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Introduction

Loewner introduced in 1923 a way to encode the uniformizing conformal map of a
simply connected domain D ⊂ C via continuous iterations of conformal distortions
to “straighten” its boundary,

non self-intersecting curve γ ⇔ real-valued driving function W .

Main tool to solve Bieberbach’s conjecture by De Branges in 1985 (using W smooth).
Random fractal non self-intersecting curves: Schramm-Loewner Evolution
introduced by Oded Schramm in 1999
(SLEκ when W =

√
kB, where B is the standard 1-d Brownian Motion).
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Introduction

In this talk, W ∈ Cameron-Martin space of the Brownian motion (having finite
Dirichlet energy: I(W ) < ∞)
=⇒ W ∈ Lip1/2

loc (R+)
=⇒ the chordal Loewner chain generated by W is a transient simple curve.

We call I(W ) the Loewner energy of γ.
Connection to zeta-regularized determinants of Laplacians.
Weil-Petersson class in the universal Teichmüller space.
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Background on the Loewner chains

Let γ be a simple chord in H from 0 to ∞.

gt(z) = z + 2t
z + o(1z)γt

Wt = gt(γt)

as z → ∞

γ

η(s) := gt(γt+s)

0

γ is capacity-parametrized by t ∈ [0,∞).
W : R+ → R is called the driving function of γ.
One can recover γ from W using Loewner’s differential equation, satisfied by (gt)t≥0.
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Properties of the driving function

gt(z) = z + 2t
z + o(1z)γt

Wt = gt(γt)

as z → ∞

γ

η(s) := gt(γt+s)

0

W0 = 0;
W is continuous;
Scaling property: let c > 0, the driving function of cγ is given by a Brownian-scaling
of W :

W̃t = cWc−2t ;
Additivity: for a fixed t ≥ 0, the chord s 7→ η(s)−Wt from 0 to ∞ is capacity
parametrized, and has the driving function:

W̃s = Wt+s −Wt .

(satisfied by t 7→ gt(z)).
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The chordal Loewner energy

a

b

D

γ
ϕ : D → H

ϕ(a) = 0, ϕ(b) = ∞

0

H

ϕ(γ)

Definition: Loewner energy (Friz & Shekhar 2015, W. 2016)
We define the Loewner energy of a simple chord γ in (D, a, b) to be

ID,a,b(γ) := IH,0,∞(ϕ(γ)) := I(W )

:=
{ 1

2

∫∞
0 W ′(t)2 dt, if W is absolutely continuous;

∞, otherwise,

where W is the driving function of ϕ(γ).
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The chordal Loewner energy

a

b

D

γ
ϕ : D → H

ϕ(a) = 0, ϕ(b) = ∞

0

H

ϕ(γ)

The Loewner energy is well-defined in (D, a, b) since for c > 0,

IH,0,∞(γ) = IH,0,∞(cγ).

ID,a,b(γ) = 0 iff γ is the hyperbolic geodesic connecting a and b.
Additivity: if [0, 1]→ D is a continuous parametrization of γ, with γ(0) = a,
γ(1) = b,

ID,a,b(γ) = ID,a,b(γ[0, t]) + ID\γ[0,t],γt ,b(γ[t, 1]).
ID,a,b(γ) <∞, then γ is rectifiable. (Friz & Shekhar)
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Reversibility of chordal Loewner energy

Theorem (W. 2016)
Let γ be a simple chord in D connecting two boundary points a and b, we have

ID,a,b(γ) = ID,b,a(γ).

z 7→ −1/z

> 0

= 0

> 0

≥ 0

The deterministic result is based on a probabilistic interpretation of the Loewner energy
as a large deviation rate function of SLEκ as κ→ 0. Loosely speaking,

“P(SLEκ stays close to γ) ≈ exp
(
− I(γ)

κ

)
.”

Yilin Wang (ETH Zürich) Korea Institute for Advanced Study June 19, 2018 11 / 36



Reversibility of Loewner energy

Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012)
For κ ≤ 4, the law of the trace of SLEκ in (D, a, b), is the same as the law of SLEκ in
(D, b, a).

SLE2 ↔ Loop-erased random walk;
SLE3 ↔ Critical Ising model interface;
SLE4 ↔ Level line of the Gaussian free field;
SLE6 ↔ Critical independent percolation interface;
SLE8/3 ↔ Self-avoiding random walk (conjecture).

Goal:
Understand the geometric meaning of the Loewner energy.
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Loewner loop energy

Definition

We define the Loewner energy of a simple loop γ : [0, 1] 7→ Ĉ rooted at γ0 = γ1 to be

IL(γ, γ0) := lim
ε→0

IĈ\γ[0,ε],γε,γ0
(γ[ε, 1]).

γ0

γε

ε→ 0

The loop energy generalizes the chordal energy:

IC\R+,0,∞(γ) = IL(γ ∪ R+,∞).

0
∞γz 7→ z2

Yilin Wang (ETH Zürich) Korea Institute for Advanced Study June 19, 2018 13 / 36



Loewner loop energy

Theorem (Rohde, W. 2017)
The Loewner loop energy is independent of the parametrization of the loop.

=⇒ IL is Möbius-invariant on the set of free loops vanishing only on circles.

Moreover,

IL(γ) <∞, then γ has no corner, is rectifiable and is a K -quasicircle with K
depending only on IL(γ) (i.e. γ is the image of S1 by a K -quasiconformal
homeomorphism of Ĉ);
γ ∈ C 3/2+ε =⇒ IL(γ) <∞, where ε > 0.

- The proof is based on the reversibility of the chordal energy.
- It shows that the Loewner energy has even more symmetries in the loop setting.
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The functional H

We will consider only smooth C∞ loops γ in
Ĉ ' S2. Let

g0(z) = 4
(1 + |z|2)2

dz2

denote the spherical metric.
f : γ → R

n+
n−

Definition

For any Riemannian metric g on S2, we define

H (γ, g) := log det′ζN(γ, g)− log Lengthg (γ),

where N(γ, g) is the Neumann Jump operator: ∀f ∈ C∞(γ,R), x ∈ γ,

N(γ, g)f (x) := ∂n+P+[f ](x) + ∂n−P−[f ](x).
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Zeta-regularizated determinant of N

N(γ, g) is non-negative, essentially self-adjoint for the L2 product.
The spectrum N(γ, g) is

0 = λ0 < λ1 ≤ λ2 · · ·
Define the Zeta-function

ζN(s) :=
∑
i≥1

λ−s
i ,

it can be analytically continued to a neighborhood of 0.
Define (following Ray & Singer 1976)

log det′ζN := −ζ′N(0)

“ =
∑
i≥1

log(λi )λ−s
i |s=0 = log(

∏
i≥1

λi ).”

The Zeta-regularization of determinants has been used by physicists to perform
Feynman path integrals, and is also important in Polyakov’s quantum string theory.
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Loewner Energy vs. Determinants

Recall H (γ, g) = log det′ζN(γ, g)− log Lengthg (γ).

Theorem (W. 2018)

If g = e2ϕg0 is a metric conformally equivalent to the spherical metric g0 on S2, then:
1 H (·, g) = H (·, g0)
2 Circles minimize H (·, g) among all smooth Jordan curves.
3 Let γ be a smooth Jordan curve on S2. We have the identity

IL(γ, γ(0)) = 12H (γ, g)− 12H (S1, g)

= 12 log detζ(−∆D1,g )detζ(−∆D2,g )
detζ(−∆D1,g )detζ(−∆D2,g ) ,

where D1 and D2 are two connected components of the complement of S1.

In particular, the above identity gives already the parametrization independence of the
Loewner loop energy for smooth loops.
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Proof sketch

First prove the identity: when γ passes through ∞,

IL(γ,∞) = 1
π

(∫
C\γ

∣∣∇(Re log h′(z))
∣∣2 dz2

)
= 1
π

(∫
C\γ

∣∣∣∣h′′h′

∣∣∣∣2 dz2

)
,

where h maps conformally the complement of γ to two half-planes and fixes ∞.

h1

h2

γ

Prove the additivity of the right-hand side.
Prove the identity for γ driven by a linear function.
Prove the identity by approximating the driving function by piecewise linear ones.
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Proof (less than sketch)

First prove the identity: when γ passes through ∞,

IL(γ,∞) = 1
π

(∫
C\γ

∣∣∇(Re log h′(z))
∣∣2 dz2

)
= 1
π

(∫
C\γ

∣∣∣∣h′′h′

∣∣∣∣2 dz2

)
,

where h maps conformally the complement of γ to two half-planes and fixes ∞.

h1

h2

γ

Write the functional H in terms of zeta-determinants of Laplacians. [Burghelea,
Friedlander, Kappeler, 1993].
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Mayer-Vietoris type Surgery formula

Theorem (Burghelea, Friedlander, Kappeler, 1993)
Let (M, g) be a Riemannian surface, γ ⊂ M a smooth Jordan curve dividing M into two
components D1 and D2. Denote by ∆Di ,g the Laplace-Beltrami operator with Dirichlet
boundary condition on (Di , g), then we have

H (γ, g) = log det′ζ(N(γ, g))− log Lengthg (γ)
= log det′ζ(−∆M,g )− log volg (M)− log detζ(−∆D1,g )− log detζ(−∆D2,g ).

n+
n−

D1

D2

γ

=⇒H (γ, g)−H (S1, g)

= log detζ(−∆D1,g )detζ(−∆D2,g )
detζ(−∆D1,g )detζ(−∆D2,g )

=“renormalized mass of Brownian loops attached to γ.”

=⇒ Use the Polyakov-Alvarez conformal anomaly
formula to compare determinants of Laplacians.
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Polyakov-Alvarez conformal anomaly formula

Take g = e2σg0 a metric conformally equivalent to g0. (Here think σ = Re log h′.)

Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])
For a compact surface M without boundary,(

log det′ζ(−∆g )− log volg (M)
)
−
(

log det′ζ(−∆0)− log vol0(M)
)

=− 1
6π

[
1
2

∫
M
|∇0σ|2 dvol0 +

∫
M

K0σ dvol0.

]
The analogue for a compact surface D with smooth boundary is:

log detζ(−∆g )− log detζ(−∆0)

=− 1
6π

[
1
2

∫
D
|∇0σ|2 dvol0 +

∫
D

K0σ dvol0 +
∫
∂D

k0σ dl0

]
− 1

4π

∫
∂D
∂nσ dl0.
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Loewner energy vs. Determinant of Laplacians

We get:
IL(γ, γ(0)) = 12H (γ, g)− 12H (S1, g).

But only for γ smooth!
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Universal Teichmüller space

We write
QS(S1) the group of quasisymmetric sense-preserving homeomorphism of S1;

A sense-preserving homeomorphism ϕ : S1 → S1 is quasisymmetric if there exists M ≥ 1
such that for all θ ∈ R and t ∈ (0, π),

1
M ≤

∣∣∣∣ϕ(e i(θ+t))− ϕ(e iθ)
ϕ(e iθ)− ϕ(e i(θ−t))

∣∣∣∣ ≤ M.

Möb(S1) ' PSL(2,R) the subgroup of Möbius function of S1.

The universal Teichmüller space is

T (1) := QS(S1)/Möb(S1) ' {ϕ ∈ QS(S1), ϕ fixes − 1,−i and 1}.

Yilin Wang (ETH Zürich) Korea Institute for Advanced Study June 19, 2018 25 / 36



Welding function

We know already that IL(γ) <∞ =⇒ γ is a quasicircle and the Loewner energy is
Möbius-invariant (Rohde, W. 2017).
Consider γ as a point [ϕ] ∈ T (1) via its welding function ϕ ∈ QS(S1).

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1γ

Quasicircles with corners has ∞ Loewner energy.

Question
What is the class of finite energy loops in T (1)?
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Weil-Petersson Class

It is well-known in the literature that the homogeneous space of C∞-smooth
diffeomorphisms

M := Diff(S1)/Möb(S1) ⊂ T (1)

has a Kähler structure on it, studied by many physicists in string theory: Bowick,
Rajeev, Kirillov, Yur’ev, Witten, etc.
There is a unique homogeneous Kähler metric (up to constant factor): the
Weil-Petersson metric.
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Weil-Petersson metric

The Lie algebra of M consists of C∞ vector fields on S1:

v = v(θ) ∂
∂θ

=
∑

m∈Z\{−1,0,1}

vme imθ ∂

∂θ
, where v−m = vm.

The complex structure J2 = −Id is given by the Hilbert transform:

J(v)m = −isgn(m)vm, for m ∈ Z\{−1, 0, 1}.

The Weil-Petersson form ω(·, ·) and the metric 〈·, ·〉WP is given at the origin by

ω(v ,w) = ib
∑

m∈Z\{−1,0,1}

(m3 −m)vmw−m,

〈v ,w〉WP = ω(J(v),w) = b
∞∑

m=2

(m3 −m) Re(vmw−m)

for some b > 0.
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Weil-Petersson Class

The Weil-Petersson class T0(1) is the closure of Diff(S1)/Möb(S1) ⊂ T (1) under
the WP-metric.
The above description and many other characterizations are provided by Nag, Cui,
Takhtajan, Teo, Shen, etc.

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1γ

Theorem (Takhtajan & Teo, 2006)
The universal Liouville action S1 : T0(1)→ R,

S1([ϕ]) :=
∫
D

∣∣∣∣ f ′′f ′ (z)
∣∣∣∣2 dz2 +

∫
D∗

∣∣∣∣g ′′g ′ (z)
∣∣∣∣2 dz2 + 4π log

∣∣∣∣ f ′(0)
g ′(∞)

∣∣∣∣
is a Kähler potential of the Weil-Petersson metric, where

g ′(∞) = lim
z→∞

g ′(z) = g̃ ′(0)−1 and g̃(z) = 1/g(1/z).
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Loewner Energy vs. Weil-Petersson Class

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1γ

Theorem (W. 2018)

A bounded simple loop γ in Ĉ has finite Loewner energy if and only if [ϕ] ∈ T0(1).
Moreover,

IL(γ) = S1(γ)/π.

This gives a new characterization of the WP-Class, and a new viewpoint on the
Kähler potential on T0(1) (or alternatively a way to look at the Loewner energy).
Again the root-invariance (and also the reversibility) of the loop energy follows
immediately.
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Proof

When γ is smooth, choose cleverly a metric g on S2 to apply the identity IL with
log detζ .
Approximate a general loop by a well-chosen family of smooth curves.
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Characterizations of the WP-Class (an incomplete list)

The welding function [ϕ] is in T0(1) if one of the following equivalent conditions holds:∫
D |∇Re(log f ′(z))|2 dz2 =

∫
D |f
′′(z)/f ′(z)|2 dz2 <∞;∫

D∗ |g ′′(z)/g ′(z)|2 dz2 <∞;∫
D |S(f )|2 ρ−1(z) dz2 <∞;∫
D∗ |S(g)|2 ρ−1(z) dz2 <∞;
ϕ has quasiconformal extension to D, whose complex dilation µ = ∂zϕ/∂zϕ satisfies∫

D
|µ(z)|2 ρ(z) dz2 <∞;

ϕ is absolutely continuous with respect to arc-length measure, such that logϕ′
belongs to the Sobolev space H1/2(S1);
the Grunsky operator associated to f or g is Hilbert-Schmidt,

where ρ(z) dz2 = 1/(1− |z|2)2 dz2 is the hyperbolic metric on D or D∗ and

S(f ) = f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

is the Schwarzian derivative of f .
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We have seen:

Loewner Energy
∫
W ′(t)2/2dt Schramm Loewner Evolution

Large deviation

??

∫
C\γ ∇|Re(log h′)(z)|2/πdz2

This talk

Quantum Surfaces e
√
κGFFdz2

Liouville quantum gravity

“Large deviation”

??

Quantum zipper

Weil-Petersson Class ⊂ T (1)

H (γ, g), ζ-regularized determinants of ∆ Gaussian free field partition function

What is the random object?

This talk

This talk

??

(Dubédat 2008)

??

Brownian loop soups
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What’s next?

What is the random model naturally associated to the WP-class?
In which space does the random welding belong to?
Understand the Kähler structure on the WP-class in the probabilistic language.
Inspired by the welding of two quantum disks, we show that the isometric welding of
two finite energy domains still has finite Loewner energy (in progress with Viklund).
Understand the gradient flow of the Loewner energy on loops (studied by Burghelea
et al. 1993) and the meaning under Loewner’s framework.
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Thanks for your attention!
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