The Fyodorov-Bouchaud formula and Liouville conformal field theory

Guillaume Remy

École Normale Supérieure

June 22, 2018

Introduction

Two fields of physics:

- Log-correlated fields, Gaussian multiplicative chaos (GMC)
- Liouville conformal field theory (LCFT)

DKRV 2014: link between GMC and LCFT

Why is this link interesting?

- GMC theory ⇒ Rigorous definition of Liouville CFT
- CFT techniques ⇒ Exact formulas on GMC
 DOZZ formula / Fyodorov-Bouchaud formula

Gaussian Free Field (GFF)

Gaussian free field X on the unit circle $\partial \mathbb{D}$

$$\mathbb{E}[X(e^{i heta})X(e^{i heta'})] = 2\lnrac{1}{|e^{i heta}-e^{i heta'}|}$$

- $X(e^{i\theta})$ has an infinite variance
- X lives in the space of distributions
- Cut-off approximation X_{ϵ}

Ex:
$$X_{\epsilon} = \rho_{\epsilon} * X$$
, $\rho_{\epsilon} = \frac{1}{\epsilon} \rho(\frac{\cdot}{\epsilon})$, with smooth ρ .

Gaussian multiplicative chaos (GMC)

For $\gamma \in (0,2)$, define on $\partial \mathbb{D}$ the measure $e^{\frac{\gamma}{2}X}d\theta$

- Cut-off approximation $e^{\frac{\gamma}{2}X_{\epsilon}}d\theta$
- $\bullet \ \mathbb{E}[e^{\frac{\gamma}{2}X_{\epsilon}}] = e^{\frac{\gamma^2}{8}\mathbb{E}[X_{\epsilon}^2]}$
- Renormalized measure: $e^{\frac{\gamma}{2}X_{\epsilon}-\frac{\gamma^2}{8}\mathbb{E}[X_{\epsilon}^2]}d\theta$

Proposition

The following limit holds in probability, for any continuous test function f, $\forall \gamma \in (0,2)$:

$$\int_0^{2\pi} e^{\frac{\gamma}{2}X(e^{i\theta})} f(\theta) d\theta = \lim_{\epsilon \to 0} \int_0^{2\pi} e^{\frac{\gamma}{2}X_{\epsilon}(e^{i\theta}) - \frac{\gamma^2}{8} \mathbb{E}[X_{\epsilon}^2(e^{i\theta})]} f(\theta) d\theta$$

Moments of the GMC

We introduce:

$$orall \gamma \in (0,2), \,\, Y_{\gamma} := rac{1}{2\pi} \int_0^{2\pi} e^{rac{\gamma}{2} X(e^{i heta})} d heta$$

Existence of the moments of Y_{γ} :

$$\mathbb{E}[Y_{\gamma}^{p}] < +\infty \iff p < \frac{4}{\gamma^{2}}.$$

The Fyodorov-Bouchaud formula

Theorem (R. 2017)

Let $\gamma \in (0,2)$ and $p \in (-\infty, \frac{4}{\gamma^2})$, then:

$$\mathbb{E}[Y^{
ho}_{\gamma}] = rac{\Gamma(1-
horac{\gamma^2}{4})}{\Gamma(1-rac{\gamma^2}{4})^{
ho}}$$

We also have a density for Y_{γ} ,

$$f_{Y_{\gamma}}(y) = \frac{4\beta}{\gamma^2} (\beta y)^{-\frac{4}{\gamma^2} - 1} e^{-(\beta y)^{-\frac{4}{\gamma^2}}} \mathbf{1}_{[0,\infty[}(y),$$

where $\beta = \Gamma(1 - \frac{\gamma^2}{4})$. Equivalently $Y_{\gamma} \stackrel{\text{law}}{=} \frac{1}{\beta} \text{Exp}(1)^{-\frac{\gamma^2}{4}}$.

Application 1: maximum of the GFF

Derivative martingale: work by Duplantier, Rhodes, Sheffield, Vargas.

 $\gamma \rightarrow 2$ in our GMC measure (Aru, Powell, Sepúlveda):

$$Y':=\lim_{\gamma o 2}rac{1}{2-\gamma}Y_{\gamma}.$$

In Y' has the following density:

$$f_{\ln Y'}(y) = e^{-y}e^{-e^{-y}}$$

In $Y' \sim \mathcal{G}$ where \mathcal{G} follows a standard Gumbel law

Application 1: maximum of the GFF

Following an impressive series of works (2016):

Theorem (Ding, Madaule, Roy, Zeitouni)

For a reasonable cut-off X_{ϵ} of the GFF:

$$\max_{\theta \in [0,2\pi]} X_{\epsilon}(e^{i\theta}) - 2\ln\frac{1}{\epsilon} + \frac{3}{2}\ln\ln\frac{1}{\epsilon} \xrightarrow{\epsilon \to 0} \mathcal{G} + \ln Y' + C$$

where \mathcal{G} is a standard Gumbel law and $C \in \mathbb{R}$.

Application 1: maximum of the GFF

The Fyodorov-Bouchaud formula implies:

Corollary (R 2017)

For a reasonable cut-off X_{ϵ} of the GFF:

$$\max_{\theta \in [0,2\pi]} X_{\epsilon}(e^{i\theta}) - 2\ln\frac{1}{\epsilon} + \frac{3}{2}\ln\ln\frac{1}{\epsilon} \underset{\epsilon \to 0}{\longrightarrow} \mathcal{G}_1 + \underline{\mathcal{G}_2} + C$$

where $\mathcal{G}_1, \mathcal{G}_2$ are independent Gumbel laws and $C \in \mathbb{R}$.

Application 2: random unitary matrices

 $U_N := N \times N$ random unitary matrix

Its eigenvalues $(e^{i\theta_1}, \ldots, e^{i\theta_n})$ follow the distribution:

$$\frac{1}{n!} \prod_{k < j} |e^{i\theta_k} - e^{i\theta_j}|^2 \prod_{k=1}^n \frac{d\theta_k}{2\pi}$$

Let
$$p_N(\theta) = \det(1 - e^{-i\theta}U_N) = \prod_{k=1}^N (1 - e^{i(\theta_k - \theta)})$$

Webb (2015): $\forall \alpha \in (-\frac{1}{2}, \sqrt{2}),$

$$\frac{|p_N(\theta)|^{\alpha}}{\mathbb{E}[|p_N(\theta)|^{\alpha}]}d\theta \underset{N\to\infty}{\to} e^{\frac{\alpha}{2}X(e^{i\theta})}d\theta$$

Application 2: random unitary matrices

Conjecture by Fyodorov, Hiary, Keating (2012):

$$\max_{\theta \in [0,2\pi]} \ln |p_N(\theta)| - \ln N + \frac{3}{4} \ln \ln N \underset{N \to \infty}{\to} \mathcal{G}_1 + \mathcal{G}_2 + C.$$

Chhaibi, Madaule, Najnudel (2016), tightness of:

$$\max_{\theta \in [0,2\pi]} \ln |p_N(\theta)| - \ln N + \frac{3}{4} \ln \ln N.$$

With our result it is sufficient to show:

$$\max_{\theta \in [0,2\pi]} \ln |p_N(\theta)| - \ln N + \frac{3}{4} \ln \ln N \underset{N \to \infty}{\longrightarrow} \mathcal{G}_1 + \ln Y' + C.$$

Integer moments of the GMC

The computation of Fyodorov and Bouchaud

Fyodorov Y.V., Bouchaud J.P.: Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential, *Journal of Physics A: Mathematical and Theoretical*, Volume 41, Number 37, (2008).

Integer moments of the GMC

For $n \in \mathbb{N}^*$, $n < \frac{4}{\gamma^2}$:

$$egin{aligned} \mathbb{E}[(rac{1}{2\pi}\int_{0}^{2\pi}e^{rac{\gamma}{2}X_{\epsilon}(e^{i heta})-rac{\gamma^{2}}{8}\mathbb{E}[X_{\epsilon}(e^{i heta})^{2}]}d heta)^{n}] \ &=rac{1}{(2\pi)^{n}}\int_{[0,2\pi]^{n}}\mathbb{E}[\prod_{i=1}^{n}e^{rac{\gamma}{2}X_{\epsilon}(e^{i heta_{i}})-rac{\gamma^{2}}{8}\mathbb{E}[X_{\epsilon}(e^{i heta_{i}})^{2}]}]d heta_{1}\dots d heta_{n} \ &=rac{1}{(2\pi)^{n}}\int_{[0,2\pi]^{n}}e^{rac{\gamma^{2}}{4}\sum_{i< j}\mathbb{E}[X_{\epsilon}(e^{i heta_{i}})X_{\epsilon}(e^{i heta_{j}})]}d heta_{1}\dots d heta_{n} \end{aligned}$$

Integer moments of the GMC

For $n \in \mathbb{N}^*$, $n < \frac{4}{\gamma^2}$:

$$\begin{split} \mathbb{E}[Y_{\gamma}^n] &= \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} e^{\frac{\gamma^2}{4} \sum_{i < j} \mathbb{E}[X(e^{i\theta_i})X(e^{i\theta_j})]} d\theta_1 \dots d\theta_n \\ &= \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} \prod_{i < j} \frac{1}{|e^{i\theta_i} - e^{i\theta_j}|^{\frac{\gamma^2}{2}}} d\theta_1 \dots d\theta_n \\ &= \frac{\Gamma(1 - n\frac{\gamma^2}{4})}{\Gamma(1 - \frac{\gamma^2}{4})^n} \end{split}$$

• Question: can we replace $n \in \mathbb{N}^*$ by a real $p < \frac{4}{\gamma^2}$?

Proof of the Fyodorov-Bouchaud formula

Framework of conformal field theory

Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory, *Nuclear. Physics.*, B241, 333-380, (1984).

The BPZ differential equation

We introduce the following observable for $t \in [0, 1]$:

$$G(\gamma, p, t) = \mathbb{E}\left[\left(\int_0^{2\pi} |t - e^{i\theta}|^{\frac{\gamma^2}{2}} e^{\frac{\gamma}{2}X(e^{i\theta})} d\theta\right)^p\right]$$

BPZ equation:

$$(t(1-t^2)\frac{\partial^2}{\partial t^2} + (t^2-1)\frac{\partial}{\partial t} + 2(C-(A+B+1)t^2)\frac{\partial}{\partial t} - 4ABt)G(\gamma, p, t) = 0$$

where:

$$A = -\frac{\gamma^2 p}{4}, \ B = -\frac{\gamma^2}{4}, \ C = \frac{\gamma^2}{4}(1-p) + 1.$$

Solutions of the BPZ equation

BPZ equation in $t \rightarrow$ hypergeometric equation in t^2

Two bases of solutions:

•
$$G(\gamma, p, t) = C_1 F_1(t^2) + C_2 t^{\frac{\gamma^2}{2}(p-1)} F_2(t^2)$$

•
$$G(\gamma, p, t) = B_1 \tilde{F}_1(1 - t^2) + B_2(1 - t^2)^{1 + \frac{\gamma^2}{2}} \tilde{F}_2(1 - t^2)$$

where:

- C_1 , C_2 , B_1 , $B_2 \in \mathbb{R}$
- F_1 , F_2 , \tilde{F}_1 , \tilde{F}_2 := hypergeometric series depending on γ and p.

Change of basis: $(C_1, C_2) \leftrightarrow (B_1, B_2)$.

The shift relation

By direct asymptotic expansion:

- $C_1 = (2\pi)^p \mathbb{E}[Y_{\gamma}^p]$
- $C_2 = 0$
- $B_1 = \mathbb{E}[(\int_0^{2\pi} |1 e^{i\theta}|^{\frac{\gamma^2}{2}} e^{\frac{\gamma}{2}X(\theta)} d\theta)^p]$
- $B_2 = (2\pi)^p p^{\frac{\Gamma(-\frac{\gamma^2}{2}-1)}{\Gamma(-\frac{\gamma^2}{4})}} \mathbb{E}[Y_{\gamma}^{p-1}]$

The change of basis implies:

$$\mathbb{E}[Y^p_\gamma] = rac{\Gamma(1-prac{\gamma^2}{4})}{\Gamma(1-rac{\gamma^2}{4})\Gamma(1-(p-1)rac{\gamma^2}{4})}\mathbb{E}[Y^{p-1}_\gamma].$$

Negative moments of GMC

The shift relation gives all the negative moments:

$$\mathbb{E}[Y_{\gamma}^{-n}] = \Gamma(1 + \frac{n\gamma^2}{4})\Gamma(1 - \frac{\gamma^2}{4})^n, \quad \forall n \in \mathbb{N}.$$

We check:

$$\forall \lambda \in \mathbb{R}, \;\; \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \Gamma(1 + \frac{n\gamma^2}{4}) \Gamma(1 - \frac{\gamma^2}{4})^n < +\infty$$

Negative moments \Rightarrow determine the law of Y_{γ} !

Explicit probability densities

Probability densities for Y_{γ}^{-1} and Y_{γ}

$$f_{\frac{1}{Y_{\gamma}}}(y) = \frac{4}{\beta \gamma^2} \left(\frac{y}{\beta}\right)^{\frac{4}{\gamma^2} - 1} e^{-\left(\frac{y}{\beta}\right)^{\frac{4}{\gamma^2}}} \mathbf{1}_{[0,\infty[}(y)$$

$$f_{Y_{\gamma}}(y) = \frac{4\beta}{\gamma^2} (\beta y)^{-\frac{4}{\gamma^2} - 1} e^{-(\beta y)^{-\frac{4}{\gamma^2}}} \mathbf{1}_{[0,\infty[}(y)]$$

where $\gamma \in (0,2)$ and $\beta = \Gamma(1-\frac{\gamma^2}{4})$.

What is Liouville field theory?

Path integral formalism

$$\Sigma = \{X : \mathbb{D} \to \mathbb{R}\}$$

For $X \in \Sigma$, energy of $X := \frac{1}{4\pi} \int_{\mathbb{D}} |\partial X|^2 dx^2 + \int_{\partial \mathbb{D}} e^{\frac{\gamma}{2}X} ds$

Random field ϕ_L :

$$\mathbb{E}[F(\phi_L)] = \int_{\Sigma} F(X) e^{-\frac{1}{4\pi} \int_{\mathbb{D}} |\partial X|^2 dx^2 - \int_{\partial \mathbb{D}} e^{\frac{\gamma}{2} X} ds} DX$$

with $\gamma \in (0,2)$.

 $\Rightarrow \phi_L$ is the Liouville field

Correlations of Liouville theory

Correlation function of $z_i \in \mathbb{D}$, $\alpha_i \in \mathbb{R}$:

$$\langle \prod_{i=1}^N e^{\alpha_i \phi_L(z_i)} \rangle_{\mathbb{D}} = \int_{X: \mathbb{D} \mapsto \mathbb{R}} DX \prod_{i=1}^N e^{\alpha_i X(z_i)} e^{-\frac{1}{4\pi} \int_{\mathbb{D}} |\partial X|^2 dx^2 - \int_{\partial \mathbb{D}} e^{\frac{\gamma}{2} X} ds}$$

Expressed in terms of Gaussian multiplicative chaos

- $ullet \langle e^{lpha\phi_L(0)}
 angle_{\mathbb D}= ilde C_1\mathbb E[Y_\gamma^{p-1}]$
- $\langle e^{\alpha\phi_L(0)}e^{-\frac{\gamma}{2}\phi_L(t)}\rangle_{\mathbb{D}} = \tilde{C}_2 t^{\frac{\alpha\gamma}{2}} (1-t^2)^{-\frac{\gamma^2}{8}} G(\gamma, p, t)$ with $p=2-2\alpha-\frac{4}{\gamma^2}$.

Correlations of Liouville theory

Liouville theory is a conformal field theory

- Degenerate fields: $e^{-\frac{\gamma}{2}\phi_L(z)}$ and $e^{-\frac{2}{\gamma}\phi_L(z)}$.
- BPZ equation, for $z_1, z \in \mathbb{D}$, $\alpha \in \mathbb{R}$, $\gamma \in (0, 2)$:

$$(z_1,z)\mapsto \langle e^{\alpha\phi_L(z_1)}e^{-\frac{\gamma}{2}\phi_L(z)}\rangle_{\mathbb{D}}$$

is solution of a differential equation.

• Use conformal map ψ , $\psi(z_1) = 0$, $\psi(z) = t$.

BPZ equation on the upper half plane \mathbb{H}

Proposition (R. 2017)

Let $\gamma \in (0,2)$ and $\alpha > Q + \frac{\gamma}{2}$. Then:

$$(\frac{4}{\gamma^{2}}\partial_{zz} + \frac{\Delta_{-\frac{\gamma}{2}}}{(z-\overline{z})^{2}} + \frac{\Delta_{\alpha}}{(z-z_{1})^{2}} + \frac{\Delta_{\alpha}}{(z-\overline{z_{1}})^{2}} + \frac{1}{z-\overline{z}}\partial_{\overline{z}} + \frac{1}{z-\overline{z}}\partial_{\overline{z}} + \frac{1}{z-\overline{z_{1}}}\partial_{z_{1}} + \frac{1}{z-\overline{z_{1}}}\partial_{\overline{z_{1}}})\langle e^{-\frac{\gamma}{2}\phi_{L}(z)}e^{\alpha\phi_{L}(z_{1})}\rangle_{\mathbb{H}} = 0$$

where
$$Q=rac{\gamma}{2}+rac{2}{\gamma}$$
, $\Delta_{\alpha}=rac{\alpha}{2}(Q-rac{\alpha}{2})$, $\Delta_{-rac{\gamma}{2}}=-rac{\gamma}{4}(Q+rac{\gamma}{4})$.

 \Rightarrow differential equation for $G(p, \gamma, t)$.

Analogue for the unit interval [0,1]

Log-correlated field X on [0,1]: $\mathbb{E}[X(x)X(y)] = -2\ln|x-y|$

For $\gamma \in (0,2)$, and suitable a, b and p, define:

$$M(\gamma, p, a, b) := \mathbb{E}\left[\left(\int_0^1 x^a (1-x)^b e^{\frac{\gamma}{2}X(x)} dx\right)^p\right].$$

Theorem (R., Zhu 2018)

 $M(\gamma, p, a, b)$ has the following expression,

$$\frac{(2\pi)^{p}(\frac{2}{\gamma})^{p}\frac{\gamma^{2}}{4}}{\Gamma(1-\frac{\gamma^{2}}{4})^{p}} \frac{\Gamma_{\gamma}(\frac{2}{\gamma}(a+1)-(p-1)\frac{\gamma}{2})\Gamma_{\gamma}(\frac{2}{\gamma}(b+1)-(p-1)\frac{\gamma}{2})\Gamma_{\gamma}(\frac{2}{\gamma}(a+b+2)-(p-2)\frac{\gamma}{2})\Gamma_{\gamma}(\frac{2}{\gamma}-p\frac{\gamma}{2})}{\Gamma_{\gamma}(\frac{2}{\gamma})\Gamma_{\gamma}(\frac{2}{\gamma}(a+1)+\frac{\gamma}{2})\Gamma_{\gamma}(\frac{2}{\gamma}(b+1)+\frac{\gamma}{2})\Gamma_{\gamma}(\frac{2}{\gamma}(a+b+2)-(2p-2)\frac{\gamma}{2})},$$

$$\ln \Gamma_{\gamma}(x) = \int_{0}^{\infty} \frac{dt}{t} \left[\frac{e^{-xt} - e^{-\frac{Qt}{2}}}{(1 - e^{-\frac{\gamma t}{2}})(1 - e^{-\frac{2t}{\gamma}})} - \frac{(\frac{Q}{2} - x)^2}{2} e^{-t} + \frac{x - \frac{Q}{2}}{t} \right], \quad Q = \frac{\gamma}{2} + \frac{2}{\gamma}.$$

Analogue for the unit interval [0,1]

Log-correlated field X on [0,1]: $\mathbb{E}[X(x)X(y)] = -2\ln|x-y|$

Equivalent statement:

$$\int_0^1 x^a (1-x)^b e^{\frac{\gamma}{2}X(x)} dx \stackrel{\text{law}}{=} c e^{\mathcal{N}(0,\gamma^2 \ln 2)} Y_\gamma X_1^{-1} X_2^{-1} X_3^{-1}$$

- c := deterministic constant
- $Y_{\gamma} \stackrel{\mathsf{law}}{=} \frac{1}{\beta} \mathsf{Exp}(1)^{-\frac{\gamma^2}{4}}$
- $X_i :=$ generalized beta law

Analogue for the bulk meaure on $\mathbb D$

Work in progress, for $\gamma \in (0, 2)$, $\alpha \in (\frac{\gamma}{2}, Q)$:

$$\mathbb{E}\left[\left(\int_{\mathbb{D}} \frac{1}{|x|^{\gamma \alpha}} e^{\gamma X(x)} dx^{2}\right)^{\frac{Q-\alpha}{\gamma}}\right] =$$

$$\gamma^{2} \left(\pi \frac{\Gamma\left(\frac{\gamma^{2}}{4}\right)}{\Gamma\left(1 - \frac{\gamma^{2}}{4}\right)}\right)^{\frac{Q-\alpha}{\gamma}} \cos\left(\frac{\alpha - Q}{\gamma}\pi\right) \frac{\Gamma\left(\frac{2\alpha}{\gamma} - \frac{4}{\gamma^{2}}\right) \Gamma\left(\frac{\gamma}{2}(\alpha - Q)\right)}{\Gamma\left(\frac{\alpha - Q}{\gamma}\right)}$$

Liouville theory with action: $\int_{\mathbb{D}} (|\partial X|^2 + e^{\gamma X}) dx^2$

Outlook and perspectives

Integrability program for GMC and Liouville theory

- ullet More general Liouville correlations on $\mathbb D$
- Work in progress to recover the law of the quantum disk of the Duplantier-Miller-Sheffield approach to Liouville Quantum Gravity
- Other geometries, higher genus
- Conformal bootstrap