
A multifractal SLEκ(ρ) spectrum

Lukas Schoug

Department of Mathematics
KTH Royal Institute of Technology

Random Conformal Geometry and Related Fields

Lukas Schoug (KTH) A multifractal SLEκ(ρ) spectrum
Random Conformal Geometry and Related Fields 1

/ 39



Outline

1 Preliminaries
Multifractal spectrum
Imaginary geometry

2 Martingales, one-point estimate and concentration
Martingales

3 Two-point estimate
Frostman’s lemma
Perfect points
Two-point estimate

Lukas Schoug (KTH) A multifractal SLEκ(ρ) spectrum
Random Conformal Geometry and Related Fields 2

/ 39



Outline

1 Preliminaries
Multifractal spectrum
Imaginary geometry

2 Martingales, one-point estimate and concentration
Martingales

3 Two-point estimate
Frostman’s lemma
Perfect points
Two-point estimate

Lukas Schoug (KTH) A multifractal SLEκ(ρ) spectrum
Random Conformal Geometry and Related Fields 3

/ 39



Multifractal spectrum

Consider SLEκ(ρ) with force point xR = 0+. Find dimension of set of
points x such that

Curve hits x with certain "angle".

g ′τs (x) ≈ e−βs as s →∞,
where τs = inf{t ≥ 0 : dist(η([0, t]), x) ≤ e−s}.

ω∞((Oτs , x ],H \ Kτs ) ≈ e−αs as s →∞,
where ω∞(A,H \ K ) = limy→∞ yω(iy ,A,H \ K ), Ot = maxKt ∩ R.
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Multifractal spectrum

SLE curves very rough ⇒ no up to constants estimates
Formal set:

Vβ =

{
x > 0 : lim

s→∞

1
s
log g ′τs (x) = −β(1+ ρ/2),

τs = τs(x) <∞ ∀s > 0

}
.

Lukas Schoug (KTH) A multifractal SLEκ(ρ) spectrum
Random Conformal Geometry and Related Fields 5

/ 39



Main result

Theorem
Let κ > 0, ρ ∈ ((−2)∨ (κ2 − 4), κ2 − 2), xR = 0+ and write a = 2/κ. Define

d(β) := 1− aβ

2

(
(1− aρ)

2a
− 1+ 2β

β

)2 (
1+

ρ

2

)
and let β0 = 2a

|4a−1+aρ| , β− = inf{β : d(β) > 0} and
β+ = sup{β : d(β) > 0}. Then, if κ ∈ (0, 4]

dimHVβ = d(β) for β ∈ [β−, β+],

and if κ ∈ (4, 8),

dimHVβ = d(β) for β ∈ [β−, β0].
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Imaginary geometry

We can couple a GFF h and SLE such that SLEκ(ρ) arise as the flow lines
of the "vector field" e ih/χ (but we will call them flow lines of h), where χ is
a constant, depending on κ.

Figure: Flow lines of a GFF on the square [−1, 1]2. (Simulation by Jason Miller.)
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Imaginary geometry

Fix 0 < κ < 4 and let χ = χ(κ) = 2√
κ
−
√
κ

2 and κ′ = 16
κ ∈ (4,∞). Let h

be a GFF in H with piecewise constant boundary data. We can couple h
with SLE such that:

The flow line η of h (of e ih/χ) is an SLEκ(ρ) curve from 0 to ∞ (the
locations and weights of the force points depend on the boundary data
of h).
A flow line of angle θ, denoted ηθ, is a flow line of h + θχ.
The counterflow line of h is an SLEκ′(ρ) curve from ∞ to 0 coupled
with −h. We denote the counterflow line by η′.
A counterflow line is the "light cone" of flow lines. The outer
boundaries of η′ are given by η−π

2
and ηπ

2
.

In this coupling, η, ηθ and η′ are almost surely determined by the GFF.
The same holds in other simply connected domains than H analogously.
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Imaginary geometry

Figure: Flow lines and a counterflow line coupled in the same imaginary geometry.
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Imaginary geometry

Let ηxθ denote the flow line of angle θ from x to ∞. Fix x1, x2 ∈ R such
that x1 ≥ x2. Then,
(i) θ1 < θ2 ⇒ ηx1θ1 a.s. stays to the right of ηx2θ2 . Can hit if θ2− θ1 < πκ

4−κ .
(ii) θ1 = θ2 ⇒ ηx1θ1 , η

x2
θ2

can intersect and if they do, they merge and
never separate.

(iii) θ2 < θ1 < θ2 + π ⇒ ηx1θ1 and ηx2θ2 can intersect and:
intersecting ⇒ cross and never cross back.
Can hit after crossing if θ1 − θ2 < πκ

4−κ .
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Imaginary geometry

(a) θ1 < θ2. (b) θ = θ1 = θ2.

(c) θ2 < θ1 < θ2 + π.
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Imaginary geometry

Let ε > 0, η ∼ SLEκ(ρL; ρR), x1,L = 0−, x1,R = 0+, ρ1,L, ρ1,R > −2 and
γ : [0, 1]→ H, γ(0) = 0, γ((0, 1]) ⊂ H, then with positive probability, η
does not leave the ε-neighborhood, A(ε), of γ before coming within
distance ε from the tip γ(1).
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Imaginary geometry

η ∼ SLEκ(ρL; ρR), x1,L = 0−, x1,R = 0+, ρ1,L, ρ1,R > −2 that can hit
[xk,R , xk+1,R ] and ε > 0 such that |x2,q| > ε for q ∈ {L,R} and
xk+1,R − xk,R ≥ ε and xk,R ≤ ε−1. γ curve in H, from 0 to [xk,R , xk+1,R ].

P(η hits [xk,R , xk+1,R ] before leaving A(ε)) ≥ p0(κ,max
j ,q
|ρj ,q|, ρk,R , ε) > 0
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Imaginary geometry

Absolute continuity: Let c = (D, z0, xL, xR , z∞) be a configuration and
U a bounded open neighborhood of z0. Let µUc denote the law of an
SLEκ(ρL; ρR) process with configuration c , stopped upon exiting U. Let
c̃ = (D̃, z0, x̃L, x̃R , z̃∞) be another configuration.

If the force points of c and c̃ in U agree, and the distance from U to
the force points that differ is positive, then µUc and µUc̃ are mutually
absolutely continuous.
If D = H, D̃ ⊆ H, z0 = 0, the force points agree in U and ς > 0 such
that dist(U,H \ D̃) > ς and the force points of c and c̃ which disagree
are at distance at least ς from U, then there exists a constant
C = C (U, ς, κ, {ρj ,q}j ,q) ≥ 1 such that

1
C
≤

dµUc̃
dµUc

≤ C .
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SLEκ(ρ)

We fix κ ∈ (0, 8) and let a = 2/κ and parametrize the SLEκ(ρ) as the
solution to

∂tgt(z) =
a

gt(z)−Wt
, g0(z) = z ,

with

dWt = dBt +
aρ/2

Wt − Vt
dt, W0 = 0;

dVt =
a

Vt −Wt
dt, V0 = xR ,

where Bt is a one-dimensional standard Brownian motion with B0 = 0.
From now on, assume that ρ ∈ ((−2) ∨ (κ2 − 4), κ2 − 2).
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Martingale

We let µc = 2a− 1
2 + aρ

2 and fix −µ2
c

2a < ζ <∞, and

µ = µc +
√
µ2
c + 2aζ, β =

a√
µ2
c + 2aζ

.

We write

δt(x) =
gt(x)− Vt

g ′t(x)
, Qt(x) =

gt(x)− Vt

gt(x)−Wt
.

Then

Mζ
t (x) = g ′t(x)

ζQµ
t δ
−µ(1+ ρ

2 )
t ,

is a local martingale and

dMζ
t (x)

Mζ
t (x)

=
µ

ft(x)
dBt ,

where ft(x) = gt(x)−Wt .
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Martingale

Weight by Mζ
t to get the measure P∗.

This measure change is practical, since

δt(x) � dist(x , η([0, t]))

and since under P∗, Qt has an invariant distribution, and hence we
have good control.
Furthermore, Qt is the quotient of two harmonic measures.
Gives one-point estimate sufficient for upper bound on dimension.
Ĩt good event until the time δ = (x − xR)e

−at . Concentration
estimates ⇒ P∗(Ĩt) arbitrarily close to 1.
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Frostman’s lemma

Let A ⊂ Rn be a set and let ν be a measure with support contained in A
and let

Js(ν) =

∫∫
Rn×Rn

1
|x − y |s

dν(x)dν(y).

If Js(ν) <∞, then dimHA ≥ s.
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Perfect points

Fix 0 < κ < 4 and ρ ∈ (−2, κ2 − 2), h GFF in H with boundary data
−λ in R− and λ(1+ ρ) on R+. Let η be the zero-angle flow line
emanating from 0, i.e., an SLEκ(ρ) curve with force point 0+.
Denote the (zero-angle) flow line from x by ηx .
ηx ∼ SLEκ(2+ ρ,−2− ρ; ρ) with configuration (H, x , (0, x−), x+,∞).
Fix δ ∈ (0, 1

2) and ε = e−α, α > 10 (to be determined later).
For x ≥ 1 and k ∈ N, we write

xk =

{
x − 1

4ε
k if k ≥ 1,

0 if k = 0.
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Perfect points

For U ⊂ H,

σx(U) = inf{t ≥ 0 : ηx(t) ∈ U}.

and σxk = σxk (B(x , εk+1)).
Ĩ kt = Ĩ kt (x) is the good event for ηxk regarding concentration of
measure (and its indicator), and

I kk = E
[
Ĩ kk/a+G(x ,xk )

∣∣∣Fσx
k

]
,

where G (x , xk) is a function such that t̃(ka + G (x , xk)) ≥ σxk .
Let ηxk ,R denote the right side of ηxk and
V k
t = max{y ∈ ηxk ([0, t]) ∩ R} and

Qk
t =

ω∞([V k
t , x ],H \ ηxk ([0, t]))

ω∞(ηxk ,R([0, t]) ∪ [V k
t , x ],H \ ηxk ([0, t]))

.
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Perfect points

A1
k(x) is the event that
(i) σx

k <∞,
(ii) Qk

σx
k
∈ [δ, 1− δ] and

(iii) σx
k < σxk (H \ B(x , 1

2ε
k)),

and E 1
k (x) = 1Ak (x)I

u,k
k .

We let A2
k(x) be the event that on A1

k(x)

(i) ηxk−1 |[σx
k−1,∞) merges with ηxk |[0,σx

k )
before exiting

B(x , 1
2ε

k) \ B(x , εk+1)

(ii) arg(ηxk (t)− x) ≥ 2
3 min(arg(ηxk+1(σx

k+1)− x), arg(ηxk (σx
k )− x)) for

t > σx
k but before merging with ηxk+1 ,

and E 2
k (x) = 1A2

k (x)
.
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Perfect points

Figure: If E 1
k (x) = 1, then ηxk−1 hits B(x , εk), Qk

σx
k
∈ [δ, 1− δ] and the derivatives

of the Loewner chain for ηxk−1 behave as we want. Furthermore, given that
E 1
k (x) = 1, we have that if E 2

k (x) = 1, then ηxk−1 merges with ηxk before exiting
B(x , ε

k

2 ) \ B(x , ε
k+1) and does not go too close to {s > x} before doing so.
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Perfect points

Let Ek(x) = E 1
k (x)E

2
k (x), E

m,n(x) = E 1
m+1(x)

∏n
k=m+2 Ek(x), and

En(x) = E 0,n(x).
Is this the right event to consider? Yes, because by Koebe 1/4
theorem,

g ′σ(B(x ,ε))(x) � ε
−1(gσ(B(x ,ε))(x)− Vσ(B(x ,ε)))

= ε−1ω∞((Oσ(B(x ,ε)), x ],H \ Kσ(B(x ,ε)))

where Ot is the rightmost point of Kt ∩ R, and the harmonic measure
from ∞ of the "inner" parts of ηxk ([0, σxk ]) and η([0, σ(B(x , ε

k+1))])
are comparable.
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Two-point estimate

The sequence of measures that we will consider is {νn} where

νn(A) =

∫
A

∑
x∈Dn

En(x)

E[En(x)]
1Jn(x)(t)dt,

Dn = {1+ (j − 1
2)ε

n : j = 1, . . . , ε−n} and Jn(x) = [x − εn

2 , x + εn

2 ].
The aim is to prove the following.

Proposition

For each sufficiently small δ ∈ (0, 1
2) there exist a constant c(δ) > 0 and a

subpower function ψ such that for all x , y ∈ [1, 2] and m ∈ N such that
2εm+2 ≤ |x − y | ≤ 1

2ε
m, we have

E[En(x)En(y)] ≤c(δ)2m+2ψ(− log ε)(3m+2)|ζ|

× ε(m+2)(ζβ−µ)(1+ρ/2)E[En(x)]E[En(y)].
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Two-point estimate

Strategy: want to mimic the strategy of Miller and Wu [2017] to separate
points, view them as "almost independent". Do this via the result on the
boundedness of Radon-Nikodym derivatives. Need the following.

Lemma
For every x ≥ 1 and m, n ∈ N such that m ≤ n, it holds that

E[Em(x)Em,n(x)] � E[Em(x)]E[Em,n(x)].

Furthermore, if y is such that 2εm+2 ≤ |x − y | ≤ 1
2ε

m, then

E[Em−1(x)Em+1,n(x)Em+1,n(y)] � E[Em−1(x)]E[Em+1,n(x)]E[Em+1,n(y)].

The constants in � depend only on κ and ρ.
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Two-point estimate

Proof idea: the R-N derivative between the laws of the green part with and
without the purple, is bounded above and below by a constant, which is
independent of m, since

dist(K 1,K 2)

diam(U)
& 1.

.
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Two-point estimate

The next result we need is the following.

Lemma
For each x ≥ 1 and m, n ∈ N such that m ≤ n, it holds that

E[En(x)] � E[Em(x)]E[Em,n(x)],

where the constants depend only on κ, ρ and δ.

Proof idea: the condition on Qk
σx
m
makes sure that the harmonic measure

(from ∞) of each side of the curve, and [Vσx
m
, x ] and hence

ηxm+1([0, σxm+1]) are comparable. Hence, using the mapping out function,
each of them will have a positive length, and using that the curve then will
follow any curve we want with positive probability gives the result.
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Two-point estimate

The last lemma we need is:

Lemma
For each δ ∈ (0, 1

2), sufficiently small, there exist a constant c(δ) > 0 and
a subpower function ψ such that the for each x ≥ 1,

E[Em(x)] ≥ c(δ)mψ(− log ε)−m|ζ|εm(ζβ−µ)(1+ρ/2).

Proof idea: by previous lemmas, we need only check that there exist a
constant c(δ) and a subpower function ψ such that

E[E 1
k (x)] ≥ c(δ)ψ(− log ε)−|ζ|ε(ζβ−µ)(1+ρ/2)

E[E 2
k (x)|E k−1(x) = 1,E 1

k (x) = 1] � 1.

The latter follows by the same idea as the previous lemma.
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Two-point estimate

E[E 1
k (x)] = P

(
A1
k ∩ Ĩ kk/a+G(x ,xk )

)
We can consider an SLEκ(−2− ρ; ρ) curve with configuration
(H, xk , x−k , x

+
k ,∞) instead of ηxk .

Translating and rescaling, the event {σxk < σxk (H \ B(x , 1
2ε

k))} turns
into the event {η̂ hits B(1, ε) before leaving B(1, 2)}, where η̂ is the
rescaled curve. (The condition on Q remains roughly the same.)
Denote by (gt) the Loewner chain corresponding to η̂ and weigh the
probability measure P with the local martingale

Mζ
t (1) = g ′t(1)

ζQµ
t δ
−µ(1+ρ/2)
t (gt(1)− V L

t )
µ(1+ρ/2),

and denote the resulting measure by P∗ (above quantities are the
mentioned above, but for η̂).
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Two-point estimate

Using estimates on g ′ and geometric estimates on the other quantities
of Mζ

t , we have

ψ(− log ε)−|ζ|ε−(ζβ−µ)(1+ρ/2)P∗(A1
k ∩ Ĩ kk/a+G(x ,xk )

)

. P(A1
k ∩ Ĩ kk/a+G(x ,xk )

)

. ψ(− log ε)|ζ|ε−(ζβ−µ)(1+ρ/2)P∗(A1
k ∩ Ĩ kk/a+G(x ,xk )

).
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Two-point estimate

Let γ : [0, 1]→ H, be a deterministic curve starting at 0 and remaining in
H after that, and ε̃ > 0 be such that if η̂ comes within distance ε̃ of the tip
γ(1) before exiting the ε̃-neighborhood of γ, then

dist(1,F (∂B(1, 2) ∩H)) ≥ 2 and F (min{K̂σ̃1 ∩ R}) < −2,

and dist(F (K+), 1) ≥ δ̃ > 0. Now, we can consider a curve with only one
force point, F (K+).
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Two-point estimate

Let ϕ(z) = εz
1−z and do a Schramm-Wilson coordinate change.

ϕ(B(1, ε)) = B(−ε, 1) and ϕ(B(1, 2)) = B(−ε, ε2). The event of hitting
B(1, ε) before exiting B(1, 2) turns into hitting ∂B(−ε, 1) before hitting
B(−ε, ε2). Happens with probability ≥ p0 > 0. Thus,

P∗(Ak ∩ Ĩ kk/a+G(x ,xk )
) & 1.
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Two-point estimate

With these estimates at hand, separate as:

E[En(x)En(y)] ≤ E[Em−1(x)Em+2,n(x)Em+2,n(y)]

. E[Em−1(x)]E[Em+2,n(x)]E[Em+2,n(y)]

and then "patch up" with curves merging (without losing too much
probability), and estimate with the last one-point estimate and we are done
(after applying this together with Frostman’s lemma).
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Thanks for listening!
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