CHARACTERISING THE GAUSSIAN FREE FIELD RANDOM CONFORMAL GEOMETRY (SEOUL)

Ellen Powell (ETH Zürich)

Joint work with Nathanaël Berestycki and Gourab Ray

18.06.2018

@Scott Sheffield

Conjectured/proven scaling limit of many discrete models

@Rick Kenyon

Conjectured/proven scaling limit of many discrete models Height function of the dimer model

(Kenyon, Berestycki-Laslier-Ray, many others...)

Conjectured/proven scaling limit of many discrete models Log characteristic polynomial of random matrices (Ginibre Ensemble) (Rider-Virag...)

@Jason Miller

Conjectured/proven scaling limit of many discrete models

Ginsburg-Landau $\nabla \varphi$ interface model

$$\mathbb{P}(dh) \propto \exp(-\sum_{x \sim y} V(h_x - h_y)) \prod_x dh_x$$
 (Giacomin-Olla-Spohn, Miller)

Ellen Powell (ETH ZÜRICH) Joint work with Nathanaël Berestycki and Gourab Ray Characterising the Gaussian free field

@David Wilson

Conjectured/proven scaling limit of many discrete models $\mathsf{Nesting} \ \mathsf{field} \ \mathsf{of} \ \mathsf{CLE}_4$

(Miller-Sheffield)

@Nicolas Curien

Conjectured/proven scaling limit of many discrete models

"Exponential of GFF" = Liouville quantum gravity = Metric space limit of random planar maps

(Le Gall, Miermont, Miller-Sheffield...)

DEFINITION (zero-boundary condition GFF on $D \subset \mathbb{C}$)

- Gaussian "function" on D.
- Mean zero and covariance given by the Dirichlet Green function $G_D: D \times D \to \mathbb{R}$ on D.

DEFINITION (zero-boundary condition GFF on $D \subset \mathbb{C}$)

- Gaussian generalised function h^D on D.
- Mean zero and covariance given by

$$\mathbb{E}[(h^D, f)(h^D, g)] = \iint_{D \times D} f(x) G_D(x, y) g(y) \, dx dy$$

for f, g test functions.

DEFINITION (zero-boundary condition GFF on $D \subset \mathbb{C}$)

- Random Gaussian generalised function h^D on D.
- Mean zero, $\mathbb{E}[(h^D, f)(h^D, g)] = \iint f(x)G_D(x, y)g(y)$

 G_D is the unique function on $D \times D$ such that $G_D(\cdot, y)$ is harmonic on $D \setminus \{y\}$ and blows up logarithmically on the diagonal.

KEY PROPERTIES

CONFORMAL INVARIANCE

h a GFF on D, $\varphi:D\to D'$ conformal $\Rightarrow \varphi(h)$ a GFF on D'

KEY PROPERTIES

Domain Markov Property

 $U \subset D$ open: $h^D = h^U + \varphi$ where h^U is a GFF on U, φ is independent of h^U and is harmonic when restricted to U.

AXIOMATIC CHARACTERISATION

THEOREM (MAIN RESULT; BERESTYCKI-P.-RAY)

Domain Markov property & Conformal invariance $\Rightarrow h = GFF$.

More precisely:

SETUP

We assume for every D, we are given the law of h^D a linear stochastic process indexed by $f \in C_c^{\infty}(D)$.

We assume the following:

ASSUMPTIONS

1. Moments

 $\mathbb{E}(h^D,f)^4<\infty$ for any $f\in C_c^\infty(D)$. Furthermore,

$$(f,g)\mapsto \mathbb{E}((h^D,f)(h^D,g))=:K_D(f,g)$$

is continuous on $C_c^{\infty}(D) \times C_c^{\infty}(D)$

2. Dirichlet boundary condition

 $\mathbb{E}(h^D,f)=0$. Moreover, for any $(f_n)_{n\geq 1}\in C_c^\infty(D)$ radially symmetric with bounded mass, and with support $(f_n)\cap K=\emptyset$ eventually for any $K\subset D$.

$$Var(h^D, f_n) \rightarrow 0$$

ASSUMPTIONS

3. Conformal invariance

if $f: D \to D'$, then $h^{D'}$ has the law of $h^D \circ f^{-1}$.

4. Domain Markov Property

If $U \subset D$ simply connected, we can write

$$h^D = h_D^U + \varphi_D^U$$
,

where

- h_D^U has the given law in U, and zero outside;
- φ_D^U is harmonic in U;
- h_D^U, φ_D^U are independent.

RESULT AND REMARKS

Theorem: (1)-(4) Given family of laws corresponds to a multiple of the zero-boundary condition Gaussian free field.

Remarks

d = 1:

The theorem also works in 1d, giving us a new characterisation of Brownian bridge.

Role of assumptions

2, 3 and 4 seem indispensable. Moments assumptions, however...? Technically this is needed to extract some continuity.

SCHRAMM'S CHARACTERISATION OF SLE

- (Schramm)The only random curves satisfying conformal invariance and domain Markov property are SLE_{κ} for some value of κ
- (Schramm-Sheffield) SLE₄ = "level line" of the GFF

OPEN PROBLEMS

- Moments?
- In $d \ge 3$ we have no analogous characterisation?
- What about free boundary / Neumann boundary conditions?
- What about Riemann surfaces? (see Berestycki-Laslier-Ray for dimer model, where limit known to exist and conformally invariant).
- What about a "stable" free field?

THANKS FOR LISTENING!