
Towards 2D random Kähler geometry

Conference "Random conformal geometry and related fields", Seoul

Rémi Rhodes

Joint work with: H. Lacoin and V. Vargas

University Aix-Marseille



Plan of the talk

Which random geometries for 2d quantum gravity?

Overview of the model

Mathematical content



2d quantum gravity recast in terms of random triangulations

§ glue N flat equilateral triangles together along their edges so as to get a
(complex) manifold T with spherical topology.

§ Push the flat metric on the faces of T to the sphere via a conformal
map ψT : T Ñ S to get a metric gT on S

Goal: Sample T at random among TN :“ tT : T with N facesu. What is the law of gT

in the scaling limit N Ñ8?

ψT



Coupling 2d quantum gravity to conformal matter
Pure gravity: sample T uniformly at random among TN .
ë Scaling limit of gT described by Liouville CFT with γ “

a

8{3 (D-M-S ’14-’18)

Conformal matter: sample T according to the partition function of a CFT on T .
E.g. partition function for GFF defined for g metric on S by

Z pgq :“

ż

exp
´

´
1

4π

ż

S
|dX |2g dvg

¯

DX “

´det1p´4gq

vgpSq

¯´cmat{2
,

which makes sense in terms of regularized determinants (Ray-Singer ’71). Here
cmat “ 1. Then pick T according to

PNpT q “
Z pgT q

ZN
with ZN :“

ÿ

T with N faces

Z pgT q

ë Scaling limit of gT described by Liouville CFT with γ “ functionpcmatq (to be
proven)

The heuristics (DDK ’80s) rely on Polyakov’s anomaly formula: for ω : SÑ R smooth

ln
Z peωgq

Z pgq
“

cmat

96π
SLpg0, ωq

where SL is the Liouville functional (more later).



Coupling 2d quantum gravity to massive matter?

Massive GFF: partition function (q P R and mass m ą 0)

Z pg, q,mq “
ż

exp
´

´
1

4π

ż

M

`

|dX |2g ` iq RgX `m2X 2˘ dvg

¯

DX

Question: what if we sample triangulations according to this model?

m “ 0 model: remove divergencies to compute the m Ñ 0 partition function

Z0pg, qq :“ lim
mÑ0

Z pg, q,mq

Anomaly formula: if ĝ “ eωg for some ω : SÑ R smooth

ln
Z0peωg, qq

Z0pg, qq
“

1´ 6q2

96π
SLpg, ωq `

q2

4π
SMpg, ĝq

where SL is the Liouville functional and SM the Mabuchi K-energy.
Ñ advocated by Bilal/Ferrari/Klevtsov/Zelditch in a series of papers 2011-2014.

Upshot: scaling limit of gT when sampling triangulations w.r.t. this model
conjecturally described by path integral involving Liouville+K-energy, which we see
as a natural version of "quantum Kähler geometry"
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What is a (natural) random geometry?

In geometry, basic objects in view of classification are manifolds with uniformized
curvature

such manifolds can generally be found by solving variational problems: one looks
for the minimizer of some functional

ϕ P Σ ÞÑ Spϕq.

Corresponding random geometry is a functional measure (path integral) on Σ

e´SpϕqDϕ

where Dϕ is the "Lebesgue measure" on Σ.

Approach inherited from Feynmann’s view on quantum mechanics.



Riemmanian geometry

Consider a 2d manifold M equipped with a Riemannian metric g0.

Ricci scalar curvature Rg0 (in 2d)

volume of Bg0px , εq in M
Euclidean vol. of Bp0, εq

“ 1´
Rg0pxq

24
ε2
`Opε4

q

Uniformization: a story that goes back to E. Picard and H. Poincaré is to find a
metric g of the form

g “ eωg0 for some smooth map ω : M Ñ R

with constant Ricci scalar curvature

Rg “ ´µ



Classical Liouville functional

Let γ, µ ą 0 be some parameters.

The map ω : M Ñ R such that the metric g “ eγωg0 has uniformized curvature

Rg “ ´2πµγ2

is a critical point of the Liouville functional

ω ÞÑ SLpg0, ωq “
1

4π

ż

M

´

|dω|2g0 `QcRg0ω ` 4πµeγω
¯

dvg0

with
Qc “

2
γ

Notations: 4g “ Laplacian, Rg=Ricci curvature, vg=volume form



Kähler geometry

Consider a 2d manifold M equipped with a Riemannian metric g0.

Kähler potential φ of the metric g “ eωg0 w.r.t. g0 defined by

eω

vgpMq
´

1
vg0pMq

“
1
2
4g0φ

Another parametrization of the set of metrics that allows one to translate the
search for constant curvature metrics in terms of complex Monge-Ampère
equation.

This has led to a classification of Kähler manifolds (any dimension) with
successive works by Aubin, Yau, Tian , Donaldson (1978-2015).



Mabuchi K-energy

Let φ be the Kähler potential of the metric g “ eωg0 w.r.t. g0

eω

vgpMq
´

1
vg0pMq

“ 4g0φ

Definition of Mabuchi K-energy

SMpg0, gq “
ż

M

´

2πp1´ hqφ4g0φ` p
8πp1´ hq

vg0pMq
´ Rg0qφ`

2
vgpMq

ωeω
¯

dvg0

with h :“ genus of M.

Critical points give metrics g :“ eωg0 with uniformized curvature

Notations: 4g “ Laplacian, Rg=Ricci curvature, vg=volume form



Quantum Riemannian geometry/Liouville theory

Consider a Riemann surface M equipped with a metric g0, and parameters µ ą 0,
γ P p0, 2q.

Quantum Liouville theory is a measure formally defined by

xFyL,g0 :“

ż

F pϕqe´SLpg0,ϕqDϕ

where
SL is the quantum Liouville functional

SLpg0, ϕq “
1

4π

ż

M

´

|dϕ|2g `QRgϕ` 4πµeγϕ
¯

dvg

Dϕ is the "Lebesgue measure" on the space of maps ϕ : M Ñ R.
Q is a parameter tuned at its quantum value

Q “
2
γ
`
γ

2

DAVID, GUILLARMOU, KUPIAINEN, R., VARGAS (2014-2016):
Construction on Riemann surfaces



Quantum Riemannian geometry/Liouville theory

Random geometry is then understood as associated to the random metric tensor

eγϕg0

where the random "function" ϕ has probability law characterized by functional
expectations

ErF pϕqs “ 1
Z
xFyL,g0

with
xFyL,g0 :“

ż

F pϕqe´SLpg0,ϕqDϕ

and Z “ x1yL,g0 is the normalizing constant to have mass 1.

As it turns out, ϕ is not a fairly defined function a.s. ñ rich multifractal geometry
Volume form: uses Gaussian multiplicative chaos (GMC) theory

KAHANE (1985)
Distance: understood for γ “

a

8{3.

DUPLANTIER, MILLER, SHEFFIELD,... (2014-2018)



Symmetries of CFTs are encoded in the way they react to changes of background
metrics

Conformal anomaly (David-Kupiainen-Rhodes-Vargas 14’)

Consider a conformal metric g “ eωg0 then

xFyL,g “ xF p¨ ´ Q
2 ωqyL,g0 exp

` cL

96π
Scl,0

L pg0, ωq
˘

(1)

where Scl,0
L is the classical Liouville functional (with µ “ 0)

Scl,0
L pg0, ωq :“

ż

M

`

|dω|2g ` 2Rg0ω
˘

dvg0 , (2)

and cL “ 1` 6Q2 is the central charge of the Liouville theory.

Contains a great deal of information about the theory

leads to PDEs (Ward/BPZ equations) that can be used to solve the theory

KUPIAINEN-RHODES-VARGAS (2016-2017)
Local conformal structure and DOZZ formula

connection with quantum gravity models (Polyakov, David-Distler-Kawai,...)

Question: can we come up with a path integral producing a further Mabuchi term?



Quantum Kähler geometry

Consider a Riemann surface M with genus h equipped with a metric g0, and
parameters µ, β ą 0, γ P p0, 2q. Set Q “ 2

γ
`

γ
2

Quantum Kähler theory is a measure formally defined by

xFyML,g0 :“

ż

F pϕqe´β
2SMpg0,e

γϕg0q´SLpg0,ϕqDϕ

where

SM is the quantum Mabuchi K-energy: if g “ eγϕg0

SMpg0, gq “
ż

M

´

2πp1´hqφ4g0φ`p
8πp1´ hq

vg0pMq
´Rg0qφ`

2

1´ γ2

4

1
VgpMq

γϕeγϕ
¯

dvg0

and φ is the Kähler potential of the metric eγϕg0 w.r.t. g0

LACOIN, RHODES, VARGAS (2018 to appear)



Existence: main results

Assume M has genus h ě 2 and γ P p0, 1q and β ą 0.

Theorem (Lacoin, Rhodes, Vargas 2018)

One can make sense probabilistically to the path integral

xFyML,g0 :“

ż

F pϕqe´β
2SMpg0,e

γϕg0q´SLpg0,ϕqDϕ

This path integral has finite mass, i.e. x1yML,g0 ă `8 provided that the Mabuchi
coupling constant is small enough

β P
`

0,
h´ 1

2
p 4
γ2 ´

γ2

4 q
˘

Remark:
the constraint on β is not a technical restriction, it is a topological obstruction!



Conformal anomaly (LRV 18’)

Consider a conformal metric g “ eωg0 then

xFyML,g “ xF p¨ ´ Q
2 ω, φqyML,g0 exp

` cL

96π
Scl,0

L pg0, ωq ` βSMpg0, gq
˘

(3)

where Scl,0
L ,SM are respectively classical Liouville functional (with µ “ 0) and classical

Mabuchi K-energy.

String susceptibility (LRV 18’)

The path integral x¨yML,g0 defines a random geometry under which the "volume of the
manifold" has Gamma law Γps, µq.
The area scaling exponent s, called string susceptibility, has the expression

s :“
2Q
γ
ph´ 1q ´

2β

1´ γ2

4

Remarks:
our formula agrees with the asymptotic expansion γ Ñ 0 given in physics (exact
expression was open question)
these properties make the connection with quantum gravity models (Rand. Triang.)
QFT with global conformal invariance...not a CFT!
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Gaussian Free Field (GFF)

The GFF Xg0 with vanishing g0-mean is a centered Gaussian Schwartz distribution

for f , f 1 test functions

E
”´

ż

M
f Xg0 dvg0

¯´

ż

M
f 1Xg0 dvg0

¯ı

“

ĳ

M2

f pxqf 1pyqGg0px , yq vg0pdxq dvg0pdyq

with Gg0 the integral kernel for the Poisson equation

´4g0 u “ 2πf , with b.c.
ż

M
u dvg0 “ 0

Almost surely Xg0 lives in a Sobolev space H´δpMq with δ ą 0

Interpretation: for positive continuous functionals F on H´δpMq
ż

F pϕqe´
1

4π
ş

M |dϕ|
2
g0

dvg0 Dϕ “
ż

R

ErF pc ` Xg0qs dc



Gaussian Multiplicative chaos (GMC)
Goal: construct a random measure formally given by

eγXg0 dvg0

Ill-defined as Xg0 is not a fairly defined function. At short scale

ErXg0pzqXg0pz
1
qs « ln

1
dg0pz, z 1q

Call Xε a mollification of the field Xg0 at scale ε

ErXεpzqXεpz 1qs « ln
1

dg0pz, z 1q ` ε
.

Theorem (Kahane 1985)

For γ P p0, 2q there exists a random measure Gγg0
such that, almost surely, the limit

lim
εÑ0

ε
γ2
2 eγXεpzq vg0pdzq “ Gγg0pdzq

holds in the space of Radon measure. Gγg0
does not depend on the regularization.



Some properties of GMC measures

Non triviality

Theorem (Kahane 1985)

The random measure Gγg0
is non trivial if and only if γ P p0, 2q.

Multifractal behaviour

Theorem (Kahane 1985)

For γ P p0, 2q almost surely, the measure Gγg0
pd2zq lives on a set

of Hausdorff dimension 2´ γ2

2 .

the total mass Gγg0
pMq is finite almost surely.



Quantum Liouville: definition

Rigorously the measure is defined by (assuming g0 is uniformized)

xFyL,g0 :“

ż

R

e´2Qp1´hqcE
”

F pc ` Xg0q exp
´

´ µeγcGγg0pMq
¯ı

dc

where

h is the genus of M

Xg0 is a Gaussian Free Field under E with vanishing g0-mean

Gγg pMq is a Gaussian multiplicative chaos (GMC) formally understood as

Gγg0pMq “
ż

M
eγXg0 dvg0



Quantum Liouville-Mabuchi: construction

Quantum Mabuchi theory (assuming g0 is uniformized) defined by

xFyL,g0 :“

ż

R

e´2Qp1´hqcE
”

e´βSM F pc ` Xg0q exp
´

´ µeγcGγg0pMq
¯ı

dc

where SM is the quantum Mabuchi K-energy of the "Liouville random metric"
eγpc`Xg0 qg0 w.r.t. g0. It can be given sense and involves:

Kähler potential of the "Liouville random metric"

Φpzq :“ ´
2

Gγg pMq

ż

Gg0pz,wqG
γ
g0pdwq

Entropy term
Dγg0

pMq

Gγg0
pMq where Dγ

g0
pMq is a variant of GMC that we call derivative

GMC
Dγ

g0pMq :“ lim
εÑ0

ε
γ2
2 pγXεpzq ´ γ2 ln εqeγXεpzq vg0pdzq



Technical backbone
Establish negative exponential moments for the entropy

@β ą 0, E
”

exp
´

´ β
Dγ

g0
pMq

Gγg0
pMq

¯ı

ă `8

Simple consequence of
left Gaussian concentration for derivative GMC

@x ą 0 large, PpDγ
g0pMq ă ´x

˘

ď C exp
`

´ C´1 x2˘

�

the field Xg0 eγXg0 is not bounded from below

sharp small deviation result for GMC (for some κ)

@x ą 0 small, PpGγg0pMq ă xq ď C exp
`

´ C´1
| ln x |κx4{γ2˘

�

compare with results by Duplantier, Nikulae, Sheffield (2008) or Garban,
Holden, Sepúlveda, Xin Sun (on fractal sets 2018)

PpGγg0pMq ą xq „ C expp´Cpln xq2q

R Why?



Thanks!
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