Geometric descriptions of the Loewner energy

Yilin Wang

ETH Zürich

June 19, 2018

Yilin Wang (ETH Zürich)

Outline

Introduction

2 Loewner theory

Zeta-regularized determinants

4 Weil-Petersson Class in T(1)

5 What's next?

 Loewner introduced in 1923 a way to encode the uniformizing conformal map of a simply connected domain D ⊂ C via continuous iterations of conformal distortions to "straighten" its boundary,

non self-intersecting curve $\gamma \Leftrightarrow$ real-valued driving function W.

- Main tool to solve Bieberbach's conjecture by De Branges in 1985 (using W smooth).
- Random fractal non self-intersecting curves: Schramm-Loewner Evolution introduced by Oded Schramm in 1999 (SLE_κ when W = √kB, where B is the standard 1-d Brownian Motion).

Introduction

- In this talk, W ∈ Cameron-Martin space of the Brownian motion (having finite Dirichlet energy: I(W) < ∞)
 - $\implies W \in Lip_{loc}^{1/2}(\mathbb{R}_+)$
 - \implies the chordal Loewner chain generated by W is a transient simple curve.
- We call I(W) the Loewner energy of γ .
- Connection to zeta-regularized determinants of Laplacians.
- Weil-Petersson class in the universal Teichmüller space.

Outline

Introduction

2 Loewner theory

Zeta-regularized determinants

Weil-Petersson Class in T(1)

5 What's next?

Background on the Loewner chains

Let γ be a simple chord in \mathbb{H} from 0 to ∞ .

- γ is capacity-parametrized by $t \in [0, \infty)$.
- $W : \mathbb{R}_+ \to \mathbb{R}$ is called the *driving function* of γ .
- One can recover γ from W using Loewner's differential equation, satisfied by $(g_t)_{t\geq 0}$.

Properties of the driving function

- $W_0 = 0;$
- W is continuous;
- Scaling property: let c > 0, the driving function of cγ is given by a Brownian-scaling of W:

$$\tilde{W}_t = cW_{c^{-2}t};$$

• Additivity: for a fixed $t \ge 0$, the chord $s \mapsto \eta(s) - W_t$ from 0 to ∞ is capacity parametrized, and has the driving function:

$$\tilde{W}_s = W_{t+s} - W_t$$

(satisfied by $t \mapsto g_t(z)$).

The chordal Loewner energy

Definition: Loewner energy (Friz & Shekhar 2015, W. 2016)

We define the Loewner energy of a simple chord γ in (D, a, b) to be

$$\begin{split} I_{D,a,b}(\gamma) &:= I_{\mathbb{H},0,\infty}(\varphi(\gamma)) := I(W) \\ &:= \begin{cases} \frac{1}{2} \int_0^\infty W'(t)^2 \, \mathrm{d}t, \text{ if } W \text{ is absolutely continuous;} \\ \infty, \text{ otherwise,} \end{cases} \end{split}$$

where W is the driving function of $\varphi(\gamma)$.

The chordal Loewner energy

• The Loewner energy is well-defined in (D, a, b) since for c > 0,

$$I_{\mathbb{H},0,\infty}(\gamma) = I_{\mathbb{H},0,\infty}(c\gamma).$$

- $I_{D,a,b}(\gamma) = 0$ iff γ is the hyperbolic geodesic connecting a and b.
- Additivity: if $[0,1] \rightarrow D$ is a continuous parametrization of γ , with $\gamma(0) = a$, $\gamma(1) = b$,

$$I_{D,a,b}(\gamma) = I_{D,a,b}(\gamma[0,t]) + I_{D\setminus\gamma[0,t],\gamma_t,b}(\gamma[t,1]).$$

• $I_{D,a,b}(\gamma) < \infty$, then γ is rectifiable. (Friz & Shekhar)

Theorem (W. 2016)

Let γ be a simple chord in D connecting two boundary points a and b, we have

 $I_{D,a,b}(\gamma) = I_{D,b,a}(\gamma).$

The deterministic result is based on a probabilistic interpretation of the Loewner energy as a large deviation rate function of SLE_{κ} as $\kappa \to 0$. Loosely speaking,

"P(
$$\mathsf{SLE}_\kappa$$
 stays close to γ) $pprox \exp\left(-rac{l(\gamma)}{\kappa}
ight)$."

Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012)

For $\kappa \leq 4$, the law of the trace of SLE_{κ} in (D, a, b), is the same as the law of SLE_{κ} in (D, b, a).

- $SLE_2 \leftrightarrow$ Loop-erased random walk;
- $SLE_3 \leftrightarrow$ Critical Ising model interface;
- $SLE_4 \leftrightarrow$ Level line of the Gaussian free field;
- $\bullet \ SLE_6 \leftrightarrow Critical \ independent \ percolation \ interface;$
- $SLE_{8/3} \leftrightarrow$ Self-avoiding random walk (conjecture).

Goal:

Understand the geometric meaning of the Loewner energy.

Loewner loop energy

Definition

We define the Loewner energy of a simple loop $\gamma: [0,1] \mapsto \hat{\mathbb{C}}$ rooted at $\gamma_0 = \gamma_1$ to be

$$I^L(\gamma,\gamma_0):=\lim_{arepsilon
ightarrow 0}I_{\hat{\mathbb{C}}ackslash\gamma[0,arepsilon],\gamma_arepsilon,\gamma_0}(\gamma[arepsilon,1]).$$

The loop energy generalizes the chordal energy:

Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the parametrization of the loop.

 \implies $\textit{I}^{\textit{L}}$ is Möbius-invariant on the set of free loops vanishing only on circles. Moreover,

I^L(γ) < ∞, then γ has no corner, is rectifiable and is a K-quasicircle with K depending only on *I^L*(γ) (i.e. γ is the image of S¹ by a K-quasiconformal homeomorphism of Ĉ);

•
$$\gamma \in C^{3/2+\varepsilon} \implies I^L(\gamma) < \infty$$
, where $\varepsilon > 0$.

- The proof is based on the reversibility of the chordal energy.
- It shows that the Loewner energy has even more symmetries in the loop setting.

Outline

Introduction

2 Loewner theory

Weil-Petersson Class in T(1)

5 What's next?

The functional \mathscr{H}

We will consider only smooth ${\it C}^\infty$ loops γ in $\hat{\mathbb{C}}\simeq {\it S}^2.$ Let

$$g_0(z) = rac{4}{(1+|z|^2)^2} \, \mathrm{d} z^2$$

denote the spherical metric.

$f:\gamma\to\mathbb{R}$

Definition

For any Riemannian metric g on S^2 , we define

$$\mathscr{H}(\gamma, g) := \log \det'_{\zeta} N(\gamma, g) - \log \operatorname{Length}_{g}(\gamma),$$

where $N(\gamma, g)$ is the Neumann Jump operator: $\forall f \in C^{\infty}(\gamma, \mathbb{R}), x \in \gamma$,

$$N(\gamma, g)f(x) := \partial_{n^+} \mathscr{P}_+[f](x) + \partial_{n^-} \mathscr{P}_-[f](x).$$

Zeta-regularizated determinant of N

- $N(\gamma, g)$ is non-negative, essentially self-adjoint for the L^2 product.
- The spectrum $N(\gamma, g)$ is

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 \cdots$$

• Define the Zeta-function

$$\zeta_N(s) := \sum_{i\geq 1} \lambda_i^{-s},$$

it can be analytically continued to a neighborhood of 0.

• Define (following Ray & Singer 1976)

$$\begin{split} \log \det'_{\zeta} \mathsf{N} &:= -\zeta'_{\mathsf{N}}(0) \\ & `` = \sum_{i \geq 1} \log(\lambda_i) \lambda_i^{-s}|_{s=0} = \log(\prod_{i \geq 1} \lambda_i)." \end{split}$$

• The Zeta-regularization of determinants has been used by physicists to perform Feynman path integrals, and is also important in Polyakov's quantum string theory.

Loewner Energy vs. Determinants

 $\mathsf{Recall}\ \mathscr{H}(\gamma,g) = \mathsf{log}\, \mathsf{det}'_{\zeta} \mathit{N}(\gamma,g) - \mathsf{log}\, \mathsf{Length}_g(\gamma).$

Theorem (W. 2018)

If $g = e^{2\varphi}g_0$ is a metric conformally equivalent to the spherical metric g_0 on S^2 , then: • $\mathscr{H}(\cdot, g) = \mathscr{H}(\cdot, g_0)$

- 2 Circles minimize $\mathscr{H}(\cdot, g)$ among all smooth Jordan curves.
- **③** Let γ be a smooth Jordan curve on S^2 . We have the identity

$$egin{aligned} & L^L(\gamma, g) = 12 \mathscr{H}(\gamma, g) - 12 \mathscr{H}(S^1, g) \ &= 12 \log rac{\det_\zeta(-\Delta_{\mathbb{D}_1,g}) \det_\zeta(-\Delta_{\mathbb{D}_2,g})}{\det_\zeta(-\Delta_{D_1,g}) \det_\zeta(-\Delta_{D_2,g})}, \end{aligned}$$

where \mathbb{D}_1 and \mathbb{D}_2 are two connected components of the complement of S^1 .

In particular, the above identity gives already the parametrization independence of the Loewner loop energy for smooth loops.

Yilin Wang (ETH Zürich)

Proof sketch

• First prove the identity: when γ passes through $\infty,$

$$I^{L}(\gamma,\infty) = \frac{1}{\pi} \left(\int_{\mathbb{C}\setminus\gamma} \left| \nabla(\operatorname{\mathsf{Re}} \log h'(z)) \right|^2 \, \mathrm{d} z^2 \right) = \frac{1}{\pi} \left(\int_{\mathbb{C}\setminus\gamma} \left| \frac{h''}{h'} \right|^2 \, \mathrm{d} z^2 \right),$$

where h maps conformally the complement of γ to two half-planes and fixes ∞ .

- Prove the additivity of the right-hand side.
- Prove the identity for γ driven by a linear function.
- Prove the identity by approximating the driving function by piecewise linear ones.

Proof (less than sketch)

• First prove the identity: when γ passes through $\infty,$

$$I^{L}(\gamma,\infty) = \frac{1}{\pi} \left(\int_{\mathbb{C}\setminus\gamma} \left| \nabla(\operatorname{\mathsf{Re}} \log h'(z)) \right|^2 \, \mathrm{d} z^2 \right) = \frac{1}{\pi} \left(\int_{\mathbb{C}\setminus\gamma} \left| \frac{h''}{h'} \right|^2 \, \mathrm{d} z^2 \right),$$

where h maps conformally the complement of γ to two half-planes and fixes $\infty.$

• Write the functional \mathscr{H} in terms of zeta-determinants of Laplacians. [Burghelea, Friedlander, Kappeler, 1993].

Theorem (Burghelea, Friedlander, Kappeler, 1993)

Let (M, g) be a Riemannian surface, $\gamma \subset M$ a smooth Jordan curve dividing M into two components D_1 and D_2 . Denote by $\Delta_{D_{i,g}}$ the Laplace-Beltrami operator with Dirichlet boundary condition on (D_i, g) , then we have

$$\begin{split} \mathscr{H}(\gamma,g) &= \log \det_{\zeta}'(N(\gamma,g)) - \log \operatorname{Length}_g(\gamma) \\ &= \log \det_{\zeta}'(-\Delta_{M,g}) - \log \operatorname{vol}_g(M) - \log \det_{\zeta}(-\Delta_{D_1,g}) - \log \det_{\zeta}(-\Delta_{D_2,g}). \end{split}$$

$$egin{aligned} & \longrightarrow \mathscr{H}(\gamma, g) - \mathscr{H}(S^1, g) \ & = \log rac{\mathrm{det}_\zeta(-\Delta_{\mathbb{D}_1,g})\mathrm{det}_\zeta(-\Delta_{\mathbb{D}_2,g})}{\mathrm{det}_\zeta(-\Delta_{D_1,g})\mathrm{det}_\zeta(-\Delta_{D_2,g})} \end{aligned}$$

="renormalized mass of Brownian loops attached to $\gamma."$

 \implies Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of Laplacians.

Polyakov-Alvarez conformal anomaly formula

Take $g = e^{2\sigma}g_0$ a metric conformally equivalent to g_0 . (Here think $\sigma = \operatorname{Re}\log h'$.)

Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])

For a compact surface M without boundary,

$$\begin{split} & \left(\log \det_{\zeta}'(-\Delta_{g}) - \log \operatorname{vol}_{g}(M)\right) - \left(\log \det_{\zeta}'(-\Delta_{0}) - \log \operatorname{vol}_{0}(M)\right) \\ & = -\frac{1}{6\pi} \left[\frac{1}{2} \int_{M} \left|\nabla_{0}\sigma\right|^{2} \operatorname{dvol}_{0} + \int_{M} \mathcal{K}_{0}\sigma \operatorname{dvol}_{0}.\right] \end{split}$$

The analogue for a compact surface D with smooth boundary is:

$$\begin{split} \log \det_{\zeta}(-\Delta_{g}) &- \log \det_{\zeta}(-\Delta_{0}) \\ &= -\frac{1}{6\pi} \left[\frac{1}{2} \int_{D} |\nabla_{0}\sigma|^{2} \operatorname{dvol}_{0} + \int_{D} K_{0}\sigma \operatorname{dvol}_{0} + \int_{\partial D} k_{0}\sigma \operatorname{dl}_{0} \right] - \frac{1}{4\pi} \int_{\partial D} \partial_{n}\sigma \operatorname{dl}_{0}. \end{split}$$

Loewner energy vs. Determinant of Laplacians

We get:

$$I^{L}(\gamma,\gamma(0))=12\mathscr{H}(\gamma,g)-12\mathscr{H}(S^{1},g).$$

But only for γ smooth!

Outline

Introduction

2 Loewner theory

Zeta-regularized determinants

Weil-Petersson Class in T(1)

What's next?

Universal Teichmüller space

We write

• $QS(S^1)$ the group of quasisymmetric sense-preserving homeomorphism of S^1 ;

A sense-preserving homeomorphism $\varphi : S^1 \to S^1$ is *quasisymmetric* if there exists $M \ge 1$ such that for all $\theta \in \mathbb{R}$ and $t \in (0, \pi)$,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

• $\mathsf{M\"ob}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$ the subgroup of Möbius function of S^1 .

The universal Teichmüller space is

$$\mathcal{T}(1) := \mathcal{QS}(S^1) / \mathsf{M\"ob}(S^1) \simeq \{ \varphi \in \mathcal{QS}(S^1), \ \varphi \ \mathsf{fixes} \ -1, -i \ \mathsf{and} \ 1 \}.$$

Welding function

- We know already that $I^{L}(\gamma) < \infty \implies \gamma$ is a quasicircle and the Loewner energy is Möbius-invariant (Rohde, W. 2017).
- Consider γ as a point $[\varphi] \in T(1)$ via its welding function $\varphi \in QS(S^1)$.

ullet Quasicircles with corners has ∞ Loewner energy.

Question

What is the class of finite energy loops in T(1)?

 $\bullet\,$ It is well-known in the literature that the homogeneous space of ${\it C}^\infty\mbox{-smooth}$ diffeomorphisms

$$M := \mathsf{Diff}(S^1) / \mathsf{M\"ob}(S^1) \subset T(1)$$

has a Kähler structure on it, studied by many physicists in string theory: Bowick, Rajeev, Kirillov, Yur'ev, Witten, etc.

• There is a unique homogeneous Kähler metric (up to constant factor): the *Weil-Petersson metric*.

Weil-Petersson metric

The Lie algebra of *M* consists of C^{∞} vector fields on S^1 :

$$v = v(\theta) \frac{\partial}{\partial \theta} = \sum_{m \in \mathbb{Z} \setminus \{-1,0,1\}} v_m e^{im\theta} \frac{\partial}{\partial \theta}, \text{ where } v_{-m} = \overline{v_m}.$$

The complex structure $J^2 = -Id$ is given by the Hilbert transform:

$$J(v)_m = -i \operatorname{sgn}(m) v_m, ext{ for } m \in \mathbb{Z} \setminus \{-1, 0, 1\}.$$

The Weil-Petersson form $\omega(\cdot, \cdot)$ and the metric $\langle \cdot, \cdot \rangle_{WP}$ is given at the origin by

$$\omega(\mathbf{v},\mathbf{w}) = ib \sum_{m \in \mathbb{Z} \setminus \{-1,0,1\}} (m^3 - m) \mathbf{v}_m \mathbf{w}_{-m},$$

$$\langle \mathbf{v}, \mathbf{w} \rangle_{WP} = \omega(J(\mathbf{v}), \mathbf{w}) = b \sum_{m=2}^{\infty} (m^3 - m) \operatorname{Re}(\mathbf{v}_m \mathbf{w}_{-m})$$

for some b > 0.

Weil-Petersson Class

- The Weil-Petersson class T₀(1) is the closure of Diff(S¹)/Möb(S¹) ⊂ T(1) under the WP-metric.
- The above description and many other characterizations are provided by Nag, Cui, Takhtajan, Teo, Shen, etc.

Theorem (Takhtajan & Teo, 2006)

The universal Liouville action S_1 : $T_0(1) \to \mathbb{R}$,

$$\mathbf{S}_{\mathbf{1}}([\varphi]) := \int_{\mathbb{D}} \left| \frac{f''}{f'}(z) \right|^2 \, \mathrm{d}z^2 + \int_{\mathbb{D}^*} \left| \frac{g''}{g'}(z) \right|^2 \, \mathrm{d}z^2 + 4\pi \log \left| \frac{f'(0)}{g'(\infty)} \right|$$

is a Kähler potential of the Weil-Petersson metric, where

$$g'(\infty) = \lim_{z \to \infty} g'(z) = \tilde{g}'(0)^{-1}$$
 and $\tilde{g}(z) = 1/g(1/z)$.

Yilin Wang (ETH Zürich)

Korea Institute for Advanced Study

Loewner Energy vs. Weil-Petersson Class

Theorem (W. 2018)

A bounded simple loop γ in $\hat{\mathbb{C}}$ has finite Loewner energy if and only if $[\varphi] \in T_0(1)$. Moreover,

$$I^{L}(\gamma) = \mathbf{S}_{1}(\gamma)/\pi.$$

- This gives a new characterization of the WP-Class, and a new viewpoint on the Kähler potential on $T_0(1)$ (or alternatively a way to look at the Loewner energy).
- Again the root-invariance (and also the reversibility) of the loop energy follows immediately.

- When γ is smooth, choose cleverly a metric g on S^2 to apply the identity I^L with $\log \det_{\zeta}$.
- Approximate a general loop by a well-chosen family of smooth curves.

Characterizations of the WP-Class (an incomplete list)

The welding function $[\varphi]$ is in $\mathcal{T}_0(1)$ if one of the following equivalent conditions holds:

- $\int_{\mathbb{D}} \left| \nabla \operatorname{Re}(\log f'(z)) \right|^2 \, \mathrm{d}z^2 = \int_{\mathbb{D}} \left| f''(z) / f'(z) \right|^2 \, \mathrm{d}z^2 < \infty;$
- $\int_{\mathbb{D}^*} |g''(z)/g'(z)|^2 dz^2 < \infty;$
- $\int_{\mathbb{D}} \left| S(f) \right|^2 \rho^{-1}(z) \, \mathrm{d} z^2 < \infty;$
- $\int_{\mathbb{D}^*} |S(g)|^2 \rho^{-1}(z) \, \mathrm{d} z^2 < \infty;$
- φ has quasiconformal extension to \mathbb{D} , whose complex dilation $\mu = \partial_{\overline{z}} \varphi / \partial_z \varphi$ satisfies

$$\int_{\mathbb{D}}\left|\mu(z)\right|^{2}\rho(z)\,\mathrm{d}z^{2}<\infty;$$

- φ is absolutely continuous with respect to arc-length measure, such that $\log \varphi'$ belongs to the Sobolev space $H^{1/2}(S^1)$;
- the Grunsky operator associated to f or g is Hilbert-Schmidt,

where $ho(z)\,\mathrm{d} z^2=1/(1-|z|^2)^2\,\mathrm{d} z^2$ is the hyperbolic metric on $\mathbb D$ or $\mathbb D^*$ and

$$S(f) = \frac{f^{\prime\prime\prime}}{f^{\prime}} - \frac{3}{2} \left(\frac{f^{\prime\prime}}{f^{\prime}}\right)^2$$

is the Schwarzian derivative of f.

Yilin Wang (ETH Zürich)

Outline

Introduction

2 Loewner theory

Zeta-regularized determinants

Weil-Petersson Class in T(1)

What's next?

We have seen:

- What is the random model naturally associated to the WP-class?
- In which space does the random welding belong to?
- Understand the Kähler structure on the WP-class in the probabilistic language.
- Inspired by the welding of two quantum disks, we show that the isometric welding of two finite energy domains still has finite Loewner energy (in progress with Viklund).
- Understand the gradient flow of the Loewner energy on loops (studied by Burghelea et al. 1993) and the meaning under Loewner's framework.

Thanks for your attention!

