Towards 2D random Kähler geometry

Conference "Random conformal geometry and related fields", Seoul

Rémi Rhodes

Joint work with: H. Lacoin and V. Vargas

University Aix-Marseille

Plan of the talk

Which random geometries for 2d quantum gravity?

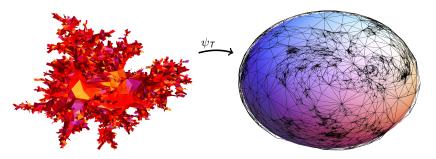
Overview of the model

Mathematical content

2d quantum gravity recast in terms of random triangulations

- glue N flat equilateral triangles together along their edges so as to get a (complex) manifold T with spherical topology.
- Push the flat metric on the faces of *T* to the sphere via a conformal map ψ_T : *T* → S to get a metric g_T on S

Goal: Sample *T* at random among $T_N := \{T : T \text{ with } N \text{ faces}\}$. What is the law of g_T in the scaling limit $N \to \infty$?



Coupling 2d quantum gravity to conformal matter

• **Pure gravity:** sample *T* uniformly at random among T_N .

- \downarrow Scaling limit of g_T described by Liouville CFT with $\gamma = \sqrt{8/3}$ (D-M-S '14-'18)
- Conformal matter: sample *T* according to the partition function of a CFT on *T*.
 E.g. partition function for GFF defined for *g* metric on S by

$$Z(g) := \int \exp\Big(-rac{1}{4\pi}\int_{\mathbb{S}}|dX|_g^2\,\mathrm{dv}_g\Big) DX = \Big(rac{\det'(- riangle_g)}{v_g(\mathbb{S})}\Big)^{-\mathbf{c}_{\mathrm{mat}/2}}$$

which makes sense in terms of regularized determinants (Ray-Singer '71). Here $\mathbf{c}_{mat} = 1$. Then pick *T* according to

$$\mathbb{P}_N(T) = rac{Z(g_T)}{Z_N}$$
 with $Z_N := \sum_{T ext{ with } N ext{ faces}} Z(g_T)$

 \downarrow Scaling limit of g_T described by Liouville CFT with $\gamma = \text{function}(\mathbf{c}_{\text{mat}})$ (to be proven)

The heuristics (DDK '80s) rely on **Polyakov's anomaly formula:** for $\omega : \mathbb{S} \to \mathbb{R}$ smooth

$$\ln rac{Z(e^\omega g)}{Z(g)} = rac{\mathbf{c}_{ ext{mat}}}{96\pi} S_L(g_0,\omega)$$

where S_L is the Liouville functional (more later).

Coupling 2d quantum gravity to massive matter?

• **Massive GFF:** partition function ($q \in \mathbb{R}$ and mass m > 0)

$$Z(g,q,m) = \int \exp\left(-\frac{1}{4\pi}\int_{M} \left(|dX|_{g}^{2} + iq R_{g}X + m^{2}X^{2}\right) \mathrm{dv}_{g}\right) DX$$

Question: what if we sample triangulations according to this model?

• m = 0 model: remove divergencies to compute the $m \rightarrow 0$ partition function

 $Z_0(g,q) := \lim_{m \to 0} Z(g,q,m)$

Anomaly formula: if $\hat{g} = e^{\omega}g$ for some $\omega : \mathbb{S} \to \mathbb{R}$ smooth

$$\ln rac{Z_0(e^\omega g,q)}{Z_0(g,q)} = rac{1-6q^2}{96\pi} S_{\!L}(g,\omega) + rac{q^2}{4\pi} S_{\!M}(g,\hat{g})$$

where S_L is the Liouville functional and S_M the Mabuchi K-energy. \rightarrow advocated by Bilal/Ferrari/Klevtsov/Zelditch in a series of papers 2011-2014.

Upshot: scaling limit of g_T when sampling triangulations w.r.t. this model conjecturally described by path integral involving Liouville+K-energy, which we see as a natural version of "quantum Kähler geometry"

Plan of the talk

Which random geometries for 2*d* quantum gravity?

Overview of the model

Mathematical content

What is a (natural) random geometry?

- In geometry, basic objects in view of classification are manifolds with uniformized curvature
- such manifolds can generally be found by solving variational problems: one looks for the minimizer of some functional

 $\varphi \in \Sigma \mapsto S(\varphi).$

• Corresponding random geometry is a functional measure (path integral) on Σ

 $e^{-S(\varphi)}D\varphi$

where $D\varphi$ is the "Lebesgue measure" on Σ .

Approach inherited from Feynmann's view on quantum mechanics.

Riemmanian geometry

Consider a 2*d* manifold *M* equipped with a Riemannian metric g_0 .

• Ricci scalar curvature R_{g_0} (in 2*d*)

$$\frac{\text{volume of } B_{g_0}(x,\epsilon) \text{ in } M}{\text{Euclidean vol. of } B(0,\epsilon)} = 1 - \frac{R_{g_0}(x)}{24}\epsilon^2 + O(\epsilon^4)$$

• **Uniformization:** a story that goes back to E. Picard and H. Poincaré is to find a metric *g* of the form

 $g = e^{\omega}g_0$ for some smooth map $\omega : M \to \mathbb{R}$

with constant Ricci scalar curvature

$$R_g = -\mu$$

Classical Liouville functional

Let $\gamma, \mu > 0$ be some parameters.

with

The map $\omega: M \to \mathbb{R}$ such that the metric $g = e^{\gamma \omega} g_0$ has uniformized curvature

$$R_g = -2\pi\mu\gamma^2$$

is a critical point of the Liouville functional

$$\omega \mapsto S_L(g_0,\omega) = rac{1}{4\pi} \int_M \left(|d\omega|_{g_0}^2 + Q_c R_{g_0} \omega + 4\pi \mu e^{\gamma \omega}
ight) \mathrm{dv}_{g_0}$$
 $Q_c = rac{2}{\gamma}$

Notations: $\triangle_q = Laplacian$, $R_q = Ricci curvature$, $v_q = volume$ form

Kähler geometry

Consider a 2*d* manifold *M* equipped with a Riemannian metric g_0 .

• Kähler potential ϕ of the metric $g = e^{\omega}g_0$ w.r.t. g_0 defined by

$$\frac{\textit{e}^{\omega}}{\mathrm{v}_{\textit{g}}(\textit{M})} - \frac{1}{\mathrm{v}_{\textit{g}_0}(\textit{M})} = \frac{1}{2} \triangle_{\textit{g}_0} \phi$$

Another parametrization of the set of metrics that allows one to translate the search for constant curvature metrics in terms of complex Monge-Ampère equation.

• This has led to a classification of Kähler manifolds (any dimension) with successive works by Aubin, Yau, Tian , Donaldson (1978-2015).

Mabuchi K-energy

• Let ϕ be the Kähler potential of the metric $g = e^{\omega}g_0$ w.r.t. g_0

$$\frac{e^{\omega}}{\mathrm{v}_{g}(M)}-\frac{1}{\mathrm{v}_{g_{0}}(M)}=\bigtriangleup_{g_{0}}\phi$$

Definition of Mabuchi K-energy

$$S_{\mathrm{M}}(g_0,g) = \int_{M} \left(2\pi (1-\mathbf{h})\phi \triangle_{g_0}\phi + (\frac{8\pi (1-\mathbf{h})}{\mathrm{v}_{g_0}(M)} - R_{g_0})\phi + \frac{2}{\mathrm{v}_g(M)}\omega e^{\omega} \right) \mathrm{dv}_{g_0}$$
with $\mathbf{h} :=$ genus of M .

• Critical points give metrics $g := e^{\omega}g_0$ with uniformized curvature

Notations: $\triangle_g = Laplacian$, R_g =Ricci curvature, v_g =volume form

Quantum Riemannian geometry/Liouville theory

Consider a Riemann surface *M* equipped with a metric g_0 , and parameters $\mu > 0$, $\gamma \in (0, 2)$.

Quantum Liouville theory is a measure formally defined by

$$\langle F \rangle_{L,g_0} := \int F(\varphi) e^{-\mathcal{S}_L(g_0,\varphi)} D\varphi$$

where

• S_L is the quantum Liouville functional

$$\mathcal{S}_{L}(g_{0},\varphi)=rac{1}{4\pi}\int_{M}\left(|darphi|_{g}^{2}+QR_{g}arphi+4\pi\mu e^{\gammaarphi}
ight)d\mathrm{v}_{g}$$

• $D\varphi$ is the "Lebesgue measure" on the space of maps $\varphi: M \to \mathbb{R}$.

• Q is a parameter tuned at its quantum value

$$Q = \frac{2}{\gamma} + \frac{\gamma}{2}$$

Quantum Riemannian geometry/Liouville theory

Random geometry is then understood as associated to the random metric tensor

where the random "function" φ has probability law characterized by functional expectations

$$\mathbb{E}[F(\varphi)] = \frac{1}{Z} \langle F \rangle_{L,g_0}$$

 $e^{\gamma \varphi} g_0$

with

$$\langle F \rangle_{L,g_0} := \int F(\varphi) e^{-\mathcal{S}_L(g_0,\varphi)} D\varphi$$

and $Z = \langle 1 \rangle_{L,g_0}$ is the normalizing constant to have mass 1.

- As it turns out, φ is not a fairly defined function a.s. \Rightarrow rich multifractal geometry
 - Volume form: uses Gaussian multiplicative chaos (GMC) theory

🚺 Канале (1985)

- **Distance**: understood for $\gamma = \sqrt{8/3}$.
 - DUPLANTIER, MILLER, SHEFFIELD,... (2014-2018)

Symmetries of CFTs are encoded in the way they react to changes of background metrics

Conformal anomaly (David-Kupiainen-Rhodes-Vargas 14')

Consider a conformal metric $g = e^{\omega}g_0$ then

$$\langle F \rangle_{\mathrm{L},g} = \langle F(\cdot - \frac{Q}{2}\omega) \rangle_{\mathrm{L},g_0} \exp\left(\frac{\mathbf{c}_{\mathrm{L}}}{96\pi} S_{\mathrm{L}}^{\mathrm{cl},0}(g_0,\omega)\right) \tag{1}$$

where $S_{\rm L}^{\rm cl,0}$ is the classical Liouville functional (with $\mu=$ 0)

$$S^{\mathrm{cl},0}_{\mathrm{L}}(g_0,\omega):=\int_{\mathcal{M}}ig(|d\omega|_g^2+2R_{g_0}\omegaig)\mathrm{dv}_{g_0},$$

(2)

and $\mathbf{c}_{L} = 1 + 6Q^{2}$ is the *central charge* of the Liouville theory.

Contains a great deal of information about the theory

- leads to PDEs (Ward/BPZ equations) that can be used to solve the theory
 - KUPIAINEN-RHODES-VARGAS (2016-2017) Local conformal structure and DOZZ formula
- connection with quantum gravity models (Polyakov, David-Distler-Kawai,...)
- Question: can we come up with a path integral producing a further Mabuchi term?

Quantum Kähler geometry

Consider a Riemann surface *M* with genus **h** equipped with a metric g_0 , and parameters $\mu, \beta > 0, \gamma \in (0, 2)$. Set $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$

Quantum Kähler theory is a measure formally defined by

$$\langle \mathcal{F} \rangle_{\mathrm{ML},g_0} := \int \mathcal{F}(\varphi) e^{-\beta^2 \mathcal{S}_{\mathrm{M}}(g_0,e^{\gamma\varphi}g_0) - \mathcal{S}_{L}(g_0,\varphi)} D\varphi$$

where

• S_M is the quantum Mabuchi K-energy: if $g = e^{\gamma \varphi} g_0$

$$\mathcal{S}_{\mathrm{M}}(g_{0},g) = \int_{M} \left(2\pi (1-\mathbf{h})\phi \triangle_{g_{0}}\phi + (\frac{8\pi (1-\mathbf{h})}{\mathrm{v}_{g_{0}}(M)} - R_{g_{0}})\phi + \frac{2}{1-\frac{\gamma^{2}}{4}}\frac{1}{V_{g}(M)}\gamma\varphi \boldsymbol{e}^{\gamma\varphi} \right) \mathrm{dv}_{g_{0}}$$

and ϕ is the Kähler potential of the metric $e^{\gamma \varphi} g_0$ w.r.t. g_0

LACOIN, RHODES, VARGAS (2018 to appear)

Existence: main results

Assume *M* has genus $\mathbf{h} \ge 2$ and $\gamma \in (0, 1)$ and $\beta > 0$.

Theorem (Lacoin, Rhodes, Vargas 2018)

One can make sense probabilistically to the path integral

$$\langle F \rangle_{\mathrm{ML},g_0} := \int F(\varphi) e^{-\beta^2 \mathcal{S}_{\mathrm{M}}(g_0,e^{\gamma \varphi}g_0) - \mathcal{S}_{\mathrm{L}}(g_0,\varphi)} D\varphi$$

This path integral has finite mass, i.e. $\langle 1\rangle_{ML,g_0}<+\infty$ provided that the Mabuchi coupling constant is small enough

$$\beta \in \left(0, \frac{\mathbf{h}-1}{2}(\frac{4}{\gamma^2}-\frac{\gamma^2}{4})\right)$$

Remark:

• the constraint on β is not a technical restriction, it is a **topological obstruction**!

Conformal anomaly (LRV 18')

Consider a conformal metric $g = e^{\omega}g_0$ then

$$\langle F \rangle_{\mathrm{ML},g} = \langle F(\cdot - \frac{Q}{2}\omega, \phi) \rangle_{\mathrm{ML},g_{0}} \exp\left(\frac{\mathbf{c}_{\mathrm{L}}}{96\pi} S_{\mathrm{L}}^{cl,0}(g_{0},\omega) + \beta S_{\mathrm{M}}(g_{0},g)\right)$$
(3)

where $S_{\rm L}^{\rm cl,0}$, $S_{\rm M}$ are respectively classical Liouville functional (with $\mu = 0$) and classical Mabuchi K-energy.

String susceptibility (LRV 18')

The path integral $\langle \cdot \rangle_{ML,g_0}$ defines a random geometry under which the "volume of the manifold" has Gamma law $\Gamma(s,\mu)$.

The area scaling exponent s, called string susceptibility, has the expression

$$\mathbf{s} := \frac{2Q}{\gamma}(\mathbf{h} - 1) - \frac{2\beta}{1 - \frac{\gamma^2}{4}}$$

Remarks:

- our formula agrees with the asymptotic expansion γ → 0 given in physics (exact expression was open question)
- these properties make the connection with quantum gravity models (Rand. Triang.)
- QFT with global conformal invariance...not a CFT!

Plan of the talk

Which random geometries for 2*d* quantum gravity?

Overview of the model

Mathematical content

Gaussian Free Field (GFF)

- The GFF X_{g_0} with vanishing g_0 -mean is a centered Gaussian Schwartz distribution
- for f, f' test functions

$$\mathbb{E}\Big[\Big(\int_M f X_{g_0} \operatorname{dv}_{g_0}\Big)\Big(\int_M f' X_{g_0} \operatorname{dv}_{g_0}\Big)\Big] = \iint_{M^2} f(x)f'(y) G_{g_0}(x,y) \operatorname{v}_{g_0}(dx) \operatorname{dv}_{g_0}(dy)$$

with G_{g_0} the integral kernel for the Poisson equation

$$-\triangle_{g_0}u = 2\pi f$$
, with b.c. $\int_M u \, \mathrm{dv}_{g_0} = 0$

• Almost surely X_{g_0} lives in a Sobolev space $H^{-\delta}(M)$ with $\delta > 0$

• Interpretation: for positive continuous functionals *F* on $H^{-\delta}(M)$

$$\int F(\varphi) e^{-\frac{1}{4\pi} \int_{M} |d\varphi|_{g_0}^2 \operatorname{dv}_{g_0} D\varphi} = \int_{\mathbb{R}} \mathbb{E}[F(c + X_{g_0})] dc$$

Gaussian Multiplicative chaos (GMC)

• Goal: construct a random measure formally given by

$e^{\gamma X_{g_0}} dv_{g_0}$

III-defined as X_{g_0} is not a fairly defined function. At short scale

$$\mathbb{E}[X_{g_0}(z)X_{g_0}(z')] \approx \ln \frac{1}{d_{g_0}(z,z')}$$

• Call X_{ϵ} a mollification of the field X_{g_0} at scale ϵ

$$\mathbb{E}[X_{\epsilon}(z)X_{\epsilon}(z')] \approx \ln \frac{1}{d_{g_0}(z,z') + \epsilon}$$

Theorem (Kahane 1985)

For $\gamma \in (0, 2)$ there exists a random measure $\mathcal{G}_{g_0}^{\gamma}$ such that, almost surely, the limit

$$\lim_{\epsilon \to 0} \epsilon^{\frac{\gamma^2}{2}} e^{\gamma X_{\epsilon}(z)} v_{g_0}(dz) = \mathcal{G}_{g_0}^{\gamma}(dz)$$

holds in the space of Radon measure. $\mathcal{G}_{g_0}^{\gamma}$ does not depend on the regularization.

Some properties of GMC measures

Non triviality

Theorem (Kahane 1985)

The random measure $\mathcal{G}_{g_0}^{\gamma}$ is non trivial if and only if $\gamma \in (0, 2)$.

Multifractal behaviour

Theorem (Kahane 1985)

For $\gamma \in (0, 2)$ almost surely, the measure $\mathcal{G}_{g_0}^{\gamma}(d^2 z)$ lives on a set of Hausdorff dimension $2 - \frac{\gamma^2}{2}$.

• the total mass $\mathcal{G}_{g_0}^{\gamma}(M)$ is finite almost surely.

Quantum Liouville: definition

Rigorously the measure is defined by (assuming g_0 is uniformized)

$$\langle F \rangle_{L,g_0} := \int_{\mathbb{R}} e^{-2Q(1-\mathbf{h})c} \mathbb{E} \Big[F(c+X_{g_0}) \exp \Big(-\mu e^{\gamma c} \mathcal{G}_{g_0}^{\gamma}(M) \Big) \Big] dc$$

where

- h is the genus of M
- X_{g_0} is a Gaussian Free Field under \mathbb{E} with vanishing g_0 -mean
- $\mathcal{G}_{g}^{\gamma}(M)$ is a Gaussian multiplicative chaos (GMC) formally understood as

$$\mathcal{G}_{g_0}^{\gamma}(\mathbf{\textit{M}}) = \int_{\mathbf{\textit{M}}} \mathbf{e}^{\gamma X_{g_0}} \, \mathrm{dv}_{g_0}$$

Quantum Liouville-Mabuchi: construction

Quantum Mabuchi theory (assuming g_0 is uniformized) defined by

$$\langle F \rangle_{\mathrm{L},\mathrm{g}_0} := \int_{\mathrm{R}} e^{-2Q(1-\mathbf{h})c} \mathbb{E} \Big[e^{-\beta S_{\mathrm{M}}} F(c + X_{g_0}) \exp \Big(-\mu e^{\gamma c} \mathcal{G}_{g_0}^{\gamma}(M) \Big) \Big] dc$$

where $S_{\rm M}$ is the quantum Mabuchi K-energy of the "Liouville random metric" $e^{\gamma(c+X_{g_0})}g_0$ w.r.t. g_0 . It can be given sense and involves:

Kähler potential of the "Liouville random metric"

$$\Phi(z) := -\frac{2}{\mathcal{G}_g^{\gamma}(\textbf{\textit{M}})} \int \textbf{\textit{G}}_{g_0}(z, \textbf{\textit{w}}) \mathcal{G}_{g_0}^{\gamma}(\textbf{\textit{dw}})$$

• Entropy term $\frac{\mathcal{D}_{g_0}^{\gamma}(M)}{\mathcal{G}_{g_0}^{\gamma}(M)}$ where $\mathcal{D}_{g_0}^{\gamma}(M)$ is a variant of GMC that we call **derivative GMC** $\mathcal{D}_{g_0}^{\gamma}(M) := \lim_{\epsilon \to 0} e^{\frac{\gamma^2}{2}} (\gamma X_{\epsilon}(z) - \gamma^2 \ln \epsilon) e^{\gamma X_{\epsilon}(z)} v_{g_0}(dz)$

Technical backbone

Establish negative exponential moments for the entropy

$$\forall \beta > \mathbf{0}, \quad \mathbb{E}\Big[\exp\Big(-\beta \frac{\mathcal{D}^{\gamma}_{g_0}(M)}{\mathcal{G}^{\gamma}_{g_0}(M)}\Big)\Big] < +\infty$$

Simple consequence of

• left Gaussian concentration for derivative GMC

 $\forall x > 0 \text{ large}, \quad \mathbb{P}(\mathcal{D}_{g_0}^{\gamma}(M) < -x) \leqslant C \exp\left(-C^{-1} x^2\right)$

The field $X_{g_0} e^{\gamma X_{g_0}}$ is not bounded from below

• sharp small deviation result for GMC (for some κ)

 $\forall x > 0 \text{ small}, \quad \mathbb{P}(\mathcal{G}_{g_0}^{\gamma}(M) < x) \leqslant C \exp\left(-C^{-1}|\ln x|^{\kappa} x^{4/\gamma^2}\right)$

Compare with results by Duplantier, Nikulae, Sheffield (2008) or Garban, Holden, Sepúlveda, Xin Sun (on fractal sets 2018)

 $\mathbb{P}(\mathcal{G}_{g_0}^{\gamma}(M) > x) \sim C \exp(-C(\ln x)^2)$

IP Why?

Thanks!