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2-SLE

A multiple 2-SLEκ (κ ∈ (0, 8)) is a pair of random curves (η1, η2) in a
simply connected domain D connecting two pairs of boundary points
(a1, b1; a2, b2) such that conditioning on any curve, the other is a
chordal SLEκ curve in a complement domain. If κ ∈ (0, 4], η1 and η2

are disjoint; if κ ∈ (4, 8), η1 and η2 may or may not intersect.

A 2-SLE arises naturally as interacting flow lines in imaginary
geometry, as scaling limit of some lattice model with alternating
boundary conditions, and as two exploration curves of a CLE.

It is known that a 2-SLEκ exists for any κ ∈ (0, 8) and any admissible
connection pattern (D; a1 ↔ b1, a2 ↔ b2), and its law is unique.
Moreover, the marginal law of either η1 or η2 is that of an hSLEκ, i.e.,
hypergeometric SLEκ with the other pair of points as force points.
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Two-curve Green’s Function

A two-curve Green’s function for a 2-SLEκ: (η1, η2) at z0 ∈ D is the
limit

lim
r↓0

r−αP[dist(z0, ηj) < r, j = 1, 2]

for some suitable α. We need to find the correct exponent α, prove the
convergence of the limit, and find the explicit formula for the limit.

We can ask the similar question for a point z1 ∈ ∂D \ {a1, b1, a2, b2}
assuming that ∂D is smooth near z1.
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Works on one-curve Green’s Function

Lawler, ’09: conformal radius version of Green’s function for
chordal SLE.

Lawler-Rezaei, ’15: Euclidean distance Green’s function for
chordal SLE.

Lawler, ’15: boundary point Green’s function for chordal SLE.

Alberts-Kozdron-Lawler, ’12: Green’s function for radial SLE.

Lenells-Viklund, ’17: Green’s function for SLEκ(ρ) and hSLE.

Lawler-Werness, ’13: two-point Green’s function for chordal SLE.

Rezaei-Zhan, ’16: multi-point Green’s function for chordal SLE.

Mackey-Zhan, ’17: multi-point estimate for radial SLE.
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Main Results
Throughout, we fix κ ∈ (0, 8). Sometimes we require that κ ∈ (4, 8). A
constant depends only on κ. Define two exponents:

α0 =
(12− κ)(κ+ 4)

8κ
, α1 =

2

κ
(12− κ).

The α0 appeared in the work [Miller-Wu], where 2− α0 was shown to
be the Hausdorff dimension of the double points of SLEκ for κ ∈ (4, 8).

Let F be the hypergeometric function 2F1(α, β; γ, ·) with α = 4
κ ,

β = 1− 4
κ , γ = 8

κ , defined by

F (x) =

∞∑
n=0

(α)n(β)n
n!(γ)n

xn,

where (α)0 = 1 and (α)n = α(α+ 1) · · · (α+ n− 1) if n ≥ 1. The series
has radius 1. With these particular parameters α, β, γ, F extends
continuously to x = 1, and is positive on [0, 1]. Such F was used to
define hSLEκ.
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Interior Point Green’s Function

Let D be a simply connected domain with four distinct boundary
points (prime ends): a1, b1, a2, b2 such that b1 and b2 do not lie on the
same connected component of ∂D \ {a1, a2}. Define G0

D;a1,b1;a2,b2
on D

by the following. If D = D = {|z| < 1} and z0 = 0, then

G0
D;a1,b1;a2,b2(0) =(|a1 − b1||a2 − b2|)

8
κ
−1(|a1 − a2||b1 − b2|)

4
κ

× F
( |a1 − b2||a2 − b1|
|a1 − a2||b1 − b2|

)−1
.

In general, if f maps D conformally onto D and takes z0 to 0, then

G0
D;a1,b1;a2,b2(z0) = |f ′(z0)|α0G0

D;f(a1),f(b1);f(a2),f(b2)(0).
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Main Theorems

Theorem

Let (η1, η2) be a 2-SLEκ with connection pattern (D; a1 ↔ b1, a2 ↔ b2).
There exist constants C0, β0 > 0 such that for any z0 ∈ D, with
R := dist(z0, ∂D),

P[dist(z0, ηj) < r, j = 1, 2] = rα0C0G
0
D;a1,b1;a2,b2(z0)(1 +O(r/R)β0).

This implies that

P[dist(z0, ηj) < r, j = 1, 2] .
( r
R

)α0

.

If κ ∈ (4, 8), then there is a constant C ′0 > 0 such that

P[dist(z0, η1 ∩ η2) < r] = rα0C ′0G
0
D;a1,b1;a2,b2(z)(1 +O(r/R)β0).

7 / 37



Boundary Point Green’s Function

Define another function G1
D;a1,b1;a2,b2

on the analytic part of
∂D \ {a1, b1, a2, b2} by the following. If D = H = {Im z > 0}, z1 = 0
and a1, b1, a2, b2 ∈ R \ {0}, then

G1
H;a1,b1;a2,b2(0) =(|a1 − b1||a2 − b2|)

8
κ
−1(|a1 − a2||b1 − b2|)

4
κ

× |a1b1a2b2|1−
12
κ F
( |a1 − b2||a2 − b1|
|a1 − a2||b1 − b2|

)−1
.

In general, if f maps D conformally onto H and takes z1 to 0, then

G1
D;a1,b1;a2,b2(z1) = |f ′(z1)|α1G1

H;f(a1),f(b1);f(a2),f(b2)(0).
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Theorem

There exist constants C1, C
′
1, β1 > 0 such that if D = H,

z1 ∈ R \ {a1, b1, a2, b2}, then with R := dist(z1, {a1, b1, a2, b2}),

P[dist(z1, ηj) < r, j = 1, 2] = rα1C1G
1
H;a1,b1;a2,b2(z1)(1 +O(r/R)β1);

if κ ∈ (4, 8), then

P[dist(z1, η1 ∩ η2) < r] = rα1C ′1G
1
H;a1,b1;a2,b2(z1)(1 +O(r/R)β1).

For a general D and an analytic point z1 ∈ ∂D \ {a1, b1, a2, b2}, we have

lim
r↓0

r−α1P[dist(z1, ηj) < r, j = 1, 2] = C1G
1
D;a1,b1;a2,b2(z1);

and when κ ∈ (4, 8),

lim
r↓0

r−α1P[dist(z1, η1 ∩ η2) < r] = C ′1G
1
D;a1,b1;a2,b2(z1).
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Commuting hSLEs

We focus on the interior case, and suppose D = D and z0 = 0. Because
of the reversibility of SLEκ, we may assume that ηj grows from aj to
bj , j = 1, 2. If ηj disconnects 0 from bj at some time Tj , then it will not
get closer to 0 after Tj . So it suffices to consider the portions of η1 and
η2 before separating 0 from b1 and b2. We may parametrize these
portions of η1 and η2 using radial parametrization (viewed from 0).
Then they become two radial Loewner curves such that

η1 is an hSLEκ in D from a1 to b1 with force points a2 and b2; and
η2 is likewise.

η1 and η2 commute with each other in the sense that if τ2 is a
stopping time for η2 that happens before T2, then conditional on
η2|[0,τ2], η1 up to hitting η2[0, τ2] is an hSLEκ from a1 to b1 in a
complement domain of η2[0, τ2] in D with force points η2(τ2) and
b2; and η2 is likewise.
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Commuting radial SLEκ(2, 2, 2)

There are other pairs of random curves in D starting from a1 and a2

that satisfy similar commutation relations. One of them is the
commuting pair of radial SLEκ(2, 2, 2) curves. More specifically, there
is a pair (η1, η2) such that

η1 is a radial SLEκ(2, 2, 2) curve in D from a1 to 0 with force
points b1, a2, b2; and η2 is likewise.

If τ2 is a stopping time for η2, then conditional on η2|[0,τ2], η1 is a
radial SLEκ(2, 2, 2) curve from a1 to 0 in a complement domain of
η2[0, τ2] in D with force points η2(τ2), a1, b1; and η2 is likewise.
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4-SLE

These η1 and η2 both end at 0 and do not intersect with each other at
other points. Given (η1, η2), if we further draw chordal SLEκ curves γ1

and γ2 in two complement domains of η1 ∪ η2 in D from b1 and b2,
respectively, to 0, then (η1, η2, γ1, γ2) form a 4-SLEκ with connection
pattern (D; aj → 0, bj → 0, j = 1, 2): if we condition on any three of
them, the remaining curve is a chordal SLEκ curve. It can be
understood as a 2-SLEκ with connection pattern (D; a1 ↔ b1, a2 ↔ b2)
conditioned on the event that both curves pass through 0.
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Comparing Laws

Let P2 denote the joint law of the radial Loewner driving functions of a
2-SLEκ with connection pattern (D; a1 → b1, a2 → b2). Let P4 denote
the joint law of the radial Loewner driving functions of the curves
starting from a1 and a2 of a 4-SLEκ with connection pattern
(D; aj → 0, bj → 0, j = 1, 2). Using Girsanov Theorem and some study
of two-time-parameter martingales, we can conclude that P2 is locally
absolutely continuous w.r.t. P4, and derive the local Radon-Nikodym
derivatives.
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Two-parameter Filtration

Here is the setup. Let Σ =
⋃

0<T≤∞C([0, T ),R). For f ∈ Σ, let Tf
denote its lifetime, which may be finite or infinite. For each t ≥ 0, let

Ft := σ({f ∈ Σ : Tf > s, f(s) ∈ A} : 0 ≤ s ≤ t, A ∈ B(R)).

Then we get a filtration (Ft)t≥0. We mainly work on the space Σ2, and
understand that P2 and P4 are probability measures on Σ2.

The first and second coordinates of Σ2 respectively generate filtrations
(F1

t )t≥0 and (F2
t )t≥0. Let Q = [0,∞)2 be the first quadrant with partial

order: t = (t1, t2) ≤ s = (s1, s2) if t1 ≤ s1 and t2 ≤ s2. Then we get an
Q-indexed filtration (Ft)t∈Q by F(t1,t2) = F1

t1 ∨ F2
t2 . An (Ft)-stopping

time is a function T : Σ2 → Q such that {T ≤ t} ∈ Ft, ∀t ∈ Q.
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Radon-Nikodym Derivative

Let R denote the set of (t1, t2) ∈ Q such that tj is less than the lifetime
of ηj , j = 1, 2, and η1[0, t1] ∩ η2[0, t2] = ∅. We have P4-a.s. R = Q but
P2-a.s. R $ Q. For (t1, t2) ∈ R, let D(t1, t2) denote the connected
component of D \ (η1[0, t1] ∪ η2[0, t2]) that contains 0. It has four
boundary points: η1(t1), b1, η2(t2), b2 in the cw or ccw order.

Lemma

Let M4→2(t1, t2) = GD(t1,t2);η1(t1),b1;η2(t2),b2(0)−1 for (t1, t2) ∈ R. Then
for any (Ft)-stopping time T ,

dP2|FT ∩ {T ∈ R}
dP4|FT ∩ {T ∈ R}

=
M4→2(T )

M4→2(0)
.

In particular,

P2[T ∈ R] = E4[M4→2(T )] ∗GD;a1,b1;a2,b2(0).
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We will apply the lemma to some suitable stopping times. One natural
choice is T = T r := (T r1 , T

r
2 ), where T rj is the first time (in the radial

parametrization) that ηj reaches the disc {|z| ≤ r}. Then the event
that dist(z1, ηj) < r, j = 1, 2, agrees with the event that T r ∈ R.
However, it is not easy to compute E4[M4→2(T r)]. We know almost
nothing about T rj except that − log(r) ≥ T rj ≥ − log(4r). We will
consider different stopping times instead.

Following Lawler’s approach on the Green’s function for chordal SLE,
we will first use conformal radius instead of Euclidean distance. One
obstacle here is that the conformal radius of D \ (η1[0, t1] ∪ η2[0, t2])
viewed from 0 is comparable to min{dist(0, η1[0, t1]),dist(0, η2[0, t2]),
not to max{dist(0, η1[0, t1]),dist(0, η2[0, t2]). The latter quantity is
what we are really interested in. The way that we overcome this is to
let η1 and η2 grow simultaneously (but with random speeds).
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Simultaneous Growth

We now assume that b1 and b2 are opposite points in D viewed from 0,
i.e., b1 + b2 = 0. This assumption is not critical because if it is not the
case, we may always grow η1 or η2 for some small piece and map the
remaining domain back to the unit disc such that the images of b1 and
b2 are opposite points on the circle. With the assumption, there exists
a unique continuous and strictly increasing function
u = (u1, u2) : [0, T u)→ R with the properties that u(0) = 0, and for
any 0 ≤ t < T u,

(I) b1 and b2 are conformal opposite points in D(u1(t), u2(t)) viewed
from 0.

(II) The conformal radius of D(u1(t), u2(t)) viewed from 0 is e−t.

Moreover, the curve u can not be extended to T u with (I) and (II).
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Simultaneous Growth
At any time t ∈ [0, T u), from Koebe’s 1/4 Theorem, we get

min{dist(0, η1[0, u1(t)]), dist(0, η2[0, u2(t)])} � e−t.

By Beurling’s estimate, dist(0, η1[0, u1(t)]) � dist(0, η2[0, u2(t)]). So

max{dist(0, η1[0, u1(t)]),dist(0, η2[0, u2(t)])} � e−t.

This means P2[dist(z1, ηj) < r, j = 1, 2] � P2[T u > − log(r)].

Extend u to [0,∞) such that u(t) = limt↑Tu u(t) if t ≥ T u. It turns out
that for any t ≥ 0, u(t) is an (Ft)-stopping time. Then

P2[T u > − log(r)] = P2[u(− log(r)) ∈ R]

= E4[M4→2(u(− log(r)))] ∗GD;a1,b1;a2,b2(0).

In order to compute E4[M4→2(u(t))], we will work on a system of SDEs.
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We now assume that (η1, η2) are commuting radial SLEκ(2, 2, 2) curves
so that the joint law of their driving functions is P4. For each
(t1, t2) ∈ R, let g(t1,t2) be the conformal map from D(t1, t2) to D, which
fixes 0 and satisfies g′(t1,t2)(0) > 0. Let m(t1, t2) = log(g′(t1,t2)(0)). Let

âj(t1, t2) = g(t1,t2)(ηj(tj)) and b̂j(t1, t2) = g(t1,t2)(bj), j = 1, 2.

We may find continuous real valued functions W1, V1,W2, V2 on R such
that âj = eiWj and b̂j = eiVj . By symmetry, we may assume that
W1 > V1 > W2 > V2 > W1 − 2π. Let cot2(x) denote the function
cot(x/2). Because of the covering radial Loewner equation, we find
that V1 and V2 satisfy differential equations:

∂tjVk = ∂tj m ∗ cot2(Vk −Wj), j, k ∈ {1, 2}.
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ODE for V u
j

We will focus on the values of Wj and Vj , j = 1, 2, along the curve u,
and write Xu(t) for X(u1(t), u2(t)). By Assumption (ii) we know that
mu(t) ≡ t. So

∂t1 m |u(t) ∗ u′1(t) + ∂t2 m |u(t) ∗ u′2(t) = 1.

We have ODEs for V u
j , j = 1, 2:

∂tV
u
j (t) =

2∑
k=1

∂tk m |u(t) ∗ u′k(t) ∗ cot2(V u
j −W u

k ).

Because of Assumption (i) we have V u
1 − V u

2 ≡ π. So ∂tV
u

1 ≡ ∂tV u
2 . Let

Zj = Wj − Vj ∈ (0, 2π), j = 1, 2. We then solve

∂tj m |u(t) ∗ u′j(t) =
sin(Zuj )

sin(Zu1 ) + sin(Zu2 )
, j = 1, 2.

We write Pj for the RHS. Note that P1 + P2 = 1.
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SDE for W u
j

The SDEs for W u
1 and W u

2 are more involved. The statement is that
there exist two independent Brownian motions Bu

1 (t) and Bu
2 (t) such

that W u
1 and W u

2 satisfy

dW u
j =

√
κPjdB

u
j + P3−j cot2(W u

j −W u
3−j)dt

+ Pj

[
cot2(W u

j −W u
3−j) +

2∑
k=1

cot2(W u
j − Vk)

]
dt.

Here the first drift term comes from the growth of η3−j , and the drift
terms in the second line comes from the drift terms for the radial
SLEκ(2, 2, 2) curve ηj . The fact that Bu

1 (t) and Bu
2 (t) are independent

follows from the commutation relation between η1 and η2.
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Diffusion Process

Then we get SDEs for Zu1 and Zu2 :

dZuj =

√
κ sin(Zuj )

sin(Zu1 ) + sin(Zu2 )
dBu

j +
4 cos(Zuj )

sin(Zu1 ) + sin(Zu2 )
, j = 1, 2.

We have Zuj ∈ (0, π). Let Zu± = (Zu1 ± Zu2 )/2. Then Zu+ ∈ (0, π) and
Zu− ∈ (−π/2, π/2). Define Bu

±(t) such that Bu
±(0) = 0 and

dBu
± =

√
sin(Zu1 )

sin(Zu1 ) + sin(Zu2 )
dBu

1 ±

√
sin(Zu2 )

sin(Zu1 ) + sin(Zu2 )
dBu

2 .

Then Bu
+ and Bu

− are both Brownian motions. But they are not
independent. Instead, d〈Bu

+, B
u
−〉t = cot(Zu+) tan(Zu−)dt.
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Diffusion Process

We get the following SDEs for Zu+ and Zu−:

dZu+ =

√
κ

2
dBu

+ + 2 cot(Zu+)dt;

dZu− =

√
κ

2
dBu
− − 2 tan(Zu−)dt.

After linearly scaling the time and space, we can make Zu+ and Zu− into
two radial Bessel processes, whose marginal transition density are
known. Our task is to derive the joint transition density of them.
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Diffusion Process

Let X = cos(Zu+) and Y = sin(Zu−). Then X,Y ∈ (−1, 1), and satisfy
the SDEs

dX = −
√
κ

2

√
1−X2dBu

+ −
(

2 +
κ

8

)
Xdt;

dY = +

√
κ

2

√
1− Y 2dBu

− −
(

2 +
κ

8

)
Y dt;

d〈X,Y 〉t = −κ
4
XY dt.

Since X2 + Y 2 = 1− sin(Zu1 ) sin(Zu2 ) < 1, we see that (X,Y ) ∈ D. We
will derive the transition density for the diffusion process (X,Y ).
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Transition Density

Suppose that the transition density pt((x, y), (x∗, y∗)) for (X,Y ) exists
and is smooth. Then for any fixed (x∗, y∗) ∈ D and t0 > 0, the process
Mt := p(t0 − t, (X(t), Y (t)), (x∗, y∗)), 0 ≤ t0 < t, is a martingale, which
implies by Itô’s formula that p·((·, ·), (x∗, y∗)) satisfies the PDE:

−∂tp+ Lp = 0, (1)

where

L :=
κ

8
(1− x2)∂2

x +
κ

8
(1− y2)∂2

y −
κ

4
xy∂x∂y − (2 +

κ

8
)(x∂x + y∂y).

We note that if f(x, y) on D is an eigenvector for L with eigenvalue λ,
then eλtf(x, y) is a solution of (1). We expect that p can be written as
an infinite sum of such functions.
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Eigenvectors

To derive the eigenvectors of L, first note that for n,m ∈ Z with
n,m ≥ 0,

L(xnym) =− κ

8
(n+m)(n+m+

16

κ
)xnym+

+
κ

8
n(n− 1)xn−2ym +

κ

8
m(m− 1)xnym−2.

Let λs = −κ
8s(s+ 16

κ ) ≤ 0. Then L(xnym) equals λn+m ∗ xnym plus a
polynomial of degree less than n+m. Thus, for any n,m ≥ 0, we get a
polynomial P(n,m) expressed as xnym plus a polynomial of degree less
than n+m such that LP(n,m) = λn+mP(n,m). For any fixed n ≥ 0, any
linear combinations of P(s,n−s), 0 ≤ s ≤ n, is also an eigenvector of L of
eigenvalue λn.
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Orthogonal Polynomials

Let Ψ(x, y) = (1− x2 − y2)
8
κ
−1, and define the inner product

〈f, g〉Ψ :=

∫ ∫
D
f(x, y)g(x, y)Ψ(x, y)dxdy.

We find that for any smooth functions f and g on D,

〈Lf, g〉Ψ = 〈f,Lg〉Ψ.

Thus, if f and g are eigenvectors of L with different eigenvalues, then
they are orthogonal w.r.t. 〈·, ·〉Ψ. We may now derive a family of
functions v(n,s), 0 ≤ n <∞, 0 ≤ r ≤ n, such that each v(n,r) is a linear
combination of P(s,n−s), 0 ≤ s ≤ n, and so is an eigenvector of L with
eigenvalue λn, and all v(n,s) form an orthonormal basis w.r.t. 〈·, ·〉Ψ.
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Orthogonal Polynomials

Using the theory of orthogonal polynomials of several variables, we
may express v(n,s) in terms of Jacobi polynomials.

vn,j,1 = hn,j,1P
( 8
κ
−1,n−2j)

j (2r2 − 1)rn−2j cos((n− 2j)θ), 0 ≤ 2j ≤ n,

vn,j,2 = hn,j,2P
( 8
κ
−1,n−2j)

j (2r2 − 1)rn−2j sin((n− 2j)θ), 0 ≤ 2j ≤ n− 1,

where P
( 8
κ
−1,n−2j)

j are Jacobi polynomials of index ( 8
κ − 1, n− 2j),

(r, θ) is the polar coordinate of (x, y), and hn,j,σ > 0 are normalization
constants. Using the knowledge on Jacobi polynomials, we find that
the series

∞∑
n=0

n∑
s=0

Ψ(x∗, y∗)v(n,s)(x, y)v(n,s)(x
∗, y∗)eλnt

converges for any t > 0, and solves the PDE −∂t + L = 0.
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Transition Density

We now briefly explain why the limit pt((x, y), (x∗, y∗)) is the transition
density for (X,Y ). Let (X,Y ) start from (x, y) ∈ D. We need to show
that for any polynomial f of x, y and any t > 0,

E[f(X(t), Y (t))] =

∫ ∫
D
f(x∗, y∗)pt((x, y), (x∗, y∗))dx∗dy∗.

Express the RHS as f(t, (x, y)). It equals∑
n,s

〈f, v(n,s)〉Ψ ∗ v(n,s)(x, y)eλnt.

Since there are only finitely many non-zero terms in the series,
f(t, (x, y)) solves the PDE −∂t + L = 0. By Itô’s formula, for any fixed
t0 > 0, Mt := f(t0 − t, (X(t), Y (t))), 0 ≤ t ≤ t0, is a bounded
martingale. Since M0 = f(t0, (x, y)) and Mt0 = f(X(t0), Y (t0)), we get
E[f(X(t0), Y (t0))] = f(t0, (x, y)), as desired.
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Invariant Density

Using X = cos2(Zu1 + Zu2 ) and Y = sin2(Zu1 − Zu2 ), we can then derive
the transition density pZt ((z1, z2), (z∗1 , z

∗
2)) for (Zu1 , Z

u
2 ).

Using the orthogonality of v(n,s) w.r.t. 〈·, ·〉Ψ, we know that the leading
term CΨ(x∗, y∗) in the series for pt((x, y), (x∗, y∗)) is an invariant
density for (X,Y ). As t grows, the leading term stays constant, and
other terms decay to zero. So the transition density for (X,Y )
approaches the invariant density for (X,Y ) as t→∞ despite of the
initial value. After a coordinate change, we get an invariant density
pZ∞(z∗1 , z

∗
2) for (Zu1 , Z

u
2 ), which is the limit of pZt ((z1, z2), (z∗1 , z

∗
2)).
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Change of Measures
The underlying probability for the above argument is P4. We now
derive corresponding results for P2. Under P2, the lifetime T u for
(Zu1 , Z

u
2 ) is a.s. finite. Using the lemma, we get

dP2|Fu(t) ∩ {T u > t}
dP4|Fu(t) ∩ {T u > t}

=
Mu

4→2(t)

Mu
4→2(0)

, t ≥ 0.

We may define Gu such that Mu
4→2(t) = e−α0tGu(Zu1 (t), Zu2 (t))−1. So

we obtain the transition density p̃Zt for (Zu1 , Z
u
2 ) under P2:

p̃Zt ((z1, z2), (z∗1 , z
∗
2)) = e−α0tpZt ((z1, z2), (z∗1 , z

∗
2))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)

This means that, under the law P2, if (Zu1 , Z
u
2 ) starts from (z1, z2),

then for any t > 0 and any measurable function f on D,

E2[1{Tu>t}f(Zu1 , Z
u
2 )] =

∫ ∫
D
f(z∗1 , z

∗
2)p̃Zt ((z1, z2), (z∗1 , z

∗
2))dz∗1dz

∗
2 .

In particular, P2[T u > t] =
∫ ∫

D p̃
Z
t ((z1, z2), (z∗1 , z

∗
2))dz∗1dz

∗
2 .
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Quasi-invariant Density

Using pZ∞(z∗1 , z
∗
2) we then derive a quasi-invariant density

p̃Z∞(z∗1 , z
∗
2) := 1

Z

pZ∞(z∗1 ,z
∗
2 )

Gu(z∗1 ,z
∗
2 ) for (Zu1 , Z

u
2 ) under P2: if (Zu1 , Z

u
2 ) has initial

density pZ∞(z∗1 , z
∗
2), then for any t > 0, P2[T u > t] = e−α0t, and the law

of (Zu1 (t), Zu2 (t)) conditional on the event T u > t is still pZ∞(z∗1 , z
∗
2).

Using the convergence of pZt ((z1, z2), (z∗1 , z
∗
2)) to pZ∞(z∗1 , z

∗
2) we get the

convergence of eα0tp̃Zt ((z1, z2), (z∗1 , z
∗
2)) to ZGu(z1, z2)p̃Z∞(z∗1 , z

∗
2).

To complete the proof of the theorem, we use Koebe’s distortion
theorem and the technique in [Lawler-Rezaei], which was used to derive
Green’s function in Euclidean distance.
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Sketch Proof of the Theorem

Suppose r is very small. Choose big t0 > 0 such that r � e−t0 � 1.
Then dist(z1, ηj) < r, j = 1, 2, if and only if T u > t0 and the images of
η1(u1(t0 + ·)) and η2(u2(t0 + ·)) under gu1(t0),u2(t0), denoted by η̃1 and
η̃2, both visit the region Ω := gu1(t0),u2(t0)({|z| < r}).

By Koebe’s distortion theorem, Ω ≈ {|z| < et0r}. By DMP for 2-SLE,
η̃1 and η̃2 form a 2-SLEκ in D from âuj (t0) to b̂uj (t0), j = 1, 2. From the

assumption on (u1, u2), we know that b̂u1(t0) and b̂u2(t0) are opposite
points on ∂D. Because t0 is big, P[T u > t0] ≈ e−α0t0 ∗Gu(z1, z2) and
the joint law of the arguments of âuj (t0)/b̂uj (t0), j = 1, 2, conditional on
the event T u > t0 is close to the quasi-invariant density. Putting these
ingredients together, we then finish the proof of the theorem.
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Two-curve two-point Green’s Function

We expect some subsequent works after this. Some of them will be
joint with Xin Sun (Columbia University).

One project is to derive the two-curve two-point Green’s function for
2-SLE, i.e., the limit of the rescaled probability that two curves of a
2-SLE both pass through two small discs centered at two different
points. We will follow the approach of [Lawler-Werness] and expect
that the two-point Green’s function can be written as the product of a
one-point Green’s function and the expectation of another one-point
Green’s function in a random domain.
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Minkowski Content

After that we plan to derive the existence of (2− α0)-dimensional
Minkowski content of the intersection of two curves of a 2-SLE
following the approach of [Lawler-Rezaei], which may be further used
to prove the following decomposition statement for 2-SLE: the following
two procedure gives the same measure on the triple (η1, η2, z):

(i) first sample a 2-SLE (η1, η2) and then sample a point z on η1 ∩ η2

according to the Minkowski content;

(ii) first sample z according to the two-curve Green’s function, then
sample a 4-SLE connecting z with the marked boundary points,
and join two pairs of them at z to get (η1, η2).

The decomposition may be further used to derive 2-SLE loop measure.
It is expected to be an infinite measure on a pair of loops, which touch
but not cross each other, such that conditional on any loop, the other
loop is a single SLE loop in a complement domain of the first loop.
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Intersection of Flow Lines

Another long term plan is to derive the one-point, two-point Green’s
function and Minkowski content of the intersection of two flow lines
η1, η2. The two flow lines commute with each other in the sense that
conditional on any one curve, the other is an SLEκ(ρ). The force value
ρ can vary in an interval. When ρ = 0, we get the 2-SLEκ as a special
case. Another special case gives the cut-point set of a single chordal
SLEκ, κ ∈ (4, 8). The Hausdorff dimension of η1 ∩ η2 was derived in
[Miller-Wu]. The exponent α will be 2− dimH(η1 ∩ η2).

The existence of Green’s function will improve this estimate in
[Miller-Wu], which has the form of

P[dist(z, η1 ∩ η2) < ε] ≈ εα+o(1).
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Thank you!
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