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Multifractal spectrum

Consider SLE(p) with force point xg = 0T. Find dimension of set of
points x such that

@ Curve hits x with certain "angle".

o gl (x)~e P ass— oo,
where 75 = inf{t > 0 : dist(n([0, t]), x) < e~*}.

® Woo((Or,x],H\ K,) = e as s — o0,
where woo (A, H\ K) = limy_,o0 yw(iy, A,H\ K), O = maxK; N R.
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Multifractal spectrum

@ SLE curves very rough = no up to constants estimates

e Formal set:
Vg = 0: i fll ! =—-06(1+p/2
g =9X> .Slm . oggTs(x)— ﬁ( p/ ),

Ts = Ts(x) < 00 Vs > 0}.
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Main result

Letk >0, pe ((—2)V(5—4),5—2), xg = 0" and write a = 2/k. Define

d(ﬁ)::l—%cl_ap)—1+25>2<1+£)

2a B 2

and let By = ﬁ, f— =inf{B:d(B) > 0} and
B+ =sup{B:d(B) > 0}. Then, if k € (0,4]

dlmHV,B = d(/B) fOfIB € [ﬁ—uﬁ-f—]a
and if k € (4,8),

dimHV5 = d(ﬁ) for 5 € [ﬁ_,ﬁo].
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@ Preliminaries
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Imaginary geometry

We can couple a GFF h and SLE such that SLE,(p) arise as the flow lines

of the "vector field" /X (but we will call them flow lines of h), where y is
a constant, depending on k.

Figure: Flow lines of a GFF on the square [—1,1]2. (Simulation by Jason Miller.)
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Imaginary geometry

Fix0</i<4andIetxzx(m):%—§andm'zl—ﬁﬁe(4,oo). Let h

be a GFF in H with piecewise constant boundary data. We can couple h
with SLE such that:

o The flow line 7 of h (of e™/X) is an SLE(p) curve from 0 to oo (the
locations and weights of the force points depend on the boundary data
of h).

@ A flow line of angle 0, denoted 7y, is a flow line of h+ 0.

@ The counterflow line of his an SLE,/(p) curve from oo to 0 coupled
with —h. We denote the counterflow line by 7.

@ A counterflow line is the "light cone" of flow lines. The outer
boundaries of 7' are given by n_z and 7z.

@ In this coupling, 1, 9 and 7’ are almost surely determined by the GFF.

The same holds in other simply connected domains than H analogously.

Lukas Schoug (KTH) A multifractal SLE (p) spectrum / 39



Imaginary geometry

—17

Figure: Flow lines and a counterflow line coupled in the same imaginary geometry.
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Imaginary geometry

Let 7 denote the flow line of angle 6 from x to co. Fix x1, x> € R such
that x; > x». Then,
(i) 01 < Oy = ngi a.s. stays to the right of ngz. Can hit if 6 — 01 < 7=
(i) 61 =02 = ny!, 1> can intersect and if they do, they merge and
never separate.

(iii) o <01 < b+ 7= 773; and ngs can intersect and:
intersecting = cross and never cross back.

Can hit after crossing if 61 — 6> < 7.
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Imaginary geometry

N =0 | X = 0ix

=N =0 | X - 05x

(C) O < 01 < 60y + .
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Imaginary geometry

Let € >0, n ~SLE.(p,; pg), X1, =07, x1.p =07, p11,p1r > —2 and
v :[0,1] = H, v(0) = 0, v((0,1]) C H, then with positive probability, 1
does not leave the e-neighborhood, A(¢), of v before coming within
distance € from the tip v(1).
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Imaginary geometry

N~ SLEH(E/_;BR)' x1,0 =07, x1 g =0T, p1,p1.r > —2 that can hit
[Xk.R, Xk+1,r) and € > 0 such that |[xp 4| > € for g € {L, R} and
Xk+1,R — Xk,R > € and Xk,R < el ~ curve in H, from 0 to [Xk,R7Xk+1,R]-

P(n hits [xk r, Xk+1,r] before leaving A(€)) > po(x, max |p;j ql, Pk r>€) > 0
J7q
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Imaginary geometry

Absolute continuity: Let ¢ = (D, zy, x;, Xg, Zoo) be a configuration and
U a bounded open neighborhood of z. Let Y denote the law of an
SLEH(BL;BR) process with configuration ¢, stopped upon exiting U. Let

¢ =(D,zy,%,,XR, Z~) be another configuration.

@ If the force points of ¢ and & in U agree, and the distance from U to
the force points that differ is positive, then Y and Mé} are mutually
absolutely continuous.

o If D=H, D CH, z =0, the force points agree in U and ¢ > 0 such
that dist(U,H \ D) > ¢ and the force points of ¢ and ¢ which disagree

are at distance at least ¢ from U, then there exists a constant
C = C(U,s,k,{pjq}jq) = 1 such that

Q.
(a1

W
0

< <C.

O =
Q
o
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© Martingales, one-point estimate and concentration
@ Martingales
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We fix k € (0,8) and let a = 2/k and parametrize the SLE.(p) as the
solution to

Orgt(2) = ma 8(2) = z,

with

ap/?2
dW; = dB dt Wy = 0;
t = t+Wt_Vt ) b =0;
a

dVy = ———dt, Vo =
t — Vt Wt 0 XR,

where B; is a one-dimensional standard Brownian motion with By = 0.
From now on, assume that p € ((=2) V(5 —4),5 — 2).
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Martingale

. 2
oWeIetuC:2a—%+%andﬁx—%<§<oo,and

= pe + 4/ p2 + 2ac, B=——
VHE +2aC

o We write
gt(x) — Vi gt(x) — Vi
) =7 =
=g M w
@ Then

— 1+E
ME(x) = gi(x) Qts, "R,
is a local martingale and
dMg(x) _ 4B,
Mi(x)  fe(x)
where f;(x) = gi(x) — W,.
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Martingale

o Weight by Mtc to get the measure P*.

@ This measure change is practical, since

dt(x) = dist(x, n([0, t]))

and since under P*, Q; has an invariant distribution, and hence we
have good control.

o Furthermore, Q; is the quotient of two harmonic measures.
@ Gives one-point estimate sufficient for upper bound on dimension.

o I; good event until the time § = (x — xg)e~?!. Concentration
estimates = P*(/;) arbitrarily close to 1.
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© Two-point estimate
@ Frostman's lemma
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Frostman's lemma

Let A C R" be a set and let v be a measure with support contained in A
and let

s = [[ vy,

If Js(v) < oo, then dimyA > s.
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© Two-point estimate

@ Perfect points
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Perfect points

o Fix0<r <4and pc (2,45 —2), hGFF in H with boundary data
—XAin R_ and A\(1+ p) on R,. Let n be the zero-angle flow line
emanating from 0, i.e., an SLE(p) curve with force point 0.

@ Denote the (zero-angle) flow line from x by 7*.

¥ ~ SLE.(2+ p, —2 — p; p) with configuration (H, x, (0, x™),x™, 00).
o Fix 6 € (0,1) and e = ™%, a > 10 (to be determined later).
@ For x > 1 and k € N, we write

x— ek if k>1,
Xk —
0 if k=0.
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Perfect points

e For U C H,

a*(U) = inf{t > 0:n*(t) € U}.
and o = o*k(B(x, ek1)).

o Ik = Ik(x) is the good event for 5 regarding concentration of
measure (and its indicator), and

/If =K [Ef/a—l—G(x,xk) ygz} )

where G(x, x4) is a function such that (£ + G(x, x)) > o7.
o Let %R denote the right side of 7 and

VE = max{y € ([0, t]) "R} and

ok — woo([V{, X1, HL\ ([0, t])) '
C o weo(1PeR([0, £]) U [V X1 H N\ ([0, )
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Perfect points

o Al(x) is the event that
(i) of < o0,
(i) Qk € [0,1— 6] and
(iii) of < o (H\ B(x, 26 “)),
and Ek(x) = 1Ak(X)/k
o We let A%(x) be the event that on A}(x)
(i) nxk*1|[,,k ,.00) Merges with 7%[j ,x) before exiting
B(x, 2€¥) \ B(x, k1)

(i) arg(n™(t) —x) = gmln(arg(nxkﬂ(g;fﬂ) x), arg(i* (o) — x)) for
t > o} but before merging with 7™+,

and Elg(X) = lAi(X)
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Perfect points
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Figure: If Ef(x) =1, then 7%~ hits B(x, "), Qjy € [6,1 — 6] and the derivatives
of the Loewner chain for n*-* behave as we want. Furthermore, given that
EX(x) = 1, we have that if EZ(x) = 1, then n**~* merges with 1’ before exiting
B(x, %) \ B(x, €*1) and does not go too close to {s > x} before doing so.
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Perfect points

o Let Ex(x) = Ef(x)EZ(x), E™"(x) = EL_1(x) [Tkemso Ex(x), and
E"(x) = E%"(x).

o Is this the right event to consider? Yes, because by Koebe 1/4
theorem,

o (B(x.)(¥) = € 1(&(B(x) (X) = Vo (B(xe))
= 6_:l‘f‘)oo((oa(B(x,e))a X]v H \ Ka(B(X,e)))

where O; is the rightmost point of K; N R, and the harmonic measure
from oo of the "inner" parts of ([0, 0%]) and n([0, o(B(x, ¥T1))])
are comparable.
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© Two-point estimate

@ Two-point estimate
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Two-point estimate

The sequence of measures that we will consider is {v,} where

E"(x
A= [, 3 aeae e

Dp={1+(—3)e":j=1,...,¢ "} and Jy(x) =[x — S, x + S].
The aim is to prove the following.

Proposition
For each sufficiently small § € (0, 3) there exist a constant c(5) > 0 and a
subpower function 1) such that for all x,y € [1,2] and m € N such that
2eM2 < |x —y| < %e’", we have
E[E"(x)E"(y)] <c(6)*™ 24 (~ log e) > +2)cl
x (mt2A(CB=m) A+ 2R EN(x)|E[E"(y)].
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Two-point estimate

Strategy: want to mimic the strategy of Miller and Wu [2017] to separate
points, view them as "almost independent". Do this via the result on the
boundedness of Radon-Nikodym derivatives. Need the following.

Lemma

For every x > 1 and m,n € N such that m < n, it holds that

E[E™(x)E™"(x)] =< E[ET ()IE[E™"(x)].
Furthermore, if y is such that 2¢™*2 < |x — y| < 1€™, then
E[E™ () EMTHI(x) EMTE(y)] < E[E™ T (x)JE[E™ T (x)JE[ET T (y))-

The constants in =< depend only on k and p.
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Proof idea: the R-N derivative between the laws of the green part with and
without the purple, is bounded above and below by a constant, which is
independent of m, since

dist(K*, K?) o
diam(U)
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Two-point estimate

The next result we need is the following.

For each x > 1 and m, n € N such that m < n, it holds that

E[E"(x)] =< E[ET(x)]E[E™"(x)],

where the constants depend only on k, p and 0.

Proof idea: the condition on Q x makes sure that the harmonic measure
(from o) of each side of the curve, and [Vox, x] and hence

™ +1([0, o4 1]) are comparable. Hence, using the mapping out function,
each of them will have a positive length, and using that the curve then will
follow any curve we want with positive probability gives the result.
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Two-point estimate

The last lemma we need is:

For each § € (0, 3), sufficiently small, there exist a constant c(§) > 0 and
a subpower function 1 such that the for each x > 1,

E[Em(x)] > C(é)mw(_ |0g 6)—m|C|6m(Cﬁ—M)(1+P/2)‘

Proof idea: by previous lemmas, we need only check that there exist a
constant ¢(d) and a subpower function ¢ such that

E[E}(x)] > c(8)p(— log ) I¢l (A=) (1+0/2)
E[EZ(x)|E* M (x) = 1, Ef(x) = 1] < L.

The latter follows by the same idea as the previous lemma.
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Two-point estimate

o BIEN()] =P (AL 0T, ey

@ We can consider an SLE,(—2 — p; p) curve with configuration
(H, Xk, X, , x;,00) instead of n.

o Translating and rescaling, the event {0} < o*(H \ B(x, 3¢¥))} turns
into the event {7 hits B(1,€) before leaving B(1,2)}, where 7 is the
rescaled curve. (The condition on Q remains roughly the same.)

@ Denote by (gt) the Loewner chain corresponding to 7} and weigh the
probability measure P with the local martingale

Mf(l) = g;(l)CQ#(S;M(lerm)(gt(l) _ VtL),LL(1+p/2)7

and denote the resulting measure by P* (above quantities are the
mentioned above, but for 7).
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Two-point estimate

@ Using estimates on g’ and geometric estimates on the other quantities
of MtC, we have

¥(— log 6)—IC\6—(Cﬁ—u)(1+p/2)[p>*(,4i N 7If/a+G(x,xk))

S, P(A}( N ilf/a—l—G(x,xk))
< §(— log o) e B mo2pr (AL ], )
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Two-point estimate

F(0B(1,2))

=~

dB(1,2) L’ AN
- ~
-——-— - -———
- -~ F ' . _8B(1 2)~~\ .

L S — Y Soose
. R e . o0
,’ \ 1 ,' Ay N
’ \ P \“
1 \ ’ 7 \

, TS \ 1 1 F(Ky) L
1 K- II""\'I \ 1 1 ! \\
1 = K 1 1 1 1 1 1

0 1 F(K-) 0 1

Let 7 : [0,1] — H, be a deterministic curve starting at 0 and remaining in
H after that, and € > 0 be such that if 7 comes within distance € of the tip
7(1) before exiting the é-neighborhood of ~, then

dist(1, F(9B(1,2) N H)) > 2 and F(min{K3, NR}) < —2,

and dist(F(K*),1) > 6 > 0. Now, we can consider a curve with only one
force point, F(K™).
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Two-point estimate

AB(—e,1) = @(8B(1,¢))

- -
- ity

1 . w(n) .

—e=ploe) 0 g

Let ¢(z) = 1% and do a Schramm-Wilson coordinate change.
©(B(1,¢€)) = B(—¢,1) and ¢(B(1,2)) = B(—¢, 5). The event of hitting
B(1,€) before exiting B(1,2) turns into hitting 9B(—¢, 1) before hitting

B(—e¢, 5). Happens with probability > pg > 0. Thus,

P*(Ak N s 6xm) 2 1
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Two-point estimate

With these estimates at hand, separate as:
E[E"(x)E"(y)] < E[ET™H(x)E™ T2 (x)E™2"(y)]
S E[ETH)IE[E™ 2 (x)E[E™ 2" (y)]

and then "patch up" with curves merging (without losing too much
probability), and estimate with the last one-point estimate and we are done
(after applying this together with Frostman's lemma).
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Thanks for listening!
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