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Background Ising model

Ising Model

Curie temperature [Pierre Curie, 1895]
Ferromagnet exhibits a phase transition by losing its magnetization
when heated above a critical temperature.

Ising Model [Lenz, 1920]

A model for ferromagnet, to understand the critical temperature

G = (V ,E) is a finite graph
σ ∈ {⊕,	}V
The Hamiltonian

H(σ) = −
∑
x∼y

σxσy
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Background Ising model

Ising Model

Ising model is the probability
measure of inverse temperature
β > 0 :

µβ,G[σ] ∝ exp(−βH(σ))
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Kramers-Wannier,
Onsager-Kaufman, 1940

Ising model on Z2 :
βc = 1

2 log(1 +
√

2).

Interface
Conformal invariance + Domain Markov Property
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Background SLE

SLE (Schramm Loewner Evolution)

Random fractal curves in D ⊂ C from a to b. Candidates for the scaling
limit of discrete Statistical Physics models.

D
ϕ(D)

a

b

ϕ(b)

ϕ(a)

γ

ϕ(γ)
ϕ

Conformal invariance :
If γ is in D from a to b,
and ϕ : D → ϕ(D) conformal map,
then ϕ(γ)

d∼ the one in ϕ(D) from
ϕ(a) to ϕ(b).

D

a b
γ[0, t]

γ[t,∞)

γ(t)

Domain Markov Property :
the conditional law of
γ[t ,∞) given γ[0, t ] d∼
the one in D \ γ[0, t ] from γ(t) to b.
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Background SLE

Examples of SLE

Lemma [Schramm 1999]
There exists a one-parameter family of random curves that satisfies
Conformal Invariance and Domain Markov Property : SLEκ for κ ≥ 0.

Simple, κ ∈ [0,4] ; Self-touching, κ ∈ (4,8) ; Space-filling, κ ≥ 8.

Courtesy to Tom Kennedy.

κ = 2 : LERW
κ = 8 : UST
(Lawler, Schramm, Werner)
κ = 3 : Critical Ising
κ = 16/3 : FK-Ising
(Chelkak, Duminil-Copin, Hongler,
Kemppainen, Smirnov)
κ = 6 : Percolation
(Camia, Newman, Smirnov)
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Background SLE

Critical Ising

Thm [Chelkak, Duminil-Copin, Hongler,
Kemppainen, Smirnov 2010]

The interface of critical Ising model on Z2 with
Dobrushin boundary condition converges to
SLE(3).

Their Strategy

Tightness : RSW
Identify the scaling limit : Holomorphic observable
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Background SLE

Other results on the convergence?

Thm [Chelkak, Duminil-Copin, Hongler,
Kemppainen, Smirnov 2010]

The interface of critical Ising model on Z2 with
Dobrushin boundary condition converges to
SLE(3).

Different Models?
Different lattices?
Different Boundary Conditions?

Many conjectures.
Universality : open.
Some results.
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Background SLE

Open Question : Other Models

Conjecture
For q ≤ 4, the interface of critical Random
Cluster Model converges to SLE(κ) where

κ = 4π/arccos(−√q/2).

Conjecture
The interface of Double Dimer Model converges
to SLE(4).
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Background SLE

Open Question : Universality

Thm [Smirnov 2000]
The interface of critical site percolation on
triangular lattice converges to SLE(6).

Conjecture
The interface of critical bond percolation on
square lattice converges to SLE(6).
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Background SLE

Other results on the convergence?

Thm [Chelkak, Duminil-Copin, Hongler,
Kemppainen, Smirnov 2010]

The interface of critical Ising model on Z2 with
Dobrushin boundary condition converges to
SLE(3).

Different Models?
Different lattices?
Different Boundary Conditions?

Many conjectures.
Universality : open.
Some results.
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Hypergeometric SLE

Critical Ising in Quad

Thm [Izyurov 2014, W. 2017]

The interface of critical Ising model on Z2 with
alternating boundary condition converges to
Hypergeometric SLE3, denoted by hSLE3.

Q1 : What is Hypergeometric SLE?
Q2 : Why are they the limit ?
Q3 : How do we prove the convergence?

Answer to Q1 :
random fractal curves in quad q = (Ω; x1, x2, x3, x4)
hSLEκ(ν) for κ ∈ (0,8) and ν ∈ R.
driving function :

dWt =
√
κdBt + κ∂x1 logZκ,ν(Wt ,V 2

t ,V
3
t ,V

4
t )dt .
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Hypergeometric SLE

General Boundary Conditions

Thm [Izyurov 2014, W. 2017]

The interface of critical Ising model on Z2 with
alternating boundary condition converges to
Hypergeometric SLE3, denoted by hSLE3.

Q1 : What is Hypergeometric SLE?
Q2 : Why they are the limit ?
Q3 : How to prove the convergence?

Answer to Q1 :
when ν = −2, it equals SLEκ
when κ ∈ (4,8), SLEκ in Ω from x1 to x4 conditioned to avoid
(x2, x3) is hSLEκ(κ− 6)
reversibility : the time-reversal has the same law.
X proved for ν ≥ κ/2− 4 ;? should be true for ν > −4 ∨ (κ/2− 6).

Hao Wu (THU) Hypergeometric SLE 15 / 32



Hypergeometric SLE

Q2 : Why they are the limit ?

Recall : Conformal Invariance + Domain Markov Property→ SLE(κ).

Assume the scaling limit exists, then
the limit should satisfy

(CI) Conformal Invariance
(DMP) Domain Markov Property
(SYM) Symmetry

Thm [W.2017]
Suppose (Pq,q ∈ Q) is a collection of proba, measures on pairs of
simple curves that satisfies CI, DMP, and SYM. Then there exist
κ ∈ (0,4] and ν < κ− 6 such that Pq ∼ hSLEκ(ν).

Key in the proof : J. Dubédat’s commutation relation.
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Hypergeometric SLE

Q3 : How to prove the convergence?

	 	 	 	 	 	 	 	 	

⊕

⊕⊕

⊕

	

	 ⊕ 	

	

⊕ 	

	

⊕

⊕

	

⊕

	 ⊕ ⊕

	

	

⊕ ⊕ ⊕

⊕

⊕ 	

	 	

⊕

	

	 ⊕ ⊕

	

	 ⊕⊕ ⊕	

xL xR

⊕

⊕

⊕

	 	 	 	 	 	 	 	 	 	 	

⊕

⊕

⊕

yL yR

(ηL; ηR) : any subseq. limit
L(ηL | ηR) = SLE3

L(ηR | ηL) = SLE3

Proposition

Fix κ ∈ (0,4]. There exists a
unique probability measure on
(ηL; ηR) such that

L(ηL | ηR) = SLEκ
L(ηR | ηL) = SLEκ

The marginal of ηR is hSLEκ from
xR to yR.

Conclusion

ηR : hSLE3 from xR to yR.
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Hypergeometric SLE
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Hypergeometric SLE

Convergence of Ising Interface to hSLE3
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Dobrushin b.c. : Interface→SLE3

RSW =⇒ tightness
Holomorphic observable

Alternating b.c. : Interface→hSLE3

First approach [Izyurov]
RSW =⇒ tightness
New holomorphic observable

Second approach [W.]
RSW =⇒ tightness
Cvg with Dobrushin b.c.

Advantage :
more general b.c.

Advantage :
more general b.c.
and other lattice models.
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More complicated b.c.

What about more complicated b.c. ?
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More complicated b.c.

What about more complicated b.c. ?

x2

x3

x1

x4

x5

x6
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More complicated b.c.

What about more complicate b.c. ?

courtesy to E. Peltola

Global Multiple SLEs
A collection of N disjoint simple curves
(η1, . . . , ηN) ∈ Xα(Ω; x1, . . . , x2N) such that

∀j , L(ηj | η1, . . . , ηj−1, ηj+1, . . . , ηN) = SLEκ

Thm [Korzdon & Lawler, Beffara & Peltola & W.]
Fix κ ∈ (0,4] ∪ {16/3,6} and link pattern
α ∈ LPN . There exists a unique global multiple
SLEκ associated to α.

Existence and uniqueness :
see E. Peltola’s talk
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More complicated b.c.

Thm [Korzdon & Lawler, Beffara & Peltola & W.]
Fix κ ∈ (0,4] ∪ {16/3,6} and link pattern
α ∈ LPN . There exists a unique global multiple
SLEκ associated to α.

Corollary

Multiple LERWs in UST→ Multiple SLE(2)s
Multiple Interfaces in Ising→ Multiple SLE(3)s
Multiple Interfaces in FK-Ising→ Multiple SLE(16/3)s
Multiple Interfaces in Percolation→ Multiple SLE(6)s

Summary : RSW+ Cvg with Dobrushin b.c.+ Uniqueness.

Question : What is the marginal law?
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Pure Partition Functions
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Pure Partition Functions

What is the marginal law?

For Ω = H and x1 < · · · < x2N ,
dWt =

√
κdBt + κ∂x1 logZα(Wt ,V 2

t , . . . ,V
2N
t )dt ,

Pure Partition Functions
{Zα : α ∈ LP} is a collection of smooth functions
satisfying PDE, COV, ASY.

PDE :

[
κ
2 ∂2

i +
∑

j 6=i

(
2

xj−xi
∂j −

(6−κ)/κ
(xj−xi )

2

)]
Z(x1, . . . , x2N ) = 0.

COV : Z(x1, . . . , x2N ) =
∏2N

i=1 ϕ′(xi )
h × Z(ϕ(x1), . . . , ϕ(x2N )).

ASY : limxj ,xj+1→ξ
Zα(x1,...,x2N )

(xj+1−xj )
−2h = Zα̂(x1, . . . , xj−1, xj+2, . . . , x2N )

Q1 : Do they exist ?
Q2 : Are they unique?
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Pure Partition Functions

Pure Partition Functions

Uniqueness [Flores & Kleban 2015]
If there exist collections of smooth functions
satisfying PDE, COV and ASY, they are
(essentially) unique.

Existence

Kytölä & Peltola 2016 : κ ∈ (0,8) \Q Coulomb gas technique

Peltola & W. 2017 : κ ∈ (0,4] Global Multiple SLEs

W. 2018 : κ ∈ (0,6] Hypergeometric SLE

The 2nd construction : see E. Peltola’s talk.
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Pure Partition Functions

Pure Partition Functions

Existence [W. 2018]
κ ∈ (0,6] : Hypergeometric SLE

Proof
Cascade relation + Induction.

COV, ASY : by construction
PDE : Hypergeometric SLE
Smoothness : Hypoellipticity [Dubédat 2015]
(see also Lawler & Jahangoshahi [arXiv : 1710.00854])
Cascade relation : by construction
Positivity : by construction
Optimal power law bound : h = (6− κ)/(2κ),

Zα(x1, . . . , x2N) ≤
∏
|xbi − xai |−2h, α = {{a1,b1}, . . . , {aN ,bN}}.
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Pure Partition Functions

Multiple SLEs vs. Pure Partition Functions

Global Multiple SLEs

Fix κ ∈ (0,4] ∪ {16/3,6}, there
exists a unique global multiple SLE.

Pure Partition Functions
Fix κ ∈ (0,6], there exists a unique
collection of pure partition functions.

Global Multiple SLEs : conjecture

True for κ ∈ (0,8).

Proved for κ ∈ (4,6] using the
convergence of RCM.
Wrong for κ ≥ 8.

Pure Partition Functions : conjecture

True for κ ∈ (0,8).

The optimal power law bound
might fail for κ ∈ (6,8).
Might be true for κ ≥ 8.
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Pure Partition Functions

Crossing Probabilities of Ising Interfaces

Courtesy to E. Peltola

Conjecture : In progress

The connection of Ising interfaces forms a planar link pattern Aδ.

lim
δ→0

P[Aδ = α] =
Zα(Ω; x1, . . . , x2N)

ZIsing(Ω; x1, . . . , x2N)
.
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Pure Partition Functions

Crossing Probabilities

Connection probabilities in LERWs (SLE(2)) :
Kenyon & Wilson 2011, Karrila & Kytölä & Peltola 2017
Crossing probabilities in Ising (SLE(3)) : in progress
Connection probabilities for level lines of GFF (SLE(4)) :
Kenyon & Wilson 2011, Peltola & W. 2017
Connection probabilities in percolation (SLE(6)) : OK.
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Pure Partition Functions

Thanks ! References
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