A multifractal $SLE_{\kappa}(\rho)$ spectrum

Lukas Schoug

Department of Mathematics KTH Royal Institute of Technology

Random Conformal Geometry and Related Fields

(人間) 人 ヨト 人 ヨト

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

Consider $SLE_{\kappa}(\rho)$ with force point $x_R = 0^+$. Find dimension of set of points x such that

• Curve hits x with certain "angle".

•
$$g'_{\tau_s}(x) \approx e^{-\beta s}$$
 as $s \to \infty$,
where $\tau_s = \inf\{t \ge 0 : \operatorname{dist}(\eta([0, t]), x) \le e^{-s}\}.$

•
$$\omega_{\infty}((O_{\tau_s}, x], \mathbb{H} \setminus K_{\tau_s}) \approx e^{-\alpha s} \text{ as } s \to \infty,$$

where $\omega_{\infty}(A, \mathbb{H} \setminus K) = \lim_{y \to \infty} y \omega(iy, A, \mathbb{H} \setminus K), \ O_t = \max K_t \cap \mathbb{R}.$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

- $\bullet~\mbox{SLE}$ curves very rough $\Rightarrow~\mbox{no}$ up to constants estimates
- Formal set:

$$V_{eta} = igg\{ x > 0 : \lim_{s o \infty} rac{1}{s} \log g_{ au_s}'(x) = -eta(1+
ho/2), \ au_s = au_s(x) < \infty \ orall s > 0 igg\}.$$

《曰》 《聞》 《臣》 《臣》 三臣

Theorem

Let $\kappa > 0$, $\rho \in ((-2) \lor (\frac{\kappa}{2} - 4), \frac{\kappa}{2} - 2)$, $x_R = 0^+$ and write $a = 2/\kappa$. Define

$$\mathsf{d}(eta)\coloneqq 1-rac{\mathsf{a}eta}{2}\left(rac{(1-\mathsf{a}
ho)}{2\mathsf{a}}-rac{1+2eta}{eta}
ight)^2\left(1+rac{
ho}{2}
ight)$$

and let $\beta_0 = \frac{2a}{|4a-1+a\rho|}$, $\beta_- = \inf\{\beta : d(\beta) > 0\}$ and $\beta_+ = \sup\{\beta : d(\beta) > 0\}$. Then, if $\kappa \in (0, 4]$

$$\dim_H V_{\beta} = d(\beta)$$
 for $\beta \in [\beta_-, \beta_+]$,

and if $\kappa \in (4, 8)$,

$$\dim_H V_{\beta} = d(\beta)$$
 for $\beta \in [\beta_-, \beta_0]$.

《曰》 《聞》 《臣》 《臣》 二臣

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration
 Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

We can couple a GFF *h* and SLE such that $SLE_{\kappa}(\underline{\rho})$ arise as the flow lines of the "vector field" $e^{ih/\chi}$ (but we will call them flow lines of *h*), where χ is a constant, depending on κ .

Figure: Flow lines of a GFF on the square $[-1,1]^2$. (Simulation by Jason Miller.)

Fix $0 < \kappa < 4$ and let $\chi = \chi(\kappa) = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$ and $\kappa' = \frac{16}{\kappa} \in (4, \infty)$. Let h be a GFF in \mathbb{H} with piecewise constant boundary data. We can couple h with SLE such that:

- The flow line η of h (of e^{ih/χ}) is an SLE_κ(<u>ρ</u>) curve from 0 to ∞ (the locations and weights of the force points depend on the boundary data of h).
- A flow line of angle θ , denoted η_{θ} , is a flow line of $h + \theta \chi$.
- The counterflow line of h is an $SLE_{\kappa'}(\underline{\rho})$ curve from ∞ to 0 coupled with -h. We denote the counterflow line by η' .
- A counterflow line is the "light cone" of flow lines. The outer boundaries of η' are given by $\eta_{-\frac{\pi}{2}}$ and $\eta_{\frac{\pi}{2}}$.
- In this coupling, η , η_{θ} and η' are almost surely determined by the GFF. The same holds in other simply connected domains than \mathbb{H} analogously.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Imaginary geometry

Figure: Flow lines and a counterflow line coupled in the same imaginary geometry.

æ

- Let η_{θ}^{x} denote the flow line of angle θ from x to ∞ . Fix $x_{1}, x_{2} \in \mathbb{R}$ such that $x_{1} \geq x_{2}$. Then,
 - (i) $\theta_1 < \theta_2 \Rightarrow \eta_{\theta_1}^{x_1}$ a.s. stays to the right of $\eta_{\theta_2}^{x_2}$. Can hit if $\theta_2 \theta_1 < \frac{\pi\kappa}{4-\kappa}$.
 - (ii) $\theta_1 = \theta_2 \Rightarrow \eta_{\theta_1}^{x_1}, \eta_{\theta_2}^{x_2}$ can intersect and if they do, they merge and never separate.

(iii) $\theta_2 < \theta_1 < \theta_2 + \pi \Rightarrow \eta_{\theta_1}^{x_1}$ and $\eta_{\theta_2}^{x_2}$ can intersect and: intersecting \Rightarrow cross and never cross back. Can hit after crossing if $\theta_1 - \theta_2 < \frac{\pi\kappa}{4-\kappa}$.

《曰》 《聞》 《臣》 《臣》 三臣

Imaginary geometry

(b)
$$\theta = \theta_1 = \theta_2$$

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Lukas Schoug (KTH)

Let $\epsilon > 0$, $\eta \sim SLE_{\kappa}(\underline{\rho}_{L}; \underline{\rho}_{R})$, $x_{1,L} = 0^{-}$, $x_{1,R} = 0^{+}$, $\rho_{1,L}, \rho_{1,R} > -2$ and $\gamma : [0,1] \rightarrow \overline{\mathbb{H}}$, $\gamma(0) = 0$, $\gamma((0,1]) \subset \mathbb{H}$, then with positive probability, η does not leave the ϵ -neighborhood, $A(\epsilon)$, of γ before coming within distance ϵ from the tip $\gamma(1)$.

Imaginary geometry

$$\begin{split} \eta &\sim \mathsf{SLE}_{\kappa}(\underline{\rho}_{L};\underline{\rho}_{R}), \, x_{1,L} = 0^{-}, \, x_{1,R} = 0^{+}, \, \rho_{1,L}, \rho_{1,R} > -2 \text{ that can hit} \\ [x_{k,R}, x_{k+1,R}] \text{ and } \epsilon > 0 \text{ such that } |x_{2,q}| > \epsilon \text{ for } q \in \{L, R\} \text{ and} \\ x_{k+1,R} - x_{k,R} \geq \epsilon \text{ and } x_{k,R} \leq \epsilon^{-1}. \ \gamma \text{ curve in } \mathbb{H}, \text{ from 0 to } [x_{k,R}, x_{k+1,R}]. \end{split}$$

 $\mathbb{P}(\eta \text{ hits } [x_{k,R}, x_{k+1,R}] \text{ before leaving } A(\epsilon)) \geq p_0(\kappa, \max_{j,q} |\rho_{j,q}|, \overline{\rho}_{k,R}, \epsilon) > 0$

Imaginary geometry

Absolute continuity: Let $c = (D, z_0, \underline{x}_L, \underline{x}_R, z_\infty)$ be a configuration and U a bounded open neighborhood of z_0 . Let μ_c^U denote the law of an $SLE_{\kappa}(\underline{\rho}_L; \underline{\rho}_R)$ process with configuration c, stopped upon exiting U. Let $\tilde{c} = (\widetilde{D}, z_0, \underline{\tilde{x}}_L, \underline{\tilde{x}}_R, \overline{\tilde{z}}_\infty)$ be another configuration.

- If the force points of c and \tilde{c} in U agree, and the distance from U to the force points that differ is positive, then μ_c^U and $\mu_{\tilde{c}}^U$ are mutually absolutely continuous.
- If D = ℍ, D̃ ⊆ ℍ, z₀ = 0, the force points agree in U and ς > 0 such that dist(U, ℍ \ D̃) > ς and the force points of c and c̃ which disagree are at distance at least ς from U, then there exists a constant C = C(U, ς, κ, {ρ_{j,q}}_{j,q}) ≥ 1 such that

$$\frac{1}{C} \leq \frac{d\mu_{\tilde{c}}^U}{d\mu_c^U} \leq C.$$

イロト イポト イヨト イヨト 三油

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

We fix $\kappa \in (0,8)$ and let $a = 2/\kappa$ and parametrize the SLE_{κ}(ρ) as the solution to

$$\partial_t g_t(z) = rac{a}{g_t(z) - W_t}, \qquad g_0(z) = z,$$

with

$$dW_t = dB_t + \frac{a\rho/2}{W_t - V_t}dt, \qquad \qquad W_0 = 0;$$

$$dV_t = \frac{a}{V_t - W_t}dt, \qquad \qquad V_0 = x_R,$$

where B_t is a one-dimensional standard Brownian motion with $B_0 = 0$. From now on, assume that $\rho \in ((-2) \vee (\frac{\kappa}{2} - 4), \frac{\kappa}{2} - 2)$.

◆□> ◆圖> ◆国> ◆国> 三国

Martingale

• We let
$$\mu_c = 2a - \frac{1}{2} + \frac{a\rho}{2}$$
 and fix $-\frac{\mu_c^2}{2a} < \zeta < \infty$, and
 $\mu = \mu_c + \sqrt{\mu_c^2 + 2a\zeta}, \quad \beta = \frac{a}{\sqrt{\mu_c^2 + 2a\zeta}}.$

• We write

$$\delta_t(x) = \frac{g_t(x) - V_t}{g_t'(x)}, \quad Q_t(x) = \frac{g_t(x) - V_t}{g_t(x) - W_t}$$

• Then

$$M_t^{\zeta}(x) = g_t'(x)^{\zeta} Q_t^{\mu} \delta_t^{-\mu(1+\frac{\rho}{2})},$$

is a local martingale and

$$\frac{dM_t^{\zeta}(x)}{M_t^{\zeta}(x)} = \frac{\mu}{f_t(x)} dB_t,$$

where $f_t(x) = g_t(x) - W_t$.

<ロト </2> </2> </2> </2>

- Weight by M_t^{ζ} to get the measure \mathbb{P}^* .
- This measure change is practical, since

$$\delta_t(x) \asymp \operatorname{dist}(x, \eta([0, t]))$$

and since under \mathbb{P}^* , Q_t has an invariant distribution, and hence we have good control.

- Furthermore, Q_t is the quotient of two harmonic measures.
- Gives one-point estimate sufficient for upper bound on dimension.
- \tilde{l}_t good event until the time $\delta = (x x_R)e^{-at}$. Concentration estimates $\Rightarrow \mathbb{P}^*(\tilde{l}_t)$ arbitrarily close to 1.

★@> ★ E> ★ E> = E

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration
 Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

Let $A \subset \mathbb{R}^n$ be a set and let ν be a measure with support contained in A and let

$$J_s(\nu) = \iint_{\mathbb{R}^n \times \mathbb{R}^n} rac{1}{|x-y|^s} d
u(x) d
u(y).$$

If $J_s(\nu) < \infty$, then dim_HA $\geq s$.

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration
 Martingales

Two-point estimate
 Frostman's lemma

- Perfect points
- Two-point estimate

- Fix $0 < \kappa < 4$ and $\rho \in (-2, \frac{\kappa}{2} 2)$, *h* GFF in \mathbb{H} with boundary data $-\lambda$ in \mathbb{R}_{-} and $\lambda(1 + \rho)$ on \mathbb{R}_{+} . Let η be the zero-angle flow line emanating from 0, i.e., an SLE_{κ}(ρ) curve with force point 0⁺.
- Denote the (zero-angle) flow line from x by η^{x} . $\eta^{x} \sim SLE_{\kappa}(2 + \rho, -2 - \rho; \rho)$ with configuration $(\mathbb{H}, x, (0, x^{-}), x^{+}, \infty)$.
- Fix $\delta \in (0, \frac{1}{2})$ and $\epsilon = e^{-\alpha}$, $\alpha > 10$ (to be determined later).
- For $x \ge 1$ and $k \in \mathbb{N}$, we write

$$x_k = \begin{cases} x - \frac{1}{4}\epsilon^k & \text{if } k \ge 1, \\ 0 & \text{if } k = 0. \end{cases}$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Perfect points

• For $U \subset \mathbb{H}$,

$$\sigma^{x}(U) = \inf\{t \ge 0 : \eta^{x}(t) \in \overline{U}\}.$$

and $\sigma_k^x = \sigma^{x_k}(B(x, \epsilon^{k+1})).$

Ĩ^k_t = *Ĩ*^k_t(x) is the good event for η^{xk} regarding concentration of measure (and its indicator), and

$$I_k^k = \mathbb{E}\left[\tilde{I}_{k/a+G(x,x_k)}^k \middle| \mathscr{F}_{\sigma_k^x}\right],$$

where $G(x, x_k)$ is a function such that $\tilde{t}(\frac{k}{a} + G(x, x_k)) \ge \sigma_k^x$. • Let $\eta^{x_k, R}$ denote the right side of η^{x_k} and $V_t^k = \max\{y \in \eta^{x_k}([0, t]) \cap \mathbb{R}\}$ and $Q_t^k = \frac{\omega_{\infty}([V_t^k, x], \mathbb{H} \setminus \eta^{x_k}([0, t]))}{\omega_{\infty}([V_t^k, x], \mathbb{H} \setminus \eta^{x_k}([0, t]))}$.

$$W_t = rac{1}{\omega_\infty(\eta^{x_k,R}([0,t])\cup [V_t^k,x],\mathbb{H}\setminus \eta^{x_k}([0,t]))}.$$

・ 御 と ・ 言 と ・ ・ 言 と ……

• $A^1_{\mu}(x)$ is the event that (i) $\sigma_{k}^{x} < \infty$, (ii) $Q_{\sigma^{\star}}^{k} \in [\delta, 1-\delta]$ and (iii) $\sigma_{\iota}^{x} < \sigma^{x_{k}}(\mathbb{H} \setminus B(x, \frac{1}{2}\epsilon^{k})),$ and $E_{k}^{1}(x) = 1_{A_{k}(x)}I_{k}^{u,k}$. • We let $A_{k}^{2}(x)$ be the event that on $A_{k}^{1}(x)$ (i) $\eta^{x_{k-1}}|_{[\sigma_{t}^{x}]}$, merges with $\eta^{x_{k}}|_{[0,\sigma_{t}^{x}]}$ before exiting $B(x, \frac{1}{2}\epsilon^k) \setminus B(x, \epsilon^{k+1})$ (ii) $\arg(\eta^{x_k}(t) - x) \ge \frac{2}{3} \min(\arg(\eta^{x_{k+1}}(\sigma_{k+1}^x) - x), \arg(\eta^{x_k}(\sigma_k^x) - x)))$ for $t > \sigma_k^x$ but before merging with $\eta^{x_{k+1}}$, and $E_k^2(x) = 1_{A_k^2(x)}$.

□ ▶ ★ 臣 ▶ ★ 臣 ▶ □ 臣

Figure: If $E_k^1(x) = 1$, then $\eta^{x_{k-1}}$ hits $B(x, \epsilon^k)$, $Q_{\sigma_k}^k \in [\delta, 1-\delta]$ and the derivatives of the Loewner chain for $\eta^{x_{k-1}}$ behave as we want. Furthermore, given that $E_k^1(x) = 1$, we have that if $E_k^2(x) = 1$, then $\eta^{x_{k-1}}$ merges with η^{x_k} before exiting $B(x, \frac{\epsilon^k}{2}) \setminus B(x, \epsilon^{k+1})$ and does not go too close to $\{s > x\}$ before doing so.

- Let $E_k(x) = E_k^1(x)E_k^2(x)$, $E^{m,n}(x) = E_{m+1}^1(x)\prod_{k=m+2}^n E_k(x)$, and $E^n(x) = E^{0,n}(x)$.
- Is this the right event to consider? Yes, because by Koebe 1/4 theorem,

$$egin{aligned} & g'_{\sigma(B(x,\epsilon))}(x) symp \epsilon^{-1}(g_{\sigma(B(x,\epsilon))}(x) - V_{\sigma(B(x,\epsilon))}) \ &= \epsilon^{-1}\omega_{\infty}((O_{\sigma(B(x,\epsilon))},x],\mathbb{H}\setminus \mathcal{K}_{\sigma(B(x,\epsilon))})) \end{aligned}$$

where O_t is the rightmost point of $K_t \cap \mathbb{R}$, and the harmonic measure from ∞ of the "inner" parts of $\eta^{x_k}([0, \sigma_k^x])$ and $\eta([0, \sigma(B(x, \epsilon^{k+1}))])$ are comparable.

<ロ> (四) (四) (三) (三) (三) (三)

Outline

Preliminaries

- Multifractal spectrum
- Imaginary geometry

Martingales, one-point estimate and concentration
 Martingales

3 Two-point estimate

- Frostman's lemma
- Perfect points
- Two-point estimate

Two-point estimate

The sequence of measures that we will consider is $\{\nu_n\}$ where

$$\nu_n(A) = \int_A \sum_{x \in \mathscr{D}_n} \frac{E^n(x)}{\mathbb{E}[E^n(x)]} \mathbb{1}_{J_n(x)}(t) dt,$$

 $\mathscr{D}_n = \{1 + (j - \frac{1}{2})\epsilon^n : j = 1, \dots, \epsilon^{-n}\}$ and $J_n(x) = [x - \frac{\epsilon^n}{2}, x + \frac{\epsilon^n}{2}]$. The aim is to prove the following.

Proposition

For each sufficiently small $\delta \in (0, \frac{1}{2})$ there exist a constant $c(\delta) > 0$ and a subpower function ψ such that for all $x, y \in [1, 2]$ and $m \in \mathbb{N}$ such that $2\epsilon^{m+2} \leq |x - y| \leq \frac{1}{2}\epsilon^m$, we have

$$\mathbb{E}[E^n(x)E^n(y)] \leq c(\delta)^{2m+2}\psi(-\log\epsilon)^{(3m+2)|\zeta|} \\ \times \epsilon^{(m+2)(\zeta\beta-\mu)(1+\rho/2)}\mathbb{E}[E^n(x)]\mathbb{E}[E^n(y)].$$

Strategy: want to mimic the strategy of Miller and Wu [2017] to separate points, view them as "almost independent". Do this via the result on the boundedness of Radon-Nikodym derivatives. Need the following.

Lemma

For every $x \ge 1$ and $m, n \in \mathbb{N}$ such that $m \le n$, it holds that

$$\mathbb{E}[E^m(x)E^{m,n}(x)] \asymp \mathbb{E}[E^m(x)]\mathbb{E}[E^{m,n}(x)].$$

Furthermore, if y is such that $2\epsilon^{m+2} \le |x-y| \le \frac{1}{2}\epsilon^m$, then

 $\mathbb{E}[E^{m-1}(x)E^{m+1,n}(x)E^{m+1,n}(y)] \asymp \mathbb{E}[E^{m-1}(x)]\mathbb{E}[E^{m+1,n}(x)]\mathbb{E}[E^{m+1,n}(y)].$

The constants in \asymp depend only on κ and ρ .

イロト イポト イヨト イヨト 二日

Two-point estimate

Proof idea: the R-N derivative between the laws of the green part with and without the purple, is bounded above and below by a constant, which is independent of m, since

$$rac{{\sf dist}({\cal K}^1,{\cal K}^2)}{{\sf diam}(U)}\gtrsim 1.$$

The next result we need is the following.

Lemma

For each $x \ge 1$ and $m, n \in \mathbb{N}$ such that $m \le n$, it holds that

 $\mathbb{E}[E^n(x)] \asymp \mathbb{E}[E^m(x)]\mathbb{E}[E^{m,n}(x)],$

where the constants depend only on κ , ρ and δ .

Proof idea: the condition on $Q_{\sigma_m^{\times}}^k$ makes sure that the harmonic measure (from ∞) of each side of the curve, and $[V_{\sigma_m^{\times}}, x]$ and hence $\eta^{\chi_{m+1}}([0, \sigma_{m+1}^{\times}])$ are comparable. Hence, using the mapping out function, each of them will have a positive length, and using that the curve then will follow any curve we want with positive probability gives the result.

The last lemma we need is:

Lemma

For each $\delta \in (0, \frac{1}{2})$, sufficiently small, there exist a constant $c(\delta) > 0$ and a subpower function ψ such that the for each $x \ge 1$,

$$\mathbb{E}[E^m(x)] \ge c(\delta)^m \psi(-\log \epsilon)^{-m|\zeta|} \epsilon^{m(\zeta\beta-\mu)(1+\rho/2)}$$

Proof idea: by previous lemmas, we need only check that there exist a constant $c(\delta)$ and a subpower function ψ such that

$$\mathbb{E}[E_k^1(x)] \ge c(\delta)\psi(-\log \epsilon)^{-|\zeta|}\epsilon^{(\zeta\beta-\mu)(1+\rho/2)}$$
$$\mathbb{E}[E_k^2(x)|E^{k-1}(x)=1, E_k^1(x)=1] \asymp 1.$$

The latter follows by the same idea as the previous lemma.

Two-point estimate

•
$$\mathbb{E}[E_k^1(x)] = \mathbb{P}\left(A_k^1 \cap \tilde{l}_{k/a+G(x,x_k)}^k\right)$$

- We can consider an $SLE_{\kappa}(-2-\rho;\rho)$ curve with configuration $(\mathbb{H}, x_k, x_k^-, x_k^+, \infty)$ instead of η^{x_k} .
- Translating and rescaling, the event {σ_k^x < σ^{x_k}(ℍ \ B(x, ½ϵ^k))} turns into the event { η̂ hits B(1, ϵ) before leaving B(1,2)}, where η̂ is the rescaled curve. (The condition on Q remains roughly the same.)
- Denote by (g_t) the Loewner chain corresponding to $\hat{\eta}$ and weigh the probability measure \mathbb{P} with the local martingale

$$M_t^{\zeta}(1) = g_t'(1)^{\zeta} Q_t^{\mu} \delta_t^{-\mu(1+\rho/2)} (g_t(1) - V_t^L)^{\mu(1+\rho/2)},$$

and denote the resulting measure by \mathbb{P}^* (above quantities are the mentioned above, but for $\hat{\eta}$).

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

• Using estimates on g' and geometric estimates on the other quantities of $M_t^\zeta,$ we have

$$egin{aligned} &\psi(-\log\epsilon)^{-|\zeta|}\epsilon^{-(\zetaeta-\mu)(1+
ho/2)}\mathbb{P}^*(A^1_k\cap ilde{l}^k_{k/a+G(x,x_k)})\ &\lesssim \mathbb{P}(A^1_k\cap ilde{l}^k_{k/a+G(x,x_k)})\ &\lesssim \psi(-\log\epsilon)^{|\zeta|}\epsilon^{-(\zetaeta-\mu)(1+
ho/2)}\mathbb{P}^*(A^1_k\cap ilde{l}^k_{k/a+G(x,x_k)}). \end{aligned}$$

<ロ> (四) (四) (三) (三) (三) (三)

Two-point estimate

Let $\gamma : [0,1] \to \overline{\mathbb{H}}$, be a deterministic curve starting at 0 and remaining in \mathbb{H} after that, and $\tilde{\epsilon} > 0$ be such that if $\hat{\eta}$ comes within distance $\tilde{\epsilon}$ of the tip $\gamma(1)$ before exiting the $\tilde{\epsilon}$ -neighborhood of γ , then

$$\operatorname{dist}(1, F(\partial B(1,2) \cap \mathbb{H})) \geq 2 \text{ and } F(\min\{\hat{K}_{\tilde{\sigma}_1} \cap \mathbb{R}\}) < -2,$$

and dist $(F(K^+), 1) \ge \tilde{\delta} > 0$. Now, we can consider a curve with only one force point, $F(K^+)$.

Two-point estimate

Let $\varphi(z) = \frac{\epsilon z}{1-z}$ and do a Schramm-Wilson coordinate change. $\varphi(B(1,\epsilon)) = B(-\epsilon, 1)$ and $\varphi(B(1,2)) = B(-\epsilon, \frac{\epsilon}{2})$. The event of hitting $B(1,\epsilon)$ before exiting B(1,2) turns into hitting $\partial B(-\epsilon, 1)$ before hitting $B(-\epsilon, \frac{\epsilon}{2})$. Happens with probability $\geq p_0 > 0$. Thus,

$$\mathbb{P}^*(A_k \cap \tilde{l}^k_{k/a+G(x,x_k)}) \gtrsim 1.$$

With these estimates at hand, separate as:

$$\mathbb{E}[E^n(x)E^n(y)] \le \mathbb{E}[E^{m-1}(x)E^{m+2,n}(x)E^{m+2,n}(y)]$$

$$\lesssim \mathbb{E}[E^{m-1}(x)]\mathbb{E}[E^{m+2,n}(x)]\mathbb{E}[E^{m+2,n}(y)]$$

and then "patch up" with curves merging (without losing too much probability), and estimate with the last one-point estimate and we are done (after applying this together with Frostman's lemma).

- 木間 ト 木 臣 ト - - 臣 ト - - 臣

Thanks for listening!

3