time
duration of 156 ms, the tomography process is solely per-
formed on Bob’s qubit to retrieve the transferred state.
The experimentally reconstructed transferred state ρC1

for the input state |φ〉 = |−〉 = |0〉+ι|1〉√
2

is shown in

Figure 4. The average experimental fidelities for the

input states |0〉, |1〉, |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉+ι|1〉√
2

are 0.9918 ± 0.0006, 0.9924 ± 0.0012, 0.96 ± 0.0027 and
0.9896± 0.0007, respectively.

Efficacy and Characterization of Quantum State
Transfer Scheme: We repeated the experimental pro-
tocol for a set of different input states {|0〉, |1〉, |+〉, |−〉}.
The NMR pulse sequence after PPS preparation and in-
cluding the box I (Figure 3) is applied with a total gate
implementation time of ≈ 124 ms. By utilizing the nor-
malized reduced density matrix σijkC1

and employing the
appropriate controlled operations M listed in Table 1,
we reconstructed the transferred state at Bob’s qubit,
denoted as ρijkC1

[6]:

σijkC1
=

TrC2C3C4
[PijkρexptP

†
ijk]

Tr[Pijkρexpt]

ρijkC1
= M.σijkC1

.M† (5)

1

Re (ρ101C1
) Im (ρ101C1

)

Figure 5: Real (left) and imaginary (right) parts of trans-
ferred state reconstructed at Bob’s qubit ρ101C1

, with a fi-
delity of 0.9785± 0.002 for the input state |φ〉 = |−〉.

Where, Pijk = I⊗|ijk〉〈ijk| are projectors onto the ba-
sis states | C2C3C4〉 = |ijk〉 = {|000〉, |010〉, |101〉, |111〉}.
Figure 5 depicts the experimentally reconstructed trans-
ferred state ρ101C1

at Bob’s end for the input state
|φ〉 = |−〉. We use a witness operator W|ψ〉 =
1
2I − |ψ〉〈ψ|, to certify the presence of genuine quadri-
partite entanglement in ρexpt. For input state |+〉,
Tr[W|ψ〉ρexpt] = −0.4358 ± 0.0018 < 0 and for input
state |−〉, Tr[W|ψ〉ρexpt] = −0.4183± 0.0028 < 0, clearly
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Figure 3: NMR pulse sequence to transfer of arbitrary state |φ〉 using two-step QRW. The sequence of rf pulses,
z-gradients and time evolution periods upto the first dashed line prepares the system in the |0000〉 PPS, starting from
thermal equilibrium. The sequence given in the box labeled I implements the two-step quantum walk, while the box
labeled II implements the unitaries corresponding to the controlled operations. τij = 1/2Jij corresponds to the free
evolution period and the unitary U is used to prepare the state |φ〉.
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Figure 4: Real (left) and imaginary (right) parts of the
experimentally tomographed transferred state at Bob’s
qubit ρC1

with a fidelity of 0.9896± 0.0007 for the input
state |φ〉 = |−〉.

indicates that the state has quadripartite entanglement.
We also performed constrained convex optimization [7]
based quantum process tomography to fully characterize
the state transfer protocol. The tomographed results for
process matrix are depicted in Figure 6

The fidelities F ijk of experimentally constructed pro-
cess matrix χijkexpt in Pauli operator basis {I, σx, ισy, σz}
with respect to the theoretical process matrix, for dif-
ferent projections are F101 = 0.9682 ± 0.0021, F111 =
0.9658 ± 0.0015, F000 = 0.9842 ± 0.0023, and F010 =
0.9450± 0.0015.

4 Conclusions

The scheme was able to achieve near perfect transfer
of an arbitrary single-qubit state, with high state fidelity.
Furthermore, the experimental circuit along with a few
local unitaries can be used to generate four-qubit cluster
states, which are of much interest in quantum informa-
tion processing.

Our experimental schemes are general and can be eas-

1

Re (χ101) Re (χ111)

Re (χ000) Re (χ010)

Figure 6: Real parts of experimentally tomographed pro-
cess matrix χ for different projections of ρexpt onto the
basis state |000〉, |010〉, |101〉 and |111〉

ily extended to transferring states of a larger qubit regis-
ter size via multi-coin, multi-walker setups. Our results
demonstrate that coined quantum random walk schemes
can be used to achieve robust transfer of an arbitrary
quantum state and pave the way for wider applications in
quantum communication and quantum information pro-
cessing.
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Abstract. Due to the widespread prevalence of stochastic processes, accelerated probability estimation
of events in stochastic processes can have far-reaching benefits. This speedup is particularly important for
rare events, such as financial crashes or earthquakes, which have disastrous consequences. In this paper,
we propose a new pipeline that builds on both the quantum models [1] and quantum amplitude estimation
(QAE) protocols [2, 3] to improve the probability estimation of specific events in stochastic processes. This
new pipeline is tested on diverse stochastic processes and consistently demonstrated up to a quadratic
speedup in the error convergence compared to classical Monte Carlo methods.
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1 Introduction

Time series processes, prevalent across domains from
finance to weather, contain patterns that, if under-
stood and modelled accurately, can predict specific fu-
ture events. The importance of this prediction increases
with rare, impactful events such as financial crashes or
earthquakes. The efficacy of any model hinges on mem-
ory cost and prediction speed. Lower memory usage is
one area where quantum models have an advantage over
classical models [1, 4, 5, 6]. Furthermore, using quantum
models allows for leveraging quantum algorithms, such
as the quantum amplitude estimation (QAE) protocol,
which can accelerate predictions for these stochastic pro-
cesses [2], especially for rare events where classical sam-
pling methods prove inefficient. However, the original
QAE protocol is unsuitable for near-term Noisy Inter-
mediate Scale Quantum (NISQ) computers. Recent ad-
vancements have addressed this, making QAE implemen-
tation possible on NISQ-era quantum computers [3, 7, 8].

Figure 1: Illustration of the proposed algorithm. It takes
in a future sequence x⃗ and outputs the estimated proba-
bility of this sequence at the end.

This paper introduces a new algorithm that merges
quantum models with the QAE protocol to enhance prob-
ability estimation in stochastic processes, illustrated in
Figure 1.
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2 Framework

We focus on a random time series process, where at
each time step, the process outputs an observable xt ∈ X ,
where X is the set of all observable. Observing this pro-

cess over time will generate a sequence
←→
X . This sequence

can be divided into past and future components, and
given the past, we want to build a model to predict the
future. Classically, the model with the optimal memory
efficiency is the ϵ-machine [9, 10]. However, its mem-
ory complexity is often higher than the theoretical lower
bound [11]. It has been proven that given an ϵ-machine,
we can build a quantum machine, also called q-machine,
with a lower memory complexity [1, 4]. The q-machine
comprises a memory and an output system, with tran-
sitions between quantum causal states |Si⟩ defined by a
unitary operator U . Upon initialising the memory qubits
into a given causal state, the unitary operator interacts
with both the memory and an ancilla qubit at each time
step, generating a sequence representing a potential fu-
ture of the stochastic process. This process is illustrated
in figure 2.

. . . . . .

|xt⟩ |xt+1⟩

|Si⟩
U U

|0⟩ |0⟩

Figure 2: A q-machine comprises a quantum memory
(|Si⟩) and ancillary system initialised in a computational
basis. At each time step t, the unitary U operates on the
memory register and an ancillary qubit. The resulting
output (|xt⟩) can be immediately measured to create a
sequence for the stochastic process defined by U or for-
warded to a quantum circuit for additional processing.

This quantum machine can be combined with QAE,
potentially providing up to a quadratic speedup for es-
timating any future sequence of interest compared to
classical Monte Carlo sampling. The specific QAE al-
gorithm used is the Maximum Likelihood Amplitude Es-
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timation (MLAE) by Suzuki et al. [3]. This algorithm in-
corporates Grover iterators and classical processing, sig-
nificantly reducing the use of controlled operations and
thereby making it more relevant for NISQ computers.
In the MLAE algorithm, a schedule will define a set of

experiments to conduct, with the kth experiment hav-
ing mk Grover iterators and Nk measurement shots,
k = 0, . . . ,M − 1, where M is the number of experi-
ments. Suzuki et al. provided two schedules: Linear In-
crement Schedule (LIS = {mk = k,Nk = constant}) and
Exponential Increment Schedule (EIS= {mk = 2k, Nk =
constant, k = 0, . . . ,M − 1}). A maximum likelihood
estimation can then be performed across the results ob-
tained to get the probability of the future sequence of
interest.
The standard error of the estimate, or ϵ, depends on

the schedule used. The LIS and EIS schedule provide an
error convergence of O(N−0.75

q ) and O(N−1
q ) respectively,

as compared to the classical convergence of O(N−0.5
q ),

where Nq is the number of oracle calls [3]. We also in-
cluded a new r-polynomial increment schedule (PIS =
{mk = rk, Nk = constant}, a subset of a schedule pro-
vided in [12]) which provide a different convergence speed

of O(N
−(2r+1)/(2r+2)
q ).

3 Algorithm

We developed a new algorithm to construct a specific
Grover iterator based on a stochastic process defined by
an arbitrary ϵ-machine. This algorithm converts clas-
sical machines into implementable quantum circuits for
quantum-enhanced probability estimation. The Grover
iterator is defined as:

Q = −AS0A†Sχ (1)

[2]. The algorithm will generate two components essen-
tial for the operator A: the initialiser operator Uini that
rotates the memory register to the corresponding quan-
tum causal state and the unitary operator based on the
stochastic process. These two operators are assembled as
in Figure 3 to create the operator A.

. . .

. . .

. . .

. . .

|0⟩ψ Uini
U01

U02

U0k

|0⟩1
|0⟩2

|0⟩k

Figure 3: The quantum circuit that sets up the initial
superposition. |0⟩ψ is the quantum memory register and
is normally initialised in the zero state at the start of the
circuit. This whole set of gates also forms the algorithm
operator A

.

Since the oracle and phase shift operators are easily de-
fined for a search scenario, this completes the components

of the Grover iterator. This Grover iterator can then be
used as a component in constructing the quantum circuit
(Figure 4) for estimating the probability of any specific
future sequence of interest. We also created a new sched-
ule for this algorithm, named Inverse Decreasing Shots
Schedule (IDSS = {mk = k,Nk = Nmax/(k + 1)), with
an error convergence of O(N−1

q ), matching that of the
EIS schedule.

m times

. . .

. . .

|0⟩⊗n
A Q Q

|ψ⟩

Figure 4: The quantum circuit of one instance of the
proposed algorithm with m number of Grover iterators
applied. C refers to the classical registers to store the
results of the measurements.

4 Results

This new algorithm was applied to four different mod-
els of increasing complexity: the perturbed coin process,
the dual Poisson process, the Nemo process and the au-
toregressive model. All processes considered have an out-
put alphabet size |X | = 2, i.e. xt ∈ {0, 1}. We focused
on sequences with a length of 4, i.e. −→x = x0x1x2x3.
Since most of the processes show similar trends, we

will elaborate only on the results for the autoregressive
model. The autoregressive model is a simple model fre-
quently used to represent time-series processes, including
financial processes. The general autoregressive model of
order p (AR(p)) is given as:

Xt =

p∑
i=1

ϕiXt−i + ϵt (2)

, where Xt is the current value of the series at time t,
ϕi ∈ R is the set of weights on the previous time steps,
and ϵt is the white noise at time t [13]. This paper con-
sidered the case where the Markov order p = 2, giving
the AR(2) model. The model is further discretised such
that Xt ∈ 0, 1, resulting in the ϵ-machine shown in FIG.
5.

The algorithm is applied to estimate the future se-
quence of −→x = 1001 from the initial causal state S0. The
parameters ϕ1 and ϕ2 are set to 0.5 and 0.4, respectively.
With these initial conditions, the probability of the fu-
ture sequence P (−→x = 1001|S0) ≈ 0.00842. Referencing
Figure 6a, it is evident that as the number of Grover it-
erators increases, the standard error of the probability
estimate decreases. Moreover, the quantum estimation
error declines at a faster rate compared to the classical
estimation. Figure 6b clearly shows the power-law er-
ror trend of both the classical and quantum algorithms,
with the quantum algorithm having a polynomial advan-
tage compared to the classical case. A best-fit line of the
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Figure 5: ϵ-machine of the discretised AR(2) process.
The value of pi, i ∈ {1, 2, 3, 4} are parameterised by ϕ1
and ϕ2.

following form is then considered:

best-fit: ϵ = bNa
q , (3)

a, b ∈ R, Nq = number of oracle calls

Table 1: Table of the exponents of the best-fit lines over
different processes and schedules. a refers to the average
exponent across all the processes. 2-PIS refers to the PIS
with the polynomial degree set as 2.

Schedule amin amax a
Classical −0.507 −0.491 −0.497

LIS −0.759 −0.748 −0.752
EIS −1.00 −0.875 −0.962
2-PIS −0.887 −0.831 −0.846
IDSS −0.931 −0.916 −0.923

Referring to Table 1, the value of a is close to the lower
bound set by the Fisher information, especially for the
LIS schedule. The value of a also appears to be process-
independent, varying primarily with the chosen schedule.
The 2-PIS (PIS with polynomial degree two) schedule of-
fers a speedup faster than the LIS schedule but slower
than the EIS schedule. The new IDSS schedule exhib-
ited an increased speedup compared to the PIS schedule,
delivering a quantum speedup that is only slower than
the exponential schedule (EIS).

5 Discussion

This paper presents a novel algorithm combining the
quantum model creation [1] and probability estimation
algorithm MLAE [3]. We demonstrated its effectiveness
in estimating the probability of rare events in stochastic
processes. Both Markovian and Non-Markovian stochas-
tic models were tested, and the new algorithm consis-
tently provided a speedup of up to a quadratic factor
over classical methods, highlighting the potential benefits
of quantum algorithms in probability estimation. Addi-
tionally, the algorithm’s ability to convert ϵ-machines to
q-machines makes it applicable to many stochastic pro-
cesses. The quantum speedup in probability estimation
has the potential to enhance accuracy, particularly for

(a) Convergence

(b) Standard error trend

Figure 6: (a) This plot shows the convergence of the
mean probability estimate as the number of Grover iter-
ators increases for the AR(2) process. The convergence
of the classical algorithm is plotted for comparison. The
error bar shows the 75th and 25th percentile of the esti-
mates over 1000 samples. (b) This plot shows the error
trend of the different schedules as the number of shots
the algorithm uses for estimation increases.

rare events where classical Monte Carlo methods require
large sample sizes. The algorithm offers advantages over
importance sampling by not relying on detailed knowl-
edge of the underlying distribution and only requiring
knowledge of the classical transition matrix to exploit
the quantum speedup.

The paper also introduces the new IDSS schedule,
which reduces the number of shots for higher-depth cir-
cuits while maintaining close to a quadratic speedup over
classical sampling. This schedule effectively reduces the
computational cost, especially considering that higher-
depth circuits are typically resource-intensive on quan-
tum computers, moving us closer to achieving quantum
advantage on real quantum hardware.

Future research directions include implementing the
algorithm on actual quantum computers like the IBM
Quantum systems to assess its performance under noisy
conditions. As studies have shown that dimensionally-
reduced quantum models outperform classical models
[14], another exciting avenue is to explore the trade-off
between model approximation and probability estimation
accuracy.
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Abstract. Quantum reading is a quantum sensing protocol for reading out binary information from
an optical disk using an entangled state. The information is encoded by two different reflectivities, and
the problem is how to discriminate between them accurately. Several previous studies have shown that
the two-mode squeezed vacuum (TMSV) state offers an advantage over a classical light source under
some constraints. In this paper, we evaluate and discuss the performance achieved using another type of
entangled state called the quasi-Bell state. We show that this state can outperform the TMSV state.

Keywords: Quasi-Bell state, Quantum reading, Quantum Chernoff bound

1 Introduction

In recent years, the diffusion of big data, cloud com-
puting, and other technologies has made cold storage de-
vices, that is, optical disks such as DVDs, popular again.
Optical disks store information in memory cells with dif-
ferent material reflectivities, and the information is read
out by a laser beam emitted from an optical head. The
physically recorded information can be stored for cen-
turies, but how accurately the information is read out,
that is, how accurately the reflectivities are discrimi-
nated, is important to its performance.

In 2011, S. Pirandola treated the task of reflectiv-
ity discrimination as a quantum channel discrimination
problem and proposed a quantum reading model [1] us-
ing entangled states to read the binary information en-
coded by reflectivities {r0, r1}, which may be more accu-
rate than the classical light source approach. The results
showed that the two-mode squeezed vacuum (TMSV)
state performs better than a classical light source under
some constraints. In the same year, O. Hirota proposed a
model using the quasi-Bell state [2], another type of en-
tangled state, to read the binary information encoded by
phases {0, π} and showed that this model achieves error-
free performance using little input energy [3]. These im-
portant quantum reading models have different applica-
tions, such as symmetric quantum communication sys-
tems [4–7], and therefore the performance of these mod-
els given various entangled states needs to be clarified.

In this study, we aim to clarify the performance of S.
Pirandola’s quantum reading model when the quasi-Bell
state is used. As a first step, in this paper, we focus on
an ideal memory in which r1 is fixed to 1 and derive

∗wang@kanagawa-u.ac.jp
†usuda@ist.aichi-pu.ac.jp

Figure 1: Model of quantum reading
the analytical expression of the quantum Chernoff bound
for quantum reading using the quasi-Bell state. We also
evaluate and compare its performance with the TMSV
state and a classical light source.

2 Problem setup

2.1 Quantum reading
In this section, we explain the quantum reading pro-

tocol as proposed in [1]. The quantum reading model is
illustrated in Fig. 1. The dashed and solid arrows repre-
sent mode S (signal mode) and mode A (ancilla mode)
of the entangled state, respectively. The protocol is as
follows:

1. The light beam of mode A of the entangled state
is irradiated to the detector.

2. The light beam of mode S is irradiated toward the
memory cell in which binary information 0 or 1 is
recorded. If the recorded information is 0 (or 1),
the light beam, subject to reflectivity r0 (or r1), is
reflected.

3. Both the light beam of mode S reflected from the
memory and that of mode A are input to the detec-
tor.

4. The detector decodes the binary information by
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performing an optimum quantum measurement on
both light beams.

In this paper, we set r1 = 1 and assume that the binary
information has equal a priori probabilities.

2.2 Classical discrimination bound
When considering the input energy constraints, such

as the average number of photons Nc, the lower bound
on the error probability using any classical light source
for the discrimination of r0 and r1(= 1) is as follows [1]:

P(Classical)
LB =

1 −
√

1 − e−Nc(1−√r0)2

2
. (1)

2.3 Quantum Chernoff bound
In quantum information science fields such as quan-

tum sensing [1, 8, 9], the quantum Chernoff bound is a
common criterion for evaluating system performance.
The quantum Chernoff bound [10] is a mathematical
method that obtains the upper bound on probability of
error P(M)

e when discriminating M copies of a quantum
state ρ0 from that of a quantum state ρ1. The quantum
Chernoff bound PQCB is expressed as

P(M)
e ≤ 1

2
CM =: PQCB(M), C = inf

s∈(0,1)
Tr

(
ρs

0ρ
1−s
1

)
,

(2)

where F is the fidelity and C = F = ⟨ψ|ρ0|ψ⟩ can be
obtained when ρ1 := |ψ⟩⟨ψ| is a pure state [10, 11].

2.4 Quasi-Bell state
One class of entangled state constructed using a set

of nonorthogonal quantum states such as coherent states
is called the quasi-Bell state [2]. A quasi-Bell state is
represented by

|Ψ⟩SA = h (|α⟩S|α⟩A − |−α⟩S|−α⟩A) , (3)

where

h =
1√

2(1 − κ2)
, κ = e−2|α|2 , α ∈ R+, (4)

and |α⟩S and |α⟩A are coherent states of mode S and
mode A, respectively. The average number of photons
of the signal light, i.e., the input energy, is denoted by
Nq = |α|2 coth(2|α|2). The minimum Nq is 0.5.

In this paper, we derive the representation of the re-
ceived quantum states ρ

(q)
0 and ρ

(q)
1 (= |Ψ⟩SA⟨Ψ|) cor-

responding to r0 and r1(= 1), respectively, in the
8-dimensional subspace of a Hilbert space using the
method in [4, 5]. By substituting the representation into

the fidelity SA⟨Ψ|ρ(q)
0 |Ψ⟩SA, we obtain the quantum Cher-

noff bound, which can be expressed as

P(Quasi−Bell)
QCB (M) =

1
2

(
(1 + L)(A− − A+κ)2

2(κ2 − 1)2

)M

, (5)

where A± = e−
1
2 (
√

r0±1)2 |α|2 and L = e−2(1−r0)|α|2．

2.5 Two-mode squeezed vacuum state
A TMSV state, also known as an Einstein–Podolsky

–Rosen state, is represented by

|ψ⟩SA =

∞∑
n=0

√
Nn

t

(Nt + 1)n+1 |n⟩S|n⟩A, (6)

where Nt is the average number of photons of the signal
light.

For ρ(t)
0 and ρ(t)

1 = |ψ⟩SA⟨ψ| corresponding to r0 and
r1(= 1), respectively, the quantum Chernoff bounds are
obtained using the fidelity with a covariance matrix rep-
resentation as follows [11–13]:

P(T MS V)
QCB (M) =

1
2

(
1

(1 + Nt − Nt
√

r0)2

)M

. (7)

3 Performance comparison

In [1], information gain G, expressed as

G(Q,R) = 1 − H(Q) − [1 − H(R)], (8)

was introduced as a performance evaluation index,
where H(p) = −p log2(p) − (1 − p) log(1 − p). This
index represents the gain in bits obtained by the light
source corresponding to Q over that corresponding to R
for each memory cell. In this paper, G is also employed
to evaluate the gain achieved with each light source.

3.1 Information gain for M = 1

Figs. 2 and 3 respectively plot the information gain
G

(
P(Quasi−Bell)

e , P(Classical)
LB

)
, and G

(
P(Quasi−Bell)

e , P(T MS V)
QCB

(1)
)

versus the average number of photons N and reflec-
tivity r0 when M = 1. Note that we evaluate the informa-
tion gain of the quasi-Bell state using the minimum error
probability P(Quasi−Bell)

e , which is obtained from [4, 5].
Moreover, the gains achieved by the quasi-Bell state over
any classical light source and the TMSV state are shown
in Figs. 2 and 3, respectively.

The results in Fig. 2 show that the performance of the
quasi-Bell state is always substantially superior to that
of any classical light source, regardless of increases in
N or changes in r0. In contrast, as shown in Fig. 3,
the performance of the quasi-Bell state is superior to
that of the TMSV state when r0 is low and vice versa.
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Figure 2: Gain by quasi-Bell state over classical LB
when M = 1
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Figure 3: Gain by quasi-Bell state over TMSV state
when M = 1

Ref. [1] proved that there is a minimum M such that
P(T MS V)

QCB (M) < P(Classical)
LB . In this paper, we show that

the minimum M is 1 when using the quasi-Bell state,
even though there is a regime under which the TMSV
state is superior.

3.2 Information gain for M > 1

Figs. 4 and 5 plot the information gain G
(
P(Quasi−Bell)

QCB

(M), P(Classical)
LB

)
and G

(
P(Quasi−Bell)

QCB (M), P(T MS V)
QCB (M)

)
,

respectively, using the same setting as Figs. 2 and 3 with
the exception that M = 15. Note that N = Nc = Nt M =
NqM ≥ 0.5M.

The results in Fig. 4 show that the performance of the
quasi-Bell state can be substantially improved by divid-
ing N into M copies. In contrast, as shown in Fig. 5,
the use of the quasi-Bell state leads to more gain than
the TMSV state in the regime of low N and vice versa.
A comparison of Figs. 3 and 5 shows that the region
in which the quasi-Bell outperforms the TMSV state re-
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Figure 4: Gain by quasi-Bell state over classical LB
when M = 15
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Figure 5: Gain by quasi-Bell state over TMSV state
when M = 15

mains despite increases in M.

4 Conclusion
In this paper, we evaluated and compared the perfor-

mance of quantum reading when using the TMSV state,
quasi-Bell state, and classical light source with respect
to the criterion of the quantum Chernoff bound. In par-
ticular, we derived an analytical expression for the quan-
tum Chernoff bound when the quasi-Bell state is used.
We also clarified that to exceed the performance of any
classical light source, the minimum number of copies M
is 1 when the quasi-Bell state is used. When M > 1,
we showed that there is a region in which the quasi-Bell
outperforms the TMSV state. This result suggests that
the appropriate type of entangled state should be chosen
for the required M and r0.
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Adiabatic quantum computing with parameterized quantum circuits
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Abstract. In this work, we start by analyzing how small perturbations of a Hamiltonian affect the pa-
rameters that minimize the energy within a family of parameterized quantum states. By measuring a series
of observables in the unperturbed system, we derive a constrained linear system of equations whose solu-
tion provides the new minimum. Then, we propose a NISQ-friendly discrete version of adiabatic quantum
computing, with a proven lower bound of discretization steps to guarantee success, that is insensitive to
parameter initialization and requires no energy minimization. We show that our algorithm outperforms
VQE on MaxCut, Number-Partitioning, and on Transverse-Field Ising Chain model.

Keywords: Adiabatic quantum computing, NISQ

We are currently in the Noisy Intermediate-Scale
Quantum Computing era [1] where small quantum com-
puters are dominated by noise, small coherence times and
limited connectivity. Conventional techniques like Adia-
batic Quantum Computing (AQC) [2] with proven the-
oretical guarantees require quantum circuits with depth
that is unreachable for the existing hardware. Variational
Quantum Algorithms (VQAs) [3, 4] offer a promising
framework for practical quantum advantage in this era.
In this approach, a quantum computer works in parallel
with a classical computer in an iterative feedback loop
with the goal of solving a problem-specific task. Specif-
ically, in VQAs the problem at hand is mapped into an
interacting qubit HamiltonianHC whose minimum eigen-
value corresponds to the (optimal) solution of the prob-
lem. The quantum computer then prepares and mea-
sures a parameterized quantum state (usually referred to
as “ansatz”) and the classical computer iteratively up-
dates the parameters using a classical optimization algo-
rithm until convergence, possibly to a local minimum, is
achieved.
This approach, however, is hindered by a series of lim-

itations that make these algorithms less likely to offer
a practical advantage. First of all, the emerging cost
landscapes are filled with a vast number of local minima
[5] where local optimization algorithms can falsely con-
verge to. As a result, a bad initialization will have an
immediate effect on the quality of the solution. Find-
ing a parameterized quantum circuit that contains the
solution may sometimes be hard and on top of that, uti-
lizing highly expressive ansatz families that span a large
fraction of the total Hilbert space lead to phenomena
like barren plateaux [6, 7] where exponentially vanishing
gradients make the optimization intractable. It is thus
crucial to further analyze the geometry of the underly-
ing non-convex landscapes and subsequently understand
the limitations of variational quantum algorithms. We
present the main contributions of our work that lead to
an alternative approach to NISQ algorithms than that

∗i.kolotouros@sms.ed.ac.uk
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offered by VQAs:

• We study how small perturbations of the Hamilto-
nian affect the optimization landscape and derive
a theorem that enables us to calculate how much
the global minimum is shifted under these pertur-
bations.

• We utilize the aforementioned theorem and adia-
batic quantum computing and derive an algorithm
(AQC-PQC) that returns the best approximation
of the ground state of a Hamiltonian within a fam-
ily of parameterized quantum states that (i) can be
applied in the NISQ setting, (ii) is not sensitive to
the initialization points, (iii) requires fixed calls to
the quantum computer with theoretical guarantees
on the performance (iv) requires no energy mini-
mization.

• We derive a lower bound on the number of dis-
cretization steps needed and compare our algorithm
with the Variational Quantum Eigsolver (VQE) in
two classical optimization problems, namely Max-
Cut and Number Partitioning and one quantum
spin-interacting problem namely the Transverse-
Field Ising Chain (TFIC) model.

Our main theorem (outlined in Theorem 1) aims to quan-
tify how much must we shift the optimal angles that min-
imize a Hamiltonian H1 if we perturb the Hamiltonian
by a small amount λH2 with λ≪ 1.

Theorem 1 Consider a parameterized quantum circuit
defined via the unitaries U(θ), and the corresponding
states |ψ(θ)⟩ = U(θ) |0⟩. We are given a Hamilto-
nian H0 and the angles θ∗ that minimize its energy, i.e.
θ∗ = argminθ ⟨ψ(θ)|H0 |ψ(θ)⟩. If we perturb the Hamil-
tonian H0 by a small amount λH2 with λ ≪ 1, and
∥H0∥ ≈ ∥H2∥, then there exists a shift vector ϵ such that,
with high probability, the state |ψ(θ∗ + ϵ)⟩ is the ground
state of the perturbed Hamiltonian Hλ = H0 + λH2 and
the shift vector is the solution of the following mathemat-
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Figure 1: Adiabatic Quantum Computing with Parameterized Quantum Circuits (AQC-PQC).

ical problem:

min ||ϵ||
subject to: Aϵ+Q = 0,

Hλ
∣∣
θ∗+ϵ

≽ 0,

(1)

where Hλ
∣∣
θ∗+ϵ

is the Hessian evaluated at the shifted

point, Q =
∑

iQiêi is a vector and A is a matrix that
are defined via their elements

Qi = λ
∂

∂θi
(⟨ψ(θ)|H2 |ψ(θ)⟩)

∣∣∣∣
θ∗

Aij =
∂2

∂θi∂θj
(⟨ψ(θ)|Hλ |ψ(θ)⟩)

∣∣∣∣
θ∗

Intuitively, we search for the smaller shift (first line),
that results in a vanishing gradient (second line) that is
a minimum (third line). The most important point is
that the elements Aij , Qi and the Hessian correspond to
observables calculated on the unperturbed state |ψ(θ∗)⟩.
Inspired by AQC, we propose a novel algorithm that

utilizes Theorem 1 and is significantly different than the
standard framework of variational quantum algorithms.
In AQC, the system of qubits is initialized in an easy-to-
prepare ground state of a HamiltonianH0. Then, the sys-
tem is allowed to interact under a time-dependent Hamil-
tonian H(τ) = (1− τ)H0 + τH1 (with τ ≡ t/tf ∈ [0, 1]).
If the evolution is slow enough, so that the system of
qubits always remains in the instantaneous ground state,
the system at time t = tf will find itself in the ground
state of H1. The total computational resources, i.e. the
total time tf needed to evolve to the desired ground state,
depends on the spectral gap between the instantaneous
first excited state and the ground state [8] which some-
times can become exponentially small.
The main idea of our algorithm is the following. We

consider the discretized Hamiltonian

Hk =

(
1− k

K

)
H0 +

k

K
H1. (2)

Here the step subscript k has the role of the (discrete
in our case) time. Let us set λ := 1/K ≪ 1, and

H2 := (H1 − H0). We can rewrite the step-dependent
Hamiltonian as

Hk = H0 + λH2k. (3)

We can easily see thatHk+1−Hk = λH2, and thus we can
apply Theorem 1 for any consecutive pair of {Hk, Hk+1}.
We start from H0 and initialize the algorithm with the
known ground state that corresponds to the initial pa-
rameters θ0 such that θ0 = argminθ ⟨ψ(θ)|H0 |ψ(θ)⟩.
Then, for each step we compute the shift vector ϵ and
add it to the parameters corresponding to the ground
state of the previous step to obtain the ground state of
the next step. After K steps, the Hamiltonian becomes
H1 and the algorithm returns the desired ground state.
You can visualize our algorithm in Figure 1 and see [9]
for full details. The number of discrete steps K needed
to always return the ground state of H1 can be lower
bounded by Theorem 2 stated below.

Theorem 2 Consider a time-dependent Hamiltonian
H(τ) = (1 − τ)H0 + τH1, τ ≡ t/tf ∈ [0, 1]. Let
∆(τ) ≡ E1(τ) − E0(τ) be the instantaneous spectral gap
and δτ (λ) ≡ E0(τ + λ) − E0(τ) be the energy difference
between the ground states at times τ + λ and τ respec-
tively. Moreover, assume that the parameterized family
of states contains the ground state for each τ ∈ [0, 1] and
|δτ (λ)| ≪ ∆(τ + λ). Then, AQC-PQC will always re-
turn the ground state of the target Hamiltonian H1 at
time τ = 1 as long as we discretize the time-dependent
Hamiltonian into K > K0 steps where:

K0 ∈ O
(

poly(n)

minτ ∆(τ)

)
(4)

Our algorithm offers a number of potential advantages.
The classical part in our approach is a constrained linear
solver (that can be performed very efficiently and with
guarantees of finding the solution), while in variational
approaches the classical part is an energy minimization.
The vast majority of bottlenecks in VQAs come from the
classical optimization part. First of all, a random initial-
ization of parameters may lead to either bad performance
or barren plateaux. Secondly, the emerging landscapes
of VQAs are filled with a large amount of local min-
ima that makes the parameters untrainable. Another key
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Table 1: Probability of sampling the optimal solution.

MaxCut Optimal Solution Overlap (%)
7 Qubits 8 Qubits 9 Qubits 10 Qubits 11 Qubits 12 Qubits

AQC-PQC 82.7 74.3 93.1 50 28.1 56.6
VQE 62.3 54.7 60.8 39.2 22.1 11.1

Number Partitioning Optimal Solution Overlap (%)
AQC-PQC 37.5 21.9 24.7 12.6 5 4.6

VQE 28.5 6.2 6.4 1.2 0.8 0.4

Number of Qubits

MaxCut

|E
−

E
o
p
t
|

Number of Qubits

Number Partitioning

|E
−

E
o
p
t
|

Number of Qubits

TFIC

|E
−

E
o
p
t
|

Figure 2: Performance of AQC-PQC algorithm compared to VQE (with 2-SPSA and Gradient Descent optimizers)
for the MaxCut problem (left) and the Number Partitioning problem (right). The AQC-PQC algorithm with the dark
blue line (square markers) is able to outperform both 2-SPSA and Gradient Descent on the quality of the output
solution.

difference, and advantage of our approach, is that tradi-
tional variational quantum approaches require multiple
quantum state preparations and number of shots that
increases significantly as one approaches a minimum (as
the gradients tend to zero). For each iteration, multiple
quantum states need to be prepared (details depend on
the classical optimizer used). However we neither know in
advance how many iterations would be required to reach
convergence, nor if the quantum state that we converge
is the correct ground state. In contrast, in our strategy,
we can mimic adiabatic quantum computing with only K
steps that is typically much smaller than the iterations
needed by a local classical optimization algorithm. Fi-
nally, our algorithm offers a direct advantage (over AQC)
when the first excited state does not correspond to a min-
imum. In that case, the algorithm can choose larger steps
as the Hessian of the first excited state would not be pos-
itive semidefinite and thus it would not correspond to a
feasible solution of Eq. (1).
The performance of AQC-PQC was tested and com-

pared with VQE on the Number Partitioning and the
Max-Cut problem as well as on the TFIC problem. The
first two problems correspond to classical combinatorial
optimization problems with a diagonal Hamiltonian while
the latter corresponds to a quantum problem with a non-
diagonal Hamiltonian.
For the classical optimization problems, we chose to

compare the methods on instance classes that we con-
sider hard. Both of these problems have an intrinsic Z2

symmetry and so we chose instances with only two op-

timal solutions (one solution can be acquired from the
other by flipping all qubits). Specifically, for the Max-
Cut problem we sampled 100 random weighted graphs of
sizes 8 to 12 while for the Number Partitioning problem,
we sampled 100 instances of the same size as MaxCut
with integers drawn from the interval [0, 50].

Overall, we can see that AQC-PQC is able to outper-
form VQE in all instances, achieving overlap even five
times larger in MaxCut and ten times larger in Number
Partitioning (see Table 1). Moreover, as seen in Figure
2, the output states returned by AQC-PQC are signif-
icantly closer (in terms of energy) to the ground state
compared to VQE. This is to be expected as the non-
convexity of the cost landscape results in the classical
optimization part of VQE to stuck in a local minimum.
On the other hand, AQC-PQC provides a more robust
strategy to navigate the (time-evolving) landscape. Pro-
vided that the number of steps is chosen accordingly and
the ansatz family is expressive enough, the latter algo-
rithm will always achieve a large overlap with the optimal
solution.

For the last problem, we evaluated the performance of
the two algorithms on TFIC for 100 random instances
with the couplings (Jk, h) drawn uniformly at random
from the uniform distribution. The results of the TFIC
model are illustrated in Figure 2. Overall, we observe
that AQC-PQC is able to return approximations of the
ground state of the TFIC Hamiltonian that are closer
compared to those returned by VQE. Further details
can be found at the full paper [9].
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Abstract. Limited coherence times is a major bottleneck in near-term quantum computing and short-depth quantum
circuits are needed to operate within such limitations. We introduce several short-depth quantum algorithms that
performs tasks such as (i) quantum stochastic series expansion (QSSE), (ii) Quantum Coherence Estimation (QCE)
and (ii) Berry Phase Estimation (BPE). QSSE efficiently estimates expectation values of quantum observables, while
QCE and BPE efficiently estimates non-local properties of a many-body system. We show how these algorithms
avoid bottlenecks posed by exponentially increasing dimensions of quantum systems and can be useful to study the
physics of many-body systems in the thermodynamic limit.

Keywords: Quantum Algorithms, Many-body Physics, Geometric Phase, Quantum Coherence

1 Introduction
Quantum computing can potentially revolutionize the study

of many-body systems by making it possible to the simulate
ever more complex interactions for very large system sizes[1].
A potential obstacle to achieving this is the limited coherence
times of current quantum processors. For this reason, it is
important to develop efficient algorithms that perform tasks
efficiently using relatively shallow quantum circuits that can
operate within the limitations of short coherence times, and yet
is able to extract critical information about the physics of the
many-body system. In the following sections we will discuss
three quantum algorithms that are designed to do this: (i)
quantum stochastic series expansion (QSSE)[2], (ii) Quantum
Coherence Estimation (QCE) and (ii) Berry Phase Estimation
(BPE). QSSE is a technique of extracting information about
a many-body system without requiring us to first produce a
simulated copy of the system within the quantum processor.
On the other hand, QCE and BPE assumes that we already have
a simulated copy of the system that is readily accessible, and
the goal is to extract non-local quantum properties from the
prepared state. Classical methods are typically bottlenecked
by the exponentially increasing dimensions of quantum many-
body systems. These quantum algorithms can be applied to
study several different types of quantum phase transitions.

2 Quantum Stochastic Series Expansion for
general Hamiltonians

The basic premise of Stochastic Series Expansion is that
the expectation value of an observable 𝑂 for a system with
local Hamiltonian 𝐻 =

∑
𝑖 𝐻𝑖 at inverse temperature 𝛽 can be

written in the following way using Taylor’s expansion as:

⟨𝑂⟩ =
∑︁
𝑛,𝑏,𝛼

𝛽𝑛

𝑛!
⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩ ⟨𝛼 |𝑂 |𝛼⟩ /𝑍.

Here, the summation is over all possible strings 𝑏 =

𝑏𝑛 . . . 𝑏1, expansion power 𝑛, and basis state |𝛼⟩.
∗bbtankc@gmail.com

Note that ⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩, as well as its com-
plex conjugate ⟨𝛼 | 𝐻𝑏1 . . . 𝐻𝑏𝑛 |𝛼⟩ appears in the summa-
tion. Since ⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩ + ⟨𝛼 | 𝐻𝑏1 . . . 𝐻𝑏𝑛 |𝛼⟩ =

2 Re
{
⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩

}
, only the real part of each term con-

tributes to the expectation value. Hence we can equivalently
write

⟨𝑂⟩ =
∑︁
𝑛,𝑏,𝛼

𝛽𝑛

𝑛!
Re

{
⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩

}
⟨𝛼 |𝑂 |𝛼⟩ /𝑍. (1)

In order to implement quantum SSE, we only need to sam-
ple the real portion of ⟨𝛼 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼⟩ and ensure that it is
nonnegative. We show that this can be done by adding a suffi-
ciently large constant to the Hamiltonian (see Supplementary
Information).

Suppose 𝑀 ≥ 𝑛 is the cutoff in the expansion power. For a
fixed 𝑀 , let 𝐻𝑏 B |ℎ𝑏 |

[
sgn(ℎ𝑏)

⊗𝑁

𝑖=1 𝜎
(𝐴𝑖 )
𝑏𝑖 + 2𝑀1𝐴

]
. We

note that this is an unequal superposition of 2 unitary opera-
tions that depends on the cutoff value 𝑀 .

We introduce the state

|𝜓in⟩ B |𝛼𝐴⟩
��𝜙𝐵1

〉
. . .

��𝜙𝐵𝑛

〉
|+𝐶⟩ , (2)

where��𝜙𝐵𝑖

〉
B

√︁
(2𝑀)/(2𝑀 + 1)

��0𝐵𝑖

〉
+
√︁

1/(2𝑀 + 1)
��1𝐵𝑖

〉
and |+𝐶⟩ B 1√

2
( |0𝐶⟩ + |1𝐶⟩).

It can be shown that for any given expansion power 𝑛, we can
define a unitary 𝑉𝐴𝐵,𝐶 , controlled by qubit 𝐶, that satisfiies:

⟨𝜓in |𝑉𝐴𝐵,𝐶 |𝜓in⟩

=
⟨𝛼𝐴 | 𝐻𝑏1 . . . 𝐻𝑏𝑛 |𝛼𝐴⟩ + ⟨𝛼𝐴 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼𝐴⟩

2(2𝑀 + 1)𝑛
��ℎ𝑏𝑛 . . . ℎ𝑏1

��
=

Re
{
⟨𝛼𝐴 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼𝐴⟩

}
(2𝑀 + 1)𝑛

��ℎ𝑏𝑛 . . . ℎ𝑏1

�� , (3)
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which allows us to define an estimator for the relative weight:

𝑞(𝑛, 𝑏, 𝛼) ≔
��⟨𝜓in |𝑉𝐴𝐵,𝐶 |𝜓in⟩

��2
≡

�����Re
{
⟨𝛼𝐴 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼𝐴⟩

}
(2𝑀 + 1)𝑛

��ℎ𝑏𝑛 . . . ℎ𝑏1

��
�����2 (4)

Note that the spectrum of𝐻𝑏𝑖/
��ℎ𝑏𝑖 �� is in the range [0, 2𝑀+1] so

the absolute value of Re
{
⟨𝛼𝐴 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼𝐴⟩

}
/
��ℎ𝑏𝑛 . . . ℎ𝑏1

��
is within the range [0, (2𝑀 +1)𝑛]. The configuration weights,
and hence Re

{
⟨𝛼𝐴 | 𝐻𝑏𝑛 . . . 𝐻𝑏1 |𝛼𝐴⟩

}
, are always nonnega-

tive.
From here, we sample the probability 𝑞(𝑛, 𝑏, 𝛼) and per-

form a standard Metropolis algorithm according to the ratio√︁
𝑞(𝑛′, 𝑏′, 𝛼′)/𝑞(𝑛, 𝑏, 𝛼). It turns out that this ratio will yield,

on average, exactly the correct expression for the expectation
value of an observable 𝑂 in Stochastic Series Expansion.

3 Quantum algorithm for sampling quantum
coherence

We now describe a quantum algorithm to efficiently sample
the total quantum coherence of a many-body system. Briefly
speaking, quantum coherence is a measure of the the amount
of quantum superposition that exists between the orthogonal
basis of a given quantum system[3]. There are many possible
quantifiers for quantum coherence, but the one we will consider
is called the 𝑙2-norm of coherence. Recall that for any matrix
𝑀 and basis {|𝑖⟩}, the 𝑙2-norm is ∥𝑀 ∥𝑙2 B

√︃∑
𝑖, 𝑗 | ⟨𝑖 |𝑀 | 𝑗⟩|2.

Correspondingly, the 𝑙2-norm of coherence is the 𝑙2-norm in-
duced distance between a state 𝜌 and the closest incoherent
state 𝜎:

C𝑙2 (𝜌) B min
𝜎∈I

∥𝜌 − 𝜎∥2
𝑙2
, (5)

where I is the set of incoherent states i.e. the set of quantum
states 𝜎 which has a diagonal density matrix in the basis {|𝑖⟩}.
One can also write the 𝑙2-norm of coherence in terms of the
completely dephased stateΔ𝜌 B

∑
𝑖 ⟨𝜌 |𝑖 |𝜌⟩ |𝑖⟩⟨𝑖 |, which gives

C𝑙2 (𝜌) B ∥𝜌 − Δ𝜌∥2
𝑙2

=
∑︁
𝑖≠ 𝑗

| ⟨𝑖 |𝜌 | 𝑗⟩|2. (6)

We now describe quantum circuits that estimate the 𝑙2-norm
of coherence. We write 𝜌 in matrix form as

𝜌 =
∑︁
𝑖 𝑗

𝜌𝑖 𝑗 |𝑖⟩⟨ 𝑗 | . (7)

For simplicity, we will assume that {|𝑖⟩} is the computational
basis. Consider the purity of the state:

Tr(𝜌2) = Tr(
∑︁
𝑖 𝑗

𝜌𝑖 𝑗 |𝑖⟩⟨ 𝑗 |
∑︁
𝑘𝑙

𝜌𝑘𝑙 |𝑘⟩⟨𝑙 |)

=
∑︁
𝑖

|𝜌𝑖𝑖 |2 +
∑︁
𝑖≠ 𝑗

��𝜌𝑖 𝑗 ��2. (8)

Note that in Eq. (8), the second term C𝑙2 (𝜌) B
∑

𝑖≠ 𝑗

��𝜌𝑖 𝑗 ��2 is
exactly the 𝑙2 norm of coherence.

Suppose we have two independent preparations of 𝜌,and let
𝑃2 denote cyclic permutation of the two input states. We verify
that:

⟨𝑃2⟩ = Tr(𝑃2𝜌 ⊗ 𝜌)
= Tr(𝜌2), (9)

so we can easily measure the purity by measuring the expec-
tation value of 𝑃2.

Given the purity, we now need
∑

𝑖 |𝜌𝑖𝑖 |2, which is the purity
of the completely dephased state Δ𝜌. For any 𝑛 qubit state
𝜌, dephasing can be performed by copying the classical infor-
mation from each qubit gate to ancillae qubits via a series of
CNOT gates. We then measure the expectation value of 𝑃2
on the state Δ𝜌 ⊗ Δ𝜌 to measure

∑
𝑖 |𝜌𝑖𝑖 |2. The final quantum

coherence of the system is then given by

C𝑙2 (𝜌) = Tr(𝜌2) − Tr(Δ𝜌2). (10)

We initially assumed that the basis {|𝑖⟩} is the computational
basis, but this is not a strict requirement. Suppose we want to
measure the coherence with respect to some other set of basis
vectors {|𝑖′⟩} instead. In general, the two bases are related
by some unitary operation |𝑖′⟩ = 𝑈 |𝑖⟩, so we can always
measure the coherence with respect to {|𝑖′⟩} by performing
the previously described procedure on the state 𝑈†𝜌𝑈 instead
of 𝜌.

4 Quantum algorithm for sampling discrete
Berry phases

We now describe how to estimate the Berry phase of a many-
body system using quantum circuits. We will use the definition
of definition of the discrete Berry phase[4]. Suppose we have
a collection of 𝑘 quantum states {|𝜓𝑖⟩}𝑘𝑖=1 forming the closed
loop |𝜓1⟩ → |𝜓2⟩ → . . . |𝜓𝑘⟩ → |𝜓1⟩. The discrete Berry
Phase is:

𝛾𝑘
𝐵 B Im{ln(⟨𝜓1 |𝜓2⟩ . . . ⟨𝜓𝑘 |𝜓1⟩)}

=

𝑘∑︁
𝑗=1

Im{ln
〈
𝜓 𝑗

��𝜓 𝑗+1 mod 𝑘

〉
}. (11)

This definition generalizes the standard definition of the
Berry phase, in the limit of a large number of discrete points
𝑘 . For a collection of 𝑘 𝑛-qubit pure states {|𝜓𝑖⟩}𝑘𝑖=1 we apply
the cyclic permutation operation:

𝑃𝑘 |𝜓1⟩ |𝜓2⟩ . . . |𝜓𝑘⟩ = |𝜓𝑘⟩ |𝜓1⟩ . . . |𝜓𝑘−1⟩ . (12)

Observe that the expectation value of 𝑃𝑘 is related to the
discrete Berry phase:

⟨𝑃𝑘⟩ = ⟨𝜓1 |𝜓𝑘⟩ ⟨𝜓2 |𝜓1⟩ . . . ⟨𝜓𝑘 |𝜓𝑘−1⟩ (13)
= (⟨𝜓1 |𝜓2⟩ . . . ⟨𝜓𝑘−1 |𝜓𝑘⟩ ⟨𝜓𝑘 |𝜓1⟩)∗ (14)

To do this, we first perform a controlled operation with an
ancilla qubit initialized in the state |+⟩ such that

|𝜓1⟩ . . . |𝜓𝑘⟩ |+⟩ (15)

→ (|𝜓1⟩ . . . |𝜓𝑘⟩ |0⟩ + 𝑃𝑘 |𝜓1⟩ . . . |𝜓𝑘⟩ |1⟩)/
√

2. (16)
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Measuring the ancilla in the {|+⟩ , |−⟩} basis yields the prob-
abilities

𝑃± = (1 ± Re{⟨𝑃𝑘⟩})/2. (17)

which allows us to find the real portion of ⟨𝑃𝑘⟩. To find the
imaginary portion, we apply an additional phase gate on the
ancilla such that

|𝜓1⟩ . . . |𝜓𝑘⟩ |+⟩ (18)

→ (|𝜓1⟩ . . . |𝜓𝑘⟩ |0⟩ + 𝑖𝑃𝑘 |𝜓1⟩ . . . |𝜓𝑘⟩ |1⟩)/
√

2. (19)

Measuring the ancilla in the {|+⟩ , |−⟩} basis as before, we
obtain the probabilities

𝑄± = (1 ∓ Im{⟨𝑃𝑘⟩})/2, (20)

so 𝑄− −𝑄+ gives us the imaginary portion of ⟨𝑃⟩. Given both
real and imaginary portions of ⟨𝑃⟩, the discrete Berry phase
is estimated by

𝛾𝑘
𝐵 = Im{ln ⟨𝑃𝑘⟩∗} = − arg{⟨𝑃𝑘⟩} (21)

5 Conclusion
We proposed several short-depth quantum algorithms that

performs tasks such as (i) quantum stochastic series expansion
(QSSE), (ii) Quantum Coherence Estimation (QCE) and (ii)
Berry Phase Estimation (BPE) that can be applied to study
complex many-body system. In all cases the gate cost of
implementing the algorithms scales linearly with the size of the
system, while the depth cost scales only polylogarithmically.
As a demonstration, we apply QSSE to estimate the energy of
a frustrated spin- 1

2 configuration and use QSSE and QCE to
study topological phase transitions in spin-1 chains.
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Abstract. I will show that quite unintuitively, one can estimate an expectation value of a desired ob-
servable, by measuring any other observable. Also the entire probability distribution of outcomes can be
estimated. This shows that quantum measurements carry much more information than was previously
known. This result is useful experimentally, in any system in which there are limitations on which mea-
surements can be performed. This is especially true for estimating expectation values of global observables,
such as energy, in many-body quantum simulators, in which only local measurements can be performed.

Keywords: expectation values, measurement, many-body quantum systems, quantum simulators, quan-
tum annealers

1 Summary

Measuring expectation values is one of the most im-
portant tasks in many fields of quantum physics. In
many-body systems, it is very important to measure the
energy, because it encodes many properties of the many-
body systems, and informs us how close we are to the
ground state. The latter is especially important in quan-
tum annealers, in which the ground state of a Hamil-
tonian encodes a solution to a problem that could be
very difficult to solve numerically, in a process called
adiabatic quantum computing. However, without knowl-
edge of the energy of the system, one cannot be sure
whether the ground state was reached. Additionally, it is
very difficult to measure this quantity, because at most
two-local measurements can be performed. I will show
that quite unintuitively, one can estimate an expectation
value of a desired observable, by measuring any other
observable [1]. Also the entire probability distribution
of outcomes can be estimated. This shows that quan-
tum measurements carry much more information than
was previously known. This result is completely general
and can be applied to any quantum systems, and espe-
cially to many-body systems. We perform simulations of
four experimentally realized models and show that using
this method, in some situations one can exclude over 95

2 Motivation and overlap with fields of
quantum

Measuring observables is one of the central tasks in
quantum physics. They appear in quantum information
(entanglement witness), and its subfields quantum ther-
modynamics (entropy, work extraction), quantum speed
limits (characteristic time scale of quantum systems),
quantum metrology (homodyne measurement, Heisen-
berg limit in scaling, estimation of time and tempera-
ture). On a broader scale, expectation values also ap-
pear in Heisenberg’s uncertainty principle, quantum field
theory (vacuum expectation values), and nuclear physics
(mean properties of atomic nuclei). However, in experi-

∗dsafranekibs@gmail.com
†dario rosa@ibs.re.kr

mental setups (such as quantum simulators) only a very
restricted set of measurements can be performed. Hence,
we developed a theoretical framework to estimate any ob-
servable of interest by measuring any other observable.
This is very important, for example, in adiabatic quan-
tum computing and quantum annealing, in which case
one wants to estimate the energy of the state, and see
whether it is close to the ground state. Since these re-
sults are completely general, they also go beyond this
specific application.

3 Methods

We provide rigorous proofs for four main theorems,
regarding the bounds on the energy probability distri-
bution and on the bound for the mean value of energy.
We provide numerical simulations in small and large sys-
tems, for the Heisenberg model in the manuscript, and
additionally the XY, Ising, and PXP models, all of which
have been experimentally realized.

4 Interest to the community, and poten-
tial impact

• As mentioned above, expectation values appear in
many fields of physics. Methods invented here can
therefore be applied very broadly.

• Experimentally, in ion-trap quantum simulators,
adiabatic quantum computers, and in quantum an-
nealers (such as D-Wave), it is very important to
measure expectation values. For example, measur-
ing the expectation value of energy might confirm
that one is close to the ground state, which rep-
resents the computational output. Yet, there are
significant experimental limitations on the locality
of the gates one can perform. Our method allows
the estimation of global observables such as energy,
by measuring only local observables, circumventing
the experimental limitations.

• Related to that, we demonstrate in numerical sim-
ulations presented in our paper that the method
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is highly efficient in situations relevant to state-
of-the-art experimental capabilities. For example,
two-qubit gates allowed the estimation of ground
state energy below 4% of error, for the Heisenberg
and Ising models. The Ising model is the model of-
ten used both in quantum simulators and quantum
annealers.

• This is a very active field of research. The in-
novative method we developed provides a com-
pletely independent alternative to a highly impact-
ful method of estimating expectation values using
randomized measurements [2], Compared to their
method, which requires measuring in a highly en-
tangled basis, our method is significantly easier to
implement in the current experimental platforms.
This is because we do not put any experimental
requirement on the types of measurements that ex-
perimenters can do. Thus, this method can be ap-
plied with the experimental capabilities currently
at their disposal.

• At the same time, we delineate several new direc-
tions of investigation, which will spur additional
theoretical research.
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Abstract. Quantum Random Access Optimizer (QRAO), proposed by Fuller et al., utilizes Quantum
Random Access Code (QRAC) to encode binary optimization variables in a single qubit. Our research ex-
tends quantum-relaxation with a different QRAC that encodes three classical bits into two qubits, achieving
an improved approximation ratio of 0.722 for the maximum cut problem, albeit with a reduced bit-to-qubit
compression ratio, illustrating the inherent trade-off. Furthermore, we introduce a novel quantum relax-
ation that consistently maintains a 2x bit-to-qubit compression ratio, unlike the original work by Fuller et
al. These findings provide new insights into quantum-relaxation based optimization.
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1 Backgrounds

Solving optimization problems is one of the most im-
portant tasks for which quantum computation is ex-
pected to be useful. Various quantum algorithms have
been devised for NP-hard optimization problems such
as QAOA (Quantum Approximate Optimization Algo-
rithms) [3] proposed by Farhi, Goldstone, and Gutmann,
and VQE (Variational Quantum Eigensolver) [13] pro-
posed by Peruzzo et al. Although QAOA and VQE are
classical-quantum hybrid algorithms designed for near-
term devices capable of running only noisy shallow cir-
cuits, there are some significant challenges. The first is-
sue is scalability. Because QAOA and VQE encode one
classical bit into one qubit and the number of qubits of
near-term quantum devices is at most several hundred
qubits, the problem instance sizes are highly limited. The
second issue is that it is not yet clear if the quantumness
(i.e., quantum entanglement) of constant-depth QAOA
and VQE can yield better results than classical optimiza-
tion algorithms, as indicated in [12]. In other words,
for combinatorial optimization, QAOA and VQE may
have limited appeal for execution on a quantum com-
puter from the outset.
Recently, a new classical-quantum hybrid optimization

algorithm, QRAO (Quantum Random Access Optimiza-
tion) [4], was proposed by Fuller et al. to address the
aforementioned issues. Specifically, the QRAO encodes
multiple classical bits (up to three) into one qubit using
the (3, 1)-QRAC (Quantum Random Access Code) [1, 6].
Here, (m,n)-QRAC means the quantum random access
codes which encodes m classical bits into n qubits. This
constant-factor improvement in scalability enabled Fuller
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et al. to conduct experiments with QRAO on supercon-
ducting quantum devices to solve the largest instances
of a maximum cut problem (up to 40 nodes using only
15 qubits). Moreover, since QRAO searches for quantum
states that correspond to solutions to the relaxation prob-
lem, which expands the solution space and potentially
includes infeasible solutions, the quantum state that is
eventually discovered is an entangled state that cannot be
directly interpreted as a classical solution. These meth-
ods, known as quantum-relaxation, have been extended
for more general quadratic programs [16]. To obtain the
classical solution, quantum state rounding of the relaxed
solution must be performed. Therefore, compared to
standard VQE methods, QRAO may benefit from quan-
tum entanglement if the entangled states result in bet-
ter relaxed values. In other words, QRAO is inherently
different from standard quantum-classical hybrid algo-
rithms like QAOA and may benefit from quantum me-
chanical properties. There is experimental evidence that
entanglement can help QRAO find optimal solutions in
some instances [14].

The quantum state rounding algorithm, known as
magic state rounding, employed in QRAO is inspired by
the approximation algorithm for the maximum cut prob-
lem proposed by Goemans and Williamson, which has
an approximation ratio of 0.879 [5]. This algorithm ran-
domly selects pairs of two-bit-inverted relationships and
decodes the encoded bits into one of two candidate out-
comes by executing the corresponding quantum measure-
ment. Through quantum information theoretic analy-
sis, it has been proven that the approximation ratio of
quantum relaxation using (3, 1)-QRAC is 0.555, while
that using (2, 1)-QRAC is 0.625 [4]. While the optimal-
ity of standard QAOA or VQE is often assumed when
the ground state is achieved, the approximation ratios of
QRAO are determined irrespective of whether the ground
state is reachable. In other words, these ratios are guar-
anteed as long as the relaxed value of the obtained quan-
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tum state surpasses that of the classical optimal value.
This aspect is critical, as finding the exact ground state
can be QMA-hard [8].
The first consideration is approximation ratio bounds.

The approximation ratios of quantum relaxations using
(3, 1)- and (2, 1)-QRAC suggest an inherent trade-off be-
tween space efficiency and approximability: the higher
the space compression ratio, the lower the approxima-
tion ratio. Furthermore, the approximation ratio bound
of QRAO is significantly below that of Goemans and
Williamson’s 0.879 [5], which has been proven to be opti-
mal under the Unique Game Conjecture (UGC) [9]. This
discrepancy arises because the success probability of de-
coding each bit of the QRACs used in QRAO is relatively
low. Specifically, the success probability of decoding each
encoded bit is approximately 0.85 for (2, 1)-QRAC and
roughly 0.79 for (3, 1)-QRAC [1, 6]. We note that even
if the approximation ratio of quantum relaxations is less
than that of the Goemans-Williamson algorithms [5], it is
worth noting that quantum relaxations tend to perform
better for instances with a small gain (see Appendix III of
the original QRAO paper [4]). The ’gain’ refers to a pa-
rameter indicating how much the optimal MaxCut value
deviates from the trivial lower bound (half the number of
edges). The challenge of evaluating this gain is known as
the MaxCutGain problem [2], which is also hard to ap-
proximate under the UGC [10]. This, along with the
existence of already successful classical approximation
algorithms for the MaxCut problem such as Goemans-
Williamson [5], underscores the intrigue and potential of
quantum-relaxation based optimizers.
Additionally, another challenge that emerges is that

the bit-to-qubit compression ratio in Fuller et al.’s QRAO
diminishes below the anticipated value (that is, 3x when
employing (3, 1)-QRACs or 2x when employing (2, 1)-
QRACs) as the density of the graph instance escalates.
This indicates a limitation in leveraging the space advan-
tage of quantum relaxations in certain applications.

2 Our Results

In this study, we aim to address the above-mentioned
issues regarding the approximability and the preservation
of the bit-to-qubit compression ratio by enhancing quan-
tum relaxation in two ways. To tackle the first problem,
we incorporate the use of (3, 2)-QRAC, which boasts a
higher decoding success probability than (3, 1)- or (2, 1)-
QRACs, enabling us to achieve a superior approxima-
tion ratio for the MaxCut problem, albeit with a slightly
reduced bit-to-qubit compression ratio. As for the sec-
ond challenge, we have developed a new quantum relax-
ation methodology that consistently ensures a 2x bit-to-
qubit compression ratio, unlike the original quantum re-
laxation proposed by Fuller et al. In the following sec-
tions, we delve deeper into the outcomes associated with
these measures. For an in-depth exploration of the tech-
nical details, we invite the readers to refer to [15]. We
hope that our results lead to the analysis of the quantum
approximability and practical efficiency of the quantum-
relaxation based approaches.

2.1 Quantum Relaxation with Better Approxi-
mation Ratio Using (3, 2)-QRACs

Firstly, we will show the formulation of the (3, 2)-
QRAC which encodes three classical bits into two qubits
obtained by numerical calculation [7]. The success proba-
bility of decoding each encoded bit is 1

2+
1√
6
≈ 0.908, and

it is optimal among all (3, 2)-QRACs based on the bound
by Manvčinska and Storgaard [11]. Also, we extended the
quantum relaxation by using this (3, 2)-QRAC. The in-
stance of the problem is encoded into the problem Hamil-
tonian, and the maximum eigenstate of the Hamiltonian
is explored. By performing the quantum state round-
ing algorithm, we obtain the classical binary solution
to the problem. Furthermore, we proved the approx-
imation ratio bound of the above quantum-relaxation
based optimization algorithm for the MaxCut problem
as 13

18 ≈ 0.722. The only assumption of the proof of the
approximation ratio is the same as the one when using
(3, 1)- or (2, 1)-QRACs, that is, the energy of the found
candidate quantum state for the maximum eigenstate of
the problem Hamiltonian exceeds the optimum value of
the original problem instance. Although the space com-
pression ratio of our quantum relaxation is 3

2 = 1.5 and
is lower than the one using (3, 1)- or (2, 1)-QRACs, the
approximation ratio bound is better. Our result is con-
sistent with the trade-off between the space compression
ratio and the approximability of the maximum cut prob-
lem. Though the obtained approximation ratio bound
0.722 is lower than that of Goemans and Williamson,
the practical feasibility of quantum-relaxation based ap-
proaches is enhanced.

2.2 Space Compression Ratio Preserving Quan-
tum Relaxation

To always guarantee the bit-to-qubit compression ra-
tio of QRAO using (3, 1)-QRAC is essential as in the
original QRAO the ratio becomes lower as the density of
the graph instance increases. This is because there is a
constraint that the endpoints of each edge must be as-
sociated with different qubits. For example, if the graph
instance is the complete graph, then the number of qubits
needed to run QRAO is the same as the number of ver-
tices. In such cases, the quantum-relaxation based op-
timizer has no space advantage against standard QAOA
and VQE algorithms. In this research, we propose new
types of encoding which encode up to two classical bits
into a single-qubit by using the (3, 1)-QRAC. The third
encoded bit’s position in (3, 1)-QRAC corresponds to the
parity of the two bits. This modification allows us to re-
move the constraint that the endpoints of each edge have
to be assigned to different qubits. The space compres-
sion ratio of the algorithm is always 2x which is inde-
pendent of the density of the graph instances. Unfortu-
nately, non-trivial approximation ratio bound

(
> 1

2

)
does

not exist generally. We calculate the approximation ratio
of this new algorithm by using two parameters ϵ and λ

as max
{

81−14
√
3+14

√
3λ+8ϵ

81+162ϵ , 27−14λ+12ϵ
27+54ϵ

}
. The parameter

ϵ is defined by the equation OPT =
(
1
2 + ϵ

)
|E| where
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OPT is the optimal cut value, and therefore ϵ quantifies
the so-called MaxCutGain [2]. The parameter λ is the
ratio of the edges whose endpoints are assigned to differ-
ent qubits. By using the approximation ratio bound, we
analyze the condition of the graph instance that our al-
gorithm gives a non-obvious approximation ratio bound
for the maximum cut problem.
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Abstract. Devising efficient communication in a network consisting of multiple transmitters
and receivers is a problem of immense importance in communication theory. Interestingly, re-
sources in the quantum world have been shown to be very effective in enhancing the performance
of communication networks. In this work, we study entanglement-assisted communication over
classical network channels. We consider multiple access channels, an essential building block
for many complex networks, and develop an extensive framework for n-senders and 1-receiver
multiple access channels based on nonlocal games. We obtain generic results for computing cor-
relation assisted sum-capacities of these channels. The considered channels introduce less noise
on winning and more noise on losing the game, and the correlation assistance is classified as
local (L), quantum (Q), or no-signaling (NS). Furthermore, we consider a broad class of multi-
ple access channels such as depolarizing ones that admix a uniform noise with some probability
and prove general results on their sum-capacities. Finally, we apply our analysis to three spe-
cific depolarizing multiple access channels based on Clauser-Horne-Shimony-Holt, magic square,
and Mermin-GHZ nonlocal games. In all three cases we find significant enhancements in sum-
capacities on using nonlocal correlations. We obtain either exact expressions for sum-capacities
or suitable upper and lower bounds on them.

Keywords: Entanglement, Nonlocal games, Multiple Access Channels, Nonlocal Advantage

The quantum advantages in communication, for
instance, quantum cryptographic protocols that es-
tablish the highest level of security without compu-
tational assumptions, have been recently extended
to network information theory by showing that
higher channel capacities beyond what the Shan-
non information theory dictates are possible by ex-
ploiting quantum and non-local correlations in chan-
nel coding. Channel capacities beyond local strate-
gies are successfully shown for two-sender and two-
receiver interference channels (ICs) [1, 2] and two-
sender and one-receiver multiple access channels
(MACs) [3, 4, 5].

The scenario of network communication is shared
in common in the aforementioned network protocols
where multiple senders, by applying non-signaling
correlations, cooperate in channel coding and a
noisy channel under the control of a malicious party
is defined by a nonlocal game. We call a game quan-
tum pseudo-telepathy if a quantum strategy wins it
with certainty. Noise occurs whenever senders lose
a game against the party. For instance, the Clauser-
Horne-Shimony-Holt (CHSH) game can be applied,
where a quantum strategy wins the game with prob-
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ability cos2(π/8) = 1/2+1/(2
√

2) ≈ 85% and a local
strategy with probability 3/4 = 75%. We recall that
the Popescu-Roherlich box wins the game with cer-
tainty. The magic square game is a psuedo-telepathy
protocol, where quantum players win the game with
certainty with the help of entangled states whereas
classical ones do with probability 8/9. Quantum
senders with pre-shared entanglement encode mes-
sages such that they win a nonlocal game with the
highest probability, possibly, beyond local strate-
gies. Then, network channel capacities rely on both
correlations shared by senders and their encoding to
win the game with the best strategy.

There is a hierarchal structure among correla-
tions: non-signaling, quantum, and local corre-
lations. Consequently, channel coding with non-
signaling correlations [1] or quantum correlations [2]
against a noisy channel controlled by a malicious
party with the CHSH game lead to a higher channel
capacity over local strategies. When noise occurs by
the magic square game, two quantum parties achieve
a noise-free channel since entanglement suffices to
allow them to win the game with certainty. In this
sense, entanglement has been thus identified as a re-
source for quantum advantages [3]. Although quan-
tum advantages in network information theory are
thus evidenced, little is known about how to manip-
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ulate nonlocal encoding in order to achieve channel
capacities. Moreover, from a communication-centric
point of view it may not be realistic that a noise-free
channel is defined when senders win a game; more
generally, a noisy channel can be introduced even if
senders win a game.

Summary of the results. In the present contri-
bution, we establish a generic framework for deriv-
ing channel capacities for n-sender multiple access
channels. The framework applies to a general class
of n-sender MACs, where a malicious party intro-
duces distinct noise depending on whether senders
win a game or not: any n-sender MAC falls into
the consideration. Channel coding strategies with
local (L), quantum (Q), and no-signaling (NS) re-
sources are considered. We show the hierarchical
structure of sum-capacities with local, quantum, and
non-signaling encoding strategies. Remarkably, the
bounds on sum-capacities are tight in most cases and
also exact in some of them. The results may be com-
pared to cases with particular channels studied in
Ref. [3, 5], and significant improvements on sum-
capacity separations are shown.

Notations. Let N (A1,...,An)→B denote a (dis-
crete memoryless) n-sender MAC from n parties
Alice1, ...,Alicen to a single one, Bob. For k ∈
{1, ..., n}, we write by xk ∈ Xk a message of Alicek
and by y ∈ Y of Bob. Then, an n-sender MAC

corresponds to a mapping

N : X1 ×X2 × · · · × Xn → Y (1)

and is fully characterized by conditional probabili-
ties PN (y|x1, ..., xn). Then, let Rk denote an achiev-
able rate for a party Alicek and the sum rate satisfies
that

R1 + · · ·+Rn ≤ I(A1, A2, · · · , An : B) (2)

In addition, channel coding E : (m1, ...,mn) →
(x1, ..., xn), described by PE(x1, ..., xn|m1, ...,mn),
that applies resources such as local, quantum, and
non-signaling correlations may be incorporated so
that a channel may be defined as, NE := N ◦ E.
Then, the sum capacity for a channel N with chan-
nel coding assisted by correlations R ∈ {L,Q,NS}
is given by

C(R)(NE) = max
π(m1,...,mn)

{
max
E∈R

I(π, E)(A1, ..., An; B)

}
(3)

where the maximization runs over probabilities
π(m1, ...,mn) = π1(m1) · · ·πn(mn) and channel coding
strategies E over a resource R.

Let G denote a game. If encoded bits
(x11, x12; ... ;xn1, xn2) ⊂ X11×X12× ... ×Xn1×Xn2 win
the game, we write that (x11, x12; ... ;xn1, xn2) ∈
WG. Then, a family of depolarizing MACs
based on a nonlocal game G is defined as follows

NG(y1, ..., yn|x11, x12; ... ;xn1, xn2)=


η

(
n∏
k=1

δ(xk1,yk)

)
+ 1−η

∆ , if (x11, x12; ... ;xn1, xn2)∈WG

1
∆ otherwise,

(4)

where ∆ = dn, 0 ≤ η < 1, and δ is the delta
function.

Now let us consider a n-party nonlocal game G.

The kth player receives a question xk1 ∈ Xk1 and
answers with xk2 ∈ Xk2. The players win on satisfy-
ing some winning condition (x11, x12; ... ;xn1, xn2) ∈
WG ⊂ X11 × X12 × ... × Xn1 × Xn2. Let us consider
that respective question and answer set to each
player are {0, 1, ..., d−1} and {0, 1, ..., D−1}.

Main results. In what follows, we summarize
the key results for a family of depolarizing MACs
based on nonlocal games. We outline how these re-
sults can be applied to channels where noise occurs

by the CHSH nonlocal game [6], the magic square
game [7], and the Mermin-GHZ game [7, 8, 9].

Result 1. For depolarizing channels based on
nonlocal game G the mutual information between
input and output to the channels is given by

I(X;Y ) = H(Y )− log2 ∆ + ω F (∆, η), (5)

where a winning probability is denoted by ω =∑
x∈WG

p(x) and

F (∆, η) ≡ log2 ∆ +
1+(∆−1)η

∆
log2

1+(∆−1)η

∆

+ (∆−1)
1−η
∆

log2

1−η
∆

. (6)
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Result 2. For depolarizing channels based on
nonlocal games G, for any encoding E and any prob-
ability distribution π(m) for the message set, an ab-
solute upper bound on sum-rate is give by

I(M ;Y ) ≤ F (∆, η)

and the bound is achieved if H(Y ) = log2 ∆, ω = 1,

and I(M ;Y ) = I(X;Y ).

Given a game G, we write rmax = ω∗L ∆ for
a highest winning probability ω∗L with classical
strategies for uniformly distributed questions.

Result 3. For depolarizing channels based
on a game G and probability distribution π(m)
over message and encodings E ∈ L, a sum ca-
pacity assisted by local correlations is given by

C(L)(NG) ≤ max
π(m)

H(M) + F (∆, η) max
Mrmax

 ∑
m∈Mrmax

π(m)


− log2 ∆ (7)

where M = Mrmax
∪ (Mrmax

)c, of the set of all
messages M, such that |Mrmax

| = rmax.

In particular, let G̃ denote a quantum pseudo-
telepathy game. For some cases, the upper bound
F (∆, η) in Result 2 is tight and thus corresponds
to the sum capacity.

Result 4. Consider a pseudo-telepathy-game
G̃ in which a resource set R̃ allows parties to
win the game. Suppose that the local outputs of
the winning strategy are uniformly random for
every input. Then, for a depolarizing channel N

G̃
,

there exists an encoding assisted by the resource
R̃ that achieves the upper bound F (∆, η). Thus,
the sum-capacity of such channels is given by
C(NG̃) = F (∆, η).

Let us apply the general results to specific
MACs with the CHSH, the magic square, and the
Mermin-GHZ games.

(i) The CHSH game. Consider two senders
with message set {0, 1} and one receiver [6, 10]
against a noisy channel with the CHSH game.
Since non-signaling encoding wins the game with
certainty, we have that from Result 4, the analytical
expression for the no-signaling sum-capacities as
C(NS)(NCHSH) = F (4, η). From Result 3 an upper
bound to C(L)(NCHSH) may be found, which is
however not tight: we obtain the capacity with a
different technique, see the full paper.

(ii) The magic square (MS) game. There are
two senders with message set {0, 1, 2} and one

receiver [7, 10]. Quantum senders win the magic
square game with certainty. It follows from Result
4 to have the analytical expression for quantum
sum-capacities as C(Q)(NMS) = F (9, η). The com-
putation of the classical sum-capacities C(L)(NMS)

becomes unfeasible. One can apply Result 3 to find
upper bounds only.

(iii) The Mermin-GHZ (M-GHZ) game. There
are n-senders with message set {0, 1} and one
receiver [8, 9, 10]. Quantum senders win the
Mermin-GHZ game with certainty and thus Result
4 applies to this case. An analytical expression
for the quantum sum-capacities is computed as
C(Q)(NM−GHZ) = F (2n, η). The computation of the
classical sum-capacities C(L)(NM−GHZ) becomes
unfeasible. One can have upper bounds to local
capacities from Result 3.

To conclude, in the presented work [10] (the full
technical version appended), we have developed a
framework for analyzing sum-capacities of n-sender
one-receiver multiple access channels based on non-
local games and obtained generic results applica-
ble to any such channels. We then modeled de-
polarizing channels in our framework and derived
sum-capacities by considering three types of non-
signaling encoding resource R ∈ {L, Q, NS}. Fi-
nally, we showed sum-capacity separation results for
some specific examples of nonlocal game based de-
polarizing channels. The general propositions de-
rived in this work are applicable to a broad class of
multiple access channels based on nonlocal games.
Moreover, the method developed in this work can
be applied to any multiple access channel based on
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nonlocal games which introduces less (more) noise
when its input satisfy winning (losing) condition in a
corresponding nonlocal game. Our generic approach
can be applied to study the sum-capacities, with re-
source sets R ∈ {L,Q,NS}, of any bi-asymmetric
n-senders and 1-receiver multiple accesses channels
which introduces different degree of noise in the two
branches of the channel.
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Abstract. One of the major benefits of quantum computing is the potential to resolve complex computa-
tional problems faster than can be done by classical methods. There are many prototype-based clustering
methods in use today, and the selection of the starting nodes for the center points is often done randomly.
Clustering often suffers from accepting a local minima as a valid solution when there are possibly better
solutions. We will present the results of a study to leverage the benefits of quantum computing for finding
better starting centroids for prototype-based clustering.
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1 Introduction

Clustering of data must start from somewhere, and
the well-known k-means and k-medoids are no exception.
These methods of clustering select a center point to
start grouping related data around them to form their
clusters. In much of the literature on the subject, we
find that the center points to start with are selected at
random. To get the best and most accurate groups of
related data, we must have accurate center points to
formulate a cluster, whether it be a computed mean or a
sample from the data. Many clustering methods employ
an iterative verification of the selected center point to
confirm it is the best candidate to be the centroid. [1]

We could perhaps save some computational overhead
if we begin the clustering algorithm with the best possi-
ble center nodes computed prior to forming the cluster.
In classical cases, this could be quite computationally ex-
pensive, significantly more so than using a random pro-
cess to select the starting nodes. With the advantages of
quantum computing, we could theoretically offload this
process to a quantum computer, which would then cal-
culate the best possible center nodes. A major benefit to
doing this, other than potential performance increases, is
even if a performance increase isn’t found, we immedi-
ately know that we have the best possible set of center
nodes and we simply have to continue forming the clus-
ters by grouping pieces of related data. A final point is
that we can take some comfort in knowing that with a
quantum process, we are getting a true global minimum
based on the entire sample data and avoid the well-known
local minima.

2 Problem Formulation

Quantum annealers such as those used by D-Wave [2],
rely on a formulation of problem as an Ising Hamiltonian
or a Quadratic Binary Optimization Problem (QUBO)
both of which are equivalent expressions of a problem.
We formulate our QUBO from the input data which
is heavily inspired by non-negative matrix factorization

∗allgood1@umbc.edu
†aborle1@umbc.edu
‡nicholas@umbc.edu

[3],[4]. One drastic change is that our formulation will
allow both positive and negative real numbers.[5] In
non-negative matrix factorization, we assume V = WH
where V the product of the two matrices W and H and
both V and H contain only non-negative real numbers.
Non-negative matrix factorization has an inherent cluster
property where it will automatically cluster columns of
input data V = (v1, ..., vn). The approximation of V via
V ∼= WH is obtained by finding W and H that minimize
the error function ||V −WH||F , subject to W ≥ 0, H ≥ 0
and F being the Frobenius or L2-norm. To encode our
problem as a QUBO, we first created a series of substi-
tution variables that represent different combinations of
unknown variables for our W and H matrices.

3 Solution Formulation

With our formulation defined, we submit our QUBO
to a specified solver. The solver works using an adiabatic
process over a period of time and during that time our
unknown variables are replaced by computed values from
the specific solver. One of the major benefits is that the
solver is examining a much larger range of combinations
and the most correct solution is the one that corresponds
to the lowest energy value. When we get our result, we
are returned a result that is series of binary values. These
binary values read together are the result with the left
most qubit being designated the sign qubit and the re-
maining qubits used to represent the value [6]. In a simi-
lar fashion to Borle and Lomonaco, we also use a radix-2
approximation of the binary value which results in only
supporting integers for the coordinates of a centroid.

4 Results

Using the free developer account provided by D-Wave,
we have a monthly time limit we are allowed as such
many of our sample sizes are limited in scope. Our results
are utilizing random Gaussian blobs utilizing make blobs
from scikit-learn. We also ran our experiments using
the MOTIF data set, which is a fairly large data set
consisting of malware metadata primarily used for ma-
chine learning. [7] We also use and compare between
three different processes provided by the D-Wave Ocean
SDK: TABU, Simulated Annealing, and D-Wave’s Hy-
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brid BQM solver. 1 MOTIF is a multi-dimensional data
set so to reduce our data to two usable dimensions, we
used principal component analysis (PCA). To measure
our clustering performance, we used a variety of com-
mon metrics utilized in cluster analysis: inertia, silhou-
ette score, homogeneity, completeness and v-measure. As
an additional metric, we also recorded the number of
overall iterations k-means took when using the centroids.
For cluster inertia and iterations, the lower value is more
optimal where for silhouette, homogeneity, completeness,
and v-measure a higher value is more optimal. We had
an upper bound of the number of iterations allowed by
k-means set to 10000.

4.1 Gaussian Centroids

Using random Gaussian centroids, we chose a seed
value of 0 and a cluster size k of 3. The figures below
show a comparison between random centroids and those
generated from QOCI utilizing the TABU, simulated an-
nealing, and Hybrid BQM processes.

Figure 1: Gaussians: Inertia

Figure 2: Gaussians: Silhouette Scores

Figure 3: Gaussians: Homogeneity Scores

1https://www.dwavesys.com/resources/white-paper/

hybrid-solvers-for-quadratic-optimization

Figure 4: Gaussians: Completeness Scores

Figure 5: Gaussians: V-Measure Scores

Figure 6: Gaussians: Iterations

4.2 MOTIF Centroids

Using randomly chosen data from the MOTIF data
set, we chose a seed value of 0 and a cluster size k of 3.
The figures below show a comparison between random
centroids and those generated from QOCI utilizing the
TABU, simulated annealing, and Hybrid BQM processes.

Figure 7: MOTIF: Inertia
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Figure 8: MOTIF: Silhouette Score

Figure 9: MOTIF: Homogeneity Score

Figure 10: MOTIF: Completeness Score

Figure 11: MOTIF: V-Measure

Figure 12: MOTIF: Iterations

5 Conclusion

To summarize our findings for the Gaussian data, all
processes for cluster inertia were nearly the same with
the exception of the TABU solver which proved to be
the least optimal. For the silhouette score, the random
centroids along with Hybrid BQM were both similar and
the more optimal processes. For the remaining scores
of homogeneity, completeness, v-measure and iterations,
the random centroids were more optimal.

Summarizing our findings for the MOTIF data set, the
inertia was similar on all processes except the Hybrid
BQM which was the least optimal. This was also true
when comparing the silhouette score. For the homogene-
ity score the Hybrid BQM process was more optimal.
The completeness score was quite close only between sim-
ulated annealing and Hybrid BQM. With v-measure, the
Hybrid BQM again was the more optimal process. In
terms of number of iterations taken by k-means, ran-
dom, TABU, and Hybrid BQM all were similar in terms
of number of iterations while simulated annealing had the
highest number of iterations.
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Abstract. High-performance quantum transducers, which faithfully convert quantum information be-
tween disparate physical carriers, are essential in quantum science and technology. Different figures of
merit, including efficiency, bandwidth, and added noise, are typically used to characterize the transducers’
ability to transfer quantum information. Here we utilize quantum capacity, the highest achievable qubit
communication rate through a channel, to define a single metric that unifies various criteria of a desir-
able transducer. We investigate the optimal designs of quantum transduction schemes and show that the
highest quantum capacity is achieved by transducers with a maximally flat conversion frequency response,
analogous to Butterworth electric filters.
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1 Introduction

Classically, transducers are devices, such as antenna
and microphones, that can convert signal from one phys-
ical platform to another. In quantum technology, trans-
ducers are essential elements that can faithfully con-
vert quantum information between physical systems with
disparate information carriers [1–3]. High-performance
quantum transducers are the key to realize quantum net-
works [4–7] by interconnecting local quantum proces-
sors, such as microwave superconducting systems [8, 9],
with long-range quantum communication carriers, such
as optical fibers [10]. Tremendous progress has been
made in a variety of coherent platforms for microwave-
to-optical [11–23], microwave-to-microwave [24, 25], and
optical-to-optical [26–29] frequency conversion.

Coherent conversion of quantum information between
distinct devices is a challenging task. A functional quan-
tum transducer has to satisfy demanding criteria simulta-
neously — high conversion efficiency, broad bandwidth,
and low added noise — and its performance has been
characterized by these three figures of merit [30]. On
the other hand, a unified metric to assess the quantum
communication capability of transducers is lacking. For
example, one transducer may have a high conversion effi-
ciency but operates within a narrow bandwidth, another
may allow broadband conversion at a lower efficiency. It
is hard to compare their transmission capability given
separate criteria.

Quantum capacity, the highest achievable quantum
communication rate through a channel [31–34], pro-
vides a natural metric to characterize the performance
of quantum transducers. Consider a generic direct quan-
tum transduction process by propagating external signals
through a coupled bosonic chain [35]. After sending an
input signal through the transducer, the output signal
will be a mixture of the input signal and environmen-
tal noise. Assuming the environmental noise is thermal

∗chiaowang@phys.ntu.edu.tw

and that the transducer has no amplification effect, the
action of the transducer can be described as a bosonic
thermal-loss channel that attenuates the input state and
combines it with a noisy thermal state [36]. We can thus
model direct quantum transducers as bosonic thermal-
loss channels and evaluate their quantum capacities.

In this work, we use quantum capacity to assess the
intrinsic quantum communication capability of transduc-
ers. Using the continuous-time pure-loss quantum capac-
ities of transducers as benchmarks, we discover that the
optimal designs of transducers are those with maximally
flat frequency response around the unity-efficiency con-
version peak. Under the physical constraint of a bounded
maximal coupling rate gmax between the bosonic modes,
the maximal continuous-time quantum capacity Qmax ≈
31.4gmax is achieved by maximally flat transducers im-
plemented by a long bosonic chain. We further include
the effect of thermal noise from the environment by con-
sidering additive lower and upper bounds on quantum ca-
pacities of thermal-loss channels. Our methods provide a
unified quantity to assess the performance of transducers
across various physical platforms and suggest a funda-
mental limit on the quantum communication rate set by
the physical coupling strength.

2 Capacity as a metric for transducers

We use the concept of quantum capacities of bosonic
channels to assess the performance of direct quantum
transducers. The quantum capacity quantifies the max-
imal achievable qubit communication rate through a
quantum channel. Here we focus on direct quantum
transduction achieved by directly converting quantum
signals between bosonic modes via a coherent interface.
At a given frequency ω in the appropriate rotating frame,
assuming no intrinsic losses and no amplification gain, a
direct quantum transducer with conversion efficiency η[ω]
can be modeled as a Gaussian thermal-loss channel [36]
described by the relation between the input and output
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Figure 1: Generic model of quantum transducers. (a)
A quantum transducer that can faithfully convert quan-
tum states between different input and output frequen-
cies ωin and ωout (in the lab frame), which is modeled
as a thermal-loss channel with transmittance η[ω]. (b)
Schematic of a N -stage quantum transducer through a
coupled bosonic chain connected to external input and
output signals.

modes, up to phase shifts,

b̂out[ω] =
√
η[ω]âin[ω]−

√
1− η[ω]b̂in[ω], (1)

where âin[ω] is the input signal mode sent out by Alice,

b̂out[ω] is the output signal mode received by Bob, and

b̂in[ω] is the noisy input state from the environment with

a mean thermal photon number n̄[ω] =
〈
b̂†in[ω]b̂in[ω]

〉
(see Fig. 1(a)). Note that we have no access to the re-
flective signal at Alice’s side.

When the thermal photon number from the environ-
ment is negligible, n̄ ≈ 0 for optical systems or via cool-
ing [25, 37], this special case of thermal-loss channels
is called the pure-loss channel. For pure-loss channels,
their capacities are additive and can be analytically de-
termined. Specifically, for one-way quantum communica-
tion (for example, from Alice to Bob only), for discrete-
time signals at a given frequency ω with a fixed con-
version efficiency η[ω], the one-way pure-loss capacity is
given by [38]

q1[ω] = max

{
log2

(
η[ω]

1− η[ω]

)
, 0

}
, (2)

which is the maximal amount of quantum information
that can be reliably transmitted per channel use. This
channel has infinite quantum capacity for ideal conver-
sions, η → 1, q1 → ∞, and has vanishing capacity when
more than half of the signal is lost, η ∈ [0, 1/2), q1 = 0.

In reality, a quantum transducer has a finite conversion
band and the conversion efficiency should be frequency-
dependent. Treating different frequency modes within
the conversion band as parallel quantum channels and
taking the continuous limit in ω, here we define a
continuous-time one-way pure-loss capacity of a quantum
transducer,

Q1 ≡
∫
q1[ω]dω. (3)

In contrast to the discrete-time one-way pure-loss capac-
ity expression Eq. (2) that quantifies the maximal achiev-
able quantum communication rate per channel use, the
continuous-time quantum capacity defined in Eq. (3) is
the maximal amount of quantum information that can
be reliably transmitted through the transducer per unit
time. This form of capacity is a direct analog to the
Shannon capacity of classical continuous-time communi-
cation channels subject to frequency-dependent uncorre-
lated noises [39].

If the pure-loss channel is further assisted by two-way
classical communication (between Alice and Bob) and lo-
cal operations, the corresponding discrete-time two-way
pure-loss capacity [40] is given by

q2[ω] = − log2 (1− η[ω]) . (4)

This channel again has infinite quantum capacity for
ideal conversions, η → 1, q2 → ∞, but has vanishing
capacity only when the efficiency goes to zero, η → 0,
q2 = 0. The corresponding continuous-time two-way
pure-loss capacity is defined as

Q2 ≡
∫
q2[ω]dω. (5)

The continuous-time pure-loss quantum capacities Q1

and Q2 defined above incorporate both concepts of ef-
ficiency and bandwidth and set the fundamental limit
on the quantum communication rate based upon intrin-
sic transducer properties. To characterize these maximal
achievable rates, we have assumed that infinite energy is
available at the transducers. In practice, quantum capac-
ities of transducers shall be lower in energy-constrained
scenarios [41, 42]. We emphasize that Q1 and Q2 have
the unit of qubits per second, and we will show in later
text that these highest achievable communication rates
are linked to the maximal coupling rates in the underling
physical transducer system.

3 Physical limits on the capacities

The conversion efficiency of a transducer, η[ω], is de-
termined by the parameters of its underlying physical
implementation. We are interested in how the quan-
tum capacities of transducers Q1 and Q2 are limited by
the physical parameters of the transduction platform.
Consider the generic model of direct quantum trans-
ducer [11–25, 27] implemented by a coupled bosonic chain
with N+2 bosonic modes m̂j , where the two end modes,

m̂1 = â and m̂N+2 = b̂, are coupled to external signal
input and output ports at rates κ1 = κa and κN+2 = κb
respectively (see Fig. 1(b)). Coherent quantum conver-
sion can be realized by propagating bosonic signals from
mode â (at frequency ωa) to mode b̂ (at frequency ωb)
through N intermediate stages, and we call this interface
a N -stage quantum transducer. The conversion efficiency
of a N -stage transducer is a frequency-dependent func-
tion determined by system parameters [12, 35],

ηN = ηN [ω](κa, κb, {∆j} , {gj}), (6)
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where ∆j is the detuning of mode m̂j in the rotating
frame of the laser drive(s) that bridges the up- and down-
conversions between the input and output signals, and gj
is the coupling strength of the beam-splitter type interac-
tion between the neighboring bosonic pair m̂j and m̂j+1.
Here we have assumed the system has no intrinsic losses
and we will take gj ’s to be real and positive without loss
of generality.

For realistic physical implementations, the coherent
coupling between neighboring modes is typically the most
demanding resource. Therefore, under the physical con-
straint ∀j, gj ≤ gmax, we look for the optimized choice of
parameters κa, κb, ∆j ’s, and gj ’s to achieve the maximal
possible Q1 and Q2 for N -stage quantum transducers.
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Figure 2: Diagrams for N -stage quantum transducers
with maximally flat conversion efficiency. (a) Maximally
flat efficiency function ηMF

N [ω] for different N . (b) The

continuous-time one-way pure-loss capacity, QN,MF
1 (blue

circle), and the continuous-time two-way pure-loss capac-

ity, QN,MF
2 (red cross), as a function of N .

Using the continuous-time pure-loss capacities as the
benchmarks, we find that maximal values of Q1 and Q2

are achieved when the N -stage quantum transducer has
a maximally flat (MF) efficiency (see Fig. 2(a)), a direct
analog to a (N+2)-th order Butterworth low-pass electric
filter. At largeN , the continuous-time pure-loss quantum
capacities saturate to the same value

lim
N→∞

QN,MF
1 = lim

N→∞
QN,MF

2 ≡ Qmax =
4
√

3π

log(2)
gmax. (7)

(See Fig. 2(b).) The above expression represents a phys-
ical limit on the maximal achievable quantum commu-
nication rate through a transducer, Qmax ≈ 31.4gmax

(qubit/sec). The quantum communication rate through
a transducer is limited by the maximal available coupling
strength within the bosonic chain.

4 Thermal Noise

For realistic transduction schemes within a noisy en-
vironment, the quantum capacity will decrease due to
the effect of thermal noise. The quantum capacities of
Gaussian thermal-loss channels have yet to be analyti-
cally determined, but we can approach their values using
additive upper and lower bound expressions. We find

that the quantum capacities of maximally flat transduc-
ers are less susceptible to thermal loss at large N , and
the difference between the upper bound, lower bound,
and Qmax also vanishes at large N . Based on the above
property and numerical evidence, it is highly likely that
maximally flat transducers are still optimal under the ef-
fect of thermal loss.

5 Discussion

We have used the continuous-time quantum capaci-
ties to characterize the performance of direct quantum
transducers. By considering the generic physical model
of an externally connected bosonic chain with a bounded
coupling rate gmax, we showed that the maximal qubit
communication rate of a transducer is given by Qmax ≈
31.4gmax. Such maximal capacity is achieved by maxi-
mally flat N -stage quantum transducers with N → ∞.
Note that our result has no contradiction to the Lieb-
Robinson bound [43] — after signals arrive at a delayed
time, increasing with N as predicted by Lieb and Robin-
son, the qubit communication rate is upper-bounded by
the quantum capacity of the transducer that saturates to
a finite value Qmax at large N in the optimal scenario.

This work provides a fundamental limit of transducer
capacities in terms of coupling strength, and offers a
quantitative comparison for direct transducers across
platforms that consolidates distinct metrics of efficiency,
bandwidth, and added thermal noise. Our method can be
directly extended to transducers with intrinsic losses by
considering the dependence of the conversion efficiency
ηN on the intrinsic dissipation rates [12, 35]. Intriguing
future works include exploring bosonic encodings, such
as GKP codes [44], to approach the quantum capacity
bound and investigating superadditivity of general quan-
tum capacities.
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