A multifractal $\operatorname{SLE}_{\kappa}(\rho)$ spectrum

Lukas Schoug
Department of Mathematics
KTH Royal Institute of Technology
Random Conformal Geometry and Related Fields

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Multifractal spectrum

Consider $\operatorname{SLE}_{\kappa}(\rho)$ with force point $x_{R}=0^{+}$. Find dimension of set of points x such that

- Curve hits x with certain "angle".
- $g_{\tau_{s}}^{\prime}(x) \approx e^{-\beta s}$ as $s \rightarrow \infty$, where $\tau_{s}=\inf \left\{t \geq 0: \operatorname{dist}(\eta([0, t]), x) \leq e^{-s}\right\}$.
- $\omega_{\infty}\left(\left(O_{\tau_{s}}, x\right], \mathbb{H} \backslash K_{\tau_{s}}\right) \approx e^{-\alpha s}$ as $s \rightarrow \infty$, where $\omega_{\infty}(A, \mathbb{H} \backslash K)=\lim _{y \rightarrow \infty} y \omega(i y, A, \mathbb{H} \backslash K), O_{t}=\max K_{t} \cap \mathbb{R}$.

Multifractal spectrum

- SLE curves very rough \Rightarrow no up to constants estimates
- Formal set:

$$
\begin{gathered}
V_{\beta}=\left\{x>0: \lim _{s \rightarrow \infty} \frac{1}{s} \log g_{\tau_{s}}^{\prime}(x)=-\beta(1+\rho / 2)\right. \\
\left.\tau_{s}=\tau_{s}(x)<\infty \forall s>0\right\}
\end{gathered}
$$

Main result

Theorem

Let $\kappa>0, \rho \in\left((-2) \vee\left(\frac{\kappa}{2}-4\right), \frac{\kappa}{2}-2\right), x_{R}=0^{+}$and write $a=2 / \kappa$. Define

$$
d(\beta):=1-\frac{a \beta}{2}\left(\frac{(1-a \rho)}{2 a}-\frac{1+2 \beta}{\beta}\right)^{2}\left(1+\frac{\rho}{2}\right)
$$

and let $\beta_{0}=\frac{2 a}{|4 a-1+a \rho|}, \beta_{-}=\inf \{\beta: d(\beta)>0\}$ and $\beta_{+}=\sup \{\beta: d(\beta)>0\}$. Then, if $\kappa \in(0,4]$

$$
\operatorname{dim}_{H} V_{\beta}=d(\beta) \text { for } \beta \in\left[\beta_{-}, \beta_{+}\right]
$$

and if $\kappa \in(4,8)$,

$$
\operatorname{dim}_{H} V_{\beta}=d(\beta) \text { for } \beta \in\left[\beta_{-}, \beta_{0}\right] .
$$

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Imaginary geometry

We can couple a GFF h and SLE such that $\operatorname{SLE}_{\kappa}(\underline{\rho})$ arise as the flow lines of the "vector field" $e^{i h / \chi}$ (but we will call them flow lines of h), where χ is a constant, depending on κ.

Figure: Flow lines of a GFF on the square $[-1,1]^{2}$. (Simulation by Jason Miller.)

Imaginary geometry

Fix $0<\kappa<4$ and let $\chi=\chi(\kappa)=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}$ and $\kappa^{\prime}=\frac{16}{\kappa} \in(4, \infty)$. Let h be a GFF in \mathbb{H} with piecewise constant boundary data. We can couple h with SLE such that:

- The flow line η of h (of $e^{i h / \chi}$) is an $\operatorname{SLE}_{\kappa}(\underline{\rho})$ curve from 0 to ∞ (the locations and weights of the force points depend on the boundary data of h).
- A flow line of angle θ, denoted η_{θ}, is a flow line of $h+\theta \chi$.
- The counterflow line of h is an $\operatorname{SLE}_{\kappa^{\prime}}(\underline{\rho})$ curve from ∞ to 0 coupled with $-h$. We denote the counterflow line by η^{\prime}.
- A counterflow line is the "light cone" of flow lines. The outer boundaries of η^{\prime} are given by $\eta_{-\frac{\pi}{2}}$ and $\eta_{\frac{\pi}{2}}$.
- In this coupling, η, η_{θ} and η^{\prime} are almost surely determined by the GFF.

The same holds in other simply connected domains than \mathbb{H} analogously.

Imaginary geometry

Figure: Flow lines and a counterflow line coupled in the same imaginary geometry.

Imaginary geometry

Let η_{θ}^{\times}denote the flow line of angle θ from x to ∞. Fix $x_{1}, x_{2} \in \mathbb{R}$ such that $x_{1} \geq x_{2}$. Then,
(i) $\theta_{1}<\theta_{2} \Rightarrow \eta_{\theta_{1}}^{x_{1}}$ a.s. stays to the right of $\eta_{\theta_{2}}^{\chi_{2}}$. Can hit if $\theta_{2}-\theta_{1}<\frac{\pi \kappa}{4-\kappa}$.
(ii) $\theta_{1}=\theta_{2} \Rightarrow \eta_{\theta_{1}}^{x_{1}}, \eta_{\theta_{2}}^{x_{2}}$ can intersect and if they do, they merge and never separate.
(iii) $\theta_{2}<\theta_{1}<\theta_{2}+\pi \Rightarrow \eta_{\theta_{1}}^{x_{1}}$ and $\eta_{\theta_{2}}^{x_{2}}$ can intersect and: intersecting \Rightarrow cross and never cross back.
Can hit after crossing if $\theta_{1}-\theta_{2}<\frac{\pi \kappa}{4-\kappa}$.

Imaginary geometry

(a) $\theta_{1}<\theta_{2}$.

(b) $\theta=\theta_{1}=\theta_{2}$.

$$
\text { (c) } \theta_{2}<\theta_{1}<\theta_{2}+\pi \text {. }
$$

Imaginary geometry

Let $\epsilon>0, \eta \sim \operatorname{SLE}_{\kappa}\left(\underline{\rho}_{L} ; \underline{\rho}_{R}\right), x_{1, L}=0^{-}, x_{1, R}=0^{+}, \rho_{1, L}, \rho_{1, R}>-2$ and $\gamma:[0,1] \rightarrow \overline{\mathbb{H}}, \gamma(0)=0, \gamma((0,1]) \subset \mathbb{H}$, then with positive probability, η does not leave the ϵ-neighborhood, $A(\epsilon)$, of γ before coming within distance ϵ from the tip $\gamma(1)$.

Imaginary geometry

$\eta \sim \operatorname{SLE}_{\kappa}\left(\underline{\rho}_{L} ; \underline{\rho}_{R}\right), x_{1, L}=0^{-}, x_{1, R}=0^{+}, \rho_{1, L}, \rho_{1, R}>-2$ that can hit $\left[x_{k, R}, x_{k+1, R}\right]$ and $\epsilon>0$ such that $\left|x_{2, q}\right|>\epsilon$ for $q \in\{L, R\}$ and $x_{k+1, R}-x_{k, R} \geq \epsilon$ and $x_{k, R} \leq \epsilon^{-1} . \gamma$ curve in \mathbb{H}, from 0 to $\left[x_{k, R}, x_{k+1, R}\right]$.
$\mathbb{P}\left(\eta\right.$ hits $\left[x_{k, R}, x_{k+1, R}\right]$ before leaving $\left.A(\epsilon)\right) \geq p_{0}\left(\kappa, \max _{j, q}\left|\rho_{j, q}\right|, \bar{\rho}_{k, R}, \epsilon\right)>0$

Imaginary geometry

Absolute continuity: Let $c=\left(D, z_{0}, \underline{x}_{L}, \underline{x}_{R}, z_{\infty}\right)$ be a configuration and U a bounded open neighborhood of z_{0}. Let μ_{c}^{U} denote the law of an $\operatorname{SLE}_{\kappa}\left(\underline{\rho}_{L} ; \underline{\rho}_{R}\right)$ process with configuration c, stopped upon exiting U. Let $\tilde{c}=\left(\widetilde{D}, z_{0}, \underline{\underline{x}}_{L}, \underline{\underline{x}}_{R}, \tilde{z}_{\infty}\right)$ be another configuration.

- If the force points of c and \tilde{c} in U agree, and the distance from U to the force points that differ is positive, then μ_{c}^{U} and $\mu_{\tilde{c}}^{U}$ are mutually absolutely continuous.
- If $D=\mathbb{H}, \widetilde{D} \subseteq \mathbb{H}, z_{0}=0$, the force points agree in U and $\varsigma>0$ such that $\operatorname{dist}(U, \mathbb{H} \backslash \widetilde{D})>\varsigma$ and the force points of c and \tilde{c} which disagree are at distance at least ς from U, then there exists a constant $C=C\left(U, \varsigma, \kappa,\left\{\rho_{j, q}\right\}_{j, q}\right) \geq 1$ such that

$$
\frac{1}{C} \leq \frac{d \mu_{\tilde{C}}^{U}}{d \mu_{c}^{U}} \leq C
$$

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

$\operatorname{SLE}_{k}(\rho)$

We fix $\kappa \in(0,8)$ and let $a=2 / \kappa$ and parametrize the $\operatorname{SLE}_{\kappa}(\rho)$ as the solution to

$$
\partial_{t} g_{t}(z)=\frac{a}{g_{t}(z)-W_{t}}, \quad g_{0}(z)=z
$$

with

$$
\begin{array}{ll}
d W_{t}=d B_{t}+\frac{a \rho / 2}{W_{t}-V_{t}} d t, & W_{0}=0 \\
d V_{t}=\frac{a}{V_{t}-W_{t}} d t, & V_{0}=x_{R}
\end{array}
$$

where B_{t} is a one-dimensional standard Brownian motion with $B_{0}=0$. From now on, assume that $\rho \in\left((-2) \vee\left(\frac{\kappa}{2}-4\right), \frac{\kappa}{2}-2\right)$.

Martingale

- We let $\mu_{c}=2 a-\frac{1}{2}+\frac{a \rho}{2}$ and fix $-\frac{\mu_{c}^{2}}{2 a}<\zeta<\infty$, and

$$
\mu=\mu_{c}+\sqrt{\mu_{c}^{2}+2 a \zeta}, \quad \beta=\frac{a}{\sqrt{\mu_{c}^{2}+2 a \zeta}} .
$$

- We write

$$
\delta_{t}(x)=\frac{g_{t}(x)-V_{t}}{g_{t}^{\prime}(x)}, \quad Q_{t}(x)=\frac{g_{t}(x)-V_{t}}{g_{t}(x)-W_{t}}
$$

- Then

$$
M_{t}^{\zeta}(x)=g_{t}^{\prime}(x)^{\zeta} Q_{t}^{\mu} \delta_{t}^{-\mu\left(1+\frac{\rho}{2}\right)}
$$

is a local martingale and

$$
\frac{d M_{t}^{\zeta}(x)}{M_{t}^{\zeta}(x)}=\frac{\mu}{f_{t}(x)} d B_{t}
$$

where $f_{t}(x)=g_{t}(x)-W_{t}$.

Martingale

- Weight by M_{t}^{ζ} to get the measure \mathbb{P}^{*}.
- This measure change is practical, since

$$
\delta_{t}(x) \asymp \operatorname{dist}(x, \eta([0, t]))
$$

and since under \mathbb{P}^{*}, Q_{t} has an invariant distribution, and hence we have good control.

- Furthermore, Q_{t} is the quotient of two harmonic measures.
- Gives one-point estimate sufficient for upper bound on dimension.
- \tilde{I}_{t} good event until the time $\delta=\left(x-x_{R}\right) e^{-a t}$. Concentration estimates $\Rightarrow \mathbb{P}^{*}\left(\tilde{I}_{t}\right)$ arbitrarily close to 1 .

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Frostman's lemma

Let $A \subset \mathbb{R}^{n}$ be a set and let ν be a measure with support contained in A and let

$$
J_{s}(\nu)=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{1}{|x-y|^{s}} d \nu(x) d \nu(y)
$$

If $J_{s}(\nu)<\infty$, then $\operatorname{dim}_{H} A \geq s$.

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Perfect points

- Fix $0<\kappa<4$ and $\rho \in\left(-2, \frac{\kappa}{2}-2\right)$, h GFF in \mathbb{H} with boundary data $-\lambda$ in \mathbb{R}_{-}and $\lambda(1+\rho)$ on \mathbb{R}_{+}. Let η be the zero-angle flow line emanating from 0 , i.e., an $\operatorname{SLE}_{\kappa}(\rho)$ curve with force point 0^{+}.
- Denote the (zero-angle) flow line from x by η^{x}. $\eta^{x} \sim \operatorname{SLE}_{\kappa}(2+\rho,-2-\rho ; \rho)$ with configuration $\left(\mathbb{H}, x,\left(0, x^{-}\right), x^{+}, \infty\right)$.
- Fix $\delta \in\left(0, \frac{1}{2}\right)$ and $\epsilon=e^{-\alpha}, \alpha>10$ (to be determined later).
- For $x \geq 1$ and $k \in \mathbb{N}$, we write

$$
x_{k}= \begin{cases}x-\frac{1}{4} \epsilon^{k} & \text { if } k \geq 1 \\ 0 & \text { if } k=0\end{cases}
$$

Perfect points

- For $U \subset \mathbb{H}$,

$$
\sigma^{x}(U)=\inf \left\{t \geq 0: \eta^{x}(t) \in \bar{U}\right\}
$$

and $\sigma_{k}^{x}=\sigma^{x_{k}}\left(B\left(x, \epsilon^{k+1}\right)\right)$.

- $\tilde{I}_{t}^{k}=\tilde{I}_{t}^{k}(x)$ is the good event for $\eta^{x_{k}}$ regarding concentration of measure (and its indicator), and

$$
I_{k}^{k}=\mathbb{E}\left[\tilde{i}_{k / a+G\left(x, x_{k}\right)}^{k} \mid \tilde{F}_{\sigma_{k}^{x}}\right],
$$

where $G\left(x, x_{k}\right)$ is a function such that $\tilde{t}\left(\frac{k}{a}+G\left(x, x_{k}\right)\right) \geq \sigma_{k}^{x}$.

- Let $\eta^{x_{k}, R}$ denote the right side of $\eta^{x_{k}}$ and

$$
V_{t}^{k}=\max \left\{y \in \eta^{x_{k}}([0, t]) \cap \mathbb{R}\right\} \text { and }
$$

$$
Q_{t}^{k}=\frac{\omega_{\infty}\left(\left[V_{t}^{k}, x\right], \mathbb{H} \backslash \eta^{x_{k}}([0, t])\right)}{\omega_{\infty}\left(\eta^{x_{k}, R}([0, t]) \cup\left[V_{t}^{k}, x\right], \mathbb{H} \backslash \eta^{x_{k}}([0, t])\right)}
$$

Perfect points

- $A_{k}^{1}(x)$ is the event that
(i) $\sigma_{k}^{x}<\infty$,
(ii) $Q_{\sigma_{k}^{x}}^{k} \in[\delta, 1-\delta]$ and
(iii) $\sigma_{k}^{x}<\sigma^{x_{k}}\left(\mathbb{H} \backslash B\left(x, \frac{1}{2} \epsilon^{k}\right)\right)$,
and $E_{k}^{1}(x)=1_{A_{k}(x)} I_{k}^{u, k}$.
- We let $A_{k}^{2}(x)$ be the event that on $A_{k}^{1}(x)$
(i) $\left.\eta^{\chi_{k-1}}\right|_{\left[\sigma_{k-1}^{\star}, \infty\right)}$ merges with $\left.\eta^{\chi_{k}}\right|_{\left[0, \sigma_{k}^{\times}\right)}$before exiting

$$
B\left(x, \frac{1}{2} \epsilon^{k}\right) \backslash B\left(x, \epsilon^{k+1}\right)
$$

(ii) $\arg \left(\eta^{\chi_{k}}(t)-x\right) \geq \frac{2}{3} \min \left(\arg \left(\eta^{x_{k+1}}\left(\sigma_{k+1}^{x}\right)-x\right), \arg \left(\eta^{x_{k}}\left(\sigma_{k}^{x}\right)-x\right)\right)$ for $t>\sigma_{k}^{x}$ but before merging with $\eta^{x_{k+1}}$,
and $E_{k}^{2}(x)=1_{A_{k}^{2}(x)}$.

Perfect points

Figure: If $E_{k}^{1}(x)=1$, then $\eta^{x_{k-1}}$ hits $B\left(x, \epsilon^{k}\right), Q_{\sigma_{k}^{x}}^{k} \in[\delta, 1-\delta]$ and the derivatives of the Loewner chain for $\eta^{x_{k-1}}$ behave as we want. Furthermore, given that $E_{k}^{1}(x)=1$, we have that if $E_{k}^{2}(x)=1$, then $\eta^{x_{k}-1}$ merges with $\eta^{x_{k}}$ before exiting $B\left(x, \frac{\epsilon^{k}}{2}\right) \backslash B\left(x, \epsilon^{k+1}\right)$ and does not go too close to $\{s>x\}$ before doing so.

Perfect points

- Let $E_{k}(x)=E_{k}^{1}(x) E_{k}^{2}(x), E^{m, n}(x)=E_{m+1}^{1}(x) \prod_{k=m+2}^{n} E_{k}(x)$, and $E^{n}(x)=E^{0, n}(x)$.
- Is this the right event to consider? Yes, because by Koebe $1 / 4$ theorem,

$$
\begin{aligned}
g_{\sigma(B(x, \epsilon))}^{\prime}(x) & \asymp \epsilon^{-1}\left(g_{\sigma(B(x, \epsilon))}(x)-V_{\sigma(B(x, \epsilon))}\right) \\
& =\epsilon^{-1} \omega_{\infty}\left(\left(O_{\sigma(B(x, \epsilon))}, x\right], \mathbb{H} \backslash K_{\sigma(B(x, \epsilon))}\right)
\end{aligned}
$$

where O_{t} is the rightmost point of $K_{t} \cap \mathbb{R}$, and the harmonic measure from ∞ of the "inner" parts of $\eta^{x_{k}}\left(\left[0, \sigma_{k}^{x}\right]\right)$ and $\eta\left(\left[0, \sigma\left(B\left(x, \epsilon^{k+1}\right)\right)\right]\right)$ are comparable.

Outline

(1) Preliminaries

- Multifractal spectrum
- Imaginary geometry
(2) Martingales, one-point estimate and concentration
- Martingales
(3) Two-point estimate
- Frostman's lemma
- Perfect points
- Two-point estimate

Two-point estimate

The sequence of measures that we will consider is $\left\{\nu_{n}\right\}$ where

$$
\nu_{n}(A)=\int_{A} \sum_{x \in \mathscr{D}_{n}} \frac{E^{n}(x)}{\mathbb{E}\left[E^{n}(x)\right]} 1_{J_{n}(x)}(t) d t
$$

$\mathscr{D}_{n}=\left\{1+\left(j-\frac{1}{2}\right) \epsilon^{n}: j=1, \ldots, \epsilon^{-n}\right\}$ and $J_{n}(x)=\left[x-\frac{\epsilon^{n}}{2}, x+\frac{\epsilon^{n}}{2}\right]$.
The aim is to prove the following.

Proposition

For each sufficiently small $\delta \in\left(0, \frac{1}{2}\right)$ there exist a constant $c(\delta)>0$ and a subpower function ψ such that for all $x, y \in[1,2]$ and $m \in \mathbb{N}$ such that $2 \epsilon^{m+2} \leq|x-y| \leq \frac{1}{2} \epsilon^{m}$, we have

$$
\begin{aligned}
\mathbb{E}\left[E^{n}(x) E^{n}(y)\right] \leq & c(\delta)^{2 m+2} \psi(-\log \epsilon)^{(3 m+2)|\zeta|} \\
& \times \epsilon^{(m+2)(\zeta \beta-\mu)(1+\rho / 2)} \mathbb{E}\left[E^{n}(x)\right] \mathbb{E}\left[E^{n}(y)\right] .
\end{aligned}
$$

Two-point estimate

Strategy: want to mimic the strategy of Miller and Wu [2017] to separate points, view them as "almost independent". Do this via the result on the boundedness of Radon-Nikodym derivatives. Need the following.

Lemma

For every $x \geq 1$ and $m, n \in \mathbb{N}$ such that $m \leq n$, it holds that

$$
\mathbb{E}\left[E^{m}(x) E^{m, n}(x)\right] \asymp \mathbb{E}\left[E^{m}(x)\right] \mathbb{E}\left[E^{m, n}(x)\right]
$$

Furthermore, if y is such that $2 \epsilon^{m+2} \leq|x-y| \leq \frac{1}{2} \epsilon^{m}$, then
$\mathbb{E}\left[E^{m-1}(x) E^{m+1, n}(x) E^{m+1, n}(y)\right] \asymp \mathbb{E}\left[E^{m-1}(x)\right] \mathbb{E}\left[E^{m+1, n}(x)\right] \mathbb{E}\left[E^{m+1, n}(y)\right]$.
The constants in \asymp depend only on κ and ρ.

Two-point estimate

Proof idea: the R-N derivative between the laws of the green part with and without the purple, is bounded above and below by a constant, which is independent of m, since

$$
\frac{\operatorname{dist}\left(K^{1}, K^{2}\right)}{\operatorname{diam}(U)} \gtrsim 1
$$

Two-point estimate

The next result we need is the following.

Lemma

For each $x \geq 1$ and $m, n \in \mathbb{N}$ such that $m \leq n$, it holds that

$$
\mathbb{E}\left[E^{n}(x)\right] \asymp \mathbb{E}\left[E^{m}(x)\right] \mathbb{E}\left[E^{m, n}(x)\right]
$$

where the constants depend only on κ, ρ and δ.
Proof idea: the condition on $Q_{\sigma_{m}^{x}}^{k}$ makes sure that the harmonic measure (from ∞) of each side of the curve, and [$V_{\sigma_{m}^{x}}, x$] and hence $\eta^{x_{m+1}}\left(\left[0, \sigma_{m+1}^{x}\right]\right)$ are comparable. Hence, using the mapping out function, each of them will have a positive length, and using that the curve then will follow any curve we want with positive probability gives the result.

Two-point estimate

The last lemma we need is:

Lemma

For each $\delta \in\left(0, \frac{1}{2}\right)$, sufficiently small, there exist a constant $c(\delta)>0$ and a subpower function ψ such that the for each $x \geq 1$,

$$
\mathbb{E}\left[E^{m}(x)\right] \geq c(\delta)^{m} \psi(-\log \epsilon)^{-m|\zeta|} \epsilon^{m(\zeta \beta-\mu)(1+\rho / 2)}
$$

Proof idea: by previous lemmas, we need only check that there exist a constant $c(\delta)$ and a subpower function ψ such that

$$
\begin{aligned}
& \mathbb{E}\left[E_{k}^{1}(x)\right] \geq c(\delta) \psi(-\log \epsilon)^{-|\zeta|} \epsilon(\zeta \beta-\mu)(1+\rho / 2) \\
& \mathbb{E}\left[E_{k}^{2}(x) \mid E^{k-1}(x)=1, E_{k}^{1}(x)=1\right] \asymp 1
\end{aligned}
$$

The latter follows by the same idea as the previous lemma.

Two-point estimate

- $\mathbb{E}\left[E_{k}^{1}(x)\right]=\mathbb{P}\left(A_{k}^{1} \cap \tilde{I}_{k / a+G\left(x, x_{k}\right)}^{k}\right)$
- We can consider an $\operatorname{SLE}_{\kappa}(-2-\rho ; \rho)$ curve with configuration $\left(\mathbb{H}, x_{k}, x_{k}^{-}, x_{k}^{+}, \infty\right)$ instead of $\eta^{x_{k}}$.
- Translating and rescaling, the event $\left\{\sigma_{k}^{x}<\sigma^{x_{k}}\left(\mathbb{H} \backslash B\left(x, \frac{1}{2} \epsilon^{k}\right)\right)\right\}$ turns into the event $\{\hat{\eta}$ hits $B(1, \epsilon)$ before leaving $B(1,2)\}$, where $\hat{\eta}$ is the rescaled curve. (The condition on Q remains roughly the same.)
- Denote by $\left(g_{t}\right)$ the Loewner chain corresponding to $\hat{\eta}$ and weigh the probability measure \mathbb{P} with the local martingale

$$
M_{t}^{\zeta}(1)=g_{t}^{\prime}(1)^{\zeta} Q_{t}^{\mu} \delta_{t}^{-\mu(1+\rho / 2)}\left(g_{t}(1)-V_{t}^{L}\right)^{\mu(1+\rho / 2)}
$$

and denote the resulting measure by \mathbb{P}^{*} (above quantities are the mentioned above, but for $\hat{\eta}$).

Two-point estimate

- Using estimates on g^{\prime} and geometric estimates on the other quantities of M_{t}^{ζ}, we have

$$
\begin{aligned}
& \psi(-\log \epsilon)^{-|\zeta|} \epsilon^{-(\zeta \beta-\mu)(1+\rho / 2)} \mathbb{P}^{*}\left(A_{k}^{1} \cap \tilde{I}_{k / a+G\left(x, x_{k}\right)}^{k}\right) \\
& \lesssim \mathbb{P}\left(A_{k}^{1} \cap \tilde{I}_{k / a+}^{k}\right. \\
& \lesssim \psi(-\log \epsilon)^{|\zeta|} \epsilon^{-(\zeta \beta-\mu)(1+\rho / 2)} \mathbb{P}^{*}\left(A_{k}^{1} \cap \tilde{I}_{k / a+G\left(x, x_{k}\right)}^{k}\right) .
\end{aligned}
$$

Two-point estimate

Let $\gamma:[0,1] \rightarrow \overline{\mathbb{H}}$, be a deterministic curve starting at 0 and remaining in \mathbb{H} after that, and $\tilde{\epsilon}>0$ be such that if $\hat{\eta}$ comes within distance $\tilde{\epsilon}$ of the tip $\gamma(1)$ before exiting the $\tilde{\epsilon}$-neighborhood of γ, then

$$
\operatorname{dist}(1, F(\partial B(1,2) \cap \mathbb{H})) \geq 2 \text { and } F\left(\min \left\{\hat{K}_{\tilde{\sigma}_{1}} \cap \mathbb{R}\right\}\right)<-2
$$

and $\operatorname{dist}\left(F\left(K^{+}\right), 1\right) \geq \tilde{\delta}>0$. Now, we can consider a curve with only one force point, $F\left(K^{+}\right)$.

Two-point estimate

Let $\varphi(z)=\frac{\epsilon z}{1-z}$ and do a Schramm-Wilson coordinate change. $\varphi(B(1, \epsilon))=B(-\epsilon, 1)$ and $\varphi(B(1,2))=B\left(-\epsilon, \frac{\epsilon}{2}\right)$. The event of hitting $B(1, \epsilon)$ before exiting $B(1,2)$ turns into hitting $\partial B(-\epsilon, 1)$ before hitting $B\left(-\epsilon, \frac{\epsilon}{2}\right)$. Happens with probability $\geq p_{0}>0$. Thus,

$$
\mathbb{P}^{*}\left(A_{k} \cap \tilde{I}_{k / a+G\left(x, x_{k}\right)}^{k}\right) \gtrsim 1 .
$$

Two-point estimate

With these estimates at hand, separate as:

$$
\begin{aligned}
\mathbb{E}\left[E^{n}(x) E^{n}(y)\right] & \leq \mathbb{E}\left[E^{m-1}(x) E^{m+2, n}(x) E^{m+2, n}(y)\right] \\
& \lesssim \mathbb{E}\left[E^{m-1}(x)\right] \mathbb{E}\left[E^{m+2, n}(x)\right] \mathbb{E}\left[E^{m+2, n}(y)\right]
\end{aligned}
$$

and then "patch up" with curves merging (without losing too much probability), and estimate with the last one-point estimate and we are done (after applying this together with Frostman's lemma).

Thanks for listening!

