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Plan of the talk

Which random geometries for 2d quantum gravity?



2d quantum gravity recast in terms of random triangulations

» glue N flat equilateral triangles together along their edges so as to get a
(complex) manifold T with spherical topology.

» Push the flat metric on the faces of T to the sphere via a conformal
map ¢7 : T — S to get a metric gron S

Goal: Sample T at random among 7y := {T : T with N faces}. What is the law of gr
in the scaling limit N — c0?




Coupling 2d quantum gravity to conformal matter
o Pure gravity: sample T uniformly at random among 7.
L, Scaling limit of gr described by Liouville CFT with v = 1/8/3 (D-M-S '14-'18)
o Conformal matter: sample T according to the partition function of a CFT on T.
E.g. partition function for GFF defined for g metric on S by
_ [ axe _ (det/(=Dg) | o2
Z(g) = Jexp( 4WL|dX|gdvg)DX—( e ) ,

which makes sense in terms of regularized determinants (Ray-Singer '71). Here
cma = 1. Then pick T according to

Pa(T) = 297 with  zy = S Z(gr)

v T with N faces
L, Scaling limit of gr described by Liouville CFT with v = function(cma) (to be
proven)
The heuristics (DDK ’80s) rely on Polyakov’s anomaly formula: for w : S — R smooth

Z(e“g)  Cmu
" Z@) = 96rt90w)

where S; is the Liouville functional (more later).



Coupling 2d quantum gravity to massive matter?
o Massive GFF: partition function (g € R and mass m > 0)
2(g,q,m) — Jexp (- 41 (1X[2 + ig RyX + mPX?) dvg) DX
Question: what if we sample triangulations according to this model?
o m = 0 model: remove divergencies to compute the m — 0 partition function
2(g,q) := lim Z(g,q,m)
Anomaly formula: if § = g for some w : S — IR smooth

%4(e”9,9) _ 1 - 69°
In ACK) 96, -9

where S is the Liouville functional and Sy the Mabuchi K-energy.
— advocated by Bilal/Ferrari/Klevtsov/Zelditch in a series of papers 2011-2014.

7 "
w) + ESM(Q, 9)

Upshot: scaling limit of gr when sampling triangulations w.r.t. this model
conjecturally described by path integral involving Liouville+K-energy, which we see
as a natural version of "quantum Ké&hler geometry"
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Overview of the model



What is a (natural) random geometry?

o In geometry, basic objects in view of classification are manifolds with uniformized
curvature

o such manifolds can generally be found by solving variational problems: one looks
for the minimizer of some functional

peX— S(p).

o Corresponding random geometry is a functional measure (path integral) on
efS(WDap

where Dy is the "Lebesgue measure" on X.

Approach inherited from Feynmann’s view on quantum mechanics.



Riemmanian geometry

Consider a 2d manifold M equipped with a Riemannian metric go.

o Ricci scalar curvature Ry, (in 2d)

volume of By, (x,¢) in M 1_ Ry, (x)

2 4
Euclidean vol. of B(0,¢) o4 ¢ T O(¢")

o Uniformization: a story that goes back to E. Picard and H. Poincaré is to find a
metric g of the form

g=¢e“gy forsomesmoothmapw: M — R
with constant Ricci scalar curvature

Rg = —p



Classical Liouville functional

Let v, u > 0 be some parameters.

The map w : M — R such that the metric g = €"“ gy has uniformized curvature
Ry = —2mp~?

is a critical point of the Liouville functional

1 w
w — Si(Go,w) = - fM <|dw|§0 + QcRgyw + 4mpe’ ) dvyg,

with 5
Qc = —
Y

Notations: Ay = Laplacian,  Rg=Ricci curvature, vg=volume form



Ké&hler geometry

Consider a 2d manifold M equipped with a Riemannian metric go.

o Kahler potential ¢ of the metric g = e“go w.r.t. go defined by

e 1 1
- - A
Vo(M) ~ vy (M) — 25907

Another parametrization of the set of metrics that allows one to translate the
search for constant curvature metrics in terms of complex Monge-Ampeére
equation.

o This has led to a classification of K&hler manifolds (any dimension) with
successive works by Aubin, Yau, Tian , Donaldson (1978-2015).



Mabuchi K-energy

o Let ¢ be the Kahler potential of the metric g = e“go w.r.t. go

ew_1

V(M) vg, (M)

= Ago¢

o Definition of Mabuchi K-energy

87 (1 —h)

2 w
SM(gO’g) = JM (27T(1 - h)¢A90¢ + ( Vgg(M) - 90)¢ + Wwe )dvgo

with h := genus of M.

o Critical points give metrics g := € go with uniformized curvature

Notations: Ay = Laplacian,  Rg=Ricci curvature, vg=volume form



Quantum Riemannian geometry/Liouville theory

Consider a Riemann surface M equipped with a metric go, and parameters p > 0,
~v € (0,2).

Quantum Liouville theory is a measure formally defined by

Foug = | Fle)es® Dy

where
o &, is the quantum Liouville functional

’
S1(go, ) = o JM (\dwlg + QRgyp + 47ruew’>dVg

o Dy is the "Lebesgue measure" on the space of maps ¢ : M — RR.
o Q is a parameter tuned at its quantum value

2

—£47
Q—7+2

@ DAvID, GUILLARMOU, KUPIAINEN, R., VARGAS (2014-2016):
Construction on Riemann surfaces



Quantum Riemannian geometry/Liouville theory

o Random geometry is then understood as associated to the random metric tensor

e"/‘ﬁg0
where the random "function" ¢ has probability law characterized by functional
expectations

1
E[F(p)] = 5F)La
with
Frre = [ Fle)e @Dy

and Z = (1) ¢, is the normalizing constant to have mass 1.

o As it turns out, ¢ is not a fairly defined function a.s. = rich multifractal geometry
o Volume form: uses Gaussian multiplicative chaos (GMC) theory

@ KAHANE (1985)
o Distance: understood for v = 4/8/3.

@ DUPLANTIER, MILLER, SHEFFIELD,... (2014-2018)



Symmetries of CFTs are encoded in the way they react to changes of background
metrics

Conformal anomaly (David-Kupiainen-Rhodes-Vargas 14’)

Consider a conformal metric g = e*go then
CL
(Frg = (F(- = G exp (= S"(90, ) (M

where S{l’o is the classical Liouville functional (with u = 0)
SE°(g0.) 1= [ (Jool} + 2gs)dv, @

and ¢, = 1 + 6Q? is the central charge of the Liouville theory.

Contains a great deal of information about the theory
o leads to PDEs (Ward/BPZ equations) that can be used to solve the theory
@ KUPIAINEN-RHODES-VARGAS (2016-2017)
Local conformal structure and DOZZ formula
o connection with quantum gravity models (Polyakov, David-Distler-Kawai,...)
o Question: can we come up with a path integral producing a further Mabuchi term?



Quantum Kahler geometry

Consider a Riemann surface M with genus h equipped with a metric go, and
parameters u, 3 > 0, v € (0,2). Set Q = % +7

Quantum Kahler theory is a measure formally defined by

(Fomwgy := fF(SD)efﬁzsm(gov&‘w’go)*SL(QO#P)DSD

where
o Su is the quantum Mabuchi K-energy: if g = €7 go

Sm(9o,9) = JM (277(1 _h)¢Ago¢+(8::(1 —h)

2 1
—————=—Rg)o+ —— 7 1ve’’ )dv
W) T e

and ¢ is the Kahler potential of the metric €7¥ gy w.r.t. go

@ LACOIN, RHODES, VARGAS (2018 to appear)



Existence: main results

Assume M has genush >2and~v e (0,1) and 8 > 0.

Theorem (Lacoin, Rhodes, Vargas 2018)

One can make sense probabilistically to the path integral
(Fom,gy = JF(SO)e*/J‘ZSM(goaew‘pgo)*SL(Qo#P)DLP
This path integral has finite mass, i.e. {(1)mL,g, < +00 provided that the Mabuchi

coupling constant is small enough

R ),

ol

Remark:
o the constraint on 5 is not a technical restriction, it is a topological obstruction!



Conformal anomaly (LRV 18’)

Consider a conformal metric g = e*go then

CL
(Fowmig = (F(- — $w, d)m,g, exp (ﬁsﬁ’o(go,w) + BSu(90, 9)) (3)
where S{l’o, Swm are respectively classical Liouville functional (with 1 = 0) and classical
Mabuchi K-energy.

String susceptibility (LRV 18’)

The path integral {-)mv,g, defines a random geometry under which the "volume of the
manifold" has Gamma law I'(s, u).
The area scaling exponent s, called string susceptibility, has the expression

2Q 28

si=—(h-1) -
7( ) il =2

Remarks:
o our formula agrees with the asymptotic expansion v — 0 given in physics (exact
expression was open question)
o these properties make the connection with quantum gravity models (Rand. Triang.)
o QFT with global conformal invariance...not a CFT!
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Gaussian Free Field (GFF)

o The GFF Xy, with vanishing go-mean is a centered Gaussian Schwartz distribution

o for f, f’ test functions

E[(Jfogo dvgo> ( JM ' X, dvg0 f f F(X)F () Gy (X, ¥) Vgo (0X) dvg, (dly)

with G, the integral kernel for the Poisson equation

—Agu =2nf, withb.c. J udvg, =0
M

o Almost surely Xg, lives in a Sobolev space H=° (M) with § > 0

o Interpretation: for positive continuous functionals F on H=%(M)

f F(ip)e™ 7 W19l %% py — f E[F(c + Xg)] do

R



Gaussian Multiplicative chaos (GMC)
o Goal: construct a random measure formally given by
€7 dvg,
ll-defined as Xy, is not a fairly defined function. At short scale

1

E[Xgo(z)Xgo(z’)] ~ In m

o Call X. a mollification of the field X, at scale e

1

E[X.(2)X:(2)] ~ In ENCRIETS

Theorem ( 1985)

For~ € (0, 2) there exists a random measure Gg, such that, almost surely, the limit

2
lim €2 &%) vg (dz) = G (d2)

e—

holds in the space of Radon measure. Gg, does not depend on the regularization.



Some properties of GMC measures

o Non triviality

Theorem ( 1985)

The random measure Gg, is non trivial if and only if v € (0, 2).

o Multifractal behaviour

Theorem ( 1985)

For~ € (0,2) almost surely, the measure Gg, (d°z) lives on a set
of Hausdorff dimension 2 — %2

o the total mass Gg (M) is finite almost surely.



Quantum Liouville: definition

Rigorously the measure is defined by (assuming g is uniformized)
(Fyrg = J}R & 221 MeR| F(c + Xgp) exp (— 1703, (M) ] dl

where
o his the genus of M

o Xg, is a Gaussian Free Field under E with vanishing go-mean

o G4 (M) is a Gaussian multiplicative chaos (GMC) formally understood as

G (M) = fM &% dvg,



Quantum Liouville-Mabuchi: construction

Quantum Mabuchi theory (assuming go is uniformized) defined by
(Fopg = f & 220 Mg ¢ PNE(C 4 Xy, exp ( — ue™ G (M) | do
R

where Sy is the quantum Mabuchi K-energy of the "Liouville random metric"
e"(c+%a0) gy w.rt. go. It can be given sense and involves:

o Kéhler potential of the "Liouville random metric”
2
¢(Z) = _W J‘ Ggo (Z, W)ggo(dw)

.
o Entropy term EZUE:;; where Dy (M) is a variant of GMC that we call derivative
0

GMC

2

DY, (M) i= lim e (1X.(2) =77 In€)e”* ) vg, (d2)



Technical backbone
Establish negative exponential moments for the entropy

V8 > 0, E[exp ( - ﬁgg%(%))} <+

Simple consequence of
o left Gaussian concentration for derivative GMC

vx > 0large, P(Dg (M) < —x) < Cexp(—C ' x)
? the field Xg, € is not bounded from below

o sharp small deviation result for GMC (for some x)

¥x > 0small, P(Gg (M) < x) < Cexp (— C'[Inx|"x*"")

Ay
© compare with results by Duplantier, Nikulae, Sheffield (2008) or Garban,
Holden, Sepulveda, Xin Sun (on fractal sets 2018)

P(Gg, (M) > x) ~ Cexp(—C(Inx)?)
1= Why?



Thanks!
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